April 14, 2023

Kate Kornak Deputy Regional Permit Administrator New York State Department of Environmental Conservation Division of Environmental Permits, Region 4 1130 North Westcott Road Schenectady, New York 12306-2014

RE: Response to January 17, 2023 Notice of Incomplete Application S.A. Dunn Mine and C&D Facility DEC #4-3899-00006 Part 360 Permit Renewal and Modification; MLR Permit Renewal and Modification

Dear Ms. Kornak,

Civil & Environmental Engineering, Land Survey, and Landscape Architects, PLLC (CEE) and GHD have prepared this letter in response to comments received from the New York State Department of Environmental Conservation, dated January 17, 2023, regarding the Part 360 Permit Renewal and Modification Application and Mined Land Reclamation (MLR) Permit Renewal and Modification Application for the S.A. Dunn Mine and Construction & Demolition Debris (C&D) Facility (Dunn Facility).

For clarity, the Part 360 and MLR Permit Renewal and Modification Applications consist of the following two actions: (1) renewal of the Part 360 and MLR permits; and (2) modification of the permits to incorporate construction of a mechanically stabilized earthen (MSE) perimeter berm. No increase in emissions is proposed by either action. In fact, the MSE berm is itself a mitigation measure, as it reduces the permitted C&D disposal volume by approximately 220,000 cubic yards.

The Department's comments are provided below in bold, with the responses immediately following. GHD has also revised its Climate Leadership and Community Protection Act (CLCPA) assessment consistent with these comments, and Aurora Acoustical Consultants Inc. has prepared an addendum to the Facility Sound Survey.

Comments on CLCPA Assessment:

1) The submitted CLCPA GHG Assessment Memorandum prepared by GHD, dated November 4, 2022 ("the analysis"), states several times that, "The landfill gas (LFG) generated within the Dunn Facility is assumed to be approximately 25 percent methane (CH4) and 75 percent carbon dioxide (CO2)." Please expand on how this assumption was derived.

<u>Response</u>: Based on observations at the Dunn Facility, the methane concentration of landfill gas fluctuates over time—drifting above and below 25% methane. Based on this data, GHD initially assumed a long-term average of 25% methane, and that carbon dioxide makes up the balance (75%) of the gas. GHD has since updated the CLCPA Assessment based on the RM3C results of

Kate Kornak - New York State Department of Environmental Conservation CEC Project: 182-442 Page 2 April 14, 2023

a laboratory analysis of a landfill gas sample collected from the Dunn Facility on February 22, 2023:

- Methane $(CH_4) = 27\%$
- Carbon dioxide $(CO_2) = 29\%$
- Oxygen $(O_2) = 4.9\%$
- Nitrogen $(N_2) = 35\%$

The analytical report is included as Appendix A. GHD used a methane concentration of 27%, with the balance of landfill gas (73%) conservatively assumed to be carbon dioxide.

2) The landfill gas collection system currently in place at the facility is discussed throughout the analysis as a mitigation measure. Please expand the analysis to discuss potential mitigation measures which are not currently required by the permit that the facility could implement to reduce current and future emissions. Evaluate feasibility and implementation of the potential mitigation measures.

<u>Response</u>: Appendix B, from Section 5.3 of the revised CLCPA Assessment, evaluates potential measures to increase landfill gas collection and mitigate emissions during construction, operation, and maintenance activities. As more fully explained in the appendix, upon approval of its permit renewal and modification applications, S.A. Dunn commits to implementing or continuing to implement the following measures to mitigate emissions at the Dunn Facility:

- Continued operation of the gas collection and control system with a utility flare, which efficiently destroys methane.
- Expansion of the gas collection and control system to capture more gas as additional waste placement reaches permitted grades.
- To the extent practical, S.A. Dunn coordinates, and will continue to coordinate, back hauls of loads leaving the Dunn Facility, such that after loads of inbound earthen material (e.g., crushed stone for roads, drainage stone and clay for liner system construction) are delivered to the Dunn Facility, those same trucks will then reload prior to leaving the Dunn Facility with outbound sand and gravel exports.
- Regular placement, inspection, and maintenance of all cover materials in areas where waste has been placed. In addition to existing inspection practices, S.A. Dunn commits to documentation of a monthly inspection of cover materials and undertaking maintenance, as needed.
- Preparation and submission of construction plans for Department review within 6 months of receiving the final permit. The construction plans will identify an area of at least 10 acres of final cap to be constructed within the construction season following Department

Kate Kornak - New York State Department of Environmental Conservation CEC Project: 182-442 Page 3 April 14, 2023

approval of the construction plans. Further, S.A. Dunn will complete final cap on at least 20 acres (inclusive of the initial 10 or more acres of final cap) by 2030, and on all remaining areas of the landfill footprint (62.1 acres) by 2050.

- Preparation and implementation of a surface emission monitoring (SEM) work plan, which will entail an annual SEM event substantively following the field procedures for SEM detailed in the New Source Performance Standards for municipal solid waste landfills.
- Vegetation of all areas of the Dunn Facility where feasible.
- Mine reclamation and closure will provide a final vegetated cap.
- Construction of the MSE berm, which will mitigate emissions by:
 - Reducing waste in place by approximately 220,000 cubic yards. This reduces the potential GHG emissions from landfill gas by approximately 914 tons per year at peak, and further reduces truck trips from waste disposal—and thus truck emissions—including in the proximate disadvantaged communities.
 - Reducing the amount of construction soils and sands to be hauled from the Dunn Facility by at least 500,000 cubic yards, thus decreasing truck and construction equipment emissions, including in the proximate disadvantaged communities. At 15 tons per truck, this is a potential reduction of approximately 90,000 truck trips.
- Mine reclamation and closure will provide a final vegetated cap.
- Incorporation of vegetation into the MSE berm.
- Use of the existing Dunn Facility potentially avoids the development of greenfield sites and the associated removal of vegetation.

The practice of consolidating waste through transfer stations, which reduces fuel consumption and GHG emissions, will also continue. In addition, the Department conducts enhanced air monitoring for hydrogen sulfide and particulate matter (PM) at the perimeter of the Dunn Facility.

The gas collection and control system is appropriately considered a mitigation measure since such a system is not currently a programmatic requirement for New York C&D landfills, and it significantly reduces GHG and hazardous air pollutant (HAP) emissions (including potential impacts to the proximate disadvantaged communities). If the waste were disposed at a C&D landfill without a gas collection and control system, then GHG and HAP emissions would dramatically increase. As shown in Table 1, attached to the CLCPA Assessment, a landfill with a gas collection and control system emits approximately 59% less GHG in 2030 and 82% less GHG in 2050; and 40% less HAPs in 2030 and 57% less HAPs in 2050 than a comparable landfill without a gas collection and control system (i.e., with uncontrolled emissions).

Kate Kornak - New York State Department of Environmental Conservation CEC Project: 182-442 Page 4 April 14, 2023

3) Please clarify whether the emissions from the leachate collection tank are included in the fugitive emissions calculations.

<u>Response</u>: The fugitive methane emissions calculations include emissions from the leachate collection tank, as the gas collection efficiency used in the calculations is assumed to be the same across the board. Attachment F to the CLCPA Assessment, which uses the equations provided in AP-42 Chapter 7, Liquid Storage Tanks, demonstrates that emissions of other compounds from the leachate tank are de minimis (< 1 pound per year).

4) Section 4 of the analysis discusses insignificant emissions. Please clarify how the sources listed in this section were determined to be insignificant emission sources.

<u>Response</u>: The potential emission sources listed below occur, at most, sporadically throughout the year, and may not occur during each year of operation:

- Equipment used for maintenance/cleaning of the leachate collection system (e.g., jetting)
- Equipment used for installing components of the LFG collection system (e.g., drill rigs for the installation of gas well collectors)
- Emissions from the production, delivery, and installation of geomembranes or geotextiles and related products
- Emissions from leachate storage tanks (calculations in Attachment F to the CLCPA Assessment, using the equations provided in AP 42, Fifth Edition, Volume I Chapter 7: Liquid Storage Tanks, demonstrate that emissions from these sources are de minimis at <1 pound per year).

Because these events—occurring over isolated, short periods of time each year—do not significantly contribute to the overall emissions at the Dunn Facility, they are considered "insignificant."

5) As depicted in Section 2.2, Figure 1 of the analysis, the facility's landfill gas emissions are expected to increase until the peak emissions year in 2032. In Section 6.1 of the analysis, consistency with CLCPA is discussed only in terms of the projected 2030 and 2050 emission levels. Within the analysis, please include a discussion about the increase in greenhouse gas (GHG) emissions until the peak year in 2032, and how this relates to the goals of CLCPA.

<u>Response</u>: The CLCPA Assessment addresses statewide GHG emission limits equal to a 40% reduction by 2030 and a 85% reduction by 2050 from 1990 levels. These limits apply in the aggregate across all sources of GHG (e.g., mobile, stationary), and no legal framework exists to apply these emission reductions rigidly to individual sources. Thus, Commissioner Policy-49 (CP-49) frames the inquiry by stating that CLCPA § 7(2) "requires the Department to consider whether

Kate Kornak - New York State Department of Environmental Conservation CEC Project: 182-442 Page 5 April 14, 2023

agency administrative decisions ... are inconsistent with or will interfere with the attainment of" statewide limits. CP-49 further states that "[r]outine permit renewals that would not lead to an increase in actual or potential GHG emissions would ordinarily be considered consistent with the CLCPA pending finalization of the Scoping Plan, the subsequent adoption of a state energy plan, and future regulations unless project specific facts support a finding of inconsistency."

With this context in mind, the methane generation model shows that—as is typical of all landfills landfill gas generation increases each year waste is disposed of in the Dunn Facility (in this case, until 2032), with only a slight increase predicted between 2030 and 2032 because waste placement is predicted to continue until 2032 and then stop. Landfill gas production then declines in all subsequent years. Because the LFG model is generally considered conservative, it is also likely that the peak estimate of emissions for 2032 will never be realized.

The permit renewal and modifications applications do not propose to increase emissions; the modeled emissions have been anticipated and are actually *reduced* with the inclusion of the MSE berm because, if authorized, it will decrease the waste disposal volume that is otherwise authorized under the permit. These GHG reductions are addressed in further detail below. For these reasons, the permit renewal will not be inconsistent with and will not interfere with the attainment of New York's aggregate statewide limits.

However, to be responsive to the comment, year 2032 projected emissions (as well as year 2023 projected emissions) have been added to the CLCPA Assessment.

6) Section 7 of the analysis states, "Approximately 20 percent of GHG emissions and 27 percent of HAP emissions in 2030 occur due to the transport of waste from the point of generation to the Dunn Facility, which does not impact the draft Disadvantaged Communities (DAC) located around the Dunn Facility." Please clarify how this conclusion was derived.

<u>Response</u>: 84% of the waste that arrives at the Dunn Facility comes from ten off-site sources at an average distance of 138.1 miles away. While GHG and HAP emissions from the transport of this waste occur along the entirety of the 138.1 mile path, only approximately 1 mile of the 138.1 mile trip occurs within the disadvantaged communities proximate to the Dunn Facility. Of the 14,771 tons of per year of GHG emissions from waste hauling along the 138.1 mile route, only 107 tons per year are associated with this one-mile portion of the trip.

Because less than 1% of this total route has the potential to result in emissions within the disadvantaged communities proximate to the Dunn Facility, and only 107 tons per year of GHG emissions are associated with this one-mile portion of the trip, the GHG and HAP emissions do not result in increased impacts or burdens to the disadvantaged communities.

7) The facility's potential impacts on the surrounding disadvantaged communities related to emissions of GHGs and co-pollutants must be evaluated. The department's DECinfo Locator tool should be used to find the most up-to-date draft disadvantaged community maps: <u>DECinfo Locator - NYS Dept. of Environmental Conservation</u>.

Kate Kornak - New York State Department of Environmental Conservation CEC Project: 182-442 Page 6 April 14, 2023

This evaluation must include the potential impacts of mobile sources operating on site as well as transporting material and leachate through the local community. Please provide the following information:

- a. The facility submitted a map, prepared by CEC PLLC and titled Residents at Large Distribution Area, as part of the approved Public Participation Plan. This map identifies the local truck delivery and return route(s) near facility. Please use this predefined truck route in evaluating the facility's potential impacts on the surrounding DAC. Calculations of annual miles traveled per vehicle type on the identified route must be provided, based on round-trip distance.
- b. To the extent not previously provided, please identify sources of emissions (facility vehicles and fossil fuel powered equipment) that will operate within the facility and their daily and annual estimated hours of operation.
- c. For all the on- and off-site sources identified above, estimate and summarize GHG and co- pollutant emissions using the following emission factors, as appropriate:
 - To estimate emissions of CO2, CH4, and N2O, use the EPA emission i. factors in Tables 2-4 at the following link: https://www.epa.gov/climateleadership/ghg-emissionfactors-hub. Emissions calculations for on-road vehicles should be based on the total annual miles traveled as referenced in Item a above. Emissions calculations for non- road vehicles and fossil fuel powered equipment should be based on the estimated annual hours of operation as calculated in Item b above. When calculating carbon dioxide equivalents, please use the 20-year global warming potentials found in 6 NYCRR Section 496.5.
 - ii. To estimate emissions of particulate matter (PM), a co-pollutant, use the AFLEET tool at the following link: https://afleet.es.anl.gov/afleet/. The 'Footprint Onroad' and 'Footprint Offroad' tabs should be used in conjunction with the data identified in Items a and b above to calculate co-pollutant emissions. Note that while the spreadsheet provides an estimate of GHG emissions as well it should not be used for the purposes of Item i above as the calculation methodology is inconsistent with the requirements of CLCPA. Please also include an electronic copy of the completed spreadsheet with the application materials for this facility.
- d. Evaluate how estimated GHG and co-pollutants identified above may be reduced by an equal or greater amount within the disadvantaged community.

Kate Kornak - New York State Department of Environmental Conservation CEC Project: 182-442 Page 7 April 14, 2023

Response:

(a.) As explained above, 84% of the waste that arrives at the Dunn Facility comes from ten off-site sources at an average distance of 138.1 miles away. Based on the Residents at Large Distribution Area, only one-mile of this 138.1 mile route occurs within the disadvantaged communities proximate to the Dunn Facility. Round trip waste truck emissions are shown on Table 5 attached to the CLCPA Assessment. Of the 14,771 tons per year of GHG emissions from waste hauling along the 138.1 mile route, only 107 tons per year are associated with this one-mile portion of the trip in the proximate disadvantaged communities.

(b.) Tables 3 and 4 attached to the CLCPA Assessment identify the hours of operation per day and per week, and annual number of weeks of operation for compactors, dozers, excavators, and haul trucks.

(c.) We used CH₄, CO₂, and N₂O emission factors directly from 40 CFR 98 Subpart C, which is what all facilities across the country use when calculating annual GHG emissions. The U.S. Environmental Protection Agency (EPA) similarly relies on these emission factors when publishing its total inventory of emissions. Further, GHD compared the resulting ton per year emissions using the emission factors provided in 40 CFR 98 Subpart C and those referenced in c.i. above, and there is less than a 1% difference in the resulting CO₂e between the two methods (see Appendix C). The 20-year GWP factors from NYCRR 496.5 were used as requested.

The Department has previously identified HAP as co-pollutants to be evaluated for the Section 7(3) analysis (according to Notice of Incomplete Application letter dated March 30, 2022, "co-pollutants are defined as hazardous air pollutants (HAPs) that are emitted by GHG sources."). The list of pollutants defined as HAPs under 6 NYCRR 200.1(ag) does not include particulate matter. Therefore, HAP emissions are included but not particulate matter (PM).

Moreover, with respect to PM, estimating emissions is not necessary in this instance because there is readily available data from the monitoring equipment on property that is adjacent to the Dunn Facility and within a disadvantaged community. In the hierarchy of estimating emissions, monitoring data is preferred over estimating emissions using emissions factors. Since 2019, the Department has collected PM10 data from the Rensselaer City School adjacent to the Dunn Facility to the north and compared the results to the Albany County Health Department monitor location to the west of the Dunn Facility. With minor exceptions, PM10 levels at the Rensselaer City School are consistently lower than those at the Albany County Health Department, and well below applicable standards protective of public health. This information is addressed in detail in Appendix F to Attachment D (EAF) to the Dunn Facility's January 13, 2022 permit application submission. The Department also maintains a summary of this information at https://www.dec.ny.gov/chemical/117071.html#Dust. This page has recently been updated to include 2022 data and confirms that PM levels in the disadvantaged community proximate to the Dunn Facility are far below established health standards, and typically lower than PM levels recorded at the Albany County Health Department monitor location to the west of the Dunn Facility.

Kate Kornak - New York State Department of Environmental Conservation CEC Project: 182-442 Page 8 April 14, 2023

In addition, on-site meteorological data for 2021 and 2022 was used to generate the wind roses at Appendix D. The wind roses indicate that the wind direction is from the south to the north (from the Dunn Facility towards the school) a significant portion of the time. Therefore, if measurable PM was being emitted from the Dunn Facility, it would be detected by the nearby monitoring device at the school. However, that is not the case.

Further, as addressed in Appendix F to Attachment D to the Dunn Facility's permit application, the Department also conducted a speciated analysis (for specific elemental components) of PM10 from October 12, 2019, to December 8, 2019, on the roof of the Rensselaer City School, which again is in the proximate disadvantaged community. The Department concluded that the air concentrations for the PM10 mass and associated elemental components were low and similar to measurements at an identical monitor in Loudonville, New York, during the same time period. The Department further concluded that the sampling results do not appear to indicate that the Dunn Facility's operations are measurably increasing the levels of PM10 monitored at the school above levels measured at other monitoring locations.

These data confirm that the area, including the proximate disadvantaged communities, is not experiencing burdens from PM emissions that are unhealthy or disproportionate.

(d.) The response to Comment #2 and Appendix B address potential emission reduction measures in detail. These measures include continued operation of the gas collection and control system, which may not be available at other C&D landfills, and construction of the MSE berm, which—if approved—would reduce the permitted waste disposal space at the Dunn Facility and would decrease emissions generally and in the disadvantaged communities. S.A. Dunn also commits to identifying an area of at least 10 acres of final cap to be constructed within the construction season following the Department approval of the construction plans, and to preparation and implementation of a SEM work plan.

8) Please show how the Hazardous Air Pollution (HAP) emissions calculated in Tables 3 and 4 were determined.

<u>Response</u>: HAP emissions are calculated based on the HAP emission factor, multiplied by the annual amount of diesel consumed. The HAP emission factor for diesel is obtained by multiplying the heating value of diesel (0.1389 MMBTU per gallon) by the sum of the individual speciated HAPs in Table 3.3-2 of EPA AP-42, Section 3.3 (summed in units of lb/MMBTU). This is an "uncontrolled" emission factor, and is therefore conservative for estimating emissions. This explanation is being added as a footnote to Tables 3 (footnote 15) and Table 4 (footnote 16).

9) In Table 7 of the analysis, the actual upstream emissions of propane are calculated. Please provide calculations for the upstream emissions of propane on a potential to emit (PTE) basis as well.

<u>Response</u>: Propane usage is mostly used for heating purposes at the Dunn Facility and is thus only used seasonally. It is not expected to change significantly on an average annual basis; therefore, the potential-to-emit (PTE) is not representative of current or future conditions. For completeness,

Kate Kornak - New York State Department of Environmental Conservation CEC Project: 182-442 Page 9 April 14, 2023

the PTE for propane has been added to the tables but is not included in the facility-wide PTE, which is already conservative.

10) Emissions projections for 2030 and 2050 are provided on an actual emissions basis. Please provide calculations for the 2030 and 2050 emissions projections on a PTE basis as well.

<u>Response</u>: The uncontrolled emissions depicted in Table 1 attached to the CLCPA Assessment represent the PTE, or worst-case scenario, if the gas collection and control system is not utilized at the Dunn Facility. This PTE scenario does not represent normal operations at the Dunn Facility.

11) The value calculated for the total 2030 CH4 generated (metric tons) in Attachment A may be inaccurate. Please check this calculation. If the calculation is accurate, please provide a description of how this value was determined.

<u>Response</u>: The methane generation model in Attachment A to the CLCPA Assessment was taken from 40 CFR 98 Subpart HH, which is used for annual GHG Reports submitted to EPA each year by March 31. The calculation is accurate.

The methane generation within a landfill for a given year can be calculated based on historical waste records and future projections of waste acceptance. Equation 1 presents the formula used to calculate the methane generation within a landfill for a given year:

 $G_{CH4} = \sum \{ W_x * L_{o,x} * (e^{-k (T - x - 1)} - e^{-k (T - x)}) \} \text{ [for } x = S \text{ through } T-1 \text{]}$

where,

 G_{CH4} = modeled methane generation rate in year T in metric tons per year

x = year in which waste was disposed

S = start year of calculation

T = reporting year for which emissions are calculated

 W_x = quantity of waste disposed in year x (metric tons, wet weight)

 $L_0 = CH_4$ generation potential (metric tons CH_4 / metric tons waste)

 $k = rate constant from Table HH-1 (yr^{-1})$

The methane generation potential L_o is calculated using Equation 2:

 $L_o = \underline{MCF * DOC * DOC_F * F * 16}$ 12

where,

Kate Kornak - New York State Department of Environmental Conservation CEC Project: 182-442 Page 10 April 14, 2023

 $L_o = CH_4$ generation potential (metric tons CH_4 / metric tons waste)

MCF = methane correction factor (default value is 1)

DOC = degradable organic carbon from Table HH-1 of 40 CFR 98 Subpart HH (metric tons C/metric ton waste)

 DOC_F = Fraction of DOC dissimilated (default value is 0.5)

F = Fraction by volume of CH₄ in landfill gas from measurement data

12) In the analysis, the 2030 and 2050 projected direct emissions for stationary sources are calculated. Please provide calculations for the direct emissions from the existing stationary sources at the facility and for the proposed operations described in the renewal/modification applications. The calculations for each scenario should be provided on a PTE and actual emissions basis.

<u>Response</u>: Estimated actual emissions were provided in the CLCPA Assessment in the attached Tables 1-8. Table 1 shows the uncontrolled emissions, which represents the PTE, and includes stationary sources.

The permit application would not increase these emissions; in fact, the proposed MSE berm modification would result in a decrease in GHG and HAP emissions in 2032 and 2050 due to the reduction in the permitted waste disposal capacity at the Dunn Facility by approximately 220,000 cubic yards. This reduction was taken into account in the original calculations.

The table below summarizes the reduction in emissions that will result from construction of the MSE berm, if approved:

	Year 2023		Year	2030	Year 203	2 or 2033	Year 2050	
	Total CO ₂		Total CO ₂		Total CO ₂		Total CO ₂	
	Equivalents	Total HAPs						
Emissions Source	(tons / year)	(tons / year)						
Total Emissions Under Currently Permitted Conditions	50,246	1.37	75,755	2.11	83,072	2.33	19,831	0.90
Total Emissions with the Modification	NA	NA	NA	NA	82,112	2.30	19,338	0.88
Change in Emissions as a Result of the Modification					-960	-0.03	-482	-0.01

13) The HAP emissions from stationary sources are calculated in the emissions projections for 2030 and 2050. Please provide calculations for the HAP emissions from the stationary sources at the facility and for the proposed operations described in the renewal/modification applications. The calculations for each scenario should be provided on a PTE and actual emissions basis.

Response: See response to Comment 12.

14) Please provide a source reference and/or explain from where the heating value used in Tables B.2 and C.2 came.

<u>Response</u>: Because AP-42 Chapter 1.4 lists the heating value of methane as a range from 950 to 1,050 BTU/SCF, the application used 1,000 BTU/scf in the calculations. Gas with a 27% methane concentration would be 27% of this value, or 270 BTU/scf. This explanation has been added to Table B.2 in Attachment B and Table C.2 in Attachment C to the CLCPA Assessment.

15) Please describe how the escape CH4 value was calculated in Tables B.2 and C.2.

<u>Response</u>: A flare destruction efficiency of 99%, referenced from 40 CFR 98, Subpart HH, was used in the calculations. This means that 1% of the gas collected will "escape" destruction. This flare destruction efficiency is conservation because destruction efficiencies are typically measured to be higher than 99% for flares. This explanation has been added to Table B.2 in Attachment B and Table C.2 in Attachment C to the CLCPA Assessment.

16) Tables B.3, B.5, C.3, and C.5 utilize emission factors compiled by the Waste Industry Air Coalition (WAIC) to calculate emissions of speciated HAP compounds. Please utilize the AP-42 emission factors in Chapter 2, Solid Waste Disposal, instead. The AP-42 Chapter 2 factors are enclosed for your convenience.

<u>Response</u>: The AP-42 emission factors provided are considered "draft" and have not been finalized. S.A. Dunn disagrees that these emission factors, which have not been made final by EPA, should be used when recognized alternatives are available. Indeed, the WIAC values (relied on in the November 2022 CLCPA Assessment) are commonly used to estimate emissions from landfills and are already conservative since they are based on emissions from municipal solid waste (MSW). Because C&D does not contain the VOCs and other compounds present in MSW, these compounds would not be produced to the same extent.

Notwithstanding this concern, GHD has revised the HAP emissions estimate using the AP-42 Section 2.4 emission factors.

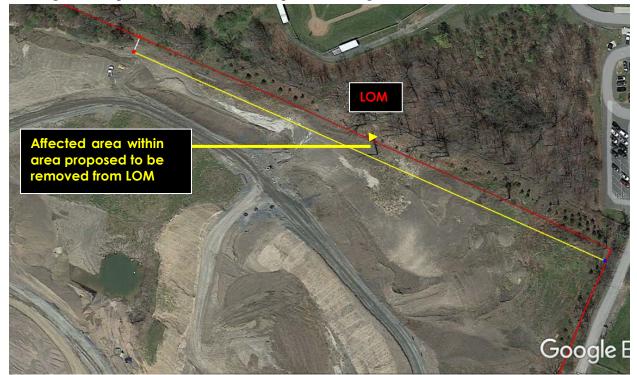
17) Please clarify how the cover oxidation factor of 10% was utilized in the fugitive landfill gas calculations for the years 2030 and 2050.

<u>Response</u>: The calculation methodology in 40 CFR 98 Subpart HH acknowledges that fugitive methane is oxidized within the soil cover before it escapes. See Table HH-4 for a summary of different cover oxidation factors. For the purposes of the calculations, the default value of 10% was assumed, although it is likely to be significantly higher in practice. Thus, 10% of fugitive methane is assumed to be oxidized to carbon dioxide. This oxidized portion is still accounted for as CO2 in the totals, further ensuring that the calculations are conservative.

Kate Kornak - New York State Department of Environmental Conservation CEC Project: 182-442 Page 12 April 14, 2023

18) The 2022 Statewide GHG Emissions Report has been released, which means the "Appendix A" emission factors have been updated. Please utilize these updated emission factors in the analysis. The 2022 version of Appendix A is attached.

<u>Response</u>: The CLCPA Assessment used the most current emission factors at the time of submittal. The calculations in the CLCPA Assessment are being updated using the recently published factors.


19) The EPA AP-42 Chapter 3 table cited in footnotes 15 and 16 to Tables 3 and 4, respectively, is Table 3.3-2, which does not include a factor for PM. The EPA AP-42 table that includes an emission factor for PM is Table 3.3-1. Please correct.

<u>Response</u>: As discussed above, PM is not included in the calculated HAP emissions total; therefore, a reference to Table 3.3-1 is not warranted.

Comments on Mined Land Reclamation Permit

20) According to the January 2022 Mining Plan Map and Mined Land Use Plan, a total of 2.27 acres are proposed to be removed from the Life of Mine (LOM) along the northern and western boundaries of the mine. According to the most recent satellite imagery, a portion of the area proposed to be removed from the LOM along the northern perimeter of the site has been affected by mining activity (see image on Page 4 below). There is stockpiled material within this area and a portion of the perimeter storm water containment berm intersects this area. Provide a schedule for reclaiming all areas affected by mining activity within the area proposed to be removed from the LOM by *June 1, 2022*. Describe how the area will be reclaimed and provide details with regard to how the area will be covered with 6 inches of fertile cover material and planted to ensure that it is capable of achieving 75% vegetative coverage in the second year after planting.

Kate Kornak - New York State Department of Environmental Conservation CEC Project: 182-442 Page 13 April 14, 2023

Mining Plan Map overlaid onto 2022 Google Earth Image

<u>Response</u>: In conjunction with the construction of the MSE berm, which will be built in two phases, S.A. Dunn will reclaim the area along the northern perimeter that will be removed from the Life of Mine area as a result of the proposed modification. The first phase of MSE berm construction will occur as the baseliner cell Phase 8B is built, and the second phase will occur as baseliner Phase 7B is built. Upon completion of each phase of the MSE berm, the adjacent area between the toe of slope and the property boundary will be reclaimed. S.A. Dunn will place a minimum of six inches of a cover material with a soil composition capable of sustaining plant growth, and apply a seed mixture—recommended from within the New York State Revegetation Procedures Manual – Surface Mining Reclamation—to all exposed soils to provide an acceptable vegetative cover, i.e., 75% vegetative cover by the end of the second growing season after planting.

Comments on Noise Analysis

- 21) The Facility Sound Survey prepared by Aurora Acoustical Consultants Inc., dated November 14, 2022 ("noise analysis"), is deficient in not including the anticipated noise levels associated with the construction of the mechanically stabilized earthen (MSE) berm and focuses primarily on fill progression activities within the landfill footprint. Provide a revised noise analysis that describes:
 - a. the proposed equipment to be utilized during the construction of the MSE berm and specific quantitative noise levels associated with the equipment models;

Kate Kornak - New York State Department of Environmental Conservation CEC Project: 182-442 Page 14 April 14, 2023

- b. the duration of the proposed berm construction activity, including any necessary phasing or time-of-year construction constraints;
- c. the anticipated noise levels at the nearest receptors to the proposed berm construction area in comparison to the measured ambient sound levels. The Rensselaer school athletic fields which are adjacent to the northern side of the facility should be identified as a receptor location;
- d. the anticipated noise levels related to activity proposed to occur on top of the berm (such as traffic, earth moving, etc.) as well as landfill activities proposed to occur in the new landfill space just behind the berm (waste unloading, spreading, compacting, etc.);
- e. clarification of the following statement on Page 53: "Facility sound levels were calculated using an environmental noise modeling program to determine the sound levels received at residential boundaries and at residential locations beyond the facility boundaries, for existing operations both with and without construction sources, and for planned modified operations at the northern end of the facility."

<u>Response:</u> Attached is an April 13, 2023 addendum to the Facility Sound Survey that provides the requested data regarding anticipated noise levels related to the construction of the MSE berm, as well as truck traffic along the top of the proposed MSE berm.

The construction of the MSE berm will likely be completed in multiple stages, with the western portion of the MSE berm to be constructed first and the eastern portion of the MSE berm being constructed during a subsequent construction season. Based on experience with similar construction scopes, S.A. Dunn expects that the major berm construction activities (i.e., excavation, earth fills, and compaction) during each stage can be completed in a 5-to-7 week period, which S.A. Dunn will plan to occur during the neighboring Rensselaer City School summer break (late June to early September) to the greatest degree possible.

In the event that these major berm construction activities must occur during in-session periods, the attached addendum shows how noise mitigation measures can greatly reduce the noise levels associated with these short duration construction activities. Daily noise measurements will be taken and recorded at Locations 6 and E if major berm construction activities must occur during in-session periods. If these daily measured noise levels exceed 61.4 dBA at location 6 or 59.3 dBA at location E with the work ongoing, such mitigation measures (e.g., a continuous 12-foot vertical attenuation barrier on the exterior side of the major berm construction activities) will be implemented.

1) In addition, the statement on Page 53 of the Facility Sound Survey is clarified as follows: "[S]ound levels received' refers to the noise level from an activity calculated to have attenuated from the noise source to the receptor location. "[P]lanned modified operations" refers to the presently permitted operations occurring at different locations based on the requested modified site geometry. The noise analysis

Kate Kornak - New York State Department of Environmental Conservation CEC Project: 182-442 Page 15 April 14, 2023

deviates from the operating requirements under Part 360.19(j), which states that noise resulting from equipment or operations at the facility must not exceed the Leq sound levels beyond the property line owned or controlled by the owner or operator at locations authorized for residential purposes. Please provide a narrative discussion on how the noise level exceedances will be addressed and mitigated.

<u>Response</u>: As discussed during the February 15, 2023 meeting with the Department, the noise analysis does not indicate exceedances of the operating requirements under Part 360.19(j). As discussed, noise occurring during construction of the Dunn Facility is not subject to the noise level requirements of that section. In addition, locations authorized for residential purposes that are adjacent to the Dunn Facility are limited to areas on the southeast portion of the site (i.e., those represented by Boundary Location 2 from the Facility Sound Survey).

Comments on Dust Management Plan

2) Please note that the facility's Dust Management Plan should be incorporated as a Best Management Practice in the SWPPP under the facility's existing Multi-Sector General Permit.

<u>Response:</u> S.A. Dunn will incorporate the Dunn Facility's Dust Management Plan as a Best Management Practice in the SWPPP under the Facility's existing Multi-Sector General Permit.

Sincerely,

CIVIL & ENVIRONMENTAL ENGINEERING, LANDSCAPE ARCHITECTURE AND LAND SURVEYING, PLLC

Christophen S. Dohum

Christopher S. Dohner, P.E. Project Manager

Amy Theylt

Amy J. Knight, P.E. Principal

Attachments: Dunn Facility CLCPA GHG Assessment (GHD) Dunn Facility Sound Survey Addendum (Aurora Acoustical Consultants, Inc.)

cc: Curt Taylor, S.A. Dunn & Company, LLC. Jeff Burrier, S.A. Dunn & Company, LLC. Corey Judd, S.A. Dunn & Company, LLC. Alanah Keddell-Tuckey, NYSDEC OEJ Jon Whitcomb, NYSDEC-DMM Jami June, NYSDEC-MLR Carrie Buetow, NYSDEC-DOW

APPENDIX A

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Corey Judd Waste Connections, Inc. 209 Partition Street Extension Rensselaer, New York 12144 Generated 3/2/2023 11:19:17 AM

JOB DESCRIPTION

Dunn Landfill


JOB NUMBER

480-206423-1

RT OR Judd Inc. sion 144 7 AM

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

See page two for job notes and contact information.

Eurofins Buffalo

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Buffalo and its client. All questions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Buffalo Project Manager or designee who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Authorized for release by

Ryan VanDette, Project Manager II Ryan.VanDette@et.eurofinsus.com

(716)504-9830

Generated 3/2/2023 11:19:17 AM

5

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	9
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Canister QC Documents	15
Chain of Custody	16
Receipt Checklists	18
Clean Canister Certification	20
Pre-Ship Certification	20
Clean Canister Data	21
Air Canister Dilution	27

Qualifiers		2
		3
Air - GC VOA Qualifier	Qualifier Description	
E	Result exceeded calibration range.	
L		5
Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	8
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	17
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

TNTC Too Numerous To Count

Job ID: 480-206423-1

Laboratory: Eurofins Buffalo

Narrative

Job Narrative 480-206423-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 2/23/2023 10:35 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice.

Air Toxics

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Waste Connections, Inc. Project/Site: Dunn Landfill

Client Sample ID: LFG-1

Job ID: 480-206423-1

Lab Sample ID: 480-206423-1

Lab Sample ID: 480-206423-2

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac D	Method	Prep Type
Carbon dioxide	29		0.25		% v/v	10.08	EPA 3C	Total/NA
Methane	27		0.040		% v/v	1.59	EPA 3C	Total/NA
Oxygen	4.6		0.97		% v/v	1.59	EPA 3C	Total/NA
Nitrogen	34		2.2		% v/v	1.59	EPA 3C	Total/NA

Client Sample ID: LFG-2

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac D	Method	Prep Type
Carbon dioxide	29		0.32		% v/v	12.67	EPA 3C	Total/NA
Methane	27		0.047		% v/v	1.88	EPA 3C	Total/NA
Oxygen	4.9		1.1		% v/v	1.88	EPA 3C	Total/NA
Nitrogen	35		2.6		% v/v	1.88	EPA 3C	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample Results

Job ID: 480-206423-1	Job	ID: 480-20642	3-1
----------------------	-----	---------------	-----

Matrix: Air

Project/Site: Dunn Landfill Client Sample ID: LFG-1

Client: Waste Connections, Inc.

Lab Sample ID: 480-206423-1

Date Collected: 02/22/23 11:52

Date Received: 02/2	23/23 10:35
Sample Container:	Summa Canister 6L

Method: EPA 3C - Fixed Ga	ses from Stationary	Sources							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	29		0.25		% v/v			03/01/23 09:23	10.08
Methane	27		0.040		% v/v			02/28/23 17:27	1.59
Oxygen	4.6		0.97		% v/v			02/28/23 17:27	1.59
Nitrogen	34		2.2		% v/v			02/28/23 17:27	1.59

17

Client Sample Results

Job ID: 480-206423-1	Job	ID: 480-20642	3-1
----------------------	-----	---------------	-----

Matrix: Air

Lab Sample ID: 480-206423-2

Project/Site: Dunn Landfill nt C

Client: Waste Connections, Inc.

Client Sample ID: LF	G-2
Date Collected: 02/22/23	12:0

Date Collected: 02/22/23 12:01	
Date Received: 02/23/23 10:35	

Sample Container: Summa Canister 6L

Method: EPA 3C - Fixed Gases from Stationary Sources									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	29		0.32		% v/v			03/01/23 10:15	12.67
Methane	27		0.047		% v/v			02/28/23 18:19	1.88
Oxygen	4.9		1.1		% v/v			02/28/23 18:19	1.88
Nitrogen	35		2.6		% v/v			02/28/23 18:19	1.88

17

Method: EPA 3C - Fixed Gases from Stationary Sources

Lab Sample ID: MB 200-188992/3 Matrix: Air										Client S	ample ID: Metho Prep Type: ⁻	
Analysis Batch: 188992												
	MB	MB										
Analyte	Result	Qualifier	RI	-	RL	Unit		D	Pr	epared	Analyzed	Dil Fac
Carbon dioxide	ND		0.02	5		% v/v					02/28/23 13:32	1
Methane	ND		0.02	5		% v/v					02/28/23 13:32	1
Oxygen	ND		0.6	l		% v/v					02/28/23 13:32	1
Nitrogen	ND		1.4	ļ		% v/v					02/28/23 13:32	1
- Lab Sample ID: LCS 200-188992/2								Cli	ent	Sample	ID: Lab Control	Sample
Matrix: Air											Prep Type: ⁻	
Analysis Batch: 188992												
			Spike	LCS	LCS						%Rec	
Analyte			Added	Result	Qual	ifier	Unit		D	%Rec	Limits	
Carbon dioxide			5.00	5.30	E		% v/v			106	70 - 130	
Methane			5.00	5.08			% v/v			102	70 - 130	
Oxygen			5.02	5.12			% v/v			102	70 - 130	
Nitrogen			5.07	5.42			% v/v			107	70 - 130	

QC Association Summary

Client: Waste Connections, Inc. Project/Site: Dunn Landfill Job ID: 480-206423-1

5

Analysis Batch: 188992

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-206423-1	LFG-1	Total/NA	Air	EPA 3C	
480-206423-1	LFG-1	Total/NA	Air	EPA 3C	
480-206423-2	LFG-2	Total/NA	Air	EPA 3C	
480-206423-2	LFG-2	Total/NA	Air	EPA 3C	
MB 200-188992/3	Method Blank	Total/NA	Air	EPA 3C	
LCS 200-188992/2	Lab Control Sample	Total/NA	Air	EPA 3C	

Client Sample ID: LFG-1 Date Collected: 02/22/23 11:52 Date Received: 02/23/23 10:35

		÷						
Γ	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	EPA 3C		1.59	188992	WRD	EET BUR	02/28/23 17:27
Total/NA	Analysis	EPA 3C		10.08	188992	WRD	EET BUR	03/01/23 09:23

Client Sample ID: LFG-2 Date Collected: 02/22/23 12:01 Date Received: 02/23/23 10:35

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	EPA 3C		1.88	188992	WRD	EET BUR	02/28/23 18:19
Total/NA	Analysis	EPA 3C		12.67	188992	WRD	EET BUR	03/01/23 10:15

Laboratory References:

EET BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Job ID: 480-206423-1

Lab Sample ID: 480-206423-2

Lab Sample ID: 480-206423-1 Matrix: Air

Matrix: Air

Accreditation/Certification Summary

Client: Waste Connections, Inc. Project/Site: Dunn Landfill

Laboratory: Eurofins Burlington

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2336	02-25-26
Connecticut	State	PH-0751	09-30-23
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	05-17-23
Florida	NELAP	E87467	06-30-23
Minnesota	NELAP	050-999-436	12-31-23
New Hampshire	NELAP	2006	12-18-23
New Jersey	NELAP	VT972	06-30-23
New York	NELAP	10391	04-01-23
Pennsylvania	NELAP	68-00489	04-30-23
Rhode Island	State	LAO00298	12-30-23
US Fish & Wildlife	US Federal Programs	058448	07-31-23
USDA	US Federal Programs	P330-17-00272	10-30-23
Vermont	State	VT4000	02-10-24
Virginia	NELAP	460209	12-14-23
Wisconsin	State	399133350	08-31-23

Client: Waste Connections, Inc. Project/Site: Dunn Landfill

Method	Method Description	Protocol	Laboratory
EPA 3C	Fixed Gases from Stationary Sources	EPA	EET BUR

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Sample Summary

Client: Waste Connections, Inc. Project/Site: Dunn Landfill

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-206423-1	LFG-1	Air	02/22/23 11:52	02/23/23 10:35	Air Canister (6-Liter) #4148
480-206423-2	LFG-2	Air	02/22/23 12:01	02/23/23 10:35	Air Canister (6-Liter) #3666

Post-Sampling Air Canister Pressure Check Record

Login #		Date	Time		Lab	BP	L	ab Ten	າກ	Pressure	Analyst
(w/ Location Co	ode)		(Milita		("H	la)		(°C)	νÞ	Gauge ID	Analyst
480-206423	-	2/23/23	15:00		29			22		G35	ZK
Sampling Informa				-				Yes	No	Comn	
(1) Is a Field Test [umentat	ion pres	ent?		Yes	NU	Conn	lents
(2) Is the flow contr								Yes			
(3) MA MCP & NJ I				rollers					Νo		
(4) Is visible sign of					esent?				Νo		
If damage observed											
_											
Post-Sampling Re	turn Pressure	Check									
Lab ID	Canister ID	Pressure ¹	Anomaly ²	F	С	FC Ch	eck ⁴	FC R	eturn	Can Cert	Comments
		("Hg)	(Y/N)	10) ³	Refer	ence	(Y/	N)	Batch ID	Comments
480-206423-A-1	4148	-2.2	N	65	88	*		١	(6150-54219	
480-206423-A-2	3666	-3.4	N	65	88	*		١	(6150-54219	
		1									
		1									+

¹ Criteria: Return Pressure should be between -1 and -10 ("Hg) with the exception of grab samples or those using 100 or 200mL/minute flow controllers. These samples must be returned at no lower than -10"Hg, but have no specific criteria otherwise.

² If return pressure is not within criteria, initiate Non-Conformance Memo.

³ Record the ID of the FC used for sampling if information is provided, otherwise leave blank.

⁴ Record the Flow Controller Set Flow Rate Logbook ID and Page number in which the original FC Check was recorded

Eurofins TestAmerica, Burlington					Cani	ster Sa	Canister Samples Chain of Custody Record	Chain of	f Cut	stoc	IV R	eco	p					ť	Ľ	
530 Community Drive				TootAm	orioo I ohoro			of the second difference				17 3 7 7 7 7						l. G	CULOTINS Environment Testin	ent Testin
				ICSIAII	ierica Labora	liones, inc. a.	resuminence Laboratones, inc. assumes no liability with respect to the collection and shipment of these samples	y with respect to	o the colle	sction al	nqins bi		nese sa	mplies					America	
South Burlington, VT 05403-6809 phone 802.660 1990 fax 802 660.1919														Te	stAme	rica Lá	aborate	ories, In	TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmeric	stAmeric
Client Contact Information		Client Pro	Client Project Manager: CURT	iger: O	JAT 700	TAYLUR	Samples Collected By:	acted By:	SUN	57	Ř.	124Car	2					COC No.	No.	
Company Name SA DUNN # COMPANY		Phone: (218)47	170	383c	0													ofcocs	6
Address 209 PARATION ST. EKT.	LLC'	Email: 🤇	2027	170	O WCL	JX. DRG							Ì		-			TALS	TALS Project #:	
24	4412													8 204					For Lab Use Only:	
		Site Contact:	-	CURT -	TAYLON	ど			(lə/				bəs						Walk-in Client:	
FAX.	2	TelJFax	518	470-	-3830	0			۲e				-			(∃		_	Lab Sampling:	
Project Name.			Analysi	is Turnard	Analysis Turnaround Time				мо				ju u			INS		_		
Site/Location		Standard (Specific)	(Specific)						٦/١				Area - 1) uo			Job / SDG No ·	
P O #		Rush (Specifiy):	ecifiy):						breb				a			itos		(una	(See below for Add'l Items)	ems)
					Canister	Canister			uet:		97					=xtr				
Sample Identification	Sample Start Date	Time Start	Sample End Date	Time Stop	Vacuum in Field, "Hg (Start)	Vacuum in Field, "Hg (Ston)	Flow Controller ID	Canister ID	0-12 SIW S) 91/71-0	PA 3C	PA 25C	91/31 A9	ample T) (T elqms) (T elqms)	vidoor Airl	dsI2-du ese lio	oil Vapor	eeola) Teda	ther (Pleas		
					(Jupic)	(doie)			-	-	-	_	- 1	-	-	-	-		sample specific Notes:	tes:
1-20-1	2/22/23 1152	1152	1152	22 2.													×			
LFG-2	2122	1200	1201	2/22	c 1					-1049							X			
																		-		
										- 4 1 1	-20642	- Cha	480-206423 Chain of Custody	- ustoc	_ . ≥	-	-			
									┨	1	-		$\left \right $		-					

TT

Т

Form No. CA-C-WI-003, Rev. 2.28, dated 1/8/2021 a Si 7 aller . 2/23/23 10:35 44. Me Conditions we are well and a structure of n Samples Received by: Received by: Received by: -489 1315 17 -2 22 23 19 Opened by: Date / Time: Date / Time: Date / Time: ai Der Samples Shipped by: CUMT TW4UX Samples Relinquished by: 43 Shipper Name: Relinquished by: Lab Use Only: 🔪

Temperature (Fahrenheit) Ambient

> Start Interior Stop

Start Interior Stop

Special Instructions/QC Requirements & Comments:

Pressure (inches of Hg) Ambient

ORIGIN ID:BTVA (802) 923-1058 CURT TAYLOR WASTE CONNECTIONS, INC. 209 PARTITION STREET EXTENSION SHIP DATE: 09FEB23 CTWGT: 10.00 LB MAN AP: 000890364/CAFE3 RENSSELAER, NY 12144 UNITED STATES US SAMPLE MANAGEMENT 0 **EUROFINS TESTAMERICA BURLINGTON 30 COMMUNITY DRIVE SUITE 11** SOUTH BURLINGTON VT 05403 (802) 923 - 1058 REF: \$480 - 182155 RMA: ||| |||| ||| THU – 23 FE PRIORITY OV **FedEx** TRK# [0221] 6269 5353 3950 **XE BTVA** ٧T

Client: Waste Connections, Inc.

Login Number: 206423 List Number: 1

Creator: Khudaier, Zahraa

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	NA: Lab does not accept radioactive samples
The cooler's custody seal, if present, is intact.	True	1998590, 591
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	No: Thermal preservation not required
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	N/A	No: Thermal preservation not required
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Job Number: 480-206423-1

List Source: Eurofins Buffalo

Client: Waste Connections, Inc.

Login Number: 206423 List Number: 2

Creator: Khudaier, Zahraa

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Job Number: 480-206423-1

List Source: Eurofins Burlington

List Creation: 02/23/23 02:52 PM

			Temn:	240	<u> </u>		2.0	0.22	-)			and the second	2(61 Lo Bo	00- 150 ocati	-666 on: A	ir-Stora ma Car /2/2023	A-4 age	6L	170108			e ‡	56 #4	²⁰⁰ 69 -St	8 A	ag	
	Certification Type:	batch	Final Reading				11 00 / - 2	134 61						XX	24 nours apart. Date:		ω	Review Date R	217123 B												
	Can Size	6 liter	Fina Gaune: Dafe: T	6	G26 C	G26 👌 1 🕂	G26 2/10/23	G26 21723 1	G26	G26	G26	626	G26	G26 /	auings must be at least ∠			4 Limited													
ution Report	Technician	SML	Tach- I Tamn-	$\sum_{i=1}^{n}$			22.0	- 22 0							must be less than or equal to + u.copsi. (z) Pressure readings must be at least z4 hours apart. PM Authorization	Release to Inventory	ventory Lev	2 3	XXXXXXX									D			
ment Clean Canister Certification Report	System Start Temp(s):	22 22	Initial Reading	N			~	1 1 101 8							e less man or equal to + PM Authorization	Clean Canister Certification Analysis & Authorization of Release to Inventory			XXX							Comments:		0.04 IND CERTIFIED			
Pre-Shipment Clean C	VTime System		Gainter Date.	2		7	G26 Z 7 1	G26 2626	G26	G26	G26 C76	G26 G26	G26	G26		ster Certification Analy		Analyst	KPI	-									ts.		
Pre-S	Cleaning Start Date/Time	2/2/2023	Dier ³ ("Hall	4	J.	100	867 2018	J 19 8	-	0		*			Unrelence - Final Pressure - Initial Pressure . Acceptance Oneria: (1) The unrelence If time frame was not met, the PM must authorize shipment of canister	Clean Cani		Sequence	219	-						ion (T015LL 0.01).	ion (TO15 0.04 ppbv).	ion (TO15 0.2 ppbv).	Inventory Level Limited: Canisters may only be used for certain projects.		
	Max DF# # Cycles		Initial' Final (neia) (neia)	1.04		Lo. 1.	(/ · ()r/		he.	101	2, 70,	× hc.	2 60.	2 ho.	at, the PM must autho		outine 🛛 TO15 LL	Date	7123 1 5421							Inventory Level 1: Individual Canister Certification (TO15LL 0.01).	Inventory Level 2: Individual or Batch Certification (TO15 0.04 ppbv)	Inventory Level 3: Individual or Batch Certification (TO15 0.2 ppbv).	Canisters may only b∈	Dup Tees/Vac gauges (enter IDs if included):	
	System ID Max			5437 <i>i</i>	2 3514 /	3 5677 1	4 6150 / U	5 5053 7 0 1	6 8450		8 4829 0 5211	9 6311 10 3666	ļ	12 5159 2			Test Method: 🕅 TO15 Routine 🗆 TO15 LL	Can ID (6150 ZM							entory Level 1: Individ	entory Level 2: Individ	entory Level 3: Individ	entory Level Limited:	up Tees/Vac gauges (Z/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Burlington	Job No.: 200-66698-1
SDG No.:	
Client Sample ID: 6150	Lab Sample ID: 200-66698-4
Matrix: Air	Lab File ID: 54219-005.d
Analysis Method: TO-15	Date Collected: 02/02/2023 00:00
Sample wt/vol: 1000(mL)	Date Analyzed: 02/06/2023 10:26
Soil Aliquot Vol:	Dilution Factor: 0.2
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
Purge Volume:	Heated Purge: (Y/N) pH:
% Moisture: % Solids:	Level: (low/med) Low
Analysis Batch No.: 188127	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
100-41-4	Ethylbenzene	0.040	U	0.040	0.010
100-42-5	Styrene	0.040	U	0.040	0.012
10061-01-5	1,3-Dichloropropene, cis-	0.040	U	0.040	0.0090
10061-02-6	1,3-Dichloropropene, trans-	0.040	U	0.040	0.011
106-46-7	1,4-Dichlorobenzene	0.040	U	0.040	0.018
106-93-4	1,2-Dibromoethane	0.040	U	0.040	0.0084
106-99-0	1,3-Butadiene	0.040	U	0.040	0.0078
107-05-1	Allyl chloride	0.10	U	0.10	0.024
107-06-2	1,2-Dichloroethane	0.040	U	0.040	0.019
108-10-1	Methyl isobutyl ketone (MIBK)	0.10	U	0.10	0.026
108-67-8	1,3,5-Trimethylbenzene	0.040	U	0.040	0.0094
108-88-3	Toluene	0.040	U	0.040	0.0084
108-90-7	Chlorobenzene	0.040	U	0.040	0.0088
109-99-9	Tetrahydrofuran	1.0	U	1.0	0.26
110-54-3	Hexane	0.10	U	0.10	0.022
110-82-7	Cyclohexane	0.040	U	0.040	0.012
120-82-1	1,2,4-Trichlorobenzene	0.10	U	0.10	0.066
123-91-1	1,4-Dioxane	0.040	U	0.040	0.016
124-48-1	Dibromochloromethane	0.040	U	0.040	0.013
127-18-4	Tetrachloroethene	0.040	U	0.040	0.0042
142-82-5	n-Heptane	0.040	U	0.040	0.011
156-59-2	1,2-Dichloroethene, cis-	0.040	U	0.040	0.0042
156-60-5	1,2-Dichloroethene, trans-	0.040	U	0.040	0.0046
1634-04-4	Methyl tert-butyl ether	0.040	U	0.040	0.0072
179601-23-1	m,p-Xylene	0.10	U	0.10	0.019
540-84-1	2,2,4-Trimethylpentane	0.040	U	0.040	0.0076
541-73-1	1,3-Dichlorobenzene	0.040	U	0.040	0.015
56-23-5	Carbon tetrachloride	0.040	U	0.040	0.0044
593-60-2	Vinyl bromide	0.040	U	0.040	0.010
622-96-8	4-Ethyltoluene	0.040	U	0.040	0.0098
64-17-5	Ethanol	1.0	U	1.0	0.52
67-63-0	Isopropanol	1.0	U	1.0	0.32
67-64-1	Acetone	1.0	U	1.0	0.32
67-66-3	Chloroform	0.040	U	0.040	0.0082

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Burlington	Job No.: 200-66698-1
SDG No.:	
Client Sample ID: 6150	Lab Sample ID: 200-66698-4
Matrix: Air	Lab File ID: 54219-005.d
Analysis Method: TO-15	Date Collected: 02/02/2023 00:00
Sample wt/vol: 1000(mL)	Date Analyzed: 02/06/2023 10:26
Soil Aliquot Vol:	Dilution Factor: 0.2
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
Purge Volume:	Heated Purge: (Y/N) pH:
% Moisture: % Solids:	Level: (low/med) Low
Analysis Batch No.: 188127	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	0.040	U	0.040	0.0088
71-55-6	1,1,1-Trichloroethane	0.040	U	0.040	0.0088
74-83-9	Bromomethane	0.040	U	0.040	0.014
74-87-3	Chloromethane	0.10	U	0.10	0.030
75-00-3	Chloroethane	0.10	U	0.10	0.036
75-01-4	Vinyl chloride	0.040	U	0.040	0.0042
75-09-2	Methylene Chloride	0.10	U	0.10	0.036
75-15-0	Carbon disulfide	0.10	U	0.10	0.026
75-25-2	Bromoform	0.040	U	0.040	0.024
75-27-4	Bromodichloromethane	0.040	U	0.040	0.010
75-34-3	1,1-Dichloroethane	0.040	U	0.040	0.0050
75-35-4	1,1-Dichloroethene	0.040	U	0.040	0.0052
75-65-0	tert-Butyl alcohol	1.0	U	1.0	0.24
75-69-4	Trichlorofluoromethane	0.040	U	0.040	0.010
75-71-8	Dichlorodifluoromethane	0.10	U	0.10	0.022
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	0.040	U	0.040	0.011
76-14-2	e 1,2-Dichlorotetrafluoroethane	0.040	U	0.040	0.0096
78-87-5	1,2-Dichloropropane	0.040	U	0.040	0.0098
78-93-3	Methyl ethyl ketone (MEK)	0.040	U	0.10	0.019
79-00-5	1,1,2-Trichloroethane	0.10	U	0.040	0.015
79-01-6	Trichloroethene	0.040	U	0.040	0.0015
79-34-5	1,1,2,2-Tetrachloroethane	0.040	U	0.040	0.0086
80-62-6	Methyl methacrylate	0.040	U	0.10	0.028
87-68-3	Hexachlorobutadiene	0.10	U	0.040	0.028
91-20-3	Naphthalene	0.10	U	0.10	0.022
95-47-6	Xylene, o-	0.10	U	0.10	0.000
95-49-8	2-Chlorotoluene	0.040	U	0.040	0.0092
95-50-1	1,2-Dichlorobenzene	0.040	U	0.040	0.0092
95-63-6	1,2-Dichlorobenzene	0.040	U	0.040	0.013
95-63-6 591-78-6	2-Hexanone	0.040	U	0.040	0.016
9-8/-TKC	Z-Hexanone	0.10		0.10	0.030

Eurofins Burlington Target Compound Quantitation Report

	9 1	•			
Data File: Lims ID: Client ID: Sample Type: Inject. Date: Purge Vol:	\\chromfs\Burlington\ChromData\CH 200-66698-A-4 6150 Client 06-Feb-2023 10:26:30 200.000 mL	IW.i\20230206-5421 ALS Bottle#: Dil. Factor:	9.b\54219-0 4 0.2000	005.d Worklist Smp#:	5
Sample Info:	200-0054219-005				
Misc. Info.:	666984-4				
Operator ID:	wrd	Instrument ID:	CHW.i		
Method: Limit Group:	\\chromfs\Burlington\ChromData\CH AI_TO15_ICAL	IW.i\20230206-5421	9.b\TO15_1	CO3_MasterMethod_	W.m
Last Update:	07-Feb-2023 10:33:25	Calib Date:	01-Feb-20	023 00:48:30	
Integrator:	RTE	ID Type:	Deconvol	ution ID	
Quant Method:	Internal Standard	Quant By:	Initial Cali	ibration	
Last ICal File:	\\chromfs\Burlington\ChromData\CH	IW.i\20230131-5417	′0.b\54170-0)13.d	
Column 1 : Process Host:	RTX-624 (0.32 mm) CTX1666		Det: MS S	SCAN	

First Level Reviewer: puangmale	ek		D	ate:		07-Feb-202	23 10:35:27	
		RT	Adj RT	DIt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ppb v/v	Flags
								_
1 Propene	41		4.089				ND	7
2 Dichlorodifluoromethane	85		4.180				ND	
3 Chlorodifluoromethane	51		4.223				ND	
4 1,2-Dichloro-1,1,2,2-tetrafluoro			4.522				ND	
5 Chloromethane	50		4.634				ND	
6 Vinyl chloride	62		4.934				ND	
7 Butane	43		4.939				ND	7
8 Butadiene	54		5.046				ND	
9 Bromomethane	94		5.747				ND	
10 Chloroethane	64		6.015				ND	
13 Vinyl bromide	106		6.427				ND	
14 Trichlorofluoromethane	101		6.587				ND	
16 Ethanol	45		6.962				ND	
20 1,1-Dichloroethene	96		7.636				ND	
21 1,1,2-Trichloro-1,2,2-trifluoroe	e 101		7.684				ND	
22 Acetone	43		7.716				ND	
23 Isopropyl alcohol	45		8.015				ND	
24 Carbon disulfide	76	8.037	8.042	-0.005	94	2194	0.0437	
26 3-Chloro-1-propene	41		8.331				ND	
27 Methylene Chloride	49		8.556				ND	7
28 2-Methyl-2-propanol	59		8.780				ND	
30 trans-1,2-Dichloroethene	61		9.053				ND	
31 Methyl tert-butyl ether	73		9.069				ND	
32 Hexane	57		9.562				ND	
33 1,1-Dichloroethane	63		9.808				ND	
34 Vinyl acetate	43		9.824				ND	
S 35 1,2-Dichloroethene, Total	61		10.200				ND	7
36 2-Butanone (MEK)	72		10.765				ND	•
37 cis-1,2-Dichloroethene	96		10.792				ND	
38 Ethyl acetate	88		10.861				ND	
* 39 Chlorobromomethane	128	11.193	11.199	-0.006	92	107792	10.0	

		RT	Adj RT	DIt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ppb v/v	Flags
40 Tetrahydrofuran	42		11.252				ND	
41 Chloroform	83		11.375				ND	
42 1,1,1-Trichloroethane	97		11.680				ND	
43 Cyclohexane	84		11.819				ND	
44 Carbon tetrachloride	117		11.958				ND	
45 Benzene	78		12.301				ND	
46 1,2-Dichloroethane	62		12.375				ND	
47 Isooctane	57		12.520				ND	
48 n-Heptane	43		12.836				ND	
49 1,4-Difluorobenzene	114	13.039	13.039	0.000	94	578374	10.0	
51 Trichloroethene	95		13.467				ND	
53 1,2-Dichloropropane	63		13.922				ND	
54 Methyl methacrylate	69		14.018				ND	
55 1,4-Dioxane	88		14.061				ND	
57 Dibromomethane	174		14.077				ND	
58 Dichlorobromomethane	83		14.387				ND	
59 cis-1,3-Dichloropropene	75		15.189				ND	
61 4-Methyl-2-pentanone (MIBK)	43		15.452				ND	
62 Toluene	92		15.826				ND	
66 trans-1,3-Dichloropropene	75		16.243				ND	
67 1,1,2-Trichloroethane	83		16.618				ND	
68 Tetrachloroethene	166		16.816				ND	
69 2-Hexanone	43		17.035				ND	
70 Chlorodibromomethane	129		17.351				ND	
71 Ethylene Dibromide	107		17.591				ND	
73 Chlorobenzene-d5	117	18.501	18.501	0.000	87	465737	10.0	
74 Chlorobenzene	112		18.560				ND	
75 Ethylbenzene	91		18.758				ND	7
76 m-Xylene & p-Xylene	106	19.014	19.014	0.000	0	750	0.0243	
78 o-Xylene	106		19.790				ND	
79 Styrene	104		19.828				ND	
80 Xylenes, Total	106				0		0.0243	
81 Bromoform	173		20.181				ND	
82 Isopropylbenzene	105		20.518				ND	
83 1,1,2,2-Tetrachloroethane	83		21.047				ND	
85 N-Propylbenzene	91		21.256				ND	7
86 2-Chlorotoluene	91		21.406				ND	7
87 4-Ethyltoluene	105		21.465				ND	7
88 1,3,5-Trimethylbenzene	105		21.561				ND	7
91 tert-Butylbenzene	119		22.048				ND	
92 1,2,4-Trimethylbenzene	105		22.139				ND	
93 sec-Butylbenzene	105		22.379				ND	
94 1,3-Dichlorobenzene	146		22.551				ND	7
95 4-Isopropyltoluene	119		22.599				ND	
96 1,4-Dichlorobenzene	146		22.695				ND	7
97 Benzyl chloride	91		22.845				ND	7
98 n-Butylbenzene	91		23.155				ND	7
99 1,2-Dichlorobenzene	146	23.187	23.177	0.011	84	420	0.009688	-
102 1,2,4-Trichlorobenzene	180		25.557				ND	
107 1.7.4-110.00000000000								
103 Hexachlorobutadiene	225		25.798				ND	

Report Date: 07-Feb-2023 10:35:27 OC Flag Legend Processing Flags	Chrom Revisio	on: 2.3 01-Feb-2	2023 13:23:06
7 - Failed Limit of Detection Reagents:			
ATTO15WISs_00010	Amount Added: 20.00	Units: mL	Run Reagent

Data File: Injection Date: Lims ID:	Eurofins Burlin \\chromfs\Burlington\ChromData 06-Feb-2023 10:26:30 200-66698-A-4	gton CHW.i\20230206-542 Instrument ID: Lab Sample ID:	 2.3 01-Feb-2023 13:23:0 19.b\54219-005.d CHW.i 200-66698-4 	Operator ID: Worklist Smp#:	wrd 5	1
Client ID:	6150 200 000 ml	Dil Fastari	0.2000	ALC Dattle #	4	
Purge Vol: Method:	200.000 mL TO15_TO3_MasterMethod_W	Dil. Factor: Limit Group:	0.2000 AI_TO15_ICAL	ALS Bottle#:	4	
Column: RTX-6		·	Y Scaling: Method	Defined: Scale to the Nth Lar	rgest Target: 1	
			05[MS SCAN Chro]:Total	±		5
58- 56-		13.039)-		201)		6
56				(18)		
52		<u>z</u> ene				
50-		open		nzer		8
48		.193) 4-Difluorobenzene(Chlorobenzene-d5(18.501)-		
46-		.193 .4-Di		CHC		9
44-		Chlorobromomethane(11.193)		*		10
40-		than				
38-		ome				11
ි ³⁶⁻		prom				12
00 34- 00 34-		loro				
(00001X) → 30 ⁻		ن *				13
28						14
26						
24-						15
22-						16
20- 18-						
16						17
14-						
12-						
10-						
8						
4						
2						
2.0	4.0 6.0 8.0	10.0 12.0	14.0 16.0	18.0 20.0 22.0	24.0 26.0	28.0

Summa Canister Dilution Worksheet

Client: Waste Connections, Inc. Project/Site: Dunn Landfill

	Canister	Preadjusted	Preadjusted	Preadjusted	Adjusted	Adjusted	Adjusted	Initial		Final	Pressure		
	Volume	Pressure	Pressure	Volume	Pressure	Pressure	Volume	Volume	Dilution	Dilution	Gauge		
_ab Sample ID	(L)	("Hg)	(atm)	(L)	(psig)	(atm)	(L)	(mL)	Factor	Factor	ID	Date	Analyst Initals
480-206423-1	6	0	1.00	6.00	8.7	1.59	9.55		1.59	1.59	g23	02/28/23 16:01	WRD
180-206423-1	6	1.01801	1.03	6.20	38.5	3.62	21.71		3.50	5.57	g23	03/01/23 15:44	WRD
480-206423-1	6	2.23962	1.07	6.45	13.9	1.95	11.67		1.81	10.08	g23	03/01/23 15:44	WRD
80-206423-2	6	-4.2	0.86	5.16	9.0	1.61	9.67		1.88	1.88	g23	02/28/23 16:01	WRD
80-206423-2	6	2.23962	1.07	6.45	38.5	3.62	21.71		3.37	6.32	g23	03/01/23 15:45	WRD
80-206423-2	6	1.62882	1.05	6.33	16.4	2.12	12.69		2.01	12.67	q23	03/01/23 15:46	WRD

Formulae:

Preadjusted Volume (L)	= ((Preadjusted Pressure ("Hg) + 29.92 "Hg) * Vol L) / 29.92 "Hg
Adjusted Volume (L)	= ((Adjusted Pressure (psig) + 14.7 psig)* Vol L) / 14.7 psig
Dilution Factor	= Adjusted Volume (L) / Preadjusted Volume (L)

Where:

29.92 "Hg = Standard atmospheric pressure in inches of Mercury ("Hg)

14.7 psig = Standard atmospheric pressure in pounds per square inch gauge (psig)

Eurofins Buffalo

APPENDIX B

Appendix B

Potential Emission Reduction Measures From Section 5.3 of the Revised CLCPA Assessment

This section discusses potential measures to increase landfill gas (LFG) collection and mitigate emissions during the construction, operation, and maintenance activities described in Sections 2 and 3 of the CLCPA Assessment.

Upon approval of its permit renewal and modification applications, S.A. Dunn commits to implementing or continuing to implement the following measures to mitigate emissions at the Dunn Facility:

- Continued operation of the gas collection and control system. Since 2019, after the issuance of the initial solid waste permit, S.A. Dunn has operated a gas collection and control system with a utility flare at the Dunn Facility, which efficiently destroys methane. Not all C&D landfills have or are required to have a gas collection and control system; therefore, other alternative C&D landfill sites (in-state or out-of-state) may not provide this greenhouse gas (GHG) reduction benefit that the Dunn Facility provides. As shown in Table 1, attached to the CLCPA Assessment, a landfill with a gas collection and control system emits approximately 59% less GHG in 2030 and 82% less GHG in 2050; and 40% less HAPs in 2030 and 57% less HAPs in 2050 than a comparable landfill without a gas collection and control system (i.e., with uncontrolled emissions).
- Expansion of the gas collection and control system to capture more gas as additional waste placement reaches permitted grades.
- To the extent practical, S.A. Dunn coordinates, and will continue to coordinate, back hauls of loads leaving the Dunn Facility, such that after loads of inbound earthen material (e.g., crushed stone for roads, drainage stone and clay for liner system construction) are delivered to the Dunn Facility, those same trucks will then reload prior to leaving the Dunn Facility with outbound sand and gravel exports. This coordination reduces truck trips—and thus truck emissions, including in the proximate disadvantaged communities.
- Regular placement, inspection, and maintenance of all cover materials in areas where waste has been placed. In addition to existing inspection practices, S.A. Dunn commits to documentation of a monthly inspection of cover materials and undertaking maintenance, as needed. The regular inspection and maintenance of cover materials will aid in the reduction of fugitive emissions through the cover soil by strengthening the interface between the gas collection zone (within the waste mass) and the ambient air. In strengthening this cover barrier, the gas collection system is able to operate more effectively by capturing additional gas and thereby reducing fugitive emissions to the atmosphere. In addition, an effective cover barrier will result in increased oxidation of methane and hydrogen sulfide within the cover soil.
- Preparation and submission of construction plans for NYSDEC review within 6 months of receiving the final permit. The construction plans will identify an area of at least 10 acres of final cap to be constructed within the construction season following NYSDEC approval

of the construction plans. Further, S.A. Dunn will complete final cap on at least 20 acres (inclusive of the initial 10 or more acres of final cap) by 2030, and on all remaining areas of the landfill footprint (62.1 acres) by 2050. While an intermediate cover system does provide an adequate barrier between the waste mass and the ambient air, a final cover system is the highest level cover system that a facility can employ and results in maximized gas capture and oxidation. The GHG Reporting Rule regulations (under 40 CFR 98 Subpart HH) specify an average collection efficiency of 75% for areas with intermediate cover and 95% for areas with final cover. The installation of final cover—particularly where earlier than required—will thus result in a significant reduction of GHG emissions.

- Preparation and submission of a surface emission monitoring (SEM) work plan for NYSDEC review within 6 months of receiving the final permit. The work plan will entail an annual SEM event substantively following the field procedures for SEM detailed in the New Source Performance Standards for municipal solid waste landfills. The first SEM event will be completed within a year of receiving NYSDEC approval of the work plan. SEM results will be provided to NYSDEC upon completion, and any indicated corrective measures will be implemented by S.A. Dunn in a timely manner.
- Vegetation of all areas of the Dunn Facility where feasible. The presence of vegetation within the cover soil has been shown in studies to increase the rate of cover oxidation compared with areas that do not have vegetation.
- Mine reclamation and closure will provide a final vegetated cap, which—as explained above—will increase the rate of cover oxidation.
- Construction of the MSE berm, which will mitigate emissions by:
 - Reducing waste in place by approximately 220,000 cubic yards. This reduces the potential GHG emissions from LFG by approximately 914 tons per year at peak, and further reduces truck trips from waste disposal—and thus truck emissions—including in the proximate disadvantaged communities.
 - Reducing the amount of construction soils and sands to be hauled from the Dunn Facility by at least 500,000 cubic yards, thus decreasing truck and construction equipment emissions, including in the proximate disadvantaged communities. At 15 tons per truck, this is a potential reduction of approximately 90,000 truck trips.
 - The reductions in emissions (in tons) that will result from construction of the MSE berm, if approved, are summarized in the table below.

	Year 2023		Year	2030	Year 203	2 or 2033	Year 2050		
	Total CO ₂		Total CO ₂		Total CO₂		Total CO ₂		
	Equivalents	Total HAPs	Equivalents	Total HAPs	Equivalents	Total HAPs	Equivalents	Total HAPs	
Emissions Source	(tons / year)	(tons / year)	(tons / year)	(tons / year)	(tons / year)	(tons / year)	(tons / year)	(tons / year)	
Total Emissions Under Currently Permitted Conditions	50,246	1.37	75,755	2.11	83,072	2.33	19,831	0.90	
Total Emissions with the Modification	NA	NA	NA	NA	82,112	2.30	19,338	0.88	
Change in Emissions as a Result of the Modification					-960	-0.03	-482	-0.01	

- Incorporation of vegetation into the MSE berm, which—as explained above—will further increase the rate of cover oxidation.
- Use of the existing Dunn Facility potentially avoids the development of greenfield sites and the associated removal of vegetation.

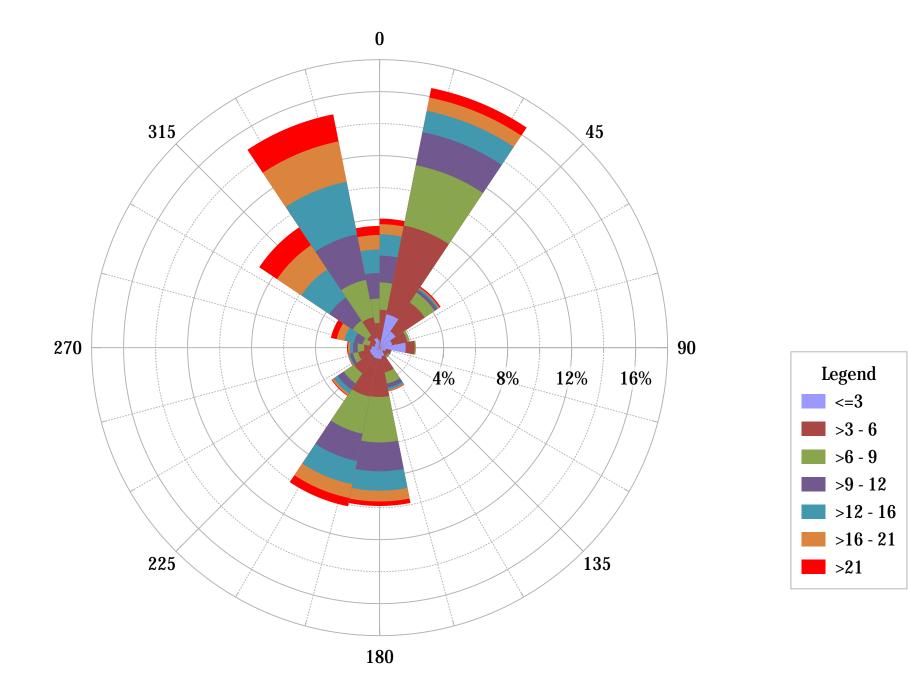
NYSDEC's March 30 notice of incomplete application identified possible mitigation measures in addition to those already incorporated into the Dunn Facility's current design and operational practices. Those potential mitigation measures, and S.A. Dunn's evaluation of their feasibility, are provided below.

- Evaluation and introduction of intermediate waste processing methods, such as separating and treating methane-generating wastes using a co-located anaerobic digester or composting facility at the site or using similar technologies at another facility.
 - <u>Feasibility assessment:</u> The Dunn Facility is a C&D waste processing facility that does not, and is not intended to, manage organic wastes that would be suitable for a digester. Further it does not have the space, infrastructure, or vehicles appropriate to transport organic wastes. Nevertheless, S.A. Dunn and its parent company, Waste Connections, routinely evaluate new and developing technologies for best managing C&D and minimizing GHG emissions, and will continue to do so throughout the life of the Dunn Facility.
- Assessment and implementation of additional emissions monitoring, including additional methods for periodic inspection of fugitive methane sources in the gas collection and control system and across the facility to identify and repair leaks.
 - Feasibility assessment:
 - Since 2019, after the issuance of the initial solid waste permit, the Dunn Facility has had enhanced air monitoring in place. Beyond monitoring required by permit or regulation, NYSDEC collects hydrogen sulfide (H2S) measurements from a number of locations at the perimeter of the Dunn Facility using Acrulog monitors. Levels of H2S are generally indicative of other LFG constituents, including GHGs like methane. The Acrulog data shows very low H2S levels overall, which is indicative of well controlled landfill emissions. NYSDEC also collects particulate matter (PM) measurements at the Rensselaer City School, near the Facility perimeter. PM₁₀ levels at the School are consistently lower than at the Albany County Health Department monitor location to the west of the Dunn Facility.
 - As discussed above, S.A. Dunn will prepare and implement a SEM work plan.
- Adoption of new approaches for reducing GHG emissions from offsite transport of materials, such as contracting with companies that utilize electric or low-emission vehicles.
 - <u>Feasibility assessment:</u> Reducing GHG emissions through consolidated waste transportation is addressed below. An evaluation of regional contractors or vendors located near the Dunn Facility indicates that no nearby companies strictly utilize electric or low-emission vehicles. However, should such options become available, S.A. Dunn will continue to evaluate the feasibility of this measure.

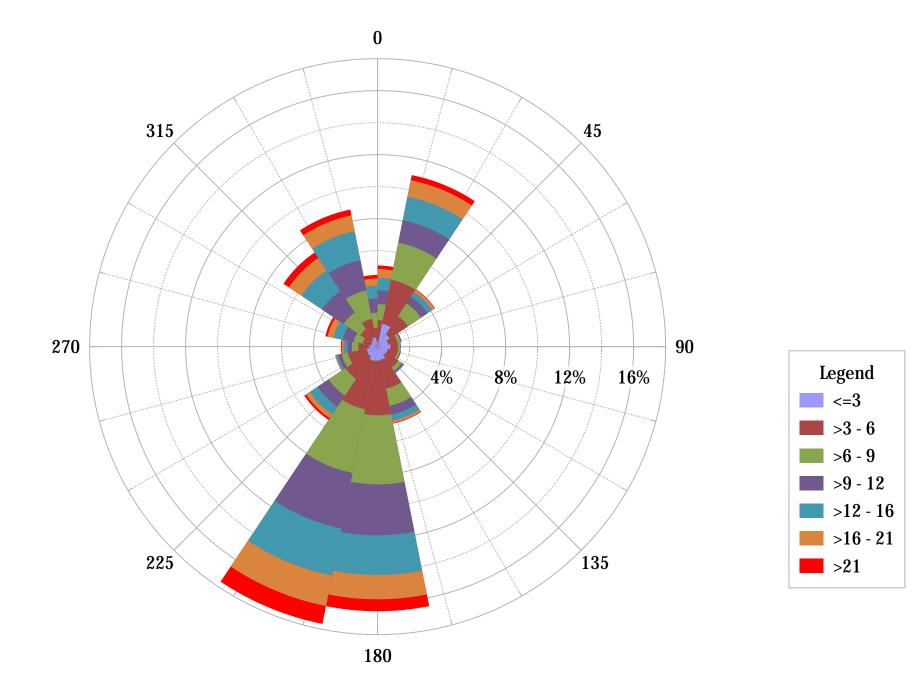
- Adoption of new approaches for reducing GHG emissions from onsite vehicle usage by upgrading to a fleet that operates on renewable energy sources.
 - <u>Feasibility assessment:</u> An evaluation has determined that this technology is currently not feasible at the Dunn Facility. However, S.A. Dunn will continue to assess the feasibility of this measure in the future.
- Consolidation of loads to and from the facility in order to reduce the number of trucks entering and exiting on a daily basis.
 - <u>Feasibility assessment:</u> S.A. Dunn does not directly control how third parties act in terms of consolidating their C&D prior to transportation to the Dunn Facility; however, waste consolidation through transfer stations is an integral characteristic of current industry practices to reduce fuel consumption, which in turn reduces GHG emissions. This practice of consolidation will continue.

As discussed in Section 6.1 of the CLCPA Assessment, the permit application is considered consistent with CLCPA goals under NYSDEC guidance because the permit will not change or expand existing facility operations, other than incorporating construction of the MSE berm as a visual mitigation measure. That said, the above measures will be implemented (or continue to be implemented) or assessed for potential incorporation in the future.

APPENDIX C


		Waste Trucks														
		Fuel			Distance Estimated				Distance Estimated							
			Consumptio	Emissions		per	Vehicle	Emissions		per	Vehicle	Emissions			CLCPA	
		CO2 ¹	n	per year	CH4 ¹	Delivery	Trips	per year	N2O ¹	Delivery	Trips	per year	CO2e ²	CO2e	CO2e ³	Difference
		kg/gal	gal/year	kg/year	g/mile	miles	trips/year	kg/year	g/mile	miles	trips/year	kg/year	kg/year	tpy	tpy	(%)
Diesel Fuel	Light Duty	10.21	657,185	6,709,859	0.029	138.9	26,000	104.73	0.0214	138.9	26,000	77.28	6,739,059	7,428.4	7434.8	0.09
	Heavy Duty	10.21	657,185	6,709,859	0.0095	138.9	26,000	34.31	0.0431	138.9	26,000	155.65	6,753,833	7,444.7		
Motor Gasoline	Light Duty	8.78	657,185	5,770,084	0.008	138.9	26,000	28.89	0.0013	138.9	26,000	4.69	5,773,751	6,364.4		
	Heavy Duty	8.78	657,185	5,770,084	0.033	138.9	26,000	119.18	0.0091	138.9	26,000	32.86	5,788,771	6,380.9		

		Leachate Tanker Trucks														
			Adjusted			Average										
			Fuel			Distance	Estimated			Distance	Estimated					
			Consumptio	Emissions		per	Vehicle	Emissions		per	Vehicle	Emissions			CLCPA	
		CO2 ¹	n	per year	CH4 ¹	Delivery	Trips	per year	N2O ¹	Delivery	Trips	per year	CO2e ²	CO2e	CO2e ³	Difference
		kg/gal	gal/year	kg/year	g/mile	miles	trips/year	kg/year	g/mile	miles	trips/year	kg/year	kg/year	tpy	tpy	(%)
Diesel Fuel	Light Duty	10.21	1,345	13,732	0.029	3.7	2,000	0.21	0.0214	3.7	2,000	0.16	13,792	15.2	15.2	0.02
Dieser Fuer	Heavy Duty	10.21	1,345	13,732	0.0095	3.7	2,000	0.07	0.0431	3.7	2,000	0.32	13,823	15.2		
Motor Gasoline	Light Duty	8.78	1,345	11,809	0.008	3.7	2,000	0.06	0.0013	3.7	2,000	0.01	11,817	13.0		
	Heavy Duty	8.78	1,345	11,809	0.033	3.7	2,000	0.24	0.0091	3.7	2,000	0.07	11,847	13.1		


¹ Emission factors taken from 'GHG Emission Factors Hub' https://www.epa.gov/climateleadership/ghg-emission-factors-hub ² 20-yr GWP values assumed to calculate CO2 equivalents: CO2 = 1, CH4 = 84, N2O = 264.

³ CLCPA CO2e values are found in Table 3 of the Dunn Landfill CLCPA

APPENDIX D

1/1/21-11/27/21

1/26/22-12/31/22