Sterling & Wolcott Creeks
Integrated Watershed Action Plan

Watershed Stakeholder Committee
Meeting #2
May 9, 2022
What is the most important thing that you think indicates the health of the Sterling and Wolcott Creeks watersheds?
Agenda

• Schedule and Progress
• IWAP Indicators
• Interactive Session
• Next Steps
IWAP Schedule and Progress

Tony Eallonardo, Ramboll

• Schedule

• Progress on the Sterling and Wolcott Creeks IWAP Project

• Recap IWAP Goals
Sterling and Wolcott Creeks IWAP

Purpose:
To identify, protect, and restore key aspects of the Sterling & Wolcott Creek watersheds that support human health and well-being

Vision:
An engaged and empowered community protecting and restoring the watershed based on actions identified through this project. A healthy watershed for families and communities into the future!

Approach:
Science-based, collaborative, focused on ecosystem processes

This meeting:
Review goals, encourage participation, and receive input on indicators
Schedule

- **Fall 2021**
 - WSC Meeting 1

- **Spring 2023**
 - Public Meeting 4 - Final IWAP

- **Winter 2022**
 - Public Meeting 1

- **Winter 2023**
 - Winter 2023

- **Spring 2022**
 - WSC Meeting 2

- **Fall 2022**
 - WSC Meeting 3
 - Public Meeting 2

- **Fall 2023**
 - WSC Meeting 4
IWAP Goals

COASTAL
GOAL 01
Manage coastal sediment erosion, deposition, and transport to protect natural features and habitat, sustain recreation and tourism, and help to protect public and private assets.

FLOODPLAINS, RIPARIAN AREAS, & STREAMS
GOAL 03
Enhance functioning of floodplains, riparian corridors, and streams to minimize infrastructure impacts from flood events, improve water quality, support aquatic habitat for fish and wildlife, and provide recreational access.

WETLANDS
GOAL 02
Restore and preserve healthy wetlands to support clean water, biodiversity, and opportunities for outdoor recreation.

FORESTS & UPLANDS
GOAL 04
Promote healthy and connected forests and upland communities to support clean air and water, biodiversity, opportunities for outdoor recreation, and sustainable use of natural resources.

WATER QUALITY
GOAL 05
Improve and maintain high quality surface and ground water resources to support aquatic habitat, drinking water supplies, and water dependent recreation.

SUSTAINABLE WORKING LANDS
GOAL 06
Promote, implement, and improve sustainable land uses to provide future generations with the ability to use and prosper from natural resources.

HERITAGE & SENSE OF PLACE
GOAL 07
Inspire and facilitate a connection with nature to support physical, social, and mental well-being.
Indicators

Andrew Brainard, Ramboll

- Development of Indicators
- Candidate List of Indicators
- Interactive Session: Breakout Rooms
Development of Indicators

What is the purpose of indicators?

- Status and trends of ecosystem!

- Key features:
 - Scientifically relevant
 - Sensitive to changes in the ecosystem
 - Holistic, comprehensive

How will the indicators be used?

- Link between desired outcomes (goals) to ecological processes
- Monitor trends and/or compare to threshold values

Example: Data are not real – illustration purposes only
Development of Indicators

Example – desired outcomes (goals) to ecological processes and indicators

Water quality

<table>
<thead>
<tr>
<th>Desired Outcome (Goal)</th>
<th>High quality surface water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecological Process</td>
<td>Forest growth and nutrient uptake</td>
</tr>
<tr>
<td>Indicator(s)</td>
<td>Surface water nutrient concentrations, Forest cover and regeneration</td>
</tr>
</tbody>
</table>
Development of Indicators

Guidance:
- Is the indicator directly observable?
- Is the indicator well-defined and understandable to the public?
- Is the indicator cost effective to measure?
- Is the indicator defined by historical data?
- Is the indicator responsive to management alternatives at the watershed scale?
- Is the indicator aligned with selected goals and targets?
Indicator Organization

Millennium Ecosystem Assessment (2005)
Candidate Indicators

Human Well-Being

Potential IWAP Recommendation to survey values/well-being metrics and track over time

Ecosystem Goals and Indicator Variables

Goal 1: Coastal
- Historical shoreline change (erosion, accretion)
- Barrier bar dimensions (length, width)
- Beach width
- Chemistry and grain size of sediment at ports, harbors, and outlets

Goal 3: Floodplains, riparian areas, and streams
- Stream flow
- Water cycle integrity (e.g., water percolation and plant use)
- Connectivity of stream network (length of streams uniqued)
- Fish population changes
- Breeding and migratory bird abundance/distribution
- Creel surveys
- Benthic macroinvertebrate Biological Assessment Profile (BAP) scores

Goal 5: Surface and groundwater quality
- Stream temperature
- Stream turbidity
- Surface water nutrient concentrations, DO
- Frequency of Harmful Algal Blooms (HABs)
- Benthic macroinvertebrate Biological Assessment Profile (BAP) scores
- Ground water nutrient and metal concentrations

Goal 2: Wetlands
- Water quality (turbidity, DO, temp, pH, chl-a, N, P, etc.)
- Anuran richness, community composition
- Bird richness, community dynamics
- Fish and turtle richness, community dynamics
- Macroinvertebrate richness, community dynamics
- Wetland vegetation richness, floristic quality index
- Overall wetland IBI scores

Goal 4: Forests
- Forest regeneration
- Forest size class distribution
- Deer browse intensity
- Abundance and diversity of bird species
- Abundance and diversity of herpetofauna species

Goal 6: Sustainable working lands
- Agricultural production (e.g., apples, corn)
- Timber production
- Soil erosion and loss
- Soil health
- Maple syrup production
- Pollinator populations

Goal 7: Heritage and sense of place
- Use and location of traditional use resources
- Number of park visitations and trail use (annual, seasonal)
- Use and location of traditional use resources
- Creel surveys
- Nature-based health, education, volunteer, or wellness programs

Blue text denotes variable in more than one ecosystem goal, direct, or indirect driver of change

Indirect Drivers of Change

Demographics
- Total population
- Persons aged 65+
- Persons aged ≥ 17

Social Vulnerability Index

Environmental Justice

Direct Drivers of Change

Precipitation
- Total annual, monthly, seasonal
- Annual snowfall/snowpack
- Anomalies
- Drought durations
- Ice patterns
- Nearshore ice extent
- Jams

Wind
- Seasonal speed and direction
- Anomalies (highs and lulls)

Temperature
- Annual, monthly, seasonal
- Anomalies
- Growing season length
- First, last frost dates

Invasive species
- Total no. of wetland-specific invasive species
- Total no. of floodplain-specific species
- Total no. of aquatic-specific species
- Total no. of agricultural pests/invasives
DIRECT AND INDIRECT DRIVERS OF CHANGE

Direct Drivers Indicators:
• Precipitation (annual, monthly, seasonal)
• Wind (speed and direction)
• Invasive species

Indirect Drivers Indicators:
• Environmental justice
• Social Vulnerability Index

• Temperature (annual, monthly, seasonal)
• Land use/cover
• Ice patterns (nearshore extent, jams)

• Economics (poverty, unemployment, per capita income)
• Demographics (total population, age 65+, < 17)
COASTAL

Indicators:

• Historical shoreline change (erosion, accretion)
• Barrier bar dimensions (length, width)
• Change in beach width
• Chemistry and grain size of sediment at ports, harbors, and outlets
WETLANDS

Indicators:

- Water quality
- Anuran richness, community composition
- Bird richness, community dynamics
- Fish and turtle richness, community dynamics
- Macroinvertebrate richness, community dynamics
- Wetland vegetation richness, floristic quality index
- Overall wetland IBI score
FLOODPLAINS, RIPARIAN AREAS, & STREAMS

Indicators:

- Stream flow
- Water cycle integrity (e.g., water percolation and plant use)
- Connectivity of stream network
- Fish population changes
- Abundance and diversity of bird species
- Creel surveys
- Benthic macroinvertebrate Biological Assessment Profile (BAP) scores
FORESTS & UPLANDS

Indicators:

- Forest regeneration
- Forest size class and distribution
- Deer browse intensity
- Abundance and distribution of bird species
- Abundance and distribution of herpetofauna species
WATER QUALITY

Indicators:

- Stream temperature
- Stream turbidity
- Surface water nutrient concentrations, DO
- Frequency of Harmful Algal Blooms (HABs)
- Benthic macroinvertebrate Biological Assessment Profile (BAP) scores
- Ground water nutrient and metal concentrations
SUSTAINABLE WORKING LANDS

Indicators:

- Agricultural production
- Timber production
- Soil erosion and loss
- Soil health
- Maple syrup production
- Pollinator populations
HERITAGE & SENSE OF PLACE

Indicators:

- Use and location of traditional use resources
- Number of park visitations and trail use
- Creel surveys
- Number of nature-based health, education, volunteer, or wellness programs
Interactive Session

Breakout Room #1: Sustainable Working Lands Heritage & Sense of Place

Breakout Room #2: Coastal Wetlands

Breakout Room #3: Water Quality Floodplains, Riparian Areas, & Streams

Breakout Room #4: Direct and Indirect Drivers of Change Forests & Uplands
Breakout Room #1
Sustainable Working Lands, Heritage & Sense of Place

<table>
<thead>
<tr>
<th>Topic</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Candidate Indicators</td>
<td>• Number of incentive programs for residents and farmers</td>
</tr>
<tr>
<td>Potential Data and References</td>
<td>• Chesapeake Bay data may be a useful reference for a Hedgerow policy</td>
</tr>
<tr>
<td>Communication and Partnerships</td>
<td>• Soil & Water Conservation Districts</td>
</tr>
<tr>
<td>Considerations</td>
<td>• Corn and soy sometimes more focused on finances (price/commodity driven)</td>
</tr>
<tr>
<td></td>
<td>• Incentive programs for members of the agricultural community</td>
</tr>
<tr>
<td></td>
<td>• Health of the watershed is part of sense of place; categories are a “quilt”</td>
</tr>
<tr>
<td></td>
<td>• There are no policies or programs that focus on pollinator protection</td>
</tr>
<tr>
<td></td>
<td>• Explore a hedgerow policy</td>
</tr>
</tbody>
</table>
Breakout Room #2
Coastal and Wetlands

<table>
<thead>
<tr>
<th>Topic</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Candidate Indicators</td>
<td>• Add “elevation” to the barrier bar indicator</td>
</tr>
<tr>
<td></td>
<td>• Volume of sediment that has been dredged</td>
</tr>
<tr>
<td></td>
<td>• Opportunities for outdoor recreation (e.g., hunting, kayaking)</td>
</tr>
<tr>
<td>Potential Data and References</td>
<td>• Monitoring data sources/technology:</td>
</tr>
<tr>
<td></td>
<td>• Drones</td>
</tr>
<tr>
<td></td>
<td>• LIDAR</td>
</tr>
<tr>
<td></td>
<td>• Oblique imagery</td>
</tr>
<tr>
<td></td>
<td>• Coastal processes model was completed last year</td>
</tr>
<tr>
<td></td>
<td>• National Wetland Condition Assessment</td>
</tr>
<tr>
<td></td>
<td>• Army Corp of Engineers (combination of LIDAR and oblique imagery)</td>
</tr>
<tr>
<td>Communication and Partnerships</td>
<td>• Rachel Shultz (Associate Professor of Wetland Science SUNY Brockport)</td>
</tr>
<tr>
<td>Considerations</td>
<td>• Water level will be a covariate for many of the coastal indicators that should be considered</td>
</tr>
<tr>
<td></td>
<td>• Shoreline condition (percentage of shoreline that is natural) will likely be included in land use/cover indicator</td>
</tr>
<tr>
<td></td>
<td>• Many coastal indicators lack historical data</td>
</tr>
</tbody>
</table>
Breakout Room #3
Floodplains, Riparian Areas, & Streams, Water Quality

<table>
<thead>
<tr>
<th>Topic</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Candidate Indicators</td>
<td>• Infiltration (relationship between precipitation and discharge as a time response curve)</td>
</tr>
</tbody>
</table>
| Potential Data and References | • iMapInvasives
• RIBs program
• FEMA repetitive loss data
• Bird Breeding Atlas
• Cornell University Ornithology
• Citizen Science – Backyard Bird Count
• USGS gauges |
| Communication and Partnerships | • Scott DeRue has historic water quality data for Wolcott Creek and Port Bay (nutrients and sediments) |
| Considerations | • Concern about water chestnut, frogbit, giant hogweed, Japanese knotweed
• Tracking floodplains over time would be useful to discover trends, potential risk indicator
• Flood damage to infrastructure
• Climate change |
Breakout Room #4

Direct Drivers of Change, Indirect Drivers of Change, Forests & Uplands

<table>
<thead>
<tr>
<th>Topic</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Candidate Indicators</td>
<td>• Insect populations
• Economics (environmental pressure if there are increased boats and ATVs)</td>
</tr>
<tr>
<td>Potential Data and References</td>
<td>• NYSDEC and local surveys, land monitoring
• SHAW linking gauge data
• Citizen Science – No Mow May</td>
</tr>
<tr>
<td>Communication and Partnerships</td>
<td>• NYSDEC
• Citizen Science</td>
</tr>
<tr>
<td>Considerations</td>
<td>• Existing historical data will be used to establish a baseline and understand trends
• Will recommend stream/water quality sensors to understand overall health of the watershed
• Climate change impacts
 • Identify unique species and locations that are impacted (e.g., chestnut trees, great blue herons, waterfall in Sterling)
• Economics should consider both poor and wealthy impacts on the environment
• COVID pandemic increased park usage
• Coastal areas and uplands have specific indicators that will be more important than others</td>
</tr>
</tbody>
</table>
Homework

- Complete or edit Google Form based on discussion today*

- Explore StoryMap and provide feedback
 - Link - Sterling-Wolcott Integrated Watershed Action Plan

- Check the NYSDEC IWAP website for updates
 - https://www.dec.ny.gov/lands/124314.html

* To update your response, please click “Edit response” button within email message that you received after initially submitting responses!
Next Steps

Upcoming Tasks:
• Ecosystem Assessment and Analyzing Uncertainty and Risk

Future Meetings:
• Watershed Stakeholder Committee Meeting 3: Fall 2022
• Public Meeting 2: Fall 2022

Sterling Nature Center. Photo by Jim D’Angelo
Thank you!
Final questions or comments?

Email: SterlingWolcott@ramboll.com
Website: https://www.dec.ny.gov/lands/124314.html
StoryMap Link: https://storymaps.arcgis.com/stories/7a4c9700cda1482e90adb6e795c3fed9

Emily Fell, NYSDEC
emily.fell@dec.ny.gov

Tony Eallonardo, Ramboll
tony.eallonardo@ramboll.com