Figure 1. Location of Geddes Brook, Ninemile Creek, and Onondaga Lake

Source: FS Figure 1-1 (Parsons, 2005)
Figure 3. Floodplain Extent for Various Flood Frequencies Based on Hydrologic Modeling Results

Source: Modified from FS Figure 1-15 (Parsons, 2005)
Figure 4. Geddes Brook/Ninemile Creek Reaches and Former Channel Locations

Source: Modified from RI Figure 2-3 (TAMS/Earth Tech, 2003c) and FS Figure 1-3 (Parsons, 2005)
Figure 5. Location of Honeywell and Other Referenced Sites Near Geddes Brook/Ninemile Creek

Source: RI Figure 4-1 (TAMS/Earth Tech, 2003c)
Figure 6a. Mercury Concentrations in Channel and Floodplain, Lower Geddes Brook
Source: Supplemental FS (Parsons, 2008a)

Mercury Concentrations in Channel and Floodplain, Ninemile Creek Reach CD

Figure 6b.
Figure 6c. Mercury Concentrations in Channel and Floodplain, Ninemile Creek Reach BC

Source: Supplemental FS (Parsons, 2008a)
Figure 7. Comparison of Total Mercury Loads in Surface Water of Geddes Brook and Ninemile Creek in 1990

Source: RI Figure 6-6a (TAMS/Earth Tech, 2003c)
Figure 8. Comparison of Total Mercury Loads in Surface Water of Geddes Brook and Ninemile Creek in 1998.
Geddes Brook

- Remove Soil/Sediment to Clay and Restore with Approximately 1 ft of Clean Soil.
- Inactive Utility Berm
- Remove Sediment from Existing Channel and Floodplain. Restore with Clean Soil to Existing Grade.
- Relocate Channel (Approximate) to Enhance Sinuosity, Connectivity and Ability to Migrate.
- GEDDES BROOK IRM

Reach CD

- Backfill Existing Channel. Restore with Minimum 2 ft of Clean Soil Over Channel and Adjacent to Wastebeds to Ease Slopes.
- Remove 2 ft of Soil/Sediment from Floodplain. Restore with 2 ft of Clean Soil.
- Break in Grade
- Hot Spot Removal Area
- Remove Sediment from Geddes Brook Culverts
- Relocate Channel (Approximate) 1
- Shoreline

Reach BC

- Remove Sediment as Required for Habitat/Isolation Cap Effectiveness and to Address Water Depth and Flooding Requirements. Install Isolation Cap and Habitat Layer.

Additional hot-spot areas in the southern channel around the large island would also be removed. See text.

Source: Modified from Supplemental FS (Parsons, 2008a)

Figure 11. Alternative 3 (Selected Remedy) Remedial Approach and Geddes Brook IRM
Figure 13.
Alternative 2 Removal Areas, Channel

Note:
For feasibility study purposes, areas and depths of removal shown are based on the Thiessen Polygon method and existing data. Actual areas and depths of removal may vary based on additional data which would be collected during pre-design investigations and subsequent design evaluation.
Note:
For feasibility study purposes, areas and depths of removal shown are based on the Thiesen Polygon method and existing data. Actual areas and depths of removal may vary based on additional data which would be collected during pre-design investigations and subsequent design evaluation.

Source: Modified from Supplemental FS (Parsons, 2008a)

Figure 14.
Alternative 2 Removal Areas, Floodplain
Figure 15.
Geddes Brook IRM and Alternative 3 (Selected Remedy) Removal Areas, Channel

Notes:
Removals from existing floodplain areas may be greater than 4 ft to achieve required hydraulic gradient.

For feasibility study purposes, areas and depths of removal shown are based on the Thiessen Polygon method and existing data. Actual areas and depths of removal may vary based on additional data which would be collected during pre-design investigations and subsequent design evaluation.

In Reach BC, for feasibility study purposes, an average 3 ft removal was assumed based on limited existing bathymetric data and preliminary hydrodynamic modeling. Actual removals required to install the isolation cap and habitat layer may vary based on additional data which would be collected during pre-design investigations and subsequent design evaluation.
Figure 16.
Geddes Brook IRM and Alternative 3 (Selected Remedy) Removal Areas, Floodplain

Source: Modified from Supplemental FS (Parsons, 2008a)

Legend:
- Reach Boundaries
- Assumed Depth of Removal
 - Up to 1'
 - >1' to 2'
 - >2' to 3'
 - >3' to 5'
- New Channel Alignment

Note:
For feasibility study purposes, areas and depths of removal shown are based on the Thiessen Polygon method and existing data. Actual areas and depths of removal may vary based on additional data which would be collected during pre-design investigations and subsequent design evaluation.
For feasibility study purposes, areas and depths of removal shown are based on the Thiessen Polygon method and existing data. Actual areas and depths of removal may vary based on additional data which would be collected during pre-design investigations and subsequent design evaluation.
Figure 18: Alternative 4 Removal Areas, Floodplain

Note:
For feasibility study purposes, areas and depths of removal shown are based on the Thiessen Polygon method and existing data. Actual areas and depths of removal may vary based on additional data which would be collected during pre-design investigations and subsequent design evaluation.