Extent and Condition of Habitats for New York’s Species of Greatest Conservation Need

New York Natural Heritage Program

July 2015
Table of Contents

Table of Figures ... v
Table of Tables .. xvi

Introduction .. 1
Changes in Land Use and Land Cover .. 1
 Statewide Trends ... 1
 Combined Land Cover Categories by County 2

Terrestrial Habitats ... 5
 Northeast Terrestrial Habitat Map .. 5
 Ecoregions of New York ... 6
 Condition Assessment Scores .. 6
 Central Oak-Pine ... 7
 Northern Hardwood and Conifer .. 14
 Plantation/Pioneer Forest .. 17
 Exotic Upland Forest .. 19
 Coastal Plain Swamp .. 19
 Central Hardwood Swamp ... 22
 Northeast Floodplain Forest .. 26
 Northern Swamp ... 31
 Boreal Upland Forest .. 34
 Boreal Forested Peatland ... 38
 Glade and Savanna .. 39
 Outcrop and Summit Scrub .. 42
 Lake and River Shore .. 45
 Disturbed Land/Pioneer ... 46
 Coastal Grassland/Shrubland ... 51
 Northern Peatland ... 55
 Coastal Peatland ... 59
 Coastal Plain Pond .. 62
 Emergent Marsh ... 64
 Wet Meadow/Shrub Marsh .. 69
 Modified/Managed Marsh .. 73
 Alpine .. 73
 Cliff and Talus ... 76
 Agricultural .. 80
 Maintained Grasses and Mixed Cover 84
 Urban/Suburban ... 87
 Subterranean .. 90
 Extractive .. 91
 Streams and Rivers ... 94
 Major Watersheds of New York .. 94
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Proportional change in forest cover between 1996 and 2010 by county, based on the CCAP land cover dataset (Dobson et al. 1995).</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Proportional change in developed cover between 1996 and 2010 by county, based on the CCAP land cover dataset (Dobson et al. 1995).</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Proportional change in open cover between 1996 and 2010 by county, based on the CCAP land cover dataset (Dobson et al. 1995).</td>
</tr>
<tr>
<td>Figure 4</td>
<td>The distribution of the Central Oak-Pine Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map.</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Area distribution of the Central Oak-Pine Macrogroup by ecoregion.</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Central Oak-Pine Macrogroup for each ecoregion and the state (far right).</td>
</tr>
<tr>
<td>Figure 7</td>
<td>The distribution of the Northern Hardwood and Conifer Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map.</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Area distribution of the Northern Hardwood and Conifer Macrogroup by ecoregion.</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Northern Hardwood and Conifer Macrogroup for each ecoregion and the state (far right).</td>
</tr>
<tr>
<td>Figure 10</td>
<td>The distribution of the Coastal Plain Swamp Macrogroup throughout the North Atlantic Coast and Lower New England/Northern Piedmont ecoregions, as based on the Northeast Terrestrial Habitat Map.</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Area distribution of the Coastal Plain Swamp Macrogroup by ecoregion.</td>
</tr>
</tbody>
</table>
Figure 12. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Coastal Plain Swamp Macrogroup for each ecoregion and the state (far right). ... 22

Figure 13. The distribution of the Central Hardwood Swamp Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. .. 23

Figure 14. Area distribution of the Central Hardwood Swamp Macrogroup by ecoregion. 24

Figure 15. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Central Hardwood Swamp Macrogroup for each ecoregion and the state (far right). ... 25

Figure 16. The distribution of the Northeast Floodplain Forest throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. .. 27

Figure 17. Area distribution of the Large River Floodplain Macrogroup by ecoregion. 27

Figure 18. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Northeast Floodplain Forest Macrogroup for each ecoregion and the state (far right). ... 28

Figure 19. The distribution of the Northern Swamp Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. .. 32

Figure 20. Area distribution of the Northern Swamp Macrogroup by ecoregion 32

Figure 21. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Northern Swamp Macrogroup for each ecoregion and the state (far right). 33

Figure 22. The distribution of the Boreal Upland Forest Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. .. 35

Figure 23. Area distribution of the Boreal Upland Forest Macrogroup by ecoregion 36

Figure 24. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Boreal Upland Forest Macrogroup for each ecoregion and the state (far right). ... 37

Figure 25. The distribution of the Glade and Savanna Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. .. 40

Figure 26. Area distribution of the Glade and Savanna Macrogroup by ecoregion 40

Figure 27. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Glade and Savanna Macrogroup for each ecoregion and the state (far right). ... 41

Figure 28. The distribution of the Outcrop and Summit Scrub throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. .. 43

Figure 29. Area distribution of the Outcrop and Summit Macrogroup by ecoregion 43

Figure 30. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Outcrop and Summit Scrub Macrogroup for each ecoregion and the state (far right). ... 44

Figure 31. The distribution of the Disturbed Land/Pioneer Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. .. 48
Figure 32. Area distribution of the Disturbed Land/Pioneer Macrogroup by ecoregion.............. 48
Figure 33. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Disturbed Land/Pioneer Macrogroup for each ecoregion and the state (far right)... 49
Figure 34. The distribution of the Coastal Grassland/Shrubland Macrogroup throughout New York by ecoregion, as based on NY Natural Heritage Program occurrences of Great Lakes dunes, Great Lakes bluffs, maritime dunes, maritime freshwater interdunal swales, and maritime shrublands.. 52
Figure 35. The distribution of the Coastal Grassland/Shrubland Macrogroup throughout the North Atlantic Coast and Lower New England ecoregions, as based on the Northeast Terrestrial Habitat Map.. 53
Figure 36. Area distribution of the Coastal Grassland/Shrubland Macrogroup by ecoregion..... 53
Figure 37. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Coastal Grassland/Shrubland Macrogroup for each ecoregion and the state (far right)... 54
Figure 38. The distribution of the Northern Peatland Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. ... 56
Figure 39. Area distribution of the Northern Peatland Macrogroup by ecoregion............... 57
Figure 40. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Northern Peatland Macrogroup for each ecoregion and the state (far right).58
Figure 41. The distribution of the Coastal Peatland Macrogroup throughout the North Atlantic Coast Ecoregion, as based on the Northeast Terrestrial Habitat Map. ... 60
Figure 42. Area distribution of the Coastal Peatland Macrogroup by ecoregion. 60
Figure 43. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Central Appalachian/Coastal Peatland Macrogroup. ... 61
Figure 44. The distribution of the Coastal Plain Pond Macrogroup, throughout the North Atlantic Coast Ecoregion in New York, as based on the NY Natural Heritage Program occurrences of coastal plain pond shore.. 63
Figure 45. The distribution of the Emergent Marsh Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. ... 65
Figure 46. Area distribution of the Emergent Marsh Macrogroup by ecoregion. 66
Figure 47. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Emergent Marsh Macrogroup for each ecoregion and the state (far right) . 67
Figure 48. The distribution of the Wet Meadow/Shrub Marsh Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. ... 70
Figure 49. Area distribution of the Wet Meadow/Shrub Marsh Macrogroup by ecoregion....... 70
Figure 50. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Wet Meadow/Shrub Marsh Macrogroup for each ecoregion and the state (far right)... 71
Figure 51. The distribution of the Alpine Macrogroup throughout the Northern Appalachian/Boreal Forest Ecoregion in New York, as based on NY Natural Heritage Program occurrences of open alpine community and alpine krummholz. 74
Figure 52. Area distribution of the Alpine Macrogroup by ecoregion. 75
Figure 53. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Alpine Macrogroup for each ecoregion and the state (far right). 76
Figure 54. The distribution of the Cliff and Talus Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. 77
Figure 55. Area distribution of the Cliff and Talus Macrogroup by ecoregion. 78
Figure 56. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Cliff and Talus Macrogroup for each ecoregion and the state (far right). 79
Figure 57. The distribution of the Agricultural Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. 81
Figure 58. Area distribution of the Agricultural Macrogroup by ecoregion. 81
Figure 59. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Agricultural Macrogroup for each ecoregion and the state (far right). 82
Figure 60. The distribution of the Maintained Grasses and Mixed Cover Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. 85
Figure 61. Area distribution of the Maintained Grasses and Mixed Cover Macrogroup by ecoregion. 85
Figure 62. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Maintained Grasses and Mixed Cover Macrogroup for each ecoregion and the state (far right). 86
Figure 63. The distribution of the Urban/Suburban Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. 88
Figure 64. Area distribution of the Urban/Suburban Macrogroup by ecoregion. 88
Figure 65. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Urban/Suburban Macrogroup for each ecoregion and the state (far right). 89
Figure 66. The distribution of the Extractive Macrogroup throughout New York by ecoregion, as based on the Northeast Terrestrial Habitat Map. 92
Figure 67. Area distribution of the Extractive Macrogroup by ecoregion. 92
Figure 68. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for the Extractive Macrogroup for each ecoregion and the state (far right). 93
Figure 69. Major (HUC 8) watersheds of NY. 94
Figure 70. Aquatic habitat Macrogroups of New York. 96
Figure 71. Distribution of the Macrogroup Headwater/Creek; Low Gradient; Low-Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments. 102
Figure 72. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. 103
Figure 73. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 103
Figure 74. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 104
Figure 75. Proportion of stream length in each class of dam storage in each major NY watershed. ... 104
Figure 76. Distribution of the Macrogroup Headwater/Creek; Low Gradient; Highly Buffered in New York. Major watershed boundaries are shown beneath stream segments. 106
Figure 77. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 107
Figure 78. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 107
Figure 79. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 108
Figure 80. Proportion of stream length in each class of dam storage in each major NY watershed. ... 108
Figure 81. Distribution of the Macrogroup Headwater/Creek; Low-Moderate Gradient; Low-Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments. ... 109
Figure 82. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 110
Figure 83. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 111
Figure 84. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 111
Figure 85. Proportion of stream length in each class of dam storage in each major NY watershed. ... 111
Figure 86. Distribution of the Macrogroup Headwater/Creek; Low-Moderate Gradient; Highly Buffered in New York. Major watershed boundaries are shown beneath stream segments. 113
Figure 87. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 114
Figure 88. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 115
Figure 89. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 115
Figure 90. Proportion of stream length in each class of dam storage in each major NY watershed. ... 115
Figure 91. Distribution of the Macrogroup Headwater/Creek; Moderate-High Gradient; Low-Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments. ... 116
Figure 92. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 117
Figure 93. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 118
Figure 94. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 118
Figure 95. Proportion of stream length in each class of dam storage in each major NY watershed. ... 118
Figure 96. Distribution of the Macrogroup Headwater/Creek; Moderate-High Gradient; Highly Buffered in New York. Major watershed boundaries are shown beneath stream segments. 120
Figure 97. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. .. 121
Figure 98. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. .. 121
Figure 99. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. .. 122
Figure 100. Proportion of stream length in each class of dam storage in each major NY watershed. ... 122
Figure 101. Distribution of the Macrogroup Headwater/Creek; High Gradient; Low-Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments. 123
Figure 102. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. .. 124
Figure 103. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. .. 125
Figure 104. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. .. 125
Figure 105. Proportion of stream length in each class of dam storage in each major NY watershed. ... 125
Figure 106. Distribution of the Macrogroup Headwater/Creek; High Gradient; Highly Buffered in New York. Major watershed boundaries are shown beneath stream segments. 126
Figure 107. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. .. 127
Figure 108. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. .. 128
Figure 109. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. .. 128
Figure 110. Proportion of stream length in each class of dam storage in each major NY watershed. ... 129
Figure 111. Distribution of the Macrogroup Small River; Low Gradient; Low-Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments. 130
Figure 112. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 131
Figure 113. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 131
Figure 114. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 132
Figure 115. Proportion of stream length in each class of dam storage in each major NY watershed. ... 132
Figure 116. Distribution of the Macrogroup Small River; Low Gradient; Highly Buffered in New York. Major watershed boundaries are shown beneath stream segments. 134
Figure 117. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 135
Figure 118. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 136
Figure 119. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 136
Figure 120. Proportion of stream length in each class of dam storage in each major NY watershed. ... 136
Figure 121. Distribution of the Macrogroup Small River; Low-Moderate Gradient; Low-Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments. ... 137
Figure 122. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 138
Figure 123. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 139
Figure 124. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 139
Figure 125. Proportion of stream length in each class of dam storage in each major NY watershed. ... 140
Figure 126. Distribution of the Macrogroup Small River; Low-Moderate Gradient; Highly Buffered in New York. Major watershed boundaries are shown beneath stream segments. 143
Figure 127. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 144
Figure 128. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 144
Figure 129. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 145
Figure 130. Proportion of stream length in each class of dam storage in each major NY watershed. ... 145
Figure 131. Distribution of the Macrogroup Small River; Moderate-High Gradient; Low-Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments. ... 146

Figure 132. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 147

Figure 133. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 148

Figure 134. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 148

Figure 135. Proportion of stream length in each class of dam storage in each major NY watershed. ... 149

Figure 136. Distribution of the Macrogroup Small River; Moderate-High Gradient; Highly Buffered in New York. Major watershed boundaries are shown beneath stream segments. 150

Figure 137. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 151

Figure 138. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 152

Figure 139. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 152

Figure 140. Proportion of stream length in each class of dam storage in each major NY watershed. ... 152

Figure 141. Distribution of the Macrogroup Small River; High Gradient; Low-Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments. 153

Figure 142. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 154

Figure 143. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 154

Figure 144. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 155

Figure 145. Proportion of stream length in each class of dam storage in each major NY watershed. ... 155

Figure 146. Distribution of the Macrogroup Small River; High Gradient; Highly Buffered in New York. Major watershed boundaries are shown beneath stream segments 157

Figure 147. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 158

Figure 148. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 158

Figure 149. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 159
Figure 150. Proportion of stream length in each class of dam storage in each major NY watershed. ... 159

Figure 151. Distribution of the Macrogroup Medium River; Low Gradient; Assume Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments. 160

Figure 152. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 161

Figure 153. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 161

Figure 154. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 162

Figure 155. Proportion of stream length in each class of dam storage in each major NY watershed. .. 162

Figure 156. Distribution of the Macrogroup Medium River; Low-Moderate Gradient; Assume Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments. .. 165

Figure 157. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 166

Figure 158. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 166

Figure 159. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 167

Figure 160. Proportion of stream length in each class of dam storage in each major NY watershed. .. 167

Figure 161. Distribution of the Macrogroup Medium River; Moderate-High Gradient; Assume Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments. .. 170

Figure 162. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 171

Figure 163. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 171

Figure 164. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 172

Figure 165. Proportion of stream length in each class of dam storage in each major NY watershed. .. 172

Figure 166. Distribution of the Macrogroup Medium River; High Gradient; Assume Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments. 174

Figure 167. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 175

Figure 168. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 175
Figure 169. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 176

Figure 170. Proportion of stream length in each class of dam storage in each major NY watershed. ... 176

Figure 171. Distribution of the Macrogroup Large/Great River; Low Gradient; Assume Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments... 178

Figure 172. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 179

Figure 173. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 179

Figure 174. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 180

Figure 175. Proportion of stream length in each class of dam storage in each major NY watershed. ... 180

Figure 176. Distribution of the Macrogroup Large/Great River; Low-Moderate Gradient; Assume Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments... 182

Figure 177. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 183

Figure 178. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 183

Figure 179. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 184

Figure 180. Proportion of stream length in each class of dam storage in each major NY watershed. ... 184

Figure 181. Distribution of the Macrogroup Large/Great River; Moderate - High Gradient; Assume Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments... 186

Figure 182. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. ... 187

Figure 183. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. ... 188

Figure 184. Mean number of road-stream crossings per stream mile of segments of the specified Macrogroup in each major NY watershed. ... 188

Figure 185. Proportion of stream length in each class of dam storage in each major NY watershed. ... 188

Figure 186. Distribution of the Macrogroup Large/Great River; High Gradient; Assume Moderately Buffered in New York. Major watershed boundaries are shown beneath stream segments... 189
Figure 187. Mean impervious surface of catchments containing a segment of the specified Macrogroup in each major NY watershed. 190
Figure 188. Mean impact of agriculture and development along segments of the specified Macrogroup in each major NY watershed. 190
Figure 189. Proportion of stream length in each class of dam storage in each major NY watershed. .. 191
Figure 190. Distribution of the Macrogroup Lake; Pond; Eutrophic in New York. Ponds are represented by uniform points to ensure they are visible. Major watershed boundaries are shown beneath stream segments. ... 195
Figure 191. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for Eutrophic Pond in each major basin in New York. 195
Figure 192. Distribution of the Macrogroup Lake; Pond; Mesotrophic in New York. Ponds are represented by uniform points to ensure they are visible. Major watershed boundaries are shown beneath stream segments. ... 196
Figure 193. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for Mesotrophic Pond in each major basin in New York. 199
Figure 194. Distribution of the Macrogroup Lake; Pond; Oligotrophic in New York. Ponds are represented by uniform points to ensure they are visible. Major watershed boundaries are shown beneath stream segments. ... 198
Figure 195. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for Mesotrophic Pond in each major basin in New York. 200
Figure 196. Distribution of Eutrophic Lake in New York. Lakes are represented by uniform points overlying polygons to ensure they are visible. Major watershed boundaries are shown beneath stream segments. ... 201
Figure 197. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for Eutrophic Lake in each major basin in New York. 201
Figure 198. Distribution of Mesotrophic Lake in New York. Lakes are represented by uniform points overlying polygons to ensure they are visible. Major watershed boundaries are shown beneath stream segments. ... 202
Figure 199. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for Mesotrophic Lake in each major basin in New York... 203
Figure 200. Distribution of Oligotrophic Lake in New York. Lakes are represented by uniform points overlying polygons to ensure they are visible. Major watershed boundaries are shown beneath stream segments. ... 204
Figure 201. Index of Ecological Integrity score (top) and Landscape Condition Assessment score (bottom) for Mesotrophic Lake in each major basin in New York... 205
Figure 202. The marine classification depicted spatially ... 209
Figure 203. Grouping units used for comparisons throughout the marine environment 210
Figure 204. Sediment samples used for this metric. This is a combined data set from the EPA NCCR and the Hudson River Estuary Program ... 212
Figure 205. Chlorophyll A as modeled in the SWEM ... 213
Figure 206. Dissolved inorganic nitrogen as modeled in the SWEM .. 214
Figure 207. Dissolved inorganic phosphorus as modeled in the SWEM 215
Figure 208. The Landscape Condition Assessment overlaying the marine assessment areas... 216
Figure 209. Distribution of the Marine Intertidal Mesohabitat .. 218
Figure 210. Distribution of the Marine Intertidal Mesohabitat by assessment area 218
Figure 211. The mean LCA score for the watersheds (assessment areas) adjacent the marine
intertidal zones ... 219
Figure 212. Distribution of the Marine Subtidal Shallow Mesohabitat 221
Figure 213. Distribution of the Marine Subtidal Shallow Mesohabitat by assessment area within
the New York portion of the study area (e.g., excluding areas 15, 17) 222
Figure 214. Sediment collection points within the Marine Subtidal Shallow Mesohabitat 223
Figure 215. Sediment condition of the Marine Subtidal Shallow Mesohabitat by assessment
area ... 223
Figure 216. Mean Chlorophyll A concentrations by assessment area as estimated by the SWEM
for the marine subtidal shallow mesohabitat. Bars above the orange line (5 µg/L) are
classified as fair condition. Bars above the red line (20 µg/L) are classified as in poor
condition. .. 224
Figure 217. Mean dissolved inorganic nitrogen concentrations by assessment area as estimated
by the SWEM for the marine subtidal shallow mesohabitat. Bars above the orange line (0.1
µg/L) are classified as fair condition. Bars above the red line (0.5 µg/L) are classified as in
poor condition. Areas with bars below the orange line are classified as areas in good
condition. .. 225
Figure 218. Mean dissolved inorganic phosphorus concentrations by assessment area as
estimated by the SWEM for the marine subtidal shallow mesohabitat. Bars above the orange
line (0.01 µg/L) are classified as fair condition. Bars above the red line (0.05 µg/L) are
classified as in poor condition ... 225
Figure 219. Distribution of the Marine Subtidal Deep Mesohabitat 227
Figure 220. Distribution of the Marine Subtidal Deep Mesohabitat by assessment area 228
Figure 221. Sediment collection points within Marine Subtidal Deep Mesohabitat 229
Figure 222. Sediment condition of the Marine Subtidal Deep Mesohabitat by assessment area.
... 229
Figure 223. Mean Chlorophyll A concentrations by assessment area as estimated by the SWEM
for the marine subtidal deep mesohabitat. Bars above the orange line (5 µg/L) are classified
as fair condition. Bars above the red line (20 µg/L) are classified as in poor condition 230
Figure 224. Mean dissolved inorganic nitrogen concentrations by assessment area as estimated
by the SWEM for the marine subtidal deep mesohabitat. Bars above the orange line (0.1
µg/L) are classified as fair condition. Bars above the red line (0.5 µg/L) are classified as in
poor condition. Areas with bars below the orange line are classified as areas in good
condition. .. 231
Figure 225. Mean dissolved inorganic phosphorus concentrations by assessment area as estimated by the SWEM for the marine subtidal deep mesohabitat. Bars above the orange line (0.01 µg/L) are classified as fair condition. Bars above the red line (0.05 µg/L) are classified as in poor condition.

Figure 226. Distribution of the Brackish Intertidal Mesohabitat.

Figure 227. Distribution of the Brackish Intertidal Mesohabitat by assessment area.

Figure 228. Mean Landscape Condition Assessment scores for the watersheds adjacent the assessment areas in which the brackish intertidal zones are found.

Figure 229. Distribution of the Brackish Subtidal Shallow Mesohabitat.

Figure 230. Distribution of the Brackish Subtidal Shallow Mesohabitat by assessment area.

Figure 231. Sediment collection points within the Brackish Subtidal Shallow Mesohabitat.

Figure 232. Sediment condition of the Brackish Subtidal Shallow Mesohabitat by assessment area.

Figure 233. Mean Chlorophyll A concentrations by assessment area as estimated by the SWEM for the brackish subtidal shallow mesohabitat. Bars above the orange line (5 µg/L) are classified as fair condition. Bars above the red line (20 µg/L) are classified as in poor condition.

Figure 234. Mean dissolved inorganic nitrogen concentrations by assessment area as estimated by the SWEM for the brackish subtidal shallow mesohabitat. Bars above the orange line (0.1 µg/L) are classified as fair condition. Bars above the red line (0.5 µg/L) are classified as in poor condition. Areas with bars below the orange line are classified as areas in good condition.

Figure 235. Mean dissolved inorganic phosphorus concentrations by assessment area as estimated by the SWEM for the brackish subtidal deep mesohabitat. Bars above the orange line (0.01 µg/L) are classified as fair condition. Bars above the red line (0.05 µg/L) are classified as in poor condition.

Figure 236. Distribution of the Brackish Subtidal Deep Mesohabitat.

Figure 237. Distribution of the Brackish Subtidal Deep Mesohabitat by assessment area.

Figure 238. Sediment collection points within the Brackish Subtidal Deep Mesohabitat.

Figure 239. Sediment condition of the Brackish Subtidal Deep Mesohabitat by assessment area.

Figure 240. Mean Chlorophyll A concentrations by assessment area as estimated by the SWEM for the brackish subtidal deep mesohabitat. Bars above the orange line (5 µg/L) are classified as fair condition. Bars above the red line (20 µg/L) are classified as in poor condition.

Figure 241. Mean dissolved inorganic nitrogen concentrations by assessment area as estimated by the SWEM for the brackish subtidal deep mesohabitat. Bars above the orange line (0.1 µg/L) are classified as fair condition. Bars above the red line (0.5 µg/L) are classified as in poor condition. Areas with bars below the orange line are classified as areas in good condition.
Figure 242. Mean dissolved inorganic phosphorus concentrations by assessment area as estimated by the SWEM for the brackish subtidal deep mesohabitat. Bars above the orange line (0.01 µg/L) are classified as fair condition. Bars above the red line (0.05 µg/L) are classified as in poor condition.

Figure 243. Distribution of the Freshwater Intertidal Mesohabitat.

Figure 244. Distribution of the Freshwater Intertidal Mesohabitat by assessment area.

Figure 245. Landscape Condition Assessment for watersheds adjacent the freshwater intertidal mesohabitat.

Figure 246. Distribution of the Freshwater Subtidal Shallow Mesohabitat.

Figure 247. Distribution of the Freshwater Subtidal Shallow Mesohabitat by assessment area.

Figure 248. Sediment collections points within the Freshwater Subtidal Shallow Mesohabitat.

Figure 249. Sediment condition of the Freshwater Subtidal Shallow Mesohabitat by assessment area.

Figure 250. Distribution of the Freshwater Subtidal Deep Mesohabitat.

Figure 251. Distribution of the Freshwater Subtidal Deep Mesohabitat by assessment area.

Figure 252. Sediment collection points within the Freshwater Subtidal Deep Mesohabitat.

Figure 253. Sediment condition of the Freshwater Subtidal Deep Mesohabitat by assessment area.

Table of Tables

Table 1. Acreage and percentage of NY for each CCAP land cover type in each of four years, and the percentage change from 1996 to 2010 statewide. Some land cover types are not well mapped and wide variation in rare types is most likely in error.

Table 2. SGCN associated with the Central Oak-Pine Macrogroup.

Table 3. SGCN associated with the Northern Hardwood and Conifer Macrogroup.

Table 4. SGCN associated with the Plantation/Pioneer Forest Macrogroup.

Table 5. SGCN associated with the Coastal Plain Swamp Macrogroup.

Table 6. SGCN associated with the Central Hardwood Swamp Macrogroup.

Table 7. SGCN associated with the Northeast Floodplain Forest Macrogroup.

Table 8. SGCN associated with the Northern Swamp Macrogroup.

Table 9. SGCN associated with the Boreal Upland Forest Macrogroup.

Table 10. SGCN associated with the Boreal Forested Peatland Macrogroup.

Table 11. SGCN associated with the Glade and Savanna Macrogroup.

Table 12. SGCN associated with the Outcrop and Summit Scrub Macrogroup.

Table 13. SGCN associated with the Lake and River Shore Macrogroup.

Table 14. SGCN associated with the Disturbed land/Pioneer Macrogroup.

Table 15. SGCN associated with the Coastal Grassland/Shrubland Macrogroup.

Table 16. SGCN associated with the Northern Peatland Macrogroup.

Table 17. SGCN associated with the Central Appalachian/Coastal Peatland Macrogroup.

Table 18. SGCN associated with the Coastal Plain Pond Macrogroup.
Table 19. SGCN associated with the Emergent Marsh Macrogroup ... 67
Table 20. SGCN associated with the Wet Meadow/Shrub Marsh Macrogroup 71
Table 21. SGCN associated with the Alpine Macrogroup .. 76
Table 22. SGCN associated with the Cliff and Talus Macrogroup .. 79
Table 23. SGCN associated with the Agricultural Macrogroup .. 82
Table 24. SGCN associated with the Maintained Grasses and Mixed Cover Macrogroup 86
Table 25. SGCN associated with the Urban/Suburban Macrogroup ... 89
Table 26. SGCN associated with the Subterranean Macrogroup ... 91
Table 27. SGCN associated with the Extractive Macrogroup ... 93
Table 28. Number and total length of stream and river segments assigned to all Macrogroups in
10 major NY watersheds .. 97
Table 29. SGCN associated with Headwater/Creek; Low Gradient; Low-Moderately Buffered.
... 105
Table 30. SGCN associated with Headwater/Creek; Low Gradient; Highly Buffered 109
Table 31. SGCN associated with Headwater/Creek; Low-Moderate Gradient; Low-Moderately
Buffered. ... 112
Table 32. SGCN associated with Headwater/Creek; Low-Moderate Gradient; Highly Buffered.
... 116
Table 33. SGCN associated with Headwater/Creek; Moderate-High Gradient; Low-Moderately
Buffered. ... 119
Table 34. SGCN associated with Headwater/Creek; Moderate-High Gradient; Highly Buffered.
... 123
Table 35. SGCN associated with Headwater/Creek; Moderate-High Gradient; Highly Buffered.
... 126
Table 36. SGCN associated with Small River; Low Gradient; Low-Moderately Buffered 133
Table 37. SGCN associated with Small River; Low Gradient; Highly Buffered 137
Table 38. SGCN associated with Small River; Low-Moderate Gradient; Low Buffered 140
Table 39. SGCN associated with Small River; Low-Moderate Gradient; Moderately Buffered.
... 141
Table 40. SGCN associated with Small River; Low-Moderate Gradient; Highly Buffered 146
Table 41. SGCN associated with Small River; Moderate-High Gradient; Low-Moderately
Buffered. ... 149
Table 42. SGCN associated with Small River; Moderate-High Gradient; Highly Buffered 153
Table 43. SGCN associated with Small River; High Gradient; Low-Moderately Buffered 156
Table 44. SGCN associated with Medium River; Low Gradient; Assume Moderately Buffered.
... 163
Table 45. SGCN associated with Medium River; Low-Moderate Gradient; Assume Moderately
Buffered. ... 168
Table 46. SGCN associated with Medium River; Moderate-High Gradient; Assume Moderately
Buffered. ... 173
Table 47. SGCN associated with Medium River; High Gradient; Assume Moderately Buffered. ... 177
Table 48. SGCN associated with Large/Great River; Low Gradient; Assume Moderately Buffered. ... 181
Table 49. SGCN associated with Large/Great River; Low-Moderate Gradient; Assume Moderately Buffered. .. 185
Table 50. SGCN associated with Riverine Cultural; Created Stream. ... 191
Table 51. SGCN associated with Vernal Pool. .. 192
Table 52. Number and total area of lakes and ponds in 10 major NY watersheds. 193
Table 53. SGCN associated with Great Lakes; Shoals and Bays; Shoals and Bays. 194
Table 54. SGCN associated with Lake; Pond; Eutrophic. ... 195
Table 55. SGCN associated with Lake; Pond; Oligotrophic. ... 199
Table 56. SGCN associated with Lake; Small Lake; Eutrophic. .. 201
Table 57. SGCN associated with Lake; Medium Lake; Mesotrophic. .. 203
Table 58. SGCN associated with Lake; Medium Lake; Oligotrophic. .. 205
Table 59. SGCN associated with Reservoirs. ... 205
Table 60. SGCN associated with Lakes at the Formation or Formation Class level. 206
Table 61. SGCN associated with the Marine Intertidal Mesohabitat. ... 219
Table 62. SGCN associated with the Marine Subtidal Shallow Mesohabitat.. 226
Table 63. SGCN associated with the Marine Subtidal Deep Mesohabitat. .. 232
Table 64. SGCN associated with the Brackish Intertidal Mesohabitat... 236
Table 65. SGCN associated with the Brackish Subtidal Shallow Mesohabitat.................................... 244
Table 66. SGCN associated with the Brackish Subtidal Deep Mesohabitat.. 250
Table 67. SGCN associated with the Freshwater Intertidal Mesohabitat... 253
Table 68. SGCN associated with the Freshwater Subtidal Shallow Mesohabitat 257
Table 69. SGCN associated with the Freshwater Subtidal Deep Mesohabitat. 260
Introduction

Animals need habitat, pure and simple. How much habitat, and of what configuration and quality, is the subject of a tremendous amount of research. How to classify and define habitat types has similarly been keeping scientists busy for many decades, with “lumpers” and “splitters” at odds like the Hatfields and McCoys. This report represents but a single version of a description of available habitat for New York’s Species of Greatest Conservation Need (SGCN)—the animals deemed to be most at risk of extirpation from the state.

We developed the information herein in the context of the revision to New York’s State Wildlife Action Plan (SWAP). Revisions to SWAPs have eight “required elements” to be approved by the U.S. Fish and Wildlife Service (see, for example. Association of Fish and Wildlife Agencies 2012). Element 2 is a description of “the extent and condition of key habitats and community types essential to the conservation of Species of Greatest Conservation Need.” This report is intended to provide this required element of the SWAP. Within, we use “SGCN” to mean categories 1-4: high-priority SGCN, SGCN, and Species of Potential Conservation Need.

We worked closely with NYS DEC staff to determine the appropriate assessment regions (i.e., ecoregions, watersheds) and the level of habitat classification for which to assess extent and condition (i.e., Formation, Macrogroup). Biologists from NYS DEC and the New York Natural Heritage Program drafted “species assessments” to guide SGCN categorization. As part of these assessments, the biologists documented key habitat associations, which were subsequently databased and exported for our use here.

Our report provides an abundance of data and maps but not much interpretation and analysis. Our charge was solely to provide the information for further needed discussion about SGCN habitats in New York.

Changes in Land Use and Land Cover

Here we document changes in land cover from 1996 to 2010 as depicted by the Coastal Change Analysis Program (CCAP) (Dobson et al. 1995). A full discussion of the extent and causes of these changes is beyond the scope of this report, but we wish to set the stage for the finer-scale discussions of habitat types.

Statewide Trends

New York State saw increased development, decreased forest cover, and increased open cover (grassland and scrub/shrub) from 1996 to 2010 (Table 1). Percent change values for some of the less common estuarine and palustrine types are likely inflated resulting from changes in mapping methodology.
Combined Land Cover Categories by County

The maps below represent relative proportional change in gross land cover categories by county. In the 15-year period from 1996 to 2010, forest cover declined statewide, with declines most pronounced in Clinton, Saratoga, Monroe, Orange, Suffolk, and New York City counties (Figure 1). Different processes, including urbanization and pine barrens restoration, are likely causing these forest declines in different areas.

![Figure 1. Proportional change in forest cover between 1996 and 2010 by county, based on the CCAP land cover dataset (Dobson et al. 1995).](image)

Developed land increased throughout New York, with notable increases in Erie, Monroe, Westchester, and New York City counties (Figure 2).
Figure 2. Proportional change in developed cover between 1996 and 2010 by county, based on the CCAP land cover dataset (Dobson et al. 1995).

Open land cover (e.g., shrubland, agriculture, grassland) increased in the more rural parts of the state while declining in the more developed areas (Figure 3).

Figure 3. Proportional change in open cover between 1996 and 2010 by county, based on the CCAP land cover dataset (Dobson et al. 1995).