Appendix I – Supplemental Reports

A LaBella Company

March 13, 2023 (Revised 4-18-2023)

Brittany O'Brien-Drake New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233

RE: Site Summary Report (Rev. 4-18-2023) Algonquin Middle School PFAS Assessment #2105197 333 NY 351, Averill Park, NY Tax parcel ID: 136.-9-28.1

Aztech Environmental Technologies Inc. (Aztech), a LaBella company, has provided this report to document overburden soil and groundwater assessment methodologies and sampling results for the above referenced location. All field investigation activities were performed at the discretion of and in accordance with the scope of work (SOW) developed and provided to Aztech by the New York State Department of Environmental Conservation (NYSDEC).

The property is currently utilized by the Averill Park Central School District as an educational institution and associated sports fields for grades 6 through 8. The approximate 52.57-acre parcel is located west of the intersection of NY Route 351 and Averill Park Rd (RT 66). The property is mainly flat with a downward gradient from east to west. Bedrock outcropping is visible at several locations on the property. An unnamed tributary stream to the Newfoundland Creek flows south to north along the western property boundary. **Figure 1** depicts property features and boundaries.

Overburden soil encountered during drilling activities consisted primarily of coarse to fine sand and silt with varying amounts of shale fragments which typically increased in depth to tooling refusal. Shale fragments in the sampler shoe at terminal boring depth is noted on the attached boring logs.

Prior to intrusive groundwork, a UDig NY utility clearance ticket was ordered for the property. Additionally, a private utility locating contractor performed utility clearance with ground penetrating radar (GPR) at each boring location on August 8, 2022. Boring locations confirmed as clear were painted white and marked with a white flag.

SUMMARY OF FIELD INVESTIGATIONS:

Air monitoring

Air monitoring was conducted during all ground-intrusive work at the property (August 22, 23, and 24, 2022) in accordance with the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan (CAMP). One dedicated Dust Trak unit with photo-ionization detector (PID) was positioned upwind with a second dedicated unit placed downwind at each boring location. No exceedances for volatile organic compounds (VOCs) or particulates were recorded.

Soil Boring and Monitoring Well Installation

On August 22, 23, and 24, 2022, Clean Globe Environmental (CGE) advanced soil borings (AMS-SB-01 through AMS-SB-08A) utilizing a Geoprobe 7822DT and direct-push techniques to terminal depths ranging from 9 to 24 feet below grade (fbg). Shallow refusal was encountered at two (2) boring

locations (SB-AMS-02 and SB-AMS-08). Drill tooling was removed from the borehole and advanced again a few feet from the original location. As such, the location identifier is amended with an "A" for soil boring locations SB-AMS-02A and SB-AMS-08A. All 8 boring locations were converted to monitoring wells (AMS-OW-01 through AMS-OW-08). Aztech provided oversight of drilling activities, performed soil headspace screening, soil classification, and both soil and groundwater sampling.

Monitoring wells were installed by over-drilling the borehole utilizing 4 ¹/₄" inside diameter (ID) hollow stem augers. The well assembly consisted of 2-inch ID PVC 10-slot screen set to straddle the water table and casing to grade. A number 2 filtration sand was installed to fill the borehole annulus to approximately one (1) to two (2) feet above the screened interval. Bentonite chips were added atop the sand to seal the casing from surface water intrusion and subsequently hydrated with certified perand polyfluoroalkyl substance (PFAS)-free water. Native soil and well sand were added as needed to the finish grade. Each well was finished within a flush mount road box or a steel stick-up. Each newly installed groundwater monitoring well was developed on August 30 and September 1, 2022 by using a peristaltic pump and/or bailer to remove a targeted 10 well volumes. Monitoring well specifications are presented below in **Table 1.** Individual boring logs are attached. Monitoring well locations are depicted on the attached Figure 1.

			TABLE 1	-						
		Monitoring	g Well Specif	fications						
Well ID	Borehole Depth	Well Diameter	Screened Interval	Sand Packed Interval	Bentonite Seal	Observed DTW*				
	(Feet)	(Inches)	(Feet)	(Feet)	(Feet)	(Feet)				
AMS-OW-01	9	2	9.0 - 4.0	9.0 - 2.0	2.0 - 0.5	0.65				
AMS-OW-02	16	2	16 - 6.0	16 - 4.0	4.0 - 2.0	10.69				
AMS-OW-03	14.5	2	14.5 - 4.5	14.5 - 2.5	2.5 - 1.0	7.40				
AMS-OW-04	18	2	18 - 8.0	18 - 6.0	6.0 - 4.0	14.02				
AMS-OW-05	17	2	17 - 7.0	17 - 5.0	5.0 - 3.0	14.7				
AMS-OW-06	24	2	24 - 14	24 - 12	12 - 10	17.84				
AMS-OW-07	12	2	11 - 6.0	12 - 4.0	4.0 - 2.0	dry				
AMS-0W-08 17 2 17 - 7.0 17 - 5.0 5.0 - 3.0 12.71										
Notes:										
Wells drilled/in	Wells drilled/installed by Clean Globe Environmental (CGE)									
*Depth to Wate	r (DTW) as me	easured on Se	eptember 19,	2022 from to	p of casing (TC)C)				

Soil Sampling

Individual soil samples were visually classified and headspace screened with a photo-ionization detector (PID) calibrated to a 100 part per million (ppm) isobutylene calibrant gas. Soil samples from select boring locations were collected from the following depth intervals:

- Surface grade to 2 -inch below grade (BG), beneath vegetative cover,
- 2-inch BG to 12-inch BG, and
- Air/water interface (water table) as observed in borehole.

The actual number of soil samples was dependent on field conditions. A total of 24 depth discrete subsurface soil samples were collected from the eight (8) soil borings and analyzed for PFAS compounds by Environmental Protection Agency (EPA) analytical method 537M for soil. Select soil samples from the 2"BG to 12"BG interval were analyzed using the Synthetic Precipitation Leaching Procedure (SPLP) by EPA Method 1312 and the leachate was subsequently analyzed for PFAS compounds by analytical method 537M. SPLP PFAS results are not considered reportable as it was determined that Con-Test (a Pace Analytical Laboratory at East Longmeadow, MA and the NYSDEC's contracted lab for this project) did not hold the appropriate ELAP certification for EPA Method 1312 at the time of analysis.

Additional samples collected for the purpose of quality assurance (quality control (QA/QC)) included one equipment blank, one matrix spike/matrix spike duplicate (MS/MSD) and one field duplicate following quality control procedures. The attached boring logs reference the parent sample for the MS/MSD and duplicate samples. The equipment blank collected on August 24, 2022 was performed on the nitrile gloves used during soil sampling. Laboratory analytical results for the equipment blank did not report any compounds above the laboratory minimum reporting limit (RL). Refer to **Table 2** for additional details.

Groundwater Sampling

Seven (7) groundwater samples were collected on September 19 and 20, 2022 from the newly installed overburden groundwater monitoring wells. Although eight (8) monitoring wells were installed, AMS-OW-07 was dry and as such, no groundwater sample could be obtained. Samples were collected utilizing low-flow/low-stress sampling techniques with a peristaltic pump and associated HDPE and silicone tubing. Water quality field parameters (temperature, pH, specific conductance, oxygen-reduction potential (ORP), dissolved oxygen (DO), and turbidity) were recorded during the well purging at five (5) minute intervals up to stabilization. A copy of the stabilization logs is attached. Samples were immediately placed on ice and transferred to Pace Analytical and Eurofins TestAmerica under chain of custody protocols. Groundwater samples were analyzed for PFAS compounds by EPA Method 537M, pharmaceutically active compounds-negative by Method L221, and nitrate and nitrite anions by EPA Method 300.

Additional samples collected for QA/QC purposes included an MS/MSD, Field Duplicate, and Equipment Blanks. AMS-OW-06 was the parent sample for the MS/MSD. The field duplicate sample was collected from well AMS-OW-05. The Equipment Blank samples were collected using the HDPE tubing associated with the peristaltic pump on September 19 and nitrile sampling gloves on September 20, 2022. Laboratory analytical results for the equipment blanks did not report any compounds above the laboratory RL. Refer to Table 2 for additional details.

DISCUSSION OF ANALYTICAL RESULTS

STANDARDS, CRITERIA, & GUIDANCE VALUES:

The following documents are used to evaluate the soil and groundwater analytical results:

Soil

- Unrestricted Use and Residential Use soil guidance values from NYSDEC Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, November 2022.

Groundwater

- Screening levels identified in NYSDEC Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, November 2022
- New York State Drinking Water Maximum Contaminant Level (MCL) for PFOA (10 parts per trillion (ppt)), PFOS (10 ppt), and 1,4-dioxane (1 part per billion (ppb)).

It is noted that the NYSDEC Standards, Criteria, & Guidance Values are listed in concentrations of parts per trillion (ppt), parts per billion (ppb), and parts per million (ppm) while laboratory analytical results are reported in equivalent concentrations. For example,

- In soil:
 - 1 ppt = 1 nanogram per kilogram (ng/kg),
 - \circ 1 ppb = 1 microgram per kilogram (µg/kg), and
 - 1 ppm = 1 milligram per kilogram (mg/kg)
- In water:
 - 1 ppt = 1 nanogram per liter (ng/L),
 - \circ 1 ppb = 1 microgram per liter (µg/L), and
 - \circ 1 ppm = 1 milligram per liter (mg/L).

Soil Results:

Of the 24 soil samples collected, 21 samples were analyzed for PFAS compounds by analytical method 537M. Nineteen (19) of the 21 samples had one or more PFAS compounds detected. Perfluorooctanoic acid (PFOA) was recorded in at least one (1) sample from six (6) borehole locations at estimated concentrations ranging from of 0.15 μ g/kg to 0.47 μ g/kg and were below both the laboratory RL and the Unrestricted Use guidance value of 0.66 μ g/kg. Concentrations recorded below the RL are considered estimated values. Perfluorooctane sulfonic acid (PFOS) was recorded in at least one (1) sample from each of the eight (8) soil borings. Concentrations ranged from an estimated 0.063 μ g/kg to 1.000 μ g/kg. Two (2) locations (AMS-SB-02A and AMS-SB-03) recorded PFOS above the Unrestricted Use guidance value of 0.88 μ g/kg.

PFAS compounds that were detected but do not have corresponding guidance values include: PFBA, PFDS, PFDA, PFDoA, PFHpA, PFHxA, PFNA, PFPeA, PFTA, and PFUnA. Of these compounds, PFDA had the highest detected concentration of 0.6 μ g/kg. Refer to **Table 3** for additional details. Refer to **Appendix A** for the laboratory analytical reports.

Groundwater Results:

All seven (7) groundwater samples collected September 19 and 20, 2022 recorded one or more PFAS compounds. PFOA was recorded at concentrations ranging from 5.1 ng/L (AMS-OW-05) to 24 ng/L (AMS-OW-03). PFOS was recorded at concentrations ranging from an estimated 0.91 ng/L (AMS-OW-8) to 51 ng/L (AMS-OW-2). Five (5) concentrations recorded for PFOA and PFOS at three (3) locations (AMS-OW-02, AMS-OW-03, and AMS-OW-04) are above the 10 ng/L screening level. Refer to **Table 4A** for additional details.

Ten (10) PFAS compounds were detected but do not have corresponding screening levels. Those compounds include: 1H,1H, 2H, 2H-Perfluorooctane sulfonic acid, PFBS, PFBA, PFDA, PFHpS, PFHpA, PFHxS, PFHxA, PFNA, and PFPeA. These compounds ranged in concentration from an estimated 0.46 ng/L (PFDA) to 60 ng/L (PFHxA). Refer to Table 4A for additional details.

Groundwater samples were additionally analyzed for artificial sweeteners (including sucralose and acesulfame-k) and nitrate to evaluate the potential migration of septic derived wastewater to

groundwater. Artificial sweetener results are used solely as a qualitive screening tool by the NYSDEC to evaluate this potential. Acesulfame-K was detected in all groundwater samples with concentrations ranging from 0.0097 μ g/L to 3.3 μ g/L. Sucralose was detected in samples collected from four (4) monitoring wells and results ranged from 0.38 μ g/L to 12 μ g/L. The maximum detections of sucralose and acesulfame-k were both identified in monitoring wells adjacent to the Middle School's septic system. Nitrate was detected in all eight (8) groundwater samples and results ranged from 0.13 mg/L to 14 mg/L. The detection of 14 mg/L, which is above the groundwater standard of 10 mg/L, was identified in AMS-OW-03 which is adjacent to the septic system of the middle school. Refer to **Tables 4B and 4C** for additional details. Refer to Appendix A for the laboratory analytical reports.

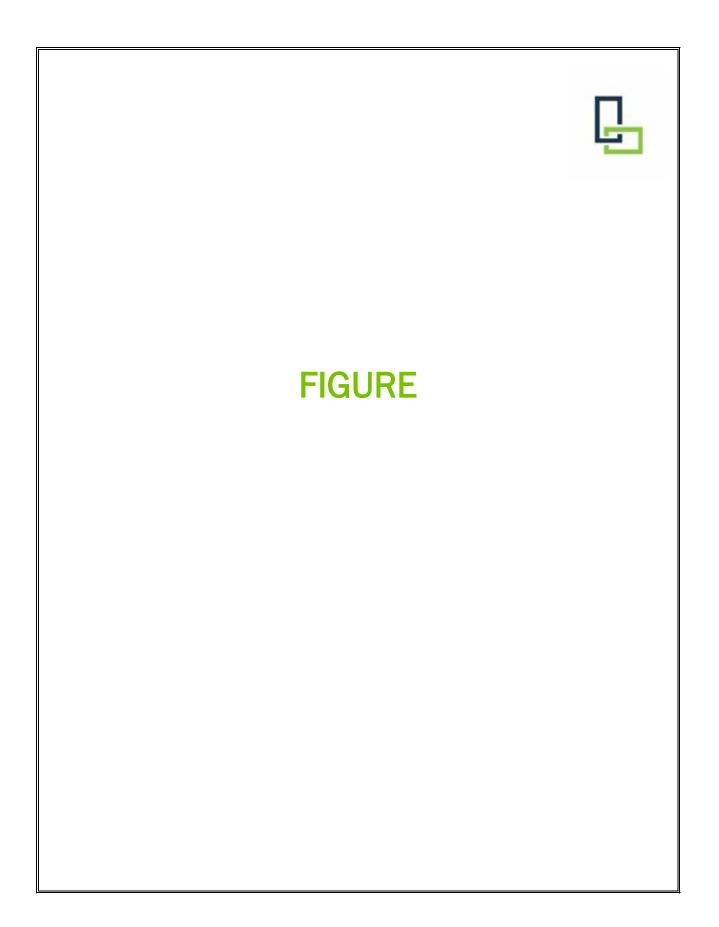
Surface water and sediment on the Middle School property were sampled and analyzed as part of the investigation completed by CDM Smith. Further discussion on the findings and conclusions of the investigation of the Algonquin Middle School property are discussed within the main PFAS assessment report provided by CDM smith.

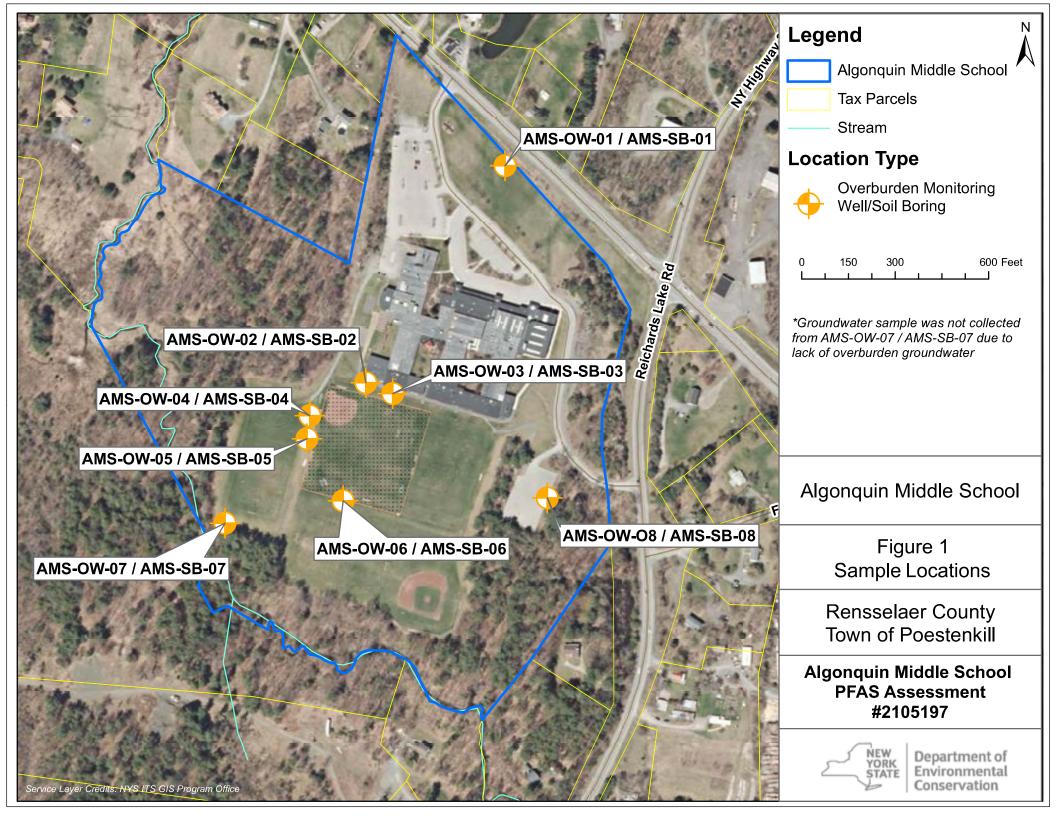
This report was prepared by Aztech with review and editorial input by the NYSDEC.

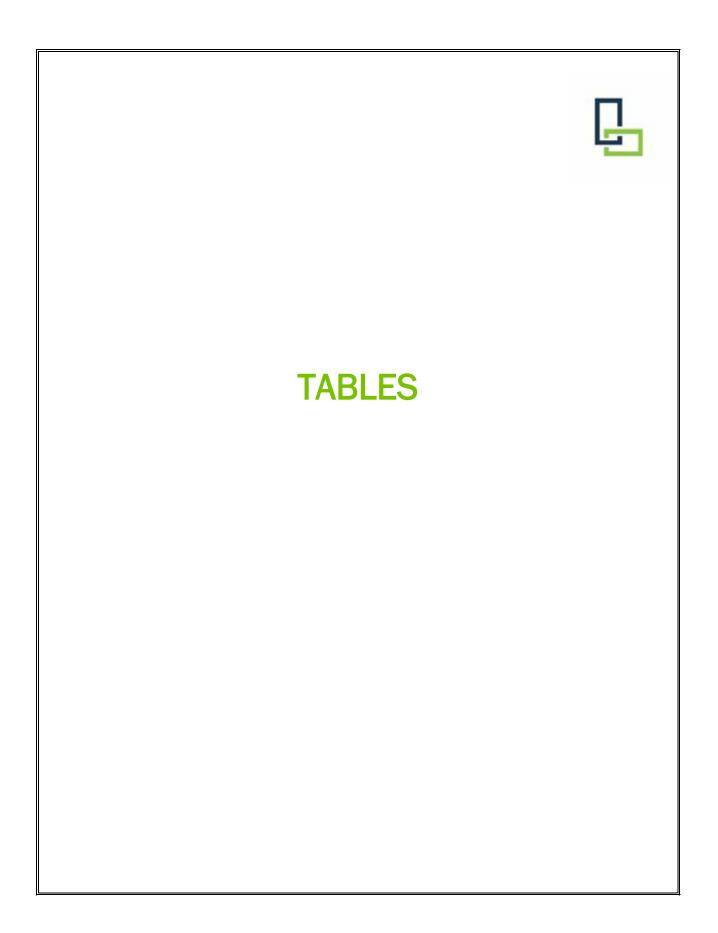
Respectfully submitted,

Aztech Environmental Technologies (a LaBella Company)

Todd Rollend Environmental Scientist


I Randy Hoose certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10). All investigation and activities were performed in full accordance with the work plan provided by the NYSDEC.


may Hood


Randy Hoose, P.G. Senior Hydrogeologist

Attachments:

Figure 1 - Site Map Table 2 - Equipment Blank, PFAS Results Table 3 - Soil, PFAS Results Table 4A - Groundwater, PFAS Results Table 4B - Groundwater, Artificial Sweetener Results Table 4C - Groundwater, Nitrate & Nitrite Results Boring Logs Well Development Logs Low-Flow Stabilization Sampling Logs Appendix - A: Laboratory Analytical Reports

Table 2 Algonquin Middle School Equipment Blank, PFAS Results

Equip	ment blank,	, PFAS Results						
		ent Sample ID:		ent blank		NT BLANK		ENT BLANK
	L	ab Sample ID:		545-10		01814-3		01900-6
		Sample Date:	-	/2022		/2022	-	/2022
	Samp	le Type Code:		EB		EB		EB
Analyte	Unit	NYSDEC Guidelines ¹	Result	Qualifier	Result	Qualifier	Result	Qualifie
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ng/L	NC	< 0.61	U	NA		NA	
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/L	NC	< 0.58	U	< 1.7	U	< 1.8	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	ng/L	NC	< 0.27	U	NA		NA	
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/L	NC	< 0.35	U	< 4.4	U	< 4.5	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ng/L	NC	< 0.33	U	NA		NA	
-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid (9Cl-PF3ONS)	ng/L	NC	< 0.37	U	NA		NA	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L	NC	< 0.23	U	NA		NA	
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	ng/L	NC	< 0.6	U	NA		NA	
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	ng/L	NC	< 0.72	U	NA		NA	
N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	NC	NA		< 4.4	U	< 4.5	U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	NC	NA		< 4.4	U	< 4.5	U
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ng/L	NC	< 0.26	U	NA		NA	
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ng/L	NC	< 0.22	U	NA		NA	
Perfluoro-1-butanesulfonamide (FBSA)	ng/L	NC	< 0.18	U	NA		NA	
Perfluoro-1-hexanesulfonamide (FHxSA)	ng/L	NC	< 0.29	U	NA		NA	
Perfluoro-3-methoxypropanoic acid (PFMPA)	ng/L	NC	< 0.39	U	NA		NA	
Perfluoro-4-methoxybutanoic acid (PFMBA)	ng/L	NC	< 0.32	U	NA		NA	
Perfluorobutanesulfonic acid (PFBS)	ng/L	NC	< 0.27	U	< 1.7	U	< 1.8	U
Perfluorobutanoic Acid (PFBA)	ng/L	NC	< 0.7	U	< 4.4	U	< 4.5	U
Perfluorodecanesulfonic acid (PFDS)	ng/L	NC	< 0.31	U	< 1.7	U	< 1.8	U
Perfluorodecanoic acid (PFDA)	ng/L	NC	< 0.46	U	< 1.7	U	< 1.8	U
Perfluorododecanoic acid (PFDoA)	ng/L	NC	< 0.42	U	< 1.7	U	< 1.8	U
Perfluoroheptanesulfonic acid (PFHpS)	ng/L	NC	< 0.89	U	< 1.7	U	< 1.8	U
Perfluoroheptanoic acid (PFHpA)	ng/L	NC	< 0.33	U	< 1.7	U	< 1.8	U
Perfluorohexanesulfonic acid (PFHxS)	ng/L	NC	< 0.32	U	< 1.7	U	< 1.8	U
Perfluorohexanoic acid (PFHxA)	ng/L	NC	< 0.36	U	< 1.7	U	< 1.8	U
Perfluorononanesulfonic Acid (PFNS)	ng/L	NC	< 0.16	U	NA		NA	
Perfluorononanoic acid (PFNA)	ng/L	NC	< 0.33	U	< 1.7	U	< 1.8	U
Perfluorooctane Sulfonamide (PFOSA)	ng/L	NC	< 0.4	U	< 1.7	U	< 1.8	U
Perfluorooctanesulfonic acid (PFOS)	ng/L	10	< 0.57	U	< 1.7	U	< 2.4	U
Perfluorooctanoic acid (PFOA)	ng/L	10	< 0.64	U	< 1.7	U	< 1.8	U
Perfluoropentanesulfonic Acid (PFPeS)	ng/L	NC	< 0.24	U	NA		NA	
Perfluoropentanoic Acid (PFPeA)	ng/L	NC	< 0.37	U	< 1.7	U	< 1.8	U
Perfluorotetradecanoic acid (PFTeDA)	ng/L	NC	< 0.35	U	< 1.7	U	< 1.8	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/L	NC	< 0.26	U	< 1.7	U	< 1.8	U
Perfluoroundecanoic Acid (PFUnA)	ng/L	NC	< 0.35	U	< 1.7	U	< 1.8	U
Votes:			0.00	-		1-		17

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS),* November 2022 Sample Type Code: EB - Equipment Blank

ng/L - nanogram per liter = parts per trillion (ppt)

NC - No criteria currently exists

NA - Compound was not analyzed for

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above applicable NYSDEC Standards, Criteria, & Guidance Values

			Client Sample ID:	AMS-SB	-01 0-2IN	AMS-SB-	01 72-84IN	AMS-SB-	02A 0-21N	AMS-SB-	02A 2-12IN	AMS-SB-02	A 144-156IN
			Lab Sample ID:	22H1	545-07	22H	1545-09	22H1	546-04	22H1	546-05	22H1	546-06
			Location ID:	AMS	SB-01	AMS	S-SB-01	AMS-	SB-02A	AMS-	SB-02A	AMS	SB-02A
			Sample Date:	8/24	/2022	8/2	4/2022	8/23	/2022	8/23	/2022	8/23	3/2022
			Sample Type Code:		N		Ν		N		N		N
Australia	11-34	Unrestricted Use	Residential Use	Description	Qualifian	Desult	Qualifian	Desult	Qualifian	Desult	Qualifian	Desult	Qualifian
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.14	U	< 0.13	U	< 0.13	U	< 0.13	U	< 0.14	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.13	U	< 0.12	U	< 0.12	U	< 0.12	U	< 0.13	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.089	U	< 0.085	U	< 0.086	U	< 0.085	U	< 0.093	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.11	U	< 0.11	U	< 0.12	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.16	U	< 0.15	U	< 0.15	U	< 0.15	U	< 0.16	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.12	U	< 0.12	U	< 0.13	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	NC	< 0.23	U	< 0.22	U	< 0.22	U	< 0.22	U	< 0.24	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.14	U	< 0.13	U	< 0.13	U	< 0.13	U	< 0.14	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.088	U	< 0.084	U	< 0.085	U	< 0.084	U	< 0.092	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.075	U	< 0.072	U	< 0.072	U	< 0.072	U	< 0.079	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.08	U	< 0.076	U	< 0.076	U	< 0.076	U	< 0.083	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.15	U	< 0.15	U	< 0.15	U	< 0.15	U	< 0.16	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.15	U	< 0.14	U	< 0.14	U	< 0.14	U	< 0.15	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.092	U	< 0.087	U	< 0.088	U	< 0.087	U	< 0.096	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.089	U	< 0.085	U	< 0.086	U	< 0.085	U	< 0.093	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.074	U	< 0.071	U	< 0.071	U	< 0.071	U	< 0.078	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	< 0.065	U	< 0.062	U	< 0.062	U	< 0.061	U	< 0.067	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.11	U	< 0.11	U	0.34	J	< 0.11	U	< 0.12	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	0.11	J	< 0.059	U	0.60		< 0.059	U	< 0.065	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.074	U	< 0.071	U	0.22	J	< 0.071	U	< 0.078	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.15	U	< 0.14	U	< 0.14	U	< 0.14	U	< 0.15	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	0.11	J	< 0.067	U	< 0.067	U	< 0.066	U	< 0.073	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.078	U	< 0.074	U	< 0.074	U	< 0.074	U	< 0.081	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	< 0.091	U	< 0.086	U	0.13	J	0.11	J	< 0.094	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.13	U	< 0.13	U	< 0.13	U	< 0.12	U	< 0.14	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	0.22	J	< 0.076	U	0.10	J	< 0.076	U	< 0.083	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.095	U	< 0.09	U	< 0.091	U	< 0.09	U	< 0.099	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	8.8	0.49		< 0.063	U	0.45	J	0.39	J	1.00)
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	6.6	0.47	J	< 0.13	U	0.15	J	< 0.13	U	< 0.14	U
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.071	U	< 0.068	U	< 0.068	U	< 0.067	U	< 0.074	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	0.076	J	< 0.071	U	0.15	J	0.10	J	< 0.078	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.093	U	< 0.088	U	0.10	J	< 0.088	U	< 0.097	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.11	U	< 0.1	U	< 0.1	U	< 0.1	U	< 0.11	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	0.10	J	< 0.084	U	0.23	J	< 0.084	U	< 0.092	U
Notes:	-												

Notes:

¹New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and

Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

Lab Sample ID: 22H1545-01 22H1545-03 22H1545-03 22H1546-01 MAMS-SB-03 AMS-SB-03 AMS-SB-03 AMS-SB-03 AMS-SB-03 AMS-SB-04 AMS-SB-04 Sample Type Code: Sample Type Code: N <th>22H1546-02 AMS-SB-04 8/23/2022 N t Qualifier U U U U U U U U U U U U U U</th> <th>AMS 8/23</th> <th>IS46-03 -SB-04 3/2022 N Qualifier U U U U U U U U</th>	22H1546-02 AMS-SB-04 8/23/2022 N t Qualifier U U U U U U U U U U U U U U	AMS 8/23	IS46-03 -SB-04 3/2022 N Qualifier U U U U U U U U
Sample Date: Sample Date: 8/24/2022 8/24/2022 8/23/2022 8/23/2022 Analyte Unit Unrestricted Use Guidance Value1 Residential Use Guidance Value1 Result Qualifier	8/23/2022 N t Qualifier U U U U U U U U U U U U U U U U U U U	Result < 0.13 < 0.12 < 0.083 < 0.1 < 0.14	3/2022 N Qualifier U U U U U U U
$ \begin{array}{ $	N U U U U U U U U U U U U U	Result < 0.13 < 0.12 < 0.083 < 0.1 < 0.14 < 0.11	N Qualifier U U U U U U U
Analyte Unrestricted Use Guidance Value ¹ Result Guidance Value ¹ Result Guidance Value ¹ Qualifier Result Qualifier Qualifier <th< th=""><th>t Qualifier U U U U U U U U U U U U U U U U U U U</th><th>Result < 0.13 < 0.12 < 0.083 < 0.1 < 0.14 < 0.11</th><th>Qualifier U U U U U U U U U</th></th<>	t Qualifier U U U U U U U U U U U U U U U U U U U	Result < 0.13 < 0.12 < 0.083 < 0.1 < 0.14 < 0.11	Qualifier U U U U U U U U U
Analyte Unit Guidance Value ¹ Guidance Value ¹ Result Qualifier Qualifier Result Qualifier	U U U U U U U U U	< 0.13 < 0.12 < 0.083 < 0.1 < 0.14 < 0.11	U U U U U U
	U U U U U U U U U	< 0.13 < 0.12 < 0.083 < 0.1 < 0.14 < 0.11	U U U U U U
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid μg/kg NC <0.12		< 0.12 < 0.083 < 0.1 < 0.14 < 0.11	U U U U U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid µg/kg NC NC < 0.082 U < 0.092 U < 0.089 U < 0.084 1H,1H, 2H, 2H-Perfluoronctane sulfonic acid µg/kg NC NC < 0.1		< 0.083 < 0.1 < 0.14 < 0.11	U U U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid µg/kg NC NC < 0.1 U < 0.11 U < 0.15 U < 0.11 U < 0.12 U < 0.12 </td <td></td> <td>< 0.1 < 0.14 < 0.11</td> <td>U</td>		< 0.1 < 0.14 < 0.11	U
4.8-Dioxa-3H-perfluorononanoic acid (ADONA) µg/kg NC NC < 0.14 U < 0.16 U < 0.15 U < 0.15 9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid µg/kg NC NC < 0.11	U U U U	< 0.14 < 0.11	-
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid μg/kg NC NC < 0.11 U < 0.12 U < 0.12 U < 0.11 Hexafluoropropylene oxide dimer acid (HFPO-DA) μg/kg NC NC < 0.21	U U U U	< 0.11	-
Hexafluoropropylene oxide dimer acid (HFPO-DA) μg/kg NC NC < 0.21 U < 0.24 U < 0.23 U < 0.22 N-deuterloethylperfluoro-1-octanesulfonamidoacetic acid μg/kg NC NC < 0.12	U		U
N-deuterloethylperfluoro-1-octanesulfonamidoacetic acid µg/kg NC NC < 0.12 U < 0.14 U < 0.14 U < 0.13	U	< 0.22	
	U		U
	11	< 0.13	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid $\mu g/kg$ NC NC < 0.081 U < 0.091 U < 0.088 U < 0.083	U	< 0.082	U
Nonafluoro-3,6-dioxaheptanoic acid µg/kg NC NC < 0.069 U < 0.077 U < 0.075 U < 0.071	U	< 0.07	U
Perfluoro(2-ethoxyethane)sulfonic acid µg/kg NC NC < 0.073 U < 0.082 U < 0.079 U < 0.075	U	< 0.074	U
Perfluoro-1-butanesulfonamide (FBSA) µg/kg NC NC < 0.14 U < 0.16 U < 0.15 U < 0.14	U	< 0.14	U
Perfluoro-1-hexanesulfonamide (FHxSA) µg/kg NC NC < 0.13 U < 0.15 U < 0.15 U < 0.14	U	< 0.14	U
Perfluoro-3-methoxypropanoic acid µg/kg NC NC < 0.084 U < 0.094 U < 0.091 U < 0.086	U	< 0.085	U
Perfluoro-4-methoxybutanoic acid µg/kg NC NC < 0.082 U < 0.092 U < 0.089 U < 0.084	U	< 0.083	U
Perfluorobutanesulfonic acid (PFBS) µg/kg NC NC < 0.068 U < 0.076 U < 0.074 U < 0.07	U	< 0.069	U
Perfluorobutanoic Acid (PFBA) µg/kg NC NC < 0.059 U < 0.066 U < 0.064 U < 0.061	U	< 0.06	U
Perfluorodecanesulfonic acid (PFDS) µg/kg NC NC < 0.1 U < 0.12 U 0.13 J < 0.11	U	< 0.11	U
Perfluorodecanoic acid (PFDA) µg/kg NC NC 0.12 J < 0.064 U < 0.062 U < 0.059	U	< 0.058	U
Perfluorododecanoic acid (PFDoA) µg/kg NC NC < 0.068 U < 0.076 U < 0.074 U < 0.07	U	< 0.069	U
Perfluoroheptanesulfonic acid (PFHpS) µg/kg NC NC < 0.13 U < 0.15 U < 0.15 U < 0.14	U	< 0.14	U
Perfluoroheptanoic acid (PFHpA) µg/kg NC NC < 0.064 U < 0.072 U < 0.07 U < 0.066	U	< 0.065	U
Perfluorohexanesulfonic acid (PFHxS) µg/kg NC NC < 0.071 U < 0.079 U < 0.077 U < 0.073	U	< 0.072	U
Perfluorohexanoic acid (PFHxA) µg/kg NC NC < 0.083 U < 0.093 U < 0.09 U 0	.089 J	< 0.084	U
Perfluorononanesulfonic Acid (PFNS) µg/kg NC NC < 0.12 U < 0.13 U < 0.13 U < 0.12	U	< 0.12	U
Perfluorononanoic acid (PFNA) µg/kg NC NC 0.11 J < 0.082 U < 0.079 U < 0.075	U	< 0.074	U
Perfluorooctane Sulfonamide (FOSA) µg/kg NC NC < 0.087 U < 0.097 U < 0.095 U < 0.089	U	< 0.088	U
Perfluorooctanesulfonic acid (PFOS) µg/kg 0.88 8.8 0.93 0.17 J 0.30 J	0.20 J	< 0.061	U
Perfluorooctanoic acid (PFOA)	U	0.20)]
Perfluoropentanesulfonic Acid (PFPeS) µg/kg NC NC < 0.065 U < 0.073 U < 0.071 U < 0.067	U	< 0.066	U
Perfluoropentanoic Acid (PFPeA) µg/kg NC NC < 0.068 U < 0.076 U < 0.074 U < 0.07	U	< 0.069	U
Perfluorotetradecanoic acid (PFTA) µg/kg NC NC < 0.085 U < 0.095 U < 0.092 U < 0.087	U	< 0.086	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA) µg/kg NC NC < 0.099 U < 0.11 U < 0.11 U < 0.1	U	< 0.1	U
Perfluoroundecanoic Acid (PFUnA) µg/kg NC NC < 0.081 U < 0.091 U 0.11 J < 0.083	U	< 0.082	U

Notes:

¹New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and

Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

			Client Sample ID:	AMS-SB-	05 0-2IN	DUPLIC	ATE AMS	AMS-SB-	05 2-12IN	AMS-SB-05	5 180-192IN	AMS-SB	-06 0-21N
			Lab Sample ID:	22H13	360-04	22H1	360-10	22H1	360-05	22H1	360-06	22H1	360-07
			Location ID:	AMS-	SB-05	AMS-SB	-05 0-21N	AMS	-SB-05	AMS	-SB-05	AMS	-SB-06
			Sample Date:	8/22/	/2022	8/22	2/2022	8/22	/2022	8/22	/2022	8/22	2/2022
			Sample Type Code:	1	V	i i	FD		N		N		N
		Unrestricted Use	Residential Use		0 110		0 110		0 110		0 110		0 110
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.13	U	< 0.13	U	< 0.12	U	< 0.15	U	< 0.12	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.11	U	< 0.14	U	< 0.11	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.082	U	< 0.085	U	< 0.08	U	< 0.096	U	< 0.081	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.1	U	< 0.11	U	< 0.099	U	< 0.12	U	< 0.1	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.14	U	< 0.15	U	< 0.14	U	< 0.17	U	< 0.14	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.11	U	< 0.12	U	< 0.11	U	< 0.13	U	< 0.11	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	NC	< 0.22	U	< 0.22	U	< 0.21	U	< 0.25	U	< 0.21	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.13	U	< 0.13	U	< 0.12	U	< 0.15	U	< 0.12	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.081	U	< 0.084	U	< 0.079	U	< 0.095	U	< 0.08	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.069	U	< 0.072	U	< 0.067	U	< 0.081	U	< 0.069	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.073	U	< 0.076	U	< 0.071	U	< 0.086	U	< 0.073	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.14	U	< 0.15	U	< 0.14	U	< 0.17	U	< 0.14	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.13	U	< 0.14	U	< 0.13	U	< 0.16	U	< 0.13	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.084	U	< 0.087	U	< 0.081	U	< 0.098	U	< 0.083	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.082	U	< 0.085	U	< 0.08	U	< 0.096	U	< 0.081	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.068	U	< 0.071	U	< 0.066	U	< 0.08	U	< 0.068	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	0.30	J	< 0.062	U	< 0.058	U	< 0.069	U	< 0.059	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	0.29	J	0.27	J	< 0.1	U	< 0.12	U	< 0.1	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	< 0.058	U	< 0.06	U	< 0.056	U	< 0.067	U	< 0.057	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.068	U	< 0.071	U	< 0.066	U	< 0.08	U	< 0.068	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.13	U	< 0.14	U	< 0.13	U	< 0.16	U	< 0.13	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	0.13	J	< 0.067	U	< 0.062	U	< 0.075	U	< 0.064	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.071	U	< 0.074	U	< 0.069	U	< 0.083	U	< 0.071	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	0.18	J	< 0.086	U	< 0.081	U	< 0.097	U	< 0.082	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.12	U	< 0.13	U	< 0.12	U	< 0.14	U	< 0.12	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	< 0.073	U	< 0.076	U	< 0.071	U	< 0.086	U	< 0.073	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.087	U	< 0.09	U	< 0.084	U	< 0.1	U	< 0.086	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	8.8	0.58		0.55		0.14	J	< 0.071	U	0.25	J
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	6.6	0.21	J	0.37	J	< 0.12	U	< 0.15	U	< 0.13	U
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.066	U	< 0.068	U	< 0.063	U	< 0.076	U	< 0.065	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	0.25	J	< 0.071	U	< 0.066	U	< 0.08	U	< 0.068	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.085	U	< 0.088	U	< 0.082	U	< 0.1	U	< 0.084	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.1	U	< 0.1	U	< 0.097	U	< 0.12	U	< 0.099	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	< 0.081	U	< 0.084	U	< 0.079	U	< 0.095	U	< 0.08	U

Notes:

¹New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and

Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

			Client Sample ID:	AMS-SB-	06 2-12IN	AMS-SB-06	5 216-240IN	AMS-SB-	07 0-21N	AMS-SB-	07 2-12IN	AMS-SB-07	7 120-132IN
			Lab Sample ID:	22H1	360-08	22H1	360-09	22H13	360-01	22H1	360-02	22H1	360-03
			Location ID:	AMS	SB-06	AMS-	-SB-06	AMS-	SB-07	AMS-	SB-07	AMS	-SB-07
			Sample Date:	8/22	/2022	8/22	/2022	8/22	/2022	8/22	/2022	8/22	/2022
			Sample Type Code:		N		N		N		N		N
		Unrestricted Use	Residential Use		0 110		0 110				0 110	a 14	0.110
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.12	U	< 0.15	U	< 0.13	U	< 0.13	U	< 0.14	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.12	U	< 0.14	U	< 0.12	U	< 0.12	U	< 0.13	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.082	U	< 0.099	U	< 0.084	U	< 0.085	U	< 0.091	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.1	U	< 0.12	U	< 0.1	U	< 0.11	U	< 0.11	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.14	U	< 0.17	U	< 0.15	U	< 0.15	U	< 0.16	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.11	U	< 0.14	U	< 0.11	U	< 0.12	U	< 0.12	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	NC	< 0.22	U	< 0.26	U	< 0.22	U	< 0.22	U	< 0.24	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.13	U	< 0.15	U	< 0.13	U	< 0.13	U	< 0.14	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.081	U	< 0.098	U	< 0.083	U	< 0.084	U	< 0.09	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.069	U	< 0.084	U	< 0.071	U	< 0.072	U	< 0.077	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.073	U	< 0.088	U	< 0.075	U	< 0.076	U	< 0.081	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.14	U	< 0.17	U	< 0.14	U	< 0.15	U	< 0.16	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.13	U	< 0.16	U	< 0.14	U	< 0.14	U	< 0.15	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.084	U	< 0.1	U	< 0.086	U	< 0.087	U	< 0.094	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.082	U	< 0.099	U	< 0.084	U	< 0.085	U	< 0.091	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.068	U	< 0.082	U	< 0.07	U	< 0.071	U	< 0.076	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	< 0.059	U	< 0.072	U	< 0.061	U	0.073	J	< 0.066	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.1	U	< 0.13	U	0.17	J	< 0.11	U	< 0.12	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	< 0.058	U	< 0.069	U	< 0.059	U	< 0.059	U	< 0.064	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.068	U	< 0.082	U	< 0.07	U	< 0.071	U	< 0.076	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.13	U	< 0.16	U	< 0.14	U	< 0.14	U	< 0.15	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	< 0.064	U	< 0.078	U	< 0.066	U	< 0.067	U	< 0.072	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.071	U	< 0.086	U	< 0.073	U	< 0.074	U	< 0.079	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	< 0.083	U	< 0.1	U	< 0.085	U	< 0.086	U	< 0.092	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.12	U	< 0.15	U	< 0.12	U	< 0.13	U	< 0.13	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	< 0.073	U	< 0.088	U	< 0.075	U	< 0.076	U	< 0.081	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.087	U	< 0.11	U	< 0.089	U	< 0.09	U	< 0.097	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	8.8	0.063	J	< 0.073	U	0.38	J	0.19	-	0.084	J
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	6.6	< 0.13	U	0.20	J	< 0.13	U	0.26	J	< 0.14	U
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.065	U	< 0.079	U	< 0.067	U	< 0.068	U	< 0.073	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	< 0.068	U	< 0.082	U	< 0.07	U	< 0.071	U	< 0.076	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.085	U	< 0.1	U	< 0.087	U	< 0.088	U	< 0.095	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.1	U	< 0.12	U	< 0.1	U	< 0.1	U	< 0.11	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	< 0.081	U	< 0.098	U	< 0.083	U	< 0.084	U	< 0.09	U

Notes:

¹New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and

Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

			Client Sample ID:	AMS-SB-	-08A 0-21N	AMS-SB-0	BA 192-204IN
			Lab Sample ID:	22H1	545-04	22H	1545-06
			Location ID:	AMS-	SB-08A	AMS	-SB-08A
			Sample Date:	8/24	1/2022	8/2	4/2022
			Sample Type Code:		N		Ν
		Unrestricted Use	Residential Use				
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifier	Result	Qualifier
1-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µq/kq	NC	NC	< 0.15	U	< 0.12	U
H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.14	U	< 0.12	U
H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.098	U	< 0.082	U
H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.12	U	< 0.1	U
,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.17	U	< 0.14	U
-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µq/kq	NC	NC	< 0.13	U	< 0.11	U
exafluoropropylene oxide dimer acid (HFPO-DA)	µq/kq	NC	NC	< 0.26	U	< 0.21	U
I-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.15	U	< 0.13	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.096	U	< 0.081	U
Nonafluoro-3,6-dioxaheptanoic acid	µq/kq	NC	NC	< 0.082	U	< 0.069	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.087	U	< 0.073	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.17	U	< 0.14	U
erfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.16	Ŭ	< 0.13	U
erfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.1	U	< 0.084	U
erfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.098	U	< 0.082	U
erfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.081	U	< 0.068	U
erfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	< 0.071	U	< 0.059	U
erfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC.	< 0.12	U	< 0.1	U
erfluorodecanoic acid (PFDA)	µg/kg	NC	NC	< 0.068	U	< 0.057	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.081	U	< 0.068	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.16	U	< 0.13	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	< 0.076	U	< 0.064	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.085	Ŭ	< 0.071	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	< 0.099	U	< 0.083	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.14	U	< 0.12	U
Perfluorononanoic acid (PENA)	µg/kg	NC	NC	< 0.087	Ŭ	< 0.073	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.1	Ŭ	< 0.087	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	8.8	0.086	- -	0.1	4 J
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	6.6	< 0.15	U	< 0.13	U
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.078	U	< 0.065	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	< 0.081	U	< 0.068	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.1	U	< 0.085	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.12	U	< 0.1	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	< 0.096	U	< 0.081	U
	P9/19			. 3.070	1~	. 0.001	17

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

Table 4A Algonquin Middle School Groundwater, PFAS Results

Analyte Ur		: 1	/2022 N	9/20/	/2022 N	9/20/		AMS-0 9/20/	-	AMS-C 9/20/ N	2022	AMS-0 9/20/: FL	/2022	9/20/	DW-06 /2022 N	AMS-0 9/19/	/2022
	nit NYSDEC Guidelines	¹ Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid ng	/L NC	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.9	U	< 1.9	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid ng	/L NC	< 4.5	U	< 4.5	U	1.3	J	< 4.6	U	< 4.5	U	< 4.6	U	< 4.8	U	< 4.8	U
N-ethyl perfluorooctanesulfonamidoacetic acid ng	/L NC	< 4.5	U	< 4.5	U	< 4.6	U	< 4.6	U	< 4.5	U	< 4.6	U	< 4.8	U	< 4.8	U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA) ng	/L NC	< 4.5	U	< 4.5	U	< 4.6	U	< 4.6	U	< 4.5	U	< 4.6	U	< 4.8	U	< 4.8	U
Perfluorobutanesulfonic acid (PFBS) ng	/L NC	0.93	J	3.4		1	J	0.63	J	< 1.8	U	< 1.8	U	< 1.9	U	0.65	J
Perfluorobutanoic Acid (PFBA) ng	/L NC	4.6		5.7		15		9.4		6.3		5.6		< 4.8	U	4.3	J
Perfluorodecanesulfonic acid (PFDS) ng	/L NC	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.9	U	< 1.9	U
Perfluorodecanoic acid (PFDA) ng	/L NC	< 1.8	U	< 1.8	U	2.2		1.1	J	0.46	J	< 1.8	U	< 1.9	U	< 1.9	U
Perfluorododecanoic acid (PFDoA) ng	/L NC	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.9	U	< 1.9	U
Perfluoroheptanesulfonic acid (PFHpS) ng	/L NC	< 1.8	U	0.82	J	0.72	J	< 1.8	U	< 1.8	U	< 1.8	U	< 1.9	U	< 1.9	U
Perfluoroheptanoic acid (PFHpA) ng	/L NC	0.71	J	2.7		7.5		2.7		1.6	J	1.4	J	< 1.9	U	2.7	
Perfluorohexanesulfonic acid (PFHxS) ng	/L NC	0.97	J	1.1	J	1.6	J	1.2	J	0.71	J	0.64	J	0.67	J	0.73	J
Perfluorohexanoic acid (PFHxA) ng	/L NC	< 1.8	U	12		60		39		24		21		1.1	J	4.8	
Perfluorononanoic acid (PFNA) ng	/L NC	< 1.8	U	1.4	J	4.2		1.6	J	0.84	J	0.72	J	< 1.9	U	0.57	J
Perfluorooctane Sulfonamide (FOSA) ng	/L NC	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.9	U	< 1.9	U
Perfluorooctanesulfonic acid (PFOS) ng	/L 10	1.9		51		18		13		6.6		5.5		< 1.9	U	0.91	J
Perfluorooctanoic acid (PFOA) ng	/L 10	6.8		12		24		10		5.1	-	4.3		< 1.9	U	6.5	ļ
Perfluoropentanoic Acid (PFPeA) ng	/L NC	< 1.8	U	9.9		58		25		16		14		1	J	5.8	
Perfluorotetradecanoic acid (PFTA) ng	/L NC	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.9	U	< 1.9	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA) ng	/L NC	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.9	U	< 1.9	U
Perfluoroundecanoic Acid (PFUnA) ng	/L NC	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.8	U	< 1.9	U	< 1.9	U

¹New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

ng/L - nanogram per liter = parts per trillion (ppt)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above applicable NYSDEC Standards, Criteria, & Guidance Values

Table 4B Algonquin Middle School Groundwater, Artificial Sweetener Results

	Client Samp	ole ID:	AMS-OW-	01-20220919	AMS-OW-02	2-20220920	AMS-OW-0	3-20220920	AMS-OW-0	4-20220920	AMS-OW-05	5-20220920	FIELD DUP	P-20220920	AMS-OW-0	6-20220920	AMS-OW-08	8-20220919
	Lab Samp	ole ID:	221	1081-01	22111	74-01	2211	174-02	22111	74-03	22111	74-04	22111	174-06	22111	74-05	22110	081-02
	Locati	on ID:	AMS	S-OW-01	AMS-0	DW-02	AMS-	OW-03	AMS-0	DW-04	AMS-C	DW-05	AMS-	OW-05	AMS-0	DW-06	AMS-0	80-WC
	Sample	Date:	9/1	9/2022	9/20/	/2022	9/20)/2022	9/20	/2022	9/20/	2022	9/20	/2022	9/20	/2022	9/19	/2022
	Sample Type	Code:		Ν	1	V		N		V	١	J	F	D		N	1	Ν
	Screening		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Analyte	Criteria	Unit	nesure	quanner	nesure	quanner	nesure	quanner	nesure	quanner	nesure	quanner	nesure	quaimer	nesure	quanner	nesure	quainer
Acesulfame K	NC	μg/L	<0.0096	U	0.0097		0.24	ŀ	3.3		2.3		2.2		0.12		0.02	
Sucralose	NC	μg/L	<0.024	U	0.38		12		3.2		2.1		2		<0.024		<0.024	
Notes:																		
Sample Type Code: N - Normal, FD	-Field Duplica	te																
µg/L - microgram per liter = parts	per billion (ppb	o)																
NC - No criteria currently exists																		
U - Compound was not detected a	t the reporting	limit s	shown															
Bold - Indicates the compound wa	as detected																	

Table 4C Algonquin Middle School Groundwater, Nitrate Nitrite Results

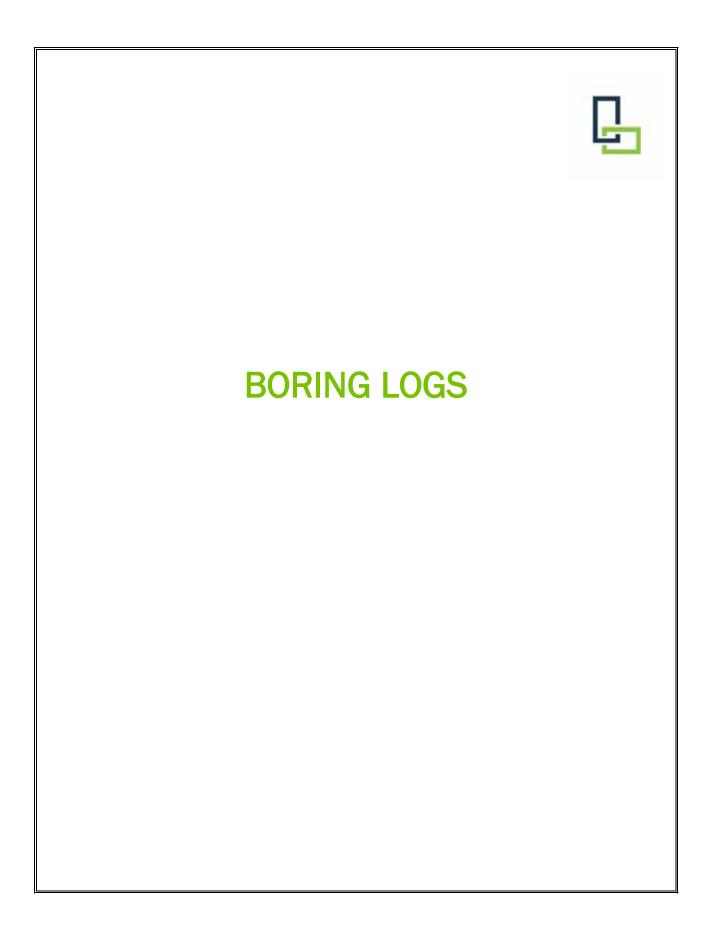
	Client Samp	ole ID:	AMS-OW-0	1-20220919	AMS-OW-0	2-20220920	AMS-OW-0	03-20220920	AMS-OW-0	04-20220920	AMS-OW-0	5-20220920	FIELD DUF	P-20220920	AMS-OW-0	6-20220920	AMS-OW-0	8-20220919
	Lab Samp			81-01	22111	74-01	2211	174-02	2211	174-03	2211	74-04	22111	74-06	22111	74-05	22110	081-02
	Locatio	on ID:	AMS-0	DW-01	AMS-0	DW-02	AMS-	-OW-03	AMS	-OW-04	AMS-	DW-05	AMS-0	DW-05	AMS-	OW-06	AMS-	OW-08
	Sample	Date:	9/19	/2022	9/20	/2022	9/20	0/2022	9/20	0/2022	9/20	/2022	9/20	/2022	9/20	/2022	9/19	/2022
	Sample Type	Code:	1	N	1	V		N		N		N	F	D		N		N
Analyte	NYS Class GA ¹	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Nitrate (as N)	10	mg/L	0.61		0.22		14	1 H-04	9.6	5 H-04	8.2	H-04	8.0	H-04	3.8	MS-07	0.13	
Nitrite (as N)	1	mg/L	< 0.100	U	< 0.100	U	< 0.100	U	< 0.100	U	< 0.100	U	< 0.100	U	< 0.100	U	< 0.100	U

Notes:

¹New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998.

Sample Type Code: N - Normal, FD -Field Duplicate

mg/L - milligram per liter = parts per million (ppm)


U - Compound was not detected at the reporting limit shown

H-04 - Initial analysis within holding time. Reanalysis for required dilution was past holding time

MS-07 - Matrix spike recovery is outside of control limits. Possible low bias for reported result

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above applicable criteria

MONITORING WELL / BORI	NG NO. AMS-OV	<u>N-01 /</u> AMS-SB-01
Site Name:	Middle School Date Drille	
Location: 333 RT 351, Poestenkill, N	Drilling Co.	Clean Globe Environmental Powered by partnership.
Client: ^{NYSDEC}	Driller:^	Mario Pineda Soil Samples Collected:
Phone No.: N/A	Logged by	B. Baulsir AMS-SB-01 0-2" AMS-SB-01 2-12"
Drilling Method: Geoprobe 7822 D	DT (Dia): 2" Samplin	g Method: Macro Core (Dia): 2" AMS-SB-01 72-84"
_		d TD: <u>See samples collected (</u> Dia): 2"
Well TD: ^{9'}		
Screen Interval:9-4'SI	ot Size: ^{0.010"}	Diameter:2-inch
Cased Interval: <u>4.0-0'</u> Ty	/pe: ^{PVC}	Diameter:2-inch
Sand Pack Interval:9-2'	Type:#2	Wellhead Prot: Flush Mount
Bentonite Seal Interval: 2-	0.5' Type: Chips	Grouted Interval: ^{N/A}
Depth Monitoring Well (Feet) Construction	Recovery; PID (ppm):	Description / Soil Classification
Concrete	Hand cleared 6.1	0" - 1.0' Brown, dry, fine SAND and SILT, some fine Gravel
Bentonite 2" PVC Riser	S-1: 1.0' - 5.0' Rec: 3.5'/4.0' < 1.0	some shale fragments, some fine rounded Gravel (fill material)
5 #2 Well Sand	1.0	4.5' - 9.0' Gray, dry, SILT and fine SAND some weathered rock becomes wet at 7 fbg
5 #2 Well Sand 10 Slot PVC Riser	S-2: 5.0' - 9.0'	
PVC Screen	Rec: 4.0'/4.0' < 1.0	
		Weathered bedrock (shale) fragments in sampler to end of boring (refusal) @ 9 9'
_		
20 -		
 25		
30 —		
35]		
Monitoring Well Completion / Boring Lo	og drafted by LaBella Associat	es, D.P.C. PAGE of

MONITO	RING WELL / BORI	NG NO. AM	S-OV	/ <u>-02 /</u> AMS-SB-02A	
Site Nam	e: NYSDEC - Algonquin M	liddle School_Dat	e Drilled	August 23, 2022	LaBella
Location	333 RT 351, Poestenkill, N	/ Dril	ling Co.:	Clean Globe Environmental	Former Powered by partnership.
Client:	YSDEC	Dril	ler: ^M	ario Pineda	Soil Samples Collected: AMS-SB-02A 0-2"
Phone N	0.: N/A	Log	iged by:_	S. Vaverchak	AMS-SB-02A 2-12"
Drilling M	lethod:	T(Dia): <u>2"</u>	ampling	Method: Macro Core (Dia): 2"	AMS -SB-02A 144-156"
Drilled T	D: 16'	(Dia): <u>2"</u> S	ampled	TD: See samples collected (Dia):	
Well TD:	16'	(Dia): <u>2"</u> V	Vell Type	e:PVC	
Screen Ir	nterval: <u>16'-6'</u> Slo	ot Size:0.	010"	_Diameter:_2"	
Cased In	terval: <u>6.0' - Grade</u> Ty	pe: ^{PVC}		_Diameter:2"	
Sand Pa	ck Interval: <u>16' - 4.0'</u>	Туре:	#2	_Wellhead Prot: Flush Mount	
Bentonite	e Seal Interval <u>: 4.0'-2</u>	Type:	chips	_Grouted Interval:	
Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):	Descriptio	n / Soil Classification
2"_ 0	cap <u>8" road bo</u> x				
	Concrete	Hand cleared	2.7	0" - 1.0' Brown, dry, organics, coarse	e to fine SAND some Gravel
	Native Soil & Well Sand Bentonite	S-1: 1.0' - 5.0' Rec: 2.0'/4.0'	< 6.0	1.0' - 5.0' Brown fine to medium SAN	D and GRAVEL fragments (fill)
				5.0' - 16' Brown fine to medium SANI	D, some Silt, intermittent Gravel layers (fill)
	2" PVC Riser	S-2: 5.0' - 10' Rec: 2.0'/5.0'	< 1.0		
	#2 Well Sand	S-3: 10' - 15' Rec: 5.0'/5.0'	< 1.0	¥ Wet at 13.0'	
	10 Slot	S-4: 15' - 16' Rec: 1.0'/1.0'	< 1.0	End of boring (refusal), gray sh	nale fragments in sampler shoe @ 16'
20	<u>PVC Scree</u> n				16
30					
35	Well Completion / Boring Log	n drafted by LoBella	Associator		PAGE of

Drilled TD: 14.5' Well TD: 14.5 Screen Interval: 14.5' - 4.5' S Cased Interval: 4.5' - Grade T	ool Date JY Drilli Drilli Drilli Drilli Drilli Drilli Logg DT Dia): Sa Dia): W Iot Size: 0.010 ype: Sch 40 P 2.5' Type: #2	e Drilled ng Co.: er:^ ged by: ampling ampled /ell Type o	 August 24, 2022 Clean Globe Environmental ario Pineda B. Baulsir Method: Macro Core (Dia): 2" TD: See samples collected (Dia): PVC Diameter: 2-inch Diameter: 2-inch Wellhead Prot: Flush Mount 	Soil Samples Collected: AMS-SB-03 0"-2" AMS-SB-03 0"-2" MS/MSD AMS-SB-03 2"-12" AMS-SB-03 84"-96"
Depth (Feet) Monitoring Well Construction 0	Rec: 4.0'/4.0'	PID (ppm): 2.7 < 1.0 < 1.0 6.2	0.0' - 1.0' Brown, dry, organics, fine 1.0' - 5.0' Brown, dry, fine SAND and interbedding SILT bands fr 5.0' - 10' Brown, dry, fine SAND and size with depth to approxim ↓ Wet at 8.5'	fine GRAVEL some Silt. Gravel increasing in
Monitoring Well Completion / Boring L	l og drafted by LaBella	Associates	s, D.P.C.	PAGE of

MONITORING WELL / BOR								
Site Name:Algonquin Middle Sch								
Location: 333 RT. 351 Poestenkill, N	^{IY} Drilli	ng Co.:	Clean Globe Environmental	Powered by parciership.				
	Client: NYSDEC Driller: Mario Pineda Soil Samples Collected: AMS-SB-04 0"-2"							
Phone No.: N/A Logged by: S. Vaverchak AMS-SB-04 2"-12"								
			Method: Macro Core (Dia): 2"	AMS-SB-04 168" - 180"				
	Drilled TD: 18' (Dia): 2" Sampled TD: See samples collected (Dia):							
Well TD: ^{18'}	(Dia): <u>2"</u> W	/ell Type	e:					
Screen Interval: <u>18'-8.0'</u> S								
Cased Interval: <u>8.0'-grade</u> T	ype:Sch 40 P	VC	_ Diameter: ^{2-inch}					
Sand Pack Interval: 18' - 6.	<u>º'</u> Type <u>: #2</u>		_Wellhead Prot: Flush Mount					
Bentonite Seal Interval: 6.0	<u>'-4.0'</u> Туре: <u>в</u>	Benchips	_Grouted Interval: <u>NA</u>					
Depth Monitoring Well	Deceiver	PID	Descriptio					
Depth (Feet) Monitoring Well Construction 2" cap 8" road box	Recovery;	(ppm):	Descriptio	n / Soil Classification				
	Hand cleared	2.9	0.0' 1.0' Brown dry organics fine	SAND and SILT (topsoil)				
Concrete Native Soil &	S-1: 1.0' - 5.0'	_ 2.9	0.0' - 1.0' Brown, dry, organics, fine SAND and SILT (topsoil) 1.0' - 15' Brown, dry, fine SAND some Silt. Increasing medium and coarse					
Well Sand	Rec: 2.5'/4.0'	4.8						
5 Bentonite								
2" PVC Riser	S-2: 5.0' - 10' Rec: 4.0'/5.0'	3.6						
			Brown, moist - wet, mediu	m to coarse SAND, some Silt. Wet at 15'				
#2 Well Sand	S-3: 10' - 15' Rec: 3.0'/5.0'	3.1						
	100. 0.070.0		▼					
15	S-4: 15' - 18'		15' - 16' Brown, wet, fine SAND					
PVC Screen	Rec: 3.0'/3.0'	< 1 <u>.</u> 0	16' -18' Brown, wet SILTY CLAY, s	shale fragments to sampler refusal @ 18'				
				18'				
25								
35 _J Monitoring Well Completion / Boring Lo	og drafted by LaBella	Associates	5. D.P.C.	PAGE <u>1</u> of <u>1</u>				
	a aranda by Labella		·,					

MONITORING WELL / BORI	NG NO. AM	<u>S-0N</u>	<u>/-05 /</u> A	MS-SB-05	-			
Site Name: NYSDEC - Algonquin I	Viddle School Date	e Drilled	August	t 22, 2022	LaBella			
Location: 333 RT 351, Poestenkill, NY Drilling Co.: Clean Globe Environmental Powered by partnership.								
Client: NYSDEC	Client: NYSDEC Driller: Mario Pineda Soil Samples Collected:							
Phone No.:				lsir	AMS-SB-05 0-2" AMS-SB-05 2-12"			
Drilling Method:					AMS-SB-05 180-192"			
Drilled TD: ^{17'}	(Dia): <u>2"</u> S	ampled	TD: see sa	mples collected (Dia):	Duplicate Parent SB-05 0-2"			
Well TD: ^{17'}	(Dia): <u>2"</u> W	Vell Type	e:P	VC				
Screen Interval: <u>17-7'</u> SI	ot Size: 0.01	0"	_Diamete	er: ^{2_inch}				
Cased Interval: <u>7-0'</u> Ty	/pe:		_Diamete	er: 2-inch				
Sand Pack Interval: 17-5'	Type <u>: #2</u>	2	_Wellhea	ad Prot: Flush Mount				
Bentonite Seal Interval: <u>5-3</u>	Type:_Cl	nips	_ Grouted	d Interval:				
	[[]						
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):		Descriptio	on / Soil Classification			
2" cap 8" road box								
Concrete	Hand cleared	< 1.0	0" - 1.0'	Brown, dry, organics, fine Gravel (shale fragments)	SAND and SILT (topsoil) trace small angular			
Native Soil & Well Sand	S-1: 1.0' - 5.0'	7.8	1.0' - 5.5'	Brown, dry, fine SAND a				
Bentonite	Rec: 3.0'/4.0'							
5 -			5.5' - 6.5'	Brown, dry, coarse to fine	SAND trace Silt			
2" PVC Riser	S-2: 5.0' - 10' Rec: 2.5'/5.0'	8.7	6.5' - 17'	Brown, dry, fine SAND an	d SILT becomes wet at 15 fbg			
	100. 2107510							
	S-3: 10' - 15'	3.2						
	Rec: 5.0'/5.0'							
	S-4: 15' - 17'		⊻					
10 Slot PVC Screen	Rec: 2.0'/2.0'	3.1	 	End of boring (refusal), sh	nale fragments in sampler shoe @ 17'			
					17'			
25 -								
30								
Monitoring Well Completion / Boring Lo	g drafted by LaBella	Associates	s, D.P.C.		PAGE of			

MONITORING WELL / BORI	NG NO. AM	S-ON		
Site Name: NYSDEC - Algonquin M				
Location: 333 RT 351, Poestenkill, N	^Y Drill	Clean Globe Environmental Powered by partnership.		
Client: NYSDEC	Drill	Aario Pineda Soil Samples Collected:		
Phone No.: N/A	Log	iged by:	. B. Baulsir AMS-SB-06 0"- 2" AMS-SB-06 2"-12"	
Drilling Method: Geoprobe 7822 D	T(Dia): <u>2"</u> S	ampling	g Method: <u>Macro Core</u> (Dia): 2" AMS-SB-06 216" - 240"	
		•	TD: see samples collected (Dia):	
Well TD: 24'	(Dia): <u>2</u> "V	Vell Typ	De:	
Screen Interval: <u>24'-14'</u> Slo	ot Size: 0.01	0"	Diameter:_ ^{2-inch}	
Cased Interval: <u>14' - Grade'</u> Ty	rpe: ^{PVC}		Diameter: 2-inch	
Sand Pack Interval: 24'-12'	Type: <i>#</i> 2	2	Wellhead Prot: <u>Flush Mount</u>	
Bentonite Seal Interval <u>: 12'- 10'</u>	Type:_ci	hips	Grouted Interval:N/A	
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):	Description / Soil Classification	
2" cap 8" road box				
Concrete	Hand cleared	4.3	0.0' - 1.0' Brown, dry, organics, fine SAND and SILT (topsoil) 1.0' - 12' Brown, dry, medium to fine SAND and SILT	_
	S-1: 3.0' - 5.0'	6.7		
5	Rec: 2.0'/2.0'			
Native Soil & Well Sand	S-2: 5.0' - 10' Rec: 2.5'/5.0'	1.3		
10 - Bentonite	S-3: 10' - 15' Rec: 2.5'/5.0'	< 1.0	12' - 13' Brown, dry, coarse to fine SAND, SILT, fine GRAVEL 13' - 19' Brown, dry, wet at 17', interbedded coarse to fine SAND and SILT lamina,	
10 Slot	S-4: 15' - 20' Rec: 4.0'/5.0'	< 1.0	wet at 17' <u>19'</u> - 24' Brown , wet, fine SAND and SILT to shale fragments in sampler shoe @ 24	
	S-5: 20' - 24' Rec: 4.0'/4.0'	< 1.0		
25 _				24'
30				
Monitoring Well Completion / Boring Lo	g drafted by LaBella	Associate:	es, D.P.C. PAGE <u>1</u> of <u>1</u>	

MONITORING WELL / BOR	ING NO. AMS	6-0W	<u>/-07 /</u> Al	MS-SB-07			
Site Name: NYSDEC - Algonquin	Middle School Date	Drilled	August 22	2, 2022	L- LaBella		
Location: 333 RT 351, Poestenkill, NY Drilling Co.: Clean Globe Environmental Powered by partnership.							
Client: NYSDEC Driller: Mario Pineda Soil Samples Collected:							
Phone No.: N/A Logged by: B. Baulsir AMS-SB-07 0" - 2" AMS-SB-07 0" - 2"							
Drilling Method: Geoprobe 7822	DT(Dia):2" Sa	mpling	Method:	lacro Core <u>(</u> Dia) <u>:</u> 2"	AMS-SB-07 120" - 132"		
	Drilled TD: <u>12'</u> (Dia): <u>2</u> " Sampled TD: <u>see samples collected</u> (Dia): <u>Clia</u>						
Well TD:							
Screen Interval: <u>11'-6.0'</u> S							
Cased Interval: <u>6.0' - Grade'</u> T							
Sand Pack Interval: <u>12'-4.0'</u>	•						
Bentonite Seal Interval <u>:4.0'-2</u>	.0' Type: <u>Chip</u>	s	_Grouted	Interval: <u>N/A</u>			
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):		Descriptio	n / Soil Classification		
2" cap 8" road box	Hand cleared	6.6	0.0' - 1.0' 1.0' - 1.5'	Black, dry, organics, co SHALE fragments	arse to fine SAND and SILT (topsoil)		
Concrete	S-1: 1.5' - 5.0'		1.5' - 2.0'	Gray, dry, fine to coarse	SAND, fine Gravel, Silt		
Native Soil & Well Sand	Rec: 2.5'/3.5'	7.1	2.0' - 10'	Brown, dry, coarse to fir	ne SAND and Silt		
5 Bentonite							
2" PVC Riser	S-2: 5.0' - 10'						
	Rec: 4.0'/5.0'	9.1					
10 Slot							
PVC Screen	S-3: 10' - 12' Rec: 2.0'/2.0'	< 1.0	10' - 12'	Gray, dry, shale fragme	nts to sampler refusal @ 12'		
#2 Well Sand	-				12'		
20 -							
30							
Monitoring Well Completion / Boring L	og drafted by LaBella A	ssociates	s, D.P.C.		PAGE _ 1 _ of _ 1		

MONITORING WELL / BORING NO.	-0W-	-08 / AMS-SB-08A						
Site Name: Nate	Drilled							
Location: 333 RT. 351 Poestenkill, NY Drilli	Location: 333 RT. 351 Poestenkill, NY Drilling Co.: Clean Globe Environmental Powered by partnership.							
Client: NYSDEC Driller: Mario Pineda Soil Samples Collected:								
Phone No.:_N/A Logo	B. Baulsir AMS-SB-08A 0"- 2" AMS-SB-08A 2" - 12"							
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sa	ampling							
Drilled TD: <u>17'</u> (Dia): <u>2</u> " Sa	ampled							
Well TD:(Dia):2"W	ell Type	e:						
Screen Interval: <u>17' - 7'</u> Slot Size: 0.010	"	Diameter: ^{inch}						
Cased Interval: _ ^{7.0' - Grade'} Type: ^{PVC}		Diameter:_ ^{2-inch}						
Sand Pack Interval: <u>17'-5.0'</u> Type: <u>#2</u>		Wellhead Prot: <u>Flush Mount</u>						
Bentonite Seal Interval: 5.0' - 3.0' Type: Chi	ips	Grouted Interval:_ ^{N/A}						
Depth Monitoring Well (Feet) Construction Recovery;	PID (ppm):	Description / Soil Classification						
2" cap 8" road box								
Concrete Hand cleared	_< 1.0	0.0' - 1.0' Dark Brown, dry, organics, coarse to fine SAND, some silt						
Native Soil & Well Sand S-1: 1.0' - 5.0' Bontonito Rec: 2.0'/4.0'	1.6	and fine GRAVEL (angular shale fragments), some Silt						
Bentonite		4.0' - 15' Light Brown, dry, fine SAND and SILT,						
		little angular shale fragments						
S-2: 5.0' - 10' <u>2'' PVC Riser</u> Rec: 5.0'/5.0'	3.7							
#2 Well Sand S-3: 10' - 15'	5.1							
Rec: 5.0'/5.0'								
15	11	15' - 17' Gray, dry, fine SAND and SILT some weathered gray shale to refusal @ 17'						
		17'						
20 -								
25 -								
30 -								
35								
Monitoring Well Completion / Boring Log drafted by LaBella	Associates	s, D.P.C. PAGE 1 of 1						

WELL DEVELOPMENT LOGS

Site Name Algonquin Middle School Site Location Averill Park, NY Well ID AMS-OW-01 Sampled By BB+NW

Well Information

Flush Mount or Riser	Flush
Measuring Point	TOC
Measuring Point Elevation	
Depth to Water (feet)	1.88
Depth to Bottom of Well	10.25

Dia. Wel	Well Volume Multiplier
1	0.0408
1.5	0.0918
2	0.1631
3	0.3670
4	0.6525
5	1.0195
6	1.4681
8	2.6100
10	4.0782
12	5.8726
	u Longth of Water Column

Well Volume Gallons = Multiplier x Length of Water Column

Stabilization is achieved when the following changes are noted over three consecutive 3-5 minute readings: \pm 0.1 change in pH

Aztech Environmental

A LaBella Company

$\pm\,3\%$ change in conductivity

Date	8/30/2022
Weather	Hot 90's Humid
Purging Equipment	Peristaltic
Sampling Equipment	Peristaltic/Horiba
Decon Method	Alconox
Riser Diameter	2"
Well Volume Calculation	

Time	Volume Removed (Gallons)	Turbidity (NTU)	рН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
810	5 gallons manually							1.88	
834	5 hook up pump							7.25	
905	8	169	8 <u>.</u> 19	17.2	2.40	2.41	72	6.22	
910	8.5	68.9	8.18	17.19	2.84	2.40	87	6.25	
916	10	37.2	8.19	17.19	2.48	2.41	102	6.32	

			-						
	Site Name	Algonquin Middle	e Schoo						
	Site Location	Averill Park, NY AMS-OW-02	_				-		
	Well ID	AMS-OW-02				Azte	ech Env	ironme	ental
	Sampled By	BB+NW	J						
	Well Informatio	n					A LaBella	Company	
	Flush Mount or Riser	Flush]						
		TOC	-	Stabilization is achie	ved when the following	g changes are noted			
	Measuring Point Measuring Point Elevation	100	-	over three	consecutive 3-5 minut ± 0.1 change in pH	e readings:			
					± 0.1 change in pH				
	Depth to Water (feet)	11.10		10	% change in conducti				
	Depth to Bottom of Well	16.11			-				
		10.11]		0 millivolt change in O change in DO and Tu				
				± 10%	change in DO and Tu	irbidity			
	Dia. Well	Well Volume Multiplier]		nte	8/30/2022			
	1 1.5	0.0408 0.0918	-	Burging E	ther guipment	Hot 90's Humid Peristaltic	-		
	2	0.1631		Sampling	Equipment	Peristaltic/Horiba	1		
	3	0.3670		Decon	quipment Equipment Method	Alconox 2"			
	4 5	0.6525 1.0195	-	Riser D	iameter Calculation	2" 0.82	-		
	6	1.4681	-			0.62	1		
	8	2.6100							
	10	4.0782							
	12	5.8726							
	Well Volume Gallons = Multiplier x Le	ngth of Water Column							
	L		J						
	I		1	I			1	I	
Time	Volume Removed (Gallons)	Turbidity (NTU)	рН	Temperature (F)	Dissolved O2	Conductivity	ORP (mV)	Depth to	Pumping
		, ,	I.	()	(mg/L)	(mS/cm)	- ()	Water	Rate
1120	2.5 gollong manually							11 10	
1120	2.5 gallons manually			1				11.10	
						I	I		
1130	3			pump used	l no horiba			14.91	
								-	
1200	3.5							15.70	
				allowed r	echarge				
				allowed i	echarge				
1215	3.5							14.30	
			1	1			1		
1220	3.75	76.3	7.66	23.79	2.91	0.472	161	13.62	
			1						
1225	4	38	7.69	23.60	0.0	0.469	156	13.75	
1220	4	30	7.09	23.00	0.0	0.409	150	13.75	
				1					
				1					
				1					
				1					
				1					
				1					
				1					
				1					
				l					
				1					
				1					
				1					
				1					
				1		1	1	1	
				1					

Site Name Algonquin Middle School Site Location Averill Park, NY Well ID AMS-OW-03 Sampled By BB+NW

Well Information

Flush Mount or Riser	Flush
Measuring Point	TOC
Measuring Point Elevation	
Depth to Water (feet)	7.59
Depth to Bottom of Well	13.92

Dia. We	Well Volume Multiplier
1	0.0408
1.5	0.0918
2	0.1631
3	0.3670
4	0.6525
5	1.0195
6	1.4681
8	2.6100
10	4.0782
12	5.8726
Mally (aligned Oplinger – Malfalians)	

Well Volume Gallons = Multiplier x Length of Water Column

Stabilization is achieved when the following changes are noted over three consecutive 3-5 minute readings: \pm 0.1 change in pH

Aztech Environmental

A LaBella Company

$\pm\,3\%$ change in conductivity

Date	8/30/2022
Weather	Hot 90's Humid
Purging Equipment	Peristaltic
Sampling Equipment	Peristaltic/Horiba
Decon Method	Alconox
Riser Diameter	2"
Well Volume Calculation	1.03

Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
1232	4.5 gallons manually				(mg/L)	(mo/cm)		7.59	Nate
1247	6.5			pump used	,no horiba			7.59	
1320	7.5	15	7.82	22.78	2.91	0.742	154	7.59	
1331	8.5	16	7.86	21.18	0.0	0.778	163	7.69	

Site Name Algonquin Middle School Site Location Averill Park, NY Well ID AMS-OW-04 Sampled By BB+NW

Well Information

Flush Mount or Riser	Flush
Measuring Point	TOC
Measuring Point Elevation	
Depth to Water (feet)	13.74
Depth to Bottom of Well	17.95

Dia. We	Well Volume Multiplier
1	0.0408
1.5	0.0918
2	0.1631
3	0.3670
4	0.6525
5	1.0195
6	1.4681
8	2.6100
10	4.0782
12	5.8726
Mall Malures College - Multiplier	v Leveth of Woter Column

Well Volume Gallons = Multiplier x Length of Water Column

Stabilization is achieved when the following changes are noted over three consecutive 3-5 minute readings: \pm 0.1 change in pH

Aztech Environmental

A LaBella Company

$\pm\,3\%$ change in conductivity

Date	8/30/2022
Weather	Hot 90's Humid
Purging Equipment	Peristaltic
Sampling Equipment	Peristaltic/Horiba
Decon Method	Alconox
Riser Diameter	2"
Well Volume Calculation	0.69

Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
1020	3 gallons manuall							13.74	
1030	pump with no horiba 4.5							15.2	
1045	4.5	286	7.90	17.04	8.39	0.364	152	14.13	
1100	5.75	122	7.74	14.33	6.03	0.371	175	14.15	
1108	6.75	34.3	7.75	14.87	6.35	0.371	176	14.15	

Site Name Algonquin Middle School Site Location Averill Park, NY Well ID AMS-OW-05 Sampled By BB+NW

Well Information

Flush Mount or Riser	Flush
Measuring Point	TOC
Measuring Point Elevation	
Depth to Water (feet)	14.30
Depth to Bottom of Well	16.80

Dia. Wel	Well Volume Multiplier				
1	0.0408				
1.5	0.0918				
2	0.1631				
3	0.3670				
4	0.6525				
5	1.0195				
6	1.4681				
8	2.6100				
10	4.0782				
12	5.8726				
Wall Valuma Gallans = Multiplier x Langth of Water Column					

Well Volume Gallons = Multiplier x Length of Water Column

Stabilization is achieved when the following changes are noted over three consecutive 3-5 minute readings: \pm 0.1 change in pH

Aztech Environmental

A LaBella Company

$\pm\,3\%$ change in conductivity

Date	9/1/2022
Weather	80s sunny
Purging Equipment	Peristaltic
Sampling Equipment	Peristaltic/Horiba
Decon Method	Alconox
Riser Diameter	2"
Well Volume Calculation	0.41

Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumpin Rate
940	2 purged with bailer				(119/2)	(meroni)		Trato.	- Tuto
950	3.0			pump used w	ith no horiba			14.77	
1000	3.5	90.4	7 <u>.</u> 58	13.49	6.82	0.261	163	14.62	
1010	4.0	12	7.50	13.31	7.85	0.262	182	14.61	

Site Name Algonquin Middle School Site Location Averill Park, NY Well ID AMS-OW-06 Sampled By BB+NW

Well Information

Flush Mount or Riser	Flush
Measuring Point	TOC
Measuring Point Elevation	
Depth to Water (feet)	17.53
Depth to Bottom of Well	24

Dia. We l	Well Volume Multiplier					
1	0.0408					
1.5	0.0918					
2	0.1631					
3	0.3670					
4	0.6525					
5	1.0195					
6	1.4681					
8	2.6100					
10	4.0782					
12	5.8726					
Well Volume Gallons = Multiplier x Length of Water Column						

Stabilization is achieved when the following changes are noted over three consecutive 3-5 minute readings: \pm 0.1 change in pH

$\pm\,3\%$ change in conductivity

± 10 millivolt change in ORP

± 10% change in DO and Turbidity

Date	9/1/2022
Weather	80s sunny
Purging Equipment	Peristaltic
Sampling Equipment	Peristaltic/Horiba
Decon Method	Alconox
Riser Diameter	2"
Well Volume Calculation	1.06

Time	Volume Removed (Gallons)	Turbidity (NTU)	рН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
	first 5 with bailer and 5-6 with pum	p and no horiba							
909	6.0	478	7.58	14.23	14.97	0.223	4.9	17.97	
922	7.0	206	7.26	13.27	5.68	0.208	143	17.99	
930	7.5	27.2	7.30	13.23	6.1400	0.202	154	17.97	

Aztech Environmental A LaBella Company

Site Name Algonquin Middle School Site Location Averill Park, NY Well ID AMS OW-07 Sampled By BB+NW

Well Information

Flush Mount or Riser	Flush
Measuring Point	TOC
Measuring Point Elevation	
Depth to Water (feet)	DRY
Depth to Bottom of Well	10.72

Dia. We	Well Volume Multiplier						
1	0.0408						
1.5	0.0918						
2	0.1631						
3	0.3670						
4	0.6525						
5	1.0195						
6	1.4681						
8	2.6100						
10	4.0782						
12	5.8726						
Well Volume Gallons = Multiplier x Length of Water Column							

Well Volume Gallons = Multiplier x Length of Water Column

Stabilization is achieved when the following changes are noted over three consecutive 3-5 minute readings: \pm 0.1 change in pH

Aztech Environmental

A LaBella Company

$\pm\,3\%$ change in conductivity

Date	9/1/2022
Weather	80s sunny
Purging Equipment	Peristaltic
Sampling Equipment	Peristaltic/Horiba
Decon Method	Alconox
Riser Diameter	2"
Well Volume Calculation	

Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate

			- O - I					2017	
	Site Name	Algonquin Middle	e School						
	Well ID	Averill Park, NY AMS-OW-08				Arte	ch Env	ironme	ntal
	Sampled By	BB+NW]			AZI	- CECONS		intal
	Well Informatio		ı				A LaBella	Company	
	Flush Mount or Riser	Flush		Stabilization is achie	ved when the following	changes are noted			
	Measuring Point Measuring Point Elevation	TOC		Stabilization is achieved when the following changes are noted over three consecutive 3-5 minute readings: ± 0.1 change in pH					
	Depth to Water (feet)	13.31			± 0.1 change in pH				
			± 3% change in conductivity						
	Depth to Bottom of Well	17.8	J		0 millivolt change in O change in DO and Tu				
	Dia. Well	Well Volume Multiplier	1		te	8/30/2022	1		
	1	0.0408		Wea	ther	Hot 90's Humid			
	1.5 2	0.0918 0.1631		Purging E Sampling	Equipment	Peristaltic Peristaltic/Horiba			
	3 4	0.3670 0.6525		Decon Riser D	Method iameter	Alconox 2"			
	5 6	1.0195 1.4681		Well Volume	Calculation	0.732			
	8	2.6100							
	10 12	4.0782 5.8726							
	Well Volume Gallons = Multiplier x Le	ngth of Water Column							
			I						
Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2	Conductivity	ORP (mV)	Depth to	Pumping
					(mg/L)	(mS/cm)		Water	Rate
935	start							13.31	
950	3 gallons manually							16.95	
1020	4.0			start with pur	np no horiba			16.18	
								17.38	
1025	5 allow recahrge up tp 16 ft and then hook up horiba								
1032			start wit	h horiba				16.10	
1011	4.5	000	7.01	45.00	0.00	0.50	11.0	40.05	
1044	4.5	262	7.61	15.20	3.26	0.56	11.2	16.35	
4050	50	000	7.00	44.00	4.0	0.550	404	47.0	
1059	5.0	232	7.63	14.32	4.0	0.553	134	17.3	
	<u>^</u>	10.1	7.0	A.F. A	0.00	0 545	450	47.0	
1117	6.0	10.1	7.6	15.1	3.89	0.515	152	17.6	

LOW FLOW STABILIZATION SAMPLING LOGS

	Site Location	Alyncon M.S. Rossingeringering AMS-OW-OI NW				Azt	ech En	k vironm	ental	
	Well Inform	ation					A LaBell	a Company	1	
	Flush Mount or Riser	flush		Cabination in achi		a channes are extend				
	Measuring Point	TOC	-		eved when the followi consecutive 3-5 minu					
	Measuring Point Elevation	va. 65 -	iess dee	Ρ.	± 0.1 change in pH					
	Depth to Water Depth to Bottom of Well	10.25	than W	YA ±:	3% change in conduct	Star				
		10:02	CON MIC	± 109	10 millivolt change in 0 6 change in DO and T					
	Dia, Well 1 1.5 2 3 4 5 6 8 10 12 Well Volume Gations = Multipl Column	Well Volume Multiplier 0.0408 0.0918 0.1631 0.3670 0.6525 1.0195 1.4681 2.6100 4.0782 5.8726 ier x Length of Water		Wea Purging E Sampling Decon Riser D	ate ather Equipment Equipment Method iameter Calculation	Pring claudy Popular Michox 1.366 x3:		t t loght r	aiM	
Time	Volume Removed (Gallons)	Turbidity (NTU)	рН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate	
1100	Runge stort	~~~								
1105		68.4	7.70	22.97	0.35	2.32	3	1.68		>H
IIID		68.3	7.55	22.83	0.10	5.32	12	1.82		
IIIS		62.2	7.41	22.70	0.O	2.35	28	1.94		
11)0	i brallon	58.5	7.29	17.68	0.0	2.36	43	2.05		
1125		56.8	7,21	22.78	0.0	2.33	47	2.14		
1130		58.4	7.10	22.69	0.Ö	2,33	41	2.14		
1135		53,8	6.89	22.52	0.0	2.35	63	2.19		
1140	2 gallon	52.S	6.73	22.59	0.0	2.36	79	2.23		
1145		51.3	6,54	22.79	0.0	2.34	93	2-29		
1150			6.47	23.03	0.0	2.30	102	d.35		
ilss		49, S	642	22.83	00	2.30	IDS	2.37		
2005	3 gallon	47.S	6.43	22,53	0.0	2.29	99	2.38		
1205		48.6	646	21.96	Ö.O	231	102	2.39		
1210		492	6.50	21.82	0. O	232	80	2.4D		
1215		49.3	6.53	21.47	0.0	233	83	2.42		
220	4 gallon	48.7	6.53	21.46	0,0	2.34	85	2.43		

	Site Name Site Location Well ID	AMS-DW-OI				Azt	ech Env	A vironm	ental
	Sampleu by	NW					TECHN	0100101	
	Well Informa		15				ALABOU	a Company	
	Measuring Point	Flush		Stabilization is achie	eved when the following	gichanges are noted			
		TOC	-	over three	consecutive 3-5 minu	te readings:			
	Measuring Point Elevation				± 0.1 change in pH				
	Depth to Water	~0.65		±3	3% change in conduct	ivity			
	Depth to Bottom of Well	10.25			0 millivolt change in 0				
				± 10%	change in DO and T	urbidity			
	Dia. Well	Weil Volume Multiplier			ate	9/19/22	1		
	1.5	0.0408		Purging F	ather	peristerne peristerne	1		
	2	0.1631		Sampling	quipment Equipment	Peristeine	1		
	3 4	0.3670		Decon	Method	alconus L'			
	5	1.0195		Well Volume	Calculation	1.56			
	6	1.4681				1.040			
	8 10	2.6100 4.0782							
1	12	5.8726							
1	Well Volume Gallons = Multipli	er x Length of Water							
1	Column								
Time	Volume Removed (Gallons)	Turbidity (NTU)	рН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
22S		49.4	6.53	21.61	0.0	2,33	86	2.44	
230	Samle	N	~	\sim	\sim	~	~	~	
De l	P								
2									
						15.			

		Site Name Site Location Well ID Sampled By	AMS-GW-03	Poesla	nkill NY		Azt	TECH	A vironme	ental
		Well Informs Flush Mount or Riser Measuring Point Measuring Point Elevation Depth to Water Depth to Bottom of Well	flush Toc 10.69 16.10		over three 1 1	eved when the followi consecutive 3-5 min ± 0.1 change in pH 3% change in conduc 10 millivoit change in 5 change in D0 and 1	ute readings: Swity ORP		a Company	
		Dia. Well 1 1.5 2 3 4 5 6 8 10 12 Well Volume Gallons = Multipl Column	Well Volume Multiplier 0.0408 0.0918 0.1631 0.3670 0.6525 1.0195 1.4681 2.6100 4.0782 5.8726 ler x Length of Water		We Purging E Sampling Decon Riser D	ate ather Equipment Equipment Muthod Jiameter e Calculation	2. C47			
	Time	Volume Removed (Gallons)	Turbidity (NTU)	pH	Temperature (F)	Dissolved O2	Conductivity	ORP (mV)	Depth to	Pumping
50	186	Purge Start	-	pro-		(mg/L)	(mS/cm)		Water	Rate
\$5	643	.25	51.0	7,25	20.82	1.98	.535	-55	10.95	
00	XXXXX	.50	48.9	7.16	20.83	1.72	.518	-38	11.20	
05		.75	50.1	7.08	20.92	1.68	.484	+5	(1,34	
	1210	1,0	4s. S	7.03	21.03	1.71	.476	24	11.47	
	1215	1.25	48.2	6.99	21.10	1.73	.474	43	11.58	
	1730	1,50	SI.S	6.98	21.34	1.71	.466	57	11.74	
	1225	1.75	53.2	6.97	21.37	1.69	.465	60	11.83	
	1230	2.0	54.2	6,97	21,46	1.65	,462	62	11.88	
	1235	2.35	58.5	6.96	21,54	1.60	.457	64	11,95	
Ĩ	1240	2.50	73.3	6.95	20.48	1,55	.468	59	(2.04	
	1245	2.75	81.0	693	20.47	1.43	.469	63	12.45	
	1250	3.0	93,2	6.90	19.91	0.0	,475	59	13,16	
	1255	3,25	100	6.86	Haff-SI	0.0	-479	57	13.35	
10	300	3.50	73.8	6.78	20.87	0.78	.478	51	13.92	R
	1305	3.75	51.9	6.75	19,22	1.24	.506	46	14,30,	R
	1310	4.0	55.6	6.73	19.44	1.34	.513	46	14.25	

	Site Name Site Location Well ID Sampled By	AMS-OW-OZ				Azt	ech Env	A vironmo	ental
	Well Inform:	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					A LaBella	Company	
	Flush Mount or Riser	Flush]						
	Measuring Point	TOC		Stabilization is achie over three	ved when the followin consecutive 3-5 minu	g changes are noted te readings;			
	Measuring Point Elevation				± 0.1 change in pH	1			
	Depth to Water	10.69	1	+3	% change in conduct	why .			
	Depth to Bottom of Well	16.10	1		0 millivot change in C				
			÷		change in DO and Ti				
	Dia. Well	Well Volume Multiplier	1	Da	ite	9/20/22	1		
	1	0.0408	1	Wea	ther	Pristaitie	1		
	1.5	0.0918 0.1631		Purging E Sampling	quipment Equipment	peristattic			
	3	0.3670	1	Decon	Method	alconox			
	4 5	0.6525			ameter Calculation	2.65	1		
	6	1,4681		wen volume	Calculation	2.65	1		
	8	2.6100 4.0782							
	12	5.8726							
	Well Volume Gallons = Multipl		1						
	Column		1						
Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
315		51.3	6.72	19.67	1,46	-519	45	13.86	
370		49.6	6.72	19.42	1.58	516	45	13.79	
315	Sample	\sim	\sim		\sim	\sim			
									8

	Site Name Site Location Well ID Sampled By	AMS-OW-03				Azt	ech En	vironm	ental
	Well Inform	State of the second	1			A	A LaBel	a Company	
	Flush Mount or Riser	Flush	1						
	Measuring Point	TUC			ived when the follow consecutive 3-5 min	ing changes are noted ute readings:			
	Measuring Point Elevation				± 0.1 change in ph	1000000000			
	Depth to Water	7.40		# 3	% change in conduc				
	Depth to Bottom of Well	14.10		#1	0 millivolt change in change in DO and	ORP			
	Dia. Well	Well Volume Multiplier	1		ate	7/20/22	1		
	1	0.0408		the second se	ther quipment	OVERCEST			
	2	0.1631		Sampling	Equipment	personitic	1		
	3 4	0.3670			Method iameter	auconox			
	5	1.0195			Calculation	1.09	1		
	6	1.4681 2.6100	1200	ALC		16			
	10	4.0782	1540	AMS-ONT	05 sampu	entor:			
	12 Well Volume Gallons = Multip	5.8726 lier x Length of Water	1	EPA 537 1221 PAC-	FFAS				
	Column			EPA 300 N	itiogen, Nr	trate/Nitrite	٤.		
Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
1240	Began Rurge								
1245		81.2	6.16	20.47	0.73	0.557	213	7.41	
1250	0.5	47.5	4.23	20.62	0.42	0.547	210	7.41	
1255		12.5	6.32	20.77	0.12	0.552	202	7.42	
1300	10	11.9	6.31	20.76	0.12	0.551	201	741	
1305		13.2	6.31	20.79	0.1Z	0.557	201	7.42	
1310	1.5	18.7	6.31	20.84	0.10	0.568	199	7.42	
1315		24.2		20.81	0.05	0.561	199	7.42	
1320	2.0	21.3	201000000000000000000000000000000000000	20.93	0.10	0.566	211	7.42	
1325		26.9		20.70	0.09	0.553	203	7.43	
1330	2.5	28.1	6.18		0.13	0.563	204	7.44	
1335	(e)	29.9	6.24	20.67	D.20	0.570	202	7.44	
	Ended Rivge								

	Well ID	AMS-OW-CH				Azt	ech En	A vironmo	ental
	Sampled By						146.	a Company	
	Flush Mount or Riser	Flush		2022 0 2	NR 8922 V				
	Measuring Point	TOC			ved when the followi consecutive 3-5 min	ng changes are noted ute readings:			
	Measuring Point Elevation	11.000	-		± 0.1 change in pH	1.			
	Depth to Water Depth to Bottom of Well	14.02	1		% change in conduc 0 millivoit change in	200			
	1997		ले. 22		change in DO and 1				
	Dia. Well	Well Volume Multiplier 0:0408			ite ther	overcast	7		
	1.5	0.0918		Purging E Sampling	quipment Equipment	Penstalhi	-		
	3	0.3670	1	Decon	Method iameter	alignex			
	5	1.0195	1		Calculation	0.5	1		
	8 10 12 Well Volume Gallons = Multip Colume	2.6100 4.0782 5.8726 Ner x Length of Water	1210	ANS-OW- EPA 5371 LZZI PAC-N EPA 300 N	FAS	te.			
Time	Volume Removed (Galions)	Turbidity (NTU)	рН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping
1100	Began Purge								
1105		13.2	6.85	18.74	07.0	0.531	ZII	14.11	
1110	0.5	21.0	6.90	18.29	0.86	0.507	205	14.12	
1115		51.2	6.82	17.62	1.62	0.442	199	14.12	
1120	1.0	10.1	6.72	17.23	2.18	0.383	193	14.76	
1125		0.3	6.51	17.16	2.43	0.340	196	14.89	
1130	1.5	4.7	6:48	15.88	3.98	0.357	197	15.01	
1135		2.6	6.37	14.59	3.14	0.362	207	14.21	
1140	20	2.7	6.38	14.54	3.06	0.356	202	14.23	
1145		3.6		14.73	3.00	0.360	204	14.26	
1150	2.5	4.2	6.42	14.70	2.97	0.362	202	14.27	
1155		56.5.6	6.41	14.48	3.06	0.363	204	14.25	
1200	3.0	5.7	6.44	14.52	2.99	0.369	203	14.26	
1205		5.6	6.43	1467	3.05	0.365	202	14.27	
	Ended Rige								

Site Name	ANS	r					44	
Well ID	AUS-OW-CS	-			Azt	ech En	vironm	ental
		5 4			2	ALaBell	a Company	2
Flush Mount or Riser Measuring Point	Flush	-						
Measuring Point Elevation			over three		PALSING TRA			
Depth to Water	14.70	1		Contraction of the state				
Depth to Bottom of Well	16.86		£.1	10 millivolt change in	ORP			
Dia, Well	Well Volume Multiplier	1	2		2 Share and a start	1		
1	0.0408	1	Wea	ather	Overcast			
2	0.1631	1	Sampling	Equipment	Deristaith	4		
4	0.6525		Riser D	lameter	7.			
	1.0195		Well Volume	e Calculation	0.35	1		
8 10 12 Well Volume Gallons = Multipli Column	2 6100 4 0782 5 8726	1010	LZZI PAC	-Negative	10			
Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
Began Purge							14.70	
	2.9	6.51	18.17	1.63	0.269	173	14.81	
0.5	2.7	6.35	17.35	2.85	0.259	179	14.86	
	2.5	6.20	16.88	4.08	0.256	187	14.86	
1.0	3.8	6.32	16.66	4.22	0.257	187	14.84	
	4.3	6.29	16.53	4.14	0.257	191	14.88	
1.5	4.8	6.25	16.47	4.23	0.257	195	14.88	
	0.9	6.30	16.47	4.25	0.256	195	14.87	
2.0	0.3	6.32	16.47	4.26	0.256	196	14.85	
	0.3	6.29	14.51	4.25	0.254	197	14.87	
2.5	0.7	6.32	16.51	4.25	0.254	199	14.88	
Ended Aurge.								
	Vell ID Sampled By Well Informa Flush Mount or Riser Measuring Point Elevation Depth to Water Depth to Bottorn of Well Dia. Well 1 1.5 2 3 4 4 5 6 8 10 12 Well Volume Gallons = Multipli Column Volume Removed (Gallons) Began Purge 0.5 1.0 1.0 1.5	Site Location Rester KUL, NN Well ID Auss-conductsWell InformationFlush Mount or RiserFlush Mount or RiserMeasuring PointTOCMeasuring Point ElevationImage: Colspan="2">Optimized and the second colspan="2">Optimized and the second colspan="2">Measuring Point ElevationDepth to WaterI 4. TODepth to WaterI 4. TODepth to Bottom of WellI 16. Elevation1.50.091820.163120.163130.367040.04081.50.091830.367040.052561.468182.6100104.0052561.468182.6100105.8726Well Volume GallonsTurbidity (NTU)Begain Purge2.90.552.71.03.81.03.81.03.81.54.80.90.32.00.32.00.32.00.32.50.7	Site Location Restankel (I, NY) Well Information Flush Mount or Riser Flush Mount or Riser Flush Mount or Riser Flush Moun	Site Location Rester Kull, NY Well Information Well Information Bushdown of Kiser Flush Mount or Riser Isocore fluxes Subdization is a drive over fluxes Depth to Bottom of Well 16. 866 16.813 0.8670 4 0.0408 2 0.01631 2 0.01631 2 0.01631 0.0200 Purging E Sampling Decon Riser C 0.010 RMS-OU 2 0.010 AMS-OU E/24 / PAC E/24 / PAC	Site Location Restance KL(L,N) Well ID ALCS CONCES Sampled BY SN Measuring Point Sublexation is achieved when the blow over three consecutes 3 5 mm Measuring Point Sublexation is achieved when the blow over three consecutes 3 5 mm Measuring Point Sublexation is achieved when the blow over three consecutes 3 5 mm Measuring Point Sublexation is achieved when the blow over three consecutes 3 5 mm Depth to Bottom of Well 14. 5 to 0 Sublexation is achieved when the blow over three consecutes 3 5 mm Depth to Bottom of Well 14. 5 to 0 Sublexation is achieved when the blow over three consecutes 3 5 mm Depth to Bottom of Well 14. 5 to 0 Sublexation is achieved when the blow over three consecutes 3 5 mm Depth to Bottom of Well 14. 5 to 0 1 Date of Well to three blow well well when the blow well well well when the blow well well well well well well when the blow well well well well well well well w	Azt Site Location Restance (KLL,NY Well Information Well Information Flush Measuring Point Too: Measuring Point Too: Measuring Point Too: Measuring Point Too: Measuring Point Too: Date Well Too: Date Well Too 1.15 Optime Restance (Restance) Optime Restance (Restance) Sampling Equipment Optime Restance) Sampling Equipment Optime Restance (Restance) Date Well Volume Rulingler Colsmin Optime Restance (Restance) Optime Restance (Restance) Colsmin to chiene during in colspan="2">Colspan="2">Colspan="2">Colspan="2" Date Well Volume Rulingler Colsmin Optime Restance (Restance) Optint (Restanc	Site Location Rester RE(L) NY Aztech Em Sampled By Well ID Restoration Restoration Restoration Restoration Restoration Restoration Restoration BubBase of the observations 3-5 minute advances of the observations of the observations advances of the observations 3-5 minute advances of the observations of the observations advances of the observations advances of the observation advances of the observations advances of the observation advances of the observations advances of the observation advances of the	Site Location Restance (LNNM Well ID ALSO CAV-CS Sampled BV/LSON-CAV-CS Sampled BV/LSON-CAV-CS Masauring Print Aztech Environment Teaching Print Teach Mount of Rise / Elvation 10 masauring Print Colspan="6">Aztech Environment Teach Mount of Rise / Elvation 10 masauring Print Day the Mount of Rise / Elvation 10 masauring Print / TOC Dept to Water 110 mage print 10 masauring Print / TOC Dept to Water Colspan="6">Aztech Environment Teaching European Molecular 10 masauring Print / TOC Dept to Water Day Well Colspan="6">Day Well Colspan="6">Autometer Dept to Water Colspan="6">Autometer Dept to Water Day Well Colspan="6">Day Well Colspan="6">Colspan=160 Dept to Water Colspan=160 Dept to Water Day Well Colspan=160 Dept to Water Colspan=160 Dept to Water Colspan=160 Dept to Water Object teaching to Colspan=160 Dept to Water Colspan=160 Dept to Water Colspan=160 Dept to Water Well Wolspan Elvation a soluted alon Day Solute Colspan=160 Dept to Water Colspan=160 Dept to Water Well Wolspan Elvation a soluted alon Day Solute Colspan=160 Dept to Water Colspan=160 Dept to Water Well Yourne Calculation Day Solute Colspan=160 Dept to Water Dept to Water Dept to Water

	Site Name Site Location Well ID Sampled By	AMS Poestenkiu,N AWS CW-CG NN	1			Azto	ech Env	vironmo	ental
	Well Informa Flush Mount or Riser Measuring Point Measuring Point Elevation Depth to Water Depth to Bottorn of Well	Flush TOC 17.84 24.05		over three	ved when the followin consecutive 3-5 minu ± 0.1 change in pH % change in conduct	fereædings: ivly	A LaBell	a Company	
	Dia. Well 1 1,5 2 3 4 5 6 8 10 12 Well Volume Gallons = Multipl Column	Well Volume Multiplier 0.0408 0.0918 0.1631 0.3670 0.6525 1.0195 1.4681 2.6100 4.0782 5.8726		1 10% Wea Purging E Sampling Decon Riser D	0 millivot change in C change in DO and To the ther quipment Equipment Equipment Method iameter Calculation				
Time	Volume Removed (Gallons)	Turbidity (NTU)	рН	Temperature (Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
P130	Purge sta	rt			(iidhr-)	unorony			
0935	.25	39.4	8.43	19.37	8.81	0.247	-55	18 AND	300 11
0940	.50	38.6	8.15	18.53	2.58	0.239	-38	18.05	
0945	.75	49.6	7,98	17.65	4.62	.204	13	18.08	
0950	0.1	44.9	7.62	17.18	5.50	.189	64	18.10	
0955	1.25	43.2	7.49	17.02	5.58	.186	84	19,11	
1000	1.50	51.7	7.39	16.96	5.56	•186	102	18.13	
1005	1.75	49.6	7.32	16.91	5.42	.186	106	18.14	
1010	との	48.2	7.26	16.83	5.48	.186	112	18.15	
1015	2.25	47.0	7,19	16.69	5.36	-185	118	18.16	
1010	2.5	46.6	2.12	16.71	5 30	.184	123	18.17	
10)5	Sample								-
	1 -								1

	Site Name Site Location Well ID	AMS Poestenkill,M AMS-OW-07	1				4	A	
	Sampled By	AMS 000-0 1				Azte	ech Env	ironm	ental
	Well Informa	ation					A LaBella	Company	
	Flush Mount or Riser	FUISIO							
	Measuring Point	Flush Toc		Stabilization is achiev					
	and the second sec	100		over three c	onsecutive 3-5 minut	areadings:			
	Measuring Point Elevation				± 0.1 change in pH				
	Depth to Water	NA		+ 31	6 change in conducti	wite			
	Depth to Bottom of Well	10.75							
	1	10.10			millivolt change in O change in DO and Tu				
				(i)	and the second second second		2		
	Dia. Well	Well Volume Multiplier		Da		9/20/22			
	1.5	0.0408		Weat Purging Ec		overcast			
	2	0.1631		Sampling E Decon M	quipment		6		
	3	0.3670		Decon M	Method		2		
	4 5	0.6525		Riser Di Well Volume	Coloulation				
	6	1,4681		ven volume	Calculation		S.		
	8	2.6100							
	10	4.0782							
	12	5.8726		ANS-OW	-07	as del			
	Weil Volume Gallons = Multipl Column	er x Length of Water		AMS-OW	OIN	as any			
					Dissolved O2	Conductivity		Depth to	Pumping
Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	(mg/L)	(mS/cm)	ORP (mV)	Water	Rate

		Prestenkill,NY						4	
	Sampled By	AMS-OW-08				Azt	ech En	vironme	ental
	Well Informa		-				A LaBel	a Company	
	Flush Mount or Riser	Flush	-	Stabilization is achieved	eved when the follow	ving changes are noted			
	Measuring Point	TOC			consecutive 3-5 min				
	Measuring Point Elevation	TOC	-		± 0.1 change in pl	н			
	Depth to Water Depth to Bottom of Well	12.71	-		3% change in condu	2000 C			
	Departo Docioni or Heir	17.88			0 millivolt change in 6 change in DO and				
	Dia. Well	Well Volume Multiplier	à.	D	ate	9/19/22	1		
	1	0.0408	_		ather quipment	CARVCOST			
	2	0.1631		Sampling	Equipment	Constant	14		
	3	0.3670	-		Method Jiameter	allenex	4		
	5	1.0195			e Calculation	0.84			
	6 8	1.4681 2.6100							
	10	4.0782	1						
	12 Well Volume Gallons = Multipl	5.8726 ier x Length of Water	114	5 AMS-0	M.08 2	ampled t	- 10		
	Column			PA 537 F	PRAS				
			Ĕ	PA 300 N	trogen, Ni	trade/Nitri	te.		
Time	Volume Removed (Gallons)	Turbidity (NTU)	pH	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
					(ingres)	Undrany		12:71	Tuene
1035	Began Rurge							1188	
	J j.			Marats int	10.15				
1040		22.2	592	19.46	2.78	0.672	69	13.56	
				the strengthere			· ·	10 0	
1045	0.5	27.2	5.85	18.17	2.85	0.674	61	13.58	
		C 1. C	0.05			0.011	01	15.50	
1050		22.4	585	17.55	3.01	0.665	121	13.70	
1030		66.4	205	11:22	5.01	0.663	131	15.10	
	1.0	1111	6.22	1600	200	0.00	121	10	
1055	1.0	ાનન	Gecc	15.83	3.92	0.689	121	13.74	
8 G		0.5	20122		-	250 8		32332-77	
1100		9.5	6.16	15.93	3.89	0.676	132	13.86	
	10								
1105	1.5	13.7	6.06	15.61	5.26	0.675	142	13.98	
					-				
1110		13.3	6.05	15.60	3.81	0.684	150	14.02	
225.3		376 6			12.7	teres to the second		7712 000000	
1115	2.0	17.8	6.05	15.56	3.73	0.684	153	14.33	
ALC: 61 - 1242	201 - 1241A			• • • • • • • • • • • • • • • • • • • •	and street				
1120		33.0	6.02	15.39	3.69	0.692	159	14.83	
				10.01					
1125	2.5	25.3	6.11	15.55	3.61	0.692	158	14.91	
		- 7/4			1.5.05				
1130		20.7	6.13	15.56	3.58	0.682	159	15.06	
				A.A		0.00	0.00000.00.0	10.000	
1135	3.0	21.4	6.13	15.56	3.53	0.691	160	15.12	
			0.10		0-0		100	ISIL	
1140		18.6	613	15.58	3.50	0.693	162	15.17	
1110		10.4	0.15				102	10.11	
	Ended anyou								
_	Ended purge								_
	Ha								
			_						

LABORATORY ANALYTICAL REPORTS

March 13, 2023 (Revised 4-18-2023)

Brittany O'Brien-Drake New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233

RE: Site Summary Report (Rev. 4-18-2023) Algonquin Middle School PFAS Assessment #2105197 Waste Management (Poestenkill) Transfer Station, NY 66, Poestenkill, NY Tax parcel ID: 136.-6-7

Aztech Environmental Technologies Inc. (Aztech), a LaBella company, has provided this report to document overburden soil and groundwater assessment methodologies and sampling results for the above referenced location. All field investigation activities were performed at the discretion of and in accordance with the scope of work (SOW) developed and provided by the New York State Department of Environmental Conservation (NYSDEC).

The property is currently utilized by Waste Management, Inc. (WM) as a municipal transfer station with the transfer station operations primarily located on the western portion. The approximate 13.31-acre parcel is located along the eastern side of the intersection of NY RT 351 and RT 66. A low-lying area is centrally located within the property with a small rise toward the western portion of the property and a low ridge (oriented north to south) located toward the eastern portion of the property. A small pond is located within the low-lying area of the property and is surrounded by a former racecar track. Two unoccupied houses are located at the base of the eastern ridge. The attached **Figure 1** depicts property features and boundaries.

Overburden soil encountered during drilling activities consisted primarily of coarse to fine sand and silt with varying amounts of shale fragments which typically increased in depth to drill tooling refusal. Shale fragments in the sampler shoe at terminal boring depths ranging from 2-feet below grade (fbg) to 15 fbg are noted on the attached boring logs.

Prior to intrusive groundwork, a UDig NY utility clearance ticket was ordered for the property. Additionally, a private utility locating contractor performed utility clearance with ground penetrating radar (GPR) at each boring location on August 11, 2022. Boring locations confirmed as clear were painted white and marked with a white flag.

SUMMARY OF FIELD INVESTIGATIONS:

Air monitoring

Air monitoring was conducted during all ground-intrusive work at the property (August 15 and 16, 2022) in accordance with the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan (CAMP). One dedicated Dust Trak unit with photo-ionization detector (PID) was positioned upwind with a second dedicated unit placed downwind at each boring location. No exceedances for volatile organic compounds (VOCs) or particulates were recorded.

Soil Boring and Monitoring Well Installation

On August 15 and 16, 2022, Clean Globe Environmental (CGE) advanced soil borings (WM-SB-01 through WM-SB-08) utilizing a Geoprobe 7822DT and direct-push techniques to terminal depths ranging from 2 to 15 feet below grade (fbg). Boring locations WM-SB-01 and WM-SB-02 were used to confirm shallow depth to bedrock and as such, were each side-stepped twice and given a location identification ending in "A" and "B". Of the 12 total soil boring locations, 4 were converted to monitoring wells (WM-OW-01 through WM-OW-04). Aztech provided oversight of drilling activities and performed soil headspace screening, soil classification, and both soil and groundwater sampling.

Monitoring wells were installed by over-drilling selected boreholes utilizing 4 ¹/4" inner diameter (ID) hollow stem augers. The well assembly consisted of 2-inch polyvinyl chloride (PVC) 10-slot screen set to straddle the water table and casing to grade. A number 2 filtration sand was installed to fill the borehole annulus to approximately one (1) to two (2) feet above the screened interval. Bentonite chips were added atop the sand to seal the casing from surface water intrusion and subsequently hydrated with certified per-and polyfluoroalkyl substance (PFAS)-free water. Native soil and well sand were added as needed to the finish grade. Each well was finished within a flush mount road box (WM-OW-01) or a steel stick-up. Each newly installed groundwater monitoring well was developed on August 30, 2022 by using a peristaltic pump and/or bailer to remove a targeted 10 well volumes. Monitoring well specifications are presented below in **Table 1.** Individual boring logs are attached. Monitoring well locations are depicted on the attached Figure 1.

	TABLE 1 Monitoring Well Specifications													
Well ID	Borehole Depth	Well Diameter	Screened Interval	Sand Packed Interval	Bentonite Seal	Observed DTW*								
(Feet) (Inches) (Feet) (Feet) (Feet) (Feet)														
WM-OW-01 12 2 10-5.0 10-3.5 3.5-2.5 3.34														
WM-0W-02	15	2	13 - 3.0	13 - 2.0	2.0 - 1.0	7.79								
WM-0W-03	15	2	14 - 4.0	14 - 2.0	2.0 - 1.0	8.92								
WM-OW-04	13	2	13 - 3.0	13 - 2.0	2.0 - 1.0	4.34								
Notes:														
Wells drilled/ir	Wells drilled/installed by Clean Globe Environmental (CGE)													
*Depth to Water (DTW) as measured on September 27, 2022 from top of casing (TOC)														

Surface Water and Sediment Sampling

On August 16, 2022, one (1) surface water sample was collected from the south side of the pond and designated WM-SW-01-20220816. A stainless-steel dip cup, which was decontaminated prior to sample collection, was used to obtain the sample. Subsequent to the surface water sample collection, one (1) sediment sample was collected from the same location (designated as WM-SED-01-20220816) using the stainless-steel dip cup. Both samples were analyzed for PFAS compounds by analytical method 537M. The approximate locations of the sediment and surface water samples are depicted on Figure 1.

Soil Sampling

Individual soil samples were visually classified and headspace screened with a photo-ionization detector (PID) calibrated to a 100 part per million (ppm) isobutylene calibrant gas. Soil samples from select boring locations were collected from the following depth intervals:

• Surface grade to 2 -inch below grade (BG), beneath vegetative cover,

- 2-inch BG to 12-inch BG, and
- Air/water interface (water table) as observed in borehole.

The actual number of soil samples was dependent on field conditions. A total of sixteen (16) depth discrete subsurface soil samples were collected from the twelve (12) soil borings and analyzed for PFAS compounds by analytical method 537M for soil. Select soil samples (from the 2"BG to 12"BG interval) were analyzed using the Synthetic Precipitation Leaching Procedure (SPLP) by Environmental Protection Agency (EPA) Method 1312 and the leachate was subsequently analyzed for PFAS compounds by analytical method 537M to assess the mobility of contaminants in soil. SPLP PFAS results are not considered reportable as it was determined that Con-Test (a Pace Analytical Laboratory at East Longmeadow, MA and the NYSDEC's contracted lab for this project) did not hold the appropriate ELAP certification for EPA Method 1312 at the time of analysis.

Soil from boring location WM-SB-06 was also analyzed for VOCs by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and polychlorinated biphenyls (PCBs) by EPA Method 8082. These additional analyses were based upon the elevated PID readings, visual, and olfactory evidence of petroleum impact noted at that location.

Additional samples collected for the purpose of quality assurance (quality control (QA/QC)) included two (2) equipment blanks, one matrix spike/matrix spike duplicate (MS/MSD) and one field duplicate. The attached boring logs reference the parent sample for MS/MSD and duplicate samples. Equipment blanks were collected on August 15 and August 16, 2022 and performed on the core barrel equipped with acetate sleeve and a laboratory supplied HDPE soil container respectively.

Laboratory analytical results for the equipment blank sample collected August 15, 2022 recorded concentrations of 6:2 FTS A and FBSA at estimated concentrations (below the laboratory reporting limit (RL)) of 0.72 nanograms per liter (ng/L) and 0.26 ng/L respectively. Laboratory analytical results for the equipment blank collected August 16, 2022 did not record any compounds above the laboratory's minimum RL. Refer to **Table 2** for additional details.

Groundwater Sampling

Four (4) groundwater samples were collected September 21 and 27, 2022 from the newly installed overburden groundwater monitoring wells. Samples were collected utilizing low-flow/low-stress sampling techniques with a peristaltic pump and associated HDPE and silicone tubing. Water quality field parameters (temperature, pH, specific conductance, oxygen-reduction potential (ORP), dissolved oxygen (DO), and turbidity) were recorded during the well purging at five (5) minute intervals up to the sample time. A copy of the stabilization logs is attached.

Samples were immediately placed on ice and transferred to Pace Analytical and Eurofins TestAmerica under chain of custody protocols. Groundwater samples were analyzed for PFAS compounds by EPA Method 537M, pharmaceutically active compounds-negative by Method L221, and nitrate and nitrite anions by EPA Method 300. Additionally, groundwater samples from wells WM-OW-02 and WM-OW-03 were also analyzed for VOCs by EPA Method 8260, SVOCs by EPA Method 8270, 1,4-dioxane by EPA Method 8270 (SIM) and PCBs by EPA Method 8082.

Additional samples collected for QA/QC purposes included an MS/MSD, Field Duplicate, and Equipment Blank. WM-OW-02 was the parent sample location for both the MS/MSD and Field Duplicate samples. The Equipment Blank sample was collected via the tubing associated with the peristaltic pump. Laboratory analytical results for the equipment blank sample submitted September 27, 2022 recorded two PFAS compounds. PFOS was recorded below the laboratory RL at an estimated concentration of 0.73 ng/L. 6:2 FTS A was recorded at a concentration of 13 ng/L. Refer to Table 2 for additional details.

DISCUSSION OF ANALYTICAL RESULTS

STANDARDS, CRITERIA, & GUIDANCE VALUES:

The following documents will be used to evaluate soil, groundwater, surface water, and sediment analytical results:

Soil

- Unrestricted Use and Industrial Use soil cleanup objectives from NYSDEC 6 NYCRR Part 375-6.8 Soil Cleanup Objective Tables, 2006
- Unrestricted Use and Industrial Use soil guidance values from NYSDEC Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, November 2022.

Groundwater

- Screening levels identified in NYSDEC Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, November 2022
- New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised (TOGS 1.1.1), June 1998
- New York State Drinking Water Maximum Contaminant Level (MCL) for PFOA (10 parts per trillion (ppt)), PFOS (10 ppt), and 1,4-dioxane (1 part per billion (ppb)).

Surface Water

- Screening levels identified in NYSDEC Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, November 2022
- New York State Drinking Water Maximum Contaminant Level (MCL) for PFOA (10 ppt) and PFOS (10 ppt)

Sediment

- Standards, criteria, or guidance values do not currently exist for PFAS in sediment. Results will be discussed as provided by the laboratory.

It is noted that the NYSDEC Standards, Criteria, & Guidance Values are listed in concentrations of parts per trillion (ppt), parts per billion (ppb), and parts per million (ppm) while laboratory analytical results are reported in equivalent concentrations. For example,

- In soil:
 - 1 ppt = 1 nanogram per kilogram (ng/kg),
 - \circ 1 ppb = 1 microgram per kilogram (μ g/kg), and
 - 1 ppm = 1 milligram per kilogram (mg/kg)
- In water:
 - 1 ppt = 1 nanogram per liter (ng/L),
 - o 1 ppb = 1 microgram per liter (μ g/L), and
 - \circ 1 ppm = 1 milligram per liter (mg/L).

Soil Results:

Of the 16 soil samples collected and analyzed for PFAS compounds by analytical method 537M, 12 had one or more compounds detected. PFOA was recorded at one (1) location (WM-SB-O4) in two (2) intervals at estimated concentrations of 0.19 μ g/kg and 0.35 μ g/kg. These concentrations are below the Unrestricted Use guidance value of 0.66 μ g/kg. Additionally, both concentrations were recorded below the laboratory RL. PFOS was recorded in twelve (12) samples from six (6) soil boring locations and ranged in concentration from an estimated 0.078 μ g/kg (WM-SB-O5) to 0.81 μ g/kg (WM-SB-O4). These concentrations are below the Unrestricted Use guidance value of 0.88 μ g/kg.

PFAS compounds that were detected but do not have corresponding guidance values include: PFBA, PFPeA, PFHxA, PFDA, PFDoA, PFTA, PFDS, PFUnA, PFHpA and, PFNA. The maximum concentration recorded for compounds without criteria was PFPeA at 1.1 μ g/kg (WM-SB-O4). Refer to **Table 3A** for additional details.

One soil sample (WM-SB-06) was also analyzed for VOCs, SVOCs and PCBs. Three VOC compounds were recorded above the laboratory RL. Isopropylbenzene (Cumene), n-Propylbenzene and, m+p Xylene were recorded at concentrations of 0.31 mg/kg, 0.4 mg/kg and 0.94 mg/kg, respectively. Phenanthrene was recorded above the RL at a concentration of 0.33 mg/kg but below the SVOC SCO for Unrestricted Use of 100 mg/kg. Three PCB compounds were recorded above the laboratory RL and above the Unrestricted Use guidance value of 0.1 mg/kg for total PCBs, but below the 25 mg/kg guidance value for Industrial Use. Specifically, aroclor-1248, aroclor-1254 and aroclor-1260 were recorded at concentrations of 3.7 mg/kg, 9.3 mg/kg and 5.4 mg/kg respectively. Refer to **Tables 3B-3D** for additional details. Refer to **Appendix A** for the laboratory analytical reports.

Sediment Results:

One (1) sediment sample (WM-SED-01) was collected and analyzed for PFAS compounds. PFOS was reported at an estimated concentration of 0.088 μ g/kg. No other PFAS compounds were reported above the RL. No standards, criteria, or guidance values (SCGs) for PFAS in sediment have been established. Refer to **Table 4** for additional details.

Surface Water Results:

One (1) surface water sample (WM-SW-01) was collected and analyzed for PFAS compounds. A total of ten (10) PFAS compounds were reported above the laboratory RL. PFOA and PFOS were recorded at concentrations of 4.8 ng/L and 8.6 ng/L respectively. Additionally, PFBA, PFBS, PFPeA, PFHxA, PFDS, PFHxS, PFHpA and PFNA were recorded at concentrations ranging from an estimated 0.52 ng/L (PFHxS) to 3.2 ng/L (PFBA). The recorded concentrations of PFOA and PFOS are below the 10 ng/L (ppt) screening level and NYSDEC Guideline for drinking water. No SCGs are available for the remaining compounds. Refer to **Table 5** for additional details.

Groundwater Results:

All four (4) groundwater samples collected September 21 and 27, 2022 reported one or more PFAS compounds. PFOA was recorded at concentrations ranging from 2.2 ng/L (WM-OW-O3) to 5.6 ng/L (WM-OW-O2). PFOA concentrations detected were below the NYSDEC screening level of 10 ng/L. PFOS was recorded at four (4) locations, one of which was above the 10 ng/L screening level at 14 ng/L (WM-OW-O4). The remaining three samples recorded PFOS concentrations that ranged from 5.8 ng/L (WM-OW-O1) to 9.5 ng/L (WM-OW-O2). Additionally, PFBS, PFBA PFDA, PFHpS, PFHpA, PFHxS, PFHxA, PFNA, and PFPeA were recorded at that range from an estimated 0.46 ng/L (PFDA) to 36 ng/L (PFPeA).

Groundwater samples were also analyzed for VOCs, SVOCs, and PCBs. Three (3) VOC compounds were detected above the laboratory RL in sample WM-OW-O4. 1,4-Dichlorobenzene was recorded at 3.6 μ g/L which is above the 3.0 μ g/L groundwater guidance value. Isopropylbenzene and Chlorobenzene were recorded at concentrations of 3.12 μ g/L and 1.6 μ g/L respectively. Both of these concentrations are below the NYSDEC Standard for Class GA Groundwater (5.0 μ g/L). In groundwater sample WM-OW-O3, 1,4-Dioxane was recorded at a concentration of 1.4 μ g/L which is above the NYSDEC Standard for Class GA Groundwater (5.0 μ g/L). In groundwater sample WM-OW-O3, 1,4-Dioxane was recorded at a concentration of 1.4 μ g/L which is above the NYSDEC Standard for Class GA Groundwater of 1.0 μ g/L. Additionally, the compounds 1,2-Dichlorobenzene, 1,4-Dichlorobenzene, Benzene, m,p-Xylene, N-Propylbenzene, Sec-Butylbenzene, Tetrachloroethylene (PCE), Trichloroethylene (TCE), 1,4-Dioxane, and Anthracene were recorded at estimated concentrations below the laboratory RL. Acetone, a common laboratory artifact, was recorded below the RL at a concentration of 2.6 μ g/L and is considered both an estimated value and laboratory contaminant. No PCBs were recorded within any of the four (4) groundwater samples obtained September 21 and 27, 2022.

Groundwater samples were additionally analyzed for artificial sweeteners, including sucralose and acesulfame-k, and nitrate to assess the potential migration of septic derived wastewater to groundwater. Acesulfame K was detected in all groundwater samples with concentrations ranging from 0.054 μ g/L to 0.98 μ g/L. Sucralose was detected in three (3) groundwater samples and results ranged from 0.77 μ g/L to 2 μ g/L. The maximum detections of sucralose and acesulfame-k were both identified in the sample collected from WM-OW-01. Nitrate was detected in all four (4) groundwater samples and results ranged in concentration from an estimated 0.062 mg/L (WM-OW-4) to 0.28 mg/L (WM-OW-02). Each of these detected concentrations are below the groundwater standard of 10 mg/L. Refer to Tables 6A-6F for additional details. Refer to Appendix A for the laboratory analytical reports.

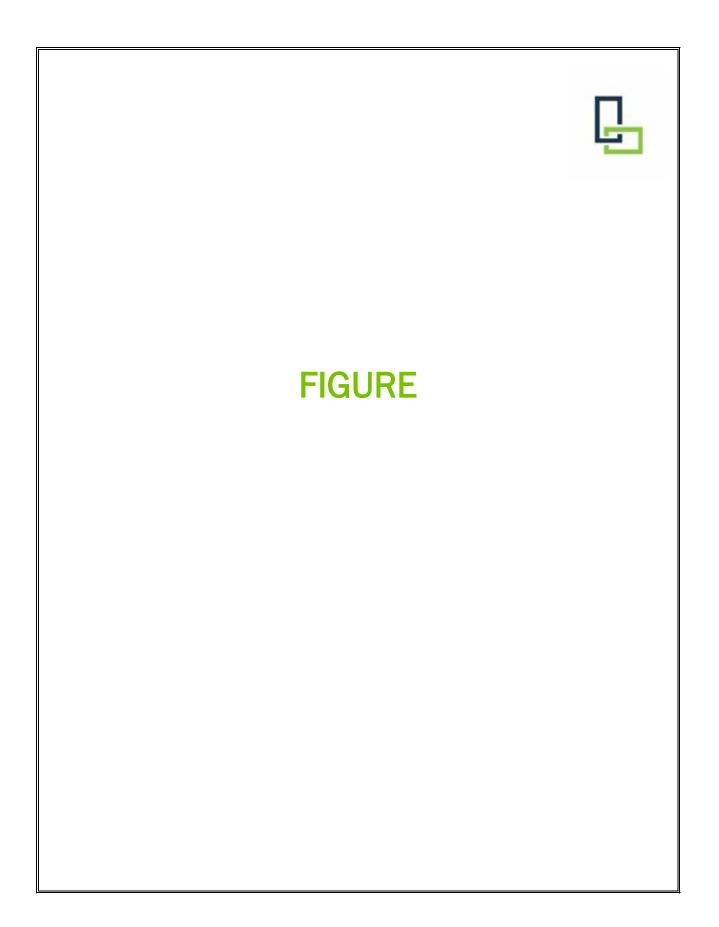
Further discussion on the findings and conclusions of the investigation of the Waste Management property are discussed within the main PFAS assessment report provided by CDM Smith.

This report was prepared by Aztech with review and editorial input by the NYSDEC.

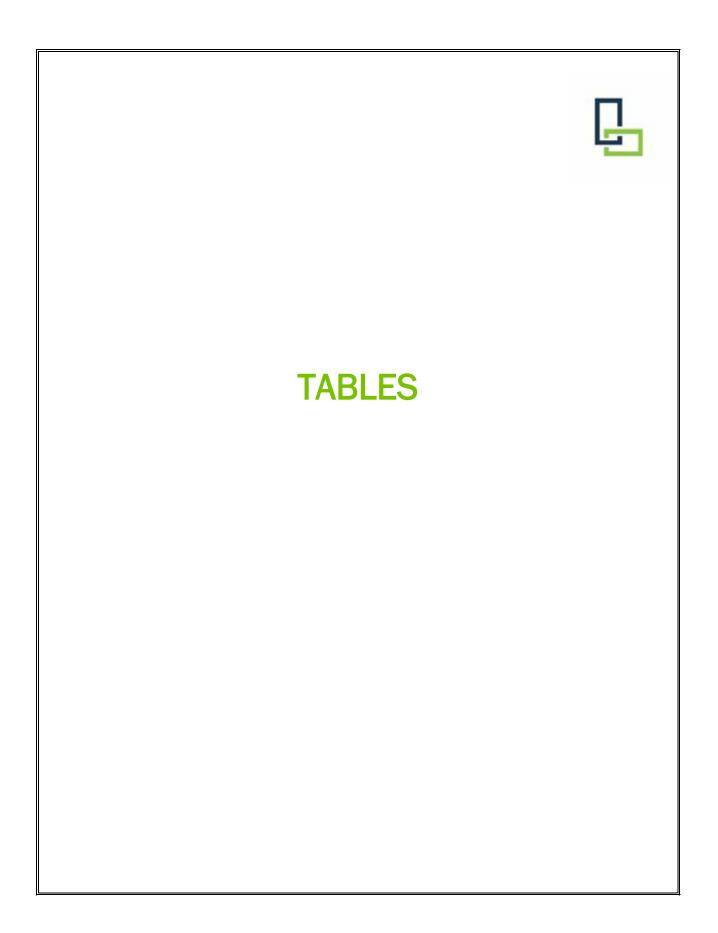
Respectfully submitted,

Aztech Environmental Technologies (a LaBella Company)

Todd Rollend Environmental Scientist


I Randy Hoose certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10). All investigation and activities were performed in full accordance with the work plan provided by the NYSDEC.

HODA


Randy Hoose, P.G. Senior Hydrogeologist

Attachments:

Figure 1 - Site Map Table 2 - Equipment Blank, PFAS Results Table 3A - Soil, PFAS Results Table 3B - Soil, Volatile Organic Compound (VOC) Results Table 3C – Soil, Semi-volatile Organic Compound (SVOC) Results Table 3D - Soil, Polychlorinated Biphenyl (PCB) Results Table 4 – Sediment, PFAS Results Table 5 - Surface Water, PFAS Results Table 6A - Groundwater, PFAS Results Table 6B - Groundwater, Volatile Organic Compound (VOC) Results Table 6C - Groundwater, Semi-volatile Organic Compound (SVOC) Results Table 6D - Groundwater, Polychlorinated Biphenyl (PCB) Results Table 6E – Groundwater, Nitrate & Nitrite Results Table 6F - Groundwater, Artificial Sweetener Results Boring Logs Well Development Logs Low-Flow Stabilization Sampling Logs Appendix - A: Laboratory Analytical Reports

Table 2 Waste Management Inc Equipment Blank, PFAS Results

		Client Sample ID: Lab Sample ID: Sample Date: Sample Type Code:	22H1 ⁻ 8/15	ent Blank 143-01 /2022 .B	22H1 8/16	ent Blank 143-09 /2022 EB	480-20 9/27	NT BLANK)2148-4 /2022 :B
Analyte	Unit	NYSDEC Guidelines ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ng/L	NC	< 0.56	U	< 0.6	U	NA	
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/L	NC	< 0.53	U	< 0.56	U	< 1.7	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	ng/L	NC	< 0.24	U	< 0.26	U	NA	
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/L	NC	0.72	J	< 0.34	U	13	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ng/L	NC	< 0.3	U	< 0.32	U	NA	
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid (9CI-PF3ONS)	ng/L	NC	< 0.34	U	< 0.36	U	NA	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L	NC	< 0.21	U	< 0.22	U	NA	
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	ng/L	NC	< 0.55	U	< 0.59	U	NA	
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	ng/L	NC	< 0.66	U	< 0.71	U	NA	
N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	NC	NA		NA		< 4.3	U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	NC	NA		NA		< 4.3	U
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ng/L	NC	< 0.24	U	< 0.26	U	NA	
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ng/L	NC	< 0.2	U	< 0.22	U	NA	
Perfluoro-1-butanesulfonamide (FBSA)	ng/L	NC	0.26	J	< 0.18	U	NA	
Perfluoro-1-hexanesulfonamide (FHxSA)	ng/L	NC	< 0.27	U	< 0.29	U	NA	
Perfluoro-3-methoxypropanoic acid (PFMPA)	ng/L	NC	< 0.36	U	< 0.39	U	NA	
Perfluoro-4-methoxybutanoic acid (PFMBA)	ng/L	NC	< 0.3	U	< 0.32	U	NA	
Perfluorobutanesulfonic acid (PFBS)	ng/L	NC	< 0.24	U	< 0.26	U	< 1.7	U
Perfluorobutanoic Acid (PFBA)	ng/L	NC	< 0.65	U	< 0.69	U	< 4.3	U
Perfluorodecanesulfonic acid (PFDS)	ng/L	NC	< 0.28	U	< 0.3	U	< 1.7	U
Perfluorodecanoic acid (PFDA)	ng/L	NC	< 0.43	U	< 0.46	U	< 1.7	U
Perfluorododecanoic acid (PFDoA)	ng/L	NC	< 0.38	U	< 0.41	U	< 1.7	U
Perfluoroheptanesulfonic acid (PFHpS)	ng/L	NC	< 0.81	U	< 0.87	U	< 1.7	U
Perfluoroheptanoic acid (PFHpA)	ng/L	NC	< 0.3	U	< 0.32	U	< 1.7	U
Perfluorohexanesulfonic acid (PFHxS)	ng/L	NC	< 0.29	U	< 0.31	U	< 1.7	U
Perfluorohexanoic acid (PFHxA)	ng/L	NC	< 0.33	U	< 0.36	U	< 1.7	U
Perfluorononanesulfonic Acid (PFNS)	ng/L	NC	< 0.15	U	< 0.16	U	NA	
Perfluorononanoic acid (PFNA)	ng/L	NC	< 0.3	U	< 0.32	U	< 1.7	U
Perfluorooctane Sulfonamide (PFOSA)	ng/L	NC	< 0.36	U	< 0.39	U	< 1.7	U
Perfluorooctanesulfonic acid (PFOS)	ng/L	10	< 0.52	U	< 0.56	U	0.73	J
Perfluorooctanoic acid (PFOA)	ng/L	10	< 0.59	U	< 0.63	U	< 1.7	U
Perfluoropentanesulfonic Acid (PFPeS)	ng/L	NC	< 0.22	U	< 0.24	U	NA	
Perfluoropentanoic Acid (PFPeA)	ng/L	NC	< 0.34	U	< 0.36	U	< 1.7	U
Perfluorotetradecanoic acid (PFTeDA)	ng/L	NC	< 0.32	U	< 0.34	U	< 1.7	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/L	NC	< 0.24	U	< 0.26	U	< 1.7	U
Perfluoroundecanoic Acid (PFUnA)	ng/L	NC	< 0.32	U	< 0.34	U	< 1.7	U

Notes:

¹New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of

Per- and Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: EB - Equipment Blank

ng/L - nanogram per liter = parts per trillion (ppt)

NC - No criteria currently exists

NA - Compound was not analyzed for

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

			Client Sample ID:	WM-SB-	03 2-12IN	WM-SB-	-03 72IN	WM-SB-	-04 0-21N	WM-SB-04	168-180IN	WM-SB-	04 2-12IN
			Lab Sample ID:		143-02		143-03		143-04		143-06		143-05
			Location ID:		-SB-03		SB-03		SB-04		-SB-04		SB-04
			Sample Date:		5/2022		/2022		/2022		5/2022		5/2022
			Sample Type Code:	N		N		N		N		N	
		Unrestricted Use	Industrial Use										
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.13	U	< 0.14	U	< 0.13	U	< 0.13	U	< 0.13	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.12	U	< 0.13	U	< 0.12	U	< 0.12	U	< 0.12	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.088	U	< 0.089	U	< 0.083	U	< 0.085	U	< 0.088	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.1	U	< 0.11	U	< 0.11	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.15	U	< 0.15	U	< 0.14	U	< 0.15	U	< 0.15	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.11	U	< 0.12	U	< 0.12	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	NC	< 0.23	U	< 0.23	U	< 0.22	U	< 0.22	U	< 0.23	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.13	U	< 0.14	U	< 0.13	U	< 0.13	U	< 0.13	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.087	U	< 0.088	U	< 0.082	U	< 0.084	U	< 0.087	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.074	U	< 0.075	U	< 0.07	U	< 0.072	U	< 0.074	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.079	U	< 0.08	U	< 0.074	U	< 0.076	U	< 0.079	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.15	U	< 0.15	U	< 0.14	U	< 0.15	U	< 0.15	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.14	U	< 0.15	U	< 0.14	U	< 0.14	U	< 0.14	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.09	U	< 0.091	U	< 0.085	U	< 0.088	U	< 0.09	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.088	U	< 0.089	U	< 0.083	U	< 0.085	U	< 0.088	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.073	U	< 0.074	U	< 0.069	U	< 0.071	U	< 0.073	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	< 0.064	U	< 0.064	U	0.11	J	< 0.062	U	< 0.064	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.11	U	< 0.11	U	0.33	J	< 0.11	U	< 0.11	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	< 0.062	U	< 0.062	U	0.27	J	< 0.06	U	< 0.062	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.073	U	< 0.074	U	0.17	J	< 0.071	U	< 0.073	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.14	U	< 0.15	U	< 0.13	U	< 0.14	U	< 0.14	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	< 0.069	U	< 0.07	U	0.067	J	< 0.067	U	< 0.069	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.076	U	< 0.077	U	< 0.072	U	< 0.074	U	< 0.076	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	< 0.089	U	< 0.09	U	0.34	J	< 0.087	U	< 0.089	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.13	U	< 0.13	U	< 0.12	U	< 0.13	U	< 0.13	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	< 0.079	U	< 0.08	U	0.086	J	< 0.076	U	< 0.079	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.093	U	< 0.095	U	< 0.088	U	< 0.091	U	< 0.093	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	440	0.16	J	0.29	J	0.81		< 0.063	U	0.34	J
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	600	< 0.14	U	< 0.14	U	0.19	J	< 0.13	U	0.35	J
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.07	U	< 0.071	U	< 0.066	U	< 0.068	U	< 0.07	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	< 0.073	U	< 0.074	U	1.1		< 0.071	U	< 0.073	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.091	U	< 0.092	U	0.12	J	< 0.089	U	< 0.091	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.1	U	< 0.1	U	< 0.11	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	< 0.087	U	< 0.088	U	0.14	J	< 0.084	U	< 0.087	U
Notes:			•	•	•	•				•	•		-

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and*

Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

			Client Sample ID:	WM-SB-	05 0-21N	WM-SB-05	5 84-120IN	WM-SB	-06 0-21N	WM-SB-	06 2-12IN	DI	UPE
			Lab Sample ID:		143-07		143-23		143-17		143-18		143-21
			Location ID:	WM-	SB-05	WM-	SB-05	WM	SB-06	WM-	SB-06	WM-SB-	06 2-12IN
			Sample Date:	8/15	/2022	8/17	/2022	8/16	/2022	8/16	/2022	8/16	5/2022
			Sample Type Code:	Ν		N		N		N		FD	
		Unrestricted Use	Industrial Use										
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.13	U	< 0.14	U	< 0.14	U	< 0.14	U	< 0.13	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.12	U	< 0.13	U	< 0.13	U	< 0.13	U	< 0.12	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.087	U	< 0.092	U	< 0.09	U	< 0.09	U	< 0.085	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.11	U	< 0.11	U	< 0.11	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.15	U	< 0.16	U	< 0.16	U	< 0.16	U	< 0.15	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.12	U	< 0.12	U	< 0.12	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	NC	< 0.23	U	< 0.24	U	< 0.24	U	< 0.24	U	< 0.22	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.13	U	< 0.14	U	< 0.14	U	< 0.14	U	< 0.13	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.086	U	< 0.091	U	< 0.089	U	< 0.089	U	< 0.084	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.073	U	< 0.077	U	< 0.076	U	< 0.076	U	< 0.072	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.078	U	< 0.082	U	< 0.081	U	< 0.08	U	< 0.076	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.15	U	< 0.16	U	< 0.16	U	< 0.16	U	< 0.15	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.14	U	< 0.15	U	< 0.15	U	< 0.15	U	< 0.14	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.089	U	< 0.094	U	< 0.092	U	< 0.092	U	< 0.088	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.087	U	< 0.092	U	< 0.09	U	< 0.09	U	< 0.085	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.072	U	< 0.076	U	< 0.075	U	< 0.075	U	< 0.071	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	< 0.063	U	< 0.066	U	< 0.065	U	< 0.065	U	< 0.062	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	0.33	J	< 0.12	U	< 0.11	U	< 0.11	U	< 0.11	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	0.19	J	< 0.064	U	< 0.063	U	< 0.063	U	< 0.06	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	0.16	J	< 0.076	U	< 0.075	U	< 0.075	U	< 0.071	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.14	U	< 0.15	U	< 0.15	U	< 0.15	U	< 0.14	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	< 0.068	U	< 0.072	U	< 0.071	U	< 0.071	U	< 0.067	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.076	U	< 0.08	U	< 0.078	U	< 0.078	U	< 0.074	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	0.12	J	< 0.093	U	< 0.091	U	< 0.091	U	< 0.087	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.13	U	< 0.13	U	< 0.13	U	< 0.13	U	< 0.13	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	< 0.078	U	< 0.082	U	< 0.081	U	< 0.08	U	< 0.076	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.092	U	< 0.097	U	< 0.096	U	< 0.096	U	< 0.091	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	440	0.52		0.078	J	0.48	J	0.36	J	0.44	J
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	600	< 0.13	U	< 0.14	U	< 0.14	U	< 0.14	U	< 0.13	U
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.069	U	< 0.073	U	< 0.072	U	< 0.072	U	< 0.068	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	0.25	J	0.10	J	< 0.075	U	< 0.075	U	< 0.071	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	0.10	J	< 0.095	U	< 0.094	U	< 0.094	U	< 0.089	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.11	U	< 0.11	U	< 0.1	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	0.097	J	< 0.091	U	0.099	J	< 0.089	U	< 0.084	U
Notes:			•		•								•

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and*

Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

			Client Sample ID:	WM-SB-	06 36-48IN	WM-SB-	07 0-21N	WM-SB-	07 2-12IN	WM-SB-0)7 84-96IN	WM-SB	-08 0-21N
			Lab Sample ID:		143-19		143-13		143-15		143-16		143-08
			Location ID:		-SB-06		SB-07		SB-07		SB-07		-SB-08
			Sample Date:		5/2022		/2022		/2022		/2022		5/2022
			Sample Type Code:	N		N		N		N		N	
		Unrestricted Use	Industrial Use										
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.14	U	< 0.13	U	< 0.12	U	< 0.13	U	< 0.13	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.13	U	< 0.12	U	< 0.12	U	< 0.12	U	< 0.12	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.09	U	< 0.087	U	< 0.082	U	< 0.087	U	< 0.086	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.1	U	< 0.11	U	< 0.11	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.16	U	< 0.15	U	< 0.14	U	< 0.15	U	< 0.15	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.11	U	< 0.12	U	< 0.12	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	NC	< 0.24	U	< 0.23	U	< 0.21	U	< 0.23	U	< 0.22	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.14	U	< 0.13	U	< 0.13	U	< 0.13	U	< 0.13	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.089	U	< 0.086	U	< 0.081	U	< 0.086	U	< 0.085	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.076	U	< 0.074	U	< 0.069	U	< 0.073	U	< 0.072	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.08	U	< 0.078	U	< 0.073	U	< 0.077	U	< 0.077	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.16	U	< 0.15	U	< 0.14	U	< 0.15	U	< 0.15	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.15	U	< 0.14	U	< 0.13	U	< 0.14	U	< 0.14	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.092	U	< 0.09	U	< 0.084	U	< 0.089	U	< 0.088	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.09	U	< 0.087	U	< 0.082	U	< 0.087	U	< 0.086	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.075	U	< 0.073	U	< 0.068	U	< 0.072	U	< 0.071	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	< 0.065	U	< 0.063	U	< 0.059	U	< 0.063	U	< 0.062	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.1	U	< 0.11	U	< 0.11	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	< 0.063	U	< 0.061	U	< 0.057	U	< 0.061	U	0.14	J
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.075	U	< 0.073	U	< 0.068	U	< 0.072	U	0.12	J
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.15	U	< 0.14	U	< 0.13	U	< 0.14	U	< 0.14	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	< 0.071	U	< 0.069	U	< 0.064	U	< 0.068	U	< 0.067	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.078	U	< 0.076	U	< 0.071	U	< 0.075	U	< 0.074	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	< 0.091	U	< 0.089	U	< 0.083	U	< 0.088	U	< 0.087	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.13	U	< 0.13	U	< 0.12	U	< 0.13	U	< 0.13	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	< 0.08	U	< 0.078	U	< 0.073	U	< 0.077	U	< 0.077	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.096	U	< 0.093	U	< 0.087	U	< 0.092	U	< 0.091	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	440	< 0.066	U	0.34	J	0.52		< 0.064	U	0.25	J
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	600	< 0.14	U	< 0.13	U	< 0.13	U	< 0.13	U	< 0.13	U
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.072	U	< 0.07	U	< 0.065	U	< 0.069	U	< 0.068	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	< 0.075	U	< 0.073	U	< 0.068	U	< 0.072	U	< 0.071	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.093	U	< 0.091	U	< 0.085	U	< 0.09	U	< 0.089	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.099	U	< 0.11	U	< 0.1	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	< 0.089	U	< 0.086	U	< 0.081	U	< 0.086	U	0.098	J
Notes:			•	•						•			

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and*

Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

			Client Sample ID:	WM-SB-08	3 120-132IN	WM-SB-0	08 2-12IN
			Lab Sample ID:	22H1	143-14	22H1	143-10
			Location ID:	WM	-SB-08	WM-	SB-08
			Sample Date:	8/16	6/2022	8/16	/2022
			Sample Type Code:		N		N
		Unrestricted Use	Industrial Use				
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifier	Result	Qualifier
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.15	U	< 0.14	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.14	U	< 0.13	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.1	U	< 0.091	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.12	U	< 0.11	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.17	U	< 0.16	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.14	U	< 0.12	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	NC	< 0.26	U	< 0.24	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.15	U	< 0.14	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.099	U	< 0.09	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.085	U	< 0.077	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.089	U	< 0.081	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.17	U	< 0.16	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.16	U	< 0.15	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.1	U	< 0.093	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.1	U	< 0.091	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.083	U	< 0.076	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	< 0.072	U	< 0.066	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.13	U	< 0.12	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	< 0.07	U	< 0.064	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.083	U	< 0.076	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.16	U	< 0.15	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	< 0.078	U	< 0.071	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.087	U	< 0.079	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	< 0.1	U	< 0.092	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.15	U	< 0.13	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	< 0.089	U	< 0.081	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.11	U	< 0.097	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	440	< 0.074	U	0.33	J
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	600	< 0.15	U	< 0.14	U
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.08	U	< 0.072	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	< 0.083	U	< 0.076	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.1	U	< 0.094	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.12	U	< 0.11	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	< 0.099	U	< 0.09	U
Notes:					•		

¹New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and

Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

Table 3BWaste Management, Inc.Soil, Volatile Organic Compound (VOC) Results

			Client Sample ID: Lab Sample ID: Location ID: Sample Date: Sample Type Code:	22H1 WM 8/10	6 20220816 143-20 -SB-06 5/2022 N
Analyte	Unit	Unrestricted Use Guidance Value ¹	Industrial Use Guidance Value ¹	Result	Qualifier
1,1,1,2-Tetrachloroethane	mg/kg	NC	NC	< 0.25	U
1,1,1-Trichloroethane (TCA)	mg/kg	0.68	1000	< 0.25	U
1,1,2,2-Tetrachloroethane	mg/kg	NC	NC	< 0.13	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	mg/kg	NC	NC	< 0.51	U
1,1,2-Trichloroethane	mg/kg	NC	NC	< 0.25	U
1,1-Dichloroethane	mg/kg	0.27	480	< 0.25	U
1,1-Dichloroethene	mg/kg	0.33	1000	< 0.25	U
1,1-Dichloropropene	mg/kg	NC	NC	< 0.51	U
1,2,3-Trichlorobenzene	mg/kg	NC	NC	< 1.3	U
1,2,3-Trichloropropane	mg/kg	NC	NC	< 0.51	U
1,2,4-Trichlorobenzene	mg/kg	NC	NC	< 0.25	U
1,2,4-Trimethylbenzene	mg/kg	3.6	380	< 0.25	U
1,2-Dibromo-3-Chloropropane	mg/kg	NC	NC	< 1.3	U
1,2-Dibromoethane (Ethylene Dibromide)	mg/kg	NC	NC	< 0.13	U
1,2-Dichlorobenzene	mg/kg	1.1	1000	< 0.25	U
1,2-Dichloroethane	mg/kg	0.02	60	< 0.25	U
1,2-Dichloropropane	mg/kg	NC	NC	< 0.25	U
1,3,5-Trichlorobenzene	mg/kg	NC	NC	< 0.25	U
1,3,5-Trimethylbenzene (Mesitylene)	mg/kg	8.4	380	< 0.25	U
1,3-Dichlorobenzene	mg/kg	2.4	560	< 0.25	U
1,3-Dichloropropane	mg/kg	NC	NC	< 0.13	U
1,4-Dichlorobenzene	mg/kg	1.8	250	< 0.25	U
1,4-Dioxane (P-Dioxane)	mg/kg	0.1	250	< 13	U
2,2-Dichloropropane	mg/kg	NC	NC	< 0.25	U
2-Chlorotoluene	mg/kg	NC	NC	< 0.25	U
2-Hexanone	mg/kg	NC	NC	< 2.5	U
2-Methoxy-2-Methylbutane	mg/kg	NC	NC	< 0.13	U
4-Chlorotoluene	mg/kg	NC	NC	< 0.25	U
Acetone	mg/kg	0.05	1000	< 13	U
Acrylonitrile	mg/kg	NC	NC	< 1.3	U
Benzene	mg/kg	0.06	89	< 0.25	U
Bromobenzene	mg/kg	NC	NC	< 0.25	U
Bromochloromethane	mg/kg	NC	NC	< 0.25	U
Bromodichloromethane	mg/kg	NC	NC	< 0.25	U
Bromoform	mg/kg	NC	NC	< 0.51	U
Bromomethane	mg/kg	NC	NC	< 0.51	U
Carbon Disulfide	mg/kg	NC	NC	< 1.3	U
Carbon Tetrachloride	mg/kg	0.76	44	< 0.25	U
Chlorobenzene	mg/kg	1.1	1000	< 0.25	U
Chloroethane	mg/kg	NC	NC	< 0.51	U
Chloroform	mg/kg	0.37	700	< 0.51	U
Chloromethane (Methyl Chloride)	mg/kg	NC	NC	< 0.51	U
Cis-1,2-Dichloroethylene	mg/kg	0.25	1000	< 0.25	U
Cis-1,3-Dichloropropene	mg/kg	NC	NC	< 0.13	U
Cymene (4-Isopropyltoluene)	mg/kg	NC	NC	< 0.25	U
Dibromochloromethane	mg/kg	NC	NC	< 0.13	U
Dibromomethane	mg/kg	NC	NC	< 0.25	U
Dichlorodifluoromethane	mg/kg	NC	NC	< 0.51	U

Table 3B Waste Management, Inc. Soil, Volatile Organic Compound (VOC) Results

			Client Sample ID:	WM-SB-06	20220816	
			Lab Sample ID:	22H11	43-20	
			Location ID:	WM-S	SB-06	
			Sample Date:	8/16/	/2022	
			Sample Type Code:	1	N	
		Unrestricted Use	Industrial Use	Desult	Qualifian	
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifie	
Diethyl Ether (Ethyl Ether)	mg/kg	NC	NC	< 0.51	U	
Ethyl Tert-Butyl Ether	mg/kg	NC	NC	< 0.13	U	
Ethylbenzene	mg/kg	1.0	780.0	< 0.25	U	
Hexachlorobutadiene	mg/kg	NC	NC	< 0.25	U	
sopropyl Ether	mg/kg	NC	NC	< 0.13	U	
Isopropylbenzene (Cumene)	mg/kg	NC	NC	0.31	D	
m,p-Xylene	mg/kg	NC	NC	0.94	D	
Methyl Acetate	mg/kg	NC	NC	< 2.5	U	
Methyl Ethyl Ketone (2-Butanone)	mg/kg	0.12	1000	< 5.1	U	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	mg/kg	NC	NC	< 2.5	U	
Methylcyclohexane	mg/kg	NC	NC	< 0.25	U	
Methylene Chloride	mg/kg	0.05	1000	< 1.3	U	
Naphthalene	mg/kg	12	1000	< 0.51	U	
N-Butylbenzene	mg/kg	12	1000	< 0.25	U	
N-Propylbenzene	mg/kg	3.9	1000	0.4	D	
O-Xylene (1,2-Dimethylbenzene)	mg/kg	0.26	#N/A	< 0.25	U	
Sec-Butylbenzene	mg/kg	11	1000	< 0.25	U	
Styrene	mg/kg	NC	NC	< 0.25	U	
T-Butylbenzene	mg/kg	5.9	1000	< 0.25	U	
Tert-Butyl Alcohol	mg/kg	NC	NC	< 5.1	U	
Tert-Butyl Methyl Ether	mg/kg	0.93	1000	< 0.25	U	
Tetrachloroethylene (PCE)	mg/kg	1.3	300	< 0.25	U	
Tetrahydrofuran	mg/kg	NC	NC	< 2.5	U	
Toluene	mg/kg	0.7	1000	< 0.25	U	
Trans-1,2-Dichloroethene	mg/kg	0.19	1000	< 0.25	U	
Trans-1,3-Dichloropropene	mg/kg	NC	NC	< 0.13	U	
Trans-1,4-Dichloro-2-Butene	mg/kg	NC	NC	< 0.51	U	
Trichloroethylene (TCE)	mg/kg	0.47	400	< 0.25	U	
Trichlorofluoromethane	mg/kg	NC	NC	< 0.51	U	
Vinyl Chloride	mg/kg	0.02	27	< 0.51	U	

¹6 NYCRR Part 375-6.8(a), 375-6.8(b) Soil Cleanup Objective Tables, 2006

Sample Type Code: N - Normal, FD -Field Duplicate

mg/kg - milligram per kilogram = parts per million (ppm)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

D - Identified compound in the analysis was diluted to determine result

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

Table 3C Waste Management Inc Soil, Semi-volatile Organic Compound (SVOC) Results

			Client Sample ID: Lab Sample ID: Location ID: Sample Date: Sample Type Code:	22H WM	06 20220816 1143-20 I-SB-06 6/2022 N
Analyte	Unit	Unrestricted Use	Industrial Use	Result	Qualifier
1,2,4,5-Tetrachlorobenzene	mg/kg	Guidance Value ¹	Guidance Value ¹ NC	< 0.39	U
1,2,4-Trichlorobenzene	mg/kg	NC	NC	< 0.39	U
1.2-Dichlorobenzene	mg/kg	1.1	1000	< 0.39	U
1,2-Diphenylhydrazine	mg/kg	NC	NC	< 0.39	U
1,3-Dichlorobenzene	mg/kg	2.4	560	< 0.39	U
1,4-Dichlorobenzene	mg/kg	1.8	250	< 0.39	U
1-Methylnaphthalene	mg/kg	NC	NC	< 0.2	U
2,4,5-Trichlorophenol	mg/kg	NC	NC	< 0.39	U
2,4,6-Trichlorophenol	mg/kg	NC	NC	< 0.39	U
2,4-Dichlorophenol	mg/kg	NC	NC	< 0.39	U
2,4-Dimethylphenol	mg/kg	NC	NC	< 0.39	U
2,4-Dinitrophenol	mg/kg	NC	NC	< 0.76	U
2,4-Dinitrotoluene	mg/kg	NC	NC	< 0.39	U
2,6-Dinitrotoluene	mg/kg	NC	NC	< 0.39	U
2-Chloronaphthalene	mg/kg	NC	NC	< 0.39	U
2-Chlorophenol	mg/kg	NC	NC	< 0.39	U
2-Methylnaphthalene	mg/kg	NC	NC	< 0.2	U
2-Methylphenol (O-Cresol)	mg/kg	0.33	1000	< 0.39	U
2-Nitroaniline	mg/kg	NC	NC	< 0.39	U
2-Nitrophenol	mg/kg	NC	NC	< 0.39	U
3- And 4- Methylphenol (Total) 3,3'-Dichlorobenzidine	mg/kg	NC	NC NC	< 0.39 < 0.2	U
3-Nitroaniline	mg/kg mg/kg	NC NC	NC	< 0.2	U
4,6-Dinitro-2-Methylphenol	mg/kg	NC	NC	< 0.39	U
4-Bromophenyl Phenyl Ether	mg/kg	NC	NC	< 0.39	U
4-Chloro-3-Methylphenol	mg/kg	NC	NC	< 0.76	U
4-Chloroaniline	mg/kg	NC	NC	< 0.76	U
4-Chlorophenyl Phenyl Ether	mg/kg	NC	NC	< 0.39	U
4-Nitroaniline	mg/kg	NC	NC	< 0.39	U
4-Nitrophenol	mg/kg	NC	NC	< 0.76	U
Acenaphthene	mg/kg	20	1000	< 0.2	U
Acenaphthylene	mg/kg	100	1000	< 0.2	U
Acetophenone	mg/kg	NC	NC	< 0.39	U
Aniline	mg/kg	NC	NC	< 0.39	U
Anthracene	mg/kg	100	1000	< 0.2	U
Benzidine	mg/kg	NC	NC	< 0.76	U
Benzo(A)Anthracene	mg/kg	1	11	< 0.2	U
Benzo(A)Pyrene	mg/kg	1	1.1	< 0.2	U
Benzo(B)Fluoranthene	mg/kg	1	11	< 0.2	U
Benzo(G,H,I)Perylene	mg/kg	100	1000	< 0.2	U
Benzo(K)Fluoranthene	mg/kg	0.8	110	< 0.2	U
Benzoic Acid	mg/kg	NC	NC	< 1.2	U
Benzyl Butyl Phthalate	mg/kg	NC	NC	< 0.39	U
Bis(2-Chloroethoxy) Methane	mg/kg	NC	NC	< 0.39	U
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	mg/kg	NC	NC	< 0.39	U
Bis(2-Chloroisopropyl) Ether	mg/kg	NC	NC	< 0.39	-
Bis(2-Ethylhexyl) Phthalate Carbazole	mg/kg	NC NC	NC NC	< 0.39 < 0.2	U
Carbazole Chrysene	mg/kg mg/kg	1	110 NC	< 0.2	U
Dibenz(A,H)Anthracene	mg/kg	0.33	1.1	< 0.2	U
Dibenzofuran	mg/kg	0.33	1.1	< 0.2	U
Diethyl Phthalate	mg/kg	NC	NC	< 0.39	U
Dimethyl Phthalate	mg/kg	NC	NC	< 0.39	U
Di-N-Butyl Phthalate	mg/kg	NC	NC	< 0.39	U
Di-N-Octylphthalate	mg/kg	NC	NC	< 0.39	U
Fluoranthene	mg/kg	100	1000	< 0.2	U
Fluorene	mg/kg	30	1000	< 0.2	U
Hexachlorobenzene	mg/kg	0.33	12	< 0.39	U
Hexachlorobutadiene	mg/kg	NC	NC	< 0.39	U
Hexachlorocyclopentadiene	mg/kg	NC	NC	< 0.39	U
Hexachloroethane	mg/kg	NC	NC	< 0.39	U
Indeno(1,2,3-C,D)Pyrene	mg/kg	0.5	11	< 0.2	U

Table 3C Waste Management Inc Soil, Semi-volatile Organic Compound (SVOC) Results

			Client Sample ID:	WM-SB-06	20220816	
			Lab Sample ID:	22H1	143-20	
			Location ID:	WM-	SB-06	
			Sample Date:	8/16	/2022	
			Sample Type Code:	: N		
		Unrestricted Use	Industrial Use	Dec. II		
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifier	
Isophorone	mg/kg	NC	NC	< 0.39	U	
Naphthalene	mg/kg	12	1000	< 0.2	U	
Nitrobenzene	mg/kg	NC	NC	< 0.39	U	
N-Nitrosodimethylamine	mg/kg	NC	NC	< 0.39	U	
N-Nitrosodi-N-Propylamine	mg/kg	NC	NC	< 0.39	U	
N-Nitrosodiphenylamine	mg/kg	NC	NC	< 0.39	U	
Pentachloronitrobenzene	mg/kg	NC	NC	< 0.39	U	
Pentachlorophenol	mg/kg	0.8	55	< 0.39	U	
Phenanthrene	mg/kg	100	1000	0.33		
Phenol	mg/kg	0.33	1000	< 0.39	U	
Pyrene	mg/kg	100	1000	< 0.2	U	
Pyridine	mg/kg	NC	NC	< 0.39	U	
Notes:						
¹ 6 NYCRR Part 375-6.8(a), 375-6.8(b) So	oil Cleanup Obiectiv	ve Tables. 2006				
Sample Type Code: N - Normal, FD -Fie		,				
NC - No criteria currently exists						

mg/kg - milligram per kilogram / parts per million (ppm)

U - Compound was not detected at the reporting limit shown

J - An estimated value

D - Identified compound in the analysis was diluted to determine result

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

Table 3D Waste Management Inc. Soil, Polychlorinated Biphenyl (PCB) Results

SB-06 20220816
22H1143-20
WM-SB-06
8/16/2022
Ν
t Qualifier
U
U
U
U
3.7 D
9.3 D
5.4 D
U
U
8.40 D
1

NC - No criteria currently exists

mg/kg - milligram per kilogram = parts per million (ppm)

U - Compound was not detected at the reporting limit shown

J - An estimated value

D - Identified compound in the analysis was diluted to determine result

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

Table 4Waste Management IncSediment, PFAS Results

	Cli	ent Sample ID:	WM-SED	0-01-20220816		
		Lab Sample ID:	221	H1143-12		
		Location ID:	WN	/I-SED-01		
		Sample Date:	: 8/16/2022			
	Sam	ple Type Code:	N			
		NYSDEC		0 110		
Analyte	Unit	Guidelines ¹	Result	Qualifier		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	< 0.17	U		
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	< 0.15	U		
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	< 0.11	U		
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	< 0.14	U		
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	< 0.19	U		
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	< 0.15	U		
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	< 0.29	U		
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	< 0.17	U		
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	< 0.11	U		
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	< 0.092	U		
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	< 0.098	U		
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	< 0.19	U		
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	< 0.18	U		
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	< 0.11	U		
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	< 0.11	U		
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	< 0.091	U		
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	< 0.079	U		
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	< 0.14	U		
Perfluorodecanoic acid (PFDA)	µg/kg	NC	< 0.076	U		
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	< 0.091	U		
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	< 0.18	U		
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	< 0.086	U		
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	< 0.095	U		
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	< 0.11	U		
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	< 0.16	U		
Perfluorononanoic acid (PFNA)	µg/kg	NC	< 0.098	U		
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	< 0.12	U		
Perfluorooctanesulfonic acid (PFOS)	µg/kg	NC	0.08	88 J		
Perfluorooctanoic acid (PFOA)	µg/kg	NC	< 0.17	U		
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	< 0.087	U		
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	< 0.091	U		
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	< 0.11	U		
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	< 0.13	U		
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	< 0.11	U		

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS),* November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Table 5 Waste Management Inc Surface Water, PFAS Results

	La	nt Sample ID: ab Sample ID: Location ID: Sample Date: le Type Code:	22H1143-11 WM-SW-01 16 Aug 2022			
Analyte	Unit	NYSDEC Guidelines ¹	Result	Qualifier		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	ng/L	NC	< 0.56	U		
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/L	NC	< 0.53	U		
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	ng/L	NC	< 0.25	U		
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/L	NC	< 0.32	U		
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ng/L	NC	< 0.31	U		
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	ng/L	NC	< 0.34	U		
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L	NC	< 0.21	U		
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	ng/L	NC	< 0.55	U		
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	ng/L	NC	< 0.67	U		
Nonafluoro-3,6-dioxaheptanoic acid	ng/L	NC	< 0.24	U		
Perfluoro(2-ethoxyethane)sulfonic acid	ng/L	NC	< 0.2	U		
Perfluoro-1-butanesulfonamide (FBSA)	ng/L	NC	< 0.17	U		
Perfluoro-1-hexanesulfonamide (FHxSA)	ng/L	NC	< 0.27	U		
Perfluoro-3-methoxypropanoic acid	ng/L	NC	< 0.36	U		
Perfluoro-4-methoxybutanoic acid	ng/L	NC	< 0.3	U		
Perfluorobutanesulfonic acid (PFBS)	ng/L	NC	1.4	J		
Perfluorobutanoic Acid (PFBA)	ng/L	NC	3.2			
Perfluorodecanesulfonic acid (PFDS)	ng/L	NC	0.83	J		
Perfluorodecanoic acid (PFDA)	ng/L	NC	< 0.43	U		
Perfluorododecanoic acid (PFDoA)	ng/L	NC	< 0.39	U		
Perfluoroheptanesulfonic acid (PFHpS)	ng/L	NC	< 0.82	U		
Perfluoroheptanoic acid (PFHpA)	ng/L	NC	0.88	J		
Perfluorohexanesulfonic acid (PFHxS)	ng/L	NC	0.52	J		
Perfluorohexanoic acid (PFHxA)	ng/L	NC	1.1	J		
Perfluorononanesulfonic Acid (PFNS)	ng/L	NC	< 0.15	U		
Perfluorononanoic acid (PFNA)	ng/L	NC	0.62	J		
Perfluorooctane Sulfonamide (FOSA)	ng/L	NC	< 0.37	U		
Perfluorooctanesulfonic acid (PFOS)	ng/L	10	8.6			
Perfluorooctanoic acid (PFOA)	ng/L	10	4.8			
Perfluoropentanesulfonic Acid (PFPeS)	ng/L	NC	< 0.23	U		
Perfluoropentanoic Acid (PFPeA)	ng/L	NC	1.5	J		
Perfluorotetradecanoic acid (PFTA)	ng/L	NC	< 0.32	U		
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/L	NC	< 0.24	U		
Perfluoroundecanoic Acid (PFUnA)	ng/L	NC	< 0.32	U		
Notes:						

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS),* November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

ng/L - nanogram per liter = parts per trillion (ppt)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Table 6A Waste Managment Inc Groundwater, PFAS Results

	Cli	ent Sample ID:	WM-OW-0	1-20220921	WM-OW-02-20220927		WM-OW-0	3-20220927	WM-OW-0	4-20220927
		Lab Sample ID:		1885-4	480-20			2148-2		02148-5
		Location ID:	WM-0	DW-01	WM-0	DW-02	WM-0	DW-03	WM-	OW-04
		Sample Date:	9/21	/2022	9/27/2022		9/27/2022		9/27	/2022
	Sam	ole Type Code:		N		N		N		N
		NYSDEC								
Analyte	Unit	Guidelines ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/L	NC	< 1.9	U	< 1.8	U	< 1.8	U	< 10	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/L	NC	< 4.6	U	< 4.6	U	< 4.6	U	< 25	U
N-ethyl perfluorooctanesulfonamidoacetic acid	ng/L	NC	< 4.6	U	< 4.6	U	< 4.6	U	< 25	U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	NC	< 4.6	U	< 4.6	U	< 4.6	U	< 25	U
Perfluorobutanesulfonic acid (PFBS)	ng/L	NC	3.8		0.94	J	0.63	1	< 10	U
Perfluorobutanoic Acid (PFBA)	ng/L	NC	7.5		4.6		3.3	J	6.7	1
Perfluorodecanesulfonic acid (PFDS)	ng/L	NC	< 1.9	U	< 1.8	U	< 1.8	U	< 10	U
Perfluorodecanoic acid (PFDA)	ng/L	NC	0.96	l	< 1.8	U	0.46	1	< 10	U
Perfluorododecanoic acid (PFDoA)	ng/L	NC	< 1.9	U	< 1.8	U	< 1.8	U	< 10	U
Perfluoroheptanesulfonic acid (PFHpS)	ng/L	NC	1.2	l	< 1.8	U	< 1.8	U	< 10	U
Perfluoroheptanoic acid (PFHpA)	ng/L	NC	3		1.5	J	0.7	1	< 10	U
Perfluorohexanesulfonic acid (PFHxS)	ng/L	NC	0.97	l	0.89	J	0.52	1	< 10	U
Perfluorohexanoic acid (PFHxA)	ng/L	NC	15		3.7		< 1.8	U	< 10	U
Perfluorononanoic acid (PFNA)	ng/L	NC	1.3	l	6.4		0.59	1	2.4	J
Perfluorooctane Sulfonamide (FOSA)	ng/L	NC	< 1.9	U	< 1.8	U	< 1.8	U	< 10	U
Perfluorooctanesulfonic acid (PFOS)	ng/L	10	5.8		9.5		8.3		14	
Perfluorooctanoic acid (PFOA)	ng/L	10	5.2		5.6		2.2		4.9	1
Perfluoropentanoic Acid (PFPeA)	ng/L	NC	36		3.5		0.8	l	5.2	l
Perfluorotetradecanoic acid (PFTA)	ng/L	NC	< 1.9	U	< 1.8	U	< 1.8	U	< 10	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/L	NC	< 1.9	U	< 1.8	U	< 1.8	U	< 10	U
Perfluoroundecanoic Acid (PFUnA)	ng/L	NC	< 1.9	U	< 1.8	U	< 1.8	U	< 10	U
Notes:										

¹New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS),

November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

ng/L - nanogram per liter = parts per trillion (ppt)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Table 6B Waste Management Inc Groundwater, Volatile Organic Compound (VOC) Results

Client Sample ID: Lab Sample ID: Location ID:			WM-OW-02-20220927 2211719-01 WM-OW-02		FIELD DUP-20220927 2211719-04 WM-OW-02		WM-OW-03-20220927 2211719-02 WM-OW-03		WM-OW-04-20220927 2211719-03 WM-OW-04	
Sample Date:		9/27/2022		9/27/2022		9/27/2022		9/27/2022		
	Sample Type Code		N		FD		N		N	
Analyte	NYS Class GA ¹	Unit	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer
1,1,1,2-Tetrachloroethane	5	μg/L	< 0.18	U	< 0.18	U	< 0.18	U	< 0.18	U
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.13	U	< 0.13	U	< 0.17	U	< 0.10	U
1.1.2.2-Tetrachloroethane	5	μg/L	< 0.17	U	< 0.13	U	< 0.13	U	< 0.17	U
1,1,2,2-Trichloro-1,2,2-Trifluoroethane	5	μg/L	< 0.23	U	< 0.23	U	< 0.13	U	< 0.13	U
1,1,2-Trichloroethane	1	μg/L	< 0.18	U	< 0.18	U	< 0.18	U	< 0.18	U
1,1-Dichloroethane	5	μg/L	< 0.14	U	< 0.14	U	< 0.14	U	< 0.14	U
1,1-Dichloroethene	5	μg/L	< 0.14	U	< 0.14	U	< 0.14	U	< 0.14	U
1,1-Dichloropropene	NC	μg/L	< 0.14	U	< 0.14	U	< 0.15	U	< 0.14	U
1,2,3-Trichlorobenzene	5	μg/L	< 0.3	U	< 0.3	U	< 0.3	U	< 0.3	U
1,2,3-Trichloropropane	0.04	μg/L	< 0.28	U	< 0.28	U	< 0.28	U	< 0.28	U
1,2,4-Trichlorobenzene	5	μg/L	< 0.25	U	< 0.25	U	< 0.25	U	< 0.25	U
1,2,4-Trimethylbenzene	5	μg/L	< 0.2	U	< 0.2	U	< 0.2	U	< 0.2	U
1.2-Dibromo-3-Chloropropane	0.04	μg/L	< 0.8	U	< 0.8	U	< 0.8	U	< 0.2	U
1,2-Dibromoethane (Ethylene Dibromide)	0.0006	μg/L	< 0.17	U	< 0.17	U	< 0.17	U	< 0.17	U
1.2-Dichlorobenzene	3	μg/L	< 0.12	U	< 0.12	U	< 0.12	U	< 0.12	U
1,2-Dichloroethane	0.6	μg/L	< 0.31	U	< 0.31	U	< 0.31	U	< 0.31	U
1,2-Dichloropropane	1	μg/L	< 0.18	U	< 0.18	U	< 0.18	U	< 0.18	U
1,3,5-Trichlorobenzene	5	μg/L	< 0.21	U	< 0.21	U	< 0.21	U	< 0.21	U
1,3,5-Trimethylbenzene (Mesitylene)	5	μg/L	< 0.11	U	< 0.11	U	< 0.11	U	< 0.11	U
1,3-Dichlorobenzene	3	μg/L	< 0.12	U	< 0.12	U	< 0.12	U	0.67	J
1,3-Dichloropropane	5	μg/L	< 0.13	U	< 0.13	U	< 0.13	U	< 0.13	U
1,4-Dichlorobenzene	3	μg/L	< 0.13	U	< 0.13	U	0.35	J	3.6	
1,4-Dioxane (P-Dioxane)	NC	μg/L	< 21	U	< 21	U	< 21	U	< 21	U
2,2-Dichloropropane	5	μg/L	< 0.33	U	< 0.33	U	< 0.33	U	< 0.33	U
2-Chlorotoluene	5	μg/L	< 0.11	U	< 0.11	U	< 0.11	U	< 0.11	U
2-Hexanone	50	μg/L	< 1.1	U	< 1.1	U	< 1.1	U	< 1.1	U
2-Methoxy-2-Methylbutane	NC	μg/L	< 0.14	U	< 0.14	U	< 0.14	U	< 0.14	U
4-Chlorotoluene	5	μg/L	< 0.12	U	< 0.12	U	< 0.12	U	< 0.12	U
Acetone	50	μg/L	< 2	U	2.6	l	< 2	U	< 2	U
Acrylonitrile	NC	μg/L	< 0.55	U	< 0.55	U	< 0.55	U	< 0.55	U
Benzene	NC	μg/L	< 0.2	U	< 0.2	U	< 0.2	U	0.34	l
Bromobenzene	NC	μg/L	< 0.15	U	< 0.15	U	< 0.15	U	< 0.15	U
Bromochloromethane	5	μg/L	< 0.31	U	< 0.31	U	< 0.31	U	< 0.31	U
Bromodichloromethane	50	μg/L	< 0.18	U	< 0.18	U	< 0.18	U	< 0.18	U
Bromoform	50	μg/L	< 0.38	U	< 0.38	U	< 0.38	U	< 0.38	U
Bromomethane	5	μg/L	< 1.5	U	< 1.5	U	< 1.5	U	< 1.5	U
Carbon Disulfide	60	μg/L	< 1.4	U	< 1.4	U	< 1.4	U	< 1.4	U
Carbon Tetrachloride	5	μg/L	< 0.16	U	< 0.16	U	< 0.16	U	< 0.16	U
Chlorobenzene	5	μg/L	< 0.11	U	< 0.11	U	< 0.11	U	1.6	
Chloroethane	5	μg/L	< 0.32	U	< 0.32	U	< 0.32	U	< 0.32	U
Chloroform	7	μg/L	< 0.17	U	< 0.17	U	< 0.17	U	< 0.17	U
Chloromethane (Methyl Chloride)	5	μg/L	< 0.52	U	< 0.52	U	< 0.52	U	< 0.52	U
Cis-1,2-Dichloroethylene	5	μg/L	< 0.15	U	< 0.15	U	< 0.15	U	< 0.15	U
Cis-1,3-Dichloropropene	0.4	μg/L	< 0.16	U	< 0.16	U	< 0.16	U	< 0.16	U
Cymene (4-Isopropyltoluene)	5	μg/L	< 0.097	U	< 0.097	U	< 0.097	U	< 0.097	U

Table 6B Waste Management Inc Groundwater, Volatile Organic Compound (VOC) Results

Client Sample ID:			WM-OW-02-20220927		FIELD DUP-20220927		WM-OW-03-20220927		WM-OW-04-20220927	
Lab Sample ID:			22/1719-01		22 1719-04		22 1719-02		22/1719-03	
Location ID:			WM-OW-02		WM-OW-02		WM-OW-03		WM-OW-04	
Sample Date:			9/27/2022		9/27/2022		9/27/2022		9/27/2022	
Sample Date. Sample Type Code:		N		FD		N		N		
	Sample Ty	pe coue.		•		U				
Analyte	NYS Class GA ¹	Unit	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer
Dibromochloromethane	50	μg/L	< 0.22	U	< 0.22	U	< 0.22	U	< 0.22	U
Dibromomethane	5	μg/L	< 0.35	U	< 0.35	U	< 0.35	U	< 0.35	U
Dichlorodifluoromethane	5	μg/L	< 0.19	U	< 0.19	U	< 0.19	U	< 0.19	U
Diethyl Ether (Ethyl Ether)	NC	μg/L	< 0.18	U	< 0.18	U	< 0.18	U	< 0.18	U
Ethyl Tert-Butyl Ether	NC	μg/L	< 0.15	U	< 0.15	U	< 0.15	U	< 0.15	U
Ethylbenzene	5	μg/L	< 0.21	U	< 0.21	U	< 0.21	U	< 0.21	U
Hexachlorobutadiene	0.5	μg/L	< 0.46	U	< 0.46	U	< 0.46	U	< 0.46	U
Isopropyl Ether	NC	μg/L	< 0.13	U	< 0.13	U	< 0.13	U	< 0.13	U
Isopropylbenzene (Cumene)	5	μg/L	< 0.11	U	< 0.11	U	< 0.11	U	3.1	
m,p-Xylene	NC	μg/L	< 0.46	U	< 0.46	U	< 0.46	U	0.48	J
Methyl Acetate	NC	μg/L	< 0.45	U	< 0.45	U	< 0.45	U	< 0.45	U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.6	U	< 1.6	U	< 1.6	U	< 1.6	U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NC	μg/L	< 1.3	U	< 1.3	U	< 1.3	U	< 1.3	U
Methylcyclohexane	NC	μg/L	< 0.24	U	< 0.24	U	< 0.24	U	< 0.24	U
Methylene Chloride	5	μg/L	< 0.23	U	< 0.23	U	< 0.23	U	< 0.23	U
Naphthalene	10	μg/L	< 0.24	U	< 0.24	U	< 0.24	U	< 0.24	U
N-Butylbenzene	5	μg/L	< 0.15	U	< 0.15	U	< 0.15	U	< 0.15	U
N-Propylbenzene	5	μg/L	< 0.086	U	< 0.086	U	< 0.086	U	0.23	J
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 0.23	U	< 0.23	U	< 0.23	U	< 0.23	U
Sec-Butylbenzene	5	μg/L	< 0.11	U	< 0.11	U	< 0.11	U	0.15	1
Styrene	5	μg/L	< 0.11	U	< 0.11	U	< 0.11	U	< 0.11	U
T-Butylbenzene	5	μg/L	< 0.13	U	< 0.13	U	< 0.13	U	< 0.13	U
Tert-Butyl Alcohol	NC	μg/L	< 4.7	U	< 4.7	U	< 4.7	U	< 4.7	U
Tert-Butyl Methyl Ether	10	μg/L	< 0.17	U	< 0.17	U	< 0.17	U	< 0.17	U
Tetrachloroethylene (PCE)	5	μg/L	0.31	1	0.38	l	< 0.19	U	< 0.19	U
Tetrahydrofuran	50	μg/L	< 0.49	U	< 0.49	U	< 0.49	U	< 0.49	U
Toluene	5	μg/L	< 0.22	U	< 0.22	U	< 0.22	U	< 0.22	U
Trans-1,2-Dichloroethene	5	μg/L	< 0.17	U	< 0.17	U	< 0.17	U	< 0.17	U
Trans-1,3-Dichloropropene	0.4	μg/L	< 0.17	U	< 0.17	U	< 0.17	U	< 0.17	U
Trans-1,4-Dichloro-2-Butene	5	μg/L	< 1.6	U	< 1.6	U	< 1.6	U	< 1.6	U
Trichloroethylene (TCE)	5	μg/L	0.32	J	0.3	1	< 0.19	U	< 0.19	U
Trichlorofluoromethane	5	μg/L	< 0.18	U	< 0.18	U	< 0.18	U	< 0.18	U
Vinyl Chloride	2	μg/L	< 0.21	U	< 0.21	U	< 0.21	U	< 0.21	U
Notes:	•			•			•			

Notes:

¹New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998.

Sample Type Code: N - Normal, FD -Field Duplicate

 μ g/L - microgram per liter = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Table 6C Waste Management Inc Groundwater, Semi-volatile Organic Compound (SVOC) Results

	WM-OW-02	2-20220927	FIELD DUP	-20220927	WM-OW-0	3-20220927	WM-OW-04-20220927			
	Client Samp Lab Samp			19-01		/19-04		/19-02		19-03
	Location ID:					WM-OW-02		19 02 DW-03		19 05 DW-04
		DW-02 /2022		/2022		/2022		/2022		
	Sample Date: Sample Type Code:			N 1022		72022 D	N		N	
	oumpie type			•		5				
Analyte	NYS Class GA ¹	Unit		Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer
1,2,4,5-Tetrachlorobenzene	5	μg/L		U	< 0.65	U	< 0.64	U	< 0.67	U
1,2,4-Trichlorobenzene	5	μg/L	< 0.66	U	< 0.67	U	< 0.66	U	< 0.68	U
1,2-Dichlorobenzene	3	μg/L		U	< 0.67	U	< 0.65	U	1.6	J
1,2-Diphenylhydrazine	ND	μg/L	< 0.56	U	< 0.57	U	< 0.56	U	< 0.59	U
1,3-Dichlorobenzene	3	μg/L	< 0.66	U	< 0.67	U	< 0.66	U	< 0.69	U
1,4-Dichlorobenzene	3	μg/L	< 0.65	U	< 0.67	U	< 0.65	U	1.5	l
1,4-Dioxane (P-Dioxane)	0.35*	μg/L	0.23		0.2		1.4		< 0.033	U
1-Methylnaphthalene	NC	μg/L	< 0.59	U	< 0.6	U	< 0.59	U	< 0.61	U
2,4,5-Trichlorophenol	NC	μg/L		U	< 0.51	U	< 0.5	U	< 0.52	U
2,4,6-Trichlorophenol	NC	μg/L		U	< 0.45	U	< 0.44	U	< 0.46	U
2,4-Dichlorophenol	1	μg/L		U	< 0.43	U	< 0.44	U	< 0.49	U
2,4-Dichlorophenol	1	μg/L		U	< 0.48	U	< 0.47	U	< 0.49	U
2,4-Dinitrophenol	1	μg/L		U	< 8.1	U	< 7.9	U	< 8.2	U
	5			U	< 0.61	U	< 0.6	U	< 0.63	U
2,4-Dinitrotoluene 2.6-Dinitrotoluene	5	μg/L		U	< 0.52	U U	< 0.6 < 0.51	U	< 0.53	U
/	-	μg/L		•		-		-		
2-Chloronaphthalene	10	μg/L		U	< 0.49	U	< 0.48	U	< 0.5	U
2-Chlorophenol	NC	μg/L		U	< 0.47	U	< 0.46	U	< 0.48	U
2-Methylnaphthalene	NC	μg/L		U	< 0.69	U	< 0.68	U	< 0.71	U
2-Methylphenol (O-Cresol)	NC	μg/L		U	< 0.47	U	< 0.47	U	< 0.48	U
2-Nitroaniline	5	μg/L		U	< 0.69	U	< 0.68	U	< 0.71	U
2-Nitrophenol	NC	μg/L		U	< 0.51	U	< 0.5	U	< 0.52	U
3- And 4- Methylphenol (Total)	NC	μg/L		U	< 0.46	U	< 0.45	U	< 0.47	U
3,3'-Dichlorobenzidine	5	μg/L		U	< 0.71	U	< 0.7	U	< 0.73	U
3-Nitroaniline	5	μg/L		U	< 0.59	U	< 0.58	U	< 0.6	U
4,6-Dinitro-2-Methylphenol	NC	μg/L	< 6.9	U	< 7	U	< 6.9	U	< 7.2	U
4-Bromophenyl Phenyl Ether	NC	μg/L	< 0.46	U	< 0.47	U	< 0.46	U	< 0.48	U
4-Chloro-3-Methylphenol	NC	μg/L	< 0.55	U	< 0.56	U	< 0.55	U	< 0.57	U
4-Chloroaniline	5	μg/L	< 0.56	U	< 0.58	U	< 0.56	U	< 0.59	U
4-Chlorophenyl Phenyl Ether	NC	μg/L	< 0.47	U	< 0.48	U	< 0.47	U	< 0.49	U
4-Nitroaniline	5	μg/L	< 0.59	U	< 0.6	U	< 0.59	U	< 0.61	U
4-Nitrophenol	NC	μg/L	< 2.1	U	< 2.1	U	< 2.1	U	< 2.1	U
Acenaphthene	20	μg/L	< 0.51	U	< 0.52	U	< 0.51	U	< 0.53	U
Acenaphthylene	NC		< 0.47	U	< 0.48	U	< 0.47	U	< 0.49	U
Acetophenone	NC	μg/L		U	< 0.53	U	< 0.52	U	< 0.54	U
Aniline	5	μg/L		U	< 0.7	U	< 0.68	U	< 0.71	U
Anthracene	50	μg/L		U	< 0.46	U	< 0.45	U	0.69	
Benzidine	5	μg/L		U	< 10	U	< 10	U	< 11	J U
Benzo(A)Anthracene	0.002	μg/L		U	< 0.41	U	< 0.4	U	< 0.42	U
Benzo(A)Pyrene	0.002 ND	μg/L		U	< 0.41	U	< 0.4	U	< 0.42	U
Benzo(B)Fluoranthene	0.002	μg/L		U	< 0.37	U	< 0.36	U	< 0.38	U
	0.002 NC	μg/L μg/L		U U	< 0.47	U U	< 0.46	U	< 0.48	U
Benzo(G,H,I)Perylene	-			-		-		-		U U
Benzo(K)Fluoranthene	0.002	μg/L		U	< 0.49	U	< 0.48	U	< 0.5	÷
Benzoic Acid	NC	μg/L		U	< 8.4	U	< 8.3	U	< 8.6	U
Benzyl Butyl Phthalate	50	μg/L		U	< 0.67	U	< 0.66	U	< 0.69	U
Bis(2-Chloroethoxy) Methane	5	μg/L		U	< 0.46	U	< 0.45	U	< 0.47	U
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	1	μg/L	< 0.56	U	< 0.57	U	< 0.56	U	< 0.58	U

Table 6C Waste Management Inc Groundwater, Semi-volatile Organic Compound (SVOC) Results

	Client Samp	ole ID:	WM-OW-0	2-20220927	FIELD DUI	P-20220927	WM-OW-0	3-20220927	WM-OW-0	4-20220927	
	Lab Samp	ole ID:	22117	719-01	2211719-04		22117	719-02	22117	19-03	
	Location ID:					OW-02	WM-OW-03		WM-	WM-OW-04	
	Sample	Date:	9/27	/2022	9/27	/2022	9/27	9/27/2022		9/27/2022	
	Sample Type	Code:		N		FD	N		N		
Analyte	NYS Class GA ¹	Unit	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	
Bis(2-Chloroisopropyl) Ether	5	μg/L	< 0.67	U	< 0.69	U	< 0.67	U	< 0.7	U	
Bis(2-Ethylhexyl) Phthalate	5	μg/L	< 0.82	U	< 0.84	U	< 0.82	U	< 0.86	U	
Carbazole	NC	μg/L	< 0.42	U	< 0.43	U	< 0.42	U	< 0.43	U	
Chrysene	0.002	μg/L	< 0.39	U	< 0.4	U	< 0.39	U	< 0.4	U	
Dibenz(A,H)Anthracene	NC	μg/L	< 0.68	U	< 0.69	U	< 0.68	U	< 0.7	U	
Dibenzofuran	NC	μg/L	< 0.48	U	< 0.49	U	< 0.48	U	< 0.5	U	
Diethyl Phthalate	50	μg/L	< 0.41	U	< 0.42	U	< 0.41	U	< 0.43	U	
Dimethyl Phthalate	50	μg/L	< 0.37	U	< 0.38	U	< 0.37	U	< 0.38	U	
Di-N-Butyl Phthalate	50	μg/L	< 0.45	U	< 0.46	U	< 0.45	U	< 0.47	U	
Di-N-Octylphthalate	50	μg/L	< 3.9	U	< 3.9	U	< 3.9	U	< 4	U	
Fluoranthene	50	μg/L	< 0.42	U	< 0.43	U	< 0.42	U	< 0.44	U	
Fluorene	50	μg/L	< 0.51	U	< 0.52	U	< 0.51	U	1.5	l	
Hexachlorobenzene	0.04	μg/L	< 0.5	U	< 0.51	U	< 0.5	U	< 0.52	U	
Hexachlorobutadiene	0.5	μg/L	< 0.76	U	< 0.77	U	< 0.76	U	< 0.79	U	
Hexachlorocyclopentadiene	5	μg/L	< 3.6	U	< 3.7	U	< 3.6	U	< 3.8	U	
Hexachloroethane	5	μg/L	< 0.73	U	< 0.74	U	< 0.73	U	< 0.75	U	
Indeno(1,2,3-C,D)Pyrene	0.002	μg/L	< 0.73	U	< 0.74	U	< 0.73	U	< 0.76	U	
Isophorone	50	μg/L	< 0.54	U	< 0.55	U	< 0.54	U	< 0.56	U	
Naphthalene	10		< 0.6	U	< 0.61	U	< 0.6	U	< 0.63	U	
Nitrobenzene	0.4	μg/L	< 0.61	U	< 0.63	U	< 0.61	U	< 0.64	U	
N-Nitrosodimethylamine	NC	μg/L	< 0.77	U	< 0.78	U	< 0.77	U	< 0.8	U	
N-Nitrosodi-N-Propylamine	NC		< 0.6	U	< 0.61	U	< 0.6	U	< 0.63	U	
N-Nitrosodiphenylamine	50		< 0.37	U	< 0.38	U	< 0.37	U	< 0.39	U	
Pentachloronitrobenzene	ND		< 0.61	U	< 0.62	U	< 0.61	U	< 0.64	U	
Pentachlorophenol	1		< 3.4	U	< 3.5	U	< 3.4	U	< 3.6	U	
Phenanthrene	50		< 0.47	U	< 0.48	U	< 0.47	U	< 0.49	U	
Phenol	1		< 0.22	U	< 0.23	U	< 0.22	U	< 0.23	U	
Pyrene	50		< 0.6	U	< 0.61	U	< 0.6	U	< 0.62	U	
Pyridine	50		< 2.4	U	< 2.5	U	< 2.4	U	< 2.5	U	

Notes:

¹New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998.

*New York State Drinking Water Maximum Contaminant Level

Sample Type Code: N - Normal, FD -Field Duplicate

µg/L - microgram per liter = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above applicable NYSDEC Standards, Criteria, & Guidance Values

Table 6D Waste Management Inc Groundwater, Polychlorinated Biphenyl (PCB) Results

	Client Samp	le ID:	WM-OW-0)2-20220927	FIELD DU	P-20220927	WM-OW-0	3-20220927	WM-OW-C	4-20220927	
	Lab Samp	le ID:	22 1719-01		2211	2211719-04		22 1719-02		2211719-03	
	Location ID:			OW-02	WM-	OW-02	WM-0	WM-OW-03		WM-OW-04	
	Sample Date:		9/27/2022		9/27	9/27/2022		9/27/2022		9/27/2022	
	Sample Type	Code:		Ν		FD		N		N	
Analyte	NYS Class GA ¹	Unit	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	
PCB-1260 (Aroclor 1260)	NC	μg/L	< 0.063	U	< 0.061	U	< 0.062	U	< 0.061	U	
PCB-1254 (Aroclor 1254)	NC	μg/L	< 0.079	U	< 0.076	U	< 0.078	U	< 0.076	U	
PCB-1268 (Aroclor 1268)	NC	μg/L	< 0.078	U	< 0.076	U	< 0.077	U	< 0.076	U	
PCB-1221 (Aroclor 1221)	NC	μg/L	< 0.08	U	< 0.077	U	< 0.079	U	< 0.077	U	
PCB-1232 (Aroclor 1232)	NC	μg/L	< 0.073	U	< 0.071	U	< 0.073	U	< 0.071	U	
PCB-1248 (Aroclor 1248)	NC	μg/L	< 0.089	U	< 0.087	U	< 0.088	U	< 0.087	U	
PCB-1016 (Aroclor 1016)	NC	μg/L	< 0.053	U	< 0.052	U	< 0.053	U	< 0.052	U	
PCB-1262 (Aroclor 1262)	NC	μg/L	< 0.064	U	< 0.062	U	< 0.064	U	< 0.062	U	
PCB-1242 (Aroclor 1242)	NC	μg/L	< 0.077	U	< 0.075	U	< 0.076	U	< 0.075	U	
Total PCBs	0.09	μg/L	-		-		-		-		

Notes:

¹New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998.

Sample Type Code: N - Normal, FD -Field Duplicate

µg/L - microgram per liter = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above applicable NYSDEC Standards, Criteria, & Guidance Values

Table 6E Waste Management, Inc Groundwater, Nitrate Nitrite Results

	Client San	nple ID:	WM-OW-	01-20220927	WM-OW-()2-20220927	WM-OW-0	3-20220927	WM-OW-()4-20220927
	Lab San	nple ID:	2211283-04		2211	719-01	2211719-02		2211719-03	
	Location ID:				WM-	WM-OW-02		WM-OW-03		OW-04
Sample Date:			9/2	1/2022	9/2	7/2022	9/27	/2022	9/27/2022	
Sample Type Code:				Ν		Ν		Ν		Ν
Analyte	NYS Class GA ¹	Unit	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer
Nitrate (as N)	10	mg/L	0.1	7	0.28	3	0.082	J	0.062	2 J
Nitrite (as N)	1	mg/L	<0.100	U	< 0.100	U	<0.100	U	<0.100	U
Notes:										
¹ New York State Departr	nont of Environmontal	Concor	vation Tach	nical and Onor	ational Guida	neo Corioc /1 1		tandards and		

Guidance Values, Revised June 1998.

Sample Type Code: N - Normal, FD -Field Duplicate

mg/L - milligram per liter = parts per million (ppm)

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

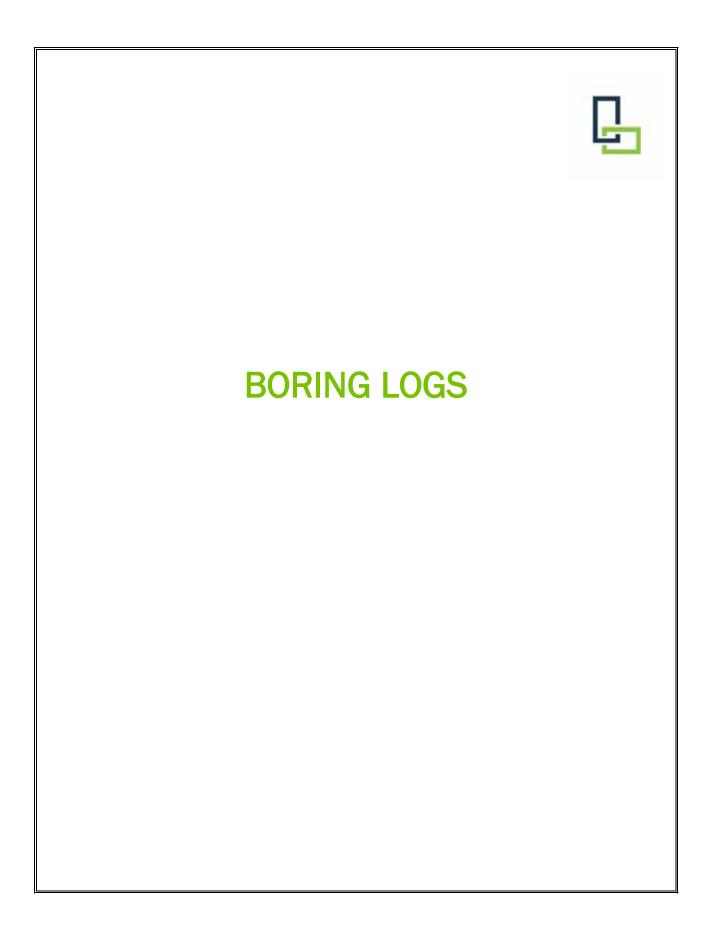
Highlighted - Indicates the compound was detected above applicable NYSDEC Standards, Criteria, & Guidance Values

Table 6F Waste Management, Inc Groundwater, Artificial Sweetener Results

	Client Sam	ole ID:	WM-OW-0	1-20220927	WM-OW-02-20220927		WM-OW-03-20220927		WM-OW-04-20220927		
	Lab Sample ID:			83-04	22 17	19-01	2211719-02		2211719-03		
	Location ID:			DW-01	WM-OW-02 WM-OW-03		WM-C)W-04			
Sample Date:			9/21,	/2022	9/27/	/2022	9/27	9/27/2022		9/27/2022	
Sample Type Code:		I	N	1	N		N N		N		
	Screening										
Analyte	Criteria	Unit	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	
Acesulfame K	NC	µg/L	0.98	H *-	0.13	Н*-	0.054	H *-	0.6	H *-	
Sucralose	NC	µg/L	2	н	0.77	Н	<0.025	ΗU	1.2	Н	
Notes:											

Sample Type Code: N - Normal, FD -Field Duplicate

NC - No criteria currently exists


 μ g/L - microgram per liter = parts per billion

U - Compound was not detected at the reporting limit shown

H - Sample was prepped or analyzed beyond the specific holding time

*- -Lab Control Sample (LCS) and/or LCS Duplicate is outside acceptance limits, low biased

Bold - Indicates the compound was detected

MONITORING WELL / BORING NO. WM-SB-01	
Site Name:	ugust 15, 2022
Location: Waste Management Drilling Co.: C	lean Globe Environmental Powered by partnership.
Client: NYSDEC Driller: Mario Pine	da Soil Samples Collected:
Phone No.: Logged by:	Rollend No Samples Collected
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Meth	Od: <u>Macro Core (</u> Dia): <u>2"</u>
Drilled TD: <u>2.0'</u> (Dia): <u>2"</u> Sampled TD: <u>5</u>	ee samples collected (Dia): N/A
Well TD: No Well Installed (Dia): N/A Well Type: N/A	
Screen Interval:Slot Size:Dia	neter:
Cased Interval:Type:Dia	neter:
Sand Pack Interval:Type:Wel	lhead Prot:
Bentonite Seal Interval:Type:Gro	uted Interval:

Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):	Description / Soil Classification	
Depth (Feet)	Monitoring Well Construction	Recovery; S-1: 0' - 2.0' Rec: 2.0'/2.0'	PID (ppm): 1.3	0' - 2.0' Light gray, dry, coarse to fine SAND and SILT, some asphalt fragments Becomes heavily weathered shale fragments at 2.0 fbg EOB (refusal) Groundwater was not encountered No monitoring well installed	2.0'
35 Monitorir	g Well Completion / Boring Lo	og drafted by LaBella	Associate	page <u>1</u> of <u>1</u>	1

[MONITORING WELL / BORING NO. WM-SB-01A	
		🖵 LaBella
	Site Name: NYSDEC - Algonquin Middle School Date Drilled: August 15, 2022	
	Location: Waste Management Drilling Co.: Clean Globe Environmental	
	Client: NYSDEC Driller: Mario Pineda	Soil Samples Collected:
	Phone No.: N/A Logged by: T. Rollend	No Samples Collected
	Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2"	
	Drilled TD: <u>5.0'</u> (Dia): <u>2"</u> Sampled TD: see samples collected (Dia): N/A	
	Well TD:	
	Screen Interval:Slot Size:Diameter:	
	Cased Interval:Type: Diameter:	
	Sand Pack Interval:Type:Wellhead Prot:	
	Bentonite Seal Interval:Type:Grouted Interval:	

0 1 0 <th>Depth (Feet)</th> <th>Monitoring Well Construction</th> <th>Recovery;</th> <th>PID (ppm):</th> <th>Description / Soil Classification</th>	Depth (Feet)	Monitoring We ll Construction	Recovery;	PID (ppm):	Description / Soil Classification
				< 1.0	2.0' - 5.0' Becomes heavily weathered shale fragments at 2.0 fbg to EOB (refusal) at 5.0 fbg
Monitoring Well Completion / Boring Log drafted by LaBella Associates, D.P.C. PAGE <u>1</u> of <u>1</u>		g Well Completion / Boring Lc	g drafted by LaBella	Associate	5.0'

Site Name: NYSDEC - Algonquin	Middle School Date D	Orilled: August 15, 2022	L LaBella
	Drilling	J Co.: Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Driller:	Mario Pineda	- Soil Samples Collected:
Phone No.: N/A	Logge	d by: ^{T. Rollend}	No Sample Collected
Drilling Method: Geoprobe 7822	DT(Dia):2" San	npling Method: <u>Macro Core</u> (Dia):_2"	_
Drilled TD: ^{4.0′}	(Dia): <u>2"</u> San	npled TD:	<u>`</u>
Well TD: No Well Installed	(Dia): Wel	I Туре:	_
Screen Interval:S	ot Size:	Diameter:	_
Cased Interval:T	/pe:	Diameter:	-
Sand Pack Interval:	Туре:	Wellhead Prot:	-
Bentonite Seal Interval:	Туре:	Grouted Interval:	-
Depth Monitoring Well Feet) Construction		PID opm): Descri	ption / Soil Classification
$ \begin{array}{c} 0 \\ 1 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	S-1: 0' - 4.0' Rec: 4.0'/4.0'	0' - 2.0' Light gray, dry, coarse t Becomes heavily weath 4.0 fbg Groundwater was not e No monitoring well insta	ered shale fragments at 2.0 fbg to EOB (refusal) at

25

30 —

35

MONITORING WELL / BORING NO. WM-SB-02	— — — —
Site Name: NYSDEC - Algonquin Middle School Date Drilled: August 15, 2022	_ LaBella
Location: Waste Management Drilling Co.: Clean Globe Environmental	Powered by partnership.
Client: NYSDEC Driller: Mario Pineda	Soil Samples Collected:
Phone No.: N/A Logged by: T. Rollend	No soil sample collected
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2	<u> </u>
Drilled TD: <u>5.0'</u> (Dia): <u>2"</u> Sampled TD: <u>N/A</u> (Dia): <u>N/A</u>	<u>A</u>
Well TD:No Well Installed(Dia): Well Type:	_
Screen Interval:Slot Size:Diameter:	_
Cased Interval:Type:Diameter:	_
Sand Pack Interval:Type:Wellhead Prot:	_
Bentonite Seal Interval:Type:Grouted Interval:	_

Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):	Description / Soil Classification	
0 1 1 5 1 10 15 10 1 10 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1		S-1: 0' - 5.0' Rec: 3.0'/5.0'	N/A	0' - 5.0' Light gray, dry, weathered shale some coarse to fine sand Weathered shale bedrock in sampler shoe at 5.0 fbg EOB (refusal) Groundwater was not encountered No monitoring well installed	5.0'
Monitorin	g Well Completion / Boring Lo	og drafted by LaBella	Associate	es, D.P.C. PAGE of	<u> </u>

MONITORING WELL / BORING NO. WM-SB-02A	
Site Name:	LaBella
Location: Waste Management Drilling Co.: Clean Globe Environmental	Powered by partnership.
Client: NYSDEC Driller: Mario Pineda	Soil Samples Collected:
Phone No.: N/A Logged by: T. Rollend	No soil sample collected
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2"	
Drilled TD: <u>5.0'</u> (Dia): <u>2"</u> Sampled TD: <u>N/A</u> (Dia): <u>N/A</u>	
Well TD: No Well Installed (Dia): Well Type:	
Screen Interval:Slot Size:Diameter:	
Cased Interval:Type:Diameter:	
Sand Pack Interval:Type:Wellhead Prot:	
Bentonite Seal Interval:Type:Grouted Interval:	

Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):	: Description / Soil Classification	
0 1 1 5 1 10 1 10 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1	ng Well Completion / Boring Lo	S-1: 0' - 5.0' Rec: 3.5'/5.0'	N/A Associate	0' - 5.0' Light gray, dry, weathered shale some coarse to fine sand Weathered shale bedrock in sampler shoe at 5.0 fbg EOB (refusal) Groundwater was not encountered No monitoring well installed	5.0'

MONITORING WELL / BORING NO. WM-SB-02B	
Site Name: NYSDEC - Algonquin Middle School Date Drilled: August 15, 2022	_ 🛛 🖵 LaBella 🚽
Location: Waste Management Drilling Co.: Clean Globe Environmental	Powered by partnership.
Client: NYSDEC Driller: Mario Pineda	Soil Samples Collected:
Phone No.: N/A Logged by: T. Rollend	No soil sample collected
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2	
Drilled TD: 4.0' (Dia): 2" Sampled TD: N/A (Dia): N/A	<u>A</u>
Well TD: No Well Installed (Dia): Well Type:	_
Screen Interval:Slot Size:Diameter:	_
Cased Interval:Type:Diameter:	_
Sand Pack Interval:Type:Wellhead Prot:	_
Bentonite Seal Interval:Type:Grouted Interval:	_

Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):	Description / Soil Classification	
° [1]		S-1: 0' - 4.0' Rec: 3.5'/4.0'	< 1.0	0' - 4.0' Light gray, dry, weathered shale some coarse to fine sand Weathered shale bedrock in sampler shoe at 4.0 fbg EOB (refusal) Groundwater was not encountered No monitoring well installed	
					4.0'
35 J	g Well Completion / Boring L	drafted by LaBoll	Associator	es, D.P.C. PAGE <u>1</u> of	1

MONITORING WELL / BO	RING NO. WM	-SB-0	3	
Site Name: NYSDEC - Algonqu				🛄 LaBella
Location: Waste Management	Dril	ling Co.:	Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Dril	ler:^	ario Pineda	Soil Samples Collected:
Phone No.: N/A	Log	iged by:_	T. Rollend	WM-SB-03 2-12"
Drilling Method: Geoprobe 782	2 DT (Dia):2"S	Sampling	Method: Macro Core (Dia): 2"	WM-SB-03 72"
-			TD: see samples collected (Dia): N/A	
			e:	
			_Diameter:	
Cased Interval:	Туре:		_Diameter:	
Sand Pack Interval:	Type:		_Wellhead Prot:	
			_Grouted Interval:	
	- -			
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):	Descriptio	on / Soil Classification
⁰ –				
	S-1: 0' - 5.0'	-10	fragments (fill material) to 4	e SAND and SILT, some fine Gravel and concrete fbg.
	Rec: 2.5'/5.0'	< 1.0		
5				
				SAND and SILT, some Clay and
	S-2: 5'- 10' Rec: 3.0'/5.0'	< 1.0	organics (tree roots) to 6.5 f	bg
10 —			6.5' - 12' Gray, dry, weathered shale	fragments to EOB (refusal) at 12 fbg
	S-3: 10' -12' Rec: 2.0'/2.0'	< 1.0	Groundwater was not encou No monitoring well installed	
			-	12'
15 -				
20				
25 — -				
30				
-				
35				
Monitoring Well Completion / Boring	Log drafted by LaBella	Associate:	s, D.P.C.	PAGE of

MONITORING WELL / BORING NO. WM-SB-04	
Site Name: NYSDEC - Algonquin Middle School Date Drilled: August 15, 2022	LaBella
Location: Waste Management Drilling Co.: Clean Globe Environmental	Powered by partnership.
Client: NYSDEC Driller: Mario Pineda	Soil Samples Collected:
Phone No.: N/A Logged by: T. Rollend	WM-SB-04 0-2" WM-SB-04 2-12" WM-SB-04 168-180"
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2"	
Drilled TD: 15' (Dia): 2" Sampled TD: see samples collected (Dia): N/A	
Well TD: No Well Installed (Dia): Well Type:	
Screen Interval:Slot Size:Diameter:	
Cased Interval:Type:Diameter:	
Sand Pack Interval:Type:Wellhead Prot:	
Bentonite Seal Interval:Type:Grouted Interval:	

Depth (Feet)	Monitoring We ll Construction	Recovery;	PID (ppm):	Description / Soil Classification	
		S-1: 0' - 5.0' Rec: 4.0'/5.0'	2.8	0" - 1.0' Light gray, dry, organics and urban fill material	
		S-2: 5'- 10' Rec: 4.0'/5.0'	< 1.0	Trace Clay at 7 fbg	
		S-3: 10' - 15' Rec: 2.0'/5.0'	< 1.0	Dark gray/black seam SAND approximately 4-inches wide at 12 fbg. EOB (refusal) at 15 fbg Groundwater was not encountered No monitoring well installed	
				15'	
	35				

MONITORING WELL / BORI	NG NO. WM-	OW-	<u>01 / WM-SB-0</u> 5	— • • • •
Site Name:	📙 LaBella			
Location: Waste Management	Drillir	ig Co.:	Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Drille	r: ^M	ario Pineda	Soil Samples Collected:
Phone No.: N/A	Logg	ed by:_	T. Rollend	WM-SB-05 0-2" WM-SB-05 84-120"
Drilling Method:Geoprobe 7822 D	^{)T} _(Dia): <u>2</u> " Sa	mpling	Method: Macro Core (Dia): 2"	
Drilled TD:	(Dia): <u>2"</u> Sa	mpled	TD: see samples collected (Dia): N/A	
Well TD:	(Dia): <u>N/A</u> We	ell Type	e: PVC	
Screen Interval: <u>^{10' - 5'}</u> Sl	ot Size: ^{0.0}	10"	_Diameter: ^{2"}	
Cased Interval: <u>5'- grade</u> Ty	pe:PVC		_Diameter: ^{2"}	
Sand Pack Interval: 10'-	^{3.5'} Type:	#2	_Wellhead Prot: Flushmount	
Bentonite Seal Interval: <u>3.</u>	^{5' - 2.5'} _Type:	Chips	_Grouted Interval:	
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):	Descriptio	on / Soil Classification
0 2" cap 8" road box				
5	S-1: 0' - 5.0' Rec: 2.0'/5.0'	< 1.0	0' - 7.0' Gray - brown, dry to moist, and SILT (fill material)	fine angular GRAVEL and coarse to fine SAND
2" PVC Riser 4 4 4 4 4 4 4 4 4 4 4 4 4	S-2: 5.0' - 10' Rec: 3.0'/5.0'	< 1.0	7.0' - 12' Light gray, moist, fine SAN fragments to EOB (refusal)	D, some Clay underlain by weathered gray shale at 12 fbg
10 Slot PVC Screen	S-3: 10' - 12' Rec: 2.0'/2.0'	< 1.0		12'
15 15 20 1 25 1 30 1 1 30 1 1 1 1 1 1 1 1 1 1 1 1 1				
Monitoring Well Completion / Boring Lo	g drafted by LaBella A	ssociates	s, D.P.C.	PAGE of

MONITORING WELL / BORIN	IG NO. WM	-0W-	<u>04 / WM-SB-0</u> 6	
Site Name:				🖵 LaBella
Location: Waste Management	cation: <u>Clean Globe Environmental</u> Drilling Co.: <u>Clean Globe Environmental</u>			Powered by partnership.
Client: NYSDEC	Drill	er: ^M	ario Pineda	Soil Samples Collected:
Phone No.:	Log	ged by:	T. Rollend	WM-SB-06 0-2" WM-SB-06 2-12" WM-SB-06 2-12" MS/MSD and DUPE Parent
Drilling Method: Geoprobe 7822 DT	(Dia): <u>2"</u> S	ampling	J Method: Macro Core (Dia): 2"	WM-SB-06 36-48"
Drilled TD: ^{13'}	(Dia): <u>2"</u> S	ampled	TD: see samples collected (Dia): N/A	
Well TD: ^{13'}	(Dia): <u>2"</u> V	Vell Type	e: PVC	
Screen Interval: <u>13'-3.0'</u> Slot	t Size: ⁰	.010"	_Diameter: ^{2"}	
Cased Interval: <u>3.0'-+2.0'</u> Typ	0e:PV	с	_Diameter: ^{2"}	
Sand Pack Interval: 13' - 2.	Type:	#2	Wellhead Prot: <u>Stand pipe</u>	
Bentonite Seal Interval: 2.0'-1	^{1.0′} Type:	Chips	_Grouted Interval:N/A	
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):	Descriptio	on / Soil Classification
0				
Native Soil & Well Sand			0' - 2.0' Dark brown, moist, organic and SILT (topsoil)	s (grass and tree roots), coarse to fine SAND
Bentonite	S-1: 0' - 5.0' Rec: 3.5'/5.0'	72		coarse to fine SAND, some angular Gravel fragments
2" PVC Riser		692	▲ becomes fine Sand, some 4.0' - 8.0' Brown, wet-dry-wet, coarse	Clay to 4 fbg (fill material) e to fine SAND and SILT, some rounded fine Gravel
			staining and strong odor of	weathered petroleum, no sheen
#2 Well Sand	S-2: 5.0' - 10' Rec: 5.0'/5.0'	48		
	1100.01070.0			LT and CLAY underlain by coarse to fine Sand EOB (refusal) at 13 fbg, odor and staining continue
10 — — — — — — — — — — — — — — — — — — —	S-3: 10'-13'			
PVC Screen	Rec: 3.0'/3.0'	not recorded		
				13'
15				
20				
30				
		.		
Monitoring Well Completion / Boring Log	drafted by LaBella	Associate	s, D.P.C.	PAGE of

MONITORING WELL / BORI	NG NO. WM	-0W-	-03 / WM-SB-07				
Site Name:							
Location: waste Manaegement	Drilli	ng Co.:	Clean Globe Environmental Powered by partnership.				
Client: NYSDEC	Client: NYSDEC Driller: Mario Pineda						
Phone No.:	Log	ged by:_	T. Rollend WM-SB-07 0-2" WM-SB-07 2-12" WM-SB-07 84- 96"				
Drilling Method: Geoprobe 7822 E	DT_(Dia):2"S	ampling	g Method: Macro Core (Dia): 2"				
Drilled TD: ^{15'}	(Dia): <u>2"</u> S:	ampled	TD: see samples collected (Dia): N/A				
Well TD: <u>14'</u> (Dia): <u>2"</u> Well Type: <u>PVC</u>							
Screen Interval: <u>14'-4.0'</u> SI	ot Size: ^{0.}	010"	Diameter: ^{2"}				
Cased Interval: <u>4.0' - +2.0'</u> Ty	уре:РУС	;	Diameter: ^{2"}				
Sand Pack Interval: 14'-	^{2.0'} Type:	#2	Wellhead Prot: <u>Stand pipe</u>				
Bentonite Seal Interval: 2.0'	<u>- 1.0'</u> Type:	Chips	Grouted Interval: ^{N/A}				
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):	Description / Soil Classification				
0 - Steel Standpipe 2"cap							
Native Soil & Well Sand		4.3	0' - 4.0' Gray, dry, coarse to fine SAND and SILT with organics and some rounded Gravel (topsoil and fill material)				
Bentonite	S-1: 0' - 5.0' Rec: 3.5'/5.0'	1.8	4.0' - 8.0' Brown, dry to wet, shale fragments increasing in size with depth				
5 - 2" <u>PVC Rise</u> r			becomes fine Sand, some Clay (fill material)				
#2 Well Sand	S-2: 5.0' - 10' Rec: 3.0'/5.0'	< 1.0	<u> </u>				
			8.0' - 15' Gray/brown bands, wet, coarse to fine SAND, SILT to 10 fbg increasing shale fragments to EOB (refusal) at 15 fbg				
10 Slot PVC Screen							
	S-3: 10'-15' Rec: 5.0'/5.0'	< 1.0					
			1:				
20							
 25							
30 -							
35							
Monitoring Well Completion / Boring Lo	og drafted by LaBella	Associates	page <u>1</u> of <u>1</u>				

Site Name: NYSDEC - Algonquin Mi				Ist 16, 2022	
Location: Waste Management					
	Client:_NYSDEC Driller:Mario Pineda				
Phone No.:	Log	iged by:_	T. Ro	ollend WM-SB-08 0-2" WM-SB-08 2-12" WM-SB-08 120-132"	
Drilling Method: Geoprobe 7822 DT	(Dia): <u>2</u> "S	Sampling	Method	<u>Macro Core (Dia): 2"</u>	
Drilled TD: ^{15'}	(Dia): <u>2"</u> S	ampled	TD: see s	samples collected (Dia): N/A	
Well TD: ^{13'}	(Dia): <u>2"</u> V	Vell Type	e: PVC		
Screen Interval: <u>^{13' - 3.0'}</u> Slo [:]	t Size: ⁰	.010"	_ Diame	eter:2"	
Cased Interval: <u>3.0'-+2.0'</u> Typ	De:PV	С	_ Diame	eter:2"	
Sand Pack Interval: 13' - 2.	. <u>0'</u> Type:	#2	_Wellhe	ead Prot: Stand pipe	
Bentonite Seal Interval: 2.0'	^{1.0′} Type:	Chips	_Groute	ed Interval: N/A	
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):		Description / Soil Classification	
0 - Steel Standpipe					
Native Soil & Well Sand Bentonite 2" PVC Riser	S-1: 0' - 5.0' Rec: 3.0'/5.0'	< 1.0	0' - 2" 2" - 15'	Brown, dry, fine GRAVEL, organics and coarse to fine SAND and SILT Brown, dry to moist, increasing moisture content with depth, coarse to fine SAND and SILT some rounded fine Gravel	
#2 Well Sand	S-2: 5.0' - 10' Rec: 4.0'/5.0'	< 1.0	X	Note: 5.0' - 7.0' Fill interval (5.0' - 7.0') containing carpet, plastic sheeting, woo paneling in SAND/SILT material Wet at 10 fbg	
10 Slot PVC Screen	S-3: 10'-15' Rec: 5.0'/5.0'	< 1.0		Increasing shale content with depth to EOB (refusal) at 15 fbg	
15				15	

WELL DEVELOPMENT LOGS

Site Name AMS - Waste Management Site Location Averill Park, NY Well ID WM-OW-01 Sampled By BB+NW

Well Information

Flush Mount or Riser	Flush
Measuring Point	TOC
Measuring Point Elevation	
Depth to Water (feet)	3.24
Depth to Bottom of Well	10.20

Dia. We	Well Volume Multiplier
1	0.0408
1.5	0.0918
2	0.1631
3	0.3670
4	0.6525
5	1.0195
6	1.4681
8	2.6100
10	4.0782
12	5.8726
Wall Valuese Callege – Mukialia	and enote of Wotor Column

Well Volume Gallons = Multiplier x Length of Water Column

Stabilization is achieved when the following changes are noted over three consecutive 3-5 minute readings: \pm 0.1 change in pH

Aztech Environmental

A LaBella Company

$\pm\,3\%$ change in conductivity

± 10 millivolt change in ORP ± 10% change in DO and Turbidity

Date	8/30/2022
Weather	Hot 90's Humid
Purging Equipment	Peristaltic
Sampling Equipment	Peristaltic/Horiba
Decon Method	Alconox
Riser Diameter	2"
Well Volume Calculation	1.14

Time	Volume Removed (Gallons)	Turbidity (NTU)	рН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
1440	8.5 manually							3.24	
1448	12 using pump w/o horiba							3.42	
1455	12.5	638	7.30	21.9	0.16	1.19	-34	3.46	
1508	13.5	255	7.06	21.71	0.0	1.19	-60	3.47	
1520	14.5	77.4	7.10	21.72	0.0	1.17	-71	3.46	
1527	15	40.4	7.17	21.78	0.0	1.15	-75	3.48	

	Site Name	AMS - Wa	ste Man	agement				1	
	Site Location	Averill Park, NY WM-OW-02						-	
	Sampled By	BB+NW				Azte		ironme	intal
	Well Informatio	n	_				A LaBella	Company	
	Flush Mount or Riser	Flush							
	Measuring Point	тос		Stabilization is achie over three					
	Measuring Point Elevation		-		± 0.1 change in pH				
	Depth to Water (feet)	9.54		± 3	% change in conductiv	vity			
	Depth to Bottom of Well	17.17			0 millivolt change in O				
			1		change in DO and Tu		I		
	Dia. Well 1	Well Volume Multiplier 0.0408		Da Wea	ther	8/30/2022 Hot 90's Humid			
	<u> </u>	0.0918 0.1631		Purging E Sampling I	quipment Equipment	Peristaltic Peristaltic/Horiba			
	3 4	0.3670		Decon Riser D	Method	Alconox			
	5	0.6525 1.0195		Well Volume	Calculation	2" 1.24			
	<u>6</u> 8	1.4681 2.6100							
	10	4.0782							
	12	5.8726							
	Well Volume Gallons = Multiplier x Le	angen of water Column	J						
	Γ	Γ		1					1
Time	Volume Removed (Gallons)	Turbidity (NTU)	рН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
1150	7 gallons manually							9.54	
1220	pump start								
1235	9			very trubid	no horiba			9.72	
1245	11			start h	oriba			9.62	
1300	12.5	303	7.46	15.26	1.58	1.08	135	9.71	
1310	14.5	102	7.36	15.15	0.0	1.09	146	9.71	
1320	16.5	47.2	7.43	15.10	0.0	1.10	143	9.69	

	Site Name	AMS - Wa	ste Mana	agement					
	Site Location Well ID	Averill Park, NY WM-OW-03				A	ch Env		un ta I
	Sampled By					Azte	- CECHAG		ental
	Well Informatio	n Riser	ן				A LaBella	Company	
	Measuring Point	TOC		Stabilization is achiev	ved when the following consecutive 3-5 minute	g changes are noted			
	Measuring Point Elevation			over three c	± 0.1 change in pH	e readings.			
	Depth to Water (feet)	10.83		± 3'	% change in conductiv	vity			
	Depth to Bottom of Well	17.08) millivolt change in O change in DO and Tu				
	Dia. We l	Well Volume Multiplier	1	Da	te	8/30/2022			
	1 1.5	0.0408 0.0918		Wea Purging E	quipment	Hot 90's Humid Peristaltic			
	2 3	0.1631 0.3670		Sampling I Decon I	Method	Peristaltic/Horiba Alconox			
	4 5	0.6525		Riser Di Well Volume	iameter	2" 1.02			
	6	1.0195 1.4681		well volume	Calculation	1.02			
	8 10	2.6100 4.0782							
	12	5.8726							
	Well Volume Gallons = Multiplier x Le	ngth of Water Column							
Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2	Conductivity	ORP (mV)	Depth to	Pumping
					(mg/L)	(mS/cm)		Water	Rate
1010	10 gallons manually								
1040	pump start							10.90	
1120	13			Start H	loriba	1		10.85	
1130	14	28	7.51	18.06	0.0700	1.63	5	10.87	
1140	15	42.4	7.44	18.34	0.0000	1.63	11	10.87	

Site Name AMS - Waste Management Site Location Averill Park, NY Well ID WM-OW-04 Sampled By BB+NW

Well Information

Flush Mount or Riser	Riser
Measuring Point	TOC
Measuring Point Elevation	
Depth to Water (feet)	7.15
Depth to Bottom of Well	16.66

Dia. Wel	Well Volume Multiplier
1	0.0408
1.5	0.0918
2	0.1631
3	0.3670
4	0.6525
5	1.0195
6	1.4681
8	2.6100
10	4.0782
12	5.8726
	and anoth of Water Column

Well Volume Gallons = Multiplier x Length of Water Column

Stabilization is achieved when the following changes are noted over three consecutive 3-5 minute readings: \pm 0.1 change in pH

Aztech Environmental

A LaBella Company

$\pm\,3\%$ change in conductivity

± 10 millivolt change in ORP ± 10% change in DO and Turbidity

Date	8/30/2022
Weather	Hot 90's Humid
Purging Equipment	Peristaltic
Sampling Equipment	Peristaltic/Horiba
Decon Method	Alconox
Riser Diameter	2"
Well Volume Calculation	1.55 gal

			-						
Time	Volume Removed (Gallons)	Turbidity (NTU)	рН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
830	6 gallons manually								
850	pump start							7.31	
905	7.5							7.27	
920	~9	1000+	7.65	17.02	0.15	1.7	-7	7.32	
930	~11	1000	7.76	17.13	0.91	1.7	-16	7.33	
940	~12.5	118	7.78	17.92	0.0	1.7	-23	7.33	
950	~14	47.7	7.89	17.73	0.0	1.71	-30	7.34	

LOW FLOW STABILIZATION SAMPLING LOGS

	Site Location	Nastr Manager Rostenkill, NY WM-QU-01 NW	nent			Azt	ech En	A vironm	ental
	Well Informs		6	liosheen.	observer		A LaBel	la Company	
	Flush Mount or Riser	flush	1 (sn ground	waterdui	ng pixae.			
	Measuring Point	Toc			eved when the followi consecutive 3-5 min				
	Measuring Point Elevation				± 0.1 change in pH	6			
	Depth to Water	3.34	-	*	3% change in conduc	tivity			
	Depth to Bottom of Well	(0.21			10 millivolt change in % change in DO and 1				
	Dia, Well	Well Volume Multiplier	1		ate	9(1)())	1		
	1	0.0408			ather Equipment	Party Clean	8		
	2	0.1631 0.3670		Sampling	Equipment Method	Alconok	c		
	4 5	0.6525		Riser	Diameter e Calculation	3.362			
	6	1.4681 2.6100				and	10		
	10	4.0782 5.8726	1						
	Well Volume Gallons = Multipl		1						
	Column		1						
Time	Volume Removed (Gallons)	Turbidity (NTU)	pH	Temperature ()	Dissolved O2	Conductivity	ORP (mV)	Depth to	Pumping
1.1.					(mg/L)	(mS/cm)	5 (1)	Water	Rate
1140									NO M
inir	24	010	7/11	14 00	-	Citt	(0)	220	190 "
1145	.25	56.9	7.41	19.99	0.0	.814	-102	3.35	15
1150	5	19.8	7,48	20.08	00	CALL	-11/	3.36	250
		11.0	., 18	0.00	0.0	-804	-116	2:26	
1155	.75	5.6	7.42	20.08	0.0	.807	-116	3.38	250
0.0	,	1		0	1.5		1 7325	12000 300	
200	1.0	1.4	7.47	20.08	0.0	.808	-121	3.39	250
1205	120	0.0	744	Dm il	O.O	,808	Da	2701	200
iaus	1.2.9	0.0	7.44	20. il	0.0	1000	-DO	3.38	750
1210	1.50	0,0	7.41	20.14	0.0	.806	-122	3.38	250
26.20 20.5		Southers (2)	- C	1988 V.1997	0.0	38 (72)	Ind	State of the second second	10
1215	1.75	0.0	7.39	20.12	0.0	,806	-123	3.39	250
1000	10	6-11-11-11-11-11-11-11-11-11-11-11-11-11	714	2.0	(1.0	in the second second	10.0		100
1220	2.0	O.O	7.44	20.13	0.0	. 805	-125	3.39	150
1225	2.2.5	00	7.41	20.11	0.0	.806	-125	3.39	SO
15	A. 4 .	0.0		20.11	0.0	1800		The second second	
230	250	0.0	7.4	20.12	0.0	.805	-124	3.39	20
				•				1.117207.4	1.0
1235	1.75	0.0	7.41	20.D	0.0	- 804	-bs	3.40	200
1240	20	0.6	7.42	20.10	0.0	date	-123	3.40	250
10-10	3.0	44. 0345		10		, 904	123	2.0	0.1-
245	3.25	1.5	7.43	20.11	0.0	.805	-12.5	3.40	250
				11	Carel Los		Lange Mark		12
1250	3.50	1.9	7.42	20.10	0. O	. 804	-124	3.40	290
1255	3.75	0.0	7.42	20.08	20	. 804	-124	2/10	256
10.11		0,0		10.08	0.0	+ 604	the I	3,40	
1300	Sample	~~~	~ /	-	-	-		~	~

	Site Location	Waste Managen Destenkill N WM-OW-02 S.W	Y			Azt	ech En	A vironm	ental
	Well Inform:	A Sector de la Carte de la C	7				A LaBell	a Company	
	Flush Mount or Riser Measuring Point	Riser Toc.			eved when the following				
	Measuring Point Elevation	100		over three	consecutive 3-5 minu ± 0.1 change in pH	iereadings:			
	Depth to Water	7.79			% change in conduct	ivity			
	Depth to Bottom of Well	17.20		**	0 millivolt change in 0	XRP			
	Dia. Well	Wall Volume 11 distant	-		change in DO and T		1		
	1	Well Volume Multiplier 0.0408	1	Wea	ather	9/27/22 SUMY			
	1.5	0.0918 0.1631		Sampling	quipment Equipment	Devistantic			
	3 4	0.3670		Decon	Method	aligner			
	5	1.0195			Calculation	1.53			
	6 8 10 12 Well Volume Gallons = Multipl Column	1.4681 2.6100 4.0782 5.8726 lier x Length of Water	113	0 Sampi	ed WM-(20-W			
Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
1030	Began Aurge							7.79	
1035		132	7.59	14.50	2.56	1.02	- 50	7.82	
1040		74.0	7.31	14.66	0.93	1.02	-30	7.84	
1045		60.4	7.21	14.76	0.01	1.02	-11	7.84	
1050		59.9	7.20	14.79	0.00	1.02	-8	7.84	
1055		57.4	7.17	14.83	0.00	1.02	5	7.85	
1100		56.6	7.16	14.87	0.00	1.02	8	7.85	
lios		51.0	7.16	14.88	0.00	1.02	13	1.86	
011		56.0	7.15	14.95	0.00	1.02	18	7.86	
1115		55.6	7.14	14.95	0.00	1.02	20	7.89	
1120		55.7	7.14	14.93	0.00	1.02	22	7.90	
1125		55.5	7.14	14.95	0.00	1.01	29	7.95	
	Ended Purge								

	Site Name Site Location Well ID Sampled By Well Inform Flush Mount or Riser Measuring Point Elevation Depth to Water Depth to Bottom of Well Dia. Well 1 1.5 2 3 4	Bestenfull N WM-OW-U M	<u>}</u>	Aztech Environmental Aztech Environmental TECHNOLOGIES A LaBella Company Stabilization is achieved when the following changes are noted over three consecutive 3-5 minute readings: ± 0.1 change in pH ± 3% change in conductivity ± 10 millivolt change in ORP ± 10% change in DO and Tubidity Date Purging Equipment Sampling Equipment Decon Method Decon Method Decon Method Decon Method Mean Weall Volume Calculation Weall Volume Calculation						
	5 6 8 10 12 Well Volume Gallons = Multip Column	1.0195 1.4681 2.6100 4.0782 5.8726 Ter x Length of Water		°c.		•)	J			
Time	Volume Removed (Gallons)	Turbidity (NTU)	рН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate	
1045	0	176	6.81	16.25	0,58	1.69	-13	8,94		
:50	0.25	12	6.66	16.62	0.03	1.66	- 31	8,95		
:55	0.5	76.5	6.85	16,97	0.00	1.65	-40	8,95		
11:00	0.75	29.2	6.90	17.19	0,00	1.64	-42	11	-	
:05	1.0	19,8	6.88	17.33	0.00	1,63	-42	11		
:10	1.25	9.4	6.87	17.37	0.00	1,62	-45	11		
15	1,50	4.0	6.90	17,38	00,0	1,60	-49			
:20	1.75	2.2	4.88	17.48	0.00	1,59	-51	1)		
:25	2.0	0,0	6.88	17.50	0,00	1.57	-53	11		
:30	2.25	0,0	6.87	17,49	0.00	1.57	-53	11		
:35	2.5	0.0	6.88	17.55	0.00	1.57	-54	11		
	SAmp	INF MU	- OU)-03 (9 11:35	9,2	7,22			

Site Name	ALGONAUN
Site Location	
Well ID	WM-0W-04
Sampled By	TR/SV

Well Information RISER Flush Mount or Riser TOC Measuring Point Measuring Point Elevation ŦĿ 4,34 Depth to Water Depth to Bottom of Well 'Q.

Dia. Well	Well Volume Multiplier				
1	0.0408				
1.5	0.0918				
2	0.1631				
3	0.3670				
4	0.6525				
5	1.0195				
6	1.4681				
8	2.6100				
10	4.0782				
12	5.8726				
	Aultiplier x Length of Water lumn				

Aztech Environmental

A LaBella Company

Stabilization is achieved when the following changes are noted over three consecutive 3-5 minute readings:

±0.1 change in pH

± 3% change in conductivity

± 10 millivolt change in ORP ± 10% change in DO and Turbidly

1	Date	<u>9127.22</u>
	Weather	Dar thy cloucy
	Purging Equipment	peristattic '
	Sampling Equipment	Denstautic
1	Decon Method	alconox
	Riser Diameter	
	Well Volume Calculation	2.0

Time	Volume Removed (Gallons)	Turbidity (NTU)	рН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
1300	0	>1K	6.52	17.02	9.22	1.42	-70	4.43	
:05	0.25	183	6.63	16.89	6.71	1.42	-73-	<u>4,44</u>	
:10	0.5	121	6.68	17.04	5,90	1.42	-79	4,43	
:15	0.75	55.1	6.71	17.24	5.31	1.42	-78	4.43	
:20	1.0	29.5	6.72	17.31	4.82	1.42	-78	4.43	
:25	1.25	16.6	671	17.34	4.09	1.42	-79	4.43	
13:30	1.5	13.9	6.72	17.37	3.65	1.43	-79	443	
:35	1-15	14.7	6.73	1736	294	1.42	-80	4.49	
.40	20	11.4	6.13	17.38	2.5H	1.42	-80	4.51	
:45	2.25	11.7	6.72	171.37	2.38	1-12	-81	4.51	
:50	2.50	11.8	6.74	17.43	2.17	1.42	-81	4.51	
:55	2.75	9.8	6.71	17.58	1.98	1.42	-80	4.51	
	SAM	DUED U	JM-	0W-04	(1355	-	27-2	22
_									

LABORATORY ANALYTICAL REPORTS

March 13, 2023 (Revised 4-18-2023)

Brittany O'Brien-Drake New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233

RE: Site Summary Report (Rev. 4-18-2023) Algonquin Middle School PFAS Assessment #2105197 Valente Lumber Yard, 8957 NY 66, Averill Park, NY Tax parcel ID: 136.-8-11.1

Aztech Environmental Technologies Inc. (Aztech), a LaBella company, has provided this report to document overburden soil and groundwater assessment methodologies and sampling results for the above referenced location. All field investigation activities were performed at the discretion of and in accordance with the scope of work (SOW) developed and provided by the New York State Department of Environmental Conservation (NYSDEC).

The property is partially utilized by L.J. Valente Lumber, Inc. (Valente Lumber) as a lumber yard, mill shop, and retail operation. Lumber yard operations primarily occupy the northern portion of the parcel. The approximate 64.83-acre parcel is located south of Ford Rd. and east of Reichards Lake Rd. The northern portion of the parcel (where the lumber operation is located) is in the Town of Poestenkill; the southern (undeveloped) portion of the parcel is within the Town of Sand Lake. A low-lying area is centrally located within the property with hills of slightly higher elevation located east and west. A small pond is located just south of the small rise toward the western portion of the property. The attached **Figure 1** depicts property features and boundaries.

Overburden soil encountered during drilling activities consisted primarily of coarse to fine sand and silt with varying amounts of shale fragments which typically increased in depth to tooling refusal. Shale fragments in the sampler shoe at terminal boring depth is noted on boring logs.

Prior to intrusive groundwork, a UDig NY utility clearance ticket was ordered for the property. Additionally, a private utility locating contractor performed utility clearance with ground penetrating radar (GPR) at each boring location on August 11, 2022. Boring locations confirmed as clear were painted white and marked with a white flag.

SUMMARY OF FIELD INVESTIGATIONS:

Air monitoring

Air monitoring was conducted during all ground-intrusive work at the property (August 17 and 18, 2022) in accordance with the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan (CAMP). One dedicated Dust Trak unit with photo-ionization detector (PID) was positioned upwind with a second dedicated unit placed downwind at each boring location. No exceedances for volatile organic compounds (VOCs) or particulates were recorded.

Soil Boring and Monitoring Well Installation

On August 17 and 18, 2022, Clean Globe Environmental (CGE) advanced soil borings (VL-SB-01 through VL-SB-07) utilizing a Geoprobe 7822DT and direct-push techniques to terminal depths ranging from 10 to 20 feet below grade (fbg). Of the 7 total boring locations, 3 were converted to monitoring wells (VL-OW-01 through VL-OW-03). Aztech provided oversight of drilling activities and performed soil headspace screening, soil classification, and both soil and groundwater sampling.

Monitoring wells were installed by over-drilling the borehole utilizing 4 ¼" inner diameter (ID) hollow stem augers. The well assembly consisted of 2-inch polyvinyl chloride (PVC) 10-slot screen set to straddle the water table and casing to grade. A number 2 filtration sand was installed to fill the borehole annulus to approximately one (1) to two (2) feet above the screened interval. Bentonite chips were added atop the sand to seal the casing from surface water intrusion and subsequently hydrated with certified per-and polyfluoroalkyl substance (PFAS)-free water. Native soil and well sand were added as needed to the finish grade. Each well was finished within a flush mount road box. Each newly installed groundwater monitoring well was developed on August 30, 2022 by using a peristaltic pump and/or bailer to remove a targeted 10 well volumes. Monitoring well specifications are presented below in **Table 1.** Individual boring logs are attached. Monitoring well locations are depicted on the attached Figure 1.

TABLE 1 Monitoring Well Specifications									
Well ID	Borehole Depth	Well Diameter	Screened Interval	Sand Packed Interval	Bentonite Seal	Observed DTW*			
	(Feet)	(Inches)	(Feet)	(Feet)	(Feet)	(Feet)			
VL-0W-01	15	2	15 - 5.0	15 - 3.0	3.0 - 2.0	2.1			
VL-0W-02	10	2	10 - 5.0	10 - 3.0	3.0 - 2.0	0**			
VL-0W-03	15	2	13 - 3.0	13 - 2.0	2.0 - 1.0	2.41			
Notes:									
Wells drilled/installed by Clean Globe Environmental (CGE)									
*Depth to Water (DTW) as measured on September 21, 2022 from top of casing (TOC)									
** Observed DTW at top of casing									

Surface Water and Sediment Sampling

On August 17, 2022, two (2) surface water and two (2) sediment samples were collected. Surface water samples were obtained from the stormwater drainage culvert area at the north of the parcel (VL-SW-01) and from the pond (VL-SW-02) south of the lumber mill building and somewhat central to the property. Two (2) sediment samples were collected from the same locations as the surface water samples and designated as VL-SED-01-20220817 and VL-SED-02-20220817. A stainless-steel dip cup, that was decontaminated prior to sample collection, was used to obtain each sample. The samples were analyzed for PFAS compounds by analytical method 537M. Additional samples collected for quality assurance/quality control (QA/QC) purposes included two (2) duplicate samples and two (2) matrix spike/matrix spike duplicate (MS/MSD). The parent sample for each duplicate and the approximate locations of the sediment and surface water samples are depicted on Figure 1.

Soil Sampling

Individual soil samples were visually classified and headspace screened with a photo-ionization detector (PID) calibrated to a 100 part per million (ppm) isobutylene calibrant gas. Soil samples from select boring locations were collected from the following depth intervals:

- Surface grade to 2 -inch below grade (BG), beneath vegetative cover,
- 2-inch BG to 12-inch BG, and
- Air/water interface (water table) as observed in borehole.

The actual number of soil samples was dependent on field conditions. A total of twenty-one (21) depth discrete subsurface soil samples were collected from the seven (7) soil borings and analyzed for PFAS compounds by analytical method 537M for soil. Select soil samples from the 2"BG to 12"BG interval were analyzed using the Synthetic Precipitation Leaching Procedure (SPLP) by EPA Method 1312 and the leachate was subsequently analyzed for PFAS compounds by analytical method 537M. SPLP PFAS

results are not considered reportable as it was determined that Con-Test (a Pace Analytical Laboratory at East Longmeadow, MA and the NYSDEC's contracted lab for this project) did not hold the appropriate ELAP certification for EPA Method 1312 at the time of analysis.

Additional QA/QC samples collected consisted of two (2) equipment blanks. The Equipment Blank samples were collected via a soil sampling bag and stainless-steel dip cup on September 17 and 18, 2022 respectively. Laboratory analytical for the equipment blank samples submitted did not record any compounds above the laboratory's minimum reporting limit (RL). Refer to **Table 2** for additional details.

Groundwater Sampling

Three (3) groundwater samples were collected on September 21, 2022 from the newly installed overburden groundwater monitoring wells. Samples were collected utilizing low-flow/low-stress sampling techniques with a peristaltic pump and associated HDPE and silicone tubing. Water quality field parameters (temperature, pH, specific conductance, oxygen-reduction potential (ORP), dissolved oxygen (DO), and turbidity) were recorded during the well purging at five (5) minute intervals up to the sample time. A copy of the stabilization logs is attached. Samples were immediately placed on ice and transferred to Pace Analytical and Eurofins/TestAmerica under chain of custody protocols. Groundwater samples were analyzed for PFAS compounds by EPA Method 537M, pharmaceutically active compounds-negative by analytical method L221, nitrate and nitrite anions by EPA Method 300.

Additional samples collected for QA/QC purposes consisted of one field equipment blank. The Equipment Blank sample was collected via HDPE and silicone tubing associated with the peristaltic pump. Laboratory analytical results for the equipment blank sample submitted September 21, 2022 did not record any compounds above the laboratory's minimum RL. Refer to Table 2 for additional details.

DISCUSSION OF ANALYTICAL RESULTS

STANDARDS, CRITERIA, AND GUIDANCE VALUES

The following documents will be used to evaluate soil, groundwater, surface water, and sediment analytical results:

Soil

- Unrestricted Use and Residential Use soil guidance values from NYSDEC Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, November 2022.

Groundwater

- Screening levels identified in NYSDEC Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, November 2022
- New York State Drinking Water Maximum Contaminant Level (MCL) for PFOA (10 ppt), PFOS (10 ppt), and 1,4-dioxane (1 ppb)

Surface Water

- Screening levels identified in NYSDEC Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, November 2022
- New York State Drinking Water Maximum Contaminant Level (MCL) for PFOA (10 ppt) and PFOS (10 ppt)

Sediment

- Standards, criteria, or guidance values do not currently exist for PFAS in sediment. Results will be discussed as provided by the laboratory.

It is noted that the NYSDEC Standards, Criteria, & Guidance Values are listed in concentrations of parts per trillion (ppt), parts per billion (ppb), and parts per million (ppm) while laboratory analytical results are reported in equivalent concentrations. For example,

- In soil:
 - 1 ppt = 1 nanogram per kilogram (ng/kg),
 - \circ 1 ppb = 1 microgram per kilogram (µg/kg), and
 - 1 ppm = 1 milligram per kilogram (mg/kg)
- In water:
 - \circ 1 ppt = 1 nanogram per liter (ng/L),
 - o 1 ppb = 1 microgram per liter (μ g/L), and
 - \circ 1 ppm = 1 milligram per liter (mg/L).

Soil Results:

Of the 21 soil samples collected and analyzed for PFAS compounds by analytical method 537M, five (5) had one or more PFAS compounds detected. Perfluorooctanoic Acid (PFOA) was recorded in two (2) intervals at one (1) location (VL-SB-03) at concentrations of 2.0 μ g/kg and 2.5 μ g/kg that are both above the Unrestricted Use guidance value of 0.66 μ g/kg. Perfluorooctane sulfonic acid (PFOS) was recorded at two (2) locations at identical estimated concentrations of 0.083 μ g/kg. This concentration is below the Unrestricted Use guidance value of 0.88 μ g/kg and, also, below the laboratory RL

The PFAS compound PFHxA was reported below the RL at an estimated concentration of 0.23 μ g/kg (VL-SB-04) and does not have a corresponding guidance value. Refer to **Table 3** for additional details. Refer to **Appendix A** for the laboratory analytical reports.

Sediment Results:

Two (2) sediment samples were collected and analyzed for PFAS compounds. PFOS was reported in one sample (VL-SED-01) below the laboratory RL and is considered an estimated concentration at 0.072 μ g/kg. No other PFAS compounds were reported above the RL. No standards, criteria, or guidance values (SCGs) for PFAS in sediment have been established. Refer to **Table 4** for additional details.

Surface Water Results:

Two (2) surface water samples were collected on August 17, 2022 and analyzed for PFAS compounds. Eleven (11) total compounds were recorded. PFOA was recorded at both locations at concentrations of 21 ng/L (VL-SW-01) and an estimated concentration of 4.1 ng/L (VL-SW-02). PFOS was recorded at both locations at concentrations of 14 ng/L and 12 ng/L. Three of the recorded concentrations for PFOA and PFOS are above the 10 ng/L (ppt) drinking water MCL which is currently used as a screening level for surface water and groundwater results. The remaining compounds, Perfluoro(2-ethoxyethane)sulfonic acid, FBSA, PFBS, PFBA, PFDA, PFHpA, PFHxS, PFHxA, PFNA, PFPeS, and PFPeA were recorded from an estimated concentration of 0.24 ng/L (FBSA) to 16 ng/L (PFHxA). No SCGs are available for the remaining compounds. Refer to **Table 5** for additional details.

Groundwater Results:

All three (3) groundwater samples collected September 21, 2022 recorded one or more PFAS compounds. PFOA was recorded at concentrations ranging from an estimated 1.2 ng/L (VL-OW-O3) to 10 ng/L (VL-OW-O2). PFOS was recorded at an estimated concentration of 1.1 ng/L (VL-OW-O3) and 4.3 ng/L (VL-OW-O2). The recorded concentrations for PFOA and PFOS are at or below the applicable screening level of 10 ng/L. Additionally, PFBS, PFBA, PFHpA, PFHxA, PFHxS, PFNA, and PFPeA were recorded ranging from an estimated concentration of 0.61 ng/L (PFNA) to 5.9 ng/L (PFBA). No SCGs are currently available for these compounds.

Groundwater samples were additionally analyzed for artificial sweeteners, including sucralose and acesulfame-k, and nitrate to assess the potential migration of septic derived wastewater to groundwater. Artificial sweetener results are used solely as qualitive screening levels by the NYSDEC to evaluate this potential. Acesulfame-K was detected in all groundwater samples with concentrations ranging from 0.13 ug/L (VL-OW-03) to 1.5 ug/L (VL-OW-01). Sucralose was detected in samples collected from two (2) monitoring wells and results ranged from 0.077 ug/L (VL-OW-03) to 0.12 ug/L

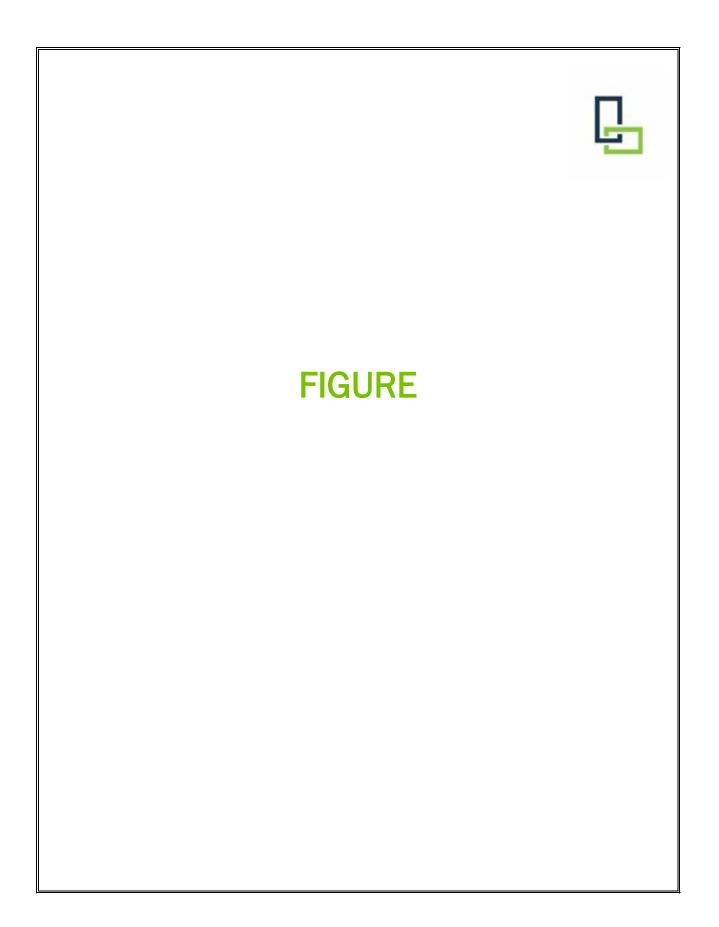
(VL-OW-01). The maximum detections of sucralose and acesulfame-k were both identified in monitoring well VL-OW-01. Nitrate was detected in all three (3) groundwater samples below the groundwater standard and results ranged from 0.29 mg/L (VL-OW-01) to 0.38 mg/L (VL-OW-03). Refer to **Table 6A-6C** for additional details. Refer to Appendix A for the laboratory analytical reports.

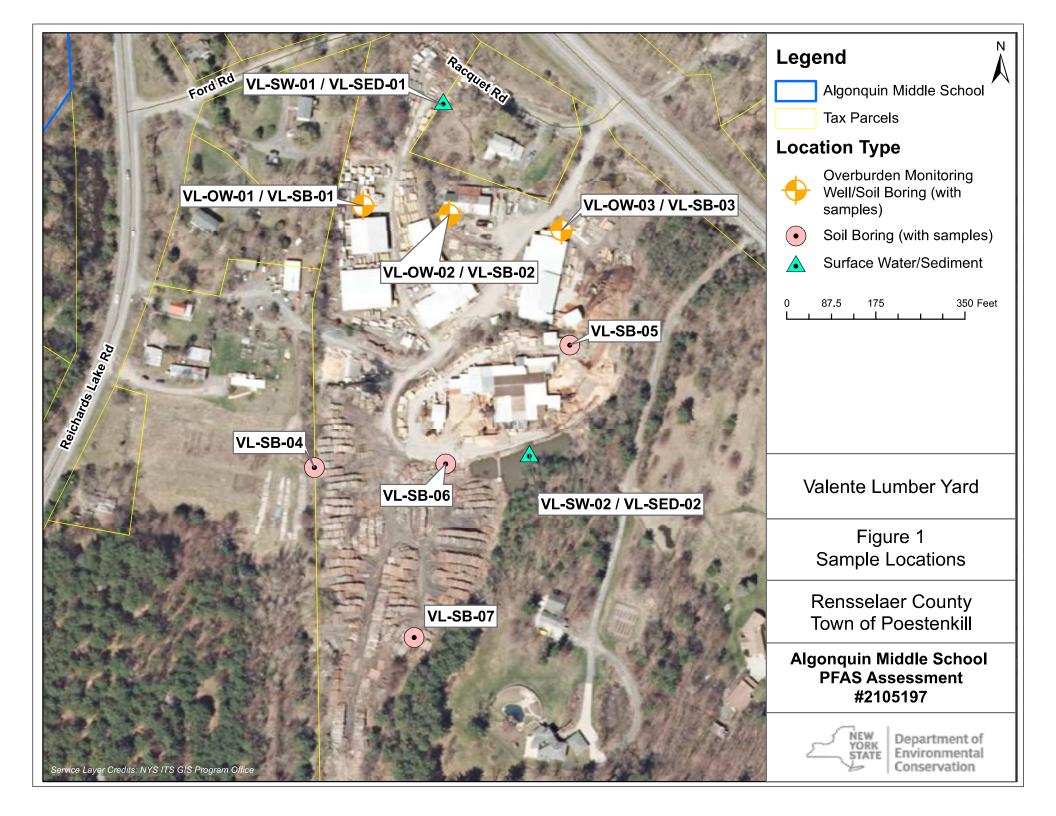
Further discussion on the findings and conclusions of the investigation of the Valente Lumber Yard property are discussed within the main PFAS assessment report provided by CDM Smith.

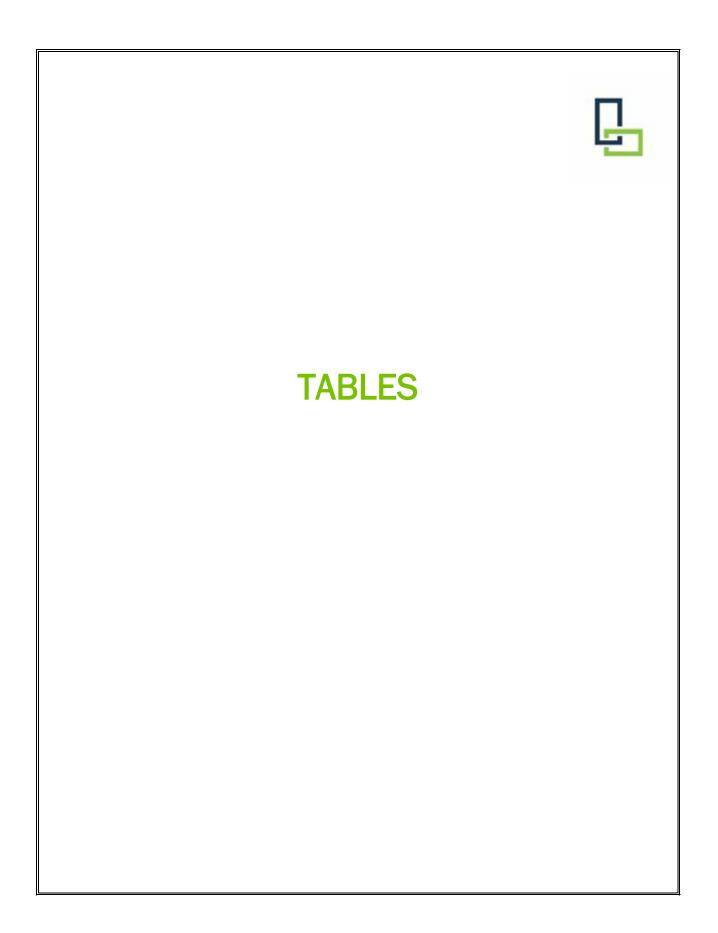
Respectfully submitted,

Aztech Environmental Technologies (a LaBella Company)

Todd Rollend Environmental Scientist


I Randy Hoose certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10). All investigation and activities were performed in full accordance with the work plan provided by the NYSDEC.


Kandy Hoon


Randy Hoose, P.G. Senior Hydrogeologist

Attachments:

Figure 1 – Site Map Table 2 – Equipment Blank, PFAS Results Table 3 – Soil, PFAS Results Table 4 – Sediment Results Table 5 – Surface Water Results Table 6A – Groundwater, PFAS Results Table 6B – Groundwater, Artificial Sweetener Results Table 6C – Groundwater, Nitrate & Nitrite Results Boring Logs Well Development Logs Low-Flow Stabilization Sampling Logs Appendix – A: Laboratory Analytical Reports

Table 2 Valente Lumber Yard Equipment Blank, PFAS Results

Analyte 1-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11CI-PF3OUdS) H,1H, 2H, 2H-Perfluorodecane sulfonic acid H,1H, 2H, 2H-Perfluoronexane sulfonic acid H,1H, 2H, 2H-Perfluoronexane sulfonic acid 8-Dioxa-3H-perfluoronexane sulfonic acid (ADONA) -Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid (9CI-PF3ONS) exafluoropropylene oxide dimer acid (HFPO-DA)	Unit ng/L ng/L	NYSDEC Guidelines ¹ NC	ID: Equipment Blank ID: 22H1143-22 ate: 8/17/2022 ode: EB res ¹ Result Qualifier		r Result Qualifier			NT BLANK 1885-5 '2022 B	
H,1H, 2H, 2H-Perfluorodecane sulfonic acid H,1H, 2H, 2H-Perfluorohexane sulfonic acid H,1H, 2H, 2H-Perfluorooctane sulfonic acid .8-Dioxa-3H-perfluorononanoic acid (ADONA) -Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid (9CI-PF3ONS) exafluoropropylene oxide dimer acid (HFPO-DA)	ng/L	NC			Result	Qualifier	Result	Qualifier	
H,1H, 2H, 2H-Perfluorohexane sulfonic acid H,1H, 2H, 2H-Perfluorooctane sulfonic acid &-Dioxa-3H-perfluorononanoic acid (ADONA) -Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid (9CI-PF3ONS) exafluoropropylene oxide dimer acid (HFPO-DA)	5		< 0.61	U	< 0.59	U	NA	Τ	
H, 1H, 2H, 2H-Perfluorooctane sulfonic acid 8-Dioxa-3H-perfluorononanoic acid (ADONA) -Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid (9CI-PF3ONS) exafluoropropylene oxide dimer acid (HFPO-DA)	na/l	NC	< 0.58	U	< 0.56	U	< 1.8	U	
8-Dioxa-3H-perfluorononanoic acid (ADONA) -Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid (9CI-PF3ONS) exafluoropropylene oxide dimer acid (HFPO-DA)	ing/ E	NC	< 0.27	U	< 0.26	U	NA		
Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid (9CI-PF3ONS) exafluoropropylene oxide dimer acid (HFPO-DA)	ng/L	NC	< 0.35	U	< 0.34	U	< 4.4	U	
exafluoropropylene oxide dimer acid (HFPO-DA)	ng/L	NC	< 0.33	U	< 0.32	U	NA		
	ng/L	NC	< 0.37	U	< 0.36	U	NA		
	ng/L	NC	< 0.23	U	< 0.22	U	NA		
-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	ng/L	NC	< 0.6	U	< 0.58	U	NA		
-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	ng/L	NC	< 0.72	U	< 0.7	U	NA		
-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	NC	NA		NA		< 4.4	U	
-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	NC	NA		NA		< 4.4	U	
onafluoro-3,6-dioxaheptanoic acid (NFDHA)	ng/L	NC	< 0.26	U	< 0.26	U	NA		
erfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ng/L	NC	< 0.22	U	< 0.21	U	NA		
erfluoro-1-butanesulfonamide (FBSA)	ng/L	NC	< 0.18	U	< 0.18	U	NA		
erfluoro-1-hexanesulfonamide (FHxSA)	ng/L	NC	< 0.29	U	< 0.29	U	NA		
erfluoro-3-methoxypropanoic acid (PFMPA)	ng/L	NC	< 0.39	U	< 0.38	U	NA		
erfluoro-4-methoxybutanoic acid (PFMBA)	ng/L	NC	< 0.32	U	< 0.32	U	NA		
erfluorobutanesulfonic acid (PFBS)	ng/L	NC	< 0.27	U	< 0.26	U	< 1.8	U	
erfluorobutanoic Acid (PFBA)	ng/L	NC	< 0.71	U	< 0.69	U	< 4.4	U	
erfluorodecanesulfonic acid (PFDS)	ng/L	NC	< 0.31	U	< 0.3	U	< 1.8	U	
erfluorodecanoic acid (PFDA)	ng/L	NC	< 0.46	U	< 0.45	U	< 1.8	U	
erfluorododecanoic acid (PFDoA)	ng/L	NC	< 0.42	U	< 0.41	U	< 1.8	U	
erfluoroheptanesulfonic acid (PFHpS)	ng/L	NC	< 0.89	U	< 0.87	U	< 1.8	U	
erfluoroheptanoic acid (PFHpA)	ng/L	NC	< 0.33	U	< 0.32	U	< 1.8	U	
erfluorohexanesulfonic acid (PFHxS)	ng/L	NC	< 0.32	U	< 0.31	U	< 1.8	U	
erfluorohexanoic acid (PFHxA)	ng/L	NC	< 0.37	U	< 0.36	U	< 1.8	U	
erfluorononanesulfonic Acid (PFNS)	ng/L	NC	< 0.16	U	< 0.16	U	NA		
erfluorononanoic acid (PFNA)	ng/L	NC	< 0.33	U	< 0.32	U	< 1.8	U	
erfluorooctane Sulfonamide (PFOSA)	ng/L	NC	< 0.4	U	< 0.39	U	< 1.8	U	
erfluorooctanesulfonic acid (PFOS)	ng/L	10	< 0.57	U	< 0.56	U	< 1.8	U	
erfluorooctanoic acid (PFOA)	ng/L	10	< 0.65	U	< 0.63	U	< 1.8	U	
erfluoropentanesulfonic Acid (PFPeS)	ng/L	NC	< 0.24	U	< 0.24	U	NA		
erfluoropentanoic Acid (PFPeA)	ng/L	NC	< 0.37	U	< 0.36	U	< 1.8	U	
erfluorotetradecanoic acid (PFTeDA)	ng/L	NC	< 0.35	U	< 0.34	U	< 1.8	U	
erfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/L	NC	< 0.26	U	< 0.26	U	< 1.8	U	
erfluoroundecanoic Acid (PFUnA)	ng/L	NC	< 0.35	U	< 0.34	U	< 1.8	U	

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS),* November 2022

Sample Type Code: EB - Equipment Blank

ng/L - nanogram per liter = parts per trillion (ppt)

NC - No criteria currently exists

NA - Compound was not analyzed for

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

			Client Sample ID:		D1 0-2IN		1 2-12IN	VL-SB-0	1 84-96IN		02 0-21N		2 2-12IN		IPE-3
			Lab Sample ID:	22H1	143-25	22H1	143-26	22H1	143-27	22H1	143-46	22H1	143-47	22H1	143-49
			Location ID:	VL-S	SB-01	VL-S	SB-01	VL-S	SB-01	VL-S	SB-02	VL-S	B-02	VL-SB-02 2-12IN	
			Sample Date:	8/17	/2022	8/17	/2022	8/17	/2022	8/17	/2022	8/17	/2022	8/17	/2022
			Sample Type Code:		N		N		N		N		N	F	FD
		Unrestricted Use	Residential Use												
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.12	U	< 0.14	U	< 0.16	U	< 0.13	U	< 0.13	U	< 0.13	u
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.11	U	< 0.13	U	< 0.15	U	< 0.12	U	< 0.12	U	< 0.12	U
1H.1H. 2H. 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.081	U	< 0.091	U	< 0.1	U	< 0.088	U	< 0.084	U	< 0.086	U
1H.1H. 2H. 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.1	U	< 0.11	U	< 0.13	U	< 0.11	U	< 0.1	U	< 0.11	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.14	U	< 0.16	U	< 0.18	U	< 0.15	U	< 0.15	U	< 0.15	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.11	U	< 0.12	U	< 0.14	U	< 0.12	U	< 0.11	U	< 0.12	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	NC	< 0.21	U	< 0.24	U	< 0.27	U	< 0.23	U	< 0.22	U	< 0.23	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.12	U	< 0.14	U	< 0.16	U	< 0.13	U	< 0.13	U	< 0.13	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.08	U	< 0.09	U	< 0.1	U	< 0.087	U	< 0.083	U	< 0.085	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.068	U	< 0.076	U	< 0.088	U	< 0.074	U	< 0.071	U	< 0.073	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.072	U	< 0.081	U	< 0.093	U	< 0.078	U	< 0.075	U	< 0.077	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.14	U	< 0.16	U	< 0.18	U	< 0.15	U	< 0.15	U	< 0.15	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.13	U	< 0.15	U	< 0.17	U	< 0.14	U	< 0.14	U	< 0.14	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.083	U	< 0.093	U	< 0.11	U	< 0.09	U	< 0.086	U	< 0.088	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.081	U	< 0.091	U	< 0.1	U	< 0.088	U	< 0.084	U	< 0.086	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.067	U	< 0.075	U	< 0.087	U	< 0.073	U	< 0.07	U	< 0.072	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	< 0.059	U	< 0.066	U	< 0.076	U	< 0.064	U	< 0.061	U	< 0.062	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.1	U	< 0.11	U	< 0.13	U	< 0.11	U	< 0.11	U	< 0.11	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	< 0.057	U	< 0.063	U	< 0.073	U	< 0.061	U	< 0.059	U	< 0.06	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.067	U	< 0.075	U	< 0.087	U	< 0.073	U	< 0.07	U	< 0.072	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.13	U	< 0.15	U	< 0.17	U	< 0.14	U	< 0.14	U	< 0.14	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	< 0.063	U	< 0.071	U	< 0.082	U	< 0.069	U	< 0.066	U	< 0.067	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.07	U	< 0.079	U	< 0.091	U	< 0.076	U	< 0.073	U	< 0.075	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	< 0.082	U	< 0.092	U	< 0.11	U	< 0.089	U	< 0.085	U	< 0.087	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.12	U	< 0.13	U	< 0.15	U	< 0.13	U	< 0.12	U	< 0.13	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	< 0.072	U	< 0.081	U	< 0.093	U	< 0.078	U	< 0.075	U	< 0.077	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.086	U	< 0.096	U	< 0.11	U	< 0.093	U	< 0.089	U	< 0.091	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	8.8	< 0.059	U	< 0.067	U	< 0.077	U	< 0.065	U	< 0.062	U	< 0.063	U
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	6.6	< 0.12	U	< 0.14	U	< 0.16	U	< 0.14	U	< 0.13	U	< 0.13	U
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.064	U	< 0.072	U	< 0.083	U	< 0.07	U	< 0.067	U	< 0.068	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	< 0.067	U	< 0.075	U	< 0.087	U	< 0.073	U	< 0.07	U	< 0.072	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.084	U	< 0.094	U	< 0.11	U	< 0.091	U	< 0.087	U	< 0.089	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.098	U	< 0.11	U	< 0.13	U	< 0.11	U	< 0.1	U	< 0.1	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	< 0.08	U	< 0.09	U	< 0.1	U	< 0.087	U	< 0.083	U	< 0.085	U

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl*

Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

	Client Sam Lab Sam Locat			ID: 22H1143-48 ID: VL-SB-02		22H12 VL-S	03 0-21N 218-01 68-03	VL-SB-03 2-12IN 22H1218-02 VL-SB-03 8/18/2022		VL-SB-03 156-168IN 22H1218-03 VL-SB-03 8/18/2022		VL-SB-04 0-2IN 22H1143-32 VL-SB-04 8/17/2022		VL-SB-04 2-12IN 22H1143-33 VL-SB-04 8/17/2022	
			Sample Date: Sample Type Code:		72022 N		/2022 N		N		/2022 N		/2022 N		//2022 N
Analyte	Unit	Unrestricted Use Guidance Value ¹	Residential Use Guidance Value ¹	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.14	11	< 0.15	11	< 0.14	11	< 0.13	П	< 0.19	U	< 0.17	Tu
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	μg/kg	NC	NC	< 0.13	U	< 0.14	U	< 0.13	U	< 0.12	U	< 0.18	U	< 0.16	U
1H.1H. 2H. 2H-Perfluorohexane sulfonic acid	μg/kg	NC	NC	< 0.095	Ŭ	< 0.1	Ŭ	< 0.089	Ű	< 0.086	U	< 0.13	Ŭ	< 0.11	U
1H.1H. 2H. 2H-Perfluorooctane sulfonic acid	μg/kg	NC	NC	< 0.12	Ŭ	< 0.12	Ŭ	< 0.11	Ű	< 0.11	U	< 0.16	Ŭ	< 0.14	U
4.8-Dioxa-3H-perfluorononanoic acid (ADONA)	μg/kg	NC	NC	< 0.17	Ũ	< 0.17	U	< 0.15	Ű	< 0.15	U	< 0.22	Ŭ	< 0.2	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	μg/kg	NC	NC	< 0.13	U	< 0.14	U	< 0.12	U	< 0.12	U	< 0.17	U	< 0.15	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	μg/kg	NC	NC	< 0.25	U	< 0.26	U	< 0.23	U	< 0.23	U	< 0.33	U	< 0.29	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	μg/kg	NC	NC	< 0.15	U	< 0.15	U	< 0.14	U	< 0.13	U	< 0.19	U	< 0.17	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.094	U	< 0.099	U	< 0.088	U	< 0.085	U	< 0.12	U	< 0.11	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.08	U	< 0.084	U	< 0.075	U	< 0.073	U	< 0.11	U	< 0.095	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.085	U	< 0.089	U	< 0.08	U	< 0.077	U	< 0.11	U	< 0.1	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.16	U	< 0.17	U	< 0.15	U	< 0.15	U	< 0.22	U	< 0.19	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.16	U	< 0.16	U	< 0.15	U	< 0.14	U	< 0.21	U	< 0.18	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.098	U	< 0.1	U	< 0.091	U	< 0.089	U	< 0.13	U	< 0.12	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.095	U	< 0.1	U	< 0.089	U	< 0.086	U	< 0.13	U	< 0.11	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.079	U	< 0.083	U	< 0.074	U	< 0.072	U	< 0.1	U	< 0.094	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	< 0.069	U	< 0.072	U	< 0.065	U	< 0.063	U	< 0.091	U	< 0.082	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.12	U	< 0.13	U	< 0.11	U	< 0.11	U	< 0.16	U	< 0.14	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	< 0.067	U	< 0.07	U	< 0.062	U	< 0.06	U	< 0.088	U	< 0.079	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.079	U	< 0.083	U	< 0.074	U	< 0.072	U	< 0.1	U	< 0.094	U
Perfluoroheptanesulfonic acid (PFHpS)	μg/kg	NC	NC	< 0.15	U	< 0.16	U	< 0.15	U	< 0.14	U	< 0.2	U	< 0.18	U
Perfluoroheptanoic acid (PFHpA)	μg/kg	NC	NC	< 0.075	U	< 0.078	U	< 0.07	U	< 0.068	U	< 0.098	U	< 0.088	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.083	U	< 0.087	U	< 0.077	U	< 0.075	U	< 0.11	U	< 0.098	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	< 0.096	U	< 0.1	U	< 0.09	U	< 0.088	U	0.23	J	< 0.11	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.14	U	< 0.15	U	< 0.13	U	< 0.13	U	< 0.18	U	< 0.17	U
Perfluorononanoic acid (PFNA)	μg/kg	NC	NC	< 0.085	U	< 0.089	U	< 0.08	U	< 0.077	U	< 0.11	U	< 0.1	U
Perfluorooctane Sulfonamide (FOSA)	μg/kg	NC	NC	< 0.1	U	< 0.11	U	< 0.095	U	< 0.092	U	< 0.13	U	< 0.12	U
Perfluorooctanesulfonic acid (PFOS)	μg/kg	0.88	8.8	< 0.07	U	0.083	J	< 0.066	U	< 0.064	U	< 0.092	U	0.083	i J
Perfluorooctanoic acid (PFOA)	μg/kg	0.66	6.6	< 0.15	U	< 0.15	U	2		2.5		< 0.19	U	< 0.17	U
Perfluoropentanesulfonic Acid (PFPeS)	μg/kg	NC	NC	< 0.076	U	< 0.079	U	< 0.071	U	< 0.069	U	< 0.1	U	< 0.09	U
Perfluoropentanoic Acid (PFPeA)	μg/kg	NC	NC	< 0.079	U	< 0.083	U	< 0.074	U	< 0.072	U	< 0.1	U	< 0.094	U
Perfluorotetradecanoic acid (PFTA)	μg/kg	NC	NC	< 0.099	U	< 0.1	U	< 0.093	U	< 0.09	U	< 0.13	U	< 0.12	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	μg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.11	U	< 0.11	U	< 0.15	U	< 0.14	U
Perfluoroundecanoic Acid (PFUnA)	μg/kg	NC	NC	< 0.094	U	< 0.099	U	< 0.088	U	< 0.085	U	< 0.12	U	< 0.11	U

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl*

Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

			Client Sample ID:		120-132IN		05 0-21N		05 2-12IN		168-180IN	-	06 0-21N		-06 2-12IN
			Lab Sample ID:		143-34		143-43		143-44		143-45		143-35		1143-36
			Location ID:		SB-04		SB-05		SB-05		SB-05		SB-06		-SB-06
			Sample Date:	8/17	/2022	8/17	/2022		7/2022		7/2022		/2022	8/1	7/2022
			Sample Type Code:		N		N		Ν		Ν		N		N
Analyte	Unit	Unrestricted Use	Residential Use	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualiter	Result	Qualifier
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.15	U	< 0.13	U	< 0.13	U	< 0.13	U	< 0.17	U	< 0.16	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.14	U	< 0.12	U	< 0.12	U	< 0.12	U	< 0.16	U	< 0.15	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.096	U	< 0.084	U	< 0.087	U	< 0.088	U	< 0.11	U	< 0.11	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.12	U	< 0.1	U	< 0.11	U	< 0.11	U	< 0.14	U	< 0.13	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.17	U	< 0.15	U	< 0.15	U	< 0.15	U	< 0.19	U	< 0.19	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.13	U	< 0.11	U	< 0.12	U	< 0.12	U	< 0.15	U	< 0.15	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	NC	< 0.25	U	< 0.22	U	< 0.23	U	< 0.23	U	< 0.29	U	< 0.28	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.15	U	< 0.13	U	< 0.13	U	< 0.14	U	< 0.17	U	< 0.16	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.095	U	< 0.083	U	< 0.086	U	< 0.087	U	< 0.11	U	< 0.11	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.081	U	< 0.071	U	< 0.074	U	< 0.074	U	< 0.094	U	< 0.091	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.085	U	< 0.075	U	< 0.078	U	< 0.079	U	< 0.099	U	< 0.096	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.17	U	< 0.15	U	< 0.15	U	< 0.15	U	< 0.19	U	< 0.19	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.16	U	< 0.14	U	< 0.14	U	< 0.14	U	< 0.18	U	< 0.18	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.098	U	< 0.086	U	< 0.089	U	< 0.09	U	< 0.11	U	< 0.11	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.096	U	< 0.084	U	< 0.087	U	< 0.088	U	< 0.11	U	< 0.11	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.08	U	< 0.07	U	< 0.073	U	< 0.073	U	< 0.093	U	< 0.09	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	< 0.069	U	< 0.061	U	< 0.063	U	< 0.064	U	< 0.081	U	< 0.078	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.12	U	< 0.11	U	< 0.11	U	< 0.11	U	< 0.14	U	< 0.14	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	< 0.067	U	< 0.059	U	< 0.061	U	< 0.062	U	< 0.078	U	< 0.075	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.08	U	< 0.07	U	< 0.073	U	< 0.073	U	< 0.093	U	< 0.09	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.16	U	< 0.14	U	< 0.14	U	< 0.14	U	< 0.18	U	< 0.18	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	< 0.075	U	< 0.066	U	< 0.068	U	< 0.069	U	< 0.087	U	< 0.084	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.083	U	< 0.073	U	< 0.076	U	< 0.077	U	< 0.097	U	< 0.094	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	< 0.097	U	< 0.085	U	< 0.088	U	< 0.089	U	< 0.11	U	< 0.11	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.14	U	< 0.12	U	< 0.13	U	< 0.13	U	< 0.16	U	< 0.16	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	< 0.085	U	< 0.075	U	< 0.078	U	< 0.079	U	< 0.099	U	< 0.096	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.1	U	< 0.09	U	< 0.093	U	< 0.094	U	< 0.12	U	< 0.11	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	8.8	< 0.07	U	< 0.062	U	< 0.064	U	< 0.065	U	< 0.082	U	< 0.079	U
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	6.6	< 0.15	U	< 0.13	U	< 0.13	U	< 0.14	U	< 0.17	U	< 0.17	U
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.076	U	< 0.067	U	< 0.069	U	< 0.07	U	< 0.089	U	< 0.086	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	< 0.08	U	< 0.07	U	< 0.073	U	< 0.073	U	< 0.093	U	< 0.09	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.099	U	< 0.087	U	< 0.09	U	< 0.091	U	< 0.12	U	< 0.11	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.12	U	< 0.1	U	< 0.11	U	< 0.11	U	< 0.14	U	< 0.13	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	< 0.095	U	< 0.083	U	< 0.086	U	< 0.087	U	< 0.11	U	< 0.11	U

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl*

Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

			Client Sample ID:	VL-SB-0)6 84-96IN	VL-SB-	07 0-21N	VL-SB-0)7 2-12IN	VL-SB-07	156-165IN
			Lab Sample ID:	22H1	143-37	22H1	143-40	22H1	143-41	22H1	143-42
			Location ID:	VL-	SB-06	VL-	SB-07	VL-S	SB-07	VL-	SB-07
			Sample Date:	8/17	7/2022	8/17	/2022	8/17	/2022	8/17	7/2022
			Sample Type Code:		N		N		N		N
		Unrestricted Use	Residential Use								
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	μg/kg	NC	NC	< 0.13	П	< 0.14	U	< 0.14	U	< 0.14	U
1H.1H. 2H. 2H-Perfluorodecane sulfonic acid	μg/kg	NC	NC	< 0.12	U	< 0.13	U	< 0.13	U	< 0.13	U
1H.1H. 2H. 2H-Perfluorohexane sulfonic acid	μg/kg	NC	NC	< 0.086	U	< 0.091	U	< 0.095	U U	< 0.09	U
1H.1H. 2H. 2H-Perfluorooctane sulfonic acid	μg/kg	NC	NC	< 0.11	Ŭ	< 0.11	U	< 0.12	U	< 0.11	Ŭ
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.15	Ŭ	< 0.16	U	< 0.17	U	< 0.16	Ŭ
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	μg/kg	NC	NC	< 0.12	Ŭ	< 0.12	U	< 0.13	U	< 0.12	Ŭ
Hexafluoropropylene oxide dimer acid (HFPO-DA)	μg/kg	NC	NC	< 0.22	Ŭ	< 0.24	ũ	< 0.25	Ŭ.	< 0.24	Ŭ
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	μg/kg	NC	NC	< 0.13	U	< 0.14	U	< 0.15	U	< 0.14	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	μg/kg	NC	NC	< 0.085	U	< 0.09	U	< 0.094	U.	< 0.089	U
Nonafluoro-3,6-dioxaheptanoic acid	μg/kg	NC	NC	< 0.072	U	< 0.077	U	< 0.08	U	< 0.076	U
Perfluoro(2-ethoxyethane)sulfonic acid	μg/kg	NC	NC	< 0.076	Ŭ	< 0.081	ũ	< 0.085	Ŭ.	< 0.081	u -
Perfluoro-1-butanesulfonamide (FBSA)	μg/kg	NC	NC	< 0.15	U	< 0.16	U	< 0.16	U U	< 0.16	U U
Perfluoro-1-hexanesulfonamide (FHxSA)	μg/kg	NC	NC	< 0.14	U	< 0.15	U	< 0.16	U U	< 0.15	U U
Perfluoro-3-methoxypropanoic acid	μg/kg	NC	NC	< 0.088	11	< 0.093	0	< 0.098	0	< 0.093	U
Perfluoro-4-methoxybitanoic acid	μg/kg	NC	NC	< 0.086	U	< 0.091	U	< 0.095	U	< 0.09	U U
Perfluorobutanesulfonic acid (PFBS)	μg/kg	NC	NC	< 0.071	11	< 0.076	U	< 0.079	U U	< 0.075	U U
Perfluorobutanoic Acid (PFBA)	μg/kg	NC	NC	< 0.062	U	< 0.066	U	< 0.069	U U	< 0.065	U
Perfluorodecanesulfonic acid (PFDS)	μg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.12	U U	< 0.11	U
Perfluorodecanoic acid (PFDA)	μg/kg	NC	NC	< 0.06	U	< 0.063	U	< 0.067	U U	< 0.063	U
Perfluorododecanoic acid (PFDoA)	μg/kg	NC	NC	< 0.071	U	< 0.076	U	< 0.079	U	< 0.075	U
Perfluoroheptanesulfonic acid (PFHpS)	μg/kg	NC	NC	< 0.14	Ŭ	< 0.15	U	< 0.16	U.	< 0.15	U
Perfluoroheptanoic acid (PFHpA)	μg/kg	NC	NC	< 0.067	Ŭ	< 0.071	ũ	< 0.075	Ŭ.	< 0.071	u.
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.074	Ŭ	< 0.079	ũ	< 0.083	Ŭ.	< 0.078	Ŭ
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	< 0.087	Ŭ	< 0.092	ũ	< 0.097	Ŭ.	< 0.091	u.
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.13	Ŭ	< 0.13	ũ	< 0.14	Ŭ	< 0.13	Ŭ
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	< 0.076	U	< 0.081	Ú.	< 0.085	Ū.	< 0.081	Ū.
Perfluorooctane Sulfonamide (FOSA)	μg/kg	NC	NC	< 0.091	U	< 0.096	U	< 0.1	U	< 0.096	Ū.
Perfluorooctanesulfonic acid (PFOS)	μg/kg	0.88	8.8	< 0.063	Ŭ	< 0.067	U	< 0.07	U	< 0.066	Ŭ
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	6.6	< 0.13	Ŭ	< 0.14	U	< 0.15	U	< 0.14	Ŭ
Perfluoropentanesulfonic Acid (PFPeS)	μg/kg	NC	NC	< 0.068	U	< 0.072	U	< 0.076	U	< 0.072	U
Perfluoropentanoic Acid (PFPeA)	μg/kg	NC	NC	< 0.071	U	< 0.072	U	< 0.079	U	< 0.075	U
Perfluorotetradecanoic acid (PFTA)	μg/kg	NC	NC	< 0.089	U	< 0.094	U	< 0.099	U	< 0.094	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	μg/kg	NC	NC	< 0.1	U	< 0.11	U	< 0.12	U	< 0.11	Ŭ
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	< 0.085	U	< 0.09	U	< 0.094	U	< 0.089	Ŭ
Notes:	110/18										4
¹ New York State Department of Environmental Conservation, Sampling Substances (PFAS), November 2022 Sample Type Code: N - Normal, FD -Field Duplicate µg/kg - microgram per kilogram = parts per billion (ppb) NC - No criteria currently exists	ı, Analysis, and	Assessment of Per- an	d Polyfluoroalkyl								
U - Compound was not detected at the reporting limit shown											
L An estimated value											

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

Table 4 Valente Lumber Yard Sediment, PFAS Results

	Clie	ent Sample ID:	VL-SED-01	20220817	DU	PE-2	VL-SED-02	2 20220817
	L	ab Sample ID:	22H1:	143-31	22H1:	143-29	22H1	143-39
		Location ID:	VL-SI	ED-01	VL-SI	ED-01	VL-S	ED-02
		Sample Date:	8/17	/2022	8/17	/2022	8/17	/2022
	Samp	le Type Code:	I	N	F	D		N
		NYSDEC						o 116
Analyte	Unit	Guidelines ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	< 0.15	U	< 0.16	U	< 0.36	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	< 0.14	U	< 0.14	U	< 0.33	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	< 0.097	U	< 0.1	U	< 0.23	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	< 0.12	U	< 0.13	U	< 0.29	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	< 0.17	U	< 0.18	U	< 0.41	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	μg/kg	NC	< 0.13	U	< 0.14	U	< 0.32	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	< 0.25	U	< 0.27	U	< 0.61	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	< 0.15	U	< 0.16	U	< 0.36	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	< 0.096	U	< 0.1	U	< 0.23	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	< 0.082	U	< 0.087	U	< 0.2	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	< 0.087	U	< 0.091	U	< 0.21	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	< 0.17	U	< 0.18	U	< 0.4	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	< 0.16	U	< 0.17	U	< 0.38	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	< 0.1	U	< 0.11	U	< 0.24	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	< 0.097	U	< 0.1	U	< 0.23	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	< 0.081	U	< 0.085	U	< 0.19	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	< 0.07	U	< 0.074	U	< 0.17	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	< 0.12	U	< 0.13	U	< 0.3	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	< 0.068	U	< 0.072	U	< 0.16	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	< 0.081	U	< 0.085	U	< 0.19	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	< 0.16	U	< 0.17	U	< 0.38	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	< 0.076	U	< 0.08	U	< 0.18	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	< 0.084	U	< 0.089	U	< 0.2	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	< 0.098	U	< 0.1	U	< 0.24	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	< 0.14	U	< 0.15	U	< 0.34	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	< 0.087	U	< 0.091	U	< 0.21	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	< 0.1	U	< 0.11	U	< 0.25	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	NC	0.072	1	0.14	1	< 0.17	U
Perfluorooctanoic acid (PFOA)	µg/kg	NC	< 0.15	U	< 0.16	U	< 0.36	U
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	< 0.077	U	< 0.082	U	< 0.19	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	< 0.081	U	< 0.085	U	< 0.19	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	< 0.1	U	< 0.11	U	< 0.24	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	< 0.12	U	< 0.12	U	< 0.29	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	< 0.096	U	< 0.1	U	< 0.23	U

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS),* November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Table 5 Valente Lumber Yard Surface Water, PFAS Results

Clie	nt Sample ID:	VL-SW-01	20220817	DUI	PE-1	VL-SW-02	20220817
La	ab Sample ID:	22H11	L43-30	22H11	143-28	22H1:	L43-38
	Location ID:	VL-S	W-01	VL-S	W-01	VL-S	W-02
:	Sample Date:	17 Au	g 2022	17 Au	g 2022	17 Au	g 2022
Sampl	e Type Code:	1	N	F	D	I I	N
Unit	NYSDEC Guidelines ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier
ng/L	NC	< 0.58	U	< 0.58	U	< 1.3	U
ng/L	NC	< 0.55	U	< 0.55	U	< 1.3	U
ng/L	NC	< 0.26	U	< 0.25	U	< 0.58	U
ng/L	NC	< 0.33	U	< 0.33	U	< 0.75	U
ng/L	NC	< 0.32	U	< 0.31	U	< 0.72	U
ng/L	NC	< 0.35	U	< 0.35	U	< 0.8	U
ng/L	NC	< 0.22	U	< 0.22	U	< 0.49	U
ng/L	NC	< 0.57	U	< 0.57	U	< 1.3	U
ng/L	NC	< 0.69	U	< 0.69	U	< 1.6	U
ng/L	NC	< 0.25	U	< 0.25	U	< 0.57	U
ng/L	NC	< 0.21	U	< 0.21	U	1.7	l
ng/L	NC	0.25	J	0.24	J	< 0.39	U
ng/L	NC	< 0.28	U	< 0.28	U	< 0.64	U
ng/L	NC	< 0.38	U	< 0.38	U	< 0.86	U
ng/L	NC	< 0.31	U	< 0.31	U	< 0.71	U
ng/L	NC	6.4		6.2		3.9	l
ng/L	NC	5.3		6		< 1.5	U
ng/L	NC	< 0.3	U	< 0.29	U	< 0.67	U
ng/L	NC	< 0.45	U	0.46	J	< 1	U
ng/L	NC	< 0.4	U	< 0.4	U	< 0.91	U
ng/L	NC	< 0.85	U	< 0.85	U	< 1.9	U
ng/L	NC	3.5		3.3		< 0.71	U
ng/L	NC	1.9		2.000		< 0.7	U
ng/L	NC	< 0.35	U	< 0.35	U	16	
ng/L	NC	< 0.15	U	< 0.15	U	< 0.35	U
ng/L	NC	1.3	1	1.3	l	< 0.71	U
ng/L	NC	< 0.38	U	< 0.38	U	< 0.87	U
ng/L	10	21		24		4.1	l
ng/L	10	14		14		12	
ng/L	NC	< 0.23	U	0.39	J	< 0.53	U
ng/L	NC	6.4		6.6		< 0.81	U
ng/L	NC	< 0.33	U	< 0.33	U	< 0.76	U
				1		1	
ng/L	NC	< 0.25	U	< 0.25	U	< 0.57	U
	La Sampl Unit ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Sample Date: Sample Type Code: Guidelines ¹ ng/L NC ng/L NC	Lab Sample ID: 22H11 Location ID: VL-S Sample Date: 17 Au Sample Type Code: 17 Au Sample Date: 17 Au Sample Type Code: 17 Au Ing/L NYSDEC Result ng/L NC <0.58	Lab Sample ID: $22H1143-30$ Location ID: VL-SW-01 Sample Date: 17 Aug 2022 Sample Type Code: N unit NYSDEC Guidelines ¹ Result Qualifier ng/L NC <0.58	Lab Sample ID: 22H1143-30 22H1: Location ID: VL-SW-01 VL-S Sample Date: 17 Aug 2022 17 Aug Sample Type Code: N F unit NYSDEC Guidelines ¹ Result Qualifier Result ng/L NC < 0.58	Lab Sample ID: 22H1143-30 22H1143-28 Location ID: VL-SW-01 VL-SW-01 Sample Type Code: N FD Unit NYSDEC Guidelines ¹ Result Qualifier Result Qualifier ng/L NC <0.58	Lab Sample ID: 22H1143-30 22H1143-28 22H11 Location ID: VL-SW-01 VL-SW-01 VL-S Sample Date: 17 Aug 2022 17 Aug 2022 17 Aug 2022 17 Aug 2022 Unit NYSDEC Result Qualifier FD N Ing/L NC <0.58

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances* (*PFAS*), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

ng/L - nanogram per liter = parts per trillion (ppt)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Table 6A Valente Lumber Yard Groundwater, PFAS Results

		Client Sample ID:	VL-OW-01	-20220921	VL-OW-02	-20220921	VL-OW-03	-20220921
		Lab Sample ID:	480-20	1885-1	480-20	1885-2	480-20)1885-3
		Location ID:	VL-O	W-01	VL-O	W-02	VL-C	W-03
		Sample Date:	9/21	/2022	9/21,	/2022	9/21	/2022
		Sample Type Code:		N	1	N		N
Analyte	Unit	NYSDEC Guidelines ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/L	NC	< 9.7	U	< 1.8	U	< 1.8	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/L	NC	< 24	U	< 4.5	U	< 4.6	U
N-ethyl perfluorooctanesulfonamidoacetic acid	ng/L	NC	< 24	U	< 4.5	U	< 4.6	U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	NC	< 24	U	< 4.5	U	< 4.6	U
Perfluorobutanesulfonic acid (PFBS)	ng/L	NC	< 9.7	U	0.76	J	< 1.8	U
Perfluorobutanoic Acid (PFBA)	ng/L	NC	< 24	U	5.9		1.9	1
Perfluorodecanesulfonic acid (PFDS)	ng/L	NC	< 9.7	U	< 1.8	U	< 1.8	U
Perfluorodecanoic acid (PFDA)	ng/L	NC	< 9.7	U	< 1.8	U	< 1.8	U
Perfluorododecanoic acid (PFDoA)	ng/L	NC	< 9.7	U	< 1.8	U	< 1.8	U
Perfluoroheptanesulfonic acid (PFHpS)	ng/L	NC	< 9.7	U	< 1.8	U	< 1.8	U
Perfluoroheptanoic acid (PFHpA)	ng/L	NC	< 9.7	U	1.5	J	0.91	l
Perfluorohexanesulfonic acid (PFHxS)	ng/L	NC	< 9.7	U	1.6	l	< 1.8	U
Perfluorohexanoic acid (PFHxA)	ng/L	NC	< 9.7	U	1.1	J	1.4	1
Perfluorononanoic acid (PFNA)	ng/L	NC	< 9.7	U	2.3		0.61	l
Perfluorooctane Sulfonamide (FOSA)	ng/L	NC	< 9.7	U	< 1.8	U	< 1.8	U
Perfluorooctanesulfonic acid (PFOS)	ng/L	10	< 9.7	U	4.3		1.1	1
Perfluorooctanoic acid (PFOA)	ng/L	10	6.2	1	10		1.2	1
Perfluoropentanoic Acid (PFPeA)	ng/L	NC	< 9.7	U	1.1	l	1.6	l
Perfluorotetradecanoic acid (PFTA)	ng/L	NC	< 9.7	U	< 1.8	U	< 1.8	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/L	NC	< 9.7	U	< 1.8	U	< 1.8	U
Perfluoroundecanoic Acid (PFUnA)	ng/L	NC	< 9.7	U	< 1.8	U	< 1.8	U

Notes:

¹New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS),

November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

ng/L - nanogram per liter = parts per trillion (ppt)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Table 6BValente Lumber YardGroundwater, Artificial Sweetener Results

	Client Sample II				VL-OW-02	-20220921	VL-OW-03-	20220921
	Lab Sam	ple ID:	22 12	83-01	22112	283-02	22112	83-03
	Location ID:					W-02	VL-O	N-03
	Sample	e Date:	9/21/	/2022	9/21	/2022	9/21/	2022
	Sample Type	e Code:	١	N		N	٢	I
Analyte	Screening Criteria	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier
Acesulfame K	NC	μg/L	1.5	H *-	0.16	H *-	0.13	H *-
Sucralose	NC	μg/L	0.12	Н	<0.025	ΗU	0.077	н
Notes:								
Sample Type Code: N - Normal, FD -Field Dup	icate							

 μ g/L - microgram per liter = parts per billion

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

H - Sample was prepped or analyzed beyond the specific holding time

*- -Lab Control Sample (LCS) and/or LCS Duplicate is outside acceptance limits, low biased

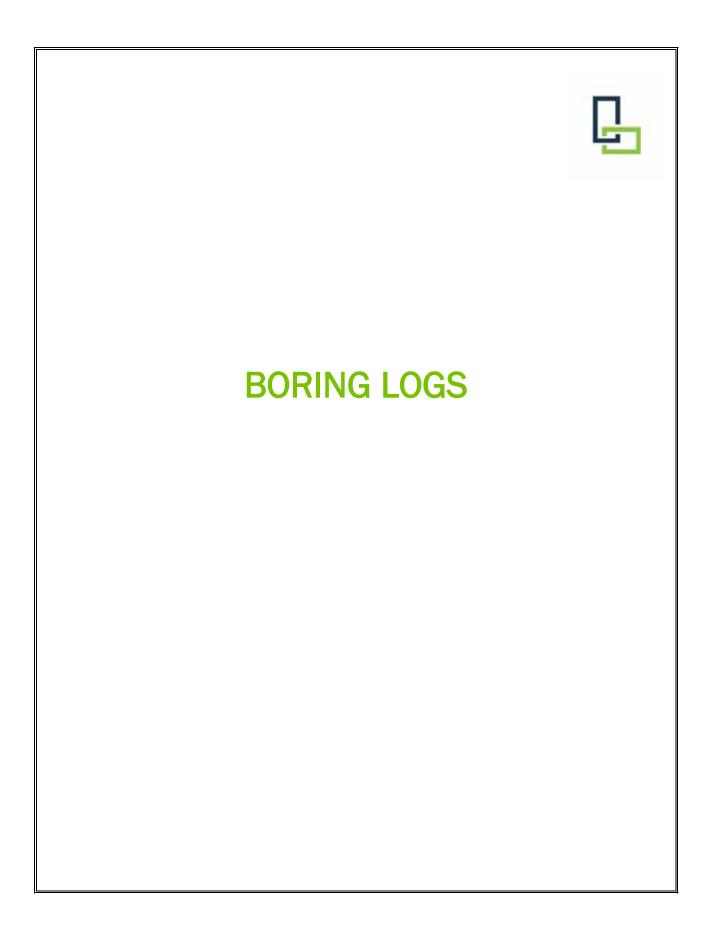
Bold - Indicates the compound was detected

Table 6C Valente Lumber Yard Groundwater, Nitrate Nitrite Results

	Client Sample ID:			VL-OW-01-20220921 VL-OW-02-2022092				-20220921
	Lab Sample ID:			83-01	22112	83-02	22112	83-03
Location ID:		VL-O	W-01 VL-OW-02			VL-O	W-03	
	Sample	Date:	9/21,	/2022	9/21,	/2022	9/21/	/2022
	Sample Type	Code:	I	Ν		N	1	N
Analyte	NYS Class GA ¹	Unit	Result	Qualifer	Result	Qualifer	Result	Qualifer
Nitrate (as N)	10	mg/L	0.29		0.3		0.38	
Nitrite (as N)	1	mg/L	<0.100	U	<0.100	U	<0.100	U

Notes:

¹New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998.


Sample Type Code: N - Normal, FD -Field Duplicate

mg/L - milligram per liter = parts per million (ppm)

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

MONITORING WELL / BOR	ING NO. VL-	-OW-C	<u>)1 / V</u> L-SB-01	_
Site Name: NYSDEC - Algonquin				LaBella
Location: Valente Lumber Yard	Dril	ling Co.:	Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Dril	ler: ^M	ario Pineda	Soil Samples Collected:
Phone No.:	Log	iged by:_	T. Rollend	VL-SB-01 0-2" VL-SB-01 2-12"
Drilling Method: Geoprobe 7822	DT(Dia):2"S	ampling	Method: Macro Core (Dia): 2"	VL-SB-01 84-96"
			TD: <u>See samples collected</u> (Dia): 2"	
Well TD: 15'				
Screen Interval:15' - 5.0'_S	lot Size:0.07	0"	_ Diameter: ^{2-inch}	
Cased Interval: <u>5.0'- grade</u> T	ype:PVC		_Diameter: ^{2-inch}	
Sand Pack Interval: 15' - 3.	^{0′} Type:_≠	# 2	_Wellhead Prot: Flush Mount	
Bentonite Seal Interval: <u>3.0</u>	<u>-2.0'</u> Type:	Chips	_Grouted Interval:	
	1	1		
Depth (Feet) Monitoring Well Construction	Recovery;	PID (ppm):	Descriptio	on / Soil Classification
		0.1	0" - 2.0" Gray, dry, fine GRAVEL (1	fill motorial)
0 Concrete Native Soil & Well Sand Bentonite	S-1: 0" - 5.0'	6.1 — — — — —		
2" PVC Riser	Hand cleared	< 1.0	2.0" - 5.0' Gray, dry, coarse to fine S	SAND and fine to medium GRAVEL
5			5.0' 8.0' Dark brown maint organi	ics (wood chips), coarse to fine SAND and SILT,
	S-2: 5.0' - 10'		some rounded Gravel	
PVC Screen	Rec: 5.0'/5.0'	< 1.0	Wet at 8 fbg. Brown, wet,	coarse to fine SAND and SILT, trace Clay, to 8.5'
				SAND and SILT some rounded Gravel and shale
	S-3: 10' - 15'	< 1.0	fragments to refusal, wea	thered bedrock (shale) fragments in sampler shoe
日際開始	Rec: 5.0'/5.0'			
				15'
20 -				
25 — -				
30 -				
35 –				
Monitoring Well Completion / Boring L	og drafted by LaBella	Associates	s, D.P.C.	PAGE _ 1 _ of _ 1

MONITORING WELL / BORI				
Site Name: NYSDEC - Algonquin I				
Location: Valente Lumber Yard				
Client: NYSDEC				Soil Samples Collected: VL-SB-02 0"-2"
Phone No.: N/A	Logge	ed by:_	T. Rollend	VL-SB-02 2"-12"
Drilling Method: Geoprobe 7822 D	DT(Dia):2" Sar	mpling	Method: Macro Core (Dia): 2"	VL -SB-02 72"- 84"
Drilled TD:	(Dia): <u>2"</u> Sar	npled	TD: See samples collected (Dia):	DUPE-3 parent VL-SB-02 2"-12"
Well TD:	(Dia): <u>2"</u> We	II Туре	e:PVC	
Screen Interval: 10'-5.0' SI				
Cased Interval: <u>5.0'- Grade</u> Ty	/pe:PVC		_Diameter:_2"	
Sand Pack Interval: 10' - 3.0'	Туре:	#2	_Wellhead Prot: Flush Mount	
Bentonite Seal Interval: <u>3.0'-</u>	^{2.0'} Type:	chips	_ Grouted Interval:	
Depth Monitoring Well (Feet) Construction		PID ppm):	Descripti	on / Soil Classification
0 2" cap 8" road box				
Concrete Native Soil & Well Sand Bentonite	S-1: 0" - 5.0' Hand cleared	< 1.0	• • •	e to fine SAND and fine GRAVEL (fill material) ne SAND and SILT, trace Clay. Large tree root at
5 - 2" PVC Riser #2 Well Sand	S-2: 5.0' - 10' Rec: 4.0'/5.0'	< 1.0	5.0' - 10' Brown, wet, coarse to fine shale fragments to EOB (r Wet at 7.0'	SAND and SILT, some fine angular Gravel efusal) at 10 fbg
10 Slot PVC Screen				10'
25 -				
30 -				
35 –				
Monitoring Well Completion / Boring Lo	g drafted by LaBella As	ssociates	s, D.P.C.	PAGE _ 1 _ of _ 1

MONI	TORING WELL / BORI	NG NO. VL-	OW-0	<u>)3 / V</u> L-SB-03	
Site Na	ame: Algonquin Middle Scho	^{ool} Date	e Drilled	August 18, 2022	LaBella
Locatio	ON: Valente Lumber Yard	Drill	ing Co.:	Clean Globe Environmental	Powered by partnership.
Client:	NYSDEC	Dril	er:^	ario Pineda	Soil Samples Collected:
Phone	No.:N/A	Log	ged by:	T. Rollend	VL-SB-03 0"-2" VL-SB-03 2"-12"
Drilling	g Method: Geoprobe 7822 [DT(Dia):2"S	ampling	Method: Macro Core (Dia): 2"	VL-SB-03 156"-168"
Drilled	TD: 15'	(Dia): <u>2"</u> S	ampled	TD: See samples collected (Dia):	
Well T	D: ^{13'}	(Dia): <u>2"</u> V	Vell Type	e: PVC	
Screer	n Interval: <u>13'-3.0'</u> SI	ot Size: 0.0 ⁻	10"	_ Diameter:2-inch	
Cased	Interval: <u>3.0' - Grade</u> Ty	/pe:	PVC	_ Diameter:2-inch	
Sand F	Pack Interval: 13' - 2.	<u>0' fbgType:_#</u>	2	Wellhead Prot:Flush Mount_	
Bentor	nite Seal Interval: ^{2.0'}	<u>-1.0'</u> Type:	Benchips	_Grouted Interval:	
Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):	Descriptio	on / Soil Classification
0 7	2" cap 8" road box				
	Concrete Native Soil &	S-1: 0 - 5.0'	1.6		parse to fine SAND and SILT (topsoil) ne SAND, SILT, fine GRAVEL (fill material)
	Well Sand Bentonite	Hand Cleared	5.2	1.0' - 9.0' Brown, dry, layers of coars (roadbase fill material). La	se to fine SAND, SILT and angular Gravel yers of wood chips at 8 fbg and 9 fbg
5					
	2" PVC Riser	S-2: 5.0' - 10'			
		Rec: 5.0'/5.0'	1.2		
10 _				9.0' - 10' Brown, moist, CLAY trace	Silt
	#2 Well Sand	S-3: 10' - 15' Rec: 5.0'/5.0'	< 1.0		and SILT, little Clay, some rounded Gravel e fragments with depth to EOB (refusal) at 15 fbg ollapse
15	10 Slot PVC Screen				
					15'
25 -					
30 _					
35 J		an destitu () an "	.		1
Monitor	ing Well Completion / Boring Lo	g drafted by LaBella	Associates	s, D.P.C.	PAGE <u>1</u> of <u>1</u>

MONI	FORING WELL / BORI	NG NO. 	SB-04	4		
Site Na	ame: Algonquin Middle Scho	^{ool} Date	e Drilled	August	17, 2022	LaBella
Locatio	on: Valente Lumber Yard	Drill	ling Co.:	Clean G	ilobe Environmental	Powered by partnership.
Client:	NYSDEC	Dril	ler: ^M	ario Pineda		Soil Samples Collected: VL-SB-04 0"-2"
Phone	No.:	Log	iged by:_	T. Rolle	nd	VL-SB-04 0 -2 VL-SB-04 2"-12"
Drilling	Method: Geoprobe 7822 D	^{ot} (Dia):2"S	ampling	Method:	Macro Core (Dia): 2"	VL-SB-04 120" - 132"
Drilled	TD:	(Dia): <u>2"</u> S	ampled	TD: <u>See sam</u>	nples collected <u>(</u> Dia):	
Well T	D: No Well Installed	(Dia): V	Vell Type	e:		
Screer	n Interval:SI	ot Size:		_ Diamete	r:	
Cased	Interval:Ty	/pe:		_ Diamete	r:	
Sand F	Pack Interval:	Туре:		_Wellhea	d Prot:	
Bentor	ite Seal Interval:	Туре:		_ Grouted	Interval:	
Depth	Monitoring Well Construction	Recovery;	PID		Descriptio	on / Soil Classification
(Feet)	Construction	10000019,	(ppm):	0.0'-8.0'	-	cs (tree bark) coarse to fine SAND and SILT to 8 fbg
° –			5.8	0.0 0.0		
		S-1: 0 - 5.0' Hand cleared				
			< 1.0			
5 -						
		S-2: 5.0' - 10'	< 1.0			
		Rec: 4.0'/5.0'				reactions fine SAND and SILT. Well sorted to poorly comes fine SAND and SILT to end of boring
					(refusal) at 20 fbg. Tree ro Wet at 11'	
		S-3: 10' - 15'	< 1.0	—	Wetat H	
		Rec: 4.0'/5.0'				
15 -						
		S-4: 15' - 20'	< 1.0			
		Rec: 5.0'/5.0'			NI 1/1 11 1/1	
20					No monitoring well installe	20'
						20
25 -						
30						
35 J		a destinad back and "				PAGE 1 of 1
Monitor	ing Well Completion / Boring Lo	g drafted by LaBella	Associates	s, D.P.C.		PAGE of

MONITORING WELL / BORING NO. VL-SB-05	
Site Name:NYSDEC - Algonquin Middle School_ Date Drilled:August 17, 2022	
Location: Valente Lumber Yard Drilling Co.: Clean Globe Environmental Powered by partnership.	
Client: NYSDEC Driller: Mario Pineda Soil Samples Collected:	
Phone No.: N/A VL-SB-06 0-2" VL-SB-06 2-12" VL-SB-06 2-12"	
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2"	
Drilled TD: 10' (Dia): 2" Sampled TD: see samples collected (Dia):	
Well TD:No Well Installed(Dia): Well Type:	
Screen Interval:Slot Size:Diameter:	
Cased Interval:Type:Diameter:	
Sand Pack Interval:Type:Wellhead Prot:	
Bentonite Seal Interval:Type:Grouted Interval:	
Depth (Feet)Monitoring Well ConstructionRecovery;PID (ppm):Description / Soil Classification	
0	

0 -				
		< 1.0	0" - 1.0'	Dark Brown to black, moist, organics, fine SAND and SILT (topsoil)
	S-1: 0 - 5.0' Rec: 3.0'/5.0'	< 1.0	1.0' - 10'	Brown, dry, coarse to fine SAND and SILT, some rounded fine Gravel with increasing Silt and Clay to 10 fbg.
	S-2: 5.0' - 10' Rec: 2.0'/5.0'	< 1.0		
	S-3: 10' - 15' Rec: 4.0'/5.0'	< 1.0	 10' - 15'	Brown, dry, coarse to fine SAND, SILT and fine GRAVEL (shale fragments) with shale quantity increasing with depth to EOB (refusal) at 15 fbg Groundwater was not encountered
15				No monitoring well installed
20 20 21 25 30 30 11 11 11 11 11 11 11 11 11 11 11 11 11				
Monitoring Well Completion / Boring Lo	g drafted by LaBella	l Associate	s, D.P.C.	PAGE of

MONITORING WELL / BOF	RING NO. VL-	SB-00	6	
Site Name:	Middle School_Date	Drilled	August 17, 2022	LaBella
Location: Valente Lumber Yard	Drilli	ng Co.:	Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Drille	er: <u>M</u> a	ario Pineda	Soil Samples Collected:
Phone No.: N/A	Log	ged by:_	T. Rollend	VL-SB-06 0"- 2" VL-SB-06 2"-12"
Drilling Method: Geoprobe 7822	DT (Dia):2" Sa	ampling	Method: Macro Core (Dia): 2"	
Drilled TD:	(Dia): <u>2"</u> Sa	ampled	TD: see samples collected (Dia):	
Well TD: No Well Installed	(Dia): W	/ell Type	9:	
Screen Interval:	Slot Size:		_ Diameter:	
Cased Interval:	Гуре:		_ Diameter:	
Sand Pack Interval:	Туре:		_Wellhead Prot:	
Bentonite Seal Interval:	Туре:		_Grouted Interval:	
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):	Descript	ion / Soil Classification
° -		10	0" - 3.0' Black, moist, organics, co	parse to fine SAND and SILT
	S-1: 0 - 5.0'			
	Hand Cleared	< 1.0		e SAND and SILT, some fine rounded to angular added: layers of Gravel, coarse to fine SAND and fine
5 _			Gravel, and coarse to fin 5.0' - 10' Brown, moist, medium to	e SAND (fill material) fine SAND and SILT, some rounded fine Gravel (till)
	S-2: 5.0' - 10'		to EOB (refusal) at 10 fb	9
	Rec: 4.0'/5.0'	< 1.0	Groundwater was not en	countered
			No monitoring well instal	
				10
15				
35 J Monitoring Well Completion / Boring	Log drafted by LaRella	Associates	s. D.P.C.	PAGE 1 of 1

MONITORING WELL / BC	RING NO. VL	SB-0	7	
Site Name: NYSDEC - Algonqu	^{in Middle School} Dat	e Drilled	August 17, 2022	LaBella
Location: Valente Lumber Yard	Dril	ling Co.:	Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Dril	ler: ^{Ma}	rio Pineda	Soil Samples Collected:
Phone No.: N/A	Log	iged by:_	T. Rollend	VL-SB-07 0"- 2" VL-SB-07 2"- 12" MS/MSD
Drilling Method: Geoprobe 782	2 DT(Dia):2"S	Sampling	Method: Macro Core (Dia): 2"	VL-SB-07 156" - 168"
Drilled TD: ^{14'}	(Dia): <u>2</u> "	Sampled	TD: <u>see samples collected (Dia)</u>	
Well TD: ^{No Well Installed}	(Dia): V	Vell Type	e:	
Screen Interval:	Slot Size:		_Diameter:	
Cased Interval:	Туре:		_Diameter:	
Sand Pack Interval:	Туре:		Wellhead Prot:	
Bentonite Seal Interval:	Туре:		_Grouted Interval:	
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):	Descript	ion / Soil Classification
0]	Hand cleared	< 1.0	0.0' - 1.0' Black, moist, organics, co	parse to fine SAND and SILT (topsoil)
	S-1: 0 - 5.0' Rec: 2.5'/5.0'	<u> </u>		- — — — — — — —
	1.60. 2.073.0	< 1.0		
5				
	S-2: 5.0' - 10'			
	Rec: 4.0'/5.0'	< 1.0	8.0' - 14' Coarse to fine SAND and (refusal) at 14 fbg	SILT with fine gravel shale fragments to EOB
10			(Telusal) at 14 lbg	
	S-3: 10' - 14' Rec: 2.0'/4.0'	< 1.0		
			Groundwater was not end No monitoring well install	countered ed
15 —				14'
20				
25 —				
30 -				
35]				
Monitoring Well Completion / Boring	g Log drafted by LaBella	Associates	s, D.P.C.	PAGE _ 1 _ of _ 1

WELL DEVELOPMENT LOGS

	Site Name	AMS - Valente L	umber						
	Site Location	Averill Park, NY					_		
	Well ID	VL-OW-01				Arte	ch Env	ironme	antal
	Sampled By	BB+NW				ALI	- CHI LIIV		mual
	Well Information	n					A LaBella	Company	
	Flush Mount or Riser	Flush							
	Measuring Point	TOC		Stabilization is achiev	ed when the following	g changes are noted			
	Measuring Point Elevation			over three c	onsecutive 3-5 minut ± 0.1 change in pH	e readings:			
	Depth to Water (feet)	2.6		+ 30	% change in conducti	vitv			
	Depth to Bottom of Well	12.31		± 10					
				± 10%	change in DO and Tu	ırbidity			
	Dia. Well	Well Volume Multiplier]	Da		8/30/2022			
	1	0.0408		Weat		Hot 90's Humid			
	1.5 2	0.0918 0.1631		Purging Ec Sampling E	quipment	Peristaltic Peristaltic/Horiba			
	3	0.3670		Decon M	Method	Alconox			
	4	0.6525		Riser Di	ameter	2"			
	5	1.0195		Well Volume	Calculation	1.6 gal			
	6	1.4681		L					
	8	2.6100							
	10	4.0782							
	12	5.8726							
	Well Volume Gallons = Multiplier x Le	ngth of Water Column							
				<u>г</u>	Dissolved O2	Conductivity		Depth to	Pumping
Time	Volume Removed (Gallons)	Turbidity (NTU)	рН	Temperature (C)	(mg/L)	(mS/cm)	ORP (mV)	Water	Rate
1245			St	art				2.31	
1415		St	art after	7.5 gallons				3.60	
1426	~9.0	150	6.69	19.53	0.0	0.421	-28	3.81	
1435	10.5	48.4	6.70	19.35	0.0	0.421	-29	3.91	
	10.5 Gallons total								-
									+
									<u> </u>
									<u> </u>
									+
									<u> </u>

	Site Name	AMS - Valente L	umber						
	Site Location	Averill Park, NY					-		
	Well ID	VL-OW-02				Arte	ch Env	ironm	antal
	Sampled By	BB+NW				ALIC			entai
								Company	
1	Well Information						C. Ceresona	Company	
	Flush Mount or Riser	Flush							
	Measuring Point	TOC		Stabilization is achie	ved when the following	g changes are noted			
	Measuring Point Elevation			over three o	consecutive 3-5 minut ± 0.1 change in pH	e readings:			
					± 0.1 onunge in pri				
	Depth to Water (feet)	3.51		+ 3	% change in conducti	vity			
	Depth to Bottom of Well	8.53			· ·				
		0.55			0 millivolt change in O				
				± 10%	change in DO and Tu	irbidity			
	Dia. Well	Well Volume Multiplier		Da	te	8/30/2022			
	1	0.0408		Wea	ther	Hot 90's Humid			
	1.5	0.0918		Purging E	quipment	Peristaltic			
	2 3	0.1631 0.3670		Sampling I Decon	<u>equipment</u>	Peristaltic/Horiba Alconox			
	4	0.6525		Riser D	iameter	2"			
	5	1.0195		Well Volume	Calculation	0.82			
	6	1.4681							
	<u>8</u> 10	2.6100 4.0782							
	10	5.8726							
	Well Volume Gallons = Multiplier x Le	ngth of Water Column							
		· · · · · · · · · · · · · · · · · · ·		1		_			1 -
Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2	Conductivity	ORP (mV)	Depth to	Pumping
		· · · · · · · · · · · · · · · · · · ·	P''		(mg/L)	(mS/cm)		Water	Rate
1015								3.51	1
1030	~1.5	1000+	7.48	17.03	5.15	0.525	45	7.94	1
1040		well dra	awdown e>	ceeding recharge				8.31	1
1050	~1.5	960	7.29	18.8	6.54	0.5	88	8.35	1
									T
1115	~3.5	105	7.58	19.04	2.78	0.486	85	7.25	1
									1
									1
1140	~4.0	92	7.14	18.29	3.35	0.483	111	7.26	
				-		-		-	1
				•					
1143				dry allowed to re	charge				
					-				
1200			res	start				7.1	
									1
								İ	
1215	dry	62.5							
	,								1
						•		İ	1
1220			res	start				7.0	
								1	1
1230	~5.5	49.9	7.22	19.54	2.77	0.471	113	7.24	
00	0.0								1
								1	1
									1
			1						L

		-							
	Site Name	AMS - Valente L	umber						
	Site Location	Averill Park, NY					-		and the same star
	Well ID Sampled By					Azte	ch Env	ironme	ental
	Sampled By					-			
	Well Informatio		1				ALabeita	Company	
	Flush Mount or Riser	Flush		Ctabilization is askin	and a lange they following	- shares are relad			
	Measuring Point	TOC		over three	ved when the following consecutive 3-5 minute	e readings:			
	Measuring Point Elevation				± 0.1 change in pH				
	Depth to Water (feet)	4.01			No la sus in construction				
	Depth to Bottom of Well	12.81			% change in conductiv				
		12.01) millivolt change in O change in DO and Tu				
	Dia. Well 1	Well Volume Multiplier 0.0408		Da Wea		8/30/2022 Hot 90's Humid			
	1.5	0.0918		Puraina E	quipment	Peristaltic			
	2 3	0.1631 0.3670		Sampling I Decon	Equipment	Peristaltic/Horiba	I		
	4	0.6525		Riser D	iameter	Alconox 2"			
	5	1.0195		Well Volume	Calculation	1.44			
	<u> </u>	1.4681 2.6100							
	10	4.0782							
	12	5.8726							
	Well Volume Gallons = Multiplier x Le	ngth of Water Column							
	L		I						
			[1	Disastus L OC	Construct		Denth 1	Durrent
Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
					(mg/E)	(mo/cm)		Water	Trate
835	0							4.01	
									<u> </u>
055	2.0	110	0.00	10.01	1.00	1.07	40	5.04	
855	~2.0	442	8.26	18.91	1.69	1.07	-43	5.94	
									1
920				Meter Mainter	nace				
930	~4.5	260	8.25	16.53	0.0	1.12	-37	7.04	
						-			
945	~6.0	112	8.14	15.87	0.0	1.15	-51	7.56	
					0.0				
	~8.5	49.9	8.15	15.93	0.0	1.15	-66	8.22	
									1
									<u> </u>
									+
		<u> </u>				<u> </u>			
									<u> </u>
									<u> </u>

LOW FLOW STABILIZATION SAMPLING LOGS

	Site Name Site Location	Valente Lume	esienkiu.	vi			4			
	Sampled By	VL-OW-OI				Azt	ech Env	010843	ental	
	Well Informa	Flush	1				A LaBella	Company		
	Measuring Point	TOC	1		wed when the follows consecutive 3-5 min	ng changes are noted te readings:				
	Measuring Point Elevation				± 0.1 change in pH					
	Depth to Water	2.10	-	13	% change in conduc	Divity				
	Depth to Bottom of Well	13.34	1		0 millivolt change in 0 change in DO and 1					
	Dia. Well	Well Volume Multiplier	1		ate	9/21/22	1			
	1	0.0408		Purging E	Purging Equipment					
	2 3	0.1631 0.3670	-	Decon	Equipment Method	Perstatic Destatic cullents				
	4 5	0.6525			iameter Calculation	1.83				
	6 8 10 12 Well Volume Gallions ≈ Multipli Column	1.4681 2.6100 4.0782 5.8726 er x Length of Water	1145	EPA 53T LZZI PAK-	VL-OW-OI Sampled for: EPA 537 PFAS L221 PAC-Negotive					
				tinativ		itrate/Nitv	ite.	Death to	Dumolog	
Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate	
1035	Began Purge	11. S. H. H. S.								
1040		278	7.20	18.12	0.83	D.437	-82			
1045	05	241	7.12	17.87	0.00	0430	-94			
10:50		222	7.18	17.87	0.00	0.438	-93			
1055	1.0	192	7.08	17.52	0.00	0.432	-99			
1100		168	7.00	17.56	0.02	0.432	-96			
1105	1.S	143	6.89	17.56	0.00	0.430	-91			
1110		105	6.57	17.56	0.00	0.432	-95			
1115	20	78.0	6.51	17.62	0.00	0435	-73			
1120		85.8	6.57	17.59	0.00	0.438	-77			
1125	2.5	68.7	6.68	17.85	D.00	0.438	-81			
1130		65.2	6.63	17.84	0.00	0.439	-81			
1135	3.0	60.9	2.85.112.11	17.91	0.00	0.439	-86			
1140		60.0	6.71	17.93	0.00	0.439	-84			
	Ended purge.									

	Site Location Well ID	Valente Lumbe Regenkill,NY VL-OV-02	wdl	appears to te above 7 OC mixed :	have sum	k, Azt	ech Env	A vironmo	ental	1
	Sampled By	NW	at 7	OC Miked	shehtly at		TECHN	Company		
	Flush Mount or Riser	flush	pung	le start	- /					
	Measuring Point	TOC	1 1		ved when the followin consecutive 3-5 minu	ng changes are noted ite readings:	Seale /1	end for	11	
	Measuring Point Elevation	O-at toc	-		± 0.1 change in pH		apric/ 1	erch he	C	
	Depth to Water Depth to Bottom of Well	96.54 G			% change in conduc		020			
	Departo Dottorin of Pres	0.01	1		0 millivolt change in 0 change in DO and T					
	Dia Well	Well Volume Multiplier	1	Da		921	1			
	1.5	0.0408		Purging E	quipment	pertstallic				
	2 3	0.1631 0.3670		Sampling I Decon	Method	Hignor				
	4 5	0.6525		Riser D Well Volume		4.18				
/	6 8/ 10 12 Well Volume Gallons = Multipli Column	1.4681 2.6100 4.0782 5.8726 ier t Length of Water								
Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature ()	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate	
835	Purge Start	/			(ngre)	(insidin)		Water	300	
\$40	.25	230	6.63	18.31	.54	,475	37	1.24		P
)84S	. 4	186	6.60	17.73	0.0	.481	46	1.51		[
९६२०	. 6	186	6.56	17.50	0.0	.486	54	1.70		
0855	. 8	182	6.61	17.21	0.0	.486	50	1.91		
0900	1.0	184	6.55	16.55	0.0	.488	57	2.15		
0905		82	6.49	16.35	0.0	.491	64	2.42		
0910	1,4	38.0	6:46	16.04	0.0	-493	56	3.06		
0915	1.6	S4.0	6.58	16.18	O.O	.492	45	3.45		
0920	1.8	66.1	653	16.16	0.0	,490	43	3.80		
0925	2.0	44.8	6.56	16.19	0.0	.489	38	4.05		
0930	ን.ታ	33.0	6.64	16.35	0, G	.486	27	4.31		
093S	2.4	32.1	6.61	16.39	0.0	-486	28	4.41		
0940	2.6	27.4	6.58	16.44	0.0	0485	30	4.SO		
0945	2,8	18.1	6.65	16.43	0.0	.483	31	4.55		
0950	3.0	18.0	6.66	16.35	0.0	-482	34	4,70		
0955	3-2	17.2	6.67	16.52	0.0	.479	35	4.83		

	Site Name Site Location Well ID Sampled By	Kelerte Winder Reskrikinin VZ-OW-OJ NW				Azt	ech Env	ironm	ental
	Well Informa	Stard Street and Street and Street	1				A LaBella	Company	
	Flush Mount or Riser	Flush	1						
	Measuring Point	TOC	1	Stabilization is achiev					
	Measuring Point Elevation	ice	-	over three o	onsecutive 3-5 minu				
			-		± 0.1 change in pH				
	Depth to Water	0 - at TOC	4	± 34	% change in conduct	bvity			
	Depth to Bottom of Well	8.54			millivoit change in 0 change in DO and T				
	1		1	C. B. C. B.			1		
	Dia. Well	Well Volume Multiplier 0.0408		Da Weat		9/21/12	-		
	1.5	0.0918	1	Purging Ec	quipment	Aristaitie			
	2 3	0.1631 0.3670		Sampling E Decon M	ethod	peastaitic			
	4	0.6525	1	Riser Di	ameter	alicnes	1		
	5	1.0195	1	Well Volume	Calculation	4.18	1.		
	6 8	1.4681 2.6100							
	10	4.0782							
	12	5.8726							
	Well Volume Gallons = Multipli Column	er x Length of Water							
					Dissolved O2	Conductivity		Depth to	Pumping
Time	Volume Removed (Gallons)	Turbidity (NTU)	pH	Temperature (F)	(mg/L)	(mS/cm)	ORP (mV)	Water	Rate
000	3.4	16.4	6,64	16,54	(1990)	.479	40	4.90	
1005	Sample	\sim	\sim	\sim	\sim	\sim	\sim	\sim	-

	Site Name Site Location	Valente Lum Atestenkilliniy	ber .					4	
	Well ID Sampled By	N-0N-03				Azt	ech En	vironme	ental
	Well Inform	10 10 10 10 10 10 10 10 10 10 10 10 10 1				-	A LaBell	a Company	
	Flush Mount or Riser	Ausn		Stabilization is achie	wed when the follows	ng changes are noted			
	Measuring Point	TOC	-		consecutive 3-5 minu				
	Measuring Point Elevation Depth to Water	2.41	1		± 0.1 change in pH				
	Depth to Bottom of Well	± 3% change in conductivity ± 10 millivot change in ORP							
		12.82	-		change in DO and T				
	Dia. Well	Well Volume Multiplier 0.0408	-		ther	SI/21/22]		
	1.5	0.0918 0.1631	1	Purging E		peristatic	1		
	3	0.3670		Decon	Method	pensituti	1		
	4 5	0.6525			iameter Calculation	1.70			
	6 8 10 12	1.4681 2.6100 4.0782 5.8726	0935	5 VL-ON-03 sampled for: EPA 537 PFAS					
	Well Volume Gallons = Multipl Column	ler x Length of Water]	EPA 300	C-Negative Nitroger	litrite			
Time	Volume Removed (Gallons)	Turbidity (NTU)	pН	Temperature (F)	Dissolved O2 (mg/L)	Conductivity (mS/cm)	ORP (mV)	Depth to Water	Pumping Rate
0825	Began Ruge							2.41	
0830		119	7.58	19.10	0.95	0.715	-53	2.86	
0835	0.5	110	7.40	18.92	0.00	0.725	-83	3.12	
0840		95.2	7.39	18.61	0.00	0.734	-84	3.30	
0845	10	85.6	7.31	18.63	10.0	0.134	-85	3.37	
0850		80.6	7.36	18.81	0.00	0.137	-86	3.46	
0855	1.5	75.6	7.28	18.57	0.03	0.740	-83	3.62	
0900		74.5	7.28	18.57	0.00	0.740	-87	3.77	
0905	2.0	73.4	7.27	18.54	0.00	0.740	-88	3.91	
0910		66.2	7.23	18.46	0.01	0.742	-85	4.03	
0915	2.5	65.0	7.22	18.39	0.00	0.741	-86	4.16	
0920		66.8	7.21	18.33	0.00	0.743	-87	4.22	
0915	3.0	66.9	7.21	18.32	0.01	0.740	-88	4.26	
1930		65.4	7.19	18.29	0.00	0.740	-87	4.31	
	Ended purge								

LABORATORY ANALYTICAL REPORTS

March 13, 2023 (Revised 4-18-2023)

Brittany O'Brien-Drake New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233

RE: Site Summary Report (Rev. 4-18-2023) Algonquin Middle School PFAS Assessment #2105197 Cooper Tire, 20 Chain Mountain Way, Poestenkill, NY Tax parcel ID: 136.-9-33

Aztech Environmental Technologies Inc. (Aztech), a LaBella company, has provided this report to document overburden soil and groundwater assessment methodologies and sampling results for the above referenced location. All field investigation activities were performed at the discretion of and in accordance with the scope of work (SOW) developed and provided by the New York State Department of Environmental Conservation (NYSDEC).

The property is currently utilized by Cooper Tire (CT) as a used auto parts business with operations located on the majority of the property. The approximate 14.02-acre parcel is located along the eastern side of Chain Mountain Way and west of NY RT 351. The property has a downward gradient from east to west, towards Chain Mountain Way and the central portion of the property is relatively flat. A garage/residence is located on the southern portion of the property. The attached **Figure 1** depicts property features and boundaries.

Overburden soil encountered during drilling activities consisted primarily of fine sand and silt with some gravel and clay. Various amounts of shale fragments typically increased in depth to tooling refusal. Shale fragments in the sampler shoe at terminal boring depth is noted on boring logs. The property contains numerous exposures of fractured shale bedrock and has been excavated in areas to create flat surfaces for auto parts storage.

Prior to intrusive groundwork, a UDig NY utility clearance ticket was ordered for the property. Additionally, a private utility locating contractor performed utility clearance with ground penetrating radar (GPR) at each boring location on August 9, 2022. Boring locations confirmed as clear were painted white and marked with a white flag.

SUMMARY OF FIELD INVESTIGATIONS:

Air monitoring

Air monitoring was conducted during all ground-intrusive work at the property (August 19, 2022) in accordance with the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan (CAMP). One dedicated Dust Trak unit with photo-ionization detector (PID) was positioned upwind with a second dedicated unit placed downwind at each boring location. No exceedances for volatile organic compounds (VOCs) or particulates were recorded.

Soil Boring and Monitoring Well Installation

On August 19, 2022, Clean Globe Environmental (CGE) advanced soil borings (CT-SB-01 through CT-SB-07) utilizing a Geoprobe 7822DT and direct-push techniques to terminal depths ranging from 1.0 to 21.5 feet below grade (fbg). All boring locations, with the exception of CT-SB-02, confirmed shallow depth to bedrock at 9 fbg or less. CT-SB-02 was advanced in a mixture of clay, gravel, and wood to refusal drill

tooling refusal at 19 fbg. At the request of NYSDEC, CT-SB-02 was side-stepped at 19 fbg and macro cored until refusal at 21.5 fbg. Fill material, consisting of organic matter, wood, cobbles, and glass fragments, was encountered in soil boring CT-SB-02 ranging in depth from 3.0 to 21.5 fbg. Of the seven (7) total boring locations, one (1) was converted to a monitoring well (CT-SB-01). Aztech provided oversight of drilling activities and performed soil headspace screening, soil classification, and both soil and groundwater sampling.

The monitoring well (CT-OW-O1) was installed by over-drilling the borehole utilizing 4 ¼" inner diameter (ID) hollow stem augers. The well assembly consisted of 2-inch polyvinyl chloride (PVC) 10-slot screen set to straddle the water table and casing to grade. A number 2 filtration sand was installed to fill the borehole annulus to approximately one (1) to two (2) feet above the screened interval. Bentonite chips were added atop the sand to seal the casing from surface water intrusion and subsequently hydrated with certified per-and polyfluoroalkyl substance (PFAS)-free water. Native soil and well sand were added as needed to the finish grade. The well was finished within a steel stick-up. The newly installed groundwater monitoring well specifications are presented below in **Table 1.** Individual boring logs are attached. The monitoring well location is depicted on the attached Figure 1. An attempt to develop CT-OW-O1 was made on September 28, 2022 using a bailer to remove a targeted 10 well volumes. However, the monitoring well went dry at approximately 0.5 gallons.

TABLE 1 Monitoring Well Specifications												
Well ID	Borehole Depth	Well Diameter	Screened Interval	Sand Packed Interval	Bentonite Seal	Observed DTW*						
	(Feet)	(Inches)	(Feet)	(Feet)	(Feet)	(Feet)						
WM-0W-01	9	2	9.0 - 4.0	9.0 - 2.0	2.0 - 1.0	Dry						
Notes:												
Well drilled/installed by Clean Globe Environmental (CGE)												
*Depth to Water (DTW) as measured on September 28, 2022 from top of casing (TOC)												

Surface Soil Sampling

On August 19, 2022, one (1) surface soil sample (CT-SS-01) was collected with a decontaminated stainless-steel trowel from the naturally formed stormwater swale. The surface soil sample was analyzed for PFAS compounds by analytical method 537M. The approximate location of the sample is depicted on Figure 1.

Soil Sampling

Individual soil samples were visually classified and headspace screened with a PID calibrated to a 100 part per million (ppm) isobutylene calibrant gas. Soil samples from select boring locations were collected from the following depth intervals:

- Surface grade to 2 -inch below grade (BG), beneath vegetative cover,
- 2-inch BG to 12-inch BG, and
- Air/water interface (water table) as observed in borehole.

The actual number of soil samples was dependent on field conditions. A total of sixteen (16) depth discrete subsurface soil samples were collected from the seven (7) soil borings and analyzed for PFAS compounds by analytical method 537M for soil. A soil sample collected from the 2-12" interval of boring CT-SB-02 was analyzed using the Synthetic Precipitation Leaching Procedure (SPLP) by Environmental Protection Agency (EPA) Method 1312 and the leachate subsequently analyzed for PFAS compounds by analytical method 537M. SPLP PFAS results are not considered reportable as it was determined that Con-

Test (a Pace Analytical Laboratory at East Longmeadow, MA and the NYSDEC's contracted lab for this project) did not hold the appropriate ELAP certification for EPA Method 1312 at the time of analysis.

Additional samples collected for the purpose of quality assurance/quality control (QA/QC) included one (1) equipment blank, one (1) matrix spike/matrix spike duplicate (MS/MSD), and one (1) field duplicate. The attached boring logs reference the parent sample for the field duplicate. The equipment blank collected on August 19, 2022 via the stainless-steel soil mixing bowl. Laboratory analytical results for the equipment blank sample did not record any compounds above the laboratory's minimum reporting limit (RL). Refer to **Table 2** for additional details.

Groundwater Sampling

One (1) groundwater sample was collected on September 28, 2022 from the newly installed overburden groundwater monitoring well, CT-OW-O1. Due to an insufficient volume of groundwater in the monitoring well, purging and water quality field parameters (temperature, pH, specific conductance, oxygen-reduction potential (ORP), dissolved oxygen (DO), and turbidity) could not be conducted prior to sample collection. Aztech collected one groundwater sample from CT-OW-O1 using a bailer prior to the monitoring well going dry. The sample was immediately placed on ice and transferred to Eurofins TestAmerica under chain of custody protocols. The groundwater sample was analyzed for PFAS compounds by EPA Method 537M.

DISCUSSION OF ANALYTICAL RESULTS

STANDARDS, CRITERIA, & GUIDANCE VALUES:

The following documents will be used to evaluate soil, groundwater, surface water, and sediment analytical results:

- Soil
 - Unrestricted Use and Residential Use soil guidance values from NYSDEC Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, November 2022.

Groundwater

- Screening levels identified in NYSDEC Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, November 2022
- New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised (TOGS 1.1.1), June 1998
- New York State Drinking Water Maximum Contaminant Level (MCL) for PFOA (10 ppt), PFOS (10 ppt), and 1,4-dioxane (1 ppb)

It is noted that the NYSDEC Standards, Criteria, & Guidance Values are listed in concentrations of parts per trillion (ppt), parts per billion (ppb), and parts per million (ppm) while laboratory analytical results are reported in equivalent concentrations. For example,

- In soil:
 - 1 ppt = 1 nanogram per kilogram (ng/kg),
 - \circ 1 ppb = microgram per kilogram (µg/kg), and
 - \circ 1 ppm = milligram per kilogram (mg/kg)
- In water:
 - 1 ppt = nanogram per liter (ng/L),
 - \circ 1 ppb = microgram per liter (µg/L), and
 - \circ 1 ppm = milligram per liter (mg/L).

Soil Results:

A total of 17 soil samples were collected and analyzed for PFAS compounds by analytical method 537M. Sixteen samples had one or more compounds detected. PFOA was recorded in three (3) samples at concentrations that are in excess of the Unrestricted Use guidance value of 0.66 ug/kg. These are CT-SB-01 (0.91 ug/kg), CT-SB-05 (3.4 ug/kg), and CT-SS-01 (1.8 ug/kg). PFOA was recorded in 11 soil samples

at concentrations ranging from an estimated 0.18 μ g/kg to 0.66 μ g/kg. Each of these concentrations are equal to or below the Unrestricted Use guidance value of 0.66 μ g/kg. PFOS was recorded in 12 samples and ranged in concentration from an estimated 0.17 μ g/kg to 0.6 μ g/kg. Each of these concentrations are below the Unrestricted Use guidance value of 0.88 μ g/kg.

PFAS compounds that were detected but do not have corresponding criteria include: 1H,1H,2H,2Hperfluorodecane sulfonic acid, PFBA, PDFA, PFHpA, PFHxA, PFNA, PFPeA, and PFUnA. The maximum concentration recorded for compounds without criteria was 1H,1H,2H,2H-perfluorodecane sulfonic acid at 0.69 μ g/kg. Refer to **Table 3** for additional details. Refer to **Appendix A** for the laboratory analytical reports.

Groundwater Results:

The groundwater sample collected from the monitoring well CT-OW-O1 on September 28, 2022 reported all PFAS compound concentrations below the laboratory RL and the 10 ng/L (ppt) drinking water MCL which is currently used as a screening level for surface water and groundwater results. However, reporting limits were elevated, ranging from 47 ng/L (ppt) to 120 ng/L (ppt), due to the turbidity of the sample. Refer to **Table 4** for additional details. Refer to Appendix A for the laboratory analytical reports

Further discussion on the findings and conclusions of the investigation of the Cooper Tire property are discussed within the main PFAS assessment report provided by CDM Smith.

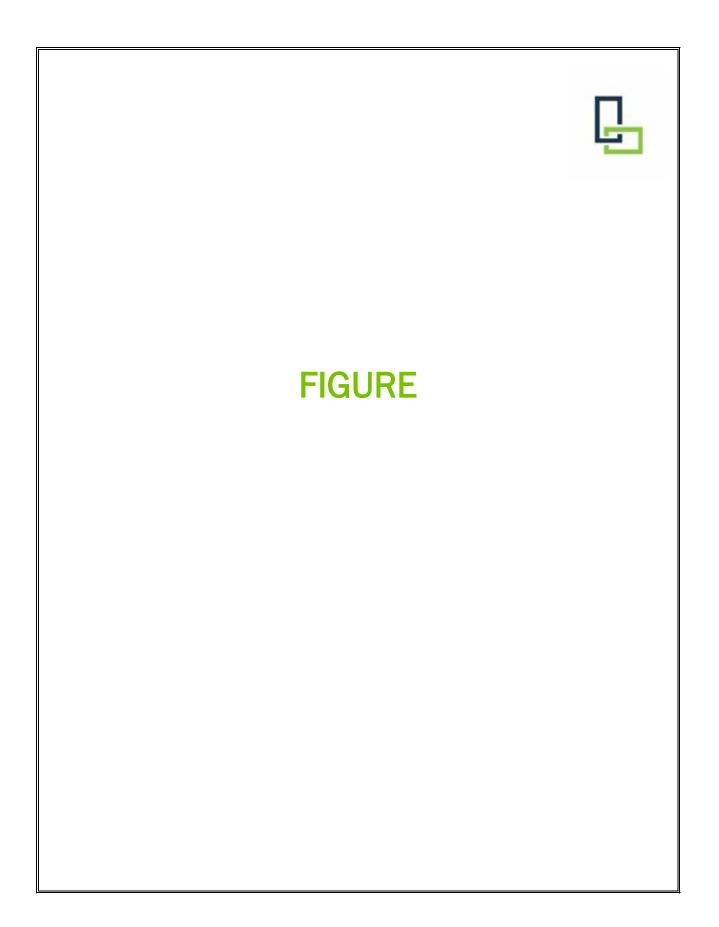
This report was prepared by Aztech with review and editorial input by the NYSDEC.

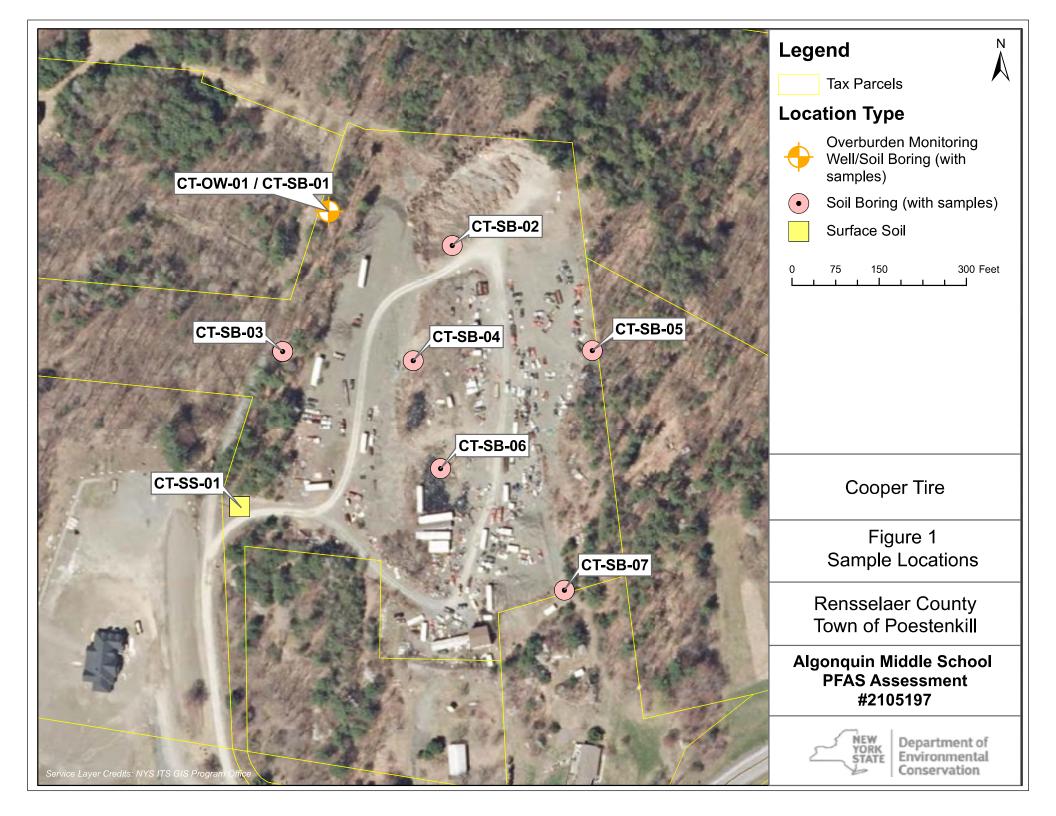
Respectfully submitted,

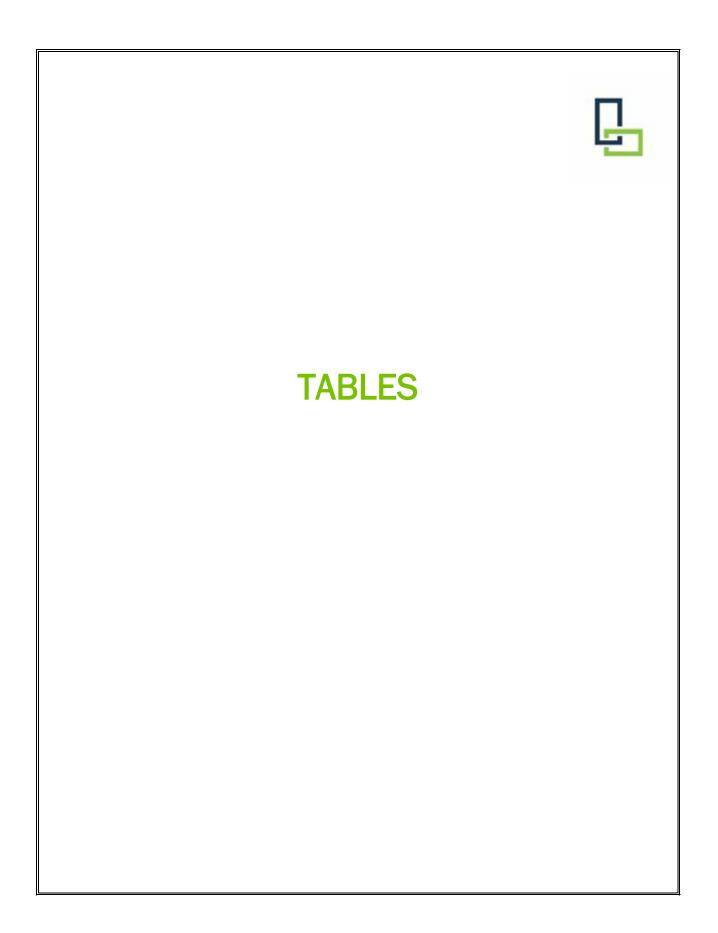
Aztech Environmental Technologies (a LaBella Company)

im Vavenchak

Sierra Vaverchak Environmental Geologist


I Randy Hoose certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10). All investigation and activities were performed in full accordance with the work plan provided by the NYSDEC.


may Hoor


Randy Hoose, P.G. Senior Hydrogeologist

Attachments:

Figure 1 – Site Map Table 2 – Equipment Blank, PFAS Results Table 3 – Soil, PFAS Results Table 4 – Groundwater, PFAS Results Boring Logs Appendix – A: Laboratory Analytical Reports

Table 2 Cooper Tire Disposal Area Equipment Blank, PFAS Results

		Client Sample ID: Lab Sample ID: Sample Date: Sample Type Code:		
Analyte	Unit	NYSDEC Guidelines ¹	Result	Qualifier
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11CI-PF3OUdS)	ng/L	NC	< 0.55	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/L	NC	< 0.52	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	ng/L	NC	< 0.24	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/L	NC	< 0.32	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ng/L	NC	< 0.3	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid (9CI-PF3ONS)	ng/L	NC	< 0.34	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L	NC	< 0.21	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	ng/L	NC	< 0.54	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	ng/L	NC	< 0.66	U
N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	NC	NA	
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	NC	NA	
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ng/L	NC	< 0.24	U
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ng/L	NC	< 0.2	U
Perfluoro-1-butanesulfonamide (FBSA)	ng/L	NC	< 0.16	U
Perfluoro-1-hexanesulfonamide (FHxSA)	ng/L	NC	< 0.27	U
Perfluoro-3-methoxypropanoic acid (PFMPA)	ng/L	NC	< 0.36	U
Perfluoro-4-methoxybutanoic acid (PFMBA)	ng/L	NC	< 0.29	U
Perfluorobutanesulfonic acid (PFBS)	ng/L	NC	< 0.24	U
Perfluorobutanoic Acid (PFBA)	ng/L	NC	< 0.64	U
Perfluorodecanesulfonic acid (PFDS)	ng/L	NC	< 0.28	U
Perfluorodecanoic acid (PFDA)	ng/L	NC	< 0.42	U
Perfluorododecanoic acid (PFDoA)	ng/L	NC	< 0.38	U
Perfluoroheptanesulfonic acid (PFHpS)	ng/L	NC	< 0.81	U
Perfluoroheptanoic acid (PFHpA)	ng/L	NC	< 0.3	U
Perfluorohexanesulfonic acid (PFHxS)	ng/L	NC	< 0.29	U
Perfluorohexanoic acid (PFHxA)	ng/L	NC	< 0.33	U
Perfluorononanesulfonic Acid (PFNS)	ng/L	NC	< 0.14	U
Perfluorononanoic acid (PFNA)	ng/L	NC	< 0.3	U
Perfluorooctane Sulfonamide (PFOSA)	ng/L	NC	< 0.36	U
Perfluorooctanesulfonic acid (PFOS)	ng/L	10	< 0.52	U
Perfluorooctanoic acid (PFOA)	ng/L	10	< 0.59	U
Perfluoropentanesulfonic Acid (PFPeS)	ng/L	NC	< 0.22	U
Perfluoropentanoic Acid (PFPeA)	ng/L	NC	< 0.34	U
Perfluorotetradecanoic acid (PFTeDA)	ng/L	NC	< 0.32	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/L	NC	< 0.24	U
Perfluoroundecanoic Acid (PFUnA)	ng/L	NC	< 0.32	U

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and*

Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: EB - Equipment Blank

ng/L - nanogram per liter = parts per trillion (ppt)

NC - No criteria currently exists

NA - Compound was not analyzed for

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above applicable NYSDEC Standards, Criteria, & Guidance Values

Table 3 Cooper Tire Disposal Area Soil, PFAS Results

			Client Sample ID:		01 0-12IN		1 2-12IN		1 96-108IN		02 0-2IN		2 2-12IN
			Lab Sample ID:		262-01		262-02		.262-03		262-07		262-08
			Location ID:	_	SB-01		SB-01	-	SB-01		SB-02		B-02
			Sample Date:		/2022		/2022		9/2022		/2022	8/19/	
	1		Sample Type Code:		N		N		Ν		N	1	N
Analyte	Unit	Unrestricted Use	Residential Use Guidance	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer
Analyte	onic	Guidance Value ¹	Value ¹	nesure	Quanter	nesure	Qualifici	nesure	Qualifier	Result	Quanter	Result	Quanter
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	μg/kg	NC	NC	< 0.13	U	< 0.13	U	< 0.14	U	< 0.13	U	< 0.13	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	μg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.13	U	< 0.12	U	< 0.12	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	μg/kg	NC	NC	< 0.084	U	< 0.084	U	< 0.09	U	< 0.087	U	< 0.088	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	μg/kg	NC	NC	< 0.1	U	< 0.1	U	< 0.11	U	< 0.11	U	< 0.11	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	μg/kg	NC	NC	< 0.15	U	< 0.15	U	< 0.16	U	< 0.15	U	< 0.15	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	μg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.12	U	< 0.12	U	< 0.12	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	μg/kg	NC	NC	< 0.22	U	< 0.22	U	< 0.23	U	< 0.23	U	< 0.23	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	μg/kg	NC	NC	< 0.13	U	< 0.13	U	< 0.14	U	< 0.13	U	< 0.13	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.083	U	< 0.083	U	< 0.089	U	< 0.086	U	< 0.086	U
Nonafluoro-3,6-dioxaheptanoic acid	μg/kg	NC	NC	< 0.071	U	< 0.071	U	< 0.076	U	< 0.073	U	< 0.074	U
Perfluoro(2-ethoxyethane)sulfonic acid	μg/kg	NC	NC	< 0.075	U	< 0.075	U	< 0.08	U	< 0.078	U	< 0.078	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.14	U	< 0.15	U	< 0.15	U	< 0.15	U	< 0.15	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.14	U	< 0.14	U	< 0.15	U	< 0.14	U	< 0.14	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.086	U	< 0.086	U	< 0.092	U	< 0.089	U	< 0.09	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.084	U	< 0.084	U	< 0.09	U	< 0.087	U	< 0.088	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.07	U	< 0.07	U	< 0.075	U	< 0.072	U	< 0.073	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	0.51		< 0.061	U	< 0.065	U	< 0.063	U	< 0.063	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.11	U	< 0.11	U	< 0.11	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	0.076	1	< 0.059	U	< 0.063	U	0.09	l	< 0.061	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.07	U	< 0.07	U	< 0.075	U	< 0.072	U	< 0.073	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.14	U	< 0.14	U	< 0.15	U	< 0.14	U	< 0.14	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	0.26	J	< 0.066	U	< 0.07	U	< 0.068	U	< 0.069	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.073	U	< 0.073	U	< 0.078	U	< 0.076	U	< 0.076	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	0.22	1	< 0.085	U	< 0.091	U	< 0.088	U	< 0.089	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.13	U	< 0.13	U	< 0.13	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	0.26	1	< 0.075	U	< 0.08	U	0.11	l	0.086	1
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.089	U	< 0.089	U	< 0.095	U	< 0.092	U	< 0.093	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	8.8	0.43	J	< 0.062	U	< 0.066	U	0.46	J	0.29	l
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	6.6	0.91		0.18	J	< 0.14	U	0.22		0.19	
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.067	U	< 0.067	U	< 0.071	U	< 0.069	U	< 0.07	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	0.25	1	< 0.07	U	< 0.075	U	0.1	J	< 0.073	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.087	U	< 0.087	U	< 0.093	U	< 0.09	U	< 0.091	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	μg/kg	NC	NC	< 0.1	U	< 0.1	Ŭ	< 0.11	Ŭ	< 0.11	U	< 0.11	U
Perfluoroundecanoic Acid (PFUnA)	μg/kg	NC	NC	< 0.083	U	< 0.083	U	< 0.089	U.	< 0.086	u.	< 0.086	U
Notes:	1 10/ 10			1.100	17	1.1.00	1	1.100	1-	2.200	17	0.000	

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl*

Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

Table 3 Cooper Tire Disposal Area Soil, PFAS Results

			Client Sample ID:	CT-SB-02	240-246IN	CT-SB-C	03 0-2IN	CT-SB-0	3 2-12IN	CT-SB-0	3 60-72IN	CT-SB-0	04 0-2IN	CT-SB-05 0-2IN	
			Lab Sample ID:		262-09		262-04		262-05		262-06		262-15		262-13
			Location ID:		SB-02	CT-SB-03		CT-SB-03		CT-SB-03			B-04	CT-SB-05	
			Sample Date:	-	9/2022	8/19/		8/19/			/2022		/2022		/2022
			Sample Type Code:		N		N 1022	0,13,			N 2022		N		N 2022
		Unrestricted Use	Residential Use Guidance				N		•				v		
Analyte	Unit	Guidance Value ¹	Value ¹	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	μg/kg	NC	NC	< 0.15	U	< 0.14	U	< 0.13	U	< 0.13	U	< 0.13	U	< 0.13	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	μg/kg	NC	NC	< 0.14	U	< 0.13	U	< 0.12	U	< 0.12	U	< 0.12	U	< 0.12	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	μg/kg	NC	NC	< 0.097	U	< 0.091	U	< 0.088	U	< 0.084	U	< 0.084	U	< 0.087	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.12	U	0.69		< 0.11	U	< 0.1	U	< 0.1	U	< 0.11	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.17	U	< 0.16	U	< 0.15	U	< 0.15	U	< 0.15	U	< 0.15	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.13	U	< 0.12	U	< 0.12	U	< 0.11	U	< 0.11	U	< 0.12	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	μg/kg	NC	NC	< 0.25	U	< 0.24	U	< 0.23	U	< 0.22	U	< 0.22	U	< 0.23	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.15	U	< 0.14	U	< 0.13	U	< 0.13	U	< 0.13	U	< 0.13	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	μg/kg	NC	NC	< 0.096	U	< 0.09	U	< 0.086	U	< 0.083	U	< 0.083	U	< 0.086	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.082	U	< 0.077	U	< 0.074	U	< 0.071	U	< 0.071	U	< 0.073	U
Perfluoro(2-ethoxyethane)sulfonic acid	μg/kg	NC	NC	< 0.087	U	< 0.081	U	< 0.078	U	< 0.075	U	< 0.075	U	< 0.077	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.17	U	< 0.16	U	< 0.15	U	< 0.14	U	< 0.14	U	< 0.15	U
Perfluoro-1-hexanesulfonamide (FHxSA)	μg/kg	NC	NC	< 0.16	U	< 0.15	U	< 0.14	U	< 0.14	U	< 0.14	U	< 0.14	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.1	U	< 0.093	U	< 0.09	U	< 0.086	U	< 0.086	U	< 0.089	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.097	U	< 0.091	U	< 0.088	U	< 0.084	U	< 0.084	U	< 0.087	U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	NC	< 0.081	U	< 0.076	U	< 0.073	U	< 0.07	U	< 0.07	U	< 0.072	U
Perfluorobutanoic Acid (PFBA)	μg/kg	NC	NC	< 0.07	U	0.22	J	0.098	J	< 0.061	U	< 0.06	U	0.22	J
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.11	U	< 0.11	U	< 0.11	U	< 0.11	U
Perfluorodecanoic acid (PFDA)	μg/kg	NC	NC	< 0.068	U	0.098	J	< 0.061	U	< 0.059	U	< 0.058	U	0.08	J
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.081	U	< 0.076	U	< 0.073	U	< 0.07	U	< 0.07	U	< 0.072	U
Perfluoroheptanesulfonic acid (PFHpS)	μg/kg	NC	NC	< 0.16	U	< 0.15	U	< 0.14	U	< 0.14	U	< 0.14	U	< 0.14	U
Perfluoroheptanoic acid (PFHpA)	μg/kg	NC	NC	0.08	1	0.14	J	0.18	J	0.087	J	< 0.065	U	0.14	J
Perfluorohexanesulfonic acid (PFHxS)	μg/kg	NC	NC	< 0.084	U	< 0.079	U	< 0.076	U	< 0.073	U	< 0.073	U	< 0.075	U
Perfluorohexanoic acid (PFHxA)	μg/kg	NC	NC	< 0.098	U	0.28	J	0.19	J	0.096	J	< 0.085	U	0.11	J
Perfluorononanesulfonic Acid (PFNS)	μg/kg	NC	NC	< 0.14	U	< 0.13	U	< 0.13	U	< 0.12	U	< 0.12	U	< 0.13	U
Perfluorononanoic acid (PFNA)	μg/kg	NC	NC	0.23	1	0.20	1	< 0.078	U	< 0.075	U	< 0.075	U	0.17	l
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.1	U	< 0.096	U	< 0.093	U	< 0.089	U	< 0.089	U	< 0.092	U
Perfluorooctanesulfonic acid (PFOS)	μg/kg	0.88	8.8	0.45	1	0.49	1	0.20	1	0.17	1	< 0.061	U	0.39	1
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	6.6	0.52	1	0.52		0.66		0.39	1	0.18	1	0.58	
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.077	U	< 0.072	U	< 0.07	U	< 0.067	U	< 0.066	U	< 0.069	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	< 0.081	U	0.24	l	0.20	l	0.11	1	< 0.07	U	0.16	J
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.1	U	< 0.094	U	< 0.091	U	< 0.087	U	< 0.087	U	< 0.09	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.12	U	< 0.11	U	< 0.11	U	< 0.1	U	< 0.1	U	< 0.11	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	< 0.096	U	0.12	J	< 0.086	U	< 0.083	U	< 0.083	U	< 0.086	U
	1.0,	-													

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl*

Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

Table 3 Cooper Tire Disposal Area Soil, PFAS Results

			Client Sample ID:	DUP 20	0220819	CT-SB-0	5 2-12IN	CT-SB-	06 0-2IN	CT-SB-	07 0-2IN	CT-SB-	07 2-12IN	CT-SS-01	1 20220819	
			Lab Sample ID:	22H1	262-18	22H1	262-14	22H1	262-10	22H1262-11		22H	1262-12	22H1262-16		
			Location ID:	CT-SB-	05 0-21N	CT-S	B-05	CT-SB-06		CT-SB-07		СТ	-SB-07	CT-	CT-SS-01	
			Sample Date:	8/19/2022		8/19	/2022	8/19	/2022	8/19	/2022	8/19/2022		8/19/2022		
			Sample Type Code:	FD.			N		N		N	N		N		
		Unrestricted Use	Residential Use Guidance													
Analyte	Unit	Guidance Value ¹	Value ¹	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	Result	Qualifer	
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	μg/kg	NC	NC	< 0.12	U	< 0.13	U	< 0.13	U	< 0.12	U	< 0.13	U	< 0.13	U	
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	μg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.12	U	< 0.11	U	< 0.12	U	< 0.12	U	
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	μg/kg	NC	NC	< 0.082	U	< 0.085	U	< 0.087	U	< 0.082	U	< 0.083	U	< 0.082	U	
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	μg/kg	NC	NC	< 0.1	U	< 0.11	U	< 0.11	U	< 0.1	U	< 0.1	U	< 0.1	U	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	μg/kg	NC	NC	< 0.14	U	< 0.15	U	< 0.15	U	< 0.14	U	< 0.14	U	< 0.14	U	
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	μg/kg	NC	NC	< 0.11	U	< 0.12	U	< 0.12	U	< 0.11	U	< 0.11	U	< 0.11	U	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	μg/kg	NC	NC	< 0.21	U	< 0.22	U	< 0.23	U	< 0.21	U	< 0.22	U	< 0.22	U	
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	μg/kg	NC	NC	< 0.13	U	< 0.13	U	< 0.13	U	< 0.12	U	< 0.13	U	< 0.13	U	
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	μg/kg	NC	NC	< 0.081	U	< 0.084	U	< 0.086	U	< 0.081	U	< 0.082	U	< 0.081	U	
Nonafluoro-3,6-dioxaheptanoic acid	μg/kg	NC	NC	< 0.069	U	< 0.072	U	< 0.073	U	< 0.069	U	< 0.07	U	< 0.07	U	
Perfluoro(2-ethoxyethane)sulfonic acid	μg/kg	NC	NC	< 0.073	U	< 0.076	U	< 0.077	U	< 0.073	U	< 0.074	U	< 0.074	U	
Perfluoro-1-butanesulfonamide (FBSA)	μg/kg	NC	NC	< 0.14	U	< 0.15	U	< 0.15	U	< 0.14	U	< 0.14	U	< 0.14	U	
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.13	U	< 0.14	U	< 0.14	U	< 0.13	U	< 0.14	U	< 0.14	U	
Perfluoro-3-methoxypropanoic acid	μg/kg	NC	NC	< 0.084	U	< 0.087	U	< 0.089	U	< 0.084	U	< 0.084	U	< 0.084	U	
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.082	U	< 0.085	U	< 0.087	U	< 0.082	U	< 0.083	U	< 0.082	U	
Perfluorobutanesulfonic acid (PFBS)	μg/kg	NC	NC	< 0.068	U	< 0.071	U	< 0.072	U	< 0.068	U	< 0.069	U	< 0.069	U	
Perfluorobutanoic Acid (PFBA)	μg/kg	NC	NC	0.081	J	< 0.061	U	< 0.063	U	< 0.059	U	< 0.06	U	< 0.06	U	
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.1	U	< 0.11	U	< 0.11	U	< 0.1	U	< 0.1	U	< 0.1	U	
Perfluorodecanoic acid (PFDA)	μg/kg	NC	NC	0.085	J	< 0.059	U	< 0.061	U	< 0.057	U	< 0.058	U	< 0.058	U	
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.068	U	< 0.071	U	< 0.072	U	< 0.068	U	< 0.069	U	< 0.069	U	
Perfluoroheptanesulfonic acid (PFHpS)	μg/kg	NC	NC	< 0.13	U	< 0.14	U	< 0.14	U	< 0.13	U	< 0.13	U	< 0.13	U	
Perfluoroheptanoic acid (PFHpA)	μg/kg	NC	NC	0.12	J	< 0.067	U	< 0.068	U	< 0.064	U	< 0.065	U	< 0.065	U	
Perfluorohexanesulfonic acid (PFHxS)	μg/kg	NC	NC	< 0.071	U	< 0.074	U	< 0.075	U	< 0.071	U	< 0.072	U	< 0.072	U	
Perfluorohexanoic acid (PFHxA)	μg/kg	NC	NC	0.096	J	< 0.086	U	< 0.088	U	< 0.083	U	< 0.084	U	< 0.083	U	
Perfluorononanesulfonic Acid (PFNS)	μg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.13	U	< 0.12	U	< 0.12	U	< 0.12	U	
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	0.13	J	< 0.076	U	< 0.077	U	< 0.073	U	< 0.074	U	< 0.074	U	
Perfluorooctane Sulfonamide (FOSA)	μg/kg	NC	NC	< 0.087	U	< 0.09	U	< 0.092	U	< 0.086	U	< 0.087	U	< 0.087	U	
Perfluorooctanesulfonic acid (PFOS)	μg/kg	0.88	8.8	0.35	J	< 0.062	U	0.60		0.19	J	0.1	B J	< 0.061	U	
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	6.6	0.55		3.4		< 0.13	U	< 0.13	U	0.3	6 J	1.8	3	
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.065	U	< 0.068	U	< 0.069	U	< 0.065	U	< 0.066	U	< 0.066	U	
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	< 0.068	U		U	< 0.072	U	< 0.068	U	< 0.069	U	< 0.069	U	
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.085	U	< 0.088	U	< 0.09	U	< 0.085	U	< 0.085	U	< 0.085	U	
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.1	U		U	< 0.11	U	< 0.099	U	< 0.1	U	< 0.1	U	
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	NC	0.082	J	< 0.084	U	< 0.086	Ŭ	< 0.081	υ	< 0.082	υ	< 0.081	U	
Noto:	10/10								-							

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl*

Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

Table 4Cooper Tire Disposal AreaGroundwater, PFAS Results

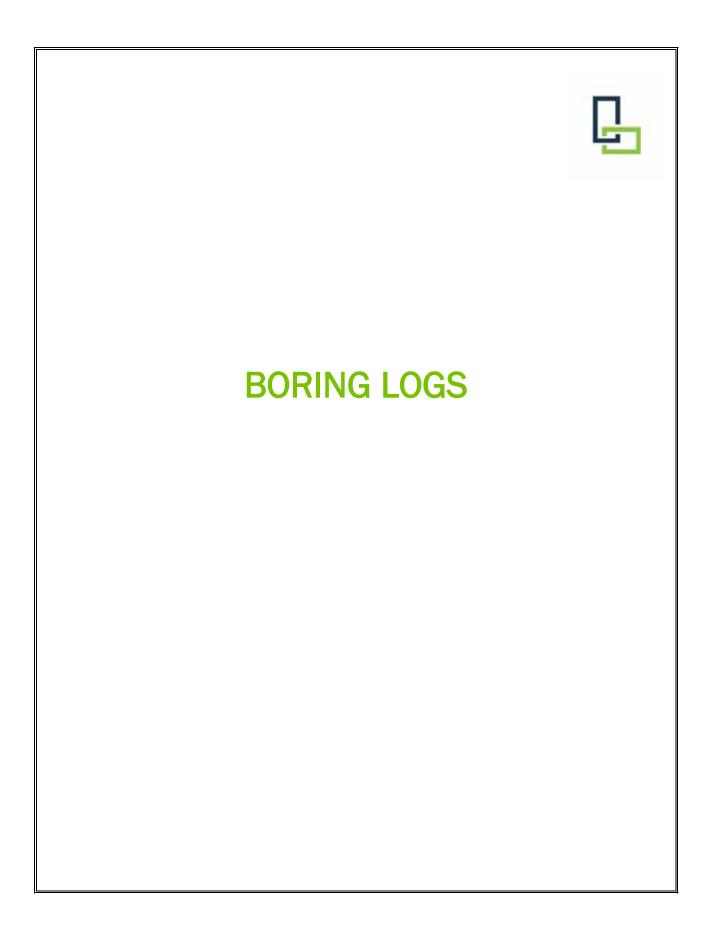
	Cli	ent Sample ID:	CT-OW-C	1-20220928
		Lab Sample ID:	480-2	202196-2
		Location ID:	CT-	OW-01
		Sample Date:	9/2	8/2022
	Sam	ple Type Code:		Ν
Australia	11	NYSDEC	Desuit	Qualifian
Analyte	Unit	Guidelines ¹	Result	Qualifier
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/L	NC	< 47	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/L	NC	< 120	U
N-ethyl perfluorooctanesulfonamidoacetic acid	ng/L	NC	< 120	U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	NC	< 120	U
Perfluorobutanesulfonic acid (PFBS)	ng/L	NC	< 47	U
Perfluorobutanoic Acid (PFBA)	ng/L	NC	< 120	U
Perfluorodecanesulfonic acid (PFDS)	ng/L	NC	< 47	U
Perfluorodecanoic acid (PFDA)	ng/L	NC	< 47	U
Perfluorododecanoic acid (PFDoA)	ng/L	NC	< 47	U
Perfluoroheptanesulfonic acid (PFHpS)	ng/L	NC	< 47	U
Perfluoroheptanoic acid (PFHpA)	ng/L	NC	< 47	U
Perfluorohexanesulfonic acid (PFHxS)	ng/L	NC	< 47	U
Perfluorohexanoic acid (PFHxA)	ng/L	NC	< 47	U
Perfluorononanoic acid (PFNA)	ng/L	NC	< 47	U
Perfluorooctane Sulfonamide (FOSA)	ng/L	NC	< 47	U
Perfluorooctanesulfonic acid (PFOS)	ng/L	10	< 47	U
Perfluorooctanoic acid (PFOA)	ng/L	10	< 47	U
Perfluoropentanoic Acid (PFPeA)	ng/L	NC	< 47	U
Perfluorotetradecanoic acid (PFTA)	ng/L	NC	< 47	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/L	NC	< 47	U
Perfluoroundecanoic Acid (PFUnA)	ng/L	NC	< 47	U

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS),* November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

ng/L - nanogram per liter = parts per trillion (ppt)


NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above applicable NYSDEC Standards, Criteria, & Guidance Values

Site Name:	NYSDEC - Algonquin N	Middle School Dat	e Drilled	- August 19, 2022
Location: Co	oper Tire	Dril	ling Co.:	Clean Globe Environmental Powered by partnership.
Client: NYSDE	C	Dril	ler:^	ario Pineda Soil Samples Collected:
	N/A			B.Baulsir CT-SB-01 0-2"
-				TD: see samples collected (Dia): N/A
	9'			
				Diameter: ^{2"}
				Diameter:2"
				Wellhead Prot:teel stick up
		• •		Grouted Interval:N/A
		, he		
Depth Mc (Feet) C	nitoring We ll Construction	Recovery;	PID (ppm):	Description / Soil Classification
	Steel Standpipe		110	
	2"cap Native Soil & Well Sand		< 1.0	0' - 3.0' Brown fine SAND and SILT, some weathered shale fragments and gravel
	Bentonite	S-1: 0' - 5.0' Rec: 5.0'/5.0'		3.0' - 4.0' Cobble
5			3.5	4.0' - 5.0' Brown fine SAND and SILT, some Gravel
	2" PVC Riser	S-2: 5.0' - 9'	3.8	5.0' - 9.0' Brown fine SAND, SILT, and GRAVEL with lenses of fine Gravel
	#2 Well Sand	Rec: 4.0'/4.0'		
	PVC Screen			End of boring (refusal), weathered shale bedrock in sampler shoe @ 9.0' Groundwater was not encountered
				CT-OW-01 monitoring well installed
15 — - -				
-				
20 -				
-				
25 -				
-				
30 -				

Construction Recovery: (ppm): Description / Soli Classification 0 2.5 0' - 3.0' Brown fine SAND and SILT, some fine Gravel 5 S-1: 0' - 5.0' Rec: 2.0'/5.0' <1.0 3.0' - 6.0' Brown SILT and CLAY, some fine Gravel 5 S-2: 5.0' - 10' Rec: 2.0'/5.0' <1.0 3.0' - 6.0' Brown SILT and CLAY, some fine Sand, cinders, concrete, brick, and wood 5 S-2: 5.0' - 10' Rec: 2.0'/5.0' 3.7 6.0' - 17.5' Brown fine SAND and GRAVEL, trace Silt, wood, cobble, concrete, and glass 10 S-3: 10' - 15' Rec: 2.0'/5.0' <1.0 Cinders noted @ 10' - 17.5' 15 Rec: 2.0'/4.0' 1.9 17.5' - 20.5' CLAY, some Gravel and wood 20 S-5: 19' - 21.5' 5.1 20.5' - 21.5' Weathered shale fragments 20 S-5: 19' - 21.5' 5.1 20.5' - 21.5' Weathered shale bedrock in sampler shoe @ 21.5' 20 S-5: 19' - 21.5' 5.1 20.5' - 21.5' Weathered shale bedrock in sampler shoe @ 21.5' 20.5' - 21.5' S-11 End of boring (refusal), weathered shale bedrock in sampler shoe @ 21.5' 21.5' No monitoring well installed	MONITORING WELL / BOR	ING NO. CT-	SB-02	2	
Location: Dorlling Co:: Class Code Environment Silent: Marco Provala Silent: Type:	Site Name: NYSDEC - Algonquin	Middle School Date	e Drilled	August 19, 2022	LaBella
Phone No.: NA Logged by Bisular C1-58-02-0-2* Wrilling Method Generator 782: DT (main_2) Sampling Method: Main Communication Vell TD 21.5 (main_2) Sampled TD: see samples collected (main_2) C1-58-02: 0-2* C1-50* C1-0*	Location: Cooper Tire	Dril	ling Co.:	Clean Globe Environmental	Powered by partnership.
Phone No.: <u>NA</u> Logged by: <u>EBealar</u> CT3B-02.02* MSMSD Diffing Mothod: <u>Geometra 70207</u> _out2. Sampling Mothod: <u>Macro Corr</u>	Client: NYSDEC	Drill	ler: ^M	lario Pineda	· · · · · · · · · · · · · · · · · · ·
willing Method: Geoprate 722 DT Giao, T. Sampling Method: Macro Care Giao, T. CTSB-02212" CTSB-02242" Vell TD: NA Giao, MA Well Type: NA Diameter: NA Vell TD: NA Giao, MA Well Type: NA Diameter: NA Sased Interval: NA Type: NA Diameter: NA sand Pack Interval: NA Type: NA Well Top: NA entonite Seal Interval: NA Type: NA Grouted Interval: NA entonite Seal Interval: NA Type: NA Grouted Interval: NA entonite Seal Interval: NA Type: NA Grouted Interval: NA entonite Seal Interval: NA Type: NA Grouted Interval: NA entonite Seal Interval: NA Type: NA Grouted Interval: NA entonite Seal Recovery: (PID Construction Strip: 0:50 Strip: 0:50 strip: Strip: Strip: Strip: Strip: Strip:	Phone No.: N/A	Log	iged by:	B.Baulsir	
Vell TD:NA(ua), NAWell Type:NA Diameter:NA icreen Interval:NAType:NA Diameter:NA icand Pack Interval:NAType:NA Diameter:NA icreen Interval:NAType:NA Diameter:NA icreen Interval:NAType:NA Vellhead ProtNA icreen Interval:NAType:NA Grouted Interval:NA icreen Interval:NA NA	Drilling Method: Geoprobe 7822	DT(Dia):2"S	ampling	J Method: Macro Core (Dia): 2"	
Screen Interval: N/A Slot Size: N/A Diameter: N/A Diameter: N/A Type: N/A Diameter: N/A Diameter: N/A Type: N/A Diameter: N/A Diameter: N/A Type: N/A Grouted Interval: N/A epth Montoring Well Recovery: PID Description / Soil Classification epth Construction 2.5 0' - 3.0' Brown fine SAND and SILT, some fine Gravel Set: 0' - 5.0' Rec: 2.0/5.0' 3.0' - 6.0' Brown SILT and CLAY, some fine Sand. einders, concrete, brick, and wood Set: 0' - 1.0' Set: 10' - 10' Set: 10' - 10' Set: 10' - 17.5' Brown fine SAND and GRAVEL, trace Silt, wood, cobble, concrete, and glass Set: Set: 10' - 19' 3.7' Rec: 2.0'6.0' If.5' - 20.5' CLAY, some Gravel and wood Set: 10' - 15' Set: 10' - 19' 1.9 If.5' - 20.5' CLAY, some Gravel and wood Set: 10' - 15' Set: 10' - 17.5' Set: Set: 10' - 21.5' Weathered shale fragments End orong (relusa), weathered shale bedrock in	Drilled TD: 21.5'	(Dia): <u>2"</u> S	ampled	TD:	CT-SB-02 240-246"
cased Interval: NA Type: NA Diameter NA biand Pack Interval: NA Type: NA Wellhead Prot: NA bentonite Seal Interval: NA Type: NA Grouted Interval: NA epth Monitoring Well Recovery: (ppm): Description / Soil Classification epth Construction Recovery: (ppm): Description / Soil Classification epth So: 10 - 15' Soil - 10' Soil - 10' So: 20'5.0 <1,0	Well TD:	(Dia): <u>N/A</u> V	e: ^{N/A}		
Stand Pack Interval: NA Type: NA Wellhead Prot: N/A epth Monitoring Well Recovery: [PID] Description / Soil Classification epth Monitoring Well Recovery: [PID] Description / Soil Classification 0 2.5 0' - 3.0' Brown fine SAND and SILT, some fine Gravel 3.0' - 6.0' Srever SiLT and CLAY, some fine Gravel 3.0' - 6.0' 5.2: 5.0' - 10' 3.7' 6.0' - 17.5' 8.3: 10' - 15' Cinders noted @ 10' - 17.5' 8.3: 10' - 15' Rec: 2.0'5.0' 9.3.7 Rec:	Screen Interval:N/AS	ot Size:	I/A	Diameter: ^{N/A}	
Sentonite Seal Interval NA Type: NA Grouted Interval N/A eepth (construction Monitoring (Well Construction Recovery; PID (ppm); Description / Soil Classification 0 2.5 0'-3.0' Brown fine SAND and SiLT, some fine Gravel 2.6 0'-3.0' Brown fine SAND and SiLT, some fine Gravel 3.0'-6.0' Rec: 2.0'5.0' <1.0	Cased Interval: <u>N/A</u> T	ype:	A	Diameter:N/A	
Production Monitoring Well Construction Recovery; (PID) (Ppm); Description / Soil Classification 0 1 2.5 0° - 3.0° Brown fine SAND and SiLT, some fine Gravel 5 1:0° - 5.0° 8:0° - 6.0° Brown fine SAND and SiLT, some fine Sand, cinders, concrete, brick, and wood 5 5:1:0° - 5.0° 8:0° - 17.5° Brown fine SAND and GRAVEL, trace Silt, wood, cobble, concrete, and glass 10 5:2:5:0° - 10° 8:0° - 17.5° Brown fine SAND and GRAVEL, trace Silt, wood, cobble, concrete, and glass 10 5:3:10° - 15' Rec: 2.075.0° <1.0	Sand Pack Interval:N/A	Туре:	N/A	Wellhead Prot: ^{N/A}	
$\frac{1}{15}$ $\frac{1}{15}$	Bentonite Seal Interval:	₩AType:	N/A	_Grouted Interval:N/A	
2.5 0° - 3.0° Brown fine SAND and SILT, some fine Gravel S-1: 0° - 5.0° Rec: 2.0′5.0° <1.0	Depth Monitoring Well (Feet) Construction	Recovery;		Descriptio	l on / Soil Classification
S-1: 0' - 5.0' Rec: 2.0/5.0' <1.0	° –		2.5	0' - 3.0' Brown fine SAND and SIL	T, some fine Gravel
5 1.10 5.10 5.0 <td></td> <td>S-1: 0' - 5.0'</td> <td></td> <td></td> <td></td>		S-1: 0' - 5.0'			
10 S-2: 5.0' - 10' Re:: 2.0'5.0' 3.7 10 S-2: 5.0' - 10' Re:: 2.0'5.0' S-10' - 17.5' Brown fine SAND and GRAVEL, trace Silt, wood, cobble, concrete, and glass 10 S-3: 10' - 15' Re:: 2.0'5.0' <1.0		Rec: 2.0'/5.0'	<1.0	3.0' - 6.0' Brown SILT and CLAY, s	ome fine Sand, cinders, concrete, brick, and wood
10 S-2: 5.0° - 10° Rec: 2.0'/5.0° 15 S-3: 10° - 15' Rec: 2.0'/5.0° 15 S-4: 15' - 19' Rec: 2.0'/4.0° 1.9 Refusal @ 19" 17.5' - 20.5' CLAY, some Gravel and wood Refusal @ 19" 20 S-5: 19' - 21.5' Rec: 1.5/2.5' 5.1 20 Vision Control (Rec) 20 S-5: 19' - 21.5' Rec: 1.5/2.5' 5.1 20 Yis and macro cored the 19' to 21.5' 21 Note: At the request of the onsite NYSDEC representative, drilling stepped aside approximately 3', drive pointed to 19', and macro cored the 19' to 21.5' 20 Note: At the request of the onsite NYSDEC representative, drilling stepped aside approximately 3', drive pointed to 19', and macro cored the 19' to 21.5' 20 Interval until refusal.	5				
10 Image: Signal state of the state o		S-2: 5.0' - 10'	3.7	6.0' - 17.5' Brown fine SAND and GF	RAVEL, trace Silt, wood, cobble, concrete, and glass
15 <1.0		Rec: 2.0'/5.0'			
S-3: 10' - 15' Rec: 2.0'/5.0' S-4: 15' - 19' Rec: 2.0'/4.0' 1.9 17.5' - 20.5' CLAY, some Gravel and wood Refusal @ 19'* 20 S-5: 19' - 21.5' Rec: 1.5/2.5' 5.1 20 S-5: 19' - 21.5' Rec: 1.5/2.5' 5.1 20 S-6: 19' - 21.5' Rec: 1.5/2.5' 5.1 20.5' - 21.5' Weathered shale fragments End of boring (refusal), weathered shale bedrock in sampler shoe @ 21.5' Groundwater was not encountered No monitoring well installed 21.5' *Note: At the request of the onsite NYSDEC representative, drilling stepped aside approximately 3', drive pointed to 19', and macro cored the 19' to 21.5' interval until refusal. 30 30 Source approximately 3', drive pointed to 19', and macro cored the 19' to 21.5'	10		<1.0	Cinders noted @ 101 17	5
15 Rec: 2.0'/5.0' 18 S-4: 15' - 19' Rec: 2.0'/4.0' 1.9 20 17.5' - 20.5' CLAY, some Gravel and wood Refusal @ 19** 20 S-5: 19' - 21.5' Rec: 1.5/2.5' 5.1 20 0.5' - 21.5' Weathered shale fragments End of bring (refusal), weathered shale bedrock in sampler shoe @ 21.5' Groundwater was not encountered No monitoring well installed 25 1 26 1 27 1 28 1 29 10.5' - 21.5' Weathered shale fragments 20 21.5' 21.5' 1 20 1 21.5' 1 20 1 21.5' 1 21.5' 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 20 1 20 1 21.5' 1 20 1 21.5' 1 20<	-	S-3 [,] 10' - 15'			.0
20 Rec: 2.0'/4.0' 1.9 17.5' - 20.5' CLAY, some Gravel and wood Refusal @ 19'* 20 S-5: 19' - 21.5' Rec: 1.5/2.5' 5.1 20.5' - 21.5' Weathered shale fragments 21.5' End of boring (refusal), weathered shale bedrock in sampler shoe @ 21.5' Groundwater was not encountered No monitoring well installed 21.5' 25 1 1 1 1 26 1 1 1 1 26 1 1 1 1 26 1 1 1 1 27 1 1 1 1 28 1 1 1 1 1 29 1 1 1 1 1 20 1 1 1 1 1 1 20 1 1 1 1 1 1 1 21.5' 1 1 1 1 1 1 1 1 21.5' 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
20 Rec: 2.0'/4.0' 1.9 17.5' - 20.5' CLAY, some Gravel and wood Refusal @ 19'* 20 S-5: 19' - 21.5' Rec: 1.5/2.5' 5.1 20.5' - 21.5' Weathered shale fragments 21.5' End of boring (refusal), weathered shale bedrock in sampler shoe @ 21.5' Groundwater was not encountered No monitoring well installed 21.5' 25 1 1 1 1 26 1 1 1 1 26 1 1 1 1 26 1 1 1 1 27 1 1 1 1 28 1 1 1 1 1 29 1 1 1 1 1 20 1 1 1 1 1 1 20 1 1 1 1 1 1 1 21.5' 1 1 1 1 1 1 1 1 21.5' 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 —				
20 Rec: 2.0'/4.0' 1.9 17.5' - 20.5' CLAY, some Gravel and wood Refusal @ 19'* 20 S-5: 19' - 21.5' Rec: 1.5/2.5' 5.1 20.5' - 21.5' Weathered shale fragments 21.5' Groundwater was not encountered No monitoring well installed 21.5' Side and the second aside approximately 3', drive pointed to 19', and macro cored the 19' to 21.5' interval until refusal. 30 30		S-4 [.] 15' - 19'			
 S-5: 19' - 21.5' Rec: 1.5/2.5' S.1 S-1 S-5: 10' - 21.5' Rec: 1.5/2.5' S.1 S-1 S-1 S-5: 10' - 21.5' Rec: 1.5/2.5' S-1 S-1 S-1 S-1 S-1 S-5: 10' - 21.5' Rec: 1.5/2.5' S-1 S-1<td></td><td></td><td>1.9</td><td>·</td><td>wood</td>			1.9	·	wood
Rec: 1.5/2.5' 5.1 20.5' - 21.5' Weathered shale fragments End of boring (refusal), weathered shale bedrock in sampler shoe @ 21.5' Groundwater was not encountered No monitoring well installed 21.5' *Note: At the request of the onsite NYSDEC representative, drilling stepped aside approximately 3', drive pointed to 19', and macro cored the 19' to 21.5' interval until refusal.	20	S-5: 10' - 21 5'		Kelusai @ 19	
Groundwater was not encountered No monitoring well installed 21.5' *Note: At the request of the onsite NYSDEC representative, drilling stepped aside approximately 3', drive pointed to 19', and macro cored the 19' to 21.5' interval until refusal.		Rec: 1.5/2.5'	5.1	e e e e e e e e e e e e e e e e e e e	
 *Note: At the request of the onsite NYSDEC representative, drilling stepped aside approximately 3', drive pointed to 19', and macro cored the 19' to 21.5' interval until refusal. 				Groundwater was not end	countered
aside approximately 3', drive pointed to 19', and macro cored the 19' to 21.5' interval until refusal.	25				
				-	
				interval until refusal.	
	30 -				
35]					
	35				
Monitoring Well Completion / Boring Log drafted by LaBella Associates, D.P.C. PAGE <u>1</u> of <u>1</u>	Monitoring Well Completion / Boring Lo	og drafted by LaBella	Associate	s, D.P.C.	PAGE <u>1</u> of <u>1</u>

MONITORING WELL / BORING NO.	CT-SB-0	3	
Site Name: NYSDEC - Algonquin Middle Schoo			🖵 LaBella
Location: Cooper Tire	_ Drilling Co.	Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	_ Driller:^	1ario Pineda	Soil Samples Collected:
Phone No.: N/A	_ Logged by:	B.Baulsir	CT-SB-03 0-2" CT-SB-03 2-12"
Drilling Method: Geoprobe 7822 DT (Dia): 2			CT-SB-03 2-12 CT-SB-03 60-72"
Drilled TD: <u>6.0'</u> (Dia): <u>2</u>			
Well TD: N/A (Dia): N			
Screen Interval: ^{N/A} Slot Size:	N/A	Diameter: ^{N/A}	
Cased Interval:Type:	N/A	Diameter: N/A	
Sand Pack Interval:N/ATy	pe: <u>N/A</u>	Wellhead Prot: ^{N/A}	
Bentonite Seal Interval: <u>N/A</u> Ty	pe: <u>N/A</u>	Grouted Interval: _{N/A}	
		Γ	
Depth Monitoring Well (Feet) Construction Recover	ery; PID (ppm):	Descriptio	on / Soil Classification
•]	2.5	0' - 5.5' Brown SAND and SILT, so	ome fine Gravel and weathered shale fragments
Rec: 2.0'/			
5 – S-2: 5.0'	- 6' 3.7		
S-2. 5.0 Rec: 1.0'	(1.0'		ne Gravel and lenses of weathered shale eathered shale bedrock in sampler shoe @ 6.0'
		Groundwater was not enc No monitoring well installe	countered
10 -			6.0'
30			
35 J			· · ·
Monitoring Well Completion / Boring Log drafted by	LaBella Associate	s, D.P.C.	PAGE <u>1</u> of <u>1</u>

MONITORING WELL / BORING NO. CT-SB-04	
Site Name:	LaBella
Location: Cooper Tire Drilling Co.: Clean Globe Environmental	Powered by partnership.
Client: NYSDEC Driller: Mario Pineda	Soil Samples Collected:
Phone No.:N/A Logged by:B.Baulsir	CT-SB-04 0-2"
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2"	
Drilled TD: 1.0' (Dia): 2" Sampled TD: see samples collected (Dia): N/A	
Well TD:	
Screen Interval: <u>N/A</u> Slot Size: <u>N/A</u> Diameter: <u>N/A</u>	
Cased Interval: <u>N/A</u> Type: <u>N/A</u> Diameter: <u>N/A</u>	
Sand Pack Interval:N/AType:N/AWellhead Prot:N/A	
Bentonite Seal Interval: N/A Type: N/A Grouted Interval: N/A	

Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):	Description / Soil Classification	
Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm): 0.9	0' - 1.0' Light brown fine SAND and SILT, weathered shale fr End of boring (refusal), weathered shale bedrock in s Groundwater was not encountered No monitoring well installed	sampler shoe @ 1.0' 1.0'
Monitoring	Well Completion / Boring Lo	g drafted by LaBella	Associate	s, D.P.C.	PAGE <u>1</u> of <u>1</u>

MONITORING WELL / BOF	RING NO. CT-S	B-0	5	
Site Name: NYSDEC - Algonquin				🖵 LaBella
Location: Cooper Tire	Drillin	ig Co.:	Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Drille	r:^	ario Pineda	Soil Samples Collected:
Phone No.:	Logg	ed by:	B.Baulsir	CT-SB-05 0-2"
			Method: Macro Core (Dia): 2"	CT-SB-05 2-12" Duplicate Parent CT-SB-05 0-2"
			TD: see samples collected (Dia): N/A	
			e:	
Screen Interval: N/A				
Cased Interval:				
Sand Pack Interval:N/#				
Bentonite Seal Interval:	N/AType:	N/A	Grouted Interval:N/A	
			1	
Depth (Feet) Monitoring Well Construction	Recovery;	PID (ppm):	Descriptio	on / Soil Classification
° –		1.1	0' - 3.0' Light brown fine SAND an	d SILT. some fine Gravel
	S-1: 0' - 4.0' Rec: 4.0'/4.0'			
	Rec. 4.074.0	3.7	3.0' - 4.0' Weathered shale fragmen	ts
5 _			Groundwater was not end	eathered shale bedrock in sampler shoe @ 4.0' ountered
			No monitoring well installe	4.0'
 15				
20 -				
25 —				
30				
4				
35 🔟				

Site Name:	C - Algonquin Middle Sch	^{ool} Date Drilled	1: August 19, 2022	Ling LaBella
Location: Cooper Tire		Drilling Co.	. Clean Globe Environmental	Powered by partnership.
Client: NYSDEC		Driller:^	/ario Pineda	Soil Samples Collected:
Phone No.: N/A		Logged by	B.Baulsir	CT-SB-06 0-2"
Drilling Method:G	eoprobe 7822 DT(Dia):	<u>2"</u> Sampling	g Method: Macro Core (Dia): 2"	
Drilled TD: ^{1.0'}	(Dia);	<u>2"</u> Sampleo	TD:	
Nell TD:	(Dia):	N/A Well Typ	e:	
Screen Interval:	N/ASlot Size:	N/A	Diameter:	
Cased Interval:	N/AType:	N/A	Diameter:N/A	
Sand Pack Interva	N/A	Гуре: _{N/A}	Wellhead Prot: ^{N/A}	
Bentonite Seal Inte	erval: <u>N/A</u>	Гуре: _{N/A}	Grouted Interval: ^{N/A}	
			1	
Depth Monitorin Feet) Constru	g Well Reco	very; PID (ppm):	Descripti	on / Soil Classification
	S-1: 0' Rec: 1.		0' - 0.5' Brown fine SAND and SI 0.5' - 1.0' Gray weathered shale fra	LT, weathered shale fragments
			7 7	veathered shale bedrock in sampler shoe @ 1.0' countered
5				1.0
10				
		I		

20

25

30

35 J

MONITORING WELL / BORII	NG NO. <u>CT-SB-0</u>	7	
Site Name: NYSDEC - Algonquin M			🖵 LaBella
Location: Cooper Tire	Drilling Co.	Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Driller: [№]	lario Pineda	Soil Samples Collected:
Phone No.:	Logged by:	B.Baulsir	CT-SB-07 0-2" CT-SB-07 2-12"
Drilling Method: Geoprobe 7822 D	T_(Dia):_2"_ Sampling	g Method: Macro Core (Dia): 2"	
Drilled TD: 4.0'			
Well TD: ^{N/A}			
Screen Interval: <u>N/A</u> Slo	ot Size: ^{N/A}	Diameter:N/A	
Cased Interval: <u>N/A</u> Ty	pe:N/A	Diameter: ^{N/A}	
Sand Pack Interval:N/A	Type:N/A	Wellhead Prot: ^{N/A}	
Bentonite Seal Interval: N/	AType:N/A	Grouted Interval: ^{N/A}	
Depth Monitoring Well (Feet) Construction	Recovery; PID (ppm):	Descriptio	n / Soil Classification
• _			
	S-1: 0' - 4.0' 3.3	0' - 1.0' Brown fine SAND and SIL 1.0' - 4.0' Weathered shale fragmen	T, weathered shale fragments ts
	Rec: 4.0'/4.0'		
		End of boring (refusal), we Groundwater was not ence	eathered shale bedrock in sampler shoe @ 4.0' ountered
		No monitoring well installe	
10 —			
- - 15 -			
-			
25 — 			
30 -			
35 _			
Monitoring Well Completion / Boring Log	g drafted by LaBella Associate	s, D.P.C.	PAGE of

LABORATORY ANALYTICAL REPORTS

A LaBella Company

March 13, 2023 (Revised 4-18-2023)

Brittany O'Brien-Drake New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233

RE: Site Summary Report (Rev. 4-18-2023) Algonquin Middle School PFAS Assessment #2105197 Former Car Wash, 338 NY-351, Poestenkill, NY Tax parcel ID: 136.-8-2

Aztech Environmental Technologies Inc. (Aztech), a LaBella company, has provided this report to document overburden soil and groundwater assessment methodologies and sampling results for the above referenced location. All field investigation activities were performed at the discretion of and in accordance with the scope of work (SOW) developed and provided by the New York State Department of Environmental Conservation (NYSDEC).

The property is currently a residence and was formerly utilized as a former car wash (CW). The approximate 1.93-acre parcel is located along the eastern side of Reichards Lake Road (NY Rt 351) and south of Averill Park Road (Rt 66). A low-lying area is located on the eastern portion of the property with a rise toward the western portion of the property. The residential structure is located on the western portion of the property. The attached **Figure 1** depicts property features and boundaries.

Overburden soil encountered during drilling activities consisted primarily of fine sand and silt with varying amounts of shale fragments typically increasing in depth to drill tooling refusal. Shale fragments in the sampler shoe at terminal boring depths ranging from 4 feet below grade (fbg) (CW-SB-02) to 13 fbg (CW-SB-05), is noted on the boring logs.

Prior to intrusive groundwork, a UDig NY utility clearance ticket was ordered for the property. Additionally, a private utility locating contractor performed utility clearance with ground penetrating radar (GPR) at each boring location on August 8, 2022. Boring locations confirmed as clear were painted white and marked with a white flag.

SUMMARY OF FIELD INVESTIGATIONS:

Air monitoring

Air monitoring was conducted during all ground-intrusive work at the property (August 18, 2022) in accordance with the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan (CAMP). One dedicated Dust Trak unit with photo-ionization detector (PID) was positioned upwind with a second dedicated unit placed downwind at each boring location. No exceedances for volatile organic compounds (VOCs) or particulates were recorded.

Soil Boring

On August 18, 2022, Clean Globe Environmental (CGE) advanced soil borings (CW-SB-01 through CW-SB-05) utilizing a Geoprobe 7822DT and direct-push techniques. All boring locations were used to confirm depth to shallow bedrock. Due to the lack of groundwater water encountered at the property, soil borings were not converted to monitoring wells. Aztech provided oversight of drilling activities and performed soil headspace screening, soil classification, and soil sampling. Soil boring locations are depicted on the attached **Figure 1**.

Soil Sampling

Individual soil samples were visually classified and headspace screened with a PID calibrated to a 100 part per million (ppm) isobutylene calibrant gas. Soil samples from select boring locations were collected from the following depth intervals:

- Surface grade to 2 -inch below grade (BG), beneath vegetative cover, and
- 2-inch BG to 12-inch BG

The actual number of soil samples was dependent on field conditions. A total of ten (10) depth discrete subsurface soil samples were collected from the five (5) soil borings and analyzed for PFAS compounds by analytical method 537M for soil. Select soil samples from the 2-12" interval were analyzed using the Synthetic Precipitation Leaching Procedure (SPLP) by Environmental Protection Agency (EPA) Method 1312 and the leachate was subsequently analyzed for PFAS compounds by analytical method 537M to assess the mobility of contaminants in soil. SPLP PFAS results are not considered reportable as it was determined that Con-Test (a Pace Analytical Laboratory at East Longmeadow, MA and the NYSDEC's contracted lab for this project) did not hold the appropriate ELAP certification for EPA Method 1312 at the time of analysis.

Additional samples collected for the purpose of quality assurance/quality control (QA/QC) included one matrix spike /matrix spike duplicate (MS/MSD) and one field duplicate. The attached boring logs reference the parent sample for the duplicate sample however, the sample was not received at the laboratory and as such, results are not reported.

DISCUSSION OF ANALYTICAL RESULTS

STANDARDS, CRITERIA, & GUIDANCE VALUES:

The following documents will be used to evaluate soil, groundwater, surface water, and sediment analytical results:

Soil

- Unrestricted Use and Residential Use soil guidance values from NYSDEC Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, November 2022.

It is noted that the NYSDEC Standards, Criteria, & Guidance Values are listed in concentrations of parts per trillion (ppt), parts per billion (ppb), and parts per million (ppm) while laboratory analytical results are reported in equivalent concentrations. For example,

- In soil:
 - 1 ppt = 1 nanogram per kilogram (ng/kg),
 - \circ 1 ppb = 1 microgram per kilogram (µg/kg), and
 - 1 ppm = 1 milligram per kilogram (mg/kg)
- In water:
 - 1 ppt = 1 nanogram per liter (ng/L),
 - \circ 1 ppb = 1 microgram per liter (µg/L), and
 - \circ 1 ppm = 1 milligram per liter (mg/L).

Soil Results:

A total of 10 soil samples were collected from the five (5) borings installed on the property. Of the 10 soil samples collected and analyzed for PFAS compounds by analytical method 537M, each sample had one or more compounds detected. Exceedances of the Unrestricted Use guidance value for Perfluorooctanoic Acid (PFOA) (0.66 μ g/kg) were identified at six (6) soil sample locations. These include CW-SB-01 0-2", CW-SB-02 0-2", CW-SB-03 60-72", CW-SB-04 0-2", CW-SB-04 2-12", and CW-SB-05 0-2". Additionally, PFOA was identified in excess of the Residential Use guidance value of 6.6 μ g/kg in the CW-SB-04 0-2" sample. Perfluorooctanesulfonic acid (PFOS) was identified in excess of the Unrestricted Use guidance value of the Unrestricted Use guidance value of the CW-SB-04 0-2".

value of 0.88 μ g/kg in sample CW-SB-04 0-2". **Table 1** below provides a summary of the PFOA and PFOS laboratory analytical results. For further detail, refer to the attached **Table 2**.

	Table 1												
Summary of PFOA and PFOS													
								Sample	Locatio	on			
Compound	Concentration	Unrestricted Use Guidance Value	Residential Use Guidance Value	CW-SB-01 0-2IN	CW-5B-02 0-2IN	CW-58-03 0-2IN	CW-SB-03 2-12IN	CW-58-03 60-72IN	CW-SB-04 0-2IN	CW-SB-04 2-12IN	CW-SB-05 0-2IN	CW-SB-05 132-144IN	CW-SB-05 2-12IN
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	8.8	0.37	0.13	0.13	-	-	1.9	0.52	0.23	0.11	0.11
Perfluorooctanoic acid (PFOA)	μg/kg	0.66	6.6	0.85	1.0	-	0.20	4.5	11	0.97	1.8	-	0.55

PFAS compounds that were detected but do not have corresponding criteria include: PFBA, PFDS, PFDA, PFHpA, PFHxA, PFNA, PFPeA, and PFUnA. The maximum concentration recorded for compounds without criteria was PFNA at an estimated concentration of 0.29 μ g/kg (CW-SB-04). Refer to Table 2 for additional details. Refer to **Appendix A** for the laboratory analytical reports.

Further discussion on the findings and conclusions of the investigation of the Former Car Wash property are discussed within the main PFAS assessment report provided by CDM Smith.

This report was prepared by Aztech with review and editorial input by the NYSDEC.

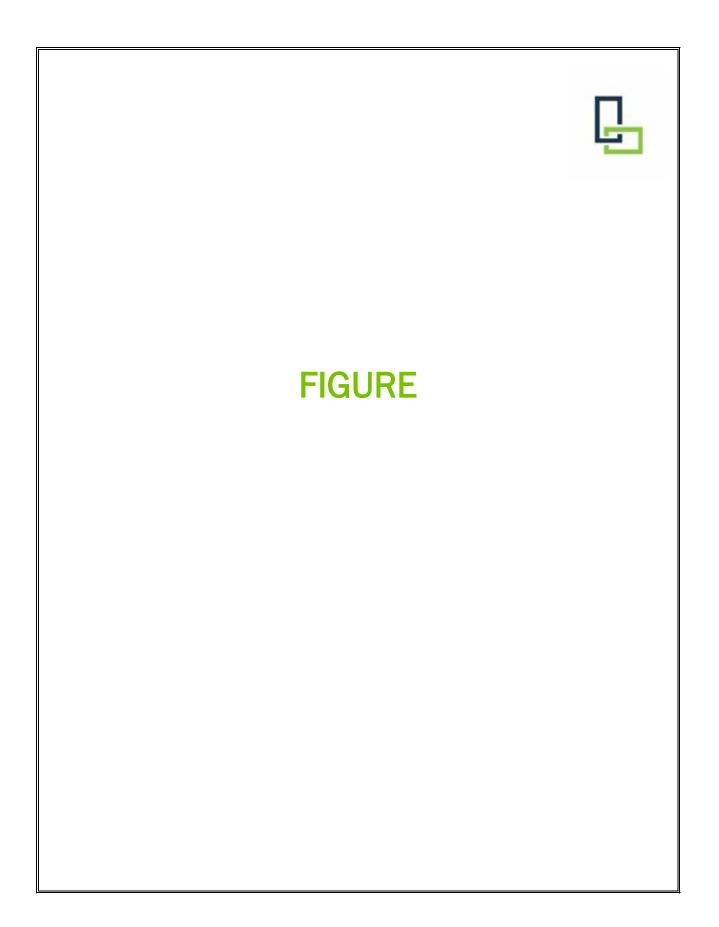
Respectfully submitted,

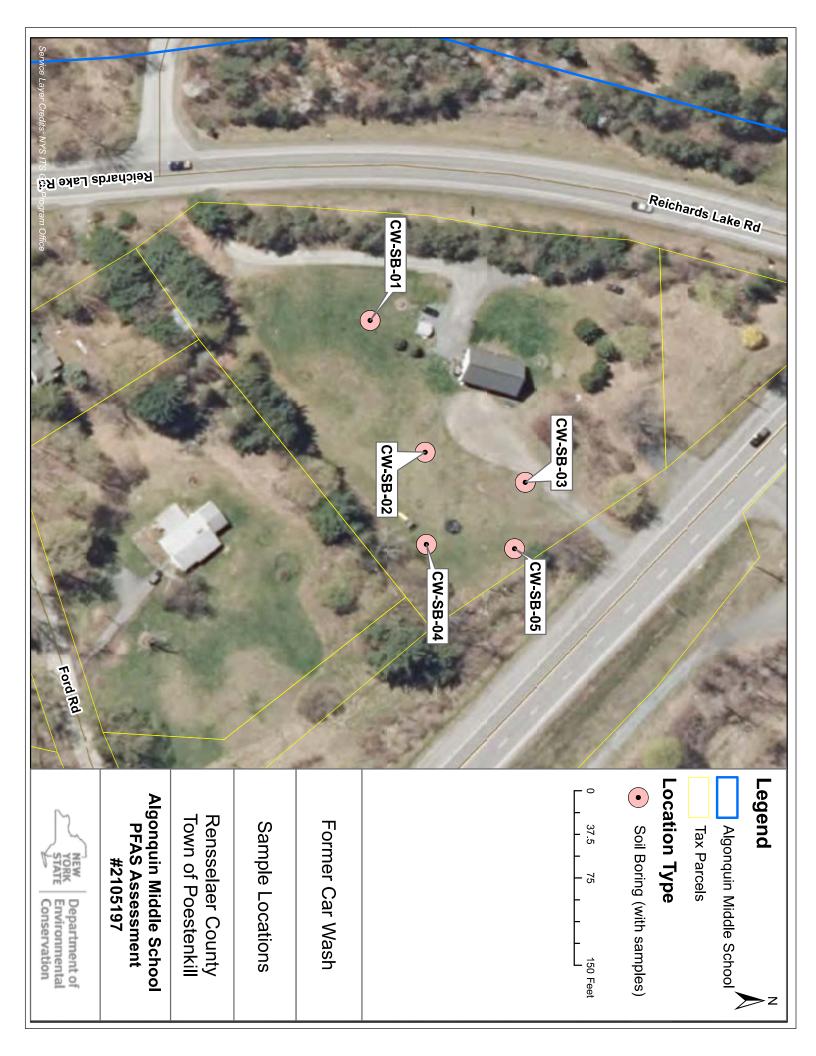
Aztech Environmental Technologies (a LaBella Company)

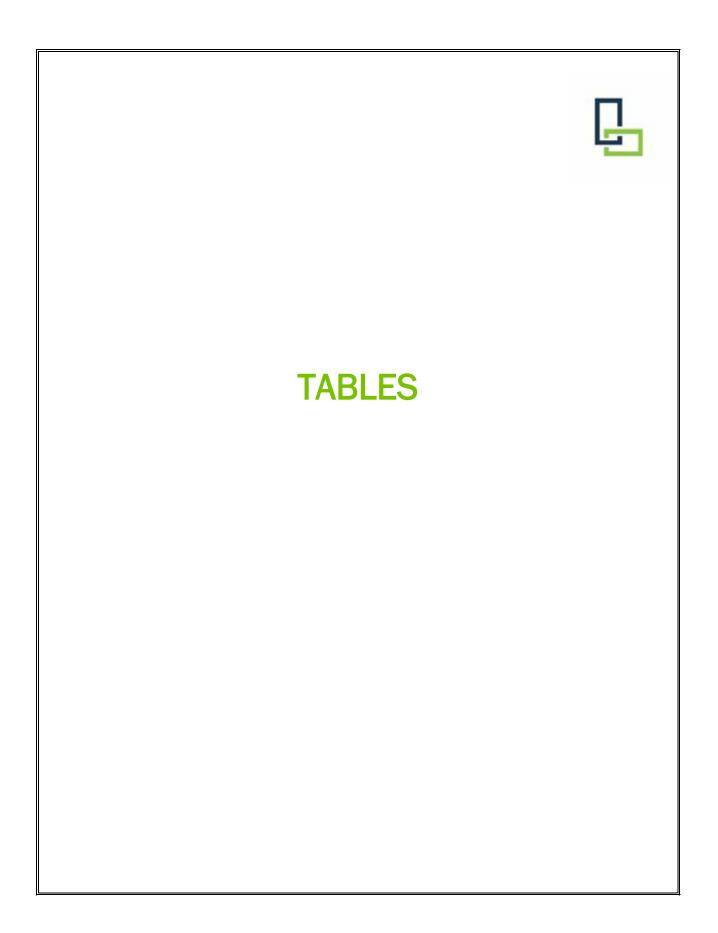
1. Vaverchak

Sierra Vaverchak Environmental Geologist

Todd Rollend Environmental Scientist


I Randy Hoose certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10). All investigation and activities were performed in full accordance with the work plan provided by the NYSDEC.


may Hoor


Randy Hoose, P.G. Senior Hydrogeologist

Attachments:

Figure 1 – Site Map Table 2 – Soil, PFAS Results Boring Logs Appendix – A: Laboratory Analytical Reports

Table 2 Former Car Wash Soil, PFAS Results

			Client Sample ID:	CW/ SE			02.0.21N	CW/ CD	02.0.21N	CW/ SD /	12 2 1 2 NI	CW/ CD /	2 40 72IN
						CW-SB-02 0-2IN 22H1218-12		CW-SB-03 0-2IN 22H1218-18		CW-SB-03 2-12IN 22H1218-20			03 60-72IN
		Lab Sample ID:										218-21	
			Location ID:		-SB-01	CW-SB-02 8/18/2022		CW-SB-03 8/18/2022		CW-SB-03 8/18/2022		CW-SB-03	
			Sample Date:	8/ 1	8/2022							8/18/2022	
		The second state of the second	Sample Type Code:		Ν		Ν		N		N		Ν
Analyte	Unit	Unrestricted Use	Residential Use	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
11 Oblass dates floors 2 Ocean dates 1 Outside Astic		Guidance Value ¹	Guidance Value ¹	0.10	1	0.10	1	0.10		0.10	1	0.10	1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.13	U	< 0.13	U	< 0.13	U 	< 0.12	U	< 0.13	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.12	U	< 0.12	U	< 0.12	0
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.087	U	< 0.086	U	< 0.088	U	< 0.082	U	< 0.083	U
1H, 1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC NC	NC	< 0.11	U	< 0.11	U	< 0.11	U	< 0.1	U	< 0.1	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg		NC	< 0.15	U	< 0.15	0	< 0.15	U 	< 0.14	U	< 0.14	0
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.12	U	< 0.11	U	< 0.11	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC NC	NC	< 0.23	U	< 0.23	U	< 0.23	U	< 0.21	U	< 0.22	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg		NC	< 0.13	U	< 0.13	U	< 0.13	U	< 0.13	U	< 0.13	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC NC	NC	< 0.086 < 0.073	U	< 0.085	U	< 0.087 < 0.074	U	< 0.081	U	< 0.082 < 0.07	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC		U	< 0.073 < 0.077	U		U		U	< 0.07	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.078	U		U	< 0.079	U	< 0.073	U		0
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg		NC	< 0.15	U	< 0.15	U	< 0.15	U	< 0.14	U	< 0.14	0
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC NC	NC	< 0.14 < 0.089	U	< 0.14	U	< 0.14	U	< 0.13	0	< 0.14 < 0.085	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.089	U	< 0.088	U		U		U		0
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC		U	< 0.086	U	< 0.088	U	< 0.082	U	< 0.083	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.072 0.1-	0	< 0.072	U	< 0.073	U	< 0.068	U	< 0.069	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	-	4 J	< 0.062	U	< 0.11	J	0.069	J	< 0.06	0
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.11		< 0.11	U	0.066	U	< 0.1	U	< 0.1	0
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC		7 J		U		J		U		U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.072 < 0.14	U	< 0.072 < 0.14	U	< 0.073 < 0.14	U	< 0.068	U	< 0.069 < 0.13	0
Perfluoroheptanesulfonic acid (PFHpS) Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	< 0.14 0.07	7 1	< 0.14	U	< 0.14	U	< 0.13	U	< 0.13	U
	µg/kg	NC	NC		/ J		U	< 0.077	J		U		
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.076 < 0.088	U	< 0.075	U		U	< 0.071	U	< 0.072 < 0.084	U
Perfluorohexanoic acid (PFHxA) Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC NC	< 0.088	U	< 0.087 < 0.13	U	< 0.089 < 0.13	U	< 0.083	U	< 0.084	
Perfluorononanic acid (PFNA)	µg/kg	NC	NC	0.13		< 0.13	U	< 0.13	U	< 0.12	U	< 0.12	
Perfluoronotanoic acid (PFNA) Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC		< 0.092	J	< 0.077	U	< 0.079	U	< 0.073	U	< 0.074	U
Perfluorooctane suifonamide (FOSA) Perfluorooctanesulfonic acid (PFOS)	µg/kg µg/kg	0.88	NC 8.8	< 0.092	7 1	0.13	-	< 0.094	U I	< 0.087	0	< 0.088	
Perfluorooctaniesurionic acid (PFOS) Perfluorooctanoic acid (PFOA)	µg/kg	0.88	6.6	0.3		1.0	-	< 0.14	5	< 0.00	1	< 0.061	
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg µg/kg	NC	NC	< 0.069		< 0.069	U	< 0.14	0	< 0.065	5	< 0.066	11
Perfluoropentanoic Acid (PFPeS) Perfluoropentanoic Acid (PFPeA)	µg/kg µg/kg	NC	NC	0.083	2 1	< 0.069	U	0.085	U I	< 0.065	1	< 0.066	
Perfluorotetradecanoic acid (PFPA)	µg/kg	NC	NC	< 0.09		< 0.072	U	< 0.091	J	< 0.085		< 0.089	
Perfluorotridecanoic Acid (PFTrA) Perfluorotridecanoic Acid (PFTrA)	µg/kg µg/kg	NC	NC	< 0.09	0	< 0.069	U	< 0.091	0	< 0.085	11	< 0.088	11
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	0.10		< 0.085	U	< 0.087	U	< 0.099	U	< 0.082	U
	µу∕ ⊾у	INC	INC	0.10	5	< 0.000	U	< 0.007	U	< 0.001	U	< 0.00Z	U
Notes:													

Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and*

Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

Table 2 Former Car Wash Soil, PFAS Results

			Client Sample ID:		3-04 0-2IN					1			
						CW-SB-04 2-12IN		CW-SB-05 0-21N			132-144IN		05 2-12IN
			Lab Sample ID:		1218-13		218-14		218-15		218-17		218-16
			Location ID:			CW-SB-04		CW-SB-05		CW-SB-05		CW-SB-05	
			Sample Date:	8/1	8/2022		/2022		/2022	8/18/2022		8/18/2022	
			Sample Type Code:		N		N		N		N		N
Analyte	Unit	Unrestricted Use	Residential Use	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Analyte	Onit	Guidance Value ¹	Guidance Value ¹	nesure	Quanner	nesun	Quanner	Nesure	Quanner	Nesure	Quanner	nesun	Quanner
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.15	U	< 0.13	U	< 0.13	U	< 0.13	U	< 0.12	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.14	U	< 0.12	U	< 0.12	U	< 0.12	U	< 0.11	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.097	U	< 0.084	U	< 0.083	U	< 0.085	U	< 0.08	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.12	U	< 0.1	U	< 0.1	U	< 0.11	U	< 0.1	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.17	U	< 0.15	U	< 0.14	U	< 0.15	U	< 0.14	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.13	U	< 0.11	U	< 0.11	U	< 0.12	U	< 0.11	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	NC	< 0.25	U	< 0.22	U	< 0.22	U	< 0.22	U	< 0.21	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.15	U	< 0.13	U	< 0.13	U	< 0.13	U	< 0.12	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.096	U	< 0.083	U	< 0.082	U	< 0.084	U	< 0.079	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.082	U	< 0.071	U	< 0.07	U	< 0.072	U	< 0.068	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.087	U	< 0.075	U	< 0.074	U	< 0.076	U	< 0.072	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.17	U	< 0.14	U	< 0.14	U	< 0.15	U	< 0.14	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.16	U	< 0.14	U	< 0.14	U	< 0.14	U	< 0.13	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.099	U	< 0.086	U	< 0.085	U	< 0.087	U	< 0.082	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.097	U	< 0.084	U	< 0.083	U	< 0.085	U	< 0.08	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.081	U	< 0.07	U	< 0.069	U	< 0.071	U	< 0.067	U
Perfluorobutanoic Acid (PFBA)	µg/kg	NC	NC	0.1	3 J	< 0.061	U	< 0.06	U	0.093	J	< 0.058	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	0.1	4 J	< 0.11	U	< 0.11	U	< 0.11	U	< 0.1	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	0.1	5 J	< 0.059	U	0.074	J	< 0.06	U	< 0.056	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.081	U	< 0.07	U	< 0.069	U	< 0.071	U	< 0.067	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.16	U	< 0.14	U	< 0.14	U	< 0.14	U	< 0.13	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	0.07	B J	< 0.066	U	< 0.065	U	0.076	J	< 0.063	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.084	U	< 0.073	U	< 0.072	U	< 0.074	U	< 0.07	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	0.1	3 J	< 0.085	U	< 0.084	U	0.09	J	< 0.081	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.14	U	< 0.12	U	< 0.12	U	< 0.13	U	< 0.12	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	0.1	1 J	0.29	J	< 0.074	U	< 0.076	U	< 0.072	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.1	U	< 0.089	U	< 0.088	U	< 0.09	U	< 0.085	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	8.8	1.1	9	0.52		0.23	J	0.11	J	0.11	J
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	6.6	1	1	0.97		1.8		< 0.13	U	0.55)
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.077	U	< 0.067	U	< 0.066	U	< 0.068	U	< 0.064	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	0.1	5 J	< 0.07	U	< 0.069	U	0.12	J	< 0.067	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.1	U	< 0.087	U	< 0.086	U	< 0.088	U	< 0.083	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.12	U	< 0.1	U	< 0.1	U	< 0.1	U	< 0.098	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	< 0.096	U	0.26	J	< 0.082	U	< 0.084	U	< 0.079	U
Notes:	•												

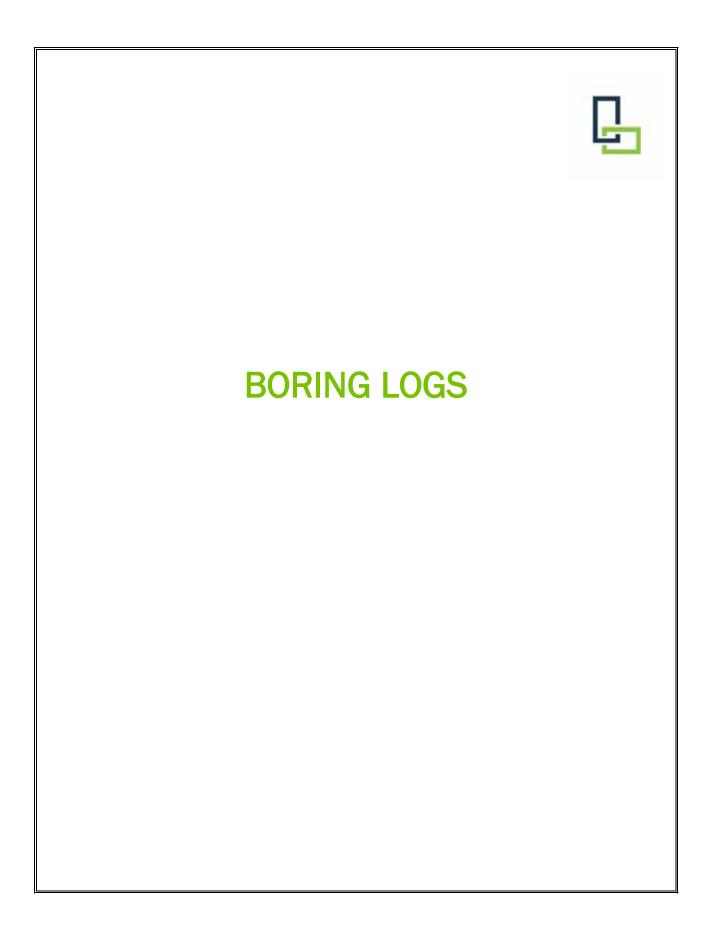
Notes:

¹New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and*

Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)


NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

MONITORING WELL / BORING NO. CW-SB	-01
Site Name:NYSDEC - Algonquin Middle School_ Date Drill	ed: August 18, 2022
Location: Former Car Wash Drilling C	O.: Clean Globe Environmental Powered by partnership.
Client: NYSDEC Driller:	
Phone No.:N/A Logged b	DY:B.Baulsir CW-SB-01 0-2"
Drilling Method: <u>Geoprobe 7822 DT</u> (Dia): <u>2"</u> Sampli	ng Method: <u>Macro Core</u> (Dia): <u>2</u>
Drilled TD:8'(Dia):2''_ Sample	I
Nell TD:(Dia):N/A(Dia):N/AWell Ty	ype:N/A
Screen Interval: <u>N/A</u> Slot Size: <u>N/A</u>	Diameter: ^{N/A}
Cased Interval: <u>N/A</u> Type: <u>N/A</u>	Diameter:N/A
Sand Pack Interval: ^{N/A} Type: ^{N/A} _	Wellhead Prot: ^{N/A}
Bentonite Seal Interval: <u>N/A</u> Type: <u>N/A</u>	Grouted Interval: ^{N/A}
Depth Monitoring Well Recovery; PID Feet) Construction Recovery; (ppm	
0	
	, , , , , , , , , , , , , , , , , , ,
S-1: 0' - 5.0' Rec: 2"/5.0'	2" - 8.0' Weathered shale fragments
5 -	
- - - - - - - - - - - - - - - - - - -	
10	End of boring (refusal), weathered shale bedrock in sampler shoe @ 8.0' Groundwater was not encountered No monitoring well installed
	8.0'
15	
20	
35 J	
Monitoring Well Completion / Boring Log drafted by LaBella Associ	ates, D.P.C. PAGE <u>1</u> of <u>1</u>

MONITORING WELL / BORI	NG NO. CW	-SB-0	2	
Site Name: NYSDEC - Algonquin N				🖵 LaBella
Location: Former Car Wash	Drill	ing Co.;	Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Drill	er: ^M	ario Pineda	Soil Samples Collected:
Phone No.: N/A	Log	ged by:_	B.Baulsir	CW-SB-02 0-2"
Drilling Method: Geoprobe 7822 D				
Drilled TD:4'				
Well TD: ^{N/A}				
Screen Interval:Sl	ot Size: ^N	/A	_Diameter: ^{N/A}	
Cased Interval: <u>N/A</u> Ty	pe:N/A		_Diameter:N/A	
Sand Pack Interval: N/A	Туре:	N/A	_Wellhead Prot: ^{N/A}	
Bentonite Seal Interval: ^{N/}	AType:	N/A	_Grouted Interval: _{N/A}	
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):	Descriptio	on / Soil Classification
° –		3.5	0' - 2" Brown fine SAND and SILT	a come weathered shale fragments
	S-1: 0' - 5.0' Rec: 2"/4.0'	5.5	2" - 4.0' Weathered shale fragments	, some weathered shale fragments s
			End of boring (refusal), we	athered shale bedrock in sampler shoe @ 4.0'
5			Groundwater was not enco No monitoring well installe	ountered d
				4.0'
10 — — —				
15 —				
20				
25 -				
30 -				
35 Monitoring Well Completion / Boring Lo	g drafted by LaBella	Associate		PAGE _ 1 _ of _ 1 _

MONITORING WELL / BOR	ING NO. CW-SB-()3	
Site Name:			🖵 LaBella
Location: Former Car Wash			Powered by partnership.
Client: NYSDEC	Driller:^	/ario Pineda	Soil Samples Collected:
Phone No.: N/A	Logged by:	B.Baulsir	CW-SB-03 0-2"
		g Method: Macro Core (Dia): 2"	CW-SB-03 2-12" CW-SB-03 60-72"
		TD: <u>see samples collected</u> (Dia): N/A	
Well TD:			
Screen Interval: <u>N/A</u> S			
Cased Interval: <u>N/A</u> T	ype:N/A	Diameter:N/A	
Sand Pack Interval:N/A	Type:N/A	Wellhead Prot: ^{N/A}	
Bentonite Seal Interval:	√AType:N/A	Grouted Interval: ^{N/A}	
Depth Monitoring Well (Feet) Construction	Recovery; PID (ppm):	Descriptio	n / Soil Classification
۰ ٦			
	3.7	0' - 6.0' Brown fine SAND and SILT	, some weathered shale fragments
	S-1: 0' - 5.0' Rec: 3.5'/5.0'		
5		-	
	S-2: 5.0' - 7.0' Rec: 2.0'/2.0' 2.7	6.0' - 7.0' Weathered shale fragment	S
		Groundwater was not enco	athered shale bedrock in sampler shoe @ 7.0' untered
10 -		No monitoring well installed	3 7.0'
20			
25			
30 —			
35			
Monitoring Well Completion / Boring L	og drafted by LaBella Associate	les, D.P.C.	PAGE _ 1 _ of _ 1

MONITORING WELL / BORI	ING NO. CW-SB	-04	
Site Name: NYSDEC - Algonquin			LaBella
Location: Former Car Wash	Drilling Co	Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Driller:	Mario Pineda	Soil Samples Collected:
Phone No.: N/A	Logged b	y:B.Baulsir	CW-SB-04 0-2" CW-SB-04 0-2" MS/MSD
Drilling Method: Geoprobe 7822	DT_(Dia):2" Sampli	ng Method: Macro Core (Dia): 2"	
		ed TD: see samples collected (Dia): N/A	
Well TD:	(Dia): <u>N/A</u> Well Ty	rpe:	
Screen Interval: <u>N/A</u> SI	lot Size: ^{N/A}	Diameter:N/A	
Cased Interval: <u>N/A</u> Ty	ype:N/A	Diameter: ^{N/A}	
Sand Pack Interval:N/A	Type:N/A	Wellhead Prot: ^{N/A}	
Bentonite Seal Interval:N	I/AType:N/A	Grouted Interval: ^{N/A}	
DepthMonitoring Well(Feet)Construction	Recovery; PID (ppm		ion / Soil Classification
° ¬			
	0.9		LT, some weathered shale fragments Silt, Clay, and weathered shale fragments
	S-1: 0' - 5.0' Rec: 4.0'/5.0'		
 5			
	S-2: 5.0' - 8.0' <1.0 Rec: 3.0'/3.0'	6.0' - 8.0' Weathered shale fragmer	its
	Nec. 3.073.0		
 10		Groundwater was not en No monitoring well instal	veathered shale bedrock in sampler shoe @ 8.0' icountered led
			8.0'
20			
20 -			
- - 25 -			
20 1			
·			
35 J	drafted by LaPolla Associ		DAGE 1 of 1
Monitoring Well Completion / Boring Lo	by uraneu by Labella Associa	IIIES, J.F.G.	PAGE of

Site Na	Ime: NYSDEC - Algonquin	Middle School Date	e Drilled	August 18, 2022	IL LaBella
	n:Former Car Wash				Powered by partnership.
	NYSDEC		-		Soil Samples Collected:
				B.Baulsir	CW-SB-05 0-2"
				Method: Macro Core (Dia): 2"	CW-SB-05 2-12" CW-SB-05 132-144"
				TD: see samples collected (Dia): N/A	Duplicate Parent CW-SB-05 0-2"
				ə: N/A	
				_ Diameter: ^{N/A}	
				Diameter:N/A	
				Wellhead Prot: ^{N/A}	
				Grouted Interval:N/A	
Depth Feet)	Monitoring We ll Construction	Recovery;	PID (ppm):	Description	n / Soil Classification
° ¬					
		S-1: 0' - 5.0'			It and weathered shale fragments , some weathered shale fragments
-		Rec: 4.0'/5.0'	7.4		
5 -					
-		S-2: 5.0' - 10'			
4		Rec: 4.0'/5.0'	3.8		
10 -					
-		S-3: 10' - 13' Rec: 3.0'/3.0'	0.9		
					athered shale bedrock in sampler shoe @ 13'
15				Groundwater was not enco No monitoring well installed	ountered
4					1
-					
20					
4					
25					
30 -					
$\overline{-}$					
1					
Ξ					

LABORATORY ANALYTICAL REPORTS

A LaBella Company

March 13, 2023 (Revised 4-18-2023)

Brittany O'Brien-Drake New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233

RE: Site Summary Report (Rev. 4-18-2023) Algonquin Middle School PFAS Assessment #2105197 Hass Manufacturing, 371 NY-351, Poestenkill, NY Tax parcel ID: 136.-7-6.2

Aztech Environmental Technologies Inc. (Aztech), a LaBella company, has provided this report to document overburden soil and groundwater assessment methodologies and sampling results for the above referenced location. All field investigation activities were performed at the discretion of and in accordance with the scope of work (SOW) developed and provided by the New York State Department of Environmental Conservation (NYSDEC).

The property is currently utilized by Hass Manufacturing (HM) as a valve manufacturing business with operations primarily located on the north-northeast portion of the site. The approximate 3.23-acre parcel is located along the western side of White Church Road (NY Rt 351) and north of Averill Park Road (Rt 66). A portion of the property is mainly flat with a downward gradient from east to west. Bedrock outcropping is visible along the southwestern property boundary. The manufacturing structure is located on the north-northeastern portion of the property. The attached **Figure 1** depicts property features and boundaries.

The property contained very minimal overburden and shallow bedrock was generally encountered within 1 foot below ground surface (bgs). Overburden soil encountered during drilling activities consisted primarily of fine sand. Various amounts of shale fragments typically increased in depth to tooling refusal. Shale fragments in the sampler shoe at terminal boring depths from approximately 0.5 feet below grade (fbg) (HM-SB-04, HM-SB-05 and HM-SB-08) to 3.5 fbg (HM-SB-07) is noted on boring logs.

Prior to intrusive groundwork, a UDig NY utility clearance ticket was ordered for the property. Additionally, a private utility locating contractor performed utility clearance with ground penetrating radar (GPR) at each boring location on August 8, 2022. Boring locations confirmed as clear were painted white and marked with a white flag.

SUMMARY OF FIELD INVESTIGATIONS:

Air monitoring

Air monitoring was conducted during all ground-intrusive work at the property (August 18, 2022) in accordance with the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan (CAMP). One dedicated Dust Trak unit with photo-ionization detector (PID) was positioned upwind with a second dedicated unit placed downwind at each boring location. No exceedances for volatile organic compounds (VOCs) or particulates were recorded.

Soil Boring and Monitoring Well Installation

On August 18, 2022, Clean Globe Environmental (CGE) advanced soil borings (HM-SB-01 through HM-SB-08) utilizing a Geoprobe 7822DT and direct-push techniques to terminal depths ranging from 5 inches below grade (BG) to 3.5 fbg. All boring locations were used to confirm depth to shallow bedrock. Due to the lack of groundwater encountered at the property, soil borings were not converted to monitoring wells. Aztech provided oversight of drilling activities and performed soil headspace screening, soil classification, and soil sampling. Soil boring locations are depicted on the attached **Figure 1**.

Soil Sampling

Individual soil samples were visually classified and headspace screened with a PID calibrated to a 100 part per million (ppm) isobutylene calibrant gas. Soil samples from select boring locations were collected from the surface grade to 2-inch BG interval.

The actual number of soil samples was dependent on field conditions. A total of six (6) depth discrete subsurface soil samples were collected from the eight (8) soil borings and analyzed for PFAS compounds by analytical method 537M for soil. Soil samples were not collected from HM-SB-02 and HM-SB-06.

An additional sample collected for quality assurance/quality control (QA/QC) purposes included one (1) equipment blank. The equipment blank was collected via the stainless-steel soil mixing trowel on August 18, 2022. Laboratory analytical results for the equipment blank sample recorded PFOA below the laboratory reporting limit (RL) at an estimated concentration of 0.62 nanograms per liter (ng/L). Refer to **Table 1** for additional details.

DISCUSSION OF ANALYTICAL RESULTS

STANDARDS, CRITERIA, & GUIDANCE VALUES:

The following documents will be used to evaluate soil, groundwater, surface water, and sediment analytical results:

Soil

- Unrestricted Use and Residential Use soil guidance values from NYSDEC Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs, November 2022.

It is noted that the NYSDEC Standards, Criteria, & Guidance Values are listed in concentrations of parts per trillion (ppt), parts per billion (ppb), and parts per million (ppm) while laboratory analytical results are reported in equivalent concentrations. For example,

- In soil:
 - 1 ppt = 1 nanogram per kilogram (ng/kg),
 - \circ 1 ppb = 1 microgram per kilogram (μ g/kg), and
 - 1 ppm = 1 milligram per kilogram (mg/kg)

Soil Results:

Of the six (6) soil samples collected and analyzed for PFAS compounds by analytical method 537M, each sample had one or more compounds detected. PFOA was recorded in the 0-2" BG depth interval within four (4) boring locations at estimated concentrations ranging from 0.14 μ g/kg (HM-SB-03) to 0.22 μ g/kg (HM-SB-07). These concentrations are below the Unrestricted Use guidance value of 0.66 μ g/kg. PFOS was recorded within each of the six (6) boring locations at estimated concentrations

ranging from 0.13 μ g/kg (HM-SB-04) to 0.4 μ g/kg (HM-SB-03). These concentrations are below the Unrestricted Use guidance value of 0.88 μ g/kg.

PFAS compounds that were detected but do not have corresponding guidance values include: PFBA, PFDA, PFHpA, PFHxA, PFNA, PFPeA, and PFUnA. The maximum concentration recorded for compounds without criteria was PFUnA at an estimated concentration of 0.17 μ g/kg.

Refer to Table 2 for additional details. Refer to Appendix A for the laboratory analytical reports.

Further discussion on the findings and conclusions of the investigation of the Hass Manufacturing property are discussed within the main PFAS assessment report provided by CDM Smith.

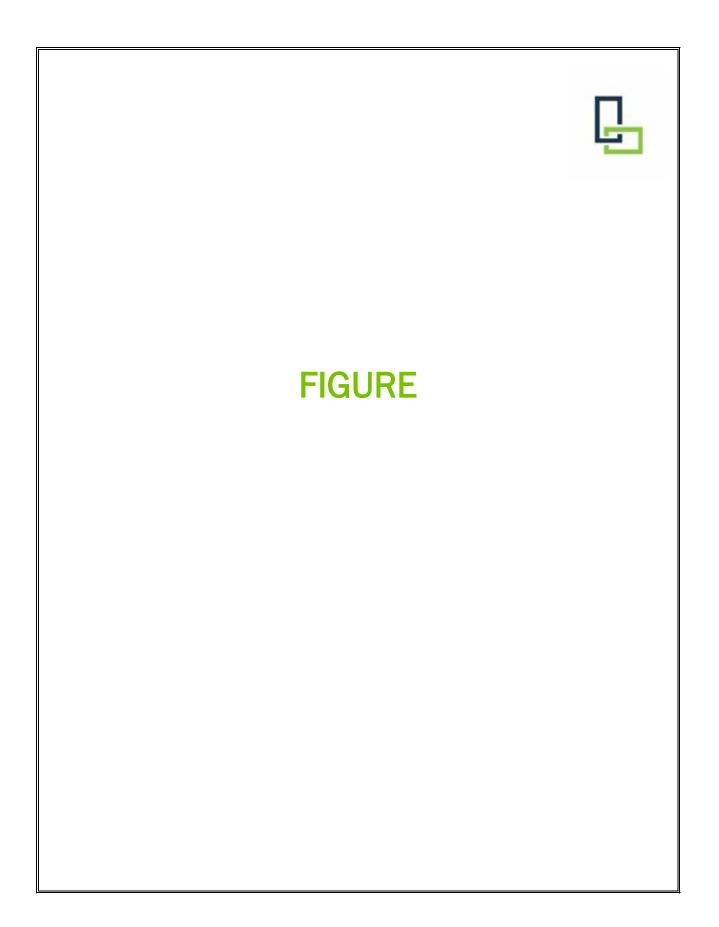
This report was prepared by Aztech with review and editorial input by the NYSDEC.

Respectfully submitted,

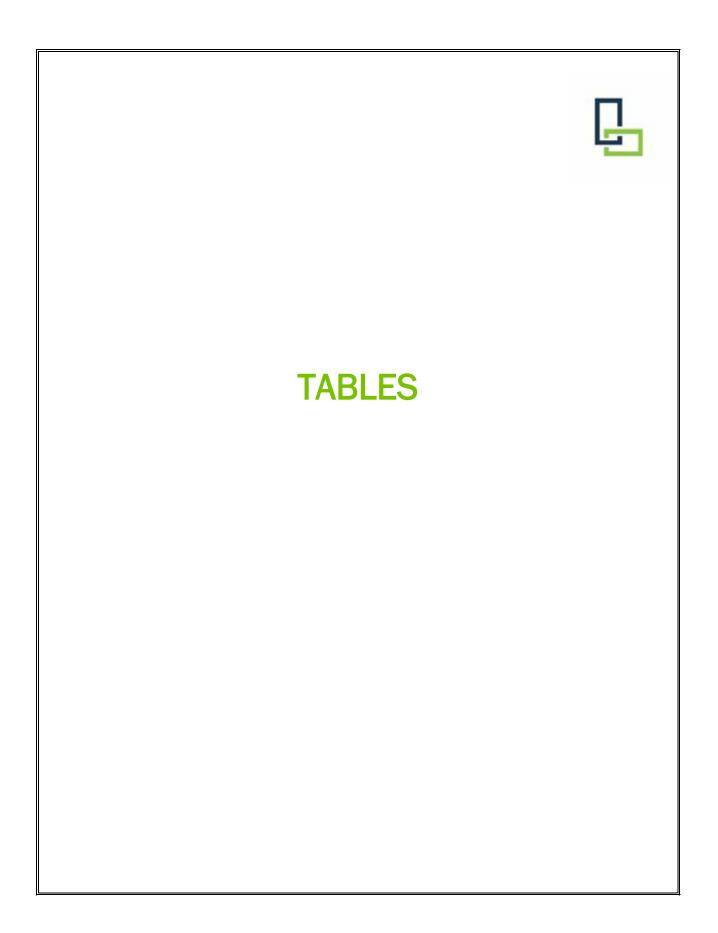
Aztech Environmental Technologies (a LaBella Company)

in Vaverchak

Sierra Vaverchak Environmental Geologist


I Randy Hoose certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10). All investigation and activities were performed in full accordance with the work plan provided by the NYSDEC.

andy Hoor


Randy Hoose, PG Senior Hydrogeologist

Attachments:

Figure 1 – Site Map Table 1 – Equipment Blank, PFAS Results Table 2 – Soil, PFAS Results Boring Logs Appendix – A: Laboratory Analytical Reports

Table 1 Hass Manufacturing Equipment Blank, PFAS Results

		ient Sample ID: Lab Sample ID: Sample Date:	22H1218-04 8/18/2022		
	Sam	ple Type Code:	E	B	
		NYSDEC	Result	Qualifier	
Analyte	Unit	Guidelines ¹	neoun	Quanner	
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11CI-PF3OUdS)	ng/L	NC	< 0.55	U	
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/L	NC	< 0.52	U	
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	ng/L	NC	< 0.24	U	
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/L	NC	< 0.31	U	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ng/L	NC	< 0.3	U	
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid (9CI-PF3ONS)	ng/L	NC	< 0.33	U	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L	NC	< 0.2	U	
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	ng/L	NC	< 0.54	U	
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	ng/L	NC	< 0.65	U	
N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	NC	NA		
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	NC	NA		
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ng/L	NC	< 0.24	U	
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ng/L	NC	< 0.2	U	
Perfluoro-1-butanesulfonamide (FBSA)	ng/L	NC	< 0.16	U	
Perfluoro-1-hexanesulfonamide (FHxSA)	ng/L	NC	< 0.27	U	
Perfluoro-3-methoxypropanoic acid (PFMPA)	ng/L	NC	< 0.36	U	
Perfluoro-4-methoxybutanoic acid (PFMBA)	ng/L	NC	< 0.29	U	
Perfluorobutanesulfonic acid (PFBS)	ng/L	NC	< 0.24	U	
Perfluorobutanoic Acid (PFBA)	ng/L	NC	< 0.64	U	
Perfluorodecanesulfonic acid (PFDS)	ng/L	NC	< 0.28	U	
Perfluorodecanoic acid (PFDA)	ng/L	NC	< 0.42	U	
Perfluorododecanoic acid (PFDoA)	ng/L	NC	< 0.38	U	
Perfluoroheptanesulfonic acid (PFHpS)	ng/L	NC	< 0.8	U	
Perfluoroheptanoic acid (PFHpA)	ng/L	NC	< 0.29	U	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	NC	< 0.29	U	
Perfluorohexanoic acid (PFHxA)	ng/L	NC	< 0.33	U	
Perfluorononanesulfonic Acid (PFNS)	ng/L	NC	< 0.14	U	
Perfluorononanoic acid (PFNA)	ng/L	NC	< 0.3	U	
Perfluorooctane Sulfonamide (PFOSA)	ng/L	NC	< 0.36	U	
Perfluorooctanesulfonic acid (PFOS)	ng/L	10	< 0.51	U	
Perfluorooctanoic acid (PFOA)	ng/L	10	0.62	J	
Perfluoropentanesulfonic Acid (PFPeS)	ng/L	NC	< 0.22	U	
Perfluoropentanoic Acid (PFPeA)	ng/L	NC	< 0.34	U	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	NC	< 0.31	U	
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/L	NC	< 0.24	U	
Perfluoroundecanoic Acid (PFUnA)	ng/L	NC	< 0.32	U	

Notes:

¹New York State Department of Environmental Conservation, Sampling, Analysis, and

Assessment of Per- and Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: EB - Equipment Blank

ng/L - nanogram per liter = parts per trillion (ppt)

NC - No criteria currently exists

NA - Compound was not analyzed for

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above applicable NYSDEC Standards, Criteria, & Guidance Values

Table 2 Hass Manufacturing Soil, PFAS Results

			Client Sample ID:	HM-SB-	01 0-2IN	HM-SB-	03 0-21N	HM-SB-0)4 0-2IN
			Lab Sample ID:		218-08		218-07	22H12	
			Location ID:	HM-SB-01 HM-SB-03			HM-SB-04		
			Sample Date:		/2022		8/18/2022		2022
			Sample Type Code:		N	N		N	
	Unrestricted		Residential Use						
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.14	U	< 0.13	U	< 0.13	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.13	U	< 0.12	U	< 0.12	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.09	U	< 0.087	U	< 0.087	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.11	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.16	U	< 0.15	U	< 0.15	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.12	U	< 0.12	U	< 0.12	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	NC	< 0.24	U	< 0.23	U	< 0.23	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.14	U	< 0.13	U	< 0.13	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.089	U	< 0.086	U	< 0.086	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.076	U	< 0.073	U	< 0.073	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.081	U	< 0.077	U	< 0.078	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.16	U	< 0.15	U	< 0.15	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.15	U	< 0.14	U	< 0.14	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.093	U	< 0.089	U	< 0.089	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.09	U	< 0.087	U	< 0.087	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.075	U	< 0.072	U	< 0.072	U
Perfluorobutanoic Acid	µg/kg	NC	NC	< 0.065	U	0.11	J	< 0.063	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.11	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	0.1	J	0.13	J	< 0.061	U
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.075	U	< 0.072	U	< 0.072	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.15	U	< 0.14	U	< 0.14	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	< 0.071	U	0.088	J	< 0.068	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.078	U	< 0.075	U	< 0.075	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	< 0.092	U	0.13	J	< 0.088	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.13	U	< 0.13	U	< 0.13	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	0.084	J	0.16	J	< 0.078	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.096	U	< 0.092	U	< 0.092	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	8.8	0.15	J	0.4	J	0.13	J
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	6.6	< 0.14	U	0.14	J	0.16	J
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.072	U	< 0.069	U	< 0.069	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	0.11	J	< 0.072	U	< 0.072	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.094	U	< 0.09	U	< 0.09	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.11	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	0.11	J	0.17	J	< 0.086	U

¹New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and

Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists

U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

Highlighted - Indicates the compound was detected above Residential Use guidance value

Table 2 Hass Manufacturing Soil, PFAS Results

			Client Sample ID:	HM-SB-	05 0-21N	HM-SB-	07 0-2IN	HM-SB-(08 0-21N
			Lab Sample ID:		218-05		218-09		218-10
			Location ID:	HM-SB-05 HM-SB-07			HM-SB-08		
			Sample Date:		/2022		/2022		/2022
			Sample Type Code:			0/10/2022 N			
Intestricted Use		Unrestricted Use	Residential Use	N				N	
Analyte	Unit	Guidance Value ¹	Guidance Value ¹	Result	Qualifier	Result	Qualifier	Result	Qualifier
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.14	U	< 0.14	U	< 0.13	U
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	µg/kg	NC	NC	< 0.13	U	< 0.13	U	< 0.12	U
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	µg/kg	NC	NC	< 0.091	U	< 0.093	U	< 0.087	U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	µg/kg	NC	NC	< 0.11	U	< 0.12	U	< 0.11	U
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	µg/kg	NC	NC	< 0.16	U	< 0.16	U	< 0.15	U
9-Chlorohexadecafluoro-3-Oxanonane-1-Sulfonic Acid	µg/kg	NC	NC	< 0.12	U	< 0.13	U	< 0.12	U
Hexafluoropropylene oxide dimer acid (HFPO-DA)	µg/kg	NC	NC	< 0.24	U	< 0.24	U	< 0.23	U
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.14	U	< 0.14	U	< 0.13	U
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	µg/kg	NC	NC	< 0.09	U	< 0.092	U	< 0.086	U
Nonafluoro-3,6-dioxaheptanoic acid	µg/kg	NC	NC	< 0.077	U	< 0.078	U	< 0.073	U
Perfluoro(2-ethoxyethane)sulfonic acid	µg/kg	NC	NC	< 0.081	U	< 0.083	U	< 0.077	U
Perfluoro-1-butanesulfonamide (FBSA)	µg/kg	NC	NC	< 0.16	U	< 0.16	U	< 0.15	U
Perfluoro-1-hexanesulfonamide (FHxSA)	µg/kg	NC	NC	< 0.15	U	< 0.15	U	< 0.14	U
Perfluoro-3-methoxypropanoic acid	µg/kg	NC	NC	< 0.093	U	< 0.095	U	< 0.089	U
Perfluoro-4-methoxybutanoic acid	µg/kg	NC	NC	< 0.091	U	< 0.093	U	< 0.087	U
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NC	NC	< 0.075	U	< 0.077	U	< 0.072	U
Perfluorobutanoic Acid	µg/kg	NC	NC	< 0.066	U	0.14	J	< 0.063	U
Perfluorodecanesulfonic acid (PFDS)	µg/kg	NC	NC	< 0.11	U	< 0.12	U	< 0.11	U
Perfluorodecanoic acid (PFDA)	µg/kg	NC	NC	< 0.063	U	0.088	J	0.08	J
Perfluorododecanoic acid (PFDoA)	µg/kg	NC	NC	< 0.075	U	< 0.077	U	< 0.072	U
Perfluoroheptanesulfonic acid (PFHpS)	µg/kg	NC	NC	< 0.15	U	< 0.15	U	< 0.14	U
Perfluoroheptanoic acid (PFHpA)	µg/kg	NC	NC	< 0.071	U	0.08	J	< 0.068	U
Perfluorohexanesulfonic acid (PFHxS)	µg/kg	NC	NC	< 0.079	U	< 0.081	U	< 0.075	U
Perfluorohexanoic acid (PFHxA)	µg/kg	NC	NC	< 0.092	U	< 0.094	U	< 0.088	U
Perfluorononanesulfonic Acid (PFNS)	µg/kg	NC	NC	< 0.13	U	< 0.14	U	< 0.13	U
Perfluorononanoic acid (PFNA)	µg/kg	NC	NC	< 0.081	U	0.12	J	< 0.077	U
Perfluorooctane Sulfonamide (FOSA)	µg/kg	NC	NC	< 0.096	U	< 0.098	U	< 0.092	U
Perfluorooctanesulfonic acid (PFOS)	µg/kg	0.88	8.8	0.13	J	0.33	J	0.24	J
Perfluorooctanoic acid (PFOA)	µg/kg	0.66	6.6	0.15	J	0.22	J	< 0.13	U
Perfluoropentanesulfonic Acid (PFPeS)	µg/kg	NC	NC	< 0.072	U	< 0.074	U	< 0.069	U
Perfluoropentanoic Acid (PFPeA)	µg/kg	NC	NC	< 0.075	U	< 0.077	U	< 0.072	U
Perfluorotetradecanoic acid (PFTA)	µg/kg	NC	NC	< 0.094	U	< 0.096	U	< 0.09	U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	µg/kg	NC	NC	< 0.11	U	< 0.11	U	< 0.11	U
Perfluoroundecanoic Acid (PFUnA)	µg/kg	NC	NC	< 0.09	U	0.11	J	0.12	J
Notes:				•	•	•			

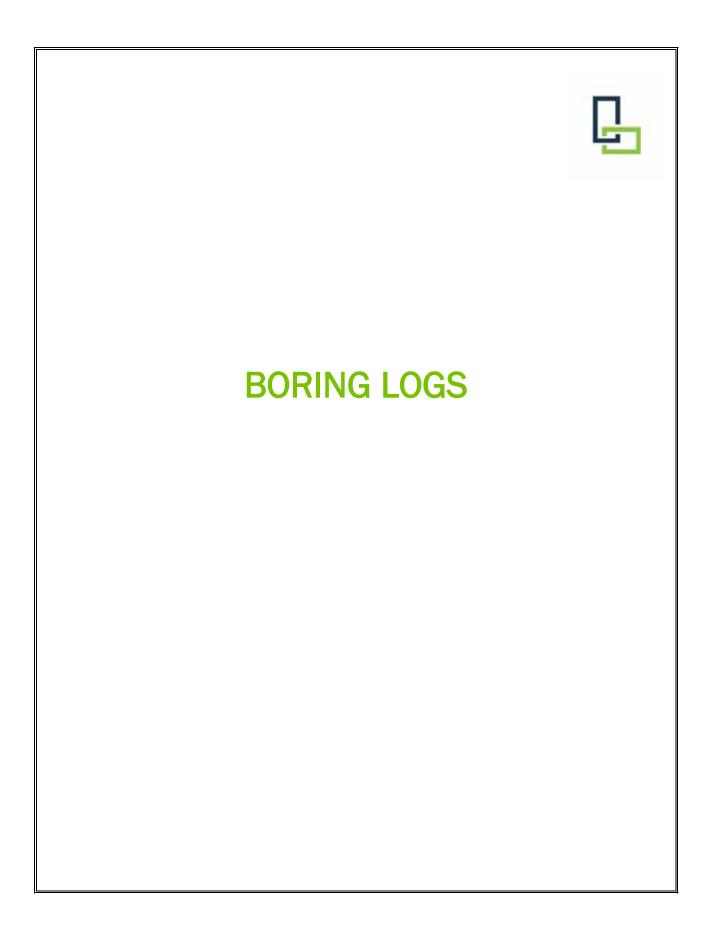
¹New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and

Polyfluoroalkyl Substances (PFAS), November 2022

Sample Type Code: N - Normal, FD -Field Duplicate

µg/kg - microgram per kilogram = parts per billion (ppb)

NC - No criteria currently exists


U - Compound was not detected at the reporting limit shown

J - An estimated value

Bold - Indicates the compound was detected

Highlighted - Indicates the compound was detected above Unrestricted Use guidance value

Highlighted - Indicates the compound was detected above Residential Use guidance value

MONITORING WELL / BORING NO. HM-SB-01	
Site Name:	LaBella
Location: Hass Manufacturing Drilling Co.: Clean Globe Environmental	Powered by partnership.
Client: NYSDEC Driller: Mario Pineda	Soil Samples Collected:
Phone No.: N/A Logged by: B.Baulsir	HM-SB-01 0-2"
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2"	_
Drilled TD: <u>1.0'</u> (Dia): <u>2</u> " Sampled TD: see samples collected (Dia): N/A	-
Well TD: N/A (Dia): N/A Well Type: N/A	-
Screen Interval: N/A Slot Size: N/A Diameter: N/A	-
Cased Interval: <u>N/A</u> Type: <u>N/A</u> Diameter: <u>N/A</u>	-
Sand Pack Interval: N/A Type: N/A Wellhead Prot: N/A	-
Bentonite Seal Interval: N/A Type: N/A Grouted Interval: N/A	-

	Depth Monitoring Well Feet) Construction	Recovery; PID (ppm):	Description / Soil Classification
	Feet) Construction 0	Recovery; (ppm):	Topsoil and brown fine SAND and weathered shale fragments
20 1 25 1 30 1 31 1 32 1 33 1	25 1 1 1 1 1 1 1 1 1 1 1 1 1		PAGE <u>1</u> of <u>1</u>

MONITORING WELL / BORING NO	
Site Name:NYSDEC - Algonquin Middle Schoo	
Location: Hass Manufacturing	_ Drilling Co.:Clean Globe Environmental Powered by partnership.
Client: NYSDEC	Driller: Mario Pineda Soil Samples Collected:
Phone No.: N/A	Logged by: B.Baulsir No soil sample retained from HM-SB-02
Drilled TD: 3.0' (Dia): (Dia): N/A Well TD: N/A (Dia): N/A Screen Interval: N/A Slot Size: Slot Size: Slot Size: Slot Size: Slot Size: Slot Size: Slot Size: Slot Size: Slot Size: Slot Size: Slot Size: Slot Size: Slot Size: Slot Size: Slot Size: Slot Slot Size: Slot Slot Slot Slot Slot Slot Slot Slot	2" Sampling Method: Macro Core (Dia): 2" 2" Sampled TD: N/A (Dia): N/A (A Well Type: N/A N/A Diameter: N/A N/A Diameter: N/A pe: N/A Wellhead Prot: N/A pe: N/A Grouted Interval: N/A
Depth Monitoring Well (Feet) Construction Recover	PID (ppm): Description / Soil Classification
°	
5	End of boring (refusal), weathered shale bedrock in sampler shoe @ 3.0' Groundwater was not encountered No monitoring well installed 3.0

	S-1: 0' - 3.0' Rec: 0.0'/3.0'	N/A	0' - 3.0'	No Soil Classification, shallow refusal
				End of boring (refusal), weathered shale bedrock in sampler shoe @ 3.0' Groundwater was not encountered No monitoring well installed
20 -				
35 ⅃ Monitoring Well Completion / Boring Lo	og drafted by LaBella	Associate	s. D.P.C.	PAGE of
	- <u>-</u>		-,	

MONITORING WELL / BORING NO.	HM-SB-03	— — — —
Site Name: NYSDEC - Algonquin Middle School	Date Drilled: August 18, 2022	🔄 🖵 LaBella
Location: Hass Manufacturing	Drilling Co.:Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Driller:	Soil Samples Collected:
Phone No.: N/A	Logged by:B.Baulsir	HM-SB-03 0-2"
Drilling Method: Geoprobe 7822 DT (Dia): 2	Sampling Method: Macro Core (Dia): 2"	
Drilled TD:8"(Dia):2	Sampled TD: collected (Dia): N/A	
Well TD: N/A (Dia): N/A	A_ Well Type: ^{N/A}	
Screen Interval:Slot Size:	N/A Diameter: N/A	
Cased Interval: <u>N/A</u> Type:	N/A Diameter: N/A	
Sand Pack Interval:N/ATy	pe: <u>N/A</u> Wellhead Prot: <u>N/A</u>	
Bentonite Seal Interval: <u>N/A</u> Ty	pe: <u>N/A</u> Grouted Interval: <u>N/A</u>	

Depth (Feet)	Monitoring We ll Construction	Recovery;	PID (ppm):	Description / Soil Classification	
0 -					
		S-1: 0' - 8" Rec: 8"/8"	4.8	0" - 8" Topsoil and brown fine SAND and weathered shale fragments	
				End of boring (refusal), weathered shale bedrock in sampler shoe @ 8" Groundwater was not encountered No monitoring well installed	8"
					0
30					
35					
Monitor	ing Well Completion / Boring Lo	og drafted by LaBella	Associate	res, D.P.C. PAGE _ 1 _ of _ 1	_

MONITORING WELL / BORING NO. HM-SB-04	
Site Name: NYSDEC - Algonquin Middle School Date Drilled: August 18, 2022	LaBella
Location: Hass Manufacturing Drilling Co.: Clean Globe Environmental	Powered by partnership.
Client: NYSDEC Driller: Mario Pineda	Soil Samples Collected:
Phone No.: N/A Logged by: B.Baulsir	HM-SB-04 0-2" -
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2"	
Drilled TD: 0.5' (Dia): 2" Sampled TD: see samples collected (Dia): N/A	
Well TD: N/A (Dia): N/A Well Type:	
Screen Interval: N/A Slot Size: N/A Diameter: N/A	
Cased Interval: <u>N/A</u> Type: <u>N/A</u> Diameter: <u>N/A</u>	
Sand Pack Interval: N/A Type: N/A Wellhead Prot: N/A	
Bentonite Seal Interval: N/A Type: N/A Grouted Interval: N/A	

Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):	Description / Soil Classification	
Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm): 3.3	O' - 0.5' Topsoil and brown fine SAND and weathered shale fragments End of boring (refusal), weathered shale bedrock in sampler shoe @ 0.5 Groundwater was not encountered No monitoring well installed	5'
20 1 1 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ng Well Completion / Boring Lo	og drafted by LaBella	Associate	es, D.P.C.	1

MONITORING WELL / BORING NO. HM-SB-05	
Site Name: NYSDEC - Algonquin Middle School Date Drilled: August 18, 2022	LaBella
Location: Hass Manufacturing Drilling Co.: Clean Globe Environmental	Powered by partnership.
Client: NYSDEC Driller: Mario Pineda	Soil Samples Collected:
Phone No.: N/A Logged by: B.Baulsir	HM-SB-05 0-2"
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2"	
Drilled TD: 0.5' (Dia): 2" Sampled TD: see samples collected (Dia): N/A	
Well TD:	
Screen Interval: N/A Slot Size: N/A Diameter: N/A	
Cased Interval: <u>N/A</u> Type: <u>N/A</u> Diameter: <u>N/A</u>	
Sand Pack Interval: N/A Type: N/A Wellhead Prot: N/A	
Bentonite Seal Interval: N/A Type: N/A Grouted Interval: N/A	

Depth (Feet)	Monitoring We ll Construction	Recovery;	PID (ppm):	Description / Soil Classification	
		S-1: 0' - 0.5' Rec: 0.5'/0.5'	4.3	0' - 0.5' Topsoil and brown fine SAND and weathered shale	
				End of boring (refusal), weathered shale bedrock in Groundwater was not encountered No monitoring well installed	sampler shoe @ 0.5'
5					0.5'
30	ing Well Completion / Boring Lo	og drafted by LaBella	Associate	es, D.P.C.	PAGE <u>1</u> of <u>1</u>

MONITORING WELL / BORING NO. HM-SB-06	— — — —
Site Name: NYSDEC - Algonquin Middle School Date Drilled: August 18, 2022	🛛 📙 LaBella
Location: Hass Manufacturing Drilling Co.: Clean Globe Environmental	Powered by partnership.
Client: NYSDEC Driller: Mario Pineda	Soil Samples Collected:
Phone No.:N/A Logged by:B.Baulsir	No soil sample retained from HM-SB-06
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2"	
Drilled TD: <u>2.0'</u> (Dia): <u>2"</u> Sampled TD: <u>N/A</u> (Dia): <u>N/A</u>	
Well TD: N/A (Dia): N/A Well Type: N/A	
Screen Interval:Slot Size:N/ADiameter:N/A	
Cased Interval:N/AType:N/ADiameter:N/A	
Sand Pack Interval:N/AType:N/AWellhead Prot:N/A	
Bentonite Seal Interval: N/A Type: N/A Grouted Interval: N/A	

Depth (Feet)	Monitoring We ll Construction	Recovery;	PID (ppm):	Description / Soil Classification	
0 -					
		S-1: 0' - 2.0' Rec: 0.0'/2.0'	N/A	0' - 2.0'	No Soil Classification, shallow refusal
					End of boring (refusal), weathered shale bedrock in sampler shoe @ 2.0' Groundwater was not encountered No monitoring well installed
5 –					2.0'
10 -					
20					
25					
30 -					
35 _					
Monitor	ing Well Completion / Boring Lo	og drafted by LaBella	Associate	s, D.P.C.	PAGE <u>1</u> of <u>1</u>

MONITORING WELL / BORING NO. HM-SB-07	
	LaBella
	Powered by partnership.
Client: NYSDEC Driller: Mario Pineda Soil Samples Collect	
Phone No.: N/A Logged by: B.Baulsir HM-SB-07 0-2	2"
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2"	
Drilled TD: <u>3.5'</u> (Dia): <u>2</u> " Sampled TD: see samples collected (Dia): N/A	
Well TD:	
Screen Interval: <u>N/A</u> Slot Size: <u>N/A</u> Diameter: <u>N/A</u>	
Cased Interval: <u>N/A</u> Type: <u>N/A</u> Diameter: <u>N/A</u>	
Sand Pack Interval: ^{N/A} Type: ^{N/A} Wellhead Prot: ^{N/A}	
Bentonite Seal Interval: N/A Type: N/A Grouted Interval: N/A	
Depth (Feet)Monitoring Well ConstructionRecovery;PID (ppm):Description / Soil Classification	ation
0 3.5 0' - 3.5' Weathered shale bedrock fragments	
3.5 0' - 3.5' Weathered shale bedrock fragments S-1: 0' - 3.5' Rec: 3.5'/3.5' 0' - 3.5' Weathered shale bedrock fragments	
5 – End of boring (refusal), weathered shale bedr Groundwater was not encountered No monitoring well installed	ock in sampler shoe @ 3.5
	3.5'
35 J	

MONITORING WELL / BORING NO. H	
Site Name: NYSDEC - Algonquin Middle School Da	ate Drilled: August 18, 2022 LaBella
Location: Hass Manufacturing D	rilling Co.: Clean Globe Environmental Powered by partnership.
Client: NYSDEC D	
Phone No.: Lo	ogged by:B.Baulsir
Drilling Method: Geoprobe 7822 DT (Dia): 2"	Sampling Method: Macro Core (Dia): 2"
Drilled TD: <u>5"</u> (Dia): <u>2"</u>	Sampled TD: <u>see samples collected</u> (Dia): N/A
Well TD: <u>N/A</u> (Dia): <u>N/A</u>	Well Type:N/A
Screen Interval:Slot Size:	N/A Diameter: N/A
Cased Interval: <u>N/A</u> Type:	N/A Diameter: N/A
Sand Pack Interval:N/AType:	N/A Wellhead Prot: N/A
Bentonite Seal Interval: <u>N/A</u> Type:	N/A Grouted Interval: N/A

Depth (Feet)	Monitoring We ll Construction	Recovery;	PID (ppm):	Description / Soil Classification	
0 7					
		S-1: 0' - 5" Rec: 5"/5"	3.8	0' - 0.5" Topsoil and brown fine SAND and weathered shale fra	gments
				End of boring (refusal), weathered shale bedrock in sau Groundwater was not encountered No monitoring well installed	npler shoe @ 5"
5					5"
20 -					
30 -					
35]					
Monitor	Monitoring Well Completion / Boring Log drafted by LaBella Associates, D.P.C. PAGE <u>1</u> of <u>1</u>				AGE

LABORATORY ANALYTICAL REPORTS