Tar Removal and Tank Demolition
Phased Interim Remedial Measure Pilot Project
Work Plan

Tonawanda Coke Corporation
Site # 915055 – Operable Unit 3/Site 108
Tonawanda, New York
Table of Contents

1. Introduction ... 1
 1.1 Purpose .. 1
 1.2 Site Background ... 1
2. Objective .. 2
3. Focused Work Areas.. 2
4. Coal Tar Remediation Methods ... 3
 4.1 Removal of Pure Coal Tar ... 4
 4.2 Removal of Coal Tar/Soil Mix .. 4
 4.3 Removal of Coal Tar and/or Coal Tar/Soil Mix below the Tank Farm 6
5. Tank Removal Methods ... 6
6. Temporary Soil Erosion and Storm Water Controls ... 7
7. Site Control and Decontamination ... 8
8. Material Staging, Stockpiles, and Transport .. 9
9. Odor Control and Vapor Management .. 11
10. Field Documentation .. 11
11. Meetings/Reporting .. 12
12. Schedule .. 13

Figure Index

Figure 1.1 Site Location
Figure 3.1 Coal Tar Removal Areas
Figure 3.2 Demolition and Tar Removal

Appendix Index

Appendix A Logs of Samples Containing Tar
Appendix B Health & Safety Plan
1. Introduction

1.1 Purpose

On November 4, 2016, GHD Services, Inc. (GHD), on behalf of Tonawanda Coke Corporation (TCC), submitted the “Confirmation Investigation Report” for Site 108 (the “Site”) to the New York State Department of Environmental Conservation (NYSDEC). The report presented the results of an investigation that was performed at Site 108 to further clarify the environmental conditions that exist in order to support the finalization of the Focused Feasibility Study (FFS) for the Site.

Following submission of the Confirmation Investigation Report, a meeting was held between representatives of GHD, TCC, and the NYSDEC on November 29, 2016 to discuss the findings of the report. Based on these discussions, it was agreed that the best path forward is to have TCC perform an Interim Remedial Measure (IRM) Pilot Project (IRMPP) to investigate and remediate, subject to the extent of site conditions, the existing coal tar that has been identified at a few isolated locations across the Site. Information on the volume of coal tar and nature of this material is still too limited to allow for proper assessment in the FFS without additional field confirmation. Consequently, performing an IRMPP to address the coal tar separately will not only provide answers to eliminate a great deal of the uncertainty, it is expected that it may ultimately remediate the coal tar impacts at the Site without the need for additional action.

Some of the coal tar is located within, adjacent to, and possibly beneath, the abandoned tank farm on Site 108. Consequently, in order to properly address all of the coal tar on the Site at the same time, it is proposed that this IRMPP also include demolition of the tank farm.

This Work Plan provides the plans and procedures to be implemented in the scope of the IRMPP. This Work Plan was originally submitted to the NYSDEC on January 20, 2017. Following their review, comments were provided by the NYSDEC on February 9, 2017 and the responses to those comments have been incorporated into this revised version of the Work Plan.

1.2 Site Background

The TCC plant, which is located at 3875 River Road in Tonawanda, New York, and the Site, which is located at 3800 River Road in Tonawanda, New York (collectively, with the TCC plant, the Facility) were owned and operated from 1917 through 1947 by Semet-Solvay Company, a subsidiary of Allied Chemical and Dye Corporation. In 1947, Semet-Solvay Company was merged into Allied Chemical Corporation, which owned and operated the Facility until January 27, 1978, when it was sold to TCC.

Prior to TCC’s acquisition of the Facility in 1978, a few areas of the Site were historically used for the disposal of waste. In 1973, the Semet-Solvay Division was granted permission by the Erie County Health Department to establish a new refuse disposal area located at the Site. The Site was eventually filled with refuse, wood, scrap polyethylene, and ceramic saddle packing from refining equipment. Site 108 is located on the west side of River Road, and extends to the Niagara River, as shown on Figure 1.1. The Site is heavily overgrown with mature trees, shrubs, and tall grasses.
There are no occupied buildings on Site 108. TCC does have one building still in use that houses certain electrical equipment and pumps tied to Facility operations.

Site 108 also includes a former tank farm consisting of the shells of three large aboveground storage tanks, each 45 feet in diameter. The tanks have not been used since prior to TCC’s purchase of the Site from Allied Chemical. In addition, prior operations at Site 108 included the unloading of coke, coal, and coal tar that was delivered by boat. The coal was transported to the Facility’s main operation by underground conveyor and/or piping systems. Similar to use of the former tank farm, these operations ceased prior to the Site’s acquisition by TCC.

2. **Objective**

The goal of the IRMPP is for all of the coal tar present on the Site to be removed during the pilot project. It is planned to uncover and extract coal tar in the following phases:

- **Phase 1:** the six known locations of coal tar in the subsurface areas on the Site.
- **Phase 2:** surficial coal tar within the bermed area surrounding the abandoned tank farm.
- **Phase 3:** removal of the coal tar from the abandoned aboveground storage tanks.
- **Phase 4:** demolition and removal of the abandoned storage tanks.
- **Phase 5:** remediation of any coal tar/soil mix identified beneath the former tanks or in the subsurface within the bermed area.

The pilot project phased process will provide the information necessary to answer questions regarding the volume and nature of the coal tar that exists on the Site. If the volume of coal tar is too great, or the material is not compatible with TCC’s process, the knowledge gained from the IRMPP will be used to develop a final remedy for the coal tar in the FFS. If appropriate, on-Site coal tar will be remediated during the IRMPP process, thereby eliminating the need to propose a final remedy for the material in the revised FFS.

3. **Focused Work Areas**

Based on the Site investigations performed in 2016, six areas (or pockets) of subsurface coal tar not associated with the abandoned tank farm were identified as follows:

- Test Pit 4 in the interval 4.5 to 5.5 feet below grade
- Test Pit 7 in the upper 3 feet, and in the interval 6 to 7 feet below grade
- Test Pit B-6 in the interval 4 to 5 feet below grade
- Test Pit B-6A at a depth of around 3 feet below grade
- Test Pit B-6B in the upper 4 feet below grade
- Sediment Sample SD-2 in the upper 18 inches
The locations of the identified coal tar pockets are shown on Figure 3.1. The stratigraphic logs for these sample locations are presented in Appendix A. The coal tar located below grade at these locations is bound in a soil matrix and is referred to in this IRMPP as a coal tar/soil mix.

In addition to these six subsurface locations, coal tar was also present in the three abandoned tanks on Site 108. The depth of tar within the tanks was estimated to be between 2 and 9 feet, tank dependent, as shown on Figure 3.2. Coal tar was also found to be present within the bermed areas surrounding the tanks at depths of up to 18 inches. The coal tar within and immediately around the tanks is believed to be relatively free of impurities. At the present time, the extent to which the coal tar within the bermed areas has penetrated into the underlying soil is not known. The extent of penetration will be determined following removal of the relatively pure coal tar at the surface.

Phase 1 of the IRMPP will be to remove and recycle all of the coal tar and coal tar/soil mix from the six known source areas. Phase 2 of the IRMPP will be the removal of the surficial coal tar from within the bermed area around the tank farm. Phase 3 of the IRMPP will be the removal of the coal tar from within the abandoned tanks. Phase 4 will be the demolition and removal of the abandoned storage tanks, and Phase 5 will be the remediation of any coal tar/soil mix identified beneath the former tanks or in the subsurface within the bermed area. Phases 1 through 5 will be implemented using the methods described in the remainder of this work plan. As previously conveyed in prior reports, the intent is to recycle as much material as possible, subject to the material meeting all necessary legal and regulatory requirements. Per the request of the NYSDEC, recycling of IRM-related material will not be performed until all of the requirements of Schedule A of the Order on Consent R9-20151215-132A are in place. Schedule A requirements include finalized Standard Operating Procedures (SOPs) for managing coal tar on the mixing pad¹ (including tracking documentation), an Operations and Maintenance Plan for the waste material managed on the mixing pad, compliance with Best Management Practices to be updated to the facility’s current plan, and emission compliance for the coking operation. TCC is in the process of providing all required plans / documentation to NYSDEC to comply with Schedule A which will be in place prior to recycling activities commencing.

4. **Coal Tar Remediation Methods**

Coal tar and coal tar/soil mix appropriate for recycling will be removed from Site 108 and transported to the mixing pad¹ at the main TCC facility for introduction to the coking process. The work will be implemented either directly by TCC personnel using dedicated equipment, or by an independent remediation contractor. Pure coal tar from the aboveground storage tanks and from the surface within the bermed area is expected to be easily recoverable and able to be recycled through the coking process. Recycling of coal tar/soil will be subject to the type and quantity of impurities that are identified (e.g., soil, stones, and vegetation) as identified in Section 4.2 below. The rate at which tar material is introduced to TCC’s coking operation will be closely monitored to prevent upset to the process or impacts to the coke end product. Recycling of any coal tar material will only be undertaken if it meets the necessary legal and regulatory requirements.

¹ The mixing pad is a concrete containment pad, with a poured concrete floor and wall, on which coal tar sludge is manually blended with raw coal prior to being charged to the coke ovens.
The removal of the tar material will be done using methods designed to minimize the volume of impurities that are captured during the removal process, thereby minimizing the overall volume of coal tar-impacted material requiring recycling. All activities will be conducted in accordance with the site-specific Health and Safety Plan (HASP), Community Air Monitoring Plan (CAMP), and Odor Control Plan (OCP). The CAMP is included as Attachment C to the HASP found in Appendix B. The OCP is discussed in Section 9 of this work plan.

The following sections discuss removal of the various sources of coal tar.

4.1 Removal of Pure Coal Tar

Wherever possible, pure coal tar will be removed first, whether from a tank, the ground surface within the bermed area, or an exposed excavation face; the intent being to keep the coal tar as pure as possible, which allows more flexibility in the handling of the recovered material. The pure coal tar will be either pumped or scooped from its in-situ location directly into a tank or water-tight storage vessel that can be transported to TCC’s operating Facility on the east side of River Road. If deemed appropriate, the coal tar’s flowability/recoverability will be enhanced through the application of heat or other appropriate materials to collect as much of the coal tar as reasonably possible. Any such enhancement methods will be reviewed with the NYSDEC (and approval obtained) prior to implementation. All transport of coal tar materials from Site 108 across River Road to TCC’s operating facility will be done using TCC equipment and RCRA-trained personnel (either TCC personnel or TCC’s assigned contractor). Flagmen will be used whenever vehicles transporting these materials are crossing River Road to ensure that this crossing is done safely and without incident.

4.2 Removal of Coal Tar/Soil Mix

For the coal tar/soil mix that is located in subsurface layers, a backhoe will be used to carefully remove the overlying layers of soil down to the top of the coal tar/soil mix interval. The excavation will be started in the exact location of the original test pit to provide the best chance for locating the material. Once exposed, the lateral extent of the coal tar/soil mix layer will be determined by carefully scraping away the overlying soil from the surrounding area. Once a sufficient area of coal tar/soil mix is exposed, removal will begin and will continue until the limits (both vertically and horizontally) of coal tar/soil mix have been reached based on visual examination.

If there are minimal impurities present, the material will be placed directly into water-tight containers for transport to the TCC mixing pad. If significant impurities are present, every attempt will be made to decant the coal tar from the impurities. This may be accomplished by excavation of sumps allowing the coal tar to decant in situ, or through placement into containers situated to promote the separation of the coal tar from the impurity. Any decanted coal tar will be placed into a tank or water-tight container and transported to the mixing pad. The length of time and/or the number of sumps necessary for decanting will be based on experience gained during the excavation process. Once separation has been reasonably maximized, the segregated materials will be transferred to TCC’s mixing pad for recycling at a rate appropriate for the degree of purity. Any material that is removed from the excavation and placed into a container to promote the separation of the tar
material will also be transferred to TCC’s mixing pad for recycling at a rate appropriate for the degree of purity.

In those cases, where the coal tar is fully enveloped in the surrounding soil matrix and it is unlikely that any separation of coal tar will occur from the enveloping soil matrix, the coal tar/soil mix will be placed directly into water-tight containers for transport to TCC’s mixing pad for recycling.

In the event that the volume of material sent to the mixing pad exceeds its given capacity, the material will be temporarily stored in water-tight containers until sufficient space is available on the mixing pad. The length of time that such temporary storage will be required will be determined as part of the IRMPP and is entirely dependent upon the rate at which such materials can be added into TCC’s coking operation, while preventing upset to the process or impacts to the coke end product. NYSDEC will be advised periodically regarding the amount of storage capacity in use, with records being made available for inspection, as needed.

To the extent practicable, it is planned to remove all of the coal tar/soil mix from all of the known locations on Site 108 during the IRMPP and place the material onto the mixing pad, or alternatively, into temporary storage containers should volumes exceed the capacity of the mixing pad. In the event that the temporary storage of the material in containers is necessary, it is planned to leave those containers on Site 108 in a staging area near the former tank farm. The containers would be inspected weekly to ensure that the materials are being properly stored. The feasibility of this approach will depend on the volume of impacted material encountered and removed. If the volume of material begins to significantly outpace the rate of recycling, the excavation of additional material will be suspended and will not resume until the amount of material in storage can be reasonably managed, based on the recycling rate and compliance with facility recycling requirements.

All transport of coal tar materials from Site 108 across River Road to TCC’s operating Facility will be done using TCC equipment and RCRA-trained personnel (TCC or TCC’s assigned contractor). Flagmen will be used whenever vehicles transporting these materials are crossing River Road to ensure that this crossing is done safely and without incident.

Once the coal tar/soil mix has been removed, confirmation soil samples will be collected from the base and sidewalls of the excavation\(^2\). The number of confirmation samples to be collected from each excavation area will be determined based on the size of the excavation and the nature of the remaining material in excavation sidewalls and bottoms. This number will be agreed upon in the field between the NYSDEC and GHD / TCC representatives. A minimum of one sample will be collected from each excavation. Each sample will be analyzed for benzene, toluene, ethylbenzene, total xylenes, and polycyclic aromatic hydrocarbons (PAHs). The samples will be submitted to a New York State accredited laboratory (TestAmerica Laboratory or equivalent) for analysis. The analytical results will be reviewed and compared to New York State Part 375 criteria. If the material left in place exceeds the Industrial Use Soil Cleanup Objectives (SCOs), it may require being covered as part of the final remedy. If the material left in place exceeds the Part 375 definition of grossly contaminated material (GCM), it will either be recycled (if allowable), disposed at a

\(^2\) The confirmation sampling proposed in this Work Plan is focused on the removal of coal tar which will be visually identifiable. Consequently the need to strictly adhere to the confirmation sampling requirements in DER-10 Section 5.4(b) is not necessary in this case, but reasonable frequency of sampling is appropriate.
permitted facility, or left in place to be addressed as part of the final remedy. The determination will be made based on the type, volume, and location of the material involved.

Following the receipt and review of the analytical results and any subsequent actions, the overlying non-impacted material that was removed from the excavation will be placed back into the excavation. If insufficient material is available for backfilling the excavation, material from the surrounding area will be used to level the ground surface near the excavation areas. Importation of additional clean fill is not anticipated as long as reasonable grades and drainage can be maintained. Representative samples of the new surface area of the material that was backfilled into the excavation will be collected and analyzed if any is suspected of exceeding Industrial Use SCOs. If any does exceed the Industrial Use SCOs, these areas will have to be covered as part of the final remedy.

In the event that slag material is encountered in any of the excavations, excavation shall immediately cease and the NYSDEC will be notified. A qualified radiological consultant will inspect the slag and make a determination of whether the slag is Technologically Enhanced Naturally Occurring Radiological Material (TENORM). If it is TENORM, a determination will be made by TCC whether to continue the IRM or any portion thereof. Any TENORM removed from an excavation will be separately contained, stored, and shipped off-site for disposal at a permitted facility.

4.3 Removal of Coal Tar and/or Coal Tar/Soil Mix below the Tank Farm

Removal of coal tar and/or coal tar/soil mix from beneath the former tank farm will be completed as described in Sections 4.1 and 4.2 after demolition and removal of the abandoned aboveground storage tanks is complete. Tank removal is discussed in Section 5 of this work plan.

The coal tar/soil mix from within the bermed area will be carefully removed after the overlying, generally pure coal tar has been recovered. A backhoe will be used to extract the coal tar/soil mix and either place it directly into water-tight containers or decant the material as discussed in Section 4.2.

Removal of the coal tar/soil mix from the tank farm area will continue until the limits (both vertically and horizontally) of coal tar/soil mix have been reached based on visual examination. The excavation operation will be done as effectively as possible to remove all coal tar identified while minimizing disturbance of the surrounding materials in which there is no coal tar present.

5. Tank Removal Methods

The project includes the removal of three aboveground storage tank systems and management of the coal tar contained within the tanks. Tank removal will be completed in a similar manner as was used to remove the Barrett Tank Farm at TCC’s main Facility as described in the document entitled “Tank Removal Work Plan” (May 2010 – Great Lakes Environmental & Safety Consultant) and as further detailed herein.
Prior to removal of the tank systems, all piping and ancillary equipment associated with the tanks will be removed. The piping and ancillary equipment will be wrapped in plastic and transported to the decontamination area discussed in Section 7 for cleaning, as appropriate, before transport off Site for salvage or disposal. Prior to tank removal, all material from within the tanks will be removed and transported to the mixing pad as presented in Section 4.1 of this IRMPP. Once the tanks have been emptied of coal tar to the extent practicable, the tanks will be disassembled (i.e., cut) into manageable size pieces and transported to the decontamination area for appropriate cleaning and/or offsite disposal. If determined that cleaning is not possible (i.e., evidence of coal tar present that cannot be removed), the tank pieces will be staged in a covered container (e.g. roll-off box) for appropriate off-site disposal.

6. **Temporary Soil Erosion and Storm Water Controls**

Prior to the start of Site work activities, temporary erosion control and storm water management structures will be installed at the Site to control surface water run-on and to minimize the potential for erosion and migration of coal tar during project activities. Furthermore, the discharge of coal tar, coal tar/soil mix, or coal tar/sediment mix to the Niagara River will be prevented at all times.

Soil erosion and storm water run-off structures will be installed, operated, and inspected in accordance with “New York Guidelines for Urban Erosion and Sediment Control.” Storm water and erosion controls will include the following:

- Silt fence and hay bales around excavation areas.
- Temporary storm water diversion ditches for the control of surface water run-off from upgradient areas onto the work area.
- Temporary check dams and diversion structures/equipment to divert surface water flow around the work area.
- Management of diverted water to ensure that the water infiltrates through the surface soils and does not reach the Niagara River via a surface path.
- Sedimentation control structures around the decontamination and staging areas.

The excavation of the coal tar at location SD-2 will also include the following measures:

- Installation of Jersey barrier wall sections (or equivalent) immediately along the bank of the on-site ditch in the vicinity of the planned excavation.
- Cloaking of the Jersey barrier wall with polyethylene sheeting to make the barrier wall water-tight to ensure that water in the on-site ditch does not enter the excavation and that any water encountered in the excavation or entering the excavation does not reach the on-site ditch.
- The exact method for diverting the drainage ditch flow around the excavation area will be determined in the field in coordination with the NYSDEC. All water will be prevented from entering the work area prior to (and during) the excavation process to prevent any discharges of coal tar, coal tar / soil mix, or coal tar / sediment mix to the Niagara River.
Silt fence, as appropriate, will be installed along the perimeter of the project area. The silt fence will be anchored a minimum of 6 inches into the ground and staked every 10 feet. Hay bales will be used in conjunction with silt fence along low lying areas of the excavation, staging, and decontamination areas that are expected to receive a greater amount of run-off. The hay bales will be installed immediately adjacent to a 3-foot high silt fence. The hay bales will be secured to the ground with stakes or equivalent. Inspection and proper maintenance of the controls will be performed as an integral component of site maintenance during project activities.

A temporary storm water diversion ditch will be installed, as appropriate, to divert run-off from upgradient areas. The diversion ditch will be constructed above the area(s) to be excavated and will direct flow around the project area. In addition, diversion ditches will be installed as appropriate to divert run-off around the decontamination and staging areas.

It is not expected that any of the excavations will encounter groundwater. However, if groundwater is encountered in any of the excavations, it is intended that the work will continue with the water in place. No removal of groundwater is planned unless its presence makes it too difficult to continue with the excavation. Similarly, any rainwater that enters an excavation will be allowed to infiltrate through the base of the excavation. In the event that it becomes necessary to remove the water in an excavation in order to continue the coal tar removal process, the water will be pumped into a tanker and transferred to the TCC plant where it will be managed in accordance with the plant’s standard operating procedures (SOPs) SOP-PG-6 for managing tar contaminated water. Any water accumulating in any of the soil storage containers or water generated from the equipment decontamination operations will be collected and transported back to the TCC plant and managed as contaminated water. All contaminated water sent to TCC’s plant will be subject to the Industrial Use Permit with the Town of Tonawanda.

7. **Site Control and Decontamination**

The project area will be made secure from unhindered and unlimited access by unauthorized personnel. Access to Site 108 is limited by virtue of a fenced entrance off of River Road. When not allowing for ingress and egress, the gates will be closed. As Site 108 is not an active operational site, there is no concern regarding third-party or worker exposures during Site work. Installation of appropriate barrier methods (i.e., barrier tape, concrete barriers, fencing, cones, and rope, etc.) will be used for remediation worker protection around individual work areas.

The excavation and loading of coal tar and coal tar/soil mix will utilize “clean loading” procedures minimizing contact/impact with other areas. These procedures will ensure that coal tar is not spread to other areas, including adjacent properties and roadways. Dedicated equipment (e.g., excavator, bulldozer, etc.) will be used for transferring the material. The equipment will be decontaminated prior to leaving the Site. In addition, materials slated for salvage (e.g., tank pieces, piping) may also be decontaminated as needed prior to removal from the Site.

An equipment/personnel decontamination area will be constructed at Site 108. The decontamination area will be lined with a polyethylene liner (i.e., HDPE) and bermed in sufficient size to contain all decontamination water and sediment. In addition, the decontamination area will be constructed with hard walls (i.e., plywood sheeting covered with polyethylene sheeting) to minimize overspray. A
sump will be constructed in one corner of the decontamination area to allow for the collection of wash water. Wash water will be collected and transferred to the Facility for introduction into the on-Site treatment process.

All reusable equipment shall be decontaminated using steam, brushes, water, detergent, and/or solvent (e.g. kerosene) to remove coal tar residues prior to equipment being used to handle clean materials or being demobilized from the Site. In the event that a solvent is to be used and is not compatible with the HDPE liner of the decontamination area, the use of that solvent will be restricted to use within a steel container (e.g. roll off box) that is located in the decontamination area. Equipment subject to decontamination includes excavators, bulldozers, tanks, hand tools, and PPE. Decontamination residues (e.g., spent solvent/rags, solids) and disposable PPE will be containerized and characterized for proper off-Site disposal. Additional discussion on personnel decontamination is included in the HASP. Wash water will be collected and transferred to the Facility for introduction into the on-Site treatment process following SOP-PG-6. This process includes passing the water through the tar decanter which is designed to remove tar (which is recycled) from the water component. The effluent from the treatment process will be subject to TCC’s existing Industrial Use Permit with the Town of Tonawanda.

A truck inspection/wash will also be constructed near the access road to the Site to ensure that transport vehicles leaving the Site are free of contaminants prior to turning onto public rights-of-way. All transport truck exteriors, wheels, and undercarriage will be inspected for the presence of coal tar. If necessary, the trucks will be decontaminated to prevent the spreading of coal tar from the Site. Truck wash water will be collected and transferred to the Facility for introduction into the on-Site treatment process. Recovered material that cannot be recycled will be collected and characterized for disposal.

8. **Material Staging, Stockpiles, and Transport**

Material staging areas will be constructed for the temporary storage of materials to be managed (i.e., excavated materials for recycling, tanks/piping for scrap/salvage, material for off-site disposal) as a result of the project activities. It is noted that it is initially planned to store coal tar/soil mix material in individual disposal containers rather than in bulk storage piles. However, depending upon the volume of coal tar/soil mix generated, it may be necessary to revert to storing these materials in bulk. The staging areas will be prepared and maintained as follows:

- **Preparation of Storage Areas**
 - The area will be graded to provide positive drainage away from the intended storage locations.
 - All stones, roots, debris and other objects that may puncture polyethylene ground protection will be removed.
 - The ground surface, where bulk material will be staged, will be covered with a minimum of one layer of 0.15 millimeter (6-mil) polyethylene sheeting or equivalent material. All seams will be overlapped a minimum of 6 inches and sealed with duct tape to prevent the leaching
of contaminants. All material overlying coal tar/soil mix layers is intended to be stored in bulk fashion.

- The ground surface, where the disposal containers for coal tar and coal tar/soil mix will be stored, does not require any surface cover; only perimeter berms to prevent run-on and run-off.

- **Storage Area Protection**
 - At the end of each work day, contaminated materials will be completely covered with a minimum of one layer of 0.15 millimeter (6-mil) polyethylene sheeting, or an equivalent material. All seams will be overlapped a minimum of 6 inches and sealed with duct tape to prevent the leaching of contaminants.
 - Material covers will be weighted or secured by appropriate means to prevent tearing or removal by weather conditions.

- **Maintenance**
 - Material covers, site grading, signage, and security measures shall be properly maintained for the duration of storage. Damaged covers and other protections will be repaired or replaced as necessary.

The staged materials will be covered at the end of the work day and during precipitation events. The covered material will be secured during inclement weather and during periods of inactivity. Temporary erosion and storm water controls will be utilized as described in Section 6 to prevent coal tar run off.

All containers, stockpiles, or other storage areas will be labelled at the end of the day to identify the source of the material, the date it was generated, the nature of the material (e.g. 80 percent pure tar, 50/50 coal tar/soil mix, etc.) and how it is to be handled as part of the recycling pilot process.

Efforts will be made to store coal tar contaminated materials for not more than 90 calendar days, with the time limit beginning the first day the material is placed in a stockpile, truck bed, or storage/disposal container. However, due to the uncertain nature and volume of the material that may be encountered, storage beyond 90 days may be necessary. Additional approval from the NYSDEC will be required for storage time greater than 90 days and will be requested as soon as possible, or by at least 60 days of storage. The NYSDEC will be provided with an updated list of materials generated and in storage on a bi-weekly basis so that the age of generated material is documented and tracked. Storage containers will be inspected weekly to ensure that the materials are being properly stored.

Trucks and disposal containers will be prepared and maintained as follows:

- The interior of truck beds and disposal containers will be lined with one layer of 0.15 millimeter (6-mil) polyethylene sheeting, or an equivalent material. All base and sidewall seams shall be overlapped 6 inches and sealed with duct tape to prevent the leaching of contaminants.

- At the end of each work day, trucks and transport containers storing material will be completely covered with waterproof tarps or hard cover tops. Tarps will be placed over the top of the truck
bed or container (rather than over the material inside) and shall extend over the sides to prevent water accumulation and the evaporation of contaminants.

- Tarps will be weighted or secured by appropriate means to prevent tearing or removal by weather conditions.
- Trucks and transport containers will be labeled, signed, fenced, or otherwise secured (as needed) at the end of each work day.
- Trucks, transport containers, and tarps shall be properly maintained for the duration of material storage.
- Damaged tarps or transport containers shall be repaired or replaced within 24 hours after notification.

9. **Odor Control and Vapor Management**

Odor control and vapor management practices will be implemented during the excavation and loading of coal tar-impacted materials. A response plan is included as part of the CAMP to identify actions that may be implemented in response to elevated levels of target compounds or odor. The odor control and vapor management practices will include:

- Minimizing areas of open excavation at any one time.
- Backfilling excavations immediately upon completion.
- If an excavation has to stay open and volatilization and odors are a concern, then the area would be covered.
- Direct loading of impacted materials into covered transport containers to minimize staging/stockpiling impacted material.
- If transportation logistics require material to be staged or stockpiled on-Site, the material will be covered with plastic sheeting.

Additional odor control methods will be employed any time there is an exceedance of the VOC response levels specified in the CAMP (Attachment C of the HASP) at the perimeter of the Site or if there are nuisance odors detected off-site.

The additional means to eliminate odor nuisances may include use of chemical odorants in spray or misting systems or using foams to cover exposed odorous soil.

10. **Field Documentation**

All coal tar remediation and tank removal activities will be documented in a field logbook or equal. At a minimum, the following information should be included in the field logbook:

- Project personnel
- Date
• Visual observations
• Material management
• Waste transported off Site for recycling at the mixing pad, scrap/salvage, or disposal
• Issues/Concerns

This documentation will provide a detailed summary of the daily activities.

11. Meetings/Reporting

To ensure that this project is implemented as effectively as possible and with as few disruptions as possible, it is planned that a Site meeting be held with the NYSDEC each month. At each meeting, the following will occur:

• The previous month’s progress will be reviewed.
• The planned work for the next month will be discussed.
• Any necessary modifications to the work or schedule will be agreed upon.
• The success of the IRMPP will be discussed and a determination made as to whether to continue with the next phases of the project.

Minutes of the monthly meetings will be distributed to the project stakeholders.

In addition, the NYSDEC will receive a bi-weekly update on the volume of materials excavated and in storage. The age of all material in storage will also be provided bi-weekly.

A final IRM certification report will be prepared within 60 days of completion of all activities associated with the coal tar remediation and tank removal. At a minimum, the report will include the following information:

• Documentation of the volume of coal tar/soil removed from the excavations.
• Documentation of the volume of coal tar removed from the tanks and berm area.
• Documentation of the storage conditions for all coal tar and coal tar/soil mix material.
• Certification that the tank removal was performed in accordance with the tank removal work plan.
• A summary of the management of all materials generated as part of the project.
12. **Schedule**

The planned schedule for implementing this IRM is as follows:

- **January 20, 2017**
 Submittal of IRMPP Work Plan to NYSDEC

- **March 23, 2017**
 NYSDEC Approval of IRMPP Work Plan

- **April 30, 2017**
 Contract award for tank demolition and certain IRMPP activities that will be performed by third party contractors

- **May 15, 2017**
 Begin excavation of subsurface coal tar areas

- **June 1, 2017**
 Begin tar removal from bermed area around tanks

- **June 15, 2017**
 Begin tar removal from within tanks and bermed area, and tank demolition

- **July 15, 2017**
 Begin excavation of bermed area coal tar

- **Completion +60 days**
 Submit IRM certification report to NYSDEC

Note – Site activities are all subject to conditions identified during the process. Should unexpected issues be identified, or the volume of material identified be different than expected, TCC reserves its rights to discontinue on-Site work and enter into discussions with NYSDEC regarding next steps.
FIGURE 3.2
TANK DEMOLITION AND TAR REMOVAL

TONAWANDA COKE
TONAWANDA, NEW YORK

LEGEND
- 30,810
- 242,980
- 8'
- 10'
- 12'
- 16'
- 9'
- 16'
- 4.5'
- 18'
- 16'
- 9'
- 12'
- 10'
- 4,040
- 40 ft
- 16'
- 10'
- 12'
- 8'
- 8'
- 9'
- 16'
- 28,220
- 91,600

TOTAL PAH CONCENTRATION (ppm) - TAR IN BERM AREA
TOTAL PAH CONCENTRATION (ppm) - TAR INSIDE TANK
TAR MEASUREMENT LOCATION AND THICKNESS

CAD File: P:\drawings\02000s\02428\02428-reports\02428-05(023)\02428-05(023)GN\02428-05(023)GN-WA003.DWG
Jan 17, 2017

Appendix A
Logs of Samples Containing Tar
Test Pit Stratigraphy Log (Form SP-03)

Project Name: Tonawanda Coke Site 108
Contractor: TCC
Test Pit Designation: Test Pit 4
Project No.: 002428
Date/Time Started: 9/7/2016 / 13:10 PM
Date/Time Completed: 9/7/2016 / 13:30 PM
Location: Tonawanda, New York
Test Pit Method: Excavator
GHD Supervisor: Kevin Lynch
Client: Hodgson Russ
Surface Elevation:
Location: West end of site east of unloader

<table>
<thead>
<tr>
<th>Depth (Feet)</th>
<th>From</th>
<th>At</th>
<th>To</th>
<th>Sample No.</th>
<th>Sample Interval</th>
<th>PID</th>
<th>Geologic Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>3.0</td>
<td>TPS 4 & 18</td>
<td>0' to 0.2'</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SO 3 and 4</td>
<td>4.5' to 6'</td>
<td>42.0</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td>4.5</td>
<td>4.5</td>
<td>TPS 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td>5.5</td>
<td>5.5</td>
<td>SO 3 and 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td>6.5</td>
<td>6.5</td>
<td>TPS 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td></td>
<td>9.0</td>
<td>9.0</td>
<td>TPS 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td></td>
<td>9.0</td>
<td>9.0</td>
<td>TPS 18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Soil Symbol, Primary Component, Secondary Components:**
- **Relative Density/Consistency, Grain Size/Plasticity, Gradation/Structure, Colour, Moisture Content, Supplementary Descriptors:**
- **PID:**
- **Geologic Profile:**

- Fill - coal fines, ashy layer, soil, red brick, loose, black, moist slight septic odor,
- Fill - ashy layer, bottom ash, white and brown, dry, compact, very hard digging
- Fill - granular layer, gray/white material, sand, loose, strong naphthalene odor, tar, light gray or white, moist
- Fill - soil fill, wood, rubber, brick, sand, light gray, moist to wet, chemical odor
- SM - Sand, some silt, little clay, gray, wet, chemical odor, Native
- Water enters test pit
- Test Pit end of hole in native soils

GHD Form SP-03 – Revision 0 – July 1, 2015
<table>
<thead>
<tr>
<th>Depth (Feet)</th>
<th>Sample No.</th>
<th>Sample Interval</th>
<th>PID</th>
<th>Location</th>
<th>Geologic Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 - 3.0</td>
<td>SO-22</td>
<td>4.0' to 5.0'</td>
<td>130.0</td>
<td>East tank berm South side</td>
<td>Fill - soil, silty, red brick, roots, wood, white brick, dark brown, moist to wet, strong coal tar and naphthalene odor, tar is not congealed, granules are flowable</td>
</tr>
<tr>
<td>3.0 - 5.5</td>
<td>SO-23</td>
<td>6.0' to 6.5'</td>
<td>46.0</td>
<td>East tank berm South side</td>
<td>ML - Silt, some sand, med. stiff, silt, rootlets, gray-brown, moist to wet, coal tar odor, naphthalene odor, no visible tar</td>
</tr>
<tr>
<td>5.5 - 5.8</td>
<td>SO-22</td>
<td>4.0' to 5.0'</td>
<td>130.0</td>
<td>East tank berm South side</td>
<td>Vegetative mat, thick, dense, reed stalks, black, moist to wet, Native</td>
</tr>
<tr>
<td>5.8 - 7.0</td>
<td>SO-23</td>
<td>6.0' to 6.5'</td>
<td>46.0</td>
<td>East tank berm South side</td>
<td>Fill - soil with tar, coke pieces, coal, clinkers, black and dark gray, moist to wet, strong coal tar and naphthalene odor, tar is not congealed, granules are flowable</td>
</tr>
</tbody>
</table>

GHD Form SP-03 – Revision 0 – July 1, 2015
<table>
<thead>
<tr>
<th>Depth (Feet)</th>
<th>From</th>
<th>At</th>
<th>To</th>
<th>Soil Symbol, Primary Component, Secondary Components, Relative Density/Consistency, Grain Size/Plasticity, Gradation/Structure, Colour, Moisture Content, Supplementary Descriptors</th>
<th>Sample No.</th>
<th>Sample Interval</th>
<th>PID</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td>3.0</td>
<td>Fill - soil with tar, coke pieces, coal, clinkers, loose, black and dark gray</td>
<td></td>
<td></td>
<td>190.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td></td>
<td>moist to wet, strong coal tar and naphthalene odor, tar is not congealed,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td>granules are flowable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No water observed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test pit ends due to obvious tar impact.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Move 15 feet SW for Test Pit B6b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (Feet)</td>
<td>From</td>
<td>At</td>
<td>To</td>
<td>Soil Symbol, Primary Component, Secondary Components, Relative Density/Consistency, Grain Size/Plasticity, Gradation/Structure, Colour, Moisture Content, Supplementary Descriptors</td>
<td>Sample No.</td>
<td>Sample Interval</td>
<td>PID</td>
<td>Location</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>------------</td>
<td>----------------</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>0.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td>Fill - soil, silty, coal, coke pieces, coal fines, solidified tar, yellow brick, black, dry, no odor</td>
<td>SO 24</td>
<td>2.0' to 3.0'</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>4.5</td>
<td></td>
<td></td>
<td>ML - silt, some sand, moist, gray, Native</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td>water enters test pit from south side</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td>Test pit ends in native soils</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Pit Stratigraphy Log
(Form SP-03)
Project Name: Tonawanda Coke Site 108
Contractor: TCC
Test Pit Designation: Test Pit 7

Project No.: 002428
Date/Time Started: 9/7/2016 / 10:00 AM

Client: Hodgson Russ
Date/Time Completed: 9/7/2016 / 10:30:00 AM

Location: Tonawanda, New York
Surface Elevation: Near creek SW of tanks

Test Pit Method: Excavator
GHD Supervisor: Kevin Lynch

<table>
<thead>
<tr>
<th>Depth (Feet)</th>
<th>Soil Symbol, Primary Component, Secondary Components, Relative Density/Consistency, Grain Size/Plasticity, Gradation/Structure, Colour, Moisture Content, Supplementary Descriptors</th>
<th>Sample No.</th>
<th>Sample Interval</th>
<th>PID</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 to 0.2'</td>
<td>Fill - coal fines, soil, red brick, wood, white brick, black plastic sheeting, coal tar odor, black, dry</td>
<td>TPS 7 & 21</td>
<td>0' to 0.2'</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>Coal tar piece (2 ft. by 2 ft.), congealed but flowable in heat.</td>
<td></td>
<td></td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>6.0 to 7.0'</td>
<td>ML - Silt, little sand and clay, tar in root channels, rootlets, gray, sl. stiff, gray, Native</td>
<td>SO 7</td>
<td>6.0' to 7.0'</td>
<td>63.0</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>SM - Sand, some silt, rootlets, moist, gray, coal tar odor, trace tar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>Water enters test pit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>Test pit end of hole in native soils</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratigraphic Intervals Depths in ft/m BGS</td>
<td>Sample Description</td>
<td>Sample Details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>At</td>
<td>To</td>
<td>Order of descriptors: Soil type symbol(s) - primary component(s), (nature of deposit), secondary components, relative density/consistency, grain size/plasticity, gradation/structure, colour, moisture content, Note: Plasticity determination requires the addition of moisture if the sample is too dry to roll (indicate if moisture was added or not).</td>
<td>Sample Number</td>
<td>Sampling Method</td>
</tr>
<tr>
<td>0.0</td>
<td>0.5</td>
<td>ML - Silt, little fine sand, roots and vegetative matter, soft, black, wet, sticky tar present</td>
<td>SD-003</td>
<td>Sediment corer</td>
<td>0 to 0.4'</td>
</tr>
<tr>
<td>1.0</td>
<td>1.5</td>
<td>ML - Silt, some clay, trace gravel, roots, dark gray, firm, moist, tar present</td>
<td>SD-004</td>
<td>Sediment corer</td>
<td>1.0' to 1.5'</td>
</tr>
</tbody>
</table>

Notes and Comments:
- Depth of borehole caving
- Depth of first groundwater encounter
- Topsoil thickness
- Water level in open borehole on completion
- After
- Hours
- Notes: Sediment sample from drainage ditch near TP-7 location. Water level at sample location about 8 inches
- Tar present on creek bottom at north bank. Metallic sheen noted on water surface.
Appendix B
Health & Safety Plan
Emergency Contact List and Hospital Route Map

Fire Department ... 911
Police Department .. 911
Ambulance .. 911
Hospital: Kenmore Mercy Hospital (716) 447-6121
GHD Incident Reporting Hotline .. (866) 529-4886
National Response Center (NRC) ... (800) 424-8802
Poison Information .. (800) 764-7661
Utility Locating Commission (One Call Nationwide) 811
Agency for Toxic Substances & Disease Registry (24 Hours) (404) 488-4100
U.S. EPA Emergency Response ... (800) 424-8802
State of New York Emergency Response Commission (513) 457-9996
NYSDEC Site Representative (TBD) (716) 851-7220
GHD Project Manager (Jim Kay) ... (519) 884-0510
GHD Regional Corporate Safety and Health Manager (Craig Gebhardt) (716) 297-6150
Contractor Site Superintendent (TBD) TBD
Contractor Safety and Health Officer (TBD) TBD
Figure 11.1 Hospital Route Map

1. Head South on River Rd for 1.2 mi to Sheridan Dr (RT 325).
2. Turn left on Sheridan Dr and follow 1.4 mi.
3. Bear right on Sheridan Dr (RT 324) and follow 1.2 mi.
4. Turn right on Elmwood Ave and follow 0.2 mi.
5. Hospital entrance is on right.
Table of Contents

1. Introduction... 1
 1.1 Project Organization ... 2
2. Site Characterization and Potentially Hazardous Compounds .. 6
3. Basis for Design .. 7
4. Personnel Training ... 7
 4.1 General ... 7
 4.2 Basic 40-Hour Course ... 7
 4.3 Supervisor Course ... 8
 4.4 Site-Specific Training ... 8
 4.5 Daily Safety Meetings .. 8
 4.6 First Aid and CPR .. 8
5. Medical Surveillance ... 9
6. Personal Protective Equipment .. 9
 6.1 Levels of Protection .. 9
 6.1.1 Level D Protection ... 10
 6.1.2 Modified Level D Protection .. 10
 6.1.3 Level C Protection .. 10
 6.1.4 Level B Protection .. 11
 6.1.5 Selection of PPE ... 12
 6.2 Respiratory Protection .. 12
 6.2.1 Site Respiratory Protection Program ... 12
 6.3 Using PPE ... 13
 6.3.1 Donning Procedures ... 13
 6.3.2 Doffing Procedures ... 14
 6.4 Selection Matrix .. 14
 6.5 Duration of Work Tasks .. 14
 6.6 Limitations of Protective Clothing ... 14
7. Site Control ... 16
 7.1 Authorization to Enter ... 16
 7.2 Site Orientation and Hazard Briefing .. 16
 7.3 Certification Documents .. 16
 7.4 Entry Requirements ... 16
 7.5 Emergency Entry and Exit .. 17
 7.6 Contamination Control Zones ... 17
 7.6.1 Exclusion Zone (EZ) ... 17
 7.6.2 Contamination Reduction Zone (CRZ) .. 17
 7.6.3 Support Zone (SZ) ... 17
Table of Contents

8.1 General Practices ... 18
 8.1.1 Buddy System .. 18
 8.1.2 Sanitation .. 19
 8.1.3 Break Area ... 19
 8.1.4 Potable Water .. 19
 8.1.5 Washing Facilities ... 20
 8.1.6 Lavatory .. 20
 8.1.7 Trash Collection .. 20
8.2 Chemical Exposure .. 20
8.3 Heat Stress ... 22
8.4 Sun Exposure .. 25
8.5 Cold Stress .. 25
8.6 Earthwork - Excavation and Trenching .. 27
8.7 Heavy Equipment Safety .. 29
8.8 Noise .. 30
8.9 Manual Lifting ... 30
8.10 Hand and Power Tools ... 31
8.11 Adverse Weather Conditions ... 31
8.12 Working Near Water ... 32
8.13 Biological Hazards .. 32
 8.13.1 Vegetation Overgrowth ... 32
 8.13.2 Tick-Borne Diseases ... 33
 8.13.3 Poisonous Plants .. 34
 8.13.4 Insects .. 34
 8.13.4.1 Poisonous Spiders .. 35
 8.13.5 Threatening Dogs ... 36
 8.13.6 Rodents .. 36
8.14 Aggressive or Menacing Behavior ... 37
9. Air Monitoring Program ... 37
 9.1 Site Air Monitoring ... 38
 9.1.1 Real-Time VOC Monitoring .. 39
 9.1.2 Particulate Monitoring .. 39
 9.1.3 Oxygen, Combustible Gas, and Carbon Monoxide Monitoring 40
10. Decontamination Procedures ... 40
 10.1 Equipment Decontamination Procedures ... 40
 10.2 Personnel Decontamination Procedures .. 40
11. Emergency Response and Contingency Procedures .. 41
 11.1 Accident, Injury and Illness Reporting ... 42
 11.2 Emergency Contacts .. 42
 11.3 Additional Emergency Numbers ... 43
 11.4 Emergency and First Aid Equipment ... 43
Table of Contents

11.5 Project Personnel Responsibilities During Emergencies .. 44
11.6 Medical Emergencies .. 44
11.7 Fire or Explosion .. 44
11.8 Spill Control and Countermeasures ... 45
12. Recordkeeping ... 45

Figure Index

Figure 11.1 Hospital Route Map

Table Index

Table A.1 Properties of Potential Site Contaminants
Table A.2 On-Site Air Monitoring Program Action Levels

Attachments

Attachment A Job Safety Analyses (JSAs)
Attachment B Project Safety Forms
Attachment C Community Air Monitoring Plan (CAMP)
1. Introduction

This Health and Safety Plan (HASP) describes the health and safety procedures and emergency response guidelines that will be implemented during field activities at the Tonawanda Coke Corporation (Site) in Tonawanda, New York, NYSDEC Site #915055. An Emergency Response Plan and Community Air Monitoring Plan are included as part of this HASP. This HASP shall be implemented and adhered to during all field activities that are presented in the Work Plan.

The Site is located at 3875 River Road, Tonawanda, New York. Figures presenting the Site Location and Site Plan are included in the Work Plan.

This HASP will be provided to any Contractors selected to perform work in support of the field activities. The selected Contractors will be required to develop and implement a HASP, which at a minimum meets all the requirements set forth in this document.

The scope of work to be completed includes the following:

- Mobilization and demobilization of labor, materials, and equipment to and from the Site, which include Site preparation/setup.
- Excavation activities and soil and waste removal.
- Loading of soil and waste into roll-off boxes or dump trailers for transportation to Main Plant Site.
- Backfilling.
- Removing waste from above ground storage tanks.

Additional work may include:

- Soil sampling.
- Sediment sampling within the Niagara River embayment.
- Sediment sampling of the on-Site ditch(s).
- Sediment sampling from on-Site ponds.

During a portion of these activities, personnel may come in contact with waste materials, chemicals, debris, soils, groundwater, surface water, sediment, and wash waters, which may contain hazardous substances. This HASP has been developed to minimize direct contact by project personnel with materials potentially having chemical presence by ensuring:

i) The communication of the contents of this HASP to project personnel.

ii) The elimination of unsafe conditions. Efforts shall be initiated to identify conditions that can contribute to an accident and to remove exposure to these conditions.

iii) The review all activities before beginning the task/job, after an incident, and/or any unusual circumstances. Stop activities to think about the task, analyze the task hazards, determine methods to reduce risk, and review the results with affected personnel.

iv) The review of existing and the development of new Job Safety Analysis (JSA) forms for each project work activity. Supervisors and affected personnel are responsible for the development
and any on-going revisions of project JSAs. JSAs for all known work activities are presented Attachment A.

v) The reduction of unsafe acts. Project personnel shall make a conscious effort to work safely. A high degree of safety awareness must be maintained so those safety factors involved in a task become an integral part of the task. Supervisory personnel shall ensure that project personnel committing unsafe acts are held accountable via counseling, mentoring, and, if necessary, reprimand.

vi) The frequent inspection of project activities. Regular safety inspections of the work site, materials, and equipment by qualified persons ensure early detection of unsafe conditions. Safety and health deficiencies shall be corrected as soon as possible, and project activities shall be temporarily suspended until the appropriate corrective actions are taken. Documentation of the daily inspections and corrective actions taken should be kept with the project files.

For the purpose of this HASP, activities performed at the Site involving contact with materials, which potentially have an elevated chemical presence will be considered contaminated operations requiring the use of Personal Protective Equipment (PPE). A detailed description of the required PPE is presented in Section 6.1 and is also identified on each JSA form.

The applicability of this HASP extends to all project personnel who will be on Site, including State and Federal Agency personnel, contractor personnel, subcontractor personnel, and visitors to the Site.

All project activities at the Site will be conducted in accordance with the provisions of an approved Site-specific HASP. A copy of the Site-specific HASP and employer-specific Standard Operating Procedures (SOPs) will be maintained on Site whenever activities are in progress.

1.1 Project Organization

All personnel conducting activities on Site must conduct their activities in compliance with all applicable Safety and Health standards as specified by OSHA including, but not limited to, the OSHA 29 CFR 1910, 29 CFR 1926. Project personnel must also be familiar with the procedures and requirements in their approved Site-specific HASP and the applicable procedures found within their company’s SOP’s and Safety and Health Policy Manual. In the event of any conflicting safety procedures/requirements, personnel shall implement those safety practices, which afford the highest level of safety and protection.

Project Management and Safety Organization

Project Manager - Jim Kay

The Project Manager (PM) shall be responsible for the overall implementation of the HASP, and for ensuring that all health and safety responsibilities are carried out in conjunction with this project. This shall include, but is not limited to, review and approval of the HASP; qualifying/directing subcontractors relative to safety and health performance; coordinating all safety and health submittals; providing the appropriate technical information to write submittals; and consultation with the selected contractor’s Corporate Safety and Health Manager with regards to appropriate changes to the HASP.
Site Safety & Health Officer (SHO) – TBD

The SHO is the person who, under the supervision of the PM and the contractor’s Corporate Safety and Health Manager, shall be responsible for the communication of the Site requirements to project personnel and any subcontractor personnel. The SHO will have prior experience in working at hazardous waste sites and is responsible for carrying out the health and safety responsibilities by making sure that:

i) He/she is onsite at all times during the project work activities.

ii) All necessary clean-up and maintenance of safety equipment is conducted by project personnel.

iii) Emergency services are contacted when necessary.

iv) A Site-specific Hazard Communication (HAZCOM) Program is maintained on Site.

v) Project safety forms attached to the HASP are correctly completed and filed.

vi) A pre-entry briefing is conducted, which will serve to familiarize project personnel with the procedures, requirements, and provisions of this HASP.

vii) All necessary records are maintained in the project files (e.g., air monitoring results, calibration log sheets, incident reports, daily toolbox meeting sheets, daily safety logbook entries, training certificates and/or certifications, etc.).

viii) Daily safety meetings are held and documented.

ix) Safe work practices for project personnel are enforced.

x) Safety of any visitors who enter the Site is ensured.

xi) Communication is maintained with the PM.

xii) Orders the immediate shutdown of project activities in the case of a medical emergency, unsafe condition, or unsafe practice.

xiii) Designates work areas and define minimum PPE requirements.

xiv) Provides the safety equipment, PPE, and other items necessary for project personnel.

xv) Conducts the required worker and community air monitoring programs.

xvi) Enforces the use of required safety equipment, PPE, and other items necessary for project personnel safety.

xvii) Ensures that there is a competent person in place who will be supervising excavation work.

xviii) Conducts job Site inspections with the Construction Superintendent (CS) or Site Supervisor (SS) as a part of quality assurance for safety and health.

xix) Reports safety and health concerns to the selected contractor’s management as necessary.
Emergency Coordinator (EC) - TBD

The SHO or his/her designate will act as the EC. The EC shall be able to implement the emergency procedures and is responsible for implementing the following activities in the event of an emergency:

i) The EC shall immediately respond to all imminent or actual emergency situations. The EC shall notify all project personnel and emergency response agencies, identify the problem, assess the health or environmental hazards, and take all reasonable measures to stabilize the situation.

ii) The EC shall take all reasonable measures necessary to ensure that fire, explosion, emission or discharge does not occur, re-occur, or spread. These measures may include stopping operations, collecting and containing released materials, and/or removing or isolating containers.

iii) The EC shall develop Emergency Evacuation Routes on a daily bases and communicate them to all project personnel.

iv) The EC shall also be responsible for follow-up activities after any incident such as the cleanup of the affected area, maintenance and decontamination of emergency equipment, and completion and submission of an incident report.

Construction Superintendent (CS) / Site Supervisor (SS) - TBD

Health and safety is a line management responsibility, and as such, the CS and/or SS will implement and support the overall onsite direction and enforcement of the health and safety for this project. The CS and/or SS must meet the requirements of the "competent person" as per the OSHA regulations. The CS and/or SS will report to the PM for this project.

The CS and/or SS is the person who, under the supervision of the PM, shall be responsible for the communication of the Site requirements to project personnel and subcontractors, and is responsible for carrying out the health and safety responsibilities by making sure that:

i) All underground utilities have been properly located prior to initiating work activities

ii) Each work area is secured with fencing at the end of each day.

iii) All necessary cleanup and maintenance of safety equipment is conducted by project personnel.

iv) JSA forms are developed, reviewed, and revised accordingly.

v) Project personnel stop, think about, act accordingly and review the work activities that they are about to start before initiating activities.

vi) Project safety forms attached to the HASP are properly completed and then filed.

vii) A pre-entry briefing is conducted for all project personnel, which will serve to familiarize everyone with the procedures, requirements, and provisions of this HASP.

viii) Orders the immediate shutdown of project activities in the case of a medical emergency, unsafe condition, or unsafe practice.

ix) Provides the safety equipment, PPE, and other items necessary for project personnel.
x) Enforces the use of required safety equipment, PPE, and other items necessary for personnel or community safety.

xi) Conducts job site inspections as a part of quality assurance for safety and health.

xii) Reports safety and health concerns to the selected contractor’s PM as necessary.

xiii) Is responsible for the overall implementation of the HASP, and ensuring that all health and safety responsibilities are carried out during the project work activities. This shall include, but is not limited to, review and approval of any subcontractor HASPs, communication of Site requirements to Subcontractor personnel, and consultation with the PM regarding appropriate changes to the HASP.

xiv) The CS and/or SS also have the responsibility for enforcing safe work practices for all project personnel.

xv) A competent person oversees all excavation and trenching work to ensure that work is completed in accordance with the OSHA Standards presented in 1926 Subpart P.

xvi) The CS and/or SS watch all personnel for any ill effects, especially those symptoms caused by heat stress and/or chemical exposure.

taxvii) The CS and/or SS oversee the safety of any visitors who enter the Site.

Regional Safety & Health Manager (C shm) - Craig Gebhardt

The RSHM is an individual who is trained as a health and safety professional, works full-time in a health and safety role, and who serves in a consulting role to the PM, SHO, and CS and/or SS regarding potential health and safety issues.

Equipment Operators

All equipment operators are responsible for the safe operation of heavy equipment. Operators are responsible for inspecting their equipment on a daily basis to ensure safe performance. Brakes, hydraulic lines, backup alarms, and fire extinguishers must be inspected routinely throughout the project. Documentation of daily inspections will be required via an equipment inspection checklist. Heavy equipment inspections will be submitted to the CS for review and subsequently placed in the project files. Unsafe conditions/acts are to be immediately reported to the CS. Equipment will be taken out of service if an unsafe condition occurs.

Project Personnel Safety Responsibilities

Project personnel are responsible for their own safety as well as the safety of those around them and shall use any equipment provided in a safe and responsible manner, as directed by their supervisor. Project personnel will follow the policies set forth in this HASP and those in their employer-specific SOPs and Safety and Health Program.

Project personnel are directed to take the following actions when appropriate:

i) Review all activity hazards and preventative measures before initiating work.

ii) Assist in the development/revision of JSA forms that are appropriate to their current work activities.

iii) Suspend any operations that may cause an imminent health hazard to project personnel.
iv) Inspect tools and other equipment before each use or as the manufacturer and/or OSHA mandates.

v) Correct job site hazards when possible without endangering life or health.

vi) Report safety and health concerns to the SHO CS and/or SS.

Subcontractors

Selected subcontractor(s) will be responsible for providing a CS and/or SS ("competent person") and a SHO to direct their activities and to meet all applicable OSHA Regulations. This may be the same individual if so qualified. These individuals will be responsible for ensuring that all contract specifications are met, including those related to project health and safety. Subcontractors will be responsible for the health and safety of their personnel, which includes following all applicable OSHA Regulations and the subcontractors’ Site-specific HASP(s). Subcontractors will be required to attend an initial Site briefing and subsequent daily safety meetings.

Authorized Visitors

Authorized Visitors shall be provided with all known information with respect to the project operations and hazards, as applicable to the purpose of their visit.

2. Site Characterization and Potentially Hazardous Compounds

The Site has been impacted with coal tar wastes including PAHs, organic solvents, phenols, and heavy metals. It has been determined that the following list of chemicals represents the Chemicals of Concern (COCs) at the site:

- Benzene
- Toluene
- Ethylbenzene
- Xylenes
- Methylene Chloride
- Acetone
- 1,2-Dichloroethene
- Vinyl Chloride
- 2-Methylnaphthalene
- Anthracene
- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(k)fluoranthene
- Chrysene
- Fluoranthene
- Fluorene
- Naphthalene
- Phenanthrene
- Pyrene
- Dibenzofuran

Table A.1 shows the properties of the compounds listed above.

3. Basis for Design

Regulations set forth by OSHA in Title 29, CFR, Parts 1910 and 1926 (29 CFR 1910 and 1926) form the basis of this HASP. Emphasis is placed on Section 1926.65 (Hazardous Waste Operations and Emergency Response), 1910 Subpart I (Personal Protective Equipment), 1910 Subpart Z (Toxic and Hazardous Substances), 1926 Subpart O (Motor Vehicles, Mechanized Equipment, and Marine Operations), and 1926 Subpart F (Excavations). Some of the specifications within this section are in addition to the OSHA regulations, and reflect the positions of U.S. EPA, and the National Institute for Occupational Safety and Health (NIOSH), regarding safe operating procedures at hazardous waste sites.

The health and safety of the public and Site personnel and the protection of the environment will take precedence over cost and scheduling considerations for all project work.

4. Personnel Training

4.1 General

Project personnel shall complete hazardous waste operations and emergency response training (HAZWOPER), as required by the OSHA Standard 29 CFR 1926.65. Project personnel shall also initially receive a minimum of 3 days of actual field experience under the direct supervision of a trained, experienced supervisor. Personnel who completed their training more than 12 months prior to the start of this project shall have also completed an 8-hour HAZWOPER refresher course within the past 12 months. The CS and or SS shall complete the additional 8 hours of training that is required for managers and/or supervisors along with any "competent persons" training that may be needed for required work.

Additional safety training for specific tasks/activities may include safety training for excavation safety. Further safety training may also be required based on the scheduled scope of work. This safety training is to be conducted and documented before any tasks that require additional training are initiated. It is the responsibility of the SHO and CS and/or SS to ensure that personnel have the necessary training and skills prior to activity assignment. Task safety training requirements are included on each JSA form.
4.2 **Basic 40-Hour Course**

The following is a list of the topics typically covered in a 40-hour training course:

i) General safety procedures

ii) Physical hazards (fall protection, noise, heat stress, cold stress)

iii) Names and job descriptions of key personnel responsible for Site health and safety

iv) Safety, health, and other hazards typically present at hazardous waste sites

v) Use, application, and limitations of PPE

vi) Work practices by which employees can minimize risks from hazards

vii) Safe use of engineering controls and equipment on site

viii) Medical surveillance requirements

ix) Recognition of symptoms and signs, which might indicate overexposure to hazards

x) Worker right-to-know (Hazard Communication OSHA 1926.59/1910.1200)

xi) Routes of exposure to contaminants

xii) Engineering controls and safe work practices that may be implemented

xiii) Components of a project HASP

xiv) Decontamination practices for personnel and equipment

xv) Confined space entry procedures

xvi) General emergency response procedures

4.3 **Supervisor Course**

Management and supervisors (i.e., the CS and SS), who work at the Site are required to receive an additional 8 hours of training in topics that are pertinent to the management of hazardous waste operations, which typically includes:

i) Instruction in detailed project safety and health procedures dealing with emergencies

ii) PPE programs

iii) The implementation of specialized emergency response procedures

iv) Air monitoring techniques

4.4 **Site-Specific Training**

All project personnel attending the initial safety meeting will accomplish the project-specific training on the contents of this HASP before work begins. The review will include a discussion of the chemical, physical, and biological hazards that may be present at the Site, the protective equipment and safety procedures to be used and followed, and emergency procedures that will be implemented at the Site. The Training Acknowledgment Form that project personnel will sign off on is presented in Attachment B (Project Safety Forms).
4.5 Daily Safety Meetings

Daily safety meetings (tailgate safety talks) will be held to cover the work that is anticipated to be accomplished each day, the associated hazards, the protective clothing and procedures required to minimize exposure to these hazards, and the required emergency response procedures. The CS, SS and/or SHO will present these meetings prior to beginning the day’s fieldwork. No work will be performed in an Exclusion Zone (EZ) before the daily safety meeting has been held. Additional safety meetings shall also be held prior to initiating new tasks, and repeated if new hazards are encountered. The form for documenting the daily safety meetings is also found in Attachment B.

4.6 First Aid and CPR

At least one individual current in First Aid/CPR will be assigned to the work crew for every 10 individuals working at the Site and will be immediately available during all field activities to provide assistance as necessary. Refresher training in First Aid and CPR is required to keep the certificate current. These individuals must also receive training regarding the precautions and protective equipment necessary to protect against exposure to blood-borne pathogens. Blood-borne pathogen training should be included as part of the First Aid/CPR training course delivered by the training provider.

5. Medical Surveillance

In accordance with the requirements detailed in 29 CFR 1926.65 and 29 CFR 1910.134, all project personnel who will come in contact with potentially contaminated materials will have received medical surveillance by a licensed physician or physician’s group.

Medical records for all project personnel will be maintained by their respective employers. The medical records will detail the tests that were taken and will include a copy of the consulting physician’s statement regarding the tests and the individual’s suitability for work as per the employer’s medical surveillance program which is to be in accordance with 29 CFR 1926.65.

The medical records will be available to the employee or his designated representative upon written request, as outlined in 29 CFR 1910.1020.

If it becomes necessary to use subcontractors, they will also provide certifications to the SHO showing that their personnel involved in Site activities have all necessary medical examinations prior to commencing work. The certifications will show proof of medical surveillance and respiratory fit testing. Personnel not obtaining medical certification will not perform work within contaminated areas.

Interim medical surveillance will be completed if an individual exhibits poor health or high stress responses due to any project activity or when accidental exposure to elevated concentrations of contaminants occur.

6. Personal Protective Equipment

PPE will be required to safeguard project personnel from various hazards. Varying levels of protection may be used depending on the level of contaminants and the degree of any physical
hazard. This section presents the various levels of personal protection and defines the conditions of use for each level. Subcontractor Site-specific HASPs, if required, will adequately address PPE concerns for each specific task activity based on their proposed scope of work.

6.1 **Levels of Protection**

Protection levels are determined based upon chemical and physical hazards present in the work area. The specific protection levels to be employed at the Site for each work task are presented on each JSA form, which are presented in Attachment A.

6.1.1 **Level D Protection**

The minimum level of protection that will be required for all project personnel will be Level D. Level D will only be used in clean areas where there is no potential for exposure to the contaminants of concern. The following equipment is to be worn as Level D PPE:

i) Work clothing as prescribed by the weather
ii) Steel toed work boots meeting American National Standard Institute (ANSI) Z41
iii) Safety glasses or goggles, meeting ANSI Z87
iv) Leather work gloves
v) High visibility safety vest (Class II) when working near moving equipment
vi) Hard hat, meeting ANSI Z89
vii) Hearing protection when noise levels exceed 85 dBA. Hearing protection will have a minimum Noise Reduction Rating (NRR) of at least 20 dBA

6.1.2 **Modified Level D Protection**

Modified Level D will be worn when airborne contaminants are not present at levels where respiratory protection is required, but where project activities present an increased potential for skin contact with hazardous substances. The following equipment is to be worn as Modified Level D:

i) Tyvek® coveralls or polyethylene coated Tyvek® coveralls (if liquids/splash hazards are present)
ii) Steel toed work boots meeting ANSI Z41
iii) Neoprene, or polyvinyl chloride (PVC) overboots
iv) Safety glasses or goggles
v) Hard hat
vi) Face shield in addition to safety glasses or goggles when projectiles and/or splashing liquids pose a hazard
vii) Disposable nitrile inner gloves (NDEX 8005, as manufactured by Best, or equivalent)
viii) Nitrile over gloves
ix) Hearing protection (if necessary)
x) A high visibility safety vest (Class II) when working near moving equipment
6.1.3 Level C Protection

Level C protection will be required when the airborne concentration of suspected contaminants are present in the worker’s breathing zone at sustained levels of greater than 1 part per million (ppm) of organic vapor as measured with a photoionization detector (PID) or 5mg/m3 of particulate as measured by a particulate monitor.

The following equipment will be used for Level C protection:

i) Full-face air purifying respirator (APR) with organic vapor/acid gas cartridges in combination with particulate filters (P-100) which are NIOSH approved (MSA GME P100 cartridges or equivalent)

ii) Polyethylene coated Tyvek® or Saranex® hooded suit (if liquids/splash hazards are present) or Tyvek® coveralls, ankles, and cuffs taped to boots and gloves

iii) nitrile over glove, as manufactured by Best or equivalent

iv) inner nitrile disposable gloves (NDEX 8005, as manufactured by Best, or equivalent)

v) safety toe work boots, ANSI approved

vi) chemical resistant neoprene or rubber boots with steel toes, or latex/PVC booties over safety toe shoes

vii) hard hat, ANSI approved

viii) hearing protection (if necessary)

ix) a high visibility safety vest (Class II)

6.1.4 Level B Protection

Level B protection is not expected to be worn but would be required if sustained airborne concentrations of suspended organic vapors are greater than 1 ppm in the presence of vinyl chloride or 50 ppm in the absence of vinyl chloride. The action level necessitating Level B protection may be revised subject to determination of the compounds triggering the Level B protection requirement.

The following equipment will be used for Level B protection:

i) Supplied air respirator (NIOSH approved). Respirators may be positive pressure-demand self-contained breathing apparatus (SCBA), or positive pressure-demand airline respirator (with 5-minute escape bottle for immediately dangerous to life and health (IDLH) situations)

ii) Polyethylene coated Tyvek® or Saranex® hooded coverall with ankles and cuffs taped to boots and gloves

iii) Nitrile over gloves, as manufactured by Best or equivalent

iv) Inner nitrile disposable gloves (NDEX 8005, as manufactured by Best, or equivalent)

v) Safety toe work boots, ANSI approved

vi) Chemical resistant neoprene or rubber boots with steel toes, or latex/PVC booties over safety toe shoes

vii) Hard hat, ANSI approved
6.1.5 Selection of PPE

Equipment for personal protection will be selected based on the potential for contact, Site conditions, ambient air quality, and the judgment of the PM, CS, SS, SHO and the RSHM. The PPE used will be chosen to be effective against the compound(s) present on the Site.

Additional specialized PPE such as flotation devices and hip waders may be required for some tasks and are identified on the JSAs found in Attachment A.

6.2 Respiratory Protection

Respiratory protection is an integral part of personnel health and safety at sites with potential airborne contamination.

6.2.1 Site Respiratory Protection Program

The Site respiratory protection program will consist of the following:

i) All project personnel who may use respiratory protection will have an assigned respirator.

ii) All project personnel who may use respiratory protection will have been fit tested and trained in the use of a full-facepiece APR within the past 12 months.

iii) All project personnel who may use respiratory protection must, within the past year, have been medically certified as being capable of wearing a respirator. Documentation of the medical certification must be provided to the SHO prior to commencement of Site work.

iv) Only cleaned, maintained, NIOSH approved respirators are to be used on this Site.

v) If respirators are used, the respirator cartridge is to be properly disposed of at the end of each work shift, prior to expected breakthrough or when breathing becomes labored (filter load-up occurs).

vi) Contact lenses may be worn with a full-face respirator.

vii) All project personnel who may use respiratory protection must be clean-shaven. Mustaches and sideburns are permitted, but they must not interfere with the sealing surface of the respirator.

viii) Respirators will be inspected and a negative pressure test performed prior to each use.

ix) After each use, the respirator will be wiped with a disinfectant cleansing wipe or washed during a formal respirator cleaning procedure. When used, the respirator will be thoroughly cleaned at the end of the work shift. The respirator will be stored in a clean plastic bag, away from direct sunlight in a clean, dry location, in a manner that will not distort the facepiece.

Respiratory protection may be required during some of the project activities. This is to ensure worker protection from potentially contaminated particulates, SVOCs, and VOCs. It is expected that Modified Level D personal protection will be worn during the majority of the project activities involving the handling of impacted materials. However, the SHO will make the determination of the acceptable level of protection based upon the results of the air-monitoring program.
A photoionization detector (PID) with a 10.6 or greater eV lamp will be used to determine if organic vapors are present. A background reading will be established prior to commencing work activities at each active work area. When VOCs are detected in the worker breathing zones, colorimetric tubes will be used to determine if benzene or vinyl chloride is present. If present, work activities will cease until a review of additional engineering controls has been completed by the Project team. The results of the air sampling will be reviewed to ensure that the proper respiratory protection procedures are being implemented.

Action levels to determine the level of respiratory protection necessary for organic vapors are based on the sustained (15-minute) concentration of Site contaminants measured within the breathing zone. The action levels and appropriate respiratory protection are referenced in Table A.2 of this document. The PID action levels have been set based on the presence of the known VOCs, which have been identified at the Site. However, if the ambient concentrations of organic vapors are due to identifiable substances, the level of respiratory protection may be altered by the SHO.

The appropriate air purifying respirator cartridges to be used at the Site are a combination organic vapor/acid gas and P-100 cartridge. The cartridge must be of the same manufacturer as the respirator face piece.

A particulate meter will also be utilized to determine airborne dust/particulate concentrations. Action levels to determine the level of respiratory protection necessary for dust levels are based on the concentration of Site contaminants that may potentially be attached to the dust that are measured within the breathing zone. The action levels and appropriate respiratory protection for particulates are included in Table A.2 of this document.

6.3 Using PPE

Depending upon the level of protection selected for this project, specific donning and doffing procedures may be required. The procedures presented in this section are mandatory if Level B or Level C PPE is used.

All personnel entering the EZ must put on the required PPE in accordance with the requirements of this plan. When leaving the EZ, PPE will be removed in accordance with the procedures listed, to minimize the spread of contamination.

6.3.1 Donning Procedures

These procedures are mandatory only if Level B or Level C PPE is used on the project:

i) Remove bulky outerwear. Remove street clothes and store in clean location.
ii) Put on work clothes or coveralls.
iii) Put on the required chemical protective coveralls.
iv) Put on the required chemical protective boots or boot covers.
v) Tape the legs of the coveralls to the boots with duct tape.
vi) Put on the required chemical protective gloves.
vii) Tape the wrists of the protective coveralls to the gloves.
viii) Don the required respirator and perform appropriate fit check.
ix) Put hood or head covering overhead and respirator straps and tape hood to facepiece.

x) Check and secure all seams.

xi) Don remaining PPE, such as hard hat.

When these procedures are instituted, one person (bottle watch/decontamination attendant) must remain outside the work area to ensure that each person entering has the proper protective equipment.

6.3.2 Doffing Procedures

The following procedures are only mandatory if Level B or C PPE is required for this project. Whenever a person leaves a Level B or C work site, the following decontamination sequence will be followed:

i) Upon entering the Contamination Reduction Zone (CRZ) rinse contaminated materials from the boots or remove contaminated boot covers

ii) Clean reusable protective equipment

iii) Remove protective garments, equipment, and respirator. All disposable clothing should be placed in a covered container, which is labeled

iv) Clean the respirator using the appropriate method as determined by the SHO

v) Wash hands, face, and neck and shower as soon as possible at the end of the day

vi) Proceed to clean area and dress in clean clothing

vii) Clean and disinfect respirator for next use

All disposable equipment garments, and PPE must be placed in covered containers and labeled for disposal. See Section 10.0 for detailed information on decontamination procedures.

6.4 Selection Matrix

The level of personal protection selected will be based upon real-time air monitoring of the work environment and an assessment by the SHO and CS and/or SS of the potential for skin contact with contaminated materials. The PPE selection matrix is given in each JSA form that is presented in Attachment A. This matrix is based upon information available at the time this plan was written.

6.5 Duration of Work Tasks

The duration of activities involving the usage of PPE will be established by the SHO based upon ambient temperature and weather conditions, the capacity of personnel to work in the designated level of PPE (heat stress, see Section 8.3) and the limitations of the protective equipment (i.e., ensemble permeation rates, life expectancy of air purifying respirator cartridges, etc.).

All rest breaks will be taken in the Support Zone (SZ) after full decontamination and PPE removal. Rest breaks will be observed based upon the heat stress monitoring guidelines presented in Section 8.3.
6.6 Limitations of Protective Clothing

PPE ensembles have been selected to provide protection against contaminants at anticipated concentrations. However, no protective garment, glove, or boot is chemical-proof, nor will it afford protection against all chemical types. Permeation of a given chemical through PPE is a complex process governed by contaminant concentrations, environmental conditions, physical condition of the protection garment, and the resistance of a garment to a specific contaminant. Chemical permeation may continue even after the source of contamination has been removed from the garment.

In order to obtain optimum usage from PPE, the following procedures are to be followed by all Site personnel using PPE:

i) When using disposable coveralls, don a clean, new garment after each rest break or at the beginning of each shift

ii) Inspect all clothing, gloves, and boots both prior to and during use for:
 a. Imperfect seams
 b. Non-uniform coatings
 c. Tears
 d. Poorly functioning closures

iii) Inspect reusable garments, boots, and gloves both prior to and during use for:
 a. Visible signs of chemical permeation
 b. Swelling
 c. Discoloration
 d. Stiffness
 e. Britteness
 f. Cracks
 g. Any sign of puncture
 h. Any sign of abrasion

Reusable gloves, boots, or coveralls exhibiting any of the characteristics listed above will be discarded. PPE used in areas known or suspected to exhibit elevated concentrations of contaminants will not be reused.

Project personnel also carry certain responsibilities for their own health and safety, and are required to observe the following safe work practices:

i) Familiarize themselves with this HASP

ii) Use the “buddy system” when working in exclusion zones

iii) Use the safety equipment in accordance with training received, labeling instructions, and common sense

iv) Maintain safety equipment in good condition and proper working order
v) Refrain from activities that would create additional hazards (e.g., smoking, eating, etc., in restricted areas, leaning against dirty, contaminated surfaces)

vi) Smoking, eating, and drinking will be prohibited except in designated areas. These designated areas may change during the duration of the project to maintain adequate separation from the active work area(s). Designation of these areas will be the responsibility of the SHO

vii) Soiled disposable outerwear shall be removed and placed into a covered container prior to washing hands and face, eating, using lavatory facilities, or leaving the Site

7. Site Control

Site control is provided by the implementation of the following measures:

i) The PM, SHO, CS and/or SS are to be advised of the dates and purpose of all field activities

ii) All visitors must sign in and sign out each time they access the Site

iii) The selected contractor will ensure that a secure fence is in place around each active work area during the project activities

7.1 Authorization to Enter

All personnel working in exclusion zones (EZs) must have completed hazardous waste operations initial training as defined under OSHA Regulation 29 CFR 1926.65. They shall also have completed their training or refresher training within the past 12 months, and have been certified by a physician as fit for hazardous waste operations in order to enter a Site area designated as an EZ or contaminant reduction zone (CRZ). Personnel without such training or medical certification may enter the designated support zone (SZ) only. The SHO will maintain a list of authorized persons; only personnel on the authorized list will be allowed within the EZ or CRZ.

7.2 Site Orientation and Hazard Briefing

No person will be allowed in the general work area during project activities without first being given a Site orientation and hazard briefing. This orientation will be presented by the SHO, and will consist of attending an initial safety meeting. This training will cover the chemical, physical, and biological hazards, protective equipment, safe work procedures, and emergency procedures for the project. A Training Acknowledgment Form for documentation purposes is presented in Attachment B. In addition to this meeting, daily safety meetings will be held each day before work begins. All individuals on Site, including visitors, must document their attendance to this briefing as well as to each daily safety meeting on the form that is also included in Attachment B.

7.3 Certification Documents

A training and medical certification file will be established for the project and kept on Site during all project activities. The 40-hour training, update, and respirator fit test certificates, as well as current medical clearance for all project field personnel will be maintained within that file. Subcontractor personnel, if needed, will provide a copy of their training, respirator fit test, and medical certification to the selected contractor’s SHO prior to the start of fieldwork.
7.4 Entry Requirements

In addition to the authorization, hazard briefing and certification requirements listed above, no person will be allowed to enter the Site unless he/she is wearing the minimum SZ PPE as described in Section 6.0. Personnel entering the EZ or CRZ must wear the required PPE for those locations as identified on each JSA form.

7.5 Emergency Entry and Exit

Individuals who must enter the Site on an emergency basis will be briefed of the hazards by the SHO. All hazardous activities will cease in the event of an emergency and any sources of emissions will be controlled, if possible.

Individuals exiting the Site because of an emergency will gather in a safe area, as determined by the SHO for a head count. The SHO is responsible for ensuring that all individuals who entered the work area have exited in the event of an emergency. See Section 11.0 of this HASP for additional information.

7.6 Contamination Control Zones

Contamination control zones are maintained to prevent the spread of contamination and to prevent unauthorized people from entering hazardous areas.

7.6.1 Exclusion Zone (EZ)

The EZ consists of the specific work area, or may be the entire area of suspected contamination. All employees entering the EZ must use the required PPE, and must have the appropriate training and medical clearance for hazardous waste work. The EZ is the defined area where there is a possible respiratory and/or contact health hazard. Barrier tape, fencing, or other appropriate means will identify the location of each EZ.

7.6.2 Contamination Reduction Zone (CRZ)

The CRZ or transition area will be established to perform decontamination of personnel and equipment and to provide a buffer zone around the EZ. All personnel entering or leaving the EZ will pass through this area to prevent any cross-contamination. Tools, equipment, and machinery will be decontaminated in the CRZ (or a separate CRZ decontamination area) that may be set up to better address equipment decontamination. The decontamination of all personnel will be performed on Site in the CRZ that is adjacent to each EZ. Personal protective outer garments and respiratory protection will be removed in the CRZ and prepared for cleaning or disposal. This zone is the only appropriate corridor between the EZ and the SZ.

7.6.3 Support Zone (SZ)

The SZ is a clean area outside of the CRZ located to prevent project personnel from exposure to hazardous substances. Eating and drinking will be permitted in the support area only after proper decontamination. Smoking will not be allowed in any portion of the SZ.
8. **Activity Hazard/Risk Analysis and General Safety Practices**

This section identifies and evaluates the potential chemical, physical, and biological hazards, which may be encountered while conducting project activities. Specific JSA forms (see Attachment A) have been developed to address the hazards associated with anticipated project activities, which are outlined in Section 1.0 of this HASP.

NOTE: If a non-routine task or previously unidentified task becomes necessary then a JSA that addresses the new task shall be developed and implemented before initiating the new activity.

In addition to the chemical hazards identified in Table A.1 of this HASP, physical and biological hazards may exist at the Site including: potential heat/cold stress; hazards presented by the use of heavy equipment; underground/overhead utility hazards; hazards presented by excavations/trenches; fall hazards; biological hazards including, poison ivy, mosquitoes, ticks, bees, wasps, snakes; uneven terrain and slippery surfaces; electrical and other hazardous energy sources, hazards presented by undertaking hot work and the use of decontamination equipment. It will be the responsibility of the SHO and all project personnel to identify the physical and/or biological hazards posed by the various project activities that they are partaking in and implement all necessary preventative measures.

8.1 General Practices

Additional general safety practices to be implemented are as follows:

i) A copy of the HASP must be at the project Site, in a location readily available to all personnel

ii) All project personnel must use the buddy system (working in pairs or teams)

iii) Food, beverages, or tobacco products must not be present or consumed in the EZ and CRZ. Cosmetics must not be applied within these zones

iv) Emergency equipment such as eyewash, fire extinguishers, etc., must be removed from storage areas and staged in readily accessible locations

v) Contaminated waste, debris, and clothing must be properly contained and legible and understandable precautionary labels must be affixed to the containers

vi) Removing contaminated soil or waste debris from protective clothing and/or equipment using compressed air, shaking, or any other means that disperses contaminants into the air is prohibited

vii) Containers must be moved only with the proper equipment, and must be secured to prevent dropping or loss of control during transport

viii) Visitors to the Site must be instructed to stay outside of the EZ and CRZ and remain within the SZ during the extent of their stay. Visitors must be cautioned to avoid skin contact with surfaces, which are contaminated or suspected to be contaminated
8.1.1 Buddy System

All project personnel shall use the buddy system. Visual contact must be maintained between project team members at all times, and personnel must observe each other for signs of chemical exposure and heat stress. Indications of adverse effects include, but are not limited to:

i) Changes in complexion and skin coloration
ii) Changes in coordination
iii) Excessive salivation and papillary response
iv) Changes in speech pattern

Team members must also be aware of potential exposure to possible safety hazards, unsafe acts, or noncompliance with safety procedures. Personnel shall inform their partners, fellow team members, SHO, CS and/or the SS of non-visible effects of exposure to toxic materials. The symptoms of such exposure may include:

i) Headaches
ii) Dizziness
iii) Nausea
iv) Blurred vision
v) Cramps
vi) Irritation of eyes, skin, or respiratory tract

If protective equipment or noise levels impair communications, pre-arranged hand signals must be used for communication. Personnel must stay within line of sight of another team member. Downrange field teams in conjunction with the "buddy" system will use the following hand signals. These signals are very important when working with heavy equipment. The entire field team shall know them before operations commence.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand gripping throat</td>
<td>Out of air; Can't breathe</td>
</tr>
<tr>
<td>Grip partner’s wrist</td>
<td>Leave area immediately</td>
</tr>
<tr>
<td>Hands on top of head</td>
<td>Need assistance</td>
</tr>
<tr>
<td>Thumbs up</td>
<td>OK; I'm all right; I understand</td>
</tr>
<tr>
<td>Thumbs down</td>
<td>No; Negative</td>
</tr>
</tbody>
</table>

8.1.2 Sanitation

Sanitation at the Site will be maintained according to OSHA and Department of Health requirements.

8.1.3 Break Area

Breaks must be taken in the SZ, away from the active work area after project personnel go through decontamination procedures. There will be no eating, drinking, or chewing gum in any area other than the SZ.
8.1.4 Potable Water

The following rules apply for all project field operations:

i) An adequate supply of potable water will be provided in each CRZ. Potable water must be kept away from hazardous materials, contaminated clothing, and contaminated equipment.

ii) Portable containers used to dispense drinking water must be capable of being tightly closed, and must be equipped with a tap dispenser. Water must not be drunk directly from the container, nor dipped from the container.

iii) Containers used for drinking water must be clearly marked and not used for any other purpose.

iv) Disposable cups must be supplied, and both a sanitary container for unused cups and a receptacle for disposing of used cups must be provided.

8.1.5 Washing Facilities

Access to facilities for washing one’s hands, face and neck before eating, drinking, or smoking will be provided.

8.1.6 Lavatory

If permanent toilet facilities are not available, an adequate number of portable chemical toilets will be provided.

8.1.7 Trash Collection

Trash collected from the CRZ will be separated as potentially contaminated waste. Trash collected in the support and break areas will be disposed of as non-hazardous waste. Trash receptacles will be set up in the CRZ and in the SZ.

8.2 Chemical Exposure

Preventing exposure to toxic chemicals is a primary concern. Chemical substances can enter the unprotected body by inhalation, skin absorption, ingestion, or through a puncture wound (injection). A contaminant can cause damage at the point of contact or can act systematically, causing a toxic effect at a part of the body distant from the point of initial contact. The Site chemical contaminants of concern and their properties are identified in Table A.1.

Chemical exposures are generally divided into two categories: acute and chronic. Symptoms resulting from acute exposures usually occur during or shortly after exposure to a sufficiently high concentration of a contaminant. The concentration required to produce such effects varies widely from chemical to chemical. The term “chronic exposure” generally refers to exposures to “low” concentrations of a contaminant over a long period of time. The “low” concentrations required to produce symptoms of chronic exposure depend upon the chemical, the duration of each exposure, and the number of exposures. For a given contaminant, the symptoms of an acute exposure may be completely different from those resulting from chronic exposure.

For either chronic or acute exposure, the toxic effect may be temporary and reversible, or may be permanent (disability or death). Some chemicals may cause obvious symptoms such as burning, coughing, nausea, tearing eyes, or rashes. Other chemicals may cause health damage without any
such warning signs (this is a particular concern for chronic exposures to low concentrations). Health effects such as cancer or respiratory disease may not become evident for several years or decades after exposure. In addition, some toxic chemicals may be colorless and/or odorless, may dull the sense of smell, or may not produce any immediate or obvious physiological sensations. Thus, a worker's senses or feelings cannot be relied upon in all cases to warn of potential toxic exposure.

The effects of exposure not only depend on the chemical, its concentration, route of entry, and duration of exposure, but may also be influenced by personal factors such as the individual's smoking habits, alcohol consumption, medication use, nutrition, age, and sex.

An important exposure route of concern at the Site is inhalation. The lungs are extremely vulnerable to chemical agents. Even substances that do not directly affect the lungs may pass through lung tissue into the bloodstream, where they are transported to other vulnerable areas of the body. Some toxic chemicals present in the atmosphere may not be detected by human senses (e.g., they may be colorless, odorless, and their toxic effects may not produce any immediate symptoms). Respiratory protection is therefore extremely important if there is a possibility that the work site atmosphere may contain such hazardous substances. Chemicals can also enter the respiratory tract through punctured eardrums. Where this is a hazard, individuals with punctured eardrums should be medically evaluated specifically to determine if such a condition would place them at an unacceptable risk and preclude their working at the task in question.

Direct contact of the skin and eyes by hazardous substances is another important route of exposure. Some chemicals directly injure the skin. Some pass through the skin into the bloodstream where they are transported to vulnerable organs. Abrasions, cuts, heat, and moisture enhance skin absorption. The eye is particularly vulnerable because airborne chemicals can dissolve in its moist surface and be carried to the rest of the body through the bloodstream (capillaries are very close to the surface of the eye). Wearing protective equipment, not using contact lenses in contaminated atmospheres (since they may trap chemicals against the eye surface), keeping hands away from the face, and minimizing contact with liquid and solid chemicals can help protect against skin and eye contact.

Although ingestion should be the least significant route of exposure at the Site, it is important to be aware of how this type of exposure can occur. Deliberate ingestion of chemicals is unlikely; however, personal habits such as chewing gum or tobacco, drinking, eating, smoking cigarettes, and applying cosmetics at the Site may provide a route of entry for chemicals.

The last primary route of chemical exposure is injection, whereby chemicals are introduced into the body through puncture wounds (e.g., by stepping or tripping and falling onto contaminated sharp objects). Wearing safety shoes, avoiding physical hazards, and taking common sense precautions are important protective measures against injection.

Chemical Hazard Controls

Airborne exposure or contact with the contaminants of concern at the Site shall be controlled by:

1) Skin contact with chemicals may be controlled by use of the proper PPE and good housekeeping procedures. The proper PPE (e.g., polycracked Tyvek®, gloves) as described in Section 6.0 of this HASP shall be worn for all activities where contact with potentially harmful media or materials is anticipated.
ii) Monitoring air concentrations for volatile organic chemicals and particulates shall be conducted in the breathing zone with a PID with an 11.7 eV lamp or greater and a particulate monitor, as discussed in Section 9.0.

iii) Contact the CSHM for additional information regarding a particular product's or activity's exposure hazards.

iv) Using respiratory protection as appropriate, in areas known to have concentrations above the specified action level.

Hazard Communication

Personnel required to handle or to use hazardous materials as part of their job duties will be trained and educated in accordance with the Hazard Communication Standard. The training shall include instruction on the safe usage, and handling procedures of hazardous materials, how to read and access Material Safety Data Sheets (MSDSs), and the proper labeling requirements.

The MSDSs for those chemicals in use at the Site will be available to project personnel. The SHO will be responsible for maintaining a copy of all MSDSs on Site.

8.3 Heat Stress

Heat stress is caused by a number of interacting factors including environmental conditions, clothing, workload, etc., as well as the physical and conditioning characteristics of the individual. Since heat stress is one of the most common illnesses associated with heavy outdoor work conducted with direct solar load, and in particular, because wearing PPE can increase the risk of developing heat stress, workers must be capable of recognizing the signs and symptoms of heat-related illnesses. Personnel must be aware of the types and causes of heat-related illnesses and be able to recognize the signs and symptoms of these illnesses in both themselves and their co-workers.

Heat Rashes

Heat Rashes are one of the most common problems in hot work environments. Commonly known as prickly heat, a heat rash is manifested as red papules and usually appears in areas where the clothing is restrictive. As sweating increases, these papules give rise to a prickling sensation. Prickly heat occurs in skin that is persistently wetted by unevaporated sweat, and heat rash papules may become infected if they are not treated. In most cases, heat rashes will disappear when the affected individual returns to a cool environment.

Heat Cramps

Heat Cramps are usually caused by performing hard physical labor in a hot environment. These cramps have been attributed to an electrolyte imbalance caused by sweating. It is important to understand that cramps can be caused both by too much and too little salt.

Cramps appear to be caused by the lack of water replenishment. Because sweat is a hypotonic solution (plus or minus 0.3 percent NaCl), excess salt can build up in the body if the water lost through sweating is not replaced. Thirst cannot be relied on as a guide to the need for water; instead, water must be taken every 15 to 20 minutes in hot environments.
Under extreme conditions, such as working for six to eight hours in heavy protective gear, a loss of sodium may occur. Drinking commercially available carbohydrate-electrolyte replacement liquids is effective in minimizing physiological disturbances during recovery.

Heat Exhaustion

Heat Exhaustion occurs from increased stress on various body organs due to inadequate blood circulation, cardiovascular insufficiency, or dehydration. Signs and symptoms include pale, cool, moist skin, heavy sweating, dizziness, nausea, headache, vertigo, weakness, thirst, and giddiness. Fortunately, this condition responds readily to prompt treatment.

Heat exhaustion should not be dismissed lightly, however, for several reasons. One is that the fainting associated with heat exhaustion can be dangerous because the victim may be operating machinery or controlling an operation that should not be left unattended; moreover, the victim may be injured when he or she faints. Also, the signs and symptoms seen in heat exhaustion are similar to those of heat stroke, which is a medical emergency.

Workers suffering from heat exhaustion should be removed from the hot environment, be given fluid replacement, and be encouraged to get adequate rest.

Heat Stroke

Heat Stroke is the most serious form of heat stress. Heat stroke occurs when the body’s system of temperature regulation fails and the body’s temperature rises to critical levels. This condition is caused by a combination of highly variable factors, and its occurrence is difficult to predict.

Heat stroke is a medical emergency. The primary signs and symptoms of heat stroke are confusion, irrational behavior, loss of consciousness, convulsions, a lack of sweating (usually), hot, dry skin, and an abnormally high body temperature, e.g., a rectal temperature of 41°C (105.8°F). If body temperature is too high, it causes death. The elevated metabolic temperatures caused by a combination of workload and environmental heat load, both of which contribute to heat stroke, are also highly variable and difficult to predict.

If a worker shows signs of possible heat stroke, professional medical treatment should be obtained immediately. The worker should be placed in a shady area and the outer clothing should be removed. The worker’s skin should be wetted and air movement around the worker should be increased to improve evaporative cooling until professional methods of cooling are initiated and the seriousness of the condition can be assessed. Fluids should be replaced as soon as possible. The medical outcome of an episode of heat stroke depends on the victim’s physical fitness and the timing and effectiveness of first aid treatment.

Regardless of the worker’s protestations, no employee suspected of being ill from heat stroke should be sent home or left unattended unless a physician has specifically approved such an order.

Proper training and preventive measures will help avert serious illness and loss of work productivity. Preventing heat stress is particularly important because once someone suffers from heat stroke or exhaustion, that person may be predisposed to additional heat injuries.
Heat Stress Safety Precautions

Heat stress monitoring and work rest cycle implementation should commence when the ambient adjusted temperature exceeds 72°F. A minimum work rest regimen and procedures for calculating ambient adjusted temperature are described below.

<table>
<thead>
<tr>
<th>Adjusted Temperature<sup>(1)</sup></th>
<th>Work-Rest Regimen Normal work Ensemble<sup>(2)</sup></th>
<th>Work-Rest Regimen Impermeable Ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°F (32.2°C) or above</td>
<td>After each 45 minutes of work</td>
<td>After each 15 minutes of work</td>
</tr>
<tr>
<td>87.5° to 90°F (30.8°C to 32.2°C)</td>
<td>After each 60 minutes of work</td>
<td>After each 30 minutes of work</td>
</tr>
<tr>
<td>82.5° to 87.5°F (28.1°C to 30.8°C)</td>
<td>After each 90 minutes of work</td>
<td>After each 60 minutes of work</td>
</tr>
<tr>
<td>77.5° to 82.5°F (25.3°C to 28.1°C)</td>
<td>After each 120 minutes of work</td>
<td>After each 90 minutes of work</td>
</tr>
<tr>
<td>72.5° to 77.5°F (30.8°C to 32.2°C)</td>
<td>After each 150 minutes of work</td>
<td>After each 120 minutes of work</td>
</tr>
</tbody>
</table>

Notes:

⁽¹⁾ Calculate the adjusted air temperature (ta adj) by using this equation:

\[ta_{adj}°F = ta°F + (13 \times \text{percent sunshine}) \]

Measure air temperature (ta) with a standard thermometer, with the bulk shielded from radiant heat. Estimate percent sunshine by judging what percent time the sun is not covered by clouds that are thick enough to produce a shadow (100 percent sunshine = no cloud cover and a sharp, distinct shadow; 0 percent sunshine = no shadows).

⁽²⁾ A normal work ensemble consists of cotton coveralls or other cotton clothing with long sleeves and pants.

In order to determine if the work rest cycles are adequate for the personnel and specific Site conditions, additional monitoring of individual heart rates will be conducted during the rest cycle. To check the heart rate, count the radial pulse for 30 seconds at the beginning of the rest period. If the heart rate exceeds 110 beats per minute, shorten the next work period by one-third and maintain the same rest period.

Additionally, one or more of the following control measures can be used to help control heat stress and are mandatory if any Site worker has a heart rate (measure immediately prior to rest period) exceeding 115 beats per minute:

i) Project personnel will be encouraged to drink plenty of water and electrolyte replacement fluids throughout the day.

ii) On-Site drinking water will be kept cool (50 to 60°F).

iii) A work regimen that will provide adequate rest periods for cooling down will be established, as required.

iv) All personnel will be advised of the dangers and symptoms of heat stroke, heat exhaustion, and heat cramps.

v) Cooling devices such as vortex tubes or cooling vests should be used when personnel must wear impermeable clothing in conditions of extreme heat.
vi) Project personnel shall be instructed to monitor themselves and co-workers for signs of heat stress and to take additional breaks as necessary.

vii) A shaded rest area must be provided. All breaks should take place in the shaded rest area.

viii) Project personnel must not be assigned to other tasks during breaks.

ix) Project personnel must remove impermeable garments during rest periods. This includes Tyvek® garments.

x) All project personnel must be informed of the importance of adequate rest, acclimation (usually takes about 2 hours/day for 1-2 weeks to become acclimated), and proper diet in the prevention of heat stress disorders.

8.4 Sun Exposure

Overexposure to sunlight is a common concern when field activities occur during warm weather conditions. Overexposure can occur on clear, sunny days as well as on overcast and cloudy days. Ultraviolet (UV) rays from the sun can cause skin damage or sunburn, but can also result in vision problems, allergic reactions, and other skin concerns. Two types of UV rays are emitted from the sun: UVA and UVB rays.

UVB rays cause sunburn, skin cancer, and premature aging of the skin. UVB rays stimulate tanning but are also linked to other problems such as impaired vision, skin rashes, and some allergic and other reactions to certain drugs. Extra care should be taken if activities are to be conducted on or near water. Sunlight reflected off the surface of the water is intensified resulting in accelerated effects. The following steps should be taken to protect against overexposure to sunlight:

i) Always use sunscreen: Apply a broad-spectrum sunscreen with Sun Protection Factor (SPF) of at least 15 or higher liberally on exposed skin. Reapply every 2 hours or more. Even waterproof sunscreen can come off when you towel off or sweat.

ii) Cover up: Wearing tightly woven, loose-fitting, and full-length clothing is a good way to protect your skin from UV rays.

iii) Wear a hat: A hat with a wide brim offers good sun protection to your eyes, ears, face, and the back of your neck – areas particularly prone to overexposure to the sun.

iv) Wear sunglasses that block 99 to 100 percent of UV radiation: Sunglasses that provide 99 to 100 percent UVA and UVB protection will greatly reduce sun exposure that can lead to cataracts and other eye damage. Check the label when buying sunglasses.

v) Seek shade: Shade is a good source of protection, but keep in mind that shade structures (e.g., trees, umbrellas, canopies) do not offer complete sun protection.

vi) Limit time in the midday sun: The sun’s rays are strongest between 10 a.m. and 4 p.m. Whenever possible, limit exposure to the sun during these hours.

8.5 Cold Stress

Cold stress is similar to heat stress in that it is caused by a number of interacting factors including environmental conditions, clothing, workload, etc., as well as the physical and conditioning
characteristics of the individual. Fatal exposures to cold have been reported in individuals failing to escape from low environmental air temperatures or from immersion in low temperature water. Hypothermia, a condition in which the body’s deep core temperature falls significantly below 98.6°F (37°C), can be life threatening. A drop in core temperature to 95°F (35°C) or lower must be prevented.

Air temperature is not sufficient to determine the cold hazard of the work environment. The wind chill must be considered as it contributes to the effective temperature and insulating capabilities of clothing. The equivalent chill temperature should be used when estimating the combined cooling effect of wind and low air temperatures on exposed skin or when determining clothing insulation requirements to maintain the body’s core temperature.

The body’s physiologic defense against cold includes constriction of the blood vessels, inhibition of the sweat glands to prevent loss of heat via evaporation, glucose production, and involuntary shivering to produce heat by rapid muscle contraction.

The frequency of accidents increases with cold temperature exposures as the body’s nerve impulses slow down, individuals react sluggishly, and numb extremities make for increased clumsiness. Additional safety hazards include ice, snow blindness, reflections from snow, and possible skin burns from contact with cold metal.

Pain in the extremities may be the first early warning of danger to cold stress. During exposure to cold, maximum severe shivering develops when the body temperature has fallen to 95°F (35°C). This must be taken as a sign of danger to the individuals on site, and cold exposures should be immediately terminated for any individual when severe shivering becomes evident. Useful physical or mental work is limited when severe shivering occurs.

Predisposing Factors for Cold Stress

There are certain predisposing factors that make an individual more susceptible to cold stress. It is the responsibility of the project team members to inform the SHO/SS to monitor an individual, if necessary, or use other means of preventing/reducing the individual’s likelihood of experiencing a cold related illness or disorder.

Predisposing factors that will increase an individual’s susceptibility to cold stress are listed below:

- **Dehydration:** The use of diuretics and/or alcohol, or diarrhea can cause dehydration. Dehydration reduces blood circulation to the extremities.

- **Fatigue during Physical Activity:** Exhaustion reduces the body’s ability to constrict blood vessels. This results in the blood circulation occurring closer to the surface of the skin and the rapid loss of body heat.

- **Age:** Some older and very young individuals may have an impaired ability to sense cold.

- **Poor Circulation:** Vasoconstriction of peripheral vessels reduces blood flow to the skin surface.

- **Heavy Work Load:** Heavy workloads generate metabolic heat and make an individual perspire even in extremely cold environments. If perspiration is absorbed by the individual’s clothing and is in contact with the skin, cooling of the body will occur.

- **The Use of PPE:** PPE usage that traps sweat inside the PPE may increase an individual’s susceptibility to cold stress.
• Lack of Acclimatization: Acclimatization, the gradual introduction of workers into a cold environment, allows the body to physiologically adjust to cold working conditions.

• History of Cold Injury: Previous injury from cold exposures may result in increased cold sensitivity.

Prevention of Cold Stress

There are a variety of measures that can be implemented to prevent or reduce the likelihood of individuals developing cold related ailments and disorders. These include acclimatization, fluid and electrolyte replenishment, eating a well-balanced diet, wearing warm clothing, the provision of shelter from the cold, thermal insulation of metal surfaces, adjusting work schedules, and personnel education.

• Acclimatization: Acclimatization is the gradual introduction of workers into the cold environment to allow their bodies to physiologically adjust to cold working conditions. However, the physiological changes are usually minor and require repeated uncomfortably cold exposures to induce them.

• Fluid and Electrolyte Replenishment: Cold, dry air can cause individuals to lose significant amounts of water through the skin and lungs. Dehydration affects the flow of blood to the extremities and increases the risk of cold injury. Warm, sweet, caffeine-free, non-alcoholic drinks and soup are good sources to replenish body fluids.

• Eating a Well Balanced Diet: Restricted diets including low salt diets can deprive the body of elements needed to withstand cold stress. Eat high-energy foods throughout the day.

• Warm Clothing: It is beneficial to maintain air space between the body and outer layers of clothing in order to retain body heat. However, the insulating effect provided by such air spaces is lost when the skin or clothing is wet.

• Work/Rest Regimes: Schedule work during the warmest part of the day, if possible. Rotate personnel and adjust the work/rest schedule to enable individuals to recover from the effects of cold stress.

The parts of the body most important to keep warm are the feet, hands, head, and face. As much as 40 percent of body heat can be lost when the head is exposed.

8.6 Earthwork - Excavation and Trenching

Project activities (test trenching) will involve excavation work. Prior to initiating excavation activities, the CS is responsible for making sure that the following conditions are in place:

i) Ensure that all above and underground utilities have been properly located prior to initiating work activities.

ii) Ensure that the Safety Inspection Checklist for Excavations has been completed prior to allowing project personnel to enter any excavation.

iii) Ensure that the proper fencing materials are available to secure each active work area.

The selected contractor’s competent person shall observe all excavation and trenching operations where project personnel will enter. The competent person shall be responsible for evaluating.
classifying and inspecting excavation and trenching operations to prevent possible cave-in and entrapment, and to avoid other hazards presented by excavation activities.

It is the responsibility of the CS and SHO to implement the following components of the selected contractor’s Excavation and Trenching Safety Program as they relate to project activities:

i) Ensure that all excavations are completed in accordance with the approved Excavation and Trenching Safety Program.

ii) Ensure that the proper protective materials and equipment are available and being used to complete the excavation and/or trenching procedures.

iii) Ensure that the necessary inspections of the excavation are completed as required.

Personnel who are required to enter or work in excavations greater than 5 feet in depth must be protected from the hazards of cave-ins. This requires the use of sloping and/or shoring systems that comply with State and Federal OSHA standards. Excavation and trenching operations require pre-planning to develop appropriate designs for such systems. The selected contractor will make the appropriate plans.

The estimated location of all underground installations shall be determined before digging begins. If there are any nearby buildings, walls, sidewalks, trees, or roads that may be threatened or undermined by the excavation, where the stability of any of these items may be endangered by the excavation, they must be removed or supported by adequate shoring, bracing, or underpinning.

Excavations may not go below the base of footings, foundations, or retaining walls, unless they are adequately supported or a person who is registered as a PE has determined that they will not be affected by the soil removal. OSHA recommends using civil engineers or those with licenses in a related discipline and experience in the design and use of sloping and shoring systems. PE qualifications shall be documented in writing and available at the Site.

The selected contractor’s Excavation and Trenching Safety Program and the OSHA Excavation Standard (29 CFR 1926 Subpart P) will be followed during all excavation activities and provide detailed information regarding such activities.

Access and Egress

Personnel access and egress from trench and/or excavations are as follows:

i) A stairway, ladder, ramp, or other means of egress must be provided in excavations greater than four feet deep and for every 25 feet of lateral travel.

ii) All ladders shall extend three feet above the top of the excavation.

Atmosphere Monitoring and Testing

Air quality is measured by the following three parameters:

i) Oxygen concentration

ii) Flammability

iii) Organic vapors
There is a potential for hazardous atmospheres to exist in each proposed excavation. As such, project personnel will not be allowed to be exposed to any hazardous atmosphere. Whenever potentially hazardous atmospheres are suspected in excavations, the competent person shall test the atmosphere. A gas monitor capable of measuring the oxygen level, lower explosive limit (LEL) and toxicity will be used to take readings prior to and while workers are in any excavation. A hazardous atmosphere is defined as one that could contain less than 19.5 percent of oxygen, concentrations of hazardous substances greater than their permissible exposure level (PEL) including carbon monoxide and a LEL reading greater than ten percent. A forced air ventilator will first be used to pump fresh air into the excavation and to push out (purge) any potentially contaminated air.

In the event that an unusual odor or liquid is suspected in excavations, the competent person shall stop work and arrange for air quality assessment and mitigation, if necessary.

Daily Inspections

The competent person shall perform daily inspections of excavations, the adjacent areas, and all protective systems for situations that could potentially result in slope failure.

The competent person shall inspect, evaluate, and document (a form is provided in Attachment B) the inspection of the excavation on an Excavation Inspection Checklist at the following intervals:

i) Prior to the start of work, after each extended halt in work, and as needed throughout the shift as new sections of the excavation is opened.

ii) After every rainstorm and other natural or man-made event that may increase the load on the walls of the excavation, or otherwise affect their stability.

The competent person shall stop the work and instruct all project personnel to leave the excavation when any potential hazards are detected. The competent person has the authority to immediately suspend work if any unsafe condition is detected.

8.7 Heavy Equipment Safety

Personnel operating heavy equipment (such as drill rigs or backhoes) and personnel working in the vicinity of heavy equipment shall adhere to the following practices:

i) Heavy equipment is to be inspected when equipment is initially mobilized/delivered to a job site or after it is repaired and returned to service to ensure that it meets all manufacturer and OSHA specifications.

ii) Heavy equipment is to be inspected on a daily basis. Documentation of this daily pre-operational inspection is to be filed with the project files.

iii) Heavy equipment is only to be operated by authorized, competent operators.

iv) Seat belts are to be provided on heavy equipment that is not designed for stand up operation.

v) Equipment/vehicles whose payload is loaded by a crane, excavator, loader, etc. will have a cab shield and/or canopy to protect the operator.

vi) Personnel will not be raised/lowered in buckets.

vii) Personnel will not ride on fender steps or any place outside the cab.
viii) Before leaving the equipment controls, ensure that the equipment is in its safe resting position. For a backhoe, apply the parking brake, put the front loader bucket down on ground level, and ensure that the rear excavator bucket is locked in the travel position. Bulldozers and scraper blades, loader buckets, dump bodies, and similar equipment will be fully lowered or blocked when not in use.

ix) Before raising any booms, buckets, etc., check for overhead obstructions.

x) Project personnel involved in the operation shall not wear any loose-fitting clothing, which has the potential to be caught in moving machinery.

xi) Personnel shall wear high visibility safety vests, steel-toed shoes, safety glasses, hearing protection, and hard hats during heavy equipment operations.

xii) When moving heavy equipment or when working in tight quarters, a spotter will be used.

Overhead Electrical Clearances

If excavation work is conducted in the vicinity of overhead power lines, the power to the lines must be shut off or the equipment must be positioned and blocked such that no part, including cables, can come within the minimum clearances as follows:

<table>
<thead>
<tr>
<th>Nominal System Voltage</th>
<th>Minimum Required Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 50 kV</td>
<td>10 Feet</td>
</tr>
<tr>
<td>51 to 100 kV</td>
<td>12 Feet</td>
</tr>
<tr>
<td>101 to 200 kV</td>
<td>15 Feet</td>
</tr>
<tr>
<td>201 to 300 kV</td>
<td>20 Feet</td>
</tr>
<tr>
<td>301 to 500 kV</td>
<td>25 Feet</td>
</tr>
<tr>
<td>501 to 750 kV</td>
<td>35 Feet</td>
</tr>
<tr>
<td>751 to 1,000 kV</td>
<td>45 Feet</td>
</tr>
</tbody>
</table>

8.8 Noise

Exposure to noise over the OSHA action level can cause temporary impairment of hearing; prolonged and repeated exposure can cause permanent damage to hearing. The risk and severity of hearing loss increase with the intensity and duration of exposure to noise. In addition to damaging hearing, noise can impair voice communication, thereby increasing the risk of accidents on Site. The selected contractor’s Hearing Conservation Program will be implemented for affected project personnel.

Control

All personnel must wear hearing protection with a Noise Reduction Rating (NRR) of at least 20 when noise levels exceed 85 dBA. When it is difficult to hear a co-worker at normal conversation distance, the noise level is approaching or exceeding 85 dBA, and hearing protection is necessary. All Site personnel who may be exposed to noise must also receive baseline and annual audiograms and training as to the causes and prevention of hearing loss.

Whenever possible, equipment that does not generate excessive noise levels will be selected for this project. If the use of noisy equipment is unavoidable, barriers or increased distance will be used to minimize worker exposure to noise, if feasible.
8.9 Manual Lifting

When lifting objects, use the following proper lifting techniques:

i) Feet must be parted, with one foot alongside the object being lifted and one foot behind. When the feet are comfortably spread, a more stable lift can occur and the rear foot is in a better position for the upward thrust of the lift.

ii) Do not lift more than 50 pounds without the assistance of another individual.

iii) Use the squat position and keep the back straight - but remember that straight does not mean vertical. A straight back keeps the spine, back muscles, and organs of the body in correct alignment. It minimizes the compression of the guts that can cause a hernia.

iv) Grip is one of the most important elements of correct lifting. The fingers and the hand are extended around the object you’re going to lift - using the full palm. Fingers have very little power - use the strength of your entire hand.

v) The load must be drawn close, and the arms and elbows must be tucked into the side of the body. Holding the arms away from the body increases the strain on the arms and elbows. Keeping the arms tucked in helps keep the body weight centered.

vi) The body must be positioned so that the weight of the body is centered over the feet. This provides a more powerful line of thrust and also ensures better balance. Start the lift with a thrust of the rear foot. Do not twist your back while lifting or moving heavy objects.

8.10 Hand and Power Tools

Hand Tools Requirements:

i) Hand tools must meet the manufacturer’s safety standards.

ii) Hand tools must not be altered in any way.

iii) At a minimum, eye protection must be used when working with hand tools.

iv) Wrenches (including adjustable, pipe, end, and socket wrenches) must not be used when jaws are sprung to the point that slippage occurs.

v) Impact tools (such as drift pins, wedges, and chisels) must be kept free of mushroom heads.

vi) Wooden handles must be free of splinters or cracks and secured tightly to the tool.

Power Tools Requirements:

i) All power tools must be inspected regularly and used in accordance with the manufacturer’s instructions and the tool’s capabilities.

ii) Electric tools must not be used in areas subject to fire or explosion hazards, unless they are approved for that purpose.

iii) Portable electric tools must be connected to a Ground Fault Circuit Interrupter (GFCI) when working in wet areas.

iv) Proper eye protection must be used when working with power tools.

v) Personnel must be trained in the proper use of each specific tool.
vi) Any damaged or defective power tools must be immediately tagged and removed from service.

8.11 Adverse Weather Conditions

The SHO, CS and/or SS shall decide on the continuation or discontinuation of work based on current and pending weather conditions. Electrical storms, tornado warnings, and strong winds (approximately 40 mph) are examples of conditions that would call for the discontinuation of work and evacuation of site. Strong winds can generate hazardous conditions during the handling of materials.

In addition, no work with elevated super structures (e.g., operation of excavators etc.) will be permitted during any type of electrical storm or during wind events that have wind speeds exceeding 25 mph.

8.12 Working Near Water

Sediment sampling activities are to be performed while wading in the shallow water approximately 10 to 15 feet off the bank of the Niagara River, as well as in on-site ditches and ponds. All sediment sampling and sediment excavation activities shall be in compliance with OSHA 29 CRF 1926-106. The following safety guidelines shall be adhered to while conducting sediment sampling within the River:

- All personnel working on or near the bank of the River should be equipped with an approved personal flotation device.
- Prior to and after each use, the personal flotation device shall be inspected for defects which would alter their strength or buoyancy.
- Ring buoys with a minimum 90 feet of line must be readily available for emergency operations. The distance between buoys cannot exceed 200 feet.
- Due to the anticipated scope of work, a lifesaving skiff may be necessary. However, the SS in conjunction with the RSHM will evaluate current site conditions to determine if a skiff is required.
- Sediment sampling activities are only to be conducted in the presence of at least three GHD personnel, to include at a minimum a two-person sampling team and one on-shore attendant.
- Personnel entering the water should be equipped with a harness and lifeline that is tied to an appropriate structure on land.
- Personnel shall not enter the water in the spring while ice flows from Lake Erie are present. Much of the ice is not visible as flows below the surface of the River.
- Personnel shall not wade into the river further than waist deep. If sample locations or water conditions require entry into deeper water, sampling shall be deferred until conditions allow for safe entry or until a boat can be procured to safely access sampling locations.

8.13 Biological Hazards

Biological hazards may include poison ivy, snakes, thorny bushes, ticks, mosquitoes, and other pests.
8.13.1 Vegetation Overgrowth

Overgrown weeds, bushes, trees, grass and other vegetation are fire and safety hazards. There are a number of hidden hazards not immediately recognized due to the overgrowth of vegetation in areas where field activities may occur, including discarded junk, litter, and debris. Construction materials such as boards, nails, concrete, and other debris may be hidden beneath blades of tall grass, weeds, and bushes. Other hazards may include steep slopes, potholes, trenches, soft spots, dips, etc.; all dangerously concealed from the view of the individual walking or operating motorized equipment in the area. Additionally, there are biological hazards such as snakes, ticks, chiggers, and mosquitoes that breed in overgrowth conditions.

Here are some simple actions you can take:

i) Assess the work area and determine if the area requires vegetation clearance. Consider that overgrowth that extends above the lowest level of motorized equipment (i.e., bumper or fender) or 6 inches above your ankle has hidden hazards that you will not be able to readily identify.

ii) Determine if the area is safe to walk or whether you need motorized equipment. Consider the limitations of the equipment.

iii) Identify slip, trip, and fall hazards and remove from the general work area. Remember to give adequate clearance so that the items being removed do not pose future hazards.

iv) Adequately protect yourself against the hazards by wearing boots that protect the ankles, long pants, and using insecticides.

v) Consider the limitations of manual or mechanical equipment for the clearance of overgrowth, particularly the safety hazards when using sling blades, machetes, weed eaters, bush hogs, or other brush removing equipment.

Before taking any action, determine whether there any ecological issues that would affect or prevent the removal of overgrowth in protected areas such as wetlands, wildlife habitats, or sanctuaries for endangered and/or protected species.

8.13.2 Tick-Borne Diseases

Lyme Disease, Erlichiosis, and Rocky Mountain Spotted Fever (RMSF) are diseases transmitted by ticks and occur throughout the United States during spring, summer, and fall.

Lyme Disease: The disease commonly occurs in summer and is transmitted by the bite of infected ticks. "Hot spots" in the United States include New York, New Jersey, Pennsylvania, Massachusetts, Connecticut, Rhode Island, Minnesota, and Wisconsin. Few cases have been identified in other states.

Erlichiosis: The disease also commonly occurs in summer and is transmitted by the bite of infected ticks. "Hot spots" in the United States include New York, Massachusetts, Connecticut, Rhode Island, Minnesota, and Wisconsin. Few cases have been identified in other states.

Primarily the Deer Tick transmits these diseases, which is smaller and redder than the common Wood Tick. The disease may be transmitted by immature ticks, which are small and hard to see. The tick may be as small as a period on this page.
Symptoms of Lyme disease include a rash or a peculiar red spot, like a bull’s eye, which expands outward in a circular manner. The victim may have headache, weakness, fever, a stiff neck, swelling and pain in the joints, and eventually, arthritis. Symptoms of Ehrlichiosis include muscle and joint aches, flu-like symptoms, but there is typically no skin rash.

Control

Tick repellent containing diethyltoluamide (DEET) should be used in tick-infested areas, and pants legs should be tucked into boots. In addition, workers should search the entire body every three or four hours for attached ticks. Ticks should be removed promptly and carefully without crushing, since crushing can squeeze the disease-causing organism into the skin. A gentle and steady pulling action should be used to avoid leaving the head or mouth parts in the skin. Hands should be protected with surgical gloves when removing ticks.

8.13.3 Poisonous Plants

Common Poison Ivy (Rhus radicans) grows as a small plant, a vine, and a shrub. Poison Ivy occurs in every state. The leaves always consist of three glossy leaflets. Poison Sumac (Rhus vernix) grows as a woody shrub or small tree 5 to 25 feet tall. It usually contains nine leaves, with eight paired leaves and one on top, and is common in swampy areas. The plants are potent sensitizers and can cause a mild to severe allergic reaction. This reaction is called contact dermatitis.

Dermatitis, in Rhus-sensitive persons, can result from contact with the milky sap found in the roots, stems, leaves, and fruit. The sap may retain its potency for months or years in a dry atmosphere, and can occur during any time of the year. The sap may also be carried by animals, equipment or apparel.

The best form of prevention is to avoid contact. This can occur by wearing long sleeves and gloves if necessary. Disposable clothing, such as Tyvek, is recommended in high-risk areas to avoid exposure from contaminated apparel. Barrier creams and cleaners are also recommended.

8.13.4 Insects

Construction work presents many opportunities to be exposed to a variety of insects. Many of these insects may present health and safety hazards. Wasps, bees, spiders, and mosquitoes present the bulk of these hazards.

Bees and wasps present problems to people working outdoors due to being stung and having adverse reactions to the venom injected during the sting. Mosquitoes on the other hand cause hazards by transmitting disease(s) from other infected animals and humans.

It is important to recognize the venomous spiders (spiders dangerous to humans) that are present in your work environment. Inspect boots, clothing and other areas before using/entering, as spiders tend to hide in dark places. Many spiders are nocturnal.

Preventing Exposure

Preventing exposure to insects can be accomplished by the following:

i) Wearing proper clothing and PPE

ii) Inspecting work areas for wasp or bee nests prior to conducting work activities
iii) Awareness of regional insects and their behavioral habits

iv) Shaking out clothing and shoes and inspecting areas for spiders

v) Using repellants

Proper Clothing

While working outdoors it is important to wear proper clothing and PPE. Insects tend to be attracted to bright colors, floral, prints, black, white, green, tan and khaki colors. Also it is important to wear long pants and if possible a long-sleeved shirt. Personnel should tuck the pant bottoms into the tops of boots and use insect proof work gloves (leather, thick cloth, etc.).

Repellants

It is important to ensure that there is an adequate supply of insect repellent. Use insect repellent, which contains DEET. Apply it to any exposed skin as per the manufacturer’s directions.

Reaction to insect bites can range from mild reactions to severe allergic reactions. In addition, mosquitoes may carry life-threatening diseases such as West Nile virus.

Bee (and Wasp) Stings

Reaction to bee stings may range from painful swelling, redness, itching all the way to shock. Swelling, redness, and itching should stop hurting within a day or two. Treatment for these items can be done at home. The treatment will involve initially removing any stinger left in the skin by scraping away from the skin and towards the venom sac (thus preventing one from squeezing more venom into the wound). Afterwards apply ice and anti-histamine cream. If irritation, swelling and/or pain persist seek medical attention.

If the victim of a bee sting is aware that they are allergic to bees, or if they begin to exhibit signs such as difficulty swallowing, difficulty breathing, abdominal cramps, nausea then they may be going into anaphylactic shock and will require medical treatment.

If personnel know that they are allergic to insects then they will be required to carry their own insect sting kit as directed by their personal physician. The victim must be taken to the hospital immediately.

Mosquito Bites

Mosquito bites can range from mild skin irritation to severe viral infections. One of the most common viruses that mosquitoes carry is the West Nile virus. West Nile virus can cause encephalitis (swelling of the brain) and meningitis (swelling of the spinal cord).

First symptoms are as follows: rapid onset of headaches, dizziness, difficulty swallowing, deep muscle aches, nausea, stiff neck, high-fever, high fever, confusion, muscle weakness. Once any of these symptoms are exhibited seek medical attention.
8.13.4.1 Poisonous Spiders

Black Widow

Black Widow spiders are not usually deadly (especially to adults) and only the female is venomous. The female spider is shiny black, usually with a reddish hourglass shape on the underside of her spherical abdomen. Her body is about 1.5 inches long while the adult male’s is approximately half that. The spider’s span ranges between 1 to 3 inches. The adult males are harmless, have longer legs, and usually have yellow and red bands and spots over their back, and the young black widows are colored orange and white. The bite of a black widow is often not painful and may go unnoticed. However, the poison injected by the spider’s bite can cause severe reactions in certain individuals.

Symptoms

Spider bites can range from mild skin irritation to severe infections and tissue damage depending on the type of spider. New York State has only one spider that is considered dangerous to humans (the black widow). Symptoms that may be experienced include abdominal pain, profuse sweating, swelling of the eyelids, pains to muscles or the soles of the feet, salivation and dry-mouth (alternating), and paralysis of the diaphragm. If a person is bitten, they should seek immediate medical attention. Clean the area of the bite with soap and water. Apply a cool compress to the bite location. Keep effected limb elevated to about heart level. Ask doctor if Tylenol or aspirin can be taken to relieve minor symptoms. Additional information can be obtained from the Poison Center (1-800-222-1222). Black widows are found throughout the tropics, U.S. and Canada.

8.13.5 Threatening Dogs

If you are approached by a frightened or menacing dog:

i) Do not attempt to run and don’t turn your back.

ii) Stay quiet, and remember to breathe.

iii) Be still, with arms at sides or folded over chest with hands in fists.

iv) Slowly walk away sideways.

v) Don’t stare a dog in the eyes, as this will be interpreted as a threat.

vi) Avoid eye contact.

vii) If you have a jacket, you could wrap it around your arm and should he snap, take the bite harmlessly.

viii) Try calling its bluff. Yell, “Sit!” “Stay!” or “Go home!” You might convince the dog that you are the stronger in the situation.

8.13.6 Rodents

Rodentia: (rats, mice, beavers, squirrels, guinea pigs, capybaras, coypu)

Rodents, or Rodentia, are the most abundant order of mammals. There are hundreds of species of rats; the most common being the black and brown rat.

The Brown Rat has small ears, blunt nose, and short hair. It is approximately 14 to 18 inches long (with tail). They frequently infest garbage/rubbish, slaughterhouses, domestic dwellings,
warehouses, shops, supermarkets; in fact, anywhere there is an easy meal and potential nesting sites.

The **Black Rat** can be identified by its' tail, which is always longer than the combined length of the head and body. It is also slimmer and more agile than the Norwegian or Brown rat. Its size varies according to its environment and food supply.

The **House Mouse** has the amazing ability to adapt and it now occurs more or less in human dwellings. In buildings, mice will live anywhere and they are very difficult to keep out. Mice are also totally omnivorous; in other words, they will eat anything.

Rats and mice often become a serious problem in cold winter months when they seek food and warmth inside buildings. They may suddenly appear in large numbers when excavation work disturbs their in-ground nesting locations or their food source is changed.

There are six major problems caused by rats and mice:

i) They eat food and contaminate it with urine and excrement.

ii) They gnaw into materials such as paper, books, wood, or upholstery, which they use as nest material. They also gnaw plastic, cinder blocks, soft metals such as lead and aluminum, and wiring, which may cause a fire hazard.

iii) Rats occasionally bite people and may kill small animals.

iv) They, or the parasites they carry (such as fleas, mites, and worms), spread many diseases such as salmonella, trichinosis, rat bite fever, Hantavirus, Weils disease, and the bubonic plague.

v) Rats can damage ornamental plants by burrowing among the roots or feeding on new growth or twigs. They also eat some garden vegetables, such as corn and squash.

vi) Rats and mice are socially unacceptable. These rodents have been a problem for centuries, chiefly because they have an incredible ability to survive and are so difficult to eliminate. In addition, they are extremely compatible with human behavior and needs.

8.14 Aggressive or Menacing Behavior

When confronted by an individual whose behavior becomes aggressive or menacing, staff should remain as calm as possible. Avoid arguing with or physically confronting the individual. Attempt to distance yourself from the individual. Advise others in the area to leave the scene and request police assistance by having someone call 911. Use the team approach. A staff member who is physically unable to break away from an attacker should shout for help.

The use of physical force is justified when a person believes that such force is necessary to protect himself or herself against the use or imminent use of unlawful physical force by another person. The use of physical force is also justified in the defense of another party, such as a co-worker, who is being subjected to unlawful physical force. Staff members can use any technique of legal self-defense in order to halt or distract an attacker until law officers arrive on the scene.

Should an aggressor only be interested in the taking or damaging of property, do not interfere. Obtain a description of the individual to provide to local authorities, including height, weight, race,
sex, clothing, accent, unusual markings such as tattoos, facial piercings, scars, hair color, and weapon, if any.

File an Incident Report with your immediate supervisor who will forward same accordingly.

9. **Air Monitoring Program**

This section of the HASP presents the requirements for conducting air monitoring at the Site. The air-monitoring program is designed to ensure protection for personnel working on the Site as well as the surrounding community. The on-Site monitoring program will be conducted by the SHO and will consist of monitoring project personnel exposures to VOCs and dust/particulate matter. A Community Air Monitoring Plan (CAMP) will also be conducted at the Site and is presented in Attachment C. The air monitoring program will be completed with the use of real-time direct reading instruments.

Inhalation hazards are caused from the intake of vapors and contaminated dust. Air monitoring shall be performed during ground intrusive activities and during the handling and movement of all soils (both potentially impacted and clean). The purpose of air monitoring is to identify and quantify airborne contaminants in order to determine the level of worker protection needed. Initial screening for identification is often qualitative, but the determination of its concentration (quantification) must wait subsequent testing. Two principle approaches are available for identifying and/or quantifying airborne contaminants:

i) The use of real-time (on-Site) reading instruments (i.e., photoionization detector [PID])

ii) Laboratory analysis of air samples obtained by the use of various sampling equipment and methods

Direct reading instruments may be used to rapidly detect VOCs, and dusts. They are the primary tools of initial site characterization. The information provided by direct reading instruments could be used to institute appropriate measures (i.e., PPE, evacuation), and determine the most appropriate equipment for future monitoring. All direct reading instruments have inherent constraints in their ability to detect hazards. It is imperative that direct reading instruments are operated, and the data interpreted by qualified individuals who are thoroughly familiar with the particular devices, operating principles and limitations. At hazardous waste sites, where unknown and multiple contaminants are the rule rather than the exception, instrument readings should be interpreted conservatively. The following guidelines may facilitate accurate recording and interpretation:

i) Calibrate instruments according to the manufacturer’s instruction before and after each use.

ii) Develop chemical response curves if the instrument manufacturer does not provide these. Response curves/response factors are necessary to adapt PID action levels to actual PID readings when a specific contaminant of concern is detected via air sampling and/or colorimetric evaluation.

iii) Remember that the instrument readings have limited value where contaminants are unknown. When reading unknown contaminants, report them as “needle deflection”, or “positive instruments response”, or “units”, rather than a specific concentration (i.e., PPM). Conduct additional monitoring at any location where a positive response occurs.
iv) A reading of zero should be reported as "no instrument response" rather than "clean" because quantities of the chemicals may be present that are not detectable by the instrument.

v) The survey should be repeated with several detection systems to maximize the number of chemicals detected.

The data collected throughout the monitoring effort shall be used to determine the appropriate levels of protection.

9.1 Site Air Monitoring

During invasive activities, the SHO will perform air monitoring to evaluate the exposure of project personnel to chemical and physical hazards, verify the effectiveness of engineering controls, evaluate the effectiveness of Site control measures, and to determine the proper level of PPE. During the progress of activities, the SHO will monitor the levels of VOCs and particulate levels on an hourly basis or more frequently as necessary based on Site conditions. The following monitoring equipment will be used for this purpose:

i) A PID equipped with an 10.6 or greater eV lamp

ii) A combination oxygen, combustible gas and carbon monoxide instrument (for entering excavations)

iii) A particulate monitor

An EZ perimeter air monitoring program will be implemented. PID and particulate monitoring will be conducted on an hourly basis or more frequently as necessary at the perimeter of the EZ in order to evaluate the effectiveness of Site control measures and verifies the integrity of the Site’s clean areas. If necessary, the SHO in conjunction with the SS will adjust the EZ and CRZ boundaries.

In the event that an EZ perimeter air sample identifies readings that are above background conditions then air monitoring readings will also be taken at the Site perimeter. The SHO will evaluate all air sampling results and modify operating conditions on the Site as necessary to ensure all potentially exposed receptors are within safe limits.

All instruments will be calibrated on a daily basis in accordance with the manufacturer’s guidelines. Records of all calibrations and real-time measurements will be kept in a bound field logbook or documented via air monitoring and calibration log sheets. All air monitoring data collected by SHO will be filed and made available upon request.

9.1.1 Real-Time VOC Monitoring

The SHO will continuously monitor for the presence of VOCs during the handling of impacted materials and intrusive activities. PID readings will be taken in and around all EZs. In addition, a combination oxygen, combustible gas and carbon monoxide instrument will be used to monitor the air in any excavation prior to and during personnel entry into the excavation. Action levels for upgrading or downgrading of PPE have been established and Table A.2 presents the action levels for the on-Site Air Monitoring Program.
An action level is a point at which increased protection or cessation of activities is required due to the concentration of contaminants in the work area. Most activities shall be initiated in Level D. The appropriate actions will be taken at designated action levels.

In addition to the action levels, an upgrade to Level C or evacuation of the immediate area is required if:

i) Any symptoms occur

ii) Sustained readings (15 minutes or greater) occur in the worker’s breathing zone that are above the applicable action levels

iii) Requested by an individual performing the task

iv) Any irritation to eye, nose, throat, or skin occurs

9.1.2 Particulate Monitoring

The particulate action levels are located in Table A.2. Dust control measures (water spray, etc.) should be implemented at the Site to control visible dust emissions. All readings should be taken in the worker’s breathing zone.

9.1.3 Oxygen, Combustible Gas, and Carbon Monoxide Monitoring

Air monitoring for oxygen, combustible gas, and carbon monoxide will also be conducted during excavation and during other activities where oxygen deficient, elevated carbon monoxide readings, and/or flammable atmospheres may be encountered. The point of excavation and the immediate work area around these activities must be monitored to ensure that an adequate level of oxygen is present, and to determine if a flammable atmosphere exists, especially prior to and during any entry into an excavation. All work activity must stop where monitoring indicates the flammable vapor concentration is 10 percent of the lower explosive limit (LEL) at a location with a potential ignition source. Such an area must be ventilated to reduce the concentration to an acceptable level.

Action levels for combustible gases, oxygen, and carbon monoxide are provided in Table A.2.

10. Decontamination Procedures

In general, everything that enters the EZ at this Site must either be decontaminated or properly discarded upon exit from the EZ. All personnel, including any State and local officials must enter and exit the EZ through the CRZ. Prior to demobilization, potentially contaminated equipment will be decontaminated on a wash pad (decontamination pad) and the equipment will be inspected by the SHO before it is moved into the clean zone. A temporary decontamination facility will be constructed at the Site. Any material that is generated by decontamination procedures will be collected and stored in a designated area in the EZ until disposal arrangements are made.

The type of decontamination solution to be used is dependent on the type of chemical hazards. The decontamination solution for heavy equipment and for any reusable PPE is Alconox/Liquinox soap. The MSDSs for Liquinox and any other chemical containing products brought to the Site will be maintained on Site by the SHO.
10.1 Equipment Decontamination Procedures

All equipment that comes in contact with waste material must be decontaminated within the CRZ by high-pressure water cleaner upon exit from the EZ. Decontamination procedures will include knocking soil/mud from machines; water brush scrubbing using a solution of water and Liquinox; and a final water rinse. Personnel shall wear Level C or Modified Level D protection, as determined by the SHO, when decontaminating equipment. All decontamination wash water and residues will be carefully collected and disposed of in accordance with the appropriate environmental regulations. Following decontamination and prior to exiting from the EZ, the SHO shall be responsible for ensuring that the item has been sufficiently decontaminated. This inspection shall be included in the Site log.

10.2 Personnel Decontamination Procedures

Procedures for decontamination must be followed to prevent the spread of contamination and to eliminate the potential for chemical exposure. Personnel decontamination will be completed in accordance with the procedures that are presented below. Potentially contaminated PPE and trash will be stored in covered and labeled containers until disposal arrangements are made. It will be kept separate from trash generated in clean areas of the Site.

All disposable equipment shall be doffed before meal breaks and at the conclusion of the workday and replaced with new equipment prior to commencing work. Spent PPE will be kept in covered containers.

Personnel decontamination will take place upon exiting the contaminated work area in the CRZ.

Modified Level D decontamination procedures are as follows:

Step 1 - Remove all visible contamination and loose debris by washing with clean water.

Step 2 - Remove all outer clothing that came in contact with the contamination (i.e., boot covers and outer gloves) and either dispose of in disposable container or wash in detergent solution and rinse.

Step 3 - Remove protective clothing; dispose of in disposable container.

Step 4 - Remove inner gloves, dispose of in disposable container.

Step 5 - Wash and rinse hands.

Level C decontamination procedures to be utilized as follows:

Step 1 - Remove all visible contamination and loose debris by washing with clean water.

Step 2 - Remove all outer clothing that came in contact with the contamination (i.e., boot covers and outer gloves) and either dispose of in disposable container or wash in detergent solution and rinse.

Step 3 - Remove protective clothing; dispose of in disposable container.

Step 4 - Remove respirator, sanitize prior to reuse.

Step 5 - Remove inner gloves; dispose of in disposable container.
Step 6 - Wash and rinse hands with soap and water.

11. **Emergency Response and Contingency Procedures**

It is essential that project personnel be prepared in the event of an emergency. Emergencies can take many forms; illnesses or injuries, chemical exposure, fires, explosions, spills, leaks, releases of harmful contaminants, or sudden changes in the weather. The following sections outline the general procedures for emergencies.

Emergency information should be posted as appropriate. Radios will be provided for contact purposes. All emergencies will be reported to the appropriate emergency responders. They may give the selected contractor further direction as to the responsibilities during any emergency situation. In general, project personnel will shut down equipment and evacuate to a safe pre-determined meeting area (rally point) during Site emergencies.

The SHO will contact and meet on-Site with local emergency response agencies (e.g., fire department, police department, etc.) prior to initiating construction activities. The purpose of this meeting is to inform these local authorities of the nature of the work and potential risks, to ensure that these responders are equipped to respond to a Site emergency, and to identify and resolve any potential problems, concerns, or conflicts.

The SHO will be informed of Site hazards and activities prior to project initiation so those emergency situations can be handled most efficiently. A general orientation meeting to discuss emergency response procedures is to be held prior to initiating project activities.

The SHO will notify all project personnel of the emergency through radio/cell phone communications. Radios and cell phones will be taken to the rally point to enable further receipt of instruction(s) from the SHO.

11.1 **Accident, Injury and Illness Reporting**

Any work-related incident, accident, injury, illness, exposure, or property loss shall be immediately reported to your supervisor, the SHO and the SS. The SS and/or SHO will report the accident details to the RSHM and will submit a completed accident report form to GHD. The sample Incident Reporting Form is provided in Attachment B. The selected contractor may use their own company-specific form if they so choose. The report must be filed for the following circumstances:

i) Accident, injury, illness, or exposure to project personnel

ii) Injury to any subcontractor personnel

iii) Damage, loss, or theft of property

iv) Any motor vehicle accident regardless of fault, which involves a company vehicle, rental vehicle, or personal vehicle while the individual is acting in the course of employment

The SHO and PM will investigate occupational accidents resulting in employee injury or illness. This investigation will focus on determining the cause of the accident and modifying future work activities to eliminate the hazard.
All project personnel have the obligation and right to report unsafe work conditions, previously unrecognized safety hazards, or safety violations of others. If you wish to make such a report, it may be made orally to your supervisor or other member or management, or you may submit your concern in writing, either signed or anonymously.

11.2 Emergency Contacts

Fire Department .. 911
Police Department ... 911
Ambulance .. 911
Hospital: Kenmore Mercy Hospital .. (716) 447-6121

See Figure 1 – Hospital Route Map Directions to the Hospital.

Communication between work areas and the command post, located within the CZ, will be via verbal communication, auto horn, or two-way radio. The SHO will use a mobile telephone to communicate with outside emergency and medical facilities.

The following signals shall be established for use with auto or compressed air-type horns:

i) 3 Blasts: evacuate exclusion zones and meet at the designated evacuation area

ii) An “All Clear” will be conveyed by radio communication

11.3 Additional Emergency Numbers

GHD Incident Reporting Hotline ... (866) 529-4886
National Response Center (NRC) .. (800) 424-8802
Poison Information ... (800) 764-7661
Utility Locating Commission (One Call Nationwide) ... 811
Agency for Toxic Substances & Disease Registry (24 Hours) ... (404) 488-4100
U.S. EPA Emergency Response ... (800) 424-8802
State of New York Emergency Response Commission .. (513) 457-9996
NYSDEC Site Representative (TBD) .. (716) 851-7220
Project Manager (Jim Kay) ... (519) 884-0510
Regional Corporate Safety and Health Manager (Craig Gebhardt) (716) 297-6150
Contractor Site Superintendent (TBD) .. TBD
Contractor Safety and Health Officer (TBD) ... TBD

11.4 Emergency and First Aid Equipment

Emergency safety equipment will be available for use by project personnel and will be located and maintained on Site. The safety equipment will include, but is not limited to, the following:

i) Portable emergency eye wash and drench shower (pressurized)
ii) Two 20-pound ABC type dry chemical fire extinguishers

iii) Field eye wash/flush bottles

iv) Approved first-aid kit for a minimum of twenty personnel

v) Fire blanket

vi) Spill response kit containing absorbent materials (booms/socks, pads, and earth/clay), overpack drum, shop vacuum, and hand tools (shovel, rake/hoe, etc.)

vii) Portable air horn

11.5 Project Personnel Responsibilities During Emergencies

Safety and Health Officer (SHO)

As the administrator of the HASP, the SHO has primary responsibility for responding to and correcting emergency situations. The SHO will:

i) Take appropriate measures to protect personnel including: posting of acceptable Site evacuation routes, withdrawal from the EZ, total evacuation and securing of the Site or upgrading or downgrading the level of protective clothing and respiratory protection.

ii) Take appropriate measures to protect the public and the environment including isolating and securing the Site, preventing runoff to surface waters, and ending or controlling the emergency to the extent possible.

iii) Ensure that appropriate Federal, State, and local agencies are informed, and emergency response plans are coordinated. In the event of fire or explosion, the local fire department should be summoned immediately. In the event of an air release of toxic materials, the local authorities should be informed in order to assess the need for evacuation. In the event of a spill, sanitary districts and drinking water systems may need to be alerted.

iv) Ensure that appropriate decontamination treatment or testing for exposed or injured personnel is obtained.

v) Determine the cause of the incident and make recommendations to prevent the reoccurrence.

vi) Ensure that all required reports have been prepared.

11.6 Medical Emergencies

Any person who becomes ill or injured in the EZ must be decontaminated to the maximum extent possible. If the injury or illness is minor, full decontamination should be completed and first aid administered prior to transport. If the patient’s condition is serious, at least partial decontamination should be completed as much as possible without causing further harm to the patient. First aid should be administered while awaiting an ambulance or paramedics. All injuries and illnesses must immediately be reported to the SHO, SS and PM.

Any person transporting an injured/exposed person to a clinic or hospital for treatment should take with them directions to the hospital and a copy of the identified chemicals on Site to which they may have been exposed.
Any vehicle used to transport contaminated personnel, will be cleaned or decontaminated as necessary.

11.7 Fire or Explosion

In the event of a fire or explosion, the local fire department should be summoned immediately. Upon their arrival, the SHO or designated alternate will advise the fire commander of the location, nature, and identification of the hazardous materials on Site.

If it is safe to do so, Site personnel should:

i) Report to the PM

ii) Use fire-fighting equipment available on Site

iii) Remove or isolate flammable or other hazardous materials, which may contribute to the fire

11.8 Spill Control and Countermeasures

If a spill has occurred, the first step is personal safety, then controlling the spread of contamination if possible. Project personnel will immediately contact Site management to inform them of the spill and activate emergency spill procedures.

General Spill Response Procedures

If a spill occurs, the following general procedures will be followed:

i) Notify the SHO, SS and PM

ii) Evacuate immediate area of spill

iii) Determine the needed level of PPE

iv) Don required levels of PPE and prepare to make entry to apply spill containment and control procedures

v) After obtaining the proper spill response tools (shovels, booms and pads, absorbent socks, etc.) and PPE, personnel will attempt to contain the spill so that it does not enter any conveyance (sewer, drainage ditch, etc.) that eventually discharges to surface water

vi) Locate and abate source of spill

vii) Absorb or otherwise clean up the spill and containerize the material, sorbent, and affected soils

viii) Clean and decontaminate the affected area(s)

ix) Replace used/spent spill kit contents

All spill material and debris will be managed in a manner that complies with applicable federal, state, and local environmental rules regarding recycling or disposal of wastes.

The SHO and SS have the authority to commit resources as needed to contain and control released material and to prevent its spread to off-Site areas.
12. **Recordkeeping**

The SHO shall establish and maintain records of all necessary and prudent monitoring activities as described below:

i) Name and job classification of the employees involved on specific tasks
ii) Records of fit testing and medical surveillance results for project personnel
iii) Records of all OSHA and other applicable safety training certifications for project personnel
iv) Records of daily Site safety inspections
v) Records of training acknowledgment forms and daily safety meetings
vi) Emergency report sheets describing any incidents or accidents
vii) Air monitoring equipment calibrations
viii) Air monitoring data
Tables
<table>
<thead>
<tr>
<th>Chemical Name (Synonyms)</th>
<th>Concentration at Site</th>
<th>Exposure Limits</th>
<th>Routes Of Entry</th>
<th>Symptoms/Health Effects</th>
<th>Chemical Properties</th>
<th>Physical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (CAS: 71-43-2)</td>
<td>66 ppm</td>
<td>TLV: 0.5 ppm (skin) PEI: 1 ppm STEL: 2.5 ppm IDLH: 500 ppm</td>
<td>Inhalation Absorption (skin) Ingestion</td>
<td>ACUTE: Iritation to eyes, skin, respiratory tract; dizziness; headache; nausea; staggered gait; fatigue, abdominal pain. CHRONIC: Defatting of the skin, may have effects on bone marrow and immune system, decrease in blood cells. Carcinogenic to humans.</td>
<td>(FP) 12°F (VP) 75 mm (IP) 9.24 eV (UEL) 7.8% (LEL) 1.2%</td>
<td>Colorless to light-yellow liquid with an aromatic odor. Solid below 42°F.</td>
</tr>
<tr>
<td>Toluene (CAS: 108-88-3)</td>
<td>140 ppm</td>
<td>TLV: 20 ppm PEI: 200 ppm STEL: NE IDLH: 500 ppm</td>
<td>Inhalation Ingestion Absorption</td>
<td>ACUTE: Iritation to eyes and respiratory tract. Ingestion may cause chemical pneumonitis. Affects CNS. Unconsciousness and cardiac dysrhythmia at high level exposures. CHRONIC: Defatting of the skin. Affects CNS. Enhanced hearing damage.</td>
<td>(FP) 40°F (VP) 21 mm (IP) 8.82 eV (UEL) 7.1% (LEL) 1.1%</td>
<td>Colorless liquid with a sweet, pungent, benzene-like odor.</td>
</tr>
<tr>
<td>Ethylbenzene (CAS: 100-41-4)</td>
<td>60 ppm</td>
<td>TLV: 20 ppm PEI: 100 ppm STEL: NE IDLH: 800 ppm</td>
<td>Inhalation Ingestion Skin contact Eye contact</td>
<td>ACUTE: Causes irritation of the eyes, skin, mucous membranes, and respiratory tract. Effects on CNS. CHRONIC: Defatting of the skin, narcosis, and coma.</td>
<td>(FP) 55°F (VP) 7 mm (IP) 8.76 eV (UEL) 6.7% (LEL) 0.8%</td>
<td>Colorless liquid with an aromatic odor.</td>
</tr>
<tr>
<td>Xylene (o; m; p isomers) (CAS: 106-42-3)</td>
<td>100 ppm</td>
<td>TLV: 100 ppm PEI: 100 ppm STEL: 150 ppm IDLH: 900 ppm</td>
<td>Inhalation Ingestion Absorption</td>
<td>ACUTE: Iritation to eyes and respiratory tract. Ingestion may cause chemical pneumonitis. Affects CNS. CHRONIC: Defatting of the skin, lung damage resulting in chronic bronchitis. Affects CNS and blood.</td>
<td>(FP) 90/82/81°F (VP) 7/9/9 mm (IP) 8.56 eV (UEL) 6.7% (LEL) 0.9%</td>
<td>Colorless liquid with an aromatic odor. (p-isomer solid <56°F).</td>
</tr>
<tr>
<td>Methylene Chloride (CAS: 75-09-2)</td>
<td>2.6 ppm</td>
<td>TLV: 50 ppm PEI: 25 ppm STEL: NE IDLH: 2,300 ppm</td>
<td>Inhalation Ingestion Absorption</td>
<td>ACUTE: Iritation of the eyes, skin and respiratory tract. Exposure could cause lowering of consciousness and formation of carboxyhemoglobin, fatigue and unnatural drowsiness. CHRONIC: Deramitis. May cause damage to CNS and liver. Possible human carcinogen.</td>
<td>(FP) NE (VP) 250 mm (IP) 11.32 eV (UEL) 23.0% (LEL) 12.0%</td>
<td>Colorless liquid with a chloroform-like odor. Gas above 104°F.</td>
</tr>
<tr>
<td>Chemical Name (Synonyms)</td>
<td>Concentration at Site</td>
<td>Exposure Limits</td>
<td>Routes Of Entry</td>
<td>Symptoms/Health Effects</td>
<td>Chemical Properties</td>
<td>Physical Characteristics</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Acetone 2-Propanone Methyl ketone Dimethyl ketone CAS-67-64-1</td>
<td>0.7 ppm</td>
<td>TLV: 500 ppm
PEL: 1,000 ppm
STEL: 750 ppm
IDLH: 2,500 ppm</td>
<td>Inhalation
Skin contact
Eye contact</td>
<td>ACUTE: Vapors irritating to eyes and respiratory tract. May cause headaches and dizziness, effects on CNS, liver, kidneys and gastrointestinal tract.
CHRONIC: Prolonged contact causes defatting of the skin, possibly dermatitis. Substance may affect blood and bone marrow.</td>
<td>(FP) 0°F
(VP) 180 mm
(IP) 9.69 eV
(UEL) 12.8%
(LEL) 2.5%</td>
<td>Colorless liquid, with a fragrant mint-like odor.</td>
</tr>
<tr>
<td>1,2-Dichloroethylene CAS-540-59-0</td>
<td>2.7 ppm</td>
<td>TLV: 200 ppm
PEL: 200 ppm
STEL: NE
IDLH: 1000 ppm</td>
<td>Inhalation
Ingestion
Skin contact
Eye contact</td>
<td>ACUTE: Irritation of the eyes and respiratory tract. CNS depression. Exposure could cause lowering of consciousness.
CHRONIC: Defatting of the skin. May cause damage to liver.</td>
<td>(FP) 36-39°F
(VP) 180-265 mm
(IP) 9.65 eV
(UEL) 12.8%
(LEL) 5.6%</td>
<td>Colorless liquid (usually a mixture of the cis and trans isomers) with a slightly acidic, chloroform-like odor.</td>
</tr>
<tr>
<td>Vinyl Chloride Chloroethene VCM Chloroethylene CAS-76-01-4</td>
<td>2.2 ppm</td>
<td>TLV: 1 ppm
PEL: 1 ppm
STEL: NE
IDLH: NE</td>
<td>Inhalation
Skin contact
Eye contact</td>
<td>ACUTE: Irritation to eyes. Affects CNS. May cause unconsciousness.
CHRONIC: Affects liver, spleen, blood and peripheral blood vessels, tissue and bones in fingers. Human carcinogen.</td>
<td>(FP) NA (gas)
(VP) 3.3 atm
(IP) 9.99 eV
(UEL) 33.0%
(LEL) 3.6%</td>
<td>Colorless gas or liquid (<7°F) with a pleasant odor at high concentrations.</td>
</tr>
<tr>
<td>Fluoranthene (PAH) Fluoranthene (PAH)</td>
<td>150 ppm</td>
<td>TLV: 0.2 mg/m³
PEL: 0.2 mg/m³
STEL: NE
IDLH: NE</td>
<td>Absorption
Inhalation
Ingestion</td>
<td>ACUTE: Dermatitis and bronchitis
CHRONIC: Cancer of lungs, skin, bladder and kidneys. Skin carcinogen,</td>
<td>(FP) NE
(VP) NE
(IP) NE
(UEL) NE
(LEL) NE</td>
<td>Colored needles, light yellow, fine crystals.</td>
</tr>
<tr>
<td>Chrysene CAS-65996-93-2</td>
<td>47 ppm</td>
<td>TLV: (L)
PEL: 0.2 mg/m³ benzene - solublable fraction
STEL: NE
IDLH: 80 mg/m³</td>
<td>Inhalation
Skin contact
Eye contact</td>
<td>ACUTE: Bronchitis.
CHRONIC: Dermatitis, may cause damage to bladder, kidneys and lungs. Potential occupational carcinogen</td>
<td>(FP) Varies
(VP) NE
(IP) Varies
(UEL) NE
(LEL) NE</td>
<td>Black or dark brown amorphous residue. A polycyclic aromatic hydrocarbon (PAH). Pure chrysene is a colorless crystalline solid that is virtually insoluble in water. Animal Carcinogen.</td>
</tr>
</tbody>
</table>
Table A.1

Properties of Potential Site Contaminants

<table>
<thead>
<tr>
<th>Chemical Name (Synonyms)</th>
<th>Concentration at Site</th>
<th>Exposure Limits</th>
<th>Routes Of Entry</th>
<th>Symptoms/Health Effects</th>
<th>Chemical Properties</th>
<th>Physical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalene
CAS-91-20-3</td>
<td>270 ppm</td>
<td>TLV: 10 ppm
PEL: 10 ppm
STEL: 15 ppm
IDLH: 250 ppm</td>
<td>Inhalation
Ingestion
Sktn contact
Absorption
Eye contact</td>
<td>ACUTE: Levels above 10 ppm may cause: Inhalation - Headache, nausea, excessive sweating and vomiting. Skin - May cause irritation and if hypersensitive to naphthalene then severe irritation may occur; Eyes - Irritation. Direct contact may cause blurring vision and damage to the cornea; Ingestion - Nausea, vomiting, abdominal pain, bladder irritation, and brown or black coloration of urine. CHRONIC: Clouding of the eyes. Chronic skin problems in cases of hypersensitivity. Liver and kidney damage.</td>
<td>(FP) 174°F
(VP) 8.08 mm
(IP) 8.12 eV
(UEL) 5.9%
(LEL) 0.9%</td>
<td>Colorless to brown solid with an odor of mothballs. Sometimes found as a crystalline white solid. Shipped as a molten solid.</td>
</tr>
<tr>
<td>Phenanthrene
CAS-65996-93-2</td>
<td>180 ppm</td>
<td>TLV: 0.2 mg/m³
PEL: 0.2 mg/m³
STEL: NE
IDLH: 80 mg/m³</td>
<td>Inhalation
Absorption
Ingestion
Sktn/mucous membrane contact</td>
<td>ACUTE: Photosensitivity; nausea; headache; dizziness CHRONIC: Mutagen (may cause birth defects); eye damage. Potential occupational carcinogen.</td>
<td>(FP) 340°F
(VP) 1 mm
(IP) 7.8 eV
(UEL) NE
(LEL) NE</td>
<td>White crystalline solid with a faint aromatic odor</td>
</tr>
<tr>
<td>Pyrene (PAH)
CAS-65996-93-2</td>
<td>99 ppm</td>
<td>TLV: 0.2 mg/m³
PEL: 0.2 mg/m³
STEL: NE
IDLH: NE</td>
<td>Absorption
Inhalation</td>
<td>ACUTE: Dermatitis and bronchitis CHRONIC: Cancer of lungs, skin, bladder and kidneys. Skin carcinogen.</td>
<td>(FP) NE
(VP) NE
(IP) NE
(UEL) NE
(LEL) NE</td>
<td>Colorless to light yellow solid or off-white solid.</td>
</tr>
<tr>
<td>PAHs
CAS-65996-93-2</td>
<td>1350 ppm (Maximum cumulative concentration)</td>
<td>TLV: 0.2 mg/m³
PEL: 0.2 mg/m³
STEL: NE
IDLH: 80 mg/m³</td>
<td>Inhalation
Ingestion</td>
<td>ACUTE: Bronchitis. CHRONIC: Dermatitis, may cause damage to bladder, kidneys and lungs. Potential occupational carcinogen.</td>
<td>(FP) Varies
(VP) NA
(IP) Varies
(UEL) NA
(LEL) NA</td>
<td>Black or dark brown amorphous residue. Properties vary depending upon specific compound.</td>
</tr>
</tbody>
</table>

Notes:
- FP - Flash Point
- IDLH - Immediately Dangerous to Life and Health
- IP - Incendive Potential
- NE - Not Established (Information Not Available)
- PEL - OSHA Permissible Exposure Limit
- STEL - Short Term Exposure Limit
- TLV - ACGIH Threshold Limit Value
- VP - Vapor Pressure
- CNS - Central Nervous System
- PNS - Peripheral Nervous System
- ppm - parts per million
- mg/m³ - milligrams per cubic meter
- eV - electron volts
<table>
<thead>
<tr>
<th>Monitoring Device</th>
<th>Action Level</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoionization Detector (PID)</td>
<td>Benzene present in the Breathing Zone:</td>
<td>Determine via Colorimetric Sampling</td>
</tr>
<tr>
<td></td>
<td>10.6 or greater eV lamp</td>
<td>Full-Face Respirator Available</td>
</tr>
<tr>
<td>Detector Tubes</td>
<td>>1.0 ppm and ≤5 ppm</td>
<td>Full-face air purifying respirator Level C PPE MSA GME P100 Cartridge</td>
</tr>
<tr>
<td></td>
<td>>5 ppm and <500 ppm</td>
<td>Supplied air respirator Level B PPE. Implement additional engineering controls</td>
</tr>
<tr>
<td></td>
<td>≥500 ppm</td>
<td>Shut down activities. Notify SHO. Implement additional engineering controls</td>
</tr>
<tr>
<td>Benzene not present in the Breathing Zone:</td>
<td>Determine via Colorimetric Sampling</td>
<td></td>
</tr>
<tr>
<td></td>
<td><10 ppm or Background</td>
<td>Full-Face Respirator Available</td>
</tr>
<tr>
<td></td>
<td>≥10 ppm and <50 ppm</td>
<td>Wear Full-Face Respirator - Level C PPE</td>
</tr>
<tr>
<td></td>
<td>≥50 ppm and <1,000 ppm</td>
<td>Wear Supplied Air Respirator - Level B PPE, Implement Additional Engineering Controls</td>
</tr>
<tr>
<td></td>
<td>≥1,000 ppm</td>
<td>Shut down activities. Notify SHO. Implement additional engineering controls</td>
</tr>
<tr>
<td>Vinyl Chloride present in the Breathing Zone:</td>
<td>Determine via Colorimetric Sampling</td>
<td></td>
</tr>
<tr>
<td></td>
<td><1 ppm or Background</td>
<td>No Action Required - Continue Monitoring</td>
</tr>
<tr>
<td></td>
<td>≥1 ppm</td>
<td>Level B - Continue Monitoring</td>
</tr>
<tr>
<td>Dust/Particulate - (Impacted Soils/Sludges/Sediments)</td>
<td><2.0 mg/m³ or Background</td>
<td>Full-Face Respirator Available</td>
</tr>
<tr>
<td></td>
<td>≥2.0 mg/m³ and <50 mg/m³</td>
<td>Wear Full-Face Respirator - Level C PPE</td>
</tr>
<tr>
<td></td>
<td>>50 mg/m³</td>
<td>Wear Supplied Air Respirator - Level B PPE, Implement Additional Engineering Controls</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>>5 ppm</td>
<td>Shut down activities. Notify SHO. Implement additional engineering controls</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>>35 ppm</td>
<td>Shut down activities. Notify SHO. Implement additional engineering controls</td>
</tr>
<tr>
<td>Combustible Gas Indicator</td>
<td>>10 Percent LEL</td>
<td>Cease operations and move to a safe place. Notify SHO. Do not continue working until conditions are constantly below 10 percent LEL</td>
</tr>
<tr>
<td>Oxygen Meter</td>
<td><19.5 Percent or >23.5 Percent</td>
<td>Cease operations and move to a safe place. Notify SHO. Do not continue working until oxygen levels are between 19.5 and 23.5 percent</td>
</tr>
<tr>
<td></td>
<td>When oxygen levels are outside this range, percent LEL readings are not reliable</td>
<td></td>
</tr>
</tbody>
</table>

If GHD is unable to identify/quantify the contaminants, supplied air will be required when the PID reading is greater than background, as the contaminant will be unknown and NIOSH, OSHA, and the manufacturer’s use requirements for Level C (air purifying respirators) will not be met. If PID readings subside, workers can downgrade as necessary. GHD will upgrade to supplied air and attempt to obtain additional information for possible chemicals present in GHD’s work area. The Owner will need to provide/obtain additional information as to the identity of the contaminant(s) in order to permit the use of Modified D and/or Level C.

Notes:
- SHO Safety and Health Officer
- LEL Lower Explosive Limit
- PPE Personnel Protective Equipment
- ppm parts per million
Table 2

On-Site Air Monitoring Program Action Levels
Health and Safety Plan
Retail Gas Facility

<table>
<thead>
<tr>
<th>Monitoring Device</th>
<th>Action Level</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoionization Detector (PID) with 10.2 eV lamp or greater</td>
<td>PID Action Levels for General Site Activities (sustained readings - greater than 5 minutes - taken from the worker's breathing zone)</td>
<td></td>
</tr>
<tr>
<td><10 ppm or Background (PID reading)</td>
<td></td>
<td>Initiate activities in Level D PPE</td>
</tr>
<tr>
<td>≥10 ppm and <50 ppm (PID reading)</td>
<td></td>
<td>Notify GHD PM if an upgrade in respiratory protection is required. Wear FFAPR equipped with organic vapor/P100 cartridges - Level C PPE. Implement additional engineering controls.</td>
</tr>
<tr>
<td>≥50 ppm</td>
<td></td>
<td>Shut down activities and evacuate - Notify PM/PC and RSHM immediately.</td>
</tr>
</tbody>
</table>

Monitoring will occur before beginning any activities (LIST ACTIVITIES HERE) and at least every 15 minutes during potential exposure. **Note:** Since benzene is only a small component of gasoline (less than 5%), a conservative action level of 10 ppm via PID monitoring has been adopted for use by CRA in lieu of the individual exposure levels for benzene or gasoline. The individual PEL for benzene is 1 ppm while the individual TLV for gasoline is 300 ppm.

Notes:

- **SHO** Safety and Health Officer
- **FFAPR** Full-Face Air Purifying Respirator
- **PPE** Personal Protection Equipment
- **PPM** Parts Per Million
Attachments
Attachment A
Job Safety Analyses (JSAs)
Boat Safety

Field staff must review job-specific work plan and coordinate with project manager to verify that all up-front logistics are completed prior to starting work including, but not limited to, permitting, access agreements, and notification to required contacts (e.g., site managers, inspectors, clients, subcontractors, etc.). Additionally, a tailgate safety meeting must be performed and documented at the beginning of each workday. **Stop, Think, Act, Review (STAR)** must be used prior to any activity. All personnel must possess the appropriate training prior to initiating scheduled tasks. Also consider weather conditions. GHD personnel have the authority and responsibility to use **Stop Work Authority (SWA)**.

Date issued/revised: June 9, 2016

Client: Hodgson Russ LLP – Tonawanda Coke Corp Site

Project number: 002428

Created by: K. Galanti

<table>
<thead>
<tr>
<th>Sim OPS</th>
<th>Yes/No</th>
</tr>
</thead>
</table>

Project address: 3875 River Road, Tonawanda, NY

Specific task: Sampling activities on water

Task-specific training: Towing and Trailering, Boating Safety

<table>
<thead>
<tr>
<th>Hard hat</th>
<th>Gloves (ANSI/EN 388)</th>
<th>Eye protections</th>
<th>Fall protection</th>
<th>APR</th>
<th>Vest</th>
<th>PPE clothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I (top impact)</td>
<td>Chemical protective (i.e. nitrile)</td>
<td>ANSI/CSA safety glasses</td>
<td>Harness</td>
<td>Full face mask</td>
<td>Class II</td>
<td>Coveralls</td>
</tr>
<tr>
<td>Type II (side impact)</td>
<td>Level 1 light duty</td>
<td>Goggles/spoggles</td>
<td>Shock absorb lanyard</td>
<td>Half face mask</td>
<td>Class III</td>
<td>Fire retardant clothing (FRC)</td>
</tr>
<tr>
<td>Class E (standard)</td>
<td>Level 2 light duty with protection</td>
<td>Face shield</td>
<td>Lifeline</td>
<td>Cartridges</td>
<td>Anti-static</td>
<td>High viz clothing</td>
</tr>
<tr>
<td>Class G</td>
<td>Level 3 medium duty</td>
<td>Other*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level 4 heavy duty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot protection</td>
<td>High viz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial grade safety boot</td>
<td>Other*</td>
<td>NOT Required</td>
<td>Haz.cat 2</td>
<td>P100</td>
<td>Paper tyvek</td>
<td></td>
</tr>
<tr>
<td>Rubber boots (industrial grade)</td>
<td>Required</td>
<td>Haz cat 4</td>
<td>R95</td>
<td></td>
<td>Polyethylene tyvek</td>
<td></td>
</tr>
<tr>
<td>Hip waders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*see key equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hearing protection</th>
<th>Arc flash</th>
<th>Hearing protection</th>
<th>Arc flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>High viz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOT Required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haz.cat 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P95</td>
<td>Paper tyvek</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haz.cat 4</td>
</tr>
<tr>
<td>R95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organic vapor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialty/other*</td>
</tr>
</tbody>
</table>

*see key equipment
<table>
<thead>
<tr>
<th>Job steps(1)</th>
<th>Task activity</th>
<th>Potential hazard(s)(2) Include energy sources from hazard wheel -</th>
<th>Corrective measure(s)(3)</th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 1 | Mob equipment to boat launch | • Over loading boat capacity
• Inclement weather
• Lifting hazards
• Manual material handling
• Back injury
• Pinch points
• Moving or flying projectiles inside vehicle while transporting equipment
• Slip/trip/fall hazards
• Fuel spill | • Review boat capacity and complete weight survey including personnel and gear
• Monitor weather forecasts
• Make sure grip is adequate; wear leather/cotton gloves
• Size up the load; if the object is too large or odd shaped OR is in excess of 50 pounds (23 kg) then assistance (mechanical or a buddy lift) will be required
• Ensure all equipment is properly secured during transport
• Lift with the legs (bend at the knees and use the leg muscles) to protect the lower back and keep lower back in a neutral position
• Avoid one-handed carrying if possible; maintain awareness of footing
• Refuel in appropriate location, no sparks or static buildup
• Practice STAR | Competent operator and Field Staff | |
<table>
<thead>
<tr>
<th>Job steps</th>
<th>Task activity</th>
<th>Potential hazard(s)</th>
<th>Corrective measure(s)</th>
<th>Person responsible</th>
<th>Verified by</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Launch boat</td>
<td>• Lifting hazards</td>
<td>• Practice STAR</td>
<td>Competent operator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Manual material handling</td>
<td>• Make sure grip is adequate; wear leather/cotton gloves</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Back injury</td>
<td>• Size up the load; if the object is too large or odd shaped OR is in excess of 50 pounds (23 kg) then assistance (mechanical or a buddy lift) will be required</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pinch points</td>
<td>• Lift with the legs (bend at the knees and use the leg muscles) to protect the lower back and keep lower back in a neutral position</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Moving or flying projectiles inside vehicle while transporting equipment</td>
<td>• Avoid one-handed carrying if possible; maintain awareness of footing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Slip/trip/fall hazards</td>
<td>• Review JSA for proper fueling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fuel spill</td>
<td>• Wear appropriate PFD or life vest</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Drowning</td>
<td>• Bring boating safety kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Navigate boat to site</td>
<td>• Causing unnecessary wake</td>
<td>• Obey posted signage</td>
<td>Competent operator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Running aground</td>
<td>• Follow channel marked with buoys</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Disturbing others</td>
<td>• Follow proper boating etiquette</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Drowning</td>
<td>• Practice STAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Wear appropriate PFD or life vest</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Bring boating safety kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Remain seated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Perform sampling activities</td>
<td>• Tipping boat</td>
<td>• Remain seated when operating; If the boat tips over, remain with the boat</td>
<td>Field Staff</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Boating traffic</td>
<td>• Be aware of surroundings, verify water depth in shallow waters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Each Job or Task consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details to set the basis for the potential (associated) hazards.

(2) A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: Contact - victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress/ergonomics/lifting techniques; Exposure - inhalation/skin hazards. Specify the hazards and do not limit the description to a single word such as "Caught".

(3) Aligning with the Job Steps, Task Activity Description, and Potential Hazard columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective, observable, and quantified terms. Avoid subjective general statements such as "be careful" or "use as appropriate".
Site personnel participating in JSA review:
I have participated in the review and discussion of the Job Safety Analysis (JSA) listed on this document and understand the duties I am responsible to fulfill. As part of my work, I know I have the responsibility and obligation to STOP work with a Stop Work Authority (SWA) if conditions change and/or potential hazards have been identified.

<table>
<thead>
<tr>
<th>Name/Company</th>
<th>Sign</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSE(s) on job: __________________________ Assigned mentor: __________________________

Presenter signature: __________________________ Date/time: __________________________

My signature below indicates that all conditions and requirements listed above have been verified, met, and reviewed with all affected personnel prior to start of work.

Supervisor signature: __________________________ Date/time: __________________________

Location of mustering point: __________________________ Wind direction (current): ___________

GHD emergency contact (Name and verified phone number): GHD Incident Hotline 1-866-529-4886

Supervisor signature documenting daily debrief has been completed: __________________________
Confined Space Entry of ASTs

Field staff must review job-specific work plan and coordinate with project manager to verify that all up-front logistics are completed prior to starting work including, but not limited to, permitting, access agreements, and notification to required contacts (e.g., site managers, inspectors, clients, subcontractors, etc.). Additionally, a tailgate safety meeting must be performed and documented at the beginning of each workday. **Stop, Think, Act, Review (STAR)** must be used prior to any activity. All personnel must possess the appropriate training prior to initiating scheduled tasks. Also consider weather conditions. GHD personnel have the authority and responsibility to use **Stop Work Authority (SWA)**.

<table>
<thead>
<tr>
<th>Date issued/revised:</th>
<th>June 9, 2016</th>
<th>Client:</th>
<th>Hodgson Russ LLP – Tonawanda Coke Corp Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project number:</td>
<td>002428</td>
<td>Created by:</td>
<td>K. Galanti</td>
</tr>
<tr>
<td>Project address:</td>
<td>3875 River Road, Tonawanda, NY</td>
<td>Sim OPS</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Specific task</td>
<td>Construction activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key equipment:</td>
<td>Four gas or five gas monitors, rescue equipment, communication devices, first aid kit, CSE Permit, CSE Co-ordination Document, CSE Hazard Assessment Form</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task-specific training:</td>
<td>Air Monitoring, CSE Operations, PPE, First Aid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hard hat</th>
<th>Gloves (ANSI/EN 388)</th>
<th>Eye protections</th>
<th>Fall protection</th>
<th>APR</th>
<th>Vest</th>
<th>PPE clothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Type I (top impact)</td>
<td>☑ Chemical protective (i.e. nitrile)</td>
<td>☑ ANSI/CSA safety glasses</td>
<td>☑ Harness</td>
<td>☐ Full face mask</td>
<td>☑ Class II</td>
<td>☐ Coveralls</td>
</tr>
<tr>
<td>☐ Type II (side impact)</td>
<td>☑ Level 1 light duty</td>
<td>☑ Goggles/spoggles</td>
<td>☑ Shock absorb lanyard</td>
<td>☑ Half face mask</td>
<td>☑ Class III</td>
<td>☑ Fire retardant clothing (FRC)</td>
</tr>
<tr>
<td>☑ Class E (standard)</td>
<td>☑ Level 2 light duty with protection</td>
<td>☐ Face shield</td>
<td>☑ Lifeline</td>
<td>☐ Anti-static</td>
<td>☑ High viz clothing</td>
<td></td>
</tr>
<tr>
<td>☐ Class G</td>
<td>☐ Level 3 medium duty</td>
<td>☐ Other*</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ Level 4 heavy duty</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Foot protection</td>
<td>☐ High viz</td>
<td>☐ Hearing protection</td>
<td>☐ Arc flash</td>
<td>☐ P100</td>
<td>☐ Paper tyvek</td>
<td></td>
</tr>
<tr>
<td>☑ Industrial grade safety boot</td>
<td>☐ Other*</td>
<td>☐ NOT Required</td>
<td>☐ Haz.cat 2</td>
<td>☐ P95</td>
<td>☐ Polyethylene tyvek</td>
<td></td>
</tr>
<tr>
<td>☑ Rubber boots (industrial grade)</td>
<td>☐ Required</td>
<td>☐ Haz cat 4</td>
<td>☐ R95</td>
<td>☑ Other *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Hip waders</td>
<td>☐</td>
<td>☐ Organic vapor</td>
<td>☐</td>
<td>☐</td>
<td>☑ Specialty/other*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>☐</td>
<td>*see key equipment</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

002428-JSA-Environmental-Confined Space Entry | Page 1 of 5
<table>
<thead>
<tr>
<th>Name</th>
<th>Signature</th>
<th>Modified by</th>
<th>Reviewed by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katherine Galanti</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td></td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td></td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td></td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Job steps<sup>(1)</sup></td>
<td>Task activity</td>
<td>Potential hazard(s)<sup>(2)</sup> Include energy sources from hazard wheel -</td>
<td>Corrective measure(s)<sup>(3)</sup></td>
<td>Person responsible (Print first and last names)</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 1 | Prepare to enter confined space | • Low oxygen levels
• Flammable or explosive conditions
• Organic vapors
• Limited access
• Falls
• Engulfment
• Limited communication
• Injury or death | • Ensure that a CSE Hazard Assessment has been completed and review prior to issuing the CSE Permit
• Ensure CSE Permit is completed, and all hazards controlled
• Ensure that CSE crew is adequately trained
• If more than one contractor is entering the space, ensure that a Coordination Document has been completed and reviewed by all
• Use SMART/STAR, pre entry briefing, check qualifications, review plan and rescue, and document this meeting
• Consult the site specific HASP and confined space entry procedures
• Ensure the gas meter selected is correct for the items identified
• Ensure meter has been properly calibrated and documented
• Ensure retrieval and safety equipment is correct for the tasks and in good order
• Enter area to perform work only when you are certain conditions are safe; only workers current in confined space training may enter
• If uncertain or untrained on the specific meter being used or if you have concerns over meter functioning correctly or you receive readings of concern, exercise SWA, relocate to a safe area, and contact your site supervisor or regional safety supervisor
• Follow specific procedures outlined in the Hasp and confined space entry procedures to ensure there is no risk of engulfment, entrapment, or hazardous atmosphere
• Reduce distance traveled when carrying materials
• Make sure grip is adequate; use gloves to enhance grip when necessary
• Size up the load; if the object is too large or odd shaped OR is in excess of 50 pounds (23 kg) then assistance (mechanical or a buddy lift) will be required
• Lift with the legs (bend at the knees and use the leg muscles) to protect the lower back and keep lower back in a neutral position
• Avoid one handed carrying if possible; maintain awareness of footing | Senior Field Team Leader/Field Staff | }
<table>
<thead>
<tr>
<th>Job steps<sup>(1)</sup></th>
<th>Task activity</th>
<th>Potential hazard(s)<sup>(2)</sup> Include energy sources from hazard wheel -</th>
<th>Corrective measure(s)<sup>(3)</sup></th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 2 | Continued monitoring of work area | • Low oxygen levels
• Flammable or explosive conditions
• Organic vapors
• Limited access
• Falls
• Engulfment
• Limited communication
• Injury or death | • While performing work tasks keep meter with you and record readings at predetermined times
• Stay in constant communication with your attendant
• If job conditions change or meter alarms, exercise SWA, move to a safe location, notify the site supervisor, and reevaluate the task
• If emergency evacuation is required, initiate rescue procedures
• Re-enter only when certain safe conditions exist
• Do not enter if a permit is not completed and signed by the entry supervisor | Field Staff/Entrant | |
| 3 | Completion of work or end of work day | • Low oxygen levels
• Flammable or explosive conditions
• Organic vapors
• Limited access
• Falls
• Engulfment
• Limited communication
• Injury or death | • Perform post entry briefing, document readings and time; complete and file paper work
• Ensure entrance to confined space is blocked and post signage to prevent unauthorized entry or accidental falls
• Remove and safely store retrieval and safety equipment
• Follow all requirements of the HASP and confined space entry procedures | Field Staff | |

⁽¹⁾ Each Job or Task consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details to set the basis for the potential (associated) hazards.

⁽²⁾ A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: Contact - victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress/ergonomics/lifting techniques; Exposure - inhalation/skin hazards. Specify the hazards and do not limit the description to a single word such as “Caught”.

⁽³⁾ Aligning with the Job Steps, Task Activity Description, and Potential Hazard columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective, observable, and quantified terms. Avoid subjective general statements such as “be careful” or “use as appropriate”.
Site personnel participating in JSA review:
I have participated in the review and discussion of the Job Safety Analysis (JSA) listed on this document and understand the duties I am responsible to fulfill. As part of my work, I know I have the responsibility and obligation to STOP work with a **Stop Work Authority (SWA)** if conditions change and/or potential hazards have been identified.

<table>
<thead>
<tr>
<th>Name/Company</th>
<th>Sign</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSE(s) on job: ____________________________ **Assigned mentor:** ____________________________

Presenter signature: ____________________________ **Date/time:** ____________________________

My signature below indicates that all conditions and requirements listed above have been verified, met, and reviewed with all affected personnel prior to start of work.

Supervisor signature: ____________________________ **Date/time:** ____________________________

Location of mustering point: ____________________________ **Wind direction (current):** ____________________________

GHD emergency contact (Name and verified phone number): **GHD Incident Hotline** 1-866-529-4886

Supervisor signature documenting daily debrief has been completed: ____________________________
Decontamination of Sampling Equipment and Personnel (PPE Level D)

Field staff must review job-specific work plan and coordinate with project manager to verify that all up-front logistics are completed prior to starting work including, but not limited to, permitting, access agreements, and notification to required contacts (e.g., site managers, inspectors, clients, subcontractors, etc.). Additionally, a tailgate safety meeting must be performed and documented at the beginning of each workday. **Stop, Think, Act, Review (STAR)** must be used prior to any activity. All personnel must possess the appropriate training prior to initiating scheduled tasks. Also consider weather conditions. GHD personnel have the authority and responsibility to use **Stop Work Authority (SWA)**.

Specific task
Decontamination of sampling equipment and personnel (PPE Level D)

Key equipment:
Alconox/Liquinox, brushes, potable water

Task-specific training:
Decontamination/Site Control; Quality Control/Sampling Plan

<table>
<thead>
<tr>
<th>Hard hat</th>
<th>Gloves (ANSI/EN 388)</th>
<th>Eye protections</th>
<th>Fall protection</th>
<th>APR</th>
<th>Vest</th>
<th>PPE clothing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ Type I (top impact)</td>
<td>☑ Chemical protective (i.e. nitrile)</td>
<td>□ ANSI/CSA safety glasses</td>
<td>□ Harness</td>
<td>□ Full face mask</td>
<td>☑ Class II</td>
</tr>
<tr>
<td></td>
<td>□ Type II (side impact)</td>
<td>□ Level 1 light duty</td>
<td>☑ Goggles/spoggles</td>
<td>□ Shock absorb lanyard</td>
<td>□ Half face mask</td>
<td>□ Class III</td>
</tr>
<tr>
<td>☑ Class E (standard)</td>
<td>□ Level 2 light duty with protection</td>
<td>□ Face shield</td>
<td>□ Lifeline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Class G</td>
<td>□ Level 3 medium duty</td>
<td>□ Other*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Level 4 heavy duty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>☑ Industrial grade safety boot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Foot protection</th>
<th>Hearing protection</th>
<th>Arc flash</th>
<th>Cartridges</th>
<th>Vest</th>
<th>PPE clothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ High viz</td>
<td>☑ NOT Required</td>
<td>□ P100</td>
<td></td>
<td>☑ FRC</td>
<td>☑ Long pants</td>
</tr>
<tr>
<td>☑ Industrial grade safety boot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Other*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Rubber boots (industrial grade) | | | | | | |
| Hip waders | | | | | | |

*see key equipment

002428-JSA-Environmental-Decontamination of Sampling Equipment and Personnel (PPE Level D) | Page 1 of 4
<table>
<thead>
<tr>
<th>Job steps<sup>(1)</sup></th>
<th>Task activity</th>
<th>Potential hazard(s)<sup>(2)</sup></th>
<th>Corrective measure(s)<sup>(3)</sup></th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 1 | Decontamination of sampling equipment (including pumps, bailers, tubing, etc.) | • Contaminant exposure
• Pinch points
• Slip/trip/hit/fall hazards
• Lifting hazards
• Back injury
• Manual material handling | • Set up decon station to capture any spills to avoid cross-contamination and manage wastes
• Wear appropriate PPE
• Scrub equipment clean then rinse and verify it is clean and free of contamination
• Avoid putting hands in or near pinch points
• Maintain good housekeeping and be aware of surroundings
• Size up the load; if the object is too large or odd shaped OR is in excess of 50 pounds (23 kg) then assistance (mechanical means, such as a dolly, cart, or a buddy lift) will be required
• Lift with the legs (bend at the knees and use the leg muscles) to protect the lower back and keep lower back in a neutral position
• Refer to the HASP for additional lifting techniques | Field Staff | |
| 2 | Decontamination of personnel | • Contaminant exposure
• Slip/trip/hit/fall hazards | • Refer to the HASP for specific procedures but in general start with most contaminated article and remove until inner gloves are the last item left
• Dispose of used PPE in accordance with site requirements
• Wash hands and face before eating, drinking, or using tobacco products
• Take care when removing PPE (boots, gloves, etc.); sit down to remove/change boots as necessary | Field Staff | |
Job steps

Each Job or Task consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details to set the basis for the potential (associated) hazards.

Potential hazard(s)

A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to:

- **Contact** - victim is struck by or strikes an object;
- **Caught** - victim is caught on, caught in or caught between objects;
- **Fall** - victim falls to ground or lower level (includes slips and trips);
- **Exertion** - excessive strain or stress/ergonomics/lifting techniques;
- **Exposure** - inhalation/skin hazards. Specify the hazards and do not limit the description to a single word such as “Caught”.

Corrective measure(s)

Aligning with the Job Steps, Task Activity Description, and Potential Hazard columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective, observable, and quantified terms. Avoid subjective general statements such as “be careful” or “use as appropriate”.

<table>
<thead>
<tr>
<th>Job steps</th>
<th>Task activity</th>
<th>Potential hazard(s)</th>
<th>Corrective measure(s)</th>
<th>Person responsible</th>
<th>Verified by</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Management of waste derived from decontamination activities</td>
<td>Contaminant exposure • Lifting hazards • Back injury • Manual material handling</td>
<td>Containerize decon waste (e.g., water, used PPE) as required • Properly dispose of decon fluids (e.g., sediments) • Refer to step 1 and the HASP for additional lifting information</td>
<td>Field Staff</td>
<td></td>
</tr>
</tbody>
</table>
Site personnel participating in JSA review:
I have participated in the review and discussion of the Job Safety Analysis (JSA) listed on this document and understand the duties I am responsible to fulfill. As part of my work, I know I have the responsibility and obligation to STOP work with a Stop Work Authority (SWA) if conditions change and/or potential hazards have been identified.

<table>
<thead>
<tr>
<th>Name/Company</th>
<th>Sign</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSE(s) on job: __________________________ Assigned mentor: __________________________

Presenter signature: __________________________ Date/time: __________________________

My signature below indicates that all conditions and requirements listed above have been verified, met, and reviewed with all affected personnel prior to start of work.

Supervisor signature: __________________________ Date/time: __________________________

Location of mustering point: __________________________ Wind direction (current): ______________

GHD emergency contact (Name and verified phone number): GHD Incident Hotline 1-866-529-4886

Supervisor signature documenting daily debrief has been completed: __________________________

002428-JSA-Environmental-Decontamination of Sampling Equipment and Personnel (PPE Level D) | Page 4 of 4
Field staff must review job-specific work plan and coordinate with project manager to verify that all up-front logistics are completed prior to starting work including, but not limited to, permitting, access agreements, and notification to required contacts (e.g., site managers, inspectors, clients, subcontractors, etc.). Additionally, a tailgate safety meeting must be performed and documented at the beginning of each workday. **Stop, Think, Act, Review (STAR)** must be used prior to any activity. All personnel must possess the appropriate training prior to initiating scheduled tasks. Also consider weather conditions. GHD personnel have the authority and responsibility to use **Stop Work Authority (SWA)**.

Excavation Oversight

<table>
<thead>
<tr>
<th>Hard hat</th>
<th>Gloves (ANSI/EN 388)</th>
<th>Eye protections</th>
<th>Fall protection</th>
<th>APR</th>
<th>Vest</th>
<th>PPE clothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Type I (top impact)</td>
<td>☑ Chemical protective (i.e. nitrile)</td>
<td>☑ ANSI/CSA safety glasses</td>
<td>☑ Harness</td>
<td>☑ Full face mask</td>
<td>☑ Class II</td>
<td>☑ Coveralls</td>
</tr>
<tr>
<td>☑ Type II (side impact)</td>
<td>☑ Level 1 light duty</td>
<td>☑ Goggles/spoggles</td>
<td>☑ Shock absorb lanyard</td>
<td>☑ Half face mask</td>
<td>☑ Class III</td>
<td>☑ Fire retardant clothing (FRC)</td>
</tr>
<tr>
<td>☑ Class E (standard)</td>
<td>☑ Level 2 light duty with protection</td>
<td>☑ Face shield</td>
<td>☑ Lifeline</td>
<td></td>
<td>☑ Anti-static</td>
<td>☑ High viz clothing</td>
</tr>
<tr>
<td>☑ Class G</td>
<td>☑ Level 3 medium duty</td>
<td>☑ Other*</td>
<td>☑ Lifeline</td>
<td></td>
<td>☑ Anti-static</td>
<td>☑ High viz clothing</td>
</tr>
<tr>
<td>☑ Level 4 heavy duty</td>
<td>☑ High viz</td>
<td>Hearing protection</td>
<td>Arc flash</td>
<td>☑ N95</td>
<td>☑ P100</td>
<td>☑ Paper tyvek</td>
</tr>
<tr>
<td>☑ Industrial grade safety boot</td>
<td>☑ Other*</td>
<td>☑ NOT Required</td>
<td>☑ Haz.cat 2</td>
<td>☑ P95</td>
<td>☑ Polyethylene tyvek</td>
<td></td>
</tr>
<tr>
<td>☑ Rubber boots (industrial grade)</td>
<td>☑ Required</td>
<td>☑ Haz cat 4</td>
<td>☑ R95</td>
<td>☑ Other*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☑ Hip waders</td>
<td>☑ Organic vapor</td>
<td>☑ Specialty/other*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

see key equipment
<table>
<thead>
<tr>
<th>Job steps<sup>(1) </sup></th>
<th>Task activity</th>
<th>Potential hazard(s)<sup>(2) </sup></th>
<th>Corrective measure(s)<sup>(3) </sup></th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 1 | Perform the STAR process; discuss SWA; verify Permit to Excavate and Utility Clearance Form is completed (overhead and underground); verify excavation layout | • Underground utility strike
• Overhead utilities | • QSF 019 and Permit to Excavate Forms completed and signed off
• Utility Locate Ticket number on file within 10 days of excavation startup?
• Mark work area and safe distances for overhead lines; use spotter as necessary
• Stockpile and laydown area are set up properly
• Perform a pre start meeting, inform subcontractor of safe lifting practices
• Reduce travel distance when there is a need to carry/lift materials
• Make sure grip is adequate; wear leather/cotton gloves when setting up barricades
• Size up the load; if the object is too large or odd shaped OR is in excess of 50 pounds (23 kg) then assistance (mechanical or a buddy lift) will be required
• Lift with the legs (bend at the knees and use the leg muscles) to protect the lower back and keep lower back in a neutral position
• Avoid one handed carrying if possible; maintain awareness of footing | Senior Field Team Leader | |
| 2 | Set up necessary work area and traffic controls | • Fall-in
• Caught-between
• Struck-by
• Lifting hazards
• Manual material handling
• Back injury | | Field Staff | |
<table>
<thead>
<tr>
<th>Job steps</th>
<th>Task activity</th>
<th>Potential hazard(s)(2)</th>
<th>Corrective measure(s)(3)</th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 3 | Hand digging and potholing activities (where/if necessary based on utility locates) | • Underground utility strike | • Use preventive techniques
 • Maintain proper utility clearances with heavy equipment and use hand digging/potholing when necessary
 • Refer to step 2 and the HASP for additional lifting information | Field Staff |] |
| 4 | Heavy equipment operations to excavate and handle soils and waste materials | • Caught-between and struck-by hazards
 • Underground/overhead utilities | • Stay out of swing radius
 • Use spotters to verify clear route of travel and work area
 • Maintain eye contact with operator and/or signal operator
 • Keep soil 2 feet from edges
 • Inspect heavy equipment and document inspection
 • Ensure the above utility clearances and safe work protocols are followed | Field Staff |] |
| 5 | Excavating activities | • Soil cave-in
 • Noise hazard
 • Struck-by/against hazards
 • Potential contact with chemical waste material, organic vapors, and particulate | • Keep proper distances from edge of excavation
 • Limit equipment operations in trench area
 • Keep work area free of trip hazards
 • Perform necessary soil classification
 • Use hearing protection as necessary
 • Wear designated PPE and conduct air monitoring | Field Staff |] |
<table>
<thead>
<tr>
<th>Job steps</th>
<th>Task activity</th>
<th>Potential hazard(s)</th>
<th>Corrective measure(s)</th>
<th>Person responsible</th>
<th>Verified by</th>
</tr>
</thead>
</table>
| 6 | Excavation entry activities (if required) | - Soil cave-in
- Struck-by/against hazards
- Hazardous atmospheres
- Slip/trip/fall hazards
- Emergency egress | - Keep proper distances from edge of excavation
- Limit equipment operations in trench area
- Keep work area free of trip hazards
- Perform necessary soil classification
- Use daily inspection form to document/meet competent person inspection requirements
- Inspect trench after any change in conditions (e.g., rain, equipment vibrations)
- Provide fall protection measures
- Utilize shoring equipment properly – ensure that tabulated data sheet is on site
- Use 4 gas monitor and PID to screen excavation air prior to and during entry
- Ladder safety and proper slope of ladder
- Use harness and lifeline when entering trenches over 5 feet deep | Field Staff | |

(1) Each Job or Task consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details to set the basis for the potential (associated) hazards.

(2) A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: Contact - victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress/ergonomics/lifting techniques; Exposure - inhalation/skin hazards. Specify the hazards and do not limit the description to a single word such as "Caught".

(3) Aligning with the Job Steps, Task Activity Description, and Potential Hazard columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective, observable, and quantified terms. Avoid subjective general statements such as "be careful" or "use as appropriate".
Site personnel participating in JSA review:

I have participated in the review and discussion of the Job Safety Analysis (JSA) listed on this document and understand the duties I am responsible to fulfill. As part of my work, I know I have the responsibility and obligation to STOP work with a **Stop Work Authority (SWA)** if conditions change and/or potential hazards have been identified.

<table>
<thead>
<tr>
<th>Name/Company</th>
<th>Sign</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSE(s) on job: ____________________________ **Assigned mentor:** ____________________________

Presenter signature: ____________________________ Date/time: ____________________________

My signature below indicates that all conditions and requirements listed above have been verified, met, and reviewed with all affected personnel prior to start of work.

Supervisor signature: ____________________________ Date/time: ____________________________

Location of mustering point: ____________________________ Wind direction (current): _____________

GHD emergency contact (Name and verified phone number): **GHD Incident Hotline** 1-866-529-4886

Supervisor signature documenting daily debrief has been completed: ____________________________
Sediment Sampling Within Stormwater Ditch/Pond

Field staff must review job-specific work plan and coordinate with project manager to verify that all up-front logistics are completed prior to starting work including, but not limited to, permitting, access agreements, and notification to required contacts (e.g., site managers, inspectors, clients, subcontractors, etc.). Additionally, a tailgate safety meeting must be performed and documented at the beginning of each workday. Stop, Think, Act, Review (STAR) must be used prior to any activity. All personnel must possess the appropriate training prior to initiating scheduled tasks. Also consider weather conditions. GHD personnel have the authority and responsibility to use Stop Work Authority (SWA).

Date issued/revise:	June 9, 2016
Client: | Hodgson Russ LLP – Tonawanda Coke Corp Site |
Project number: | 002428 |
Created by: | K. Galanti |
Sim OPS | Yes/No | SSE on site? | Yes/No |
Project address: | 3875 River Road, Tonawanda, NY |
Specific task: | Sediment sampling within Ditch or Stormwater Pond |
Key equipment: | Hand auger/split spoon sampler, bucket, PPE, sample containers; Hip waders |
Task-specific training: | GHD Field Method Training Sampling Procedures, SMART Procedures |

<table>
<thead>
<tr>
<th>Hard hat</th>
<th>Gloves (ANSI/EN 388)</th>
<th>Eye protections</th>
<th>Fall protection</th>
<th>APR</th>
<th>Vest</th>
<th>PPE clothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I (top impact)</td>
<td>Chemical protective (i.e. nitrile)</td>
<td>ANSI/CSA safety glasses</td>
<td>Harness</td>
<td>Full face mask</td>
<td>Class II</td>
<td>Coveralls</td>
</tr>
<tr>
<td>Type II (side impact)</td>
<td>Level 1 light duty</td>
<td>Goggles/spoggles</td>
<td>Shock absorb lanyard</td>
<td>Half face mask</td>
<td>Class III</td>
<td>Fire retardant clothing (FRC)</td>
</tr>
<tr>
<td>Class E (standard)</td>
<td>Level 2 light duty with protection</td>
<td>Face shield</td>
<td>Lifeline</td>
<td>Anti-static</td>
<td>High viz clothing</td>
<td></td>
</tr>
<tr>
<td>Class G</td>
<td>Level 3 medium duty</td>
<td>Other*</td>
<td>Cartridges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 4 heavy duty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot protection</td>
<td>High viz</td>
<td>Hearing protection</td>
<td>Arc flash</td>
<td>N95</td>
<td>FRC</td>
<td>Long pants</td>
</tr>
<tr>
<td>Industrial grade safety boot</td>
<td>Other*</td>
<td>NOT Required</td>
<td>Haz.cat 2</td>
<td>P100</td>
<td>Paper tyvek</td>
<td></td>
</tr>
<tr>
<td>Rubber boots (industrial grade)</td>
<td>Required</td>
<td>Haz cat 4</td>
<td>R95</td>
<td>Other *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hip waders</td>
<td></td>
<td></td>
<td>Organic vapor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
*see key equipment

<table>
<thead>
<tr>
<th>Foot protection</th>
<th>Hearing protection</th>
<th>Arc flash</th>
<th>N95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial grade safety boot</td>
<td>NOT Required</td>
<td>Haz.cat 2</td>
<td>P95</td>
</tr>
<tr>
<td>Rubber boots (industrial grade)</td>
<td>Required</td>
<td>Haz cat 4</td>
<td>R95</td>
</tr>
<tr>
<td>Hip waders</td>
<td></td>
<td></td>
<td>Organic vapor</td>
</tr>
</tbody>
</table>

002428-JSA-Environmental-Sediment Sampling within Ditch or Stormwater Pond | Page 1 of 7
<table>
<thead>
<tr>
<th>Job steps</th>
<th>Task activity</th>
<th>Potential hazard(s)</th>
<th>Corrective measure(s)</th>
<th>Person responsible</th>
<th>Verified by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Discuss STAR and SWA</td>
<td>Site personnel not aware of STAR and SWA</td>
<td>Project team (GHD) discusses importance of and documentation procedures for SWA during pre-job safety meeting *Use SWA to stop any work that is unsafe *Discuss PPE requirements *Work gloves required at all times *No fixed open blade knives (FOBKS) allowed</td>
<td>Senior Field Team Leader</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Inspect and calibrate sampling and monitoring equipment</td>
<td>Lost time from improperly functioning equipment *Incorrect sampling procedures/ collection due to malfunctioning equipment</td>
<td>Ensure all equipment is functioning properly; complete Quality Control documents</td>
<td>Field Staff</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Establish Access/Egress Routes into ditch/pond by placing rope and/or ladders on side slopes</td>
<td>Hand Injury *Pinch points *Back strains *Property damage *Gravity hazards *Biological hazards</td>
<td>Wear work gloves at all times *Be aware of hand placement *When placing ladder, do not overextend the load away from body *Check tie off point to ensure integrity. Tie rope and/or ladder off to a rigid object *To extent possible, place ladder feet on bottom of pond/slope. Tie off ladder to prevent further movement/slippage *Be aware of bees, wasps, etc. Use bug spray as needed</td>
<td>Field Staff</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Entering Ditch/Pond</td>
<td>Injury *Slips/Trips/Falls *Limited access/egress *Biological hazards</td>
<td>Wear required PPE including hard hat *Wear work gloves and be aware of hand placement at all times *Utilize pathway which is free of slip/trip hazards to the extent possible. Communicate any encountered potential slip/trip hazards to other field</td>
<td>Field Staff</td>
<td></td>
</tr>
<tr>
<td>Job steps</td>
<td>Task activity</td>
<td>Potential hazard(s)</td>
<td>Corrective measure(s)</td>
<td>Person responsible</td>
<td>Verified by</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>5</td>
<td>Lowering Equipment down slope into ditch/pond</td>
<td>Injury, Gravity hazards and impact injury, Back strain, Damaged Equipment</td>
<td>Position one person at the top of the slope and one near the bottom. The person at the bottom of the slope should be positioned out of the pathway should equipment fall to prevent impact injury, Wear work gloves at all times, Lower equipment slowly in controlled manner using a rope or by hand, Do not overextend when lowering equipment, Avoid dropping equipment, lower carefully and in controlled manner, Verbally communicate with team members when equipment is being lowered</td>
<td>Field Staff</td>
<td></td>
</tr>
</tbody>
</table>

- Maintain 3 points of contact at all times
- Ensure ladder or rope to aid entry is secure
- Ensure access/egress routes have been established prior to entering pond
- Be aware of surroundings and assess presence of other potential biological hazards
<table>
<thead>
<tr>
<th>Job steps<sup>11</sup></th>
<th>Task activity</th>
<th>Potential hazard(s)<sup>10</sup> Include energy sources from hazard wheel -</th>
<th>Corrective measure(s)<sup>13</sup></th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 6 | Walking in Ditch/Pond to Sample Location | • Slips/trips/hit/fall hazards
• Heat stress
• Biological hazards
• Wildlife encounters
• Potential adverse weather conditions | • Use buddy system while in ditch/pond
• Spot check to identify hazards, establish pathways which is most free of slip and trip hazards, beware of trip hazards, keep work areas free of clutter, communicate hazards to on-site personnel
• Be aware of surroundings
• Ensure stable footing is present before proceeding
• Heightened awareness of wasps, ants, bees, ticks, spiders, other animals and poison plants and use bug spray as necessary
• Perform a thorough self-examination for ticks at the end of the day
• Monitor for heat stress, establish work/rest regimes, wear heat stress PPE, and have liquids available
• Be aware of any rapidly changing environmental conditions and respond accordingly | Field Staff | |
| 7 | Advancing hand auger or post-hole digger | • Overhead and underground utilities
• Lifting hazards
• Back injury
• Manual material handling
• Improper hand auger operation
• Dust/flying debris/contaminants | • Inspect route to be traveled
• Use precaution when advancing hand auger/post-hole tool
• Assess the potential for underground structures (i.e., utilities) at the sign of unusual resistance
• Do not work under overhead utilities
• Know the length of the hand auger/post-hole tool and how close it could come to utilities
• Use proper bending/lifting techniques by bending and lifting with legs and not with back
• Do not twist at waist when turning the auger
• Dust particles may become airborne; if dust becomes excessive, use a dust mask
• When pulling the hand auger/post-hole out of the boring, materials can become airborne | Field Staff | |
<table>
<thead>
<tr>
<th>Job steps</th>
<th>Task activity</th>
<th>Potential hazard(s)(^{(2)}) Include energy sources from hazard wheel -</th>
<th>Corrective measure(s)(^{(3)})</th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 8 | Sample collection | • Contaminant exposure
• Cuts from container breakage
• Sample misidentification
• Pinch Points
• Lost time due to incorrect sample selection | • Wear nitrile gloves when handling sample containers and replace between soil samples
• Inspect glass bottles for breaks/cracks
• Do not attempt to use any suspect containers
• Close glass sample containers carefully to avoid breakage
• Avoid placing hands/fingers in pinch point locations (e.g., between cooler and lid)
• Confirm selected samples are correct based on work plan selection criteria, PID readings, and soil boring logs
• Check sample labels for accuracy prior to placing in cooler | Field Staff | |
| 9 | Removing Equipment from ditch/pond | • Injury
• Gravity hazards and impact injury
• Back strain
• Damaged Equipment | • Position one person at the top of the slope and one near the bottom. The person at the bottom of the slope should be positioned out of the pathway should equipment fall to prevent impact injury
• Wear work gloves at all times
• Raise equipment slowly in controlled manner using a rope or by hand
• Do not overextend when raising equipment
• Avoid dropping equipment, raise carefully and in controlled manner
• Verbally communicate with team members when equipment is being lowered | Field Staff | |
<table>
<thead>
<tr>
<th>Job steps</th>
<th>Task activity</th>
<th>Potential hazard(s)(2) Include energy sources from hazard wheel -</th>
<th>Corrective measure(s)(3)</th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 10 | Exiting Ditch/Pond | • Injury
• Slips/Trips/Falls
• Sloped sidewalls
• Limited access/egress
• Biological hazards | • Wear required PPE including hard hat
• Wear work gloves and be aware of hand placement at all times
• Utilize pathway which is free of slip/trip hazards to the extent possible. Communicate any encountered potential slip/trip hazards to other field team members
• Maintain 3 points of contact at all times
• Ensure ladder or rope to aid exit is secure
• Ensure all tools have been removed from ditch/pond so that personnel are not carrying equipment while navigating the slope or ladder (See Step 9) | Field Staff |
| 11 | Packing samples in cooler(s) | • Bottle breakage
• Contaminant exposure
• Cuts
• Pinch points
• Back strain
• Lost time due to incorrect sample packaging or hold time exceedances | • Wear nitrile gloves when handling sample containers
• Pack glass containers in bubble wrap
• Check COC against sample labels and SSOW for accuracy before shipping
• Avoid placing hands/fingers in pinch point locations (e.g., between cooler and lid)
• Refer to steps 3 and 4 and the HASP for additional lifting techniques
• Ensure equipment and supplies are loaded correctly and do not shift during transport | Field Staff |

(1) Each Job or Task consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details to set the basis for the potential (associated) hazards.

(2) A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: Contact - victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress/ergonomics/lifting techniques; Exposure - inhalation/skin hazards. Specify the hazards and do not limit the description to a single word such as “Caught”.

(3) Aligning with the Job Steps, Task Activity Description, and Potential Hazard columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective, observable, and quantified terms. Avoid subjective general statements such as “be careful” or “use as appropriate”.
Site personnel participating in JSA review:
I have participated in the review and discussion of the Job Safety Analysis (JSA) listed on this document and understand the duties I am responsible to fulfill. As part of my work, I know I have the responsibility and obligation to STOP work with a Stop Work Authority (SWA) if conditions change and/or potential hazards have been identified.

<table>
<thead>
<tr>
<th>Name/Company</th>
<th>Sign</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSE(s) on job: ____________________________ Assigned mentor: ____________________________

Presenter signature: ____________________________ Date/time: ____________________________

My signature below indicates that all conditions and requirements listed above have been verified, met, and reviewed with all affected personnel prior to start of work.

Supervisor signature: ____________________________ Date/time: ____________________________

Location of mustering point: ____________________________ Wind direction (current): ____________________________

GHD emergency contact (Name and verified phone number): GHD Incident Hotline 1-866-529-4886

Supervisor signature documenting daily debrief has been completed: ____________________________
Field staff must review job-specific work plan and coordinate with project manager to verify that all up-front logistics are completed prior to starting work including, but not limited to, permitting, access agreements, and notification to required contacts (e.g., site managers, inspectors, clients, subcontractors, etc.). Additionally, a tailgate safety meeting must be performed and documented at the beginning of each workday. Stop, Think, Act, Review (STAR) must be used prior to any activity. All personnel must possess the appropriate training prior to initiating scheduled tasks. Also consider weather conditions. GHD personnel have the authority and responsibility to use Stop Work Authority (SWA).

Initial Site Recon and Walkthrough

- **Date issued/revised:** June 9, 2016
- **Client:** Hodgson Russ LLP – Tonawanda Coke Corp Site
- **Project number:** 002428
- **Project address:** 3875 River Road, Tonawanda, NY
- **Specific task:** Site walkthrough to assess and inventory hazards posed by site work activities
- **Key equipment:** Basic PPE, hand/power tools based on site condition, site inspection checklist or notebook, JSA forms, pens; Insect repellant, flashlight. Coveralls may be necessary based on type of brush/plants/insects in work area(s) being inspected. Protective gloves if overgrown vegetation or rundown buildings.
- **Task-specific training:** SMART Safety training (STAR), JSA development, Poison Plant Identification

<table>
<thead>
<tr>
<th>Hard hat</th>
<th>Gloves (ANSI/EN 388)</th>
<th>Eye protections</th>
<th>Fall protection</th>
<th>APR</th>
<th>Vest</th>
<th>PPE clothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I (top impact)</td>
<td>Chemical protective (i.e. nitrile)</td>
<td>ANSI/CSA safety glasses</td>
<td>Harness</td>
<td>Full face mask</td>
<td>Class II</td>
<td>Coveralls</td>
</tr>
<tr>
<td>Type II (side impact)</td>
<td>Level 1 light duty</td>
<td>Goggles/spoggles</td>
<td>Shock absorb lanyard</td>
<td>Half face mask</td>
<td>Class III</td>
<td>Fire retardant clothing (FRC)</td>
</tr>
<tr>
<td>Class E (standard)</td>
<td>Level 2 light duty with protection</td>
<td>Face shield</td>
<td>Lifeline</td>
<td>Cartridges</td>
<td>FRC</td>
<td>Long pants</td>
</tr>
<tr>
<td>Class G</td>
<td>Level 3 medium duty</td>
<td>Other*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level 4 heavy duty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot protection</td>
<td>High viz</td>
<td>Hearing protection</td>
<td>Arc flash</td>
<td>P95</td>
<td></td>
<td>Paper tyvek</td>
</tr>
<tr>
<td>Industrial grade safety boot</td>
<td>Other*</td>
<td>NOT Required</td>
<td>Haz.cat 2</td>
<td>P100</td>
<td></td>
<td>Polyethylene tyvek</td>
</tr>
<tr>
<td>Rubber boots (industrial grade)</td>
<td>Required</td>
<td></td>
<td>Haz cat 4</td>
<td>R95</td>
<td>Other*</td>
<td></td>
</tr>
<tr>
<td>Hip waders</td>
<td></td>
<td></td>
<td>Organic vapor</td>
<td></td>
<td></td>
<td>Specially/other*</td>
</tr>
</tbody>
</table>

*see key equipment
<table>
<thead>
<tr>
<th>Job steps<sup>(1)</sup></th>
<th>Task activity</th>
<th>Potential hazard(s)<sup>(2)</sup> Include energy sources from hazard wheel -</th>
<th>Corrective measure(s)<sup>(3)</sup></th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 1 | Discuss STAR and SWA | • Site personnel not aware of STAR and SWA | • Project team (GHD) discusses importance of and documentation procedures for SWA during pre-job safety meeting
• Use SWA to stop any work that is unsafe | All persons on project team | |
| 2 | Check weather | • Unexpected storm, fog; rain; snow; lightning, thunder
• Heat/cold stress | • Check local weather forecast
• Discuss weather issues and precautions to take while driving and on site during the pre-job safety meeting
• If weather conditions (e.g., fog, rain, snow) impair the ability/vision of the driver, exit at nearest safe location and assess the situation
• While on site, at first sign of lightning/thunder utilize SWA and assess weather conditions
• In extreme temperatures, ensure all personnel have proper clothing, hydration, and heat/cold protection (e.g., canopy, fan, glove warmers) | Senior Field Team Leader | |
| 3 | Sign in | • Site Manager and Operator not aware of GHD staff presence in facility or on grounds | • Sign in at front desk
• Ask to speak to Site Manager or alternate designate | Field Staff | |
<p>| 4 | Don necessary GHD and client required PPE | • Contact with recyclable material or equipment | • Wear all required PPE (hard hat, vest, boots, and glasses) at all times while in the facility | Field Staff | |</p>
<table>
<thead>
<tr>
<th>Job steps**(1)**</th>
<th>Task activity</th>
<th>Potential hazard(s)(2) Include energy sources from hazard wheel -</th>
<th>Corrective measure(s)(3)</th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 5 | Unload equipment from vehicle | • Lifting hazards
• Back injury
• Manual material handling
• Cuts
• Pinch points
• Hand/foot injury
• Forgotten equipment
• Damaged equipment | • Reduce travel distance when there is a need to carry/lift materials
• Make sure grip is adequate; wear leather/cotton gloves
• Size up the load; if the object is too large or odd shaped OR is in excess of 50 pounds (23 kg) then assistance (mechanical or a buddy lift) will be required
• Lift with the legs (bend at the knees and use the leg muscles) to protect the lower back and keep lower back in a neutral position
• Avoid one-handed carrying if possible; maintain awareness of footing
• Wear leather/cotton gloves and avoid placing hands/fingers in pinch point locations
• Wear steel-toed boots
• Verify requested equipment against warehouse form
• Load equipment in an organized manner to prevent shifting during transport or use cargo netting | Field Staff | |
| 6 | Complete site inspection and walkover of the property and work areas – Note any hazards that will impact site personnel and/or their operations | • Slip/trip/fall hazards
• Insects/reptiles
• Pedestrian injury
• Poison plants | • Check in with site personnel and sign appropriate visitor or safety log (may require watching safety video [i.e., plant])
• Check with site contact to determine safely accessible areas and areas where PPE are required
• Wear PPE as directed by site personnel or dependent upon your evaluation of conditions
• If building(s) looks dilapidated or in poor condition, do not enter
• Watch for vehicles or other mobile equipment moving around
• Make sure areas are well lit and you are accompanied by a site representative (if applicable)
• Watch where you step on pavement (potholes, dips, or obstructions) and in | Field Staff | |
<table>
<thead>
<tr>
<th>Job steps<sup>(1)</sup></th>
<th>Task activity</th>
<th>Potential hazard(s)<sup>(2)</sup> Include energy sources from hazard wheel -</th>
<th>Corrective measure(s)<sup>(3)</sup></th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 7 | Sign out | • Site Manager and Operator not aware that GHD staff have left facility | • Sign out at front desk
• Ask to speak to Site Manager or alternate designate | Field Staff | |
| 8 | Demobilization | • Collision
• Injury or death to vehicle occupants or other parties | • Perform perimeter vehicle check
• Maintain awareness of pedestrian/vehicular traffic when exiting the site
• Utilize defensive driving techniques
• Complete post-departure checklist and report vehicle problems to company vehicle maintenance manager or rental car agency | Field Staff | |

(1) Each Job or Task consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details to set the basis for the potential (associated) hazards.

(2) A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: Contact - victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress/ergonomics/lifting techniques; Exposure - inhalation/skin hazards. Specify the hazards and do not limit the description to a single word such as “Caught”.

(3) Aligning with the Job Steps, Task Activity Description, and Potential Hazard columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective, observable, and quantified terms. Avoid subjective general statements such as "be careful" or "use as appropriate".
Site personnel participating in JSA review:
I have participated in the review and discussion of the Job Safety Analysis (JSA) listed on this document and understand the duties I am responsible to fulfill. As part of my work, I know I have the responsibility and obligation to STOP work with a Stop Work Authority (SWA) if conditions change and/or potential hazards have been identified.

<table>
<thead>
<tr>
<th>Name/Company</th>
<th>Sign</th>
<th>Date</th>
</tr>
</thead>
</table>

SSE(s) on job: ____________________________ Assigned mentor: ____________________________

Presenter signature: ____________________________ Date/time: ____________________________

My signature below indicates that all conditions and requirements listed above have been verified, met, and reviewed with all affected personnel prior to start of work.

Supervisor signature: ____________________________ Date/time: ____________________________

Location of mustering point: ____________________________ Wind direction (current): ____________________________

GHD emergency contact (Name and verified phone number): GHD Incident Hotline 1-866-529-4886

Supervisor signature documenting daily debrief has been completed: ____________________________
Soil Sampling from an Excavator Bucket

Field staff must review job-specific work plan and coordinate with project manager to verify that all up-front logistics are completed prior to starting work including, but not limited to, permitting, access agreements, and notification to required contacts (e.g., site managers, inspectors, clients, subcontractors, etc.). Additionally, a tailgate safety meeting must be performed and documented at the beginning of each workday. Stop, Think, Act, Review (STAR) must be used prior to any activity. All personnel must possess the appropriate training prior to initiating scheduled tasks. Also consider weather conditions. GHD personnel have the authority and responsibility to use Stop Work Authority (SWA).

Date issued/revised: June 9, 2016
Client: Hodgson Russ LLP – Tonawanda Coke Corp Site
Project number: 002428
Created by: K. Galanti
Sim OPS: Yes
SSE on site?: Yes

Project address: 3875 River Road, Tonawanda, NY

Specific task: Soil sampling using an excavator bucket to collect the soil sample

Key equipment: Air monitoring equipment, PPE, Excavation equipment; Tyvek if Level C initiated; gloves dependent on the task and chemical contamination present or suspected present

Task-specific training: GHD Field Method Training on Soil Sampling Procedures; Mobile Equipment or Heavy Equipment Safety

<table>
<thead>
<tr>
<th>Hard hat</th>
<th>Gloves (ANSI/EN 388)</th>
<th>Eye protections</th>
<th>Fall protection</th>
<th>APR</th>
<th>Vest</th>
<th>PPE clothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I (top impact)</td>
<td>Chemical protective (i.e. nitrile)</td>
<td>ANSI/CSA safety glasses</td>
<td>Harness</td>
<td>Full face mask</td>
<td>Class II</td>
<td>Coveralls</td>
</tr>
<tr>
<td>Type II (side impact)</td>
<td>Level 1 light duty</td>
<td>Goggles/spoggles</td>
<td>Shock absorb lanyard</td>
<td>Half face mask</td>
<td>Class III</td>
<td>Fire retardant clothing (FRC)</td>
</tr>
<tr>
<td>Class E (standard)</td>
<td>Level 2 light duty with protection</td>
<td>Face shield</td>
<td>Lifeline</td>
<td>Cartridges</td>
<td>Anti-static</td>
<td>High viz clothing</td>
</tr>
<tr>
<td>Class G</td>
<td>Level 3 medium duty</td>
<td>Other*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 4 heavy duty</td>
<td></td>
<td></td>
<td></td>
<td>Cartridges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot protection</td>
<td>High viz</td>
<td>Hearing protection</td>
<td>Arc flash</td>
<td>N95</td>
<td>FRC</td>
<td>Long pants</td>
</tr>
<tr>
<td>Industrial grade safety boot</td>
<td>Other*</td>
<td>NOT Required</td>
<td>Haz.cat 2</td>
<td>P100</td>
<td></td>
<td>Long sleeve shirts</td>
</tr>
<tr>
<td>Rubber boots (industrial grade)</td>
<td>Required</td>
<td>Haz cat 4</td>
<td>R95</td>
<td></td>
<td></td>
<td>Paper tyvek</td>
</tr>
<tr>
<td>Hip waders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Polyethylene tyvek</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Organic vapor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Specialty/other*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*see key equipment

002428-JSA-Environmental-Soil Sampling from Excavator Bucket | Page 1 of 5
<table>
<thead>
<tr>
<th>Job steps</th>
<th>Task activity</th>
<th>Potential hazard(s) include energy sources from hazard wheel</th>
<th>Corrective measure(s)</th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 1 | Discuss STAR and SWA. | • Site personnel not aware of STAR and SWA | • Project team (GHD) discusses importance of and documentation procedures for SWA during pre-job safety meeting
• Use SWA to stop any work that is unsafe | Senior Field Team Leader | |
| 2 | Inspect and calibrate sampling and monitoring equipment. | • Lost time from improperly functioning equipment
• Incorrect sampling procedures/collection due to malfunctioning equipment | • Ensure all equipment is functioning properly
• Complete Quality Control documents | Field Staff | |
| 3 | Prepare to collect soil samples: Technician will choose the location of the sample and communicate sample location to the operator. | • Back strain
• Pinch points
• Cuts
• Punctures
• Sample misidentification | • Use proper lifting techniques and buddy system if needed
• Avoid placing hands/fingers in pinch point locations
• Use proper tools when opening container packaging
• Do not use fixed open blade knives when opening boxes or containers
• Ensure the sample id label matches sample location with site plan/GHD site supervisor/subcontractor
• Setup a safe area for technician to obtain sample from bucket | Field Staff | |
| 4 | Obtaining the soil sample from the excavation via remote means – use the hydraulic excavator: Operator will place bucket on ground in a safe location after obtaining the sample from the agreed location. | • Excavation collapse
• Contaminant exposure
• Heavy equipment operation | • Stay clear of the edge of the excavation; demarcate areas that were undermined
• Wear nitrile gloves and follow air monitoring program as per HASP
• Follow JSAs specific for excavation and heavy equipment activities; maintain excavation safety
• Be aware of swing radius of heavy equipment | Field Staff | |
<table>
<thead>
<tr>
<th>Job steps(1)</th>
<th>Task activity</th>
<th>Potential hazard(s)(2) (Include energy sources from hazard wheel -)</th>
<th>Corrective measure(s)(3)</th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 5 | Sample collection from excavator bucket: Operator will place heavy equipment in a zero energy state via lockout (interlocks) and placing bucket on ground. If not equipped with interlocks or equivalent safety devices then operator will shut off engine with bucket on ground. Technician will collect soil sample from the bucket once heavy equipment is in a zero energy state and leave the area. | • Contaminant exposure
• Cuts from container breakage
• Sample misidentification
• Struck-by/crushing injuries | • Wear nitrile gloves and replace between soil samples
• Inspect glass bottles for breaks/cracks
• Do not attempt to use any suspect containers
• Communicate to all present not to distract the excavator operator
• Establish eye/hand contact with excavator operator and approach when safe
• Have operator activate hydraulic system kill switch if equipped and maintain two thumbs up visible to technician
• If excavator is not equipped with a hydraulic system kill switch, then the operator must leave the cab prior to sample collection
• Do not stand in front of or behind the bucket; stand to either side to collect sample
• Close glass sample containers carefully to avoid breakage
• Signal operator with thumbs up when clear of swing radius
• Check sample labels for accuracy prior to placing in cooler | Field Staff | |
| 6 | Sample selection | • Bottle breakage
• Contaminant exposure
• Pinch points
• Lost time due to incorrect sample selection | • Wear nitrile gloves when handling sample containers
• Confirm selected samples are correct based on work plan selection criteria, PID readings, and soil boring logs
• Avoid placing hands/fingers in pinch point locations (e.g., between cooler and lid) | Field Staff | |
<table>
<thead>
<tr>
<th>Job steps
(^{(1)})</th>
<th>Task activity</th>
<th>Potential hazard(s)
(^{(2)}) Include energy sources from hazard wheel -</th>
<th>Corrective measure(s)
(^{(3)})</th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 7 | Packing samples in cooler(s) | • Bottle breakage
• Contaminant exposure
• Cuts
• Pinch points
• Back strain
• Lost time due to incorrect sample packaging or hold time exceedances | • Wear nitrile gloves when handling sample containers
• Pack glass containers in bubble wrap
• Check COC against sample labels and SSOW for accuracy before shipping
• Avoid placing hands/fingers in pinch point locations (e.g., between cooler and lid)
• Use proper lifting techniques and buddy system if needed
• Ensure equipment and supplies are loaded correctly and do not shift during transport | Field Staff | |
| 8 | Investigation derived waste (IDW) management | • Contaminant exposure
• Heavy lifting
• Pinch points
• Slips/trips/fall hazards
• Mislabeled waste | • Wear nitrile gloves when handling IDW
• Use proper lifting techniques to transport/dispose of IDW into drums and use buddy system if needed
• Avoid placing hands/fingers in pinch point locations
• Maintain awareness of walking surfaces
• Label IDW with generator, a contact number, identification of contents, and site location
• Specify IDW as either hazardous or non-hazardous material | Field Staff | |

1) Each Job or Task consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details to set the basis for the potential (associated) hazards.

2) A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: **Contact** - victim is struck by or strikes an object; **Caught** - victim is caught on, caught in or caught between objects; **Fall** - victim falls to ground or lower level (includes slips and trips); **Exertion** - excessive strain or stress/ergonomics/lifting techniques; **Exposure** - inhalation/skin hazards. Specify the hazards and do not limit the description to a single word such as "Caught".

3) Aligning with the Job Steps, Task Activity Description, and Potential Hazard columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective, observable, and quantified terms. Avoid subjective general statements such as "be careful" or "use as appropriate".
Site personnel participating in JSA review:
I have participated in the review and discussion of the Job Safety Analysis (JSA) listed on this document and understand the duties I am responsible to fulfill. As part of my work, I know I have the responsibility and obligation to STOP work with a Stop Work Authority (SWA) if conditions change and/or potential hazards have been identified.

<table>
<thead>
<tr>
<th>Name/Company</th>
<th>Sign</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSE(s) on job: ________________________________ Assigned mentor: ________________________________

Presenter signature: ________________________________ Date/time: ________________________________

My signature below indicates that all conditions and requirements listed above have been verified, met, and reviewed with all affected personnel prior to start of work.

Supervisor signature: ________________________________ Date/time: ________________________________

Location of mustering point: ________________________________ Wind direction (current): ________________________________

GHD emergency contact (Name and verified phone number): GHD Incident Hotline 1-866-529-4886

Supervisor signature documenting daily debrief has been completed: ________________________________
Field staff must review job-specific work plan and coordinate with project manager to verify that all up-front logistics are completed prior to starting work including, but not limited to, permitting, access agreements, and notification to required contacts (e.g., site managers, inspectors, clients, subcontractors, etc.). Additionally, a tailgate safety meeting must be performed and documented at the beginning of each workday. **Stop, Think, Act, Review (STAR)** must be used prior to any activity. All personnel must possess the appropriate training prior to initiating scheduled tasks. Also consider weather conditions. GHD personnel have the authority and responsibility to use **Stop Work Authority (SWA)**.

Tank Sampling

Date issued/revised: June 9, 2016
Client: Hodgson Russ LLP – Tonawanda Coke Corp Site

Project Number: 002428
Created By: K. Galanti
Sim OPS Yes/No
SSE on site? Yes/No

Project Address: 3875 River Road, Tonawanda, NY

Specific Task
Task-specific training: 40-Hour and 8-Hour HAZWOPER, CSE, PPE

<table>
<thead>
<tr>
<th>Hard Hat</th>
<th>Gloves (ANSI/EN 388)</th>
<th>Eye protections</th>
<th>Fall protection</th>
<th>APR</th>
<th>Vest</th>
<th>PPE clothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Type I (Top Impact)</td>
<td>☒ Chemical Protective (i.e. Nitrile)</td>
<td>☒ ANSI/CSA safety glasses</td>
<td>□ Harness</td>
<td>□ Full Face Mask</td>
<td>☒ Class II</td>
<td>□ Coveralls</td>
</tr>
<tr>
<td>□ Type II (Side Impact)</td>
<td>☒ Level 1 Light duty</td>
<td>☒ Goggles/spoggles</td>
<td>☒ Shock absorb lanyard</td>
<td>□ Half Face Mask</td>
<td>□ Class III</td>
<td>□ Fire retardant clothing (FRC)</td>
</tr>
<tr>
<td>☒ Class E (standard)</td>
<td>☒ Level 2 Light duty with protection</td>
<td>☒ Face shield</td>
<td>☒ Life line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ Class G</td>
<td>☒ Level 3 Medium duty</td>
<td>☒ Other*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>☐ Level 4 Heavy duty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Foot Protection
Hearing protection
Arc flash
** integantty testing**

<table>
<thead>
<tr>
<th>Foot Protection</th>
<th>Hearing protection</th>
<th>Arc flash</th>
<th>integantty testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ High viz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ Industrial grade safety boot</td>
<td>☒ NOT Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ Rubber boots (industrial grade)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Hip waders</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Foot Protection
Hearing protection
Arc flash
** integantty testing**

<table>
<thead>
<tr>
<th>Foot Protection</th>
<th>Hearing protection</th>
<th>Arc flash</th>
<th>integantty testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ High viz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ Industrial grade safety boot</td>
<td>☒ NOT Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ Rubber boots (industrial grade)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Hip waders</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*see key equipment

Foot Protection
Hearing protection
Arc flash
** integantty testing**

<table>
<thead>
<tr>
<th>Foot Protection</th>
<th>Hearing protection</th>
<th>Arc flash</th>
<th>integantty testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ High viz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ Industrial grade safety boot</td>
<td>☒ NOT Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ Rubber boots (industrial grade)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Hip waders</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*see key equipment
<table>
<thead>
<tr>
<th>Name</th>
<th>Signature</th>
<th>Modified by</th>
<th>Reviewed by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katherine Galanti</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job steps</td>
<td>Task activity</td>
<td>Potential hazard(s)(2)</td>
<td>Corrective measure(s)(3)</td>
<td>Person responsible (Print first and last names)</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 1 | Eliminate all potential sources of ignition | • Explosion and/or fire | • Inform all Site personnel that smoking is prohibited on Site
• Shut down all open flame and sparking equipment within vapor hazard
• Use only explosion-proof equipment within the hazard area
• Ground all heavy equipment that will or may touch the tank | Senior Field Team Leader and Field Staff | [] |
| 2 | Open access portal to tank | • Explosion and/or fire
• Product Spill
• Chemical Exposure | • Use non-sparking tools
• Have spill absorption material/kit available on Site
• Place containment materials (bucket, sorbent pads/booms) under points where tank wall is being breached
• Use proper PPE in accordance with the HASP | Field Staff | [] |
| 3 | Purge tank vapors | • Explosion and/or fire
• Inhalation exposure to vapors (both to workers and public) | • Frequently test % of Lower Explosion Limit (LEL) in tank at varying elevations (floor, breathing zone) | Field Staff | [] |
| 4 | Tank Entry | | See JSA for Confined Space Entry | Field Staff | [] |
| 5 | Collect samples in accordance with sampling plan | • Falling debris
• Contaminant exposure
• Lifting hazards
• Back injury
• Manual material handling
• Dust/flying debris/contaminants
• Slip or fall due to uneven terrain | • Beware of overhead hazards
• Wear nitrile gloves when handling sample containers and replace between samples
• Use proper bending/lifting techniques by bending and lifting with legs and not with back
• Dust particles may become airborne; if dust becomes excessive, use a dust mask
• Keep footing secure | Field Staff | [] |

(1) Each Job or Task consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details to set the basis for the potential (associated) hazards.

(2) A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: Contact - victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress/ergonomics/lifting techniques; Exposure - inhalation/skin hazards. Specify the hazards and do not limit the description to a single word such as "Caught".

(3) Aligning with the Job Steps, Task Activity Description, and Potential Hazard columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective, observable, and quantified terms. Avoid subjective general statements such as "be careful" or "use as appropriate".
Site personnel participating in JSA review:
I have participated in the review and discussion of the Job Safety Analysis (JSA) listed on this document and understand the duties I am responsible to fulfill. As part of my work, I know I have the responsibility and obligation to STOP work with a Stop Work Authority (SWA) if conditions change and/or potential hazards have been identified.

<table>
<thead>
<tr>
<th>Name/Company</th>
<th>Sign</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSE(s) on job: ___________________________ Assigned mentor: ___________________________

Presenter signature: ___________________________ Date/time: ___________________________

My signature below indicates that all conditions and requirements listed above have been verified, met, and reviewed with all affected personnel prior to start of work.

Supervisor Signature: ___________________________ Date/time: ___________________________

Location of mustering point: ___________________________ Wind direction (current): ____________

GHD emergency contact (Name and verified phone number): GHD Incident Hotline 1-866-529-4886

Supervisor signature documenting daily debrief has been completed: ___________________________
Wading Through a River

Field staff must review job-specific work plan and coordinate with project manager to verify that all up-front logistics are completed prior to starting work including, but not limited to, permitting, access agreements, and notification to required contacts (e.g., site managers, inspectors, clients, subcontractors, etc.). Additionally, a tailgate safety meeting must be performed and documented at the beginning of each workday. **Stop, Think, Act, Review (STAR)** must be used prior to any activity. All personnel must possess the appropriate training prior to initiating scheduled tasks. Also consider weather conditions. GHD personnel have the authority and responsibility to use **Stop Work Authority (SWA)**.

<table>
<thead>
<tr>
<th>Date issued/revised:</th>
<th>23 February 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project number:</td>
<td>002428</td>
</tr>
<tr>
<td>Project address:</td>
<td>3875 River Road, Tonawanda, NY</td>
</tr>
<tr>
<td>Specific task</td>
<td>Wading through a river</td>
</tr>
<tr>
<td>Key equipment:</td>
<td>Waterproof waders, life jacket, bug spray; first aid kit</td>
</tr>
<tr>
<td>Task-specific training:</td>
<td>Reference HASP for additional site/client safety training requirements</td>
</tr>
</tbody>
</table>

PPE Checklist

<table>
<thead>
<tr>
<th>Item</th>
<th>Type I (top impact)</th>
<th>Type II (side impact)</th>
<th>Class E (standard)</th>
<th>Class G</th>
<th>Foot protection</th>
<th>Hearing protection</th>
<th>Fall protection</th>
<th>APR</th>
<th>Vest</th>
<th>Hard hat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical protective</td>
<td>[]</td>
</tr>
<tr>
<td>(i.e. nitrile)</td>
<td></td>
</tr>
<tr>
<td>ANSI/CSA safety glasses</td>
<td>[]</td>
</tr>
<tr>
<td>Goggles/spoggles</td>
<td>[]</td>
</tr>
<tr>
<td>Shock absorb lanyard</td>
<td>[]</td>
</tr>
<tr>
<td>Half face mask</td>
<td>[]</td>
</tr>
<tr>
<td>Anti-static</td>
<td>[]</td>
</tr>
<tr>
<td>High viz clothing</td>
<td>[]</td>
</tr>
<tr>
<td>N95</td>
<td>[]</td>
</tr>
<tr>
<td>N95</td>
<td>[]</td>
</tr>
</tbody>
</table>

*see key equipment

002428-JSA-Environmental-Wading Through a River | Page 1 of 4
<table>
<thead>
<tr>
<th>Job steps(1)</th>
<th>Task activity</th>
<th>Potential hazard(s)(2) Include energy sources from hazard wheel -</th>
<th>Corrective measure(s)(3)</th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 1 | Check weather | • Unexpected storm
• Fog; rain; snow;
 lightening/thunder
• Heat/cold stress | • Check local and destination weather forecast
• Discuss weather issues and
 precautions to take while driving to the
 destination
• If weather conditions (e.g., fog, rain,
 snow) impair the ability/vision
 reschedule site visit
• In extreme temperatures, ensure all
 personnel have proper clothing,
 hydration, and heat/cold prote
 cation | Field Team Leader | |
| 2 | Prepare to enter river | • Boat traffic
• Proper PPE
• Prepare to carry equipment in river
• River current
• River Depth
• River water temperature
• Slip/trip/fall hazards | • Maintain awareness river traffic
• Make sure PPE is properly secured.
 This includes water proof waders and
 life jacket
• Reduce travel distance when there is a
 need to carry/lift materials
• Make sure grip is adequate; wear
 leather/cotton gloves
• Size up the load; if the object is too
 large or odd shaped OR is in excess of
 50 pounds (23 kg) then assistance
 (mechanical or a buddy lift) will be
 required
• Lift with the legs (bend at the knees and
 use the leg muscles) to protect the
 lower back and keep lower back in a
 neutral position
• Avoid one-handed carrying if possible;
 maintain awareness of footing
• Refer to the HASP for additional lifting
 information
• Maintain resistance to river current. If | Field Staff | |
<table>
<thead>
<tr>
<th>Job steps(1)</th>
<th>Task activity</th>
<th>Potential hazard(s)(2) Include energy sources from hazard wheel -</th>
<th>Corrective measure(s)(3)</th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 3 | River Wading | • Slips/trips/hit/fall hazards
• Heat stress
• Cold stress
• Biological hazards
• Wildlife encounters
• Potential adverse weather conditions | • Project team to consist of 3 persons minimum: 2 person sampling team and 3rd person shore attendant
• Use buddy system while walking through the river
• Spot check to identify underwater hazards, establish pathways which is most free of slip and trip hazards, beware of trip hazards, communicate hazards to on-site personnel
• Heightened awareness of wasps, ants, bees, snakes, turtles, alligators and use bug spray as necessary
• Monitor for heat stress, establish work/rest regimes, wear heat stress PPE, and have liquids available
• Monitor for cold stress, wear warm clothing, have access to fluids and high energy food and schedule a work and rest regime
• Be aware of any rapidly changing environmental conditions and respond accordingly | Field Staff | |
(1) Each Job or Task consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details to set the basis for the potential (associated) hazards.

(2) A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: Contact - victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress/ergonomics/lifting techniques; Exposure - inhalation/skin hazards. Specify the hazards and do not limit the description to a single word such as “Caught”.

(3) Aligning with the Job Steps, Task Activity Description, and Potential Hazard columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective, observable, and quantified terms. Avoid subjective general statements such as “be careful” or “use as appropriate”.

Site personnel participating in JSA review:
I have participated in the review and discussion of the Job Safety Analysis (JSA) listed on this document and understand the duties I am responsible to fulfill. As part of my work, I know I have the responsibility and obligation to STOP work with a Stop Work Authority (SWA) if conditions change and/or potential hazards have been identified.

<table>
<thead>
<tr>
<th>Name/Company</th>
<th>Sign</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSE(s) on job: ____________________________ Assigned mentor: ____________________________

Presenter signature: ____________________________ Date/time: ____________________________

My signature below indicates that all conditions and requirements listed above have been verified, met, and reviewed with all affected personnel prior to start of work.

Supervisor signature: ____________________________ Date/time: ____________________________

Location of mustering point: ____________________________ Wind direction (current): __________

GHD emergency contact (Name and verified phone number): GHD Incident Hotline 1-866-529-4886

Supervisor signature documenting daily debrief has been completed: ____________________________
Field staff must review job-specific work plan and coordinate with project manager to verify that all up-front logistics are completed prior to starting work including, but not limited to, permitting, access agreements, and notification to required contacts (e.g., site managers, inspectors, clients, subcontractors, etc.). Additionally, a tailgate safety meeting must be performed and documented at the beginning of each workday. Stop, Think, Act, Review (STAR) must be used prior to any activity. All personnel must possess the appropriate training prior to initiating scheduled tasks. Also consider weather conditions. GHD personnel have the authority and responsibility to use Stop Work Authority (SWA).

<table>
<thead>
<tr>
<th>Date issued/revised:</th>
<th>June 9, 2016</th>
<th>Client:</th>
<th>Hodgson Russ LLP – Tonawanda Coke Corp Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project number:</td>
<td>002428</td>
<td>Created by</td>
<td>K. Galanti</td>
</tr>
<tr>
<td>Project address:</td>
<td>3875 River Road, Tonawanda, NY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific task:</td>
<td>Construction activities on water or around the water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key equipment:</td>
<td>CSA approved Life Jacket or PFD that fits the operator and occupants; Sunglasses; sunscreen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task-specific training:</td>
<td>Towing and Trailering, Boating Safety</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Equipment

- CSA approved Life Jacket or PFD that fits the operator and occupants
- Sunglasses
- Sunscreen

Hard Hat

- **Type I (top impact)**
 - Chemical protective (i.e. nitrile)
- **Type II (side impact)**
 - Level 1 light duty
- **Class E (standard)**
 - Level 2 light duty with protection
- **Class G**
 - Level 3 medium duty
 - Level 4 heavy duty
 - Industrial grade safety boot
 - Rubber boots (industrial grade)
 - Hip waders

Eye Protection

- **ANSI/CSA safety glasses**
- Goggles/spoggles
- Face shield
- Not Required

Fall Protection

- Harness
- Shock absorb lanyard
- Half face mask
- Face shield
- Lifeline

APR

- **Harness**
- **Face mask**
- **Class II**
- **Class III**
- **Fire retardant clothing (FRC)**

Vest

- **Class II**
- **Class III**
- **Anti-static**
- **High viz clothing**

PPE Clothing

- **Coveralls**
- **Fire retardant clothing (FRC)**
- **Long sleeve shirts**
- **Paper tyvek**
- **Polyethylene tyvek**
- **Other**

Foot Protection

- **High viz**
- **Hearing protection**
- **Arc flash**
- **P100**
- **Paper tyvek**
- **Organic vapor**
- **Specialty/other**

Other

- **Haz.cat 2**
- **Haz cat 4**
- **R95**
- **P95**
- **Hazmat**

Note: *see key equipment*
<table>
<thead>
<tr>
<th>Job steps<sup>(1)</sup></th>
<th>Task activity</th>
<th>Potential hazard(s)<sup>(2)</sup> Include energy sources from hazard wheel -</th>
<th>Corrective measure(s)<sup>(3)</sup></th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 1 | Set up of work site | • Inclement weather
• Lifting hazards
• Manual material handling
• Back injury
• Pinch points
• Slip/trip/fall hazards
• Fuel spill | • Monitor weather forecasts
• Make sure grip is adequate; wear leather/cotton gloves
• Lift with the legs (bend at the knees and use the leg muscles) to protect the lower back and keep lower back in a neutral position
• Avoid one-handed carrying if possible; maintain awareness of footing
• Refuel in appropriate location, no sparks or static buildup
• Practice STAR | Field Staff | |
| 2 | Sampling activity near water | • Slippery banks
• Drowning
• Overgrowth
• Differing elevations to water’s edge
• Recovery of a person in the water | • Practice STAR
• Make sure area is clear of tripping hazards
• Position retrieval and rescue equipment as appropriate for the work
• Use tie off points and travel restraint if appropriate
• Review JSA’s for all tasks to be preformed
• Wear appropriate PFD vest | Field Staff | |
Each Job or Task consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details to set the basis for the potential (associated) hazards.

A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: Contact - victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress/ergonomics/lifting techniques; Exposure - inhalation/skin hazards. Specify the hazards and do not limit the description to a single word such as “Caught”.

Aligning with the Job Steps, Task Activity Description, and Potential Hazard columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective, observable, and quantified terms. Avoid subjective general statements such as "be careful" or "use as appropriate".

Site personnel participating in JSA review:
I have participated in the review and discussion of the Job Safety Analysis (JSA) listed on this document and understand the duties I am responsible to fulfill. As part of my work, I know I have the responsibility and obligation to STOP work with a Stop Work Authority (SWA) if conditions change and/or potential hazards have been identified.

<table>
<thead>
<tr>
<th>Name/Company</th>
<th>Sign</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSE(s) on job: ________________________________ Assigned mentor: ________________________________

Presenter signature: ________________________________ Date/time: ________________________________

My signature below indicates that all conditions and requirements listed above have been verified, met, and reviewed with all affected personnel prior to start of work.

Supervisor signature: ________________________________ Date/time: ________________________________

Location of mustering point: ________________________________ Wind direction (current): ________________

GHD emergency contact (Name and verified phone number): GHD Incident Hotline 1-866-529-4886

Supervisor signature documenting daily debrief has been completed: ________________________________
Job Safety Analysis (JSA)

Mobilization/Demobilization

Field staff must review job-specific work plan and coordinate with project manager to verify that all up-front logistics are completed prior to starting work including, but not limited to, permitting, access agreements, and notification to required contacts (e.g., site managers, inspectors, clients, subcontractors, etc.). Additionally, a tailgate safety meeting must be performed and documented at the beginning of each workday. Stop, Think, Act, Review (STAR) must be used prior to any activity. All personnel must possess the appropriate training prior to initiating scheduled tasks. Also consider weather conditions. GHD personnel have the authority and responsibility to use Stop Work Authority (SWA).

Date issued/revised: June 9, 2016
Client: Hodgson Russ LLP – Tonawanda Coke Corp Site

Project number: 002428
Created by: K. Galanti
Sim OPS: Yes/No
SSE on site?: Yes/No

Project address: 3875 River Road, Tonawanda, NY
Specific task:
Key equipment: 360-degree topper
Task-specific training:

<table>
<thead>
<tr>
<th>Hard hat</th>
<th>Gloves (ANSI/EN 388)</th>
<th>Eye protections</th>
<th>Fall protection</th>
<th>APR</th>
<th>Vest</th>
<th>PPE clothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Type I (top impact)</td>
<td>☐ Chemical protective (i.e. nitrile)</td>
<td>☐ ANSI/CSA safety glasses</td>
<td>☐ Harness</td>
<td>☐ Full face mask</td>
<td>☐ Class II</td>
<td>☐ Coveralls</td>
</tr>
<tr>
<td>☐ Type II (side impact)</td>
<td>☐ Level 1 light duty</td>
<td>☐ Goggles/spoggles</td>
<td>☐ Shock absorb lanyard</td>
<td>☐ Half face mask</td>
<td>☐ Class III</td>
<td>☐ Fire retardant clothing (FRC)</td>
</tr>
<tr>
<td>☐ Class E (standard)</td>
<td>☐ Level 2 light duty with protection</td>
<td>☐ Face shield</td>
<td>☐ Lifeline</td>
<td></td>
<td>☐ Anti-static</td>
<td>☐ High viz clothing</td>
</tr>
<tr>
<td>☐ Class G</td>
<td>☐ Level 3 medium duty</td>
<td>☐ Other*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Level 4 heavy duty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Foot protection</td>
<td>☐ High viz</td>
<td>☐ Hearing protection</td>
<td>☐ Arc flash</td>
<td>☐ N95</td>
<td>☐ FRC</td>
<td>☐ Long pants</td>
</tr>
<tr>
<td>☐ Industrial grade safety boot</td>
<td>☐ Other*</td>
<td>☐ NOT Required</td>
<td>☐ Haz.cat 2</td>
<td>☐ P95</td>
<td>☐ Polyethylene tyvek</td>
<td></td>
</tr>
<tr>
<td>☐ Rubber boots (industrial grade)</td>
<td>☐ Required</td>
<td></td>
<td>☐ Haz cat 4</td>
<td>☐ R95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Hip waders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*see key equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Foot protection

- High viz
- Hearing protection
- Arc flash
- P100
- Paper tyvek
- N95
- Long sleeve shirts
- P95
- Polyethylene tyvek
- Haz.cat 2
- R95
- Other

Hearing protection

- High viz
- Hearing protection
- Arc flash
- P100
- Paper tyvek
- N95
- Long sleeve shirts
- P95
- Polyethylene tyvek
- Haz.cat 2
- R95
- Other
<table>
<thead>
<tr>
<th>Job steps(1)</th>
<th>Task activity</th>
<th>Potential hazard(s)(2)</th>
<th>Include energy sources from hazard wheel -</th>
<th>Corrective measure(s)(3)</th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 1 | Discuss STAR and SWA | • Site personnel not aware of STAR and SWA | | • Project team (GHD) discusses importance of and documentation procedures for SWA during pre-job safety meeting
• Use SWA to stop any work that is unsafe | Senior Field Team Leader | |
| 2 | Check weather | • Unexpected storm
• Fog, rain, snow; lightening/thunder
• Heat/cold stress | | • Check local weather forecast
• If adverse weather conditions are likely, prepare a contingency plan for lodging, etc. with project manager
• Discuss weather issues and precautions to take while driving and on site during the pre-job safety meeting
• If weather conditions (e.g., fog, rain, snow, etc.) impair the ability/vision of the driver, exit at nearest safe location and assess the situation
• While on site, at first sign of lightening/thunder utilize SWA and assess weather conditions
• In extreme temperatures, ensure all personnel have proper clothing, hydration, and heat/cold protection (e.g., canopy, fan, glove warmers) | Driver | |
<table>
<thead>
<tr>
<th>Job steps<sup>1</sup></th>
<th>Task activity</th>
<th>Potential hazard(s)<sup>2</sup></th>
<th>Corrective measure(s)<sup>3</sup></th>
<th>Person responsible (Print first and last names)</th>
<th>Verified by (Print first and last names)</th>
</tr>
</thead>
</table>
| 3 | Load equipment into vehicle | • Lifting hazards
• Manual material handling
• Back injury
• Cuts
• Pinch points
• Hand/foot injury
• Forgotten or damaged equipment
• Materials or equipment leaving the vehicle bed during travel create hazards for other drivers | • Reduce travel distance when there is a need to carry/lift materials
• Make sure grip is adequate; wear leather/cotton gloves
• Size up the load; if the object is too large or odd shaped OR is in excess of 50 pounds (23 kg) then assistance (mechanical or a buddy lift) will be required
• Maintain neutral back posture - Lift with the legs (bend at the knees and use the leg muscles) to protect the lower back and make sure to shift with the feet rather than twisting at the back
• Maintain neutral wrist posture when lifting, carrying, pushing or pulling. The wrist is the strongest and most stable when it is straight.
• Avoid one-handed carrying if possible; maintain awareness of footing
• Avoid placing hands/fingers in pinch point locations
• Wear safety-toed boots
• Verify requested equipment against warehouse form
• Load equipment in an organized manner to prevent shifting during transport or use cargo netting
• Secure materials or equipment with cargo netting. Ensure netting does not loosen during travel by securing the straps with plastic wire ties or equivalent measures. | Field Staff | |
<table>
<thead>
<tr>
<th>Job steps</th>
<th>Task activity</th>
<th>Potential hazard(s)</th>
<th>Corrective measure(s)</th>
<th>Person responsible</th>
<th>Verified by</th>
</tr>
</thead>
</table>
| 4 | Complete GHD Daily Operator Vehicle Checklist | • Damaged vehicle lights, tires, windows, mirrors, horn | • Check for fluid leaks under vehicle
• Test operation of headlights, front/rear turn signals, backup lights, brake lights, and emergency flashers
• Visually check the pressure/wear of tires
• Ensure the vehicle has a spare tire
• Assure windshield and window glass is clean and free from obstructions
• Test the windshield wipers and horn
• Verify vehicle registration, insurance card, and inspection sticker is present and valid
• Ensure the vehicle contains a first aid kit, fire extinguisher, and road hazard kit
• Check immediate vehicle perimeter and initial path of travel for obstructions | Driver |
| 5 | Check and adjust seat, steering wheel, headrest, and mirrors | • Back/body strain
• Blind spot
• Impaired vision | • Adjust seat, headrest, and steering wheel height so body is fully supported/comfortable and pedals are within easy reach
• Ensure mirrors are properly adjusted | Driver |
| 6 | Fasten seat belt(s) and ensure passenger(s) seat belts are fastened | • Serious injury, ejection, or death from collision and/or traffic citation | • Verify driver and passenger(s) seat belts are in good condition and properly latched | Driver |
| 7 | Ensure vehicle doors are locked | • Serious injury, ejection, or death from collision
• Unwanted intrusion
• Lost equipment | • Manually lock all doors to vehicle | Driver |
| 8 | Start engine and check gauges and warning lights | • Vehicle breakdown | • Verify sufficient fuel and other hazard lamps (e.g., battery, oil, and temperature) are not lit | Driver |
| 9 | Mobilize to site | • Arriving late
• Collision
• Injury or death to occupants or other parties | • Do not use cell phones or perform other distracting activities while vehicle is in motion
• Constantly scan intersections, move eyes, check mirrors, and assess traffic lights (fresh vs. stale)
• Maintain safety cushion around vehicle (front, sides, and rear) and 4-second following distance
• Utilize all driving defensive techniques | Driver |
<table>
<thead>
<tr>
<th>Job steps</th>
<th>Task activity</th>
<th>Potential hazard(s)</th>
<th>Corrective measure(s)</th>
<th>Person responsible</th>
<th>Verified by</th>
</tr>
</thead>
</table>
| 10 | Arrive at site | • Pedestrian injury
• Collision | • Maintain awareness of pedestrian/vehicular traffic when entering site and traveling to work zone | Driver | |
| 11 | Park vehicle | • Pedestrian injury
• Collision
• Property damage | • Maintain awareness of pedestrian/vehicular traffic
• Park vehicle in pull-through parking space or facing the exit
• Parking in a parking space that is not a designated parking space will require the placement of the 360-degree topper on the hood of the vehicle
• Use caution and mirrors/spotter when backing vehicle
• Set parking brake | Driver | |
| 12 | Demobilization| • Collision
• Injury or death to occupants or other parties | • Check immediate vehicle perimeter and initial path of travel for obstructions
• Maintain awareness of pedestrian/vehicular traffic when exiting site
• Utilize defensive driving techniques
• Complete post-departure checklist and report vehicle problems to company vehicle maintenance manager or rental car agency | Driver | |

(1) Each Job or Task consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details to set the basis for the potential (associated) hazards.

(2) A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: Contact - victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress/ergonomics/lifting techniques; Exposure - inhalation/skin hazards. Specify the hazards and do not limit the description to a single word such as "Caught".

(3) Aligning with the Job Steps, Task Activity Description, and Potential Hazard columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective, observable, and quantified terms. Avoid subjective general statements such as "be careful" or "use as appropriate".
Site personnel participating in JSA review:
I have participated in the review and discussion of the Job Safety Analysis (JSA) listed on this document and understand the duties I am responsible to fulfill. As part of my work, I know I have the responsibility and obligation to STOP work with a Stop Work Authority (SWA) if conditions change and/or potential hazards have been identified.

<table>
<thead>
<tr>
<th>Name/Company</th>
<th>Sign</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSE(s) on job: ________________________________ Assigned mentor: ________________________________

Presenter signature: ________________________________ Date/time: ________________________________

My signature below indicates that all conditions and requirements listed above have been verified, met, and reviewed with all affected personnel prior to start of work.

Supervisor signature: ________________________________ Date/time: ________________________________

Location of mustering point: ________________________________ Wind direction (current): _______________

GHD emergency contact (Name and verified phone number): GHD Incident Hotline 1-866-529-4886

Supervisor signature documenting daily debrief has been completed: ________________________________
Attachment B
Project Safety Forms
Reported by:	Employee’s office:
RSHM: | Date:
---|---
Employee’s supervisor: | Employee’s principal:
---|---
Project related: ☐ No ☐ Yes If yes, name of client:
---|---
Client contact (if applicable): | Project no (if applicable):
---|---
Re: (check all that apply) ☐ Unsafe act ☐ Unsafe condition ☐ Stop work authority (SWA)
---|---
Location: (check one) ☐ Driving ☐ Field ☐ Office
---|---
Date reported to supervisor/PM: | Date corrected:
---|---
Time reported to supervisor/PM: | Time corrected:
---|---
Describe the unsafe act, unsafe condition or SWA situation
---|---
List corrective action(s) implemented
---|---
Did the corrective action(s) mitigate the unsafe act/unsafe condition?
---|---
For SMART administrators use only:
---|---
---|---
Chevron category: ☐ A Person or People ☐ B Equipment ☐ C Environmental ☐ D Procedures/ Processes/ JSA-review/revise ☐ E Visitors
---|---
Causative factor: ☐ 1 Insufficient training for task ☐ 2 Hurrying to complete the task ☐ 3 Easier if proper process not followed ☐ 4 Took shortcuts without prior incident ☐ 5 Incomplete or no procedures ☐ 6 Procedures not known or enforced ☐ 7 Improper PPE ☐ 8 Improper tools ☐ 9 Improper workplace layout ☐ 10 Exposure to conditions
---|---
Energy source: ☐ G Gravity ☐ M Motion ☐ ME Mechanical ☐ E Electrical ☐ P Pressure ☐ T Temperature ☐ B Biological ☐ C Chemical ☐ R Radiation ☐ S Sound
---|---
Are additional actions required? ☐ No ☐ Yes If yes, what?
Field Safe Task Evaluation Process (F-STEP)

<table>
<thead>
<tr>
<th>Report status:</th>
<th>Initial report</th>
<th>Updated report</th>
<th>Final report</th>
<th>Verification/validation</th>
<th>Report input to SMART database</th>
</tr>
</thead>
<tbody>
<tr>
<td>(insert date)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observer’s name:
Client:
Observer’s office:
Observer’s supervisor:
Subcontractor: ☐ Yes ☐ No
Subcontractor company name:

Date:
Observer’s name:
Observer’s office:
Observer’s supervisor:
Subcontractor: ☐ Yes ☐ No
Subcontractor company name:

Date:
Feedback conducted by:
Observer’s name:
Observer’s office:
Observer’s supervisor:
Subcontractor: ☐ Yes ☐ No
Subcontractor company name:

Date:

Check task being observed
(if not listed here, go to columns at right)

<table>
<thead>
<tr>
<th>☐ Air knifing</th>
<th>☐ Mob/demob</th>
<th>☐ Agricultural services</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Clearing</td>
<td>☐ Project oversight</td>
<td>☐ Construction</td>
</tr>
<tr>
<td>☐ Demolition</td>
<td>☐ Soil sampling</td>
<td>☐ Landfill</td>
</tr>
<tr>
<td>☐ Drilling</td>
<td>☐ Stack testing</td>
<td>☐ Office operations</td>
</tr>
<tr>
<td>☐ Electrical work</td>
<td>☐ Surveys & audits</td>
<td>☐ O&M</td>
</tr>
<tr>
<td>☐ Excavation</td>
<td>☐ Traffic control</td>
<td>☐ Pipeline</td>
</tr>
<tr>
<td>☐ General site cleaning</td>
<td>☐ UST removal</td>
<td>☐ Refinery</td>
</tr>
<tr>
<td>☐ Heavy equipment operations</td>
<td>☐ Water sampling</td>
<td>☐ Treatment plants</td>
</tr>
<tr>
<td>☐ IH sampling</td>
<td>☐ Well management</td>
<td>☐ Other</td>
</tr>
<tr>
<td>☐ Manual lifting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Background information (Give a brief description of task being performed and your surroundings)

Observer’s positive comments

1.
2.
3.

Feedback session conclusion:
If no questionable Items: brief recap of positive actions/comments
If questionable Items: brief recap of positive actions/comments and why did the questionable item(s) occur?
<table>
<thead>
<tr>
<th>Personal protective equipment</th>
<th>Meets work standards</th>
<th>☐</th>
<th>Evaluation comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hearing protection (e.g., ear plugs)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Head protection (e.g., hard hat)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Eye protection (e.g., safety glasses/goggles)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Hand protection (e.g., gloves)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Foot protection (e.g., steel-toe boots)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Respiratory protection</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Fall protection (e.g., lanyard/harness)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. High visibility clothing (e.g., work vest)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. First aid kit/fire extinguisher</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Other (be specific)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body position</td>
<td>Meets work standards</td>
<td>☐</td>
<td>Evaluation comments</td>
</tr>
<tr>
<td>11. Proper body positioning when exerting force (lifting/pushing/pulling)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Pinch points/moving equipment - hands/body placement</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. 3-points of contact</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Other (be specific)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work environment</td>
<td>Meets work standards</td>
<td>☐</td>
<td>Evaluation comments</td>
</tr>
<tr>
<td>15. Work/walk surface clear (free and clear pathway)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Housekeeping/equipment storage</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Controlled work zone (e.g., warning devices, barricades, cones, flags)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Emergency stop/safety switches</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Materials labeled correctly</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Storage/disposal of waste</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Other (be specific)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating procedures</td>
<td>Meets work standards</td>
<td>☐</td>
<td>Evaluation comments</td>
</tr>
<tr>
<td>22. Star performed/job planning</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Stop work authority process – understood and considered</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. JSA/JLA/risk assessment reviewed and followed</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. Daily site inspection</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. High risk task specific (hot work, confined space, LOTO, excavation/ trenching)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Inspect work zone for hazards</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. Coordinate/communicate with site rep and/or others on site</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. Spotters used appropriately</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. Underground/overhead utilities identified</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. Other (be specific)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tools/equipment</td>
<td>Meets work standards</td>
<td>☐</td>
<td>Evaluation comments</td>
</tr>
<tr>
<td>32. Hand/power tool - selection, condition, and use</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33. Field/test equipment - selection, condition, and use</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34. Heavy equipment - selection, condition, and use</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35. Other (be specific)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observation total occurrences</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% observations to meet work standards</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item specific to work task</td>
<td>Meets work standards</td>
<td>☐</td>
<td>Evaluation comments</td>
</tr>
<tr>
<td>Insert task/JSA/SOP Step</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert task/JSA/SOP Step</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert task/JSA/SOP Step</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Causative factors and corrective actions

<table>
<thead>
<tr>
<th>Item No.</th>
<th>CF</th>
<th>Corrective actions (Must match Causative Factor)</th>
<th>Responsible party</th>
<th>Date due</th>
<th>Date completed</th>
<th>Verification (Did we do what we said we would do?) and Validation (Is it working?)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verified by/ Validated by</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verified by:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Validated by:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verified by:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Validated by:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verified by:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Validated by:</td>
</tr>
</tbody>
</table>

Causative factors

<table>
<thead>
<tr>
<th></th>
<th>Personal factors</th>
<th>Company factors</th>
<th>External factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insufficient training for task</td>
<td>5 Incomplete or no procedures</td>
<td>10 Exposure to conditions</td>
</tr>
<tr>
<td>2</td>
<td>Hurrying to complete the task</td>
<td>6 Procedures not known or enforced</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Easier if proper process not followed</td>
<td>7 Improper PPE</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Took shortcuts without prior incident</td>
<td>8 Improper tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 Improper workplace layout</td>
<td></td>
</tr>
</tbody>
</table>
Driving Safe Task Evaluation Process (D-STEP) Report

<table>
<thead>
<tr>
<th>Report status:</th>
<th>Initial report</th>
<th>Updated report</th>
<th>Final report</th>
<th>Verification/validation</th>
<th>Report input to SMART database</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Observer's name:</th>
<th>Date:</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client:</td>
<td>Project name:</td>
<td></td>
</tr>
<tr>
<td>Observer's office:</td>
<td>Site location:</td>
<td></td>
</tr>
<tr>
<td>Observer's supervisor:</td>
<td>Project no. (if applicable):</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subcontractor: Yes No</th>
<th>Subcontractor company name:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Feedback conducted by:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observee's supervisor:</td>
<td>Time:</td>
</tr>
</tbody>
</table>

Driving conditions
- ☐ Freeway/interstate
- ☐ Wet
- ☐ Day
- ☐ Raining
- ☐ Surfed street
- ☐ Dry
- ☐ Night
- ☐ Windy
- ☐ Dirt road
- ☐ Snow/ice
- ☐ Snowing
- ☐ Mud
- ☐ Fog

Vehicle condition
- ☐ Car
- ☐ Truck
- ☐ Van
- ☐ Pulling trailer
- ☐ Company owned
- ☐ Rental
- ☐ Personal

Background information (Give a brief description of where you are driving from and to and your surroundings)

Observer's positive comments
1.
2.
3.

Feedback session conclusion:
If no questionable Items: brief recap of positive actions/comments
If questionable Items: brief recap of positive actions/comments and why did the questionable item(s) occur?
<table>
<thead>
<tr>
<th>Pre-driving</th>
<th>Meets work standards</th>
<th>????</th>
<th>N/A</th>
<th>Evaluation comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. JMP/JSA/Risk Assessment developed and/or reviewed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. STAR performed/job planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Stop Work Authority – understood and considered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Registration/insurance/last maintenance report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Tire inflation and tread</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Wipers and washer fluid/clean windows/mirrors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Horn/lights operation/instrument panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Body damage/overall vehicle appearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Under-vehicle check for leaks/obstructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Secure loose items</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Check fluid levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Fire extinguisher/triangles/first aid kit/jack/spare</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Verifies area is clear before moving vehicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Body positioning</th>
<th>Meets work standards</th>
<th>????</th>
<th>N/A</th>
<th>Evaluation comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Adjust seat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Adjust head rest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Adjust mirrors to minimize blind spots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Seat belts (driver/passengers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Locks doors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating procedures</th>
<th>Meets work standards</th>
<th>????</th>
<th>N/A</th>
<th>Evaluation comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Yields right-of-way and allows other vehicles to merge, change lanes, turn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Respects pedestrians, cyclists, other drivers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Is courteous/tolerant of others’ poor driving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Two hands on wheel no higher than 9 and 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Skill in handling distractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Adjusts to traffic conditions (speed / traffic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. Uses turn signals (for turns and lane changes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Following distance is appropriate (4-second rule)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Avoids sudden acceleration and deceleration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. Before backing up, looks behind vehicle/checks for traffic, pedestrians, parked vehicles, uses spotter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. Scans the road ahead (15-second eye lead or 2-3 blocks-1/4 mile) and anticipates actions of others to avoid sudden swerves, stops, lane changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. Checks mirrors every 5-8 seconds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. Checks for hazards on the road (e.g., animals, debris, road conditions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. Reads and obeys traffic signals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33. Makes complete stops at signals, at a safe distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34. Scans intersection left and right/anticipates intent of other vehicles before reaching “point of no return”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35. Covers brakes safely and adjusts speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36. Does not use cell phone during operation of vehicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37. Other (be specific)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating procedures - Parking</th>
<th>Meets work standards</th>
<th>????</th>
<th>N/A</th>
<th>Evaluation comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>38. Looks for pull through parking before backing in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39. Uses signals, leaves adequate space before pulling back into lane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40. Obeys signs and uses signals in parking lot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41. Maintains proper speed inside the lot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42. Ensures vehicle is legally/properly parked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43. Sets parking brake and secures vehicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44. Other (be specific)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Observation total occurrences | | | | |
| % Observations to meet work standards | | | | |

Item specific to work task			
Insert Task/JSA/SOP Step			
Insert Task/JSA/SOP Step			
Causative factors and corrective actions

<table>
<thead>
<tr>
<th>Item No.</th>
<th>CF</th>
<th>Corrective actions (Must match Causative Factor)</th>
<th>Responsible party</th>
<th>Date due</th>
<th>Date completed</th>
<th>Verified by/Validated by</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verified by:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Validated by:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verified by:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Validated by:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verified by:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Validated by:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verified by:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Validated by:</td>
<td></td>
</tr>
</tbody>
</table>

Causative factors

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Personal factors</th>
<th>Company factors</th>
<th>External factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insufficient training for task</td>
<td>5</td>
<td>Incomplete or no procedures</td>
</tr>
<tr>
<td>2</td>
<td>Hurrying to complete the task</td>
<td>6</td>
<td>Procedures not known or enforced</td>
</tr>
<tr>
<td>3</td>
<td>Easier if proper process not followed</td>
<td>8</td>
<td>Improper tools</td>
</tr>
</tbody>
</table>
Note: A Significant Near Miss must be called into the Incident Reporting Hotline: 1-866-529-4886

Instructions:
1) Employee completes the Near Miss Report and submits to Supervisor.
2) Supervisor reviews and makes other comments.
3) Employee discusses Near Miss with Project Manager.
4) Submit to applicable SMART Reporting submission address

<table>
<thead>
<tr>
<th>Report status:</th>
<th>(insert date)</th>
<th>Initial report</th>
<th>Updated report</th>
<th>Final report</th>
<th>Verification/validation</th>
<th>Report input to SMART database</th>
</tr>
</thead>
</table>

Section 1

A. Employee Identification

<table>
<thead>
<tr>
<th>Employee No.</th>
<th>Last Name</th>
<th>First Name</th>
<th>Employee's Company - if Subcontractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Hire</td>
<td>Position/Title</td>
<td>Supervisor</td>
<td>Home Office Location - if GHD Employee</td>
</tr>
</tbody>
</table>

B. General Information

<table>
<thead>
<tr>
<th>Where did the Near Miss occur?</th>
<th>Type of Near Miss (Check all that apply)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>Project Site</td>
</tr>
<tr>
<td>Canada</td>
<td>United States</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address of Near Miss (City, State/Province/County, Postal/Zip Code)</th>
<th>Specific Location of Near Miss (e.g., where on site)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Date and Hour of Near Miss</th>
<th>Date and Hour Reported to GHD</th>
<th>Time Employee Began Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>Day</td>
<td>Year</td>
</tr>
</tbody>
</table>

Witnesses?

Yes ☐ No ☐ ☒

Witness Name and Telephone Number

C. Project Information (Project Related Near Miss Only): Project Related: () Yes () No

<table>
<thead>
<tr>
<th>Project #</th>
<th>Project Name</th>
<th>GHD Project Manager</th>
<th>Client</th>
<th>Client Contact</th>
</tr>
</thead>
</table>

Was the Client Advised of the Near Miss?

Yes ☐ No ☐ ☒ N/A

Name:

Date and Time

Month | Day | Year | Time

Section 2

A. Details of the Near Miss

1. What job/task was being performed when the Near Miss occurred? (Example: collecting groundwater samples).

2. Provide a detailed description of the employee's specific activities at the time of the Near Miss. Include details of equipment/materials being used, including the size and weights of objects being handled, and weather conditions at time of the Near Loss. If necessary, attach additional pages to the report.
Section 2 (continued)

B. Near Miss Investigation

Conduct a 5-Why Root Cause Analysis Investigation. In addition, if there was the potential for a significant injury or loss, report the Near Miss to the Incident Hot Line (this will determine if a Tap Root Cause Analysis is necessary).

<table>
<thead>
<tr>
<th>HASP prepared?</th>
<th>Did the safety plan identify and provide safety procedures for the specific tasks being performed when the Near Miss occurred?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Submit a PDF of HASP to Investigation Team. If yes, was the HASP on site?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Did the employee utilize the STAR process before initiating the task?

| Yes | No | If no, why not? (Explain) |

5-Why Root Cause:

1. Why did “above” happen?

2. Why did “1” happen?

3. Why did “2” happen?

4. Why did “3” happen?

5. Why did “4” happen?

6. Why did “5” happen?

C. Accountability

<table>
<thead>
<tr>
<th>Initial Report Date</th>
<th>Initial Report Prepared by: (please print)</th>
<th>Initial Report Prepared by: (signature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>Day</td>
<td>Year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>Day</td>
<td>Year</td>
</tr>
</tbody>
</table>

D. Stewardship

Will a Near Miss Summary be Prepared? Yes No If yes, by:

<table>
<thead>
<tr>
<th>Quality Review By:</th>
<th>Date:</th>
<th>Findings</th>
</tr>
</thead>
</table>

Additional information: Attach photos, witness statement(s), affected employee statement, as applicable, to the end of this document.

See Section 3 Below: Corrective Actions/Verification and Validation
Section 3 (continued)

<table>
<thead>
<tr>
<th>Corrective Action</th>
<th>Validation & Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>Corrective Actions (Must match Causative Factor)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Causative factors

<table>
<thead>
<tr>
<th>Personal factors</th>
<th>Company factors</th>
<th>External factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Insufficient training for task</td>
<td>5 Incomplete or no procedures</td>
<td>10 Exposure to conditions</td>
</tr>
<tr>
<td>2 Hurrying to complete the task</td>
<td>6 Procedures not known or enforced</td>
<td></td>
</tr>
<tr>
<td>3 Easier if proper process not followed</td>
<td>7 Improper PPE</td>
<td></td>
</tr>
<tr>
<td>4 Took shortcuts without prior incident</td>
<td>8 Improper tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 Improper workplace layout</td>
<td></td>
</tr>
</tbody>
</table>
Note: Incidents must be called into the Incident Reporting Hotline: 1-866-529-4886

Instructions:
1) For Personal Injuries, Occupational Illnesses, and Property Damage, complete Sections 1 and 2
2) For Motor Vehicle Accidents, complete Sections 1, 2, and 4.
3) Initial report must be submitted within 24 hours.

<table>
<thead>
<tr>
<th>Report status:</th>
<th>Initial report</th>
<th>Updated report</th>
<th>Final report</th>
<th>Verification/validation</th>
<th>Report input to SMART database</th>
</tr>
</thead>
<tbody>
<tr>
<td>(insert date)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 1

A. Employee Identification
- GHD Employee □
- Temporary Employee □
- Subcontractor □
- Employee No.
- Last Name
- First Name
- Middle Name/Initial
- Male □ Female □
- Area Code
- Telephone Number (
- Employee Home Address (Street, City, State/Province/County, Postal/Zip Code)
- Date of Hire
- Month Day Year
- Position/Title
- Supervisor
- Employee’s Company/Home Office Location

B. General Information
- Where did the Incident occur and which country?
 - Office □
 - Project Site □
 - Other □
 - Canada □ United States □
- Address of Incident (City, State/Province/County, Postal/Zip Code)
- Specific Location of incident (e.g., where on site)
- Type of incident (Check all that apply)
 - Employee Injury/Illness □
 - Vehicle Accident □
 - Property Damage Only □
- Date and Hour of Incident
- Month Day Year
- a.m.
- p.m.
- Date and Hour Reported to Employer
- Month Day Year
- a.m.
- p.m.
- Date and Hour Last Worked
- Month Day Year
- a.m.
- p.m.
- Time Employee Began Work
- a.m.
- p.m.
- Normal Work Hours
- Witness(es)? □ Yes □ No
- Witness Name and Telephone Number

C. Project Information (Project Related Incident Only)
- Project Related □
 - Project #
 - Project Name
 - Project Manager
 - Site Telephone Number ()
 - Project Manager Cell Number ()
 - Client Name
 - Was the Client Advised of the Incident? □ Yes □ No
 - Name of Person Contacted
 - Date and Time Contacted

Section 2

A. Details of the Incident
1. What job/task was being performed when the incident occurred? (Example: collecting groundwater samples).

2. Provide a detailed description of the employee’s specific activities at the time of the incident. Include details of equipment/materials being used, including the size and weight of objects being handled, and weather conditions at time of the incident. If necessary, attach additional pages to the report.

3. For injuries, identify the specific part of body injured, and specify left or right side. For illnesses, identify and describe the affected area/body part.

4. Identify the object or substance that directly injured the employee and how. Include size, weight, and shape of object, quantity of substance, etc.

5. Identify property damaged and how it was damaged (include owner of property, nature and source of damage, and model and serial number, if appropriate).

B. Health Care/Medical Treatment
- Employee received health care? □ Yes □ No
 - First Aid □
 - Medical treatment other than first aid (sutures, etc.) □
 - Hospitalized □
 - Clinic □
 - Hospital emergency room □
 - On location by self or GHD employee □
 - On site by EMT □
- Name of Health Care Provider, Physician Name, Phone Number, Address (Street, City, Province/State/County, and Postal/Zip Code)
Section 2 (continued)

C. Incident Investigation

- **5 Why Root Cause Analysis**
 - Analysis Investigation [Non-OSHA Recordable, <$5,000/£3,000 damage]
 - Tap Root Cause Analysis [OSHA Recordable, and/or >$5,000/£3,000 damages]

<table>
<thead>
<tr>
<th>HASP prepared?</th>
<th>Did the safety plan identify and provide safety procedures for the specific tasks the employee was conducting when injured?</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Yes ☐ No ☐ N/A</td>
<td>☐ Yes ☐ No If no, why not? (Explain)</td>
</tr>
</tbody>
</table>

Submit a PDF of HASP and relevant JSA(s)/Risk Assessment to Investigation Team.

If yes, was the HASP on site?
☐ Yes ☐ No

- Did the employee utilize the STAR process before initiating the task?
☐ Yes ☐ No If no, why not? (Explain)

- Was the employee drug & alcohol tested post incident?
☐ Yes ☐ No

5-Why Root Cause: Incident Statement

1. **Why did “above” happen?**

2. **Why did “1” happen?**

3. **Why did “2” happen?**

4. **Why did “3” happen?**
See Corrective Actions/Verification and Validation Section (Page 4)

5. **Why did “4” happen?**

6. **Why did “5” happen?**

D. Accountability

- Initial Report Date
 Initial Report Prepared by: (please print)
 Initial Report Prepared by: (signature)

<table>
<thead>
<tr>
<th>Month</th>
<th>Day</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Investigation Team
Company
Position/Title

- Final Report Date
 Final Report Prepared by: (please print)
 Final Report Prepared by: (signature)

<table>
<thead>
<tr>
<th>Month</th>
<th>Day</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E. Stewardship

- Will an Incident Summary be Prepared?
☐ Yes ☐ No

 Quality Review By:
 Date:
 Findings:
Section 3

A. Agency Reporting and Recording Information (To be completed by an HSE Team Member)

CANADA

<table>
<thead>
<tr>
<th>Provincial Regulatory Agency Reporting Required?</th>
<th>Employee Injury Information (Injury met the following criteria):</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Yes □ Not required</td>
<td>□ First Aid □ Medical Treatment □ Critical Injury □Modified Duty □ Lost Time Injury</td>
</tr>
</tbody>
</table>

If medical treatment, what?

<table>
<thead>
<tr>
<th>Joint Safety and Health Committee Notified?</th>
<th>Total days of modified duty</th>
<th>Total days of lost time (if any)</th>
<th>Date employee returned to work</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Yes □ No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If exceeds 7 days, report to WSIB

UNITED STATES

<table>
<thead>
<tr>
<th>OSHA Recordable Injury?</th>
<th>Employee Injury Information (Injury met the following OSHA 300 Log criteria)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Yes □ No</td>
<td>□ First Aid □ Medical Treatment □ Restricted Duty □ Lost Time Injury</td>
</tr>
</tbody>
</table>

If medical treatment, what?

<table>
<thead>
<tr>
<th>Total days of restricted duty:</th>
<th>Total days of lost time (if any)</th>
<th>Date employee returned to work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OSHA Recordable.pdf

GHD | NA-FM-HSE-106 Incident Reporting Form | Rev. 0 - 7/1/2015 | Page 3 of 5
Section 4

A. Vehicle GHD Employee was Operating

<table>
<thead>
<tr>
<th>License Plate No.</th>
<th>State/Province/County</th>
<th>Police Department</th>
<th>City</th>
<th>State/Province/County</th>
<th>Vehicle Year/Make/Model</th>
<th>Odometer Reading at Time of Accident</th>
<th>Police Report Number</th>
<th>Weather Conditions</th>
</tr>
</thead>
</table>

Name of Person Operating Vehicle

“X” IN AREA OF VEHICLE DAMAGE

Description of Vehicle Damage:

B. Other Vehicles Involved

<table>
<thead>
<tr>
<th>Name of Owner</th>
<th>Address</th>
<th>City/State/Prov./County/Postal/Zip</th>
<th>Area Code and Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator’s Name (if different from above)</td>
<td>Address</td>
<td>City/State/Prov./County/Postal/Zip</td>
<td>Area Code and Telephone Number</td>
</tr>
<tr>
<td>Year/Make/Model</td>
<td>Description of Property Damage:</td>
<td>"X" IN AREA OF VEHICLE DAMAGE</td>
<td></td>
</tr>
<tr>
<td>Insurance Co. Name & Telephone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>License Plate No./State/Province</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Injured Persons

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone Number</th>
<th>Nature of Injury</th>
<th>Indicate if Injured was a Vehicle Driver/Passenger, GHD Employee, Other, or Pedestrian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. Witnesses

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Area Code and Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>()</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>()</td>
</tr>
</tbody>
</table>

E. Description of Accident

PLEASE COMPLETE OR ATTACH SEPARATE DIAGRAM.

Was Ticket Issued? Reason:

☐ Other Operator

☐ GHD Operator

Report Date

Month Day Year

Report Prepared by: (please print) Report Prepared by: (signature)

Note: If Additional Space is Required to Complete this Report, Use Separate Sheet of Paper and Attach.
Causative factors and corrective actions

<table>
<thead>
<tr>
<th>Item No.</th>
<th>CF</th>
<th>Corrective actions (Must match Causative Factor)</th>
<th>Responsible party</th>
<th>Date due</th>
<th>Date completed</th>
<th>Verified by/Validated by</th>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verified by:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Validated by:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verified by:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Validated by:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verified by:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Validated by:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verified by:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Validated by:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Causative factors

<table>
<thead>
<tr>
<th>Personal factors</th>
<th>Company factors</th>
<th>External factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Insufficient training for task</td>
<td>5 Incomplete or no procedures</td>
<td>10 Exposure to conditions</td>
</tr>
<tr>
<td>2 Hurrying to complete the task</td>
<td>6 Procedures not known or enforced</td>
<td></td>
</tr>
<tr>
<td>3 Easier if proper process not followed</td>
<td>7 Improper PPE</td>
<td></td>
</tr>
<tr>
<td>4 Took shortcuts without prior incident</td>
<td>8 Improper tools</td>
<td></td>
</tr>
<tr>
<td>9 Improper workplace layout</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Causative factors and corrective actions

- **Verification** (Did we do what we said we would do?)
- **Validation** (Is it working?)

Item No.	**CF**	**Corrective actions** (Must match Causative Factor)	**Responsible party**	**Date due**	**Date completed**	**Verified by/Validated by**	**Date**	**Details**
--- | --- | --- | --- | --- | --- | --- | --- | ---
--- | --- | --- | --- | --- | --- | --- | --- | ---
--- | --- | --- | --- | --- | --- | --- | --- | ---
HASP Acknowledgment Sheet

Project Name: ___________________________ Project Number: ___________________________

This is to certify that I have received a pre-entry briefing regarding this HASP, and I understand its contents. My failure to follow and comply with the requirements contained in this plan may result in disciplinary action and/or termination.

<table>
<thead>
<tr>
<th>Print Name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tailgate Safety Meeting Form

Large Group Format - Single Day

<table>
<thead>
<tr>
<th>Date:</th>
<th>Time:</th>
<th>Project No.:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presenter:</th>
<th>Project Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Safety topics/items discussed:

- []
- []
- []

Site personnel in attendance:

<table>
<thead>
<tr>
<th>Print Name</th>
<th>Signature</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tailgate Safety Meeting Form
Small Group Format - Multiple Days

Date:	Time:	Project No.:
Presenter: | Project Name: |

Safety topics/items discussed:

<table>
<thead>
<tr>
<th>Print Name</th>
<th>Signature</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date:	Time:	Project No.:
Presenter: | Project Name: |

Safety topics/items discussed:

<table>
<thead>
<tr>
<th>Print Name</th>
<th>Signature</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date:	Time:	Project No.:
Presenter: | Project Name: |

Safety topics/items discussed:

<table>
<thead>
<tr>
<th>Print Name</th>
<th>Signature</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GHD | NA-FM-HSE-110 Tailgate Safety Meeting-Small Group | Rev. 0 - 7/1/2015
This document is to be completed for ANY changes that occur within the Site Health and Safety Plan (HASP). This document is to be sent to the Regional Safety & Health Manager (RSHM) for review, verification and sign off of the HASP.

<table>
<thead>
<tr>
<th>Amendment #</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Name/Project ID</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>Client Contact (same/change)</td>
<td></td>
</tr>
<tr>
<td>Reason for Amendment (SOW change, JSA addition, Chemical, etc.)</td>
<td></td>
</tr>
<tr>
<td>Alternate or Additional Safeguard Procedures</td>
<td></td>
</tr>
<tr>
<td>Required changes in PPE</td>
<td></td>
</tr>
<tr>
<td>Additional Comments:</td>
<td></td>
</tr>
<tr>
<td>Project Manager Notified</td>
<td></td>
</tr>
<tr>
<td>RSHM Notified</td>
<td></td>
</tr>
<tr>
<td>Client PM Notified (if necessary)</td>
<td></td>
</tr>
<tr>
<td>Site HSE Officer (sign above)</td>
<td>Date</td>
</tr>
</tbody>
</table>

The Project Manager is ultimately responsible for the accuracy of the information on this amendment and ensuring any changes to the original HASP is discussed with all affected site personnel prior to commencing work.

This original form must be placed in the project file and a copy needs to be attached to the Site Health and Safety Plan (HASP).
Permit-Required Confined Space Inventory

<table>
<thead>
<tr>
<th>No</th>
<th>Type</th>
<th>Location</th>
<th>Existing or Potential Hazards</th>
<th>Other Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Confined Space Entry Permit

Permit Date:
Facility/Location:

Entry Class (MN only) □ IA □ IB □ II □ III

Permit Number:

Section 1: Confined Space Characteristics

Purpose of Entry: (specify)
Location and Configuration of Confined Space: (specify)

Section 2: Chemical and Physical Hazards

Materials present or previously stored in space (specify):*

<table>
<thead>
<tr>
<th>Material State</th>
<th>Solid</th>
<th>Liquid</th>
<th>Gas</th>
<th>Sludge</th>
</tr>
</thead>
</table>

Physical Hazards:

- □ Physical Exertion
- □ Heat Stress
- □ Cold Stress
- □ Cold Stress
- □ Fire Hazards
- □ Lifting Hazards
- □ Slip, Trips, Fall
- □ High Noise
- □ Overhead Hazard
- □ Underground Hazard
- □ Fall Protection
- □ Electrical
- □ Hand/Power Tools
- □ Welding/Cutting
- □ Sparks
- □ Grinding
- □ Explosive
- □ Visibility
- □ Respiratory (dust)
- □ Splash
- □ Flying Debris
- □ Pinch, Grab, Roll
- □ Internal Obstruction
- □ Oxygen Deficient
- □ Engulfment
- □ Other (specify): __________________

*Note: The health effects of the contaminant(s) need to be discussed with the team prior to entry. Smoking is prohibited.

Section 3: Lock-Out/Tag-Out/Isolation

- □ Yes □ No □ N/A Pipelines closed, multiple locked and tagged. Initials:
- □ Yes □ No □ N/A Pipes blanked Initials:
- □ Yes □ No □ N/A Vents/drains blocked Initials:
- □ Yes □ No □ N/A Switches/lines off, multiple locked and tagged. Initials:
- □ Yes □ No □ N/A Pumps, motors and other mechanical devices off. Multiple locked and tagged. Initials:

Section 4: Personal Protective/Safety Equipment Assessment

- □ Faceshield
- □ Alarm/Air Horn
- □ Airline/5 minute escape
- □ Tripod escape unit/hoist
- □ Hard hat
- □ Signage, barricades, etc.
- □ Coveralls, other: ______
- □ Fire Extinguisher
- □ Hearing protection
- □ Gloves, other:
- □ Spark Resistant Tools
- □ Fall Protection Device
- □ Steel-toed shoes
- □ Tyvek suit
- □ Radios, telephone, etc.
- □ Intrinsic lighting & tools
- □ Rubber boots
- □ PVC/Splash suit
- □ First Aid Kit
- □ Other:
- □ Portable eyewash
- □ Air-purifying respirator
- □ Escape harness/lifeline
- □ Other:

Section 5: Air Monitoring

<table>
<thead>
<tr>
<th>Test(s) Required</th>
<th>Instrument/Model and Serial Number</th>
<th>Permissible Entry Level</th>
<th>Date: Time</th>
<th>Date: Time</th>
<th>Date: Time</th>
<th>Date: Time</th>
<th>Date: Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>% O₂</td>
<td></td>
<td>≥19.5% and <22.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% LEL</td>
<td></td>
<td><10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppm CO</td>
<td></td>
<td><35 PPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppm H₂S</td>
<td></td>
<td><5 PPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppm VOC</td>
<td></td>
<td>See HASP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equipment will be calibrated in accordance with manufacturers’ guidelines.

Tester’s Name:
Section 6: Authorized Entrants/Attendants within Permit Space

I understand that I have reviewed this permit and know my job function and procedures necessary to accomplish this task safely.

<table>
<thead>
<tr>
<th>Entrant</th>
<th>Signature</th>
<th>Time In</th>
<th>Time Out</th>
<th>Time In</th>
<th>Time Out</th>
<th>Time In</th>
<th>Time Out</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authorized Attendant</th>
<th>Signature</th>
<th>Time In</th>
<th>Time Out</th>
<th>Time In</th>
<th>Time Out</th>
<th>Time In</th>
<th>Time Out</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 7: Confined Space Certifications

Based on the hazard assessment, the following entry procedure will be followed:

- [] Non-Permit Entry
- [] Alternate Entry
- [] Permit-Required Entry

I certify that all required precautions have been taken and necessary equipment and emergency response is provided for safety entry and work in this confined space.

Signature of Entry Supervisor Authorizing Entry: [Signature] **Date/Time:** [Date/Time]

DURATION: This permit is approved for ________ hours on this day. Only the entry supervisor can extend this permit to a maximum of 12 hours.

Section 8: Emergency Response Support for Permit-Required Spaces

- [] IDLH Conditions are Present or Possible (Note: If Yes, then responders must be on site during entry.)

Name and Phone Number of Emergency Responders:

Called Responders to Brief and Confirm Availability:

- [] Yes
- [] No
- [] Not Applicable

Section 9: Task Completion and Permit Close-Out

- [] Verification of System Line Restoration (Removal of locks, tags, blanks, blocks, etc.):

I certify that this permit is finalized and closed out.

Entry Supervisor (Print and Sign Name): [Signature] **Date/Time:** [Date/Time]

Upon completion, this permit must be sent to an HSE Team Manager or designee for review and be kept on file for a period of 1 year.

(Enter Name of competent person who completed the hazard assessment)

Signature: [Signature] **Date:** [Date]

<table>
<thead>
<tr>
<th>Review Date</th>
<th>Time</th>
<th>Reason for Review</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

__GHD | NA-FM-HSE-144 Confined Space Entry Permit | Rev. 0 – 7/1/2015__
Confined Space Entry Permit

Evaluation Form for Emergency Rescue Services on Permit-Required Confined Spaces

Directions: This evaluation must be completed initially and then annually for sites and/or facilities which rely on community/local rescue services to provide emergency rescue services to their permit-required confined spaces. The rescue service should visit each site and/or facility to view all permit-required confined spaces and review their potential hazard(s). All questions must be answered satisfactorily in order to be able to list 911 on the CS permit and rely on the rescue service. It is acceptable to work with and assist rescue services in achieving a satisfactory evaluation.

<table>
<thead>
<tr>
<th>Name of Service:</th>
<th>Contact's Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Phone No.:</td>
<td>Business Phone No.:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Does the rescue service have the ability, in terms of proficiency, with rescue-related tasks and equipment?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2.</td>
<td>Will the rescue service stand by (on site) at the permit space for IDLH or potential ILDH atmospheres? The cost for providing this service is $____________.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>3.</td>
<td>Can the rescue service respond in a 10- to 15-minute timeframe for non-IDLH situations (i.e., mechanical hazards that may cause broken bones, abrasions, etc.)? The availability of the rescue service is (i.e., 24 hours a day or are there times when key personnel would not be available)?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>4.</td>
<td>Does the rescue service:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>Provide all required PPE and equipment that may be needed at the site and/or facility? If no, GHD will provide.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>B.</td>
<td>Train rescue personnel annually in accordance with the standard?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>5.</td>
<td>Will the rescue service commit to providing rescue services to the site and/or facility?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>6.</td>
<td>Is there an adequate method of communication between the attendant and rescue service to summon help?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>7.</td>
<td>Has the rescue service practiced rescues or successfully performed a permit space rescue within the last 12 months?</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Evaluation Completed By:

_________________________ ______________________ ________
Name (Print) Signature Date
Each company involved in confined space entry and related work has responsibilities. If more than one Company is involved in entering a confined space, one representative will be designated as the “lead employer”. The lead employer must complete the coordination document below. This document explains the duties of each employer involved in the confined space work. This will ensure that the same standard is being applied to all contractors and that one plan is followed when entering the confined space.

(Insert Company name) will act as lead employer for the Confined Space Activities listed on permit (attach permit). As lead employer for this portion of the project, (company name) reserves the right to stop work at any time should any of the entry requirements not be adhered to.

(List company names and authorizing signatures)

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Print Name</th>
<th>Authorizing Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check applicable boxes only:

- Each contractor listed above needs to provide general confined space training to their workers.
- The lead employer is responsible for training all of the contractors on the confined space plan before the work begins.
- The contractor (name) shall act as lead employer for the duration of the CSE.
- Permit attached.
Underground Utilities Checklist
Pre-Drilling/Excavation Checklist and Utility Clearance Log

<table>
<thead>
<tr>
<th>Utilities (indicate that location/utility presence was checked)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borehole/Excavation location</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Utility owner

Instructions: This checklist is to be completed by GHD personnel prior to initiation of field activities as a safety measure, to ensure that all underground utility lines, other underground structures, and above-ground power lines are clearly marked in the area selected for boring or excavation.

Notes:

Client: ____________________________ Client representative: ____________________________ Phone number: ____________________________

Client or property owner acknowledgement of utility clearance: ____________________________ (Client, property owner, or authorized agent signature)

Subcontractor acknowledgement of utility clearance: ____________________________ (Subcontractor or subcontractor representative signature)

GHD field representative name: ____________________________ Signature: ____________________________

GHD project manager's review/confirmation of locate completion: ____________________________

In the event that client or property owner acknowledgement cannot be obtained, it is strongly encouraged that all boreholes be hydro vacuumed and the costs passed on to the client. Attach any clearance documentation from utility owner/operator to this document.
Underground Utilities Checklist for GHD Personnel

Pre-Drilling/Excavation Checklist and Utility Clearance Log

Drilling or excavation work may not proceed if any of the questions answered below are answered “No.” Implement stop work authority and contact the GHD project manager to discuss and resolve any concerns or issues. Document the reason for a “No” answer in the comments section below.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Pre-Mobilization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1. Has a utility locator request been completed within the last 30 days (verify time limit with state or provincial law)? If no, stop work and comment below.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Is a scaled site plan, map or drawing showing the proposed borehole locations attached to this form?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Does each borehole and excavation location allow for clear entry and exit, adequate workspace, and a clear path for raising the mast (or boom) and operating the drill rig and all support equipment? Ensure that the minimum OSHA/state/provincial utility clearance requirements between the mast or boom and the power line(s) are met. For instance, OSHA requires a minimum approach distance of 10 feet for systems below 50 kV and an increase of 4" for every 10 kV over 50 kV. Confirm if additional permits are required if the boom or mast will be working 5 meters (15 feet) or less from the electrical lines.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Are all of the proposed borehole and excavation locations at least 1.0 meters (3 feet) from any subsurface or above-ground utilities shown on client’s building plans? Check here if not provided by client (therefore not applicable to this job).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. Are all of the proposed borehole and excavation locations at least 1.0 meters (3 feet) from any subsurface or above-ground utilities shown on public right-of-way street improvement or other public property plan or site map?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6. Has the site representative, familiar with the site, indicated no knowledge of any subsurface or above-ground utilities within 3 metres (10 feet) of the proposed borehole and excavation locations? (Review locations with site representative)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7. Are all of the proposed borehole and excavation locations at least 1.0 meters (3 feet) from any subsurface utilities identified during a geophysical survey? Check here if no geophysical survey has been completed (therefore not applicable to this job).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8. Have all utility locating service providers, notified by the public line locator, marked out their facilities in the vicinity of the borehole and excavation locations or otherwise notified us that they do not have any facilities near the proposed locations? (Attached confirmation and utility locate sheets from public locator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9. Are all proposed borehole and excavation locations at least 1.5 meters (5 feet) from a visual line connecting two similar looking manhole covers?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10. Are all proposed borehole and excavation locations at least 1.5 meters (5 feet) from a visual line perpendicular to the street from the water, gas, and electrical meters?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11. Are all proposed boring and excavation locations clear of pavement joints, curbs, crash posts, or other engineered structures?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12. Does the ground surface/pavement lack signs of previous excavation (e.g., no pavement subsidence, no differences in pavement texture or relief, no pavement patching)?</td>
</tr>
</tbody>
</table>

Pre-Drilling and Excavation

- 13. Has it been verified that the proposed drilling or excavation work will not affect any work currently in progress?
- 14. Has the drill rig or heavy equipment been inspected prior to use and documented? (See Drill Rig Inspection Checklist or Mobile Equipment Safety Inspection Checklist)
- 15. Have barricades been erected to prevent unauthorized access, where applicable?
- 16. Have all known live electrical or product lines within 3 meters (10 feet) of the dig path been visually verified? If no, comment below.
- 17. For boreholes that have not been cleared or are within 3 meters of a utility:
 - a. Before drilling have you cleared a hole to 2.4 meters (8 feet) below grade using an air-knife, or equivalent, before drilling and is the diameter of this hole greater than the final outside diameter of the boring? If not required comment below.
 - b. Does the soil you encountered in the hand-dug hole appear to be native material (i.e., free of clean gravel, clean sand, aggregate base [gravelly sand ~ 10% fines] or other non-native looking material)? If not required comment below.

Have the above concerns been discussed with the GHD project manager?
Has the start of subsurface work been communicated to the GHD project manager?
Have the above concerns been discussed with the client?
Has the scope of work been approved by the client?

Comments:

__

__

__

__

GHD field representative name:
Date:
This completed form is a quality record.
Attachment C

Community Air Monitoring Plan (CAMP)
Attachment C Community Air Monitoring Plan

This Community Air Monitoring Plan (CAMP) has been developed for the Tonawanda Coke Corporation (Site), NYSDEC Site #915055, located in Tonawanda, New York. The CAMP has been developed in accordance with the New York State Department of Health’s (NYSDOH’s) Generic Community Air Monitoring Plan.

Overview

This site-specific CAMP requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of intrusive work activities. The action levels specified herein require increased monitoring and corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP will help to confirm that work activities do not spread contamination off site through the air.

Designated air monitoring station locations will be established around the perimeter of the site for use as monitoring locations. The site-specific CAMP presented below will be implemented during ground intrusive activities at the site. Each day that this activity is in progress upwind and downwind air monitoring stations will be set up to collect data. The instruments that will be used to collect the air monitoring data will have data logging capabilities. The data will be downloaded periodically, stored electronically and will be available to agency personnel for their review.

Reliance on this CAMP should not preclude simple, common sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Real-time air monitoring for VOCs and particulate levels at the perimeter of the site will be necessary, as described below.

Continuous monitoring will be required during all ground intrusive activities at the Site. Ground intrusive activities include excavation and waste removal activities, the installation of soil borings, monitoring wells, and test trenches.

Periodic monitoring for VOCs will be required during non-intrusive activities such as the collection of soil sample and groundwater samples. Periodic monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while sample collection and then taking a reading prior to leaving a sample location.

VOC Monitoring, Response Levels, and Actions

VOCs will be monitored at the downwind perimeter of the site on a continuous basis. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The specific type of air monitoring equipment that will be used at the site for VOC monitoring will be a MiniRae 3000, or equivalent. The equipment will be calibrated in accordance with the manufacturer’s guidelines. The equipment will be
capable of calculating 15 minute running average concentrations, which will be compared to the levels specified below.

1. If the ambient air concentration of VOCs at the downwind perimeter of the site exceeds 5 parts per million (ppm) above background for the 15 minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.

2. If total organic vapor levels at the downwind perimeter of the site persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the designated work area or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15 minute average.

3. If the organic vapor level is above 25 ppm at the perimeter of the Site, activities must be shut down.

4. All 15 minute readings must be recorded and be available for State (NYSDEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes will also be recorded.

Particulate/Fugitive Dust Monitoring, Response Levels, and Actions

Particulate concentrations will be monitored continuously at upwind and downwind monitoring stations on the site perimeter. The particulate monitoring will be performed using real time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM 10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The particulate monitor that will be used will be a TSI 8520 DustTrak, or equivalent. The equipment will be equipped with an audible and/or visible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

1. If the downwind PM 10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15 minute period or if airborne dust is observed leaving the designated work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM 10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the designated work area.

2. If, after implementation of dust suppression techniques, downwind PM 10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM 10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

3. All readings must be recorded and be available for State (NYSDEC and NYSDOH) personnel to review.

The following fugitive dust suppression and corrective procedures will be employed at the site.

1. Reasonable fugitive dust suppression techniques will be employed during all remedial activities, which may generate fugitive dust.
2. The following techniques are generally effective for the controlling of the generation and migration of dust during construction activities and may be employed as necessary:
 a. Applying water on haul roads.
 b. Wetting equipment and excavation faces.
 c. Spraying water on buckets during excavation and dumping.
 d. Hauling materials in properly tarped or watertight containers.
 e. Restricting vehicle speeds to 10 mph.
 f. Covering excavated areas and material after excavation activity ceases.
 g. Reducing the excavation size and/or number of excavations.

When techniques involving water application are used, care must be taken not to use excess water, which can result in unacceptably wet conditions. Using atomizing sprays will prevent overly wet conditions, conserve water, and provide an effective means of suppressing the fugitive dust.