

Contaminant Assessment and Reduction Project (CARP)

Litten, S., New York State Department of Environmental Conservation, Albany, NY Fowler, B., Axys Analytical, Sidney, BC Gauthier, M., Frontier Geosciences, Seattle, WA Bloom, N., Frontier Geosciences, Seattle, WA

ABSTRACT

The NY State Department of Environmental Conservation has been investigating sources ambient concentrations of pesticides, mercury, and cadmium to New York Harbor. The highest concentrations of pesticides occur in the Arthur Kill and in WPCF effluents. A survey for pesticide sources conducted in tributaries to the Hudson River revealed that the Wallkill River may be a particularly nt source. Trackdown studies in the Wallkill River located the pesticide source in an intensively farmed "black dirt" area. Dissolved and methyl mercury concentrations are highest in the WPCF treated effluents. Whole water concentrations (total mercur are greatest in the Hackensack and Passaic Rivers. Cadmium levels were highest in WPCF effluents but always at concentrations below the NYSWQS. FAHs were measured as dissolved and particle-bound compartments. The highest particle-bound PAH concentrations were found in surface waters.

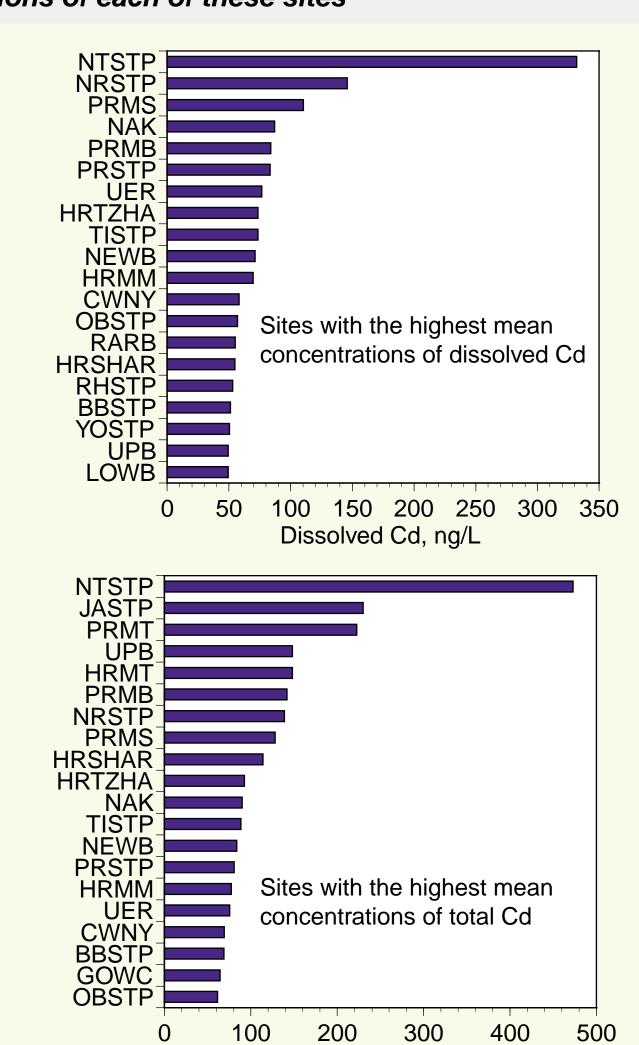
	Abbreviation	Site Name	Sample type
	26WSTP	26th Ward WPCF	Water Polution Control Fac
	BBSTP	Bowery Bay WPCF	Water Polution Control Fac
	BIGHT	New York Bight, Trawl Site	Ambient
	BIGHT-D	New York Bight, Trawl Site, December 1998	Ambient
	BRBG	River at Botanical Garden	Tributary
	BRBZ	Bronx River below Zoo	Tributary
	CISTP	Cony Island WPCF	Water Polution Control Fac
	CWNY	Clean Waters of New York	Industrial Effluent
	GOWC	Gowanus Canal (Carroll St).	Tributary
	HPSTP	Hunts Point WPCF	Water Polution Control Fac
	HRHAV	Hudson River, Haverstraw Bay, Trawl Site	Ambient
	HRKP	Mid-Hudson Trawl Site	Ambient
	HRMM	Hackensack River, Mouth, Trawl Site	Ambient
	HRMT	Hackensack River, Mid-Tidal	Ambient
	HRPOU	Hudson River at Poughkeepsie	Ambient
	HRSHAR	Hudson River below Harlem River, Trawl Site	Ambient
	HRTZHA	Hudson River, Tappen Zee to Harlem R., Trawl Site	Ambient
	HRWA	Hudson River, Waterford	Tributary
)	JAMB	Jamaica Bay, Trawl Site	Ambient
I	JASTP	Jamaica WPCF	Water Polution Control Fac
	LER	Lower East River, Trawl Site	Ambient
	LISE	Long Island Sound, Eaton's Neck to Stamford, Trawl Site	Ambient
)	LISJ	Long Island Sound, Port Jefferson, Trawl Site	Ambient
)	LOWB	Lower NY Harbor, Trawl Site	Ambient
	MORCO	Mohawk River, Cohoes	Tributary
1	NAK	Northern Arthur Kill, Trawl Site	Ambient
	NEWB	Newark Bay, Trawl Site	Ambient
	NRSTP	North River, WPCF	Water Polution Control Fac
	NTSTP	Newtown Creek, WPCF	Water Polution Control Fac
	OBSTP	Oakwood Beach, WPCF	Water Polution Control Fac
1	OHSTP	Owls Head WPCF	Water Polution Control Fac
r I	PBLF	Pelham Bay Landfill Holding Tank	Landfill
1	PRMB	Passaic River, Mouth, Bottom	Ambient
l	PRMS	Passaic River, Mouth, Surface, Trawl Site	Ambient
)	PRMT	Passaic River, Mid-Tidal	Ambient
	PRSTP	Port Richmond, WPCF	Water Polution Control Fac
	PVSC	Passaic Valley Sewage Authority	Influent - WPCF
	RARB	Raritan Bay, Trawl Site	Ambient
	RENSTP	Rensselaer WPCF	Water Polution Control Fac
	RHSTP	Red Hook WPCF	Water Polution Control Fac
	ROCSTP	Rockland County WPCF	Water Polution Control Fac
	ROSTP	Rockaway WPCF	Water Polution Control Fac
	SMR	Saw Mill River, Yonkers	Tributary
	TISTP	Tallman Island, WPCF	Water Polution Control Fac
	UER	Upper East River, Trawl Site	Ambient
	UPB	Upper NY Harbor, trawl Site	Ambient
	WALLR	Wallkill River at New Paltz	Tributary
	WISTP	Wards Island WPCF	Water Polution Control Fac

Please see the CARP Methods poster for locations of each of these sites

Cadmium (total and dissolved)

Levels have caused New York State to advise limited consumption of 1) blue claw crabs caught in the Hudson River from Troy Dam, south to the Lower Bay, and 2) hepatopancreas ("tomalley") of lobsters caught throughout the

New York State Water Quality Standard Cd, dissolved - 2.7 μ g/L = 2,700 ng/L


Analysis: USEPA 1638

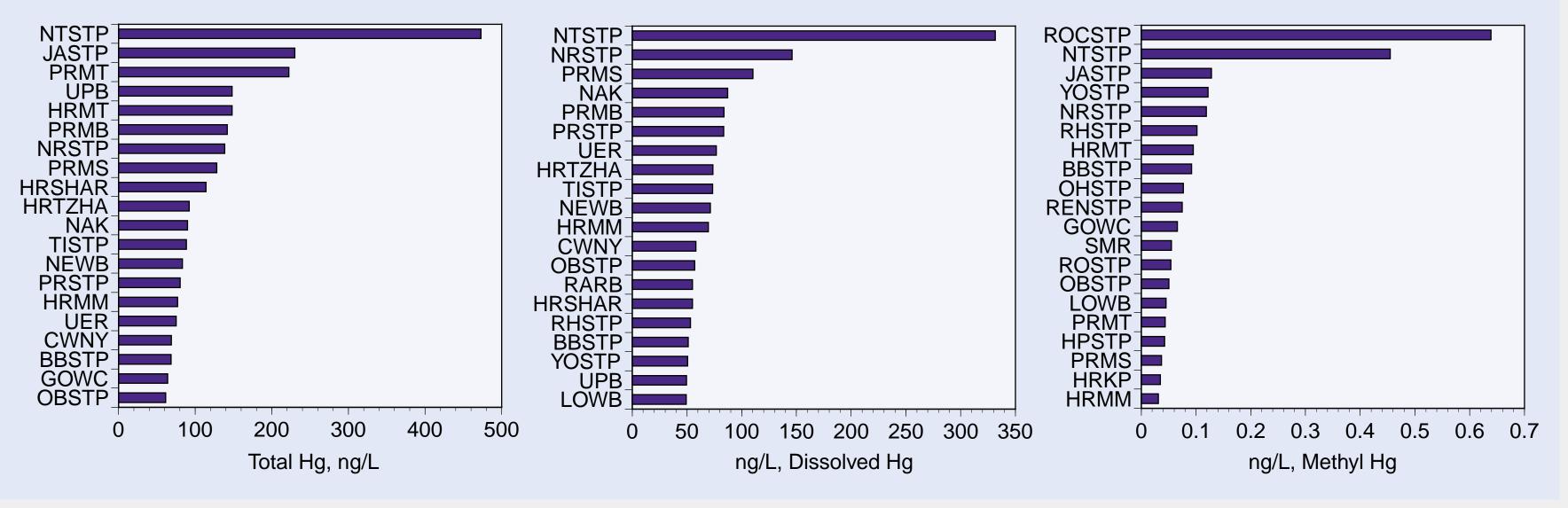
No sample approached the NYSWQS.

The highest concentrations were seen in WPCF effluents.

Most of the cadmium is in the dissolved form.

Total Cd, ng/L

Mercury (total, dissolved, and dissolved methyl).


Mercury exceeds the water quality standard virtually Harbor-wide. Expected to exceed state advisory levels in fish tissue. Levels in sediments exceed the NOAA Effects Range - Median Value at sampling sites throughout the Harbor; and exceeds this level by ten times or more at sampling sites in the Hackensack River, Arthur Kill, and Newark Bay.

New York State Water Quality Standards are for the dissolved phase: 0.0007µg/L or 0.7 ng/L

The precautions to prevent field and laboratory contamination of metals samples are described in EPA Method 1669.

Most of the mercury is on particles and the highest concentrations occurred in the Hackensack and Passaic mouths.

Newtown Creek WPCFs.

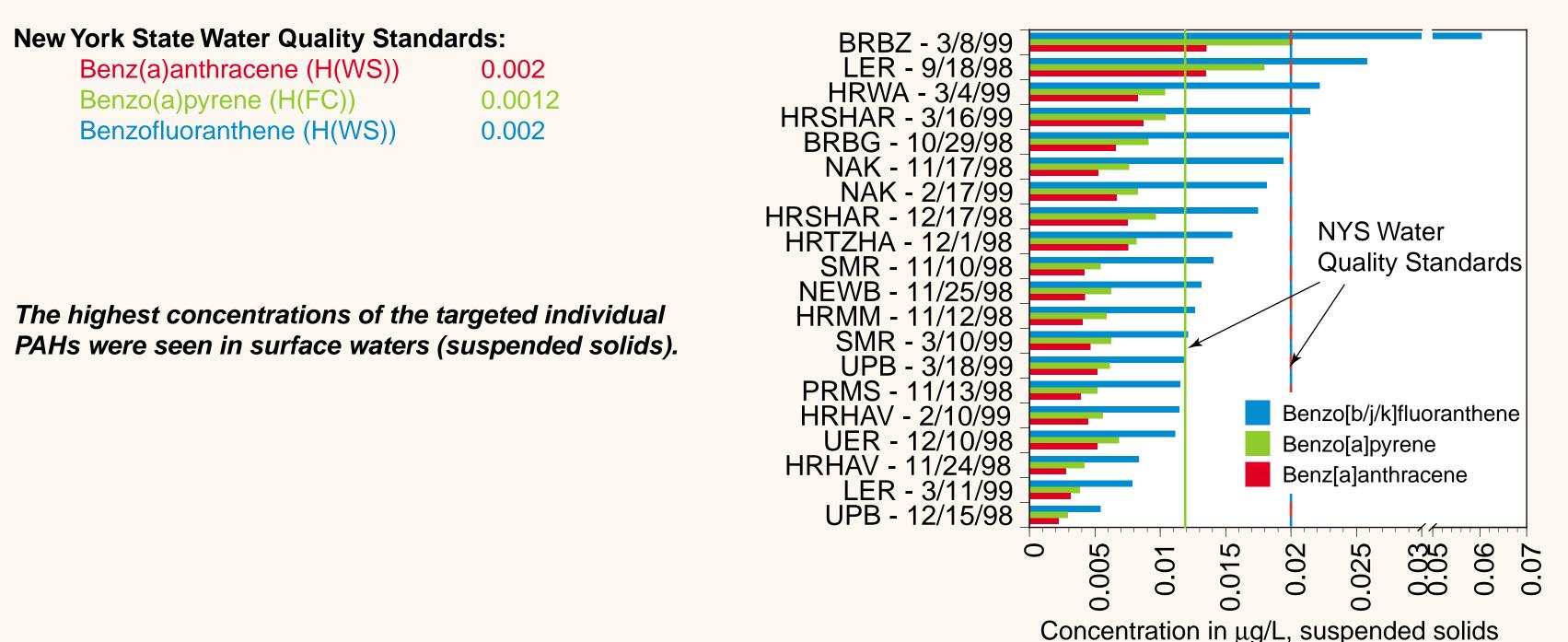
Polynuclear Aromatic Hydrocarbons (PAHs)

Levels of total PAH and several individual PAHs at sediment sampling sites in many inner Harbor areas and tributaries exceed the NOAA Effects Range - Median Value, often by five to ten times or more; attibuted to discharges of petroleum and related materials. Recent NOAA studies found a moderate positive correlation among levels of PAHs in the Harbor/Bight sediments and toxic responses in a variety of laboratory test organisms. Levels of several PAHs in mussel tissue at several sampling sites throughout the Harbor sometimes exceed tissue concentrations on which USEPA water quality criteria for human health protection are based. Levels of four PAHs benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and benzo(k)fluoranthene - sometimes exceed water guality standards in Jamaica Bay.

Analysis: NYSDEC Method HRMS - 3 (Analytical Procedures For Polynuclear Aromatic Hydrocarbons By Isotope Dilution HRGC/MS)

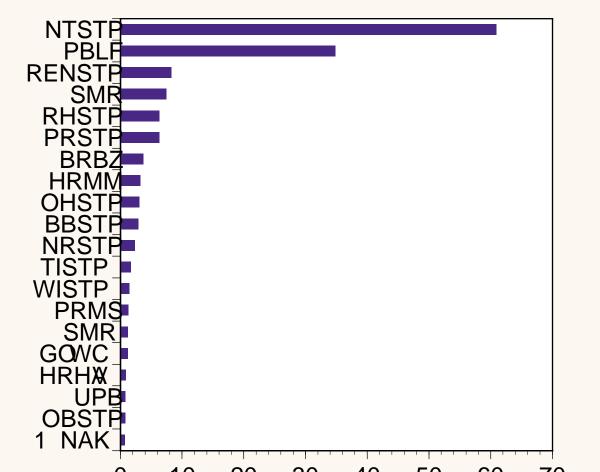
New York State Water Quality Standards: enz(a)anthracene (H(WS)) 0.002 Benzofluoranthene (H(WS)) 0.002

PAHs were seen in surface waters (suspended solids).


shown as molar summations.

The lighter naphthalenes (parent and methylated forms) account for a large proportion of the total PAH molar abundance. Unfortunately, XAD breaks down to produce naphthalenes that interfere with the detection of native PAHs. Therefore, in the CARP, we measure aqueous PAHs directly from grab samples without the benefit of field concentration. PAHs are also analyzed from the TOPS filter.

PAHs and their molecular weights:								
Naphthalene	128.2	Benzo[b/j/k]fluoranthenes	252.3					
Biphenyl	154.2	Benzo[e]pyrene	228.3					
Acenaphthylene	152.2	Benzo[a]pyrene	252.3					
Acenaphthene	154.2	Perylene	252.32					
Fluorene	166.2	Dibenz[ah]anthracene	278.4					
Phenanthrene	178.2	Indeno[1,2,3-cd]pyrene	276.3					
Anthracene	178.2	Benzo[ghi]perylene	276					
Fluoranthene	202.3	C1 Naphthalenes	142.2					
Pyrene	202	C2 Naphthalenes	156.23					
Benz[a]anthracene	228.29	C3 Naphthalenes	170.26					
Chrysene	228.3	C1 Phenanthrenes/Anthracenes	192.26					


mpling in the Bronx

The highest dissolved concentrations were seen in WPCF effluents, particularly Rockland County Sewer District 1 and the

The toxic effect of PAHs on laboratory test organisms is thought to be due to molar abundance of all the PAHs and so, PAHs are also

The highest molar concentrations (from the aqueous phase) were seen in WPCF effluents and a landfill leachate.

0 10 20 30 40 50 60 70 PAHs, μmoles/L, aqueous

Pesticides

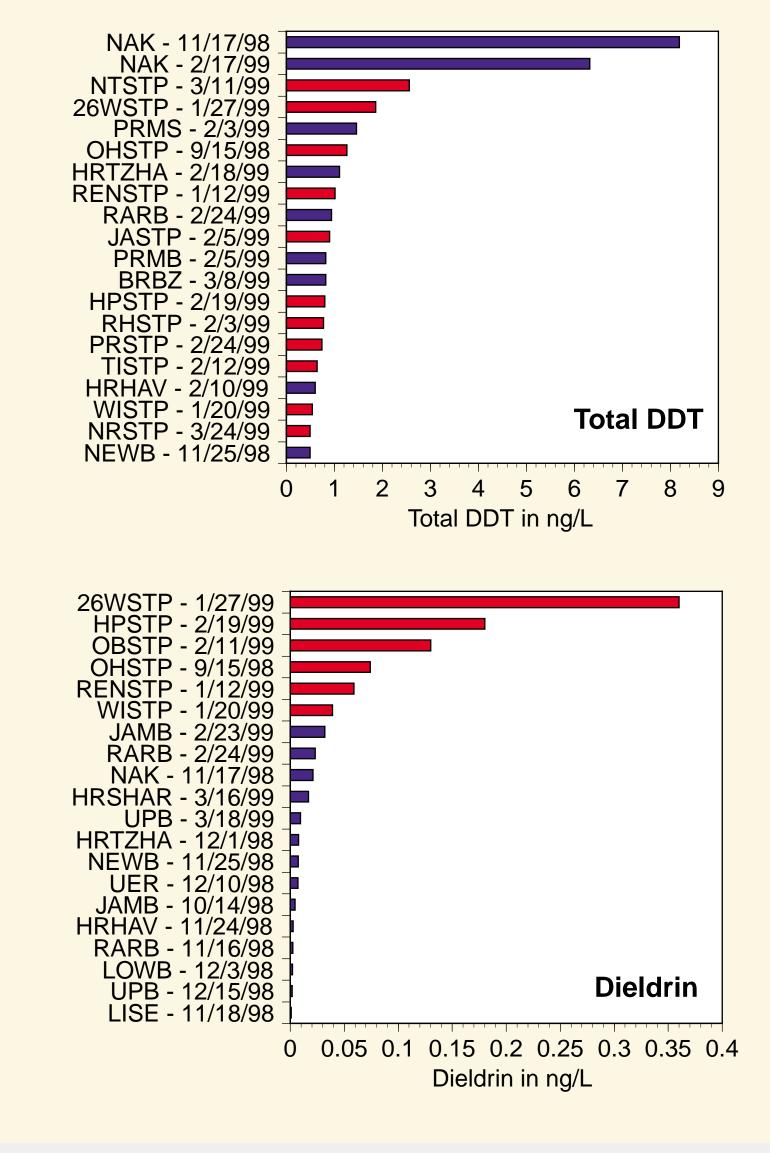
The final Comprehensive Conservation and Management Plan (CCMP) lists seven pesticides - DDT and metabolites, chlordane, dieldrin, heptachlor, heptachlor epoxide, hexachlorobenzene, and gamma-BHC. However, evidence presented in March, 1999 has led to the delisting of heptachlor, heptachlor epoxide, hexachlorobenzene, and gamma-BHC. In practice, however, the NYSDEC pesticides list includes these and many other substances. Of the pesticides the CCMP

> "In various edible species, tissue levels of all the listed pesticides . . . greatly exceed tissue concentrations on which USEPA water quality criteria for human health protection are based.

For chlordane:

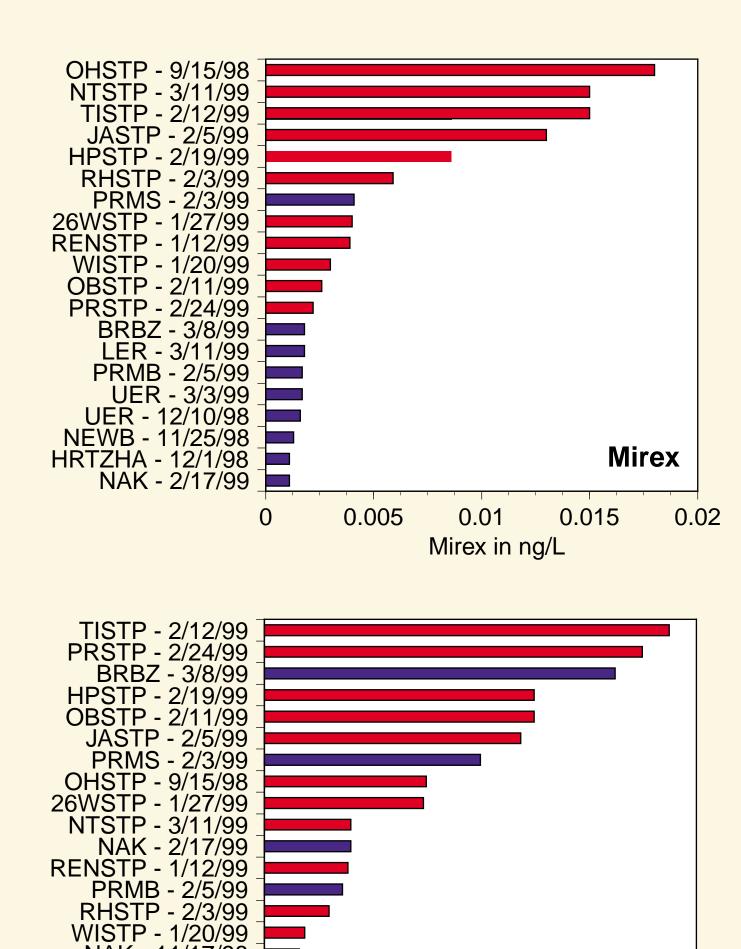
"Levels in striped bass and American eel sometimes exceed FDA advisory levels at locations throughout the Harbor."

New York State Water Quality Standards are shown below for all target analytes. CARP targets are in bold

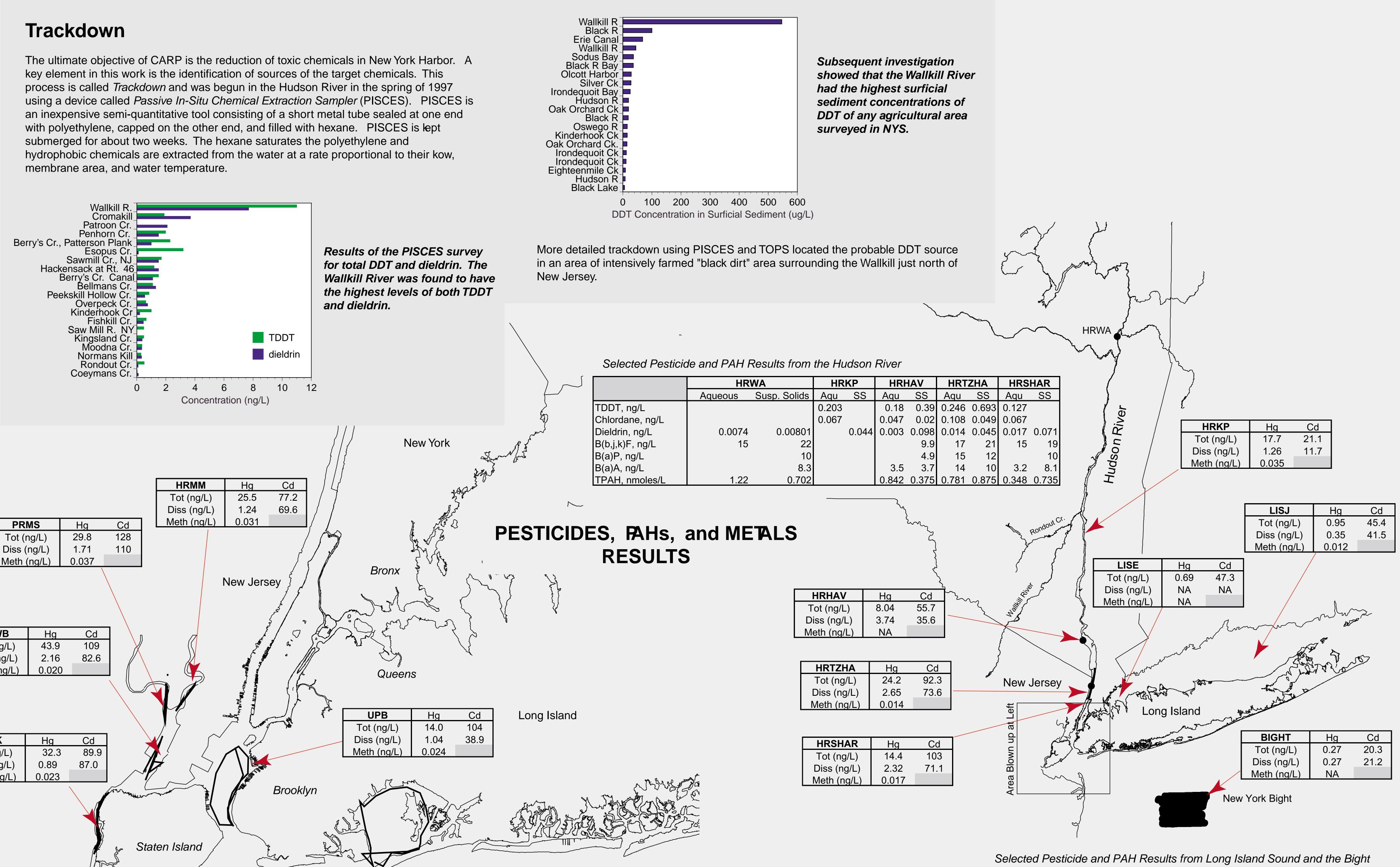

Analyte	NYS
Aldrin	0.00
alpha HCH	0.00
beta HCH	0.00
Chlordane - sum of cis and trans isomers	0.00
Dieldrin	6E-(
Endrin	0.00
gamma HCH	0.00
Heptachlor	0.00
Heptachlor Epoxide	0.00
Hexachlorobenzene	0.00
Mirex	0.00
p,p'-DDD	0.00
p,p'-DDE	0.00
p,p'-DDT	0.00

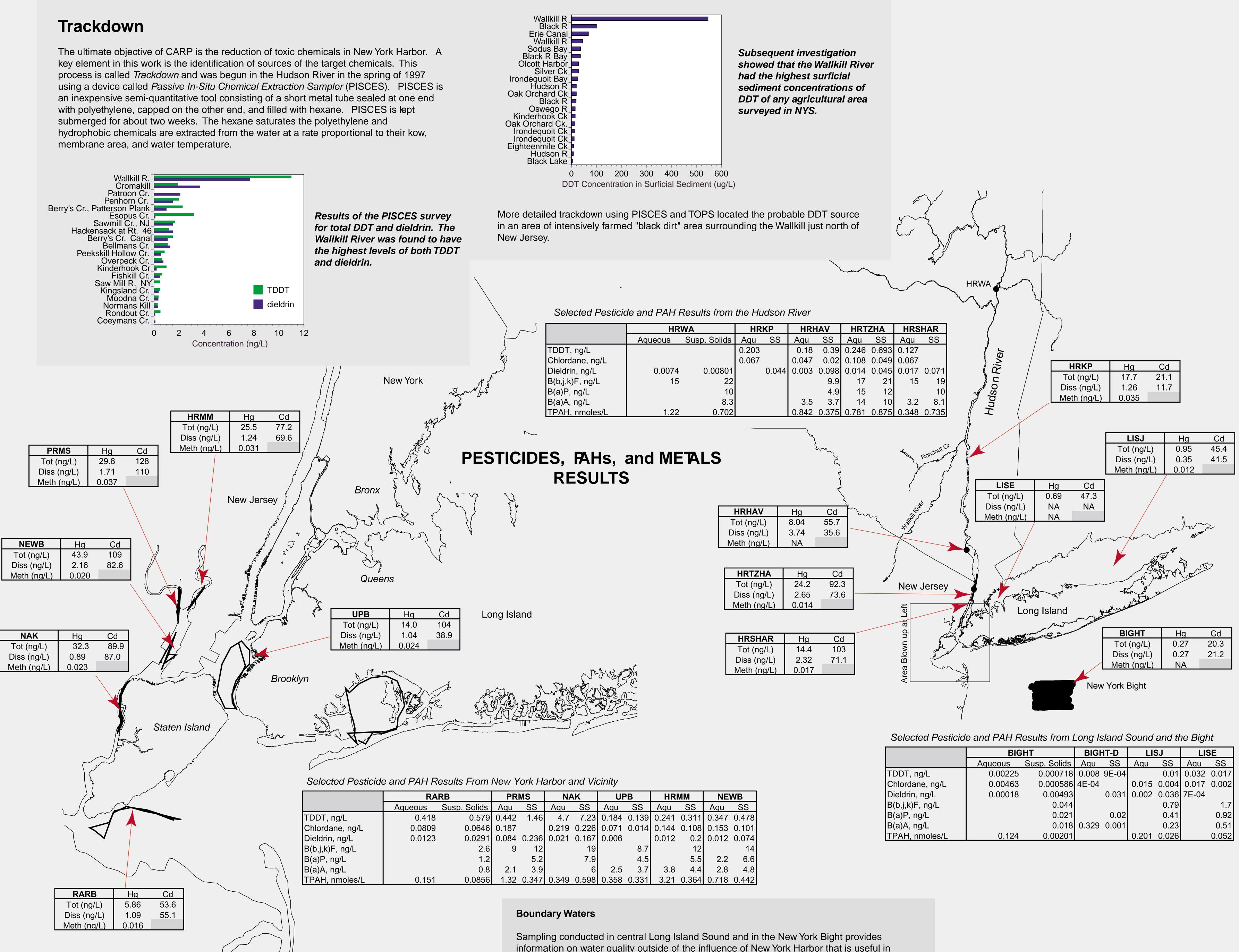
Analysis: Draft NYSDEC Method HRMS - 2 (Analytical Procedures For Pesticides By Isotope Dilution HRGC/HRMS).

Plots below indicate the 20 highest concentrations detected for Total DDT, Mirex, Dieldrin, and Chlodane with corresponding site code and date of sample collection.


The site with the highest concentrations of total DDTs is the Arthur Kill (NAK)

The highest chlordane, dieldrin, and mire concentrations were seen in WPCF effluents (shown as red bars). The sources of these banned materials to the present wastestream are unknown but may represent diffuse but intensive past uses in urban pest control.


Toxic Chemicals in New York Harbor and Vicinity - Sources and Ambient Concentrations of Pesticides, PAHs, Mercury, and Cadmium.


YSWQS (ppm)

Chlordane HRMM - 2/8/99 NRSTP - 3/24/99 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Chlordane in ng/L

The ultimate objective of CARP is the reduction of toxic chemicals in New York Harbor. A key element in this work is the identification of sources of the target chemicals. This process is called *Trackdown* and was begun in the Hudson River in the spring of 1997

	PR	PRMS		NAK		UPB		HRMM		NB
usp. Solids	Aqu	SS								
0.579	0.442	1.46	4.7	7.23	0.184	0.139	0.241	0.311	0.347	0.478
0.0646	0.187		0.219	0.226	0.071	0.014	0.144	0.108	0.153	0.101
0.0291	0.084	0.236	0.021	0.167	0.006		0.012	0.2	0.012	0.074
2.6	9	12		19		8.7		12		14
1.2		5.2		7.9		4.5		5.5	2.2	6.6
0.8	2.1	3.9		6	2.5	3.7	3.8	4.4	2.8	4.8
0.0856	1.32	0.347	0.349	0.598	0.358	0.331	3.21	0.364	0.718	0.442

information on water quality outside of the influence of New York Harbor that is useful in modeling. It also serves as a check on the cleanliness of the sampling system.

In order to detect organic chemicals 20 miles out into the Bight, very large sample volumes were processed - 5,000 L seems to be a minimal sample size required to quantitate DDTs on suspended solids. Chemical concentations were significantly higher in Long Island

	BIG	BIGHT-D		LISJ		LISE		
	Aqueous	Susp. Solids	Aqu	SS	Aqu	SS	Aqu	SS
TDDT, ng/L	0.00225	0.000718	0.008	9E-04		0.01	0.032	0.017
Chlordane, ng/L	0.00463	0.000586	4E-04		0.015	0.004	0.017	0.002
Dieldrin, ng/L	0.00018	0.00493		0.031	0.002	0.036	7E-04	
B(b,j,k)F, ng/L		0.044				0.79		1.7
B(a)P, ng/L		0.021		0.02		0.41		0.92
B(a)A, ng/L		0.018	0.329	0.001		0.23		0.51
TPAH, nmoles/L	0.124	0.00201			0.201	0.026		0.052