Appendix 15

Hydraulic Fracturing – 15 Statements from Regulatory Officials

Final

Supplemental Generic Environmental Impact Statement
This page intentionally left blank.
Part A

GWPC’s Congressional Testimony
This page intentionally left blank.
Mr. Chairman, thank you for the opportunity to testify today. My name is Scott Kell. I am President of the Ground Water Protection Council (GWPC) and appear here today on its behalf. I am also Deputy Chief of the Ohio Department of Natural Resources Division of Mineral Resources Management. With me today are Mike Paque, Executive Director of the GWPC, Dave Bolin, Assistant Director of the Alabama Oil and Gas Board, and Lori Wrotenbery, Director of the Oklahoma Corporation Commission’s Oil and Gas Conservation Division. Within our respective States, we are responsible for implementing the state regulations governing the exploration and development of oil and natural gas resources. First and foremost, we are resource protection professionals committed to stewardship of water resources in the exercise of our authority.

The GWPC is a non-profit association of state agencies responsible for environmental safeguards related to ground water. The members of the association consist of state ground water and underground injection control regulators. The GWPC provides a forum through which its state members work with federal scientists and regulators, environmental groups, industry, and other stakeholders to advance protection of ground water resources through development of policy and regulation that is based on sound science. I have included a list of the GWPC Board of Directors in our written submission.

The GWPC understands that our nation’s water and energy needs are intertwined, and that demand for both resources is increasing. Smart energy policy will consider and minimize impacts to water resources.

With respect to the protection of water resources, the GWPC recently published two reports of note. The first of these reports is called *Modern Shale Gas Development in the United States: A Primer* (http://www.gwpc.org/e-library/documents/general/Shale%20Gas%20Primer%202009.pdf). The primer discusses the regulatory framework, policy issues, and technical aspects of developing unconventional shale gas resources. As you know, there are numerous deep shale gas basins in the United States, which contain trillions of cubic feet of natural gas. The environmentally responsible development of these resources is of critical importance to the energy security of the U.S. Recently, however, there has been concern raised about the methods used to tap these valuable resources. Technologies such as
hydraulic fracturing have been characterized as being environmentally risky and inadequately regulated. The primer is designed to provide accurate technical information to assist policy makers in their understanding of these issues.

In recent months, the states have become aware of press reports and websites alleging that six states have documented over one thousand incidents of ground water contamination resulting from the practice of hydraulic fracturing. Such reports are not accurate. Attached to my testimony are signed statements from state officials representing Ohio, Pennsylvania, New Mexico, Alabama, and Texas, responding to these allegations.

From the standpoint of the GWPC, the most critical issue is protection of water resources. As such, our goal is to ensure that oil and gas development is managed in a way that does not create unnecessary and unwarranted risks to water. As a state regulatory official, I can assure you that our regulations are focused on this task. This leads me to the second report the GWPC has recently published.

This report, entitled State Oil and Gas Regulations Designed to Protect Water Resources, (http://www.gwpc.org/e-library/documents/general/Oil%20and%20Gas%20Regulation%20Report%20Final%20with%20Cover%2005-27-2009.pdf) evaluates regulations implemented by state oil and gas regulatory agencies as they relate to the protection of water. To prepare this report, the GWPC reviewed the regulations of the twenty-seven states that, when combined, account for more than 99.8% of all the oil and natural gas extracted in the U.S. annually. To prepare this report, each state’s regulatory requirements were studied with respect to their water protection capacity. The study evaluated regulated processes such as well drilling, construction, and plugging, above-ground storage tanks, pits and a number of other topics. The report also contains a statistical analysis of state regulations. As a result of our regulatory review and analysis, the GWPC concluded that state oil and gas regulations are adequately designed to directly protect water resources through the application of specific programmatic elements such as permitting, well construction, hydraulic fracturing, waste handling, and well plugging requirements. While State regulations are generally adequate, the GWPC report makes the following recommendations.

First, a study of effective hydraulic fracturing practices should be considered for the purpose of developing Best Management Practices (BMPs) that can be adjusted to fit the specific conditions of individual states. A one-size-fits-all federal program is not the most effective way to regulate in this area. BMPs related to hydraulic fracturing would assist states and operators in ensuring the safety of the practice. Of special concern are zones in close proximity to underground sources of drinking water, as determined by the state regulatory authority.

Second, the state review process conducted by the national non-profit organization State Review of Oil and Natural Gas Environmental Regulations (STRONGER) is an effective tool in assessing the capability of state programs to manage exploration and production waste and in measuring program improvement over time. This process should be expanded, where appropriate, to include state oil and gas programmatic
elements not covered by the current state review guidelines. STRONGER is currently convening a stakeholder workgroup to consider drafting guidelines for state regulation of hydraulic fracturing.

Finally, the GWPC concludes that implementation and advancement of electronic data management systems has enhanced state regulatory capacity and focus. However, further work is needed in the areas of paper-to-digital data conversion and inclusion of more environmental, or water related data. States should continue to develop comprehensive electronic data management systems and incorporate widely scattered environmental data as expeditiously as possible. Federal agencies should provide financial assistance to states in these efforts.

In conclusion, Mr. Chairman and Committee Members, we believe that state regulations are designed to provide the level of water protection needed to assure water resources remain both viable and available. The states are continuously striving to improve both the regulatory language and the programmatic tools used to implement that language. In this regard, the GWPC will continue to assist states with their regulatory needs for the purpose of protecting water, our most vital natural resource.

Thank you.
DISCLOSURE REQUIREMENT
Required by House Rule XI, clause 2(g) and Rules of the Committee on Resources

1. Name: Scott R. Kell

2. Business Address: 2045 Morse Rd., Columbus, OH 43229-6605

3. Business Phone Number: 614-265-7058

4. Organization you are representing: The Ground Water Protection Council

5. Any training or educational certificates, diplomas or degrees or other educational experiences which add to your qualifications to testify on or knowledge of the subject matter of the hearing: Bachelor's Degree in Geology from Mount Union College and a Masters Degree in Geology from Kent State University.

6. Any professional licenses, certifications, or affiliations held which are relevant to your qualifications to testify on or knowledge of the subject matter of the hearing:

7. Any employment, occupation, ownership in a firm or business, or work-related experiences which relate to your qualifications to testify on or knowledge of the subject matter of the hearing:

8. Any offices, elected positions, or representational capacity held in the organization on whose behalf you are testifying: Chief of the Ohio Department of Natural Resources, Division of Mineral Resources Management; President of the Ground Water Protection Council

9. Any federal grants or contracts (including subgrants or subcontracts) from the Department of the Interior (and/or other agencies invited) which you have received in the last three years, including the source and the amount of each grant or contract: Office of Surface Mining, 2008 National Technology Transfer Grant, RBDMS-W, $200,000

10. Any federal grants or contracts (including subgrants or subcontracts) the Department of the Interior (and/or other agencies invited) which were received in the last three years by the organization(s) which you represent at this hearing, including the source and amount of each grant or contract: Office of Surface Mining, 2008 National Technology Transfer Grant, RBDMS-W, $200,000

11. Any other information you wish to convey which might aid the members of the Committee to better understand the context of your testimony:

June 2, 2009 (5:31PM) - non governmental witness
GWPC Board of Directors

Sarah Pillsbury
New Hampshire Department Of Environmental Services
95 Hazen Drive
Concord, NH 03302

John T. Barndt
Delaware Dept Of Natural Resources & Environmental Control
89 Kings Highway
Dover, DE 19901

Joseph J. Lee, P.G.
Pennsylvania Dept. Of Environmental Protection Bureau Of Watershed Management
P.O. Box 8555
Harrisburg, PA 17015-8555

David Bolin
Alabama State Oil and Gas Board
P.O. Box 869999
Tuscaloosa, AL 35486-6999

Scott R. Kell
Ohio Department Of Natural Resources
2045 Morse Rd.
Columbus, OH 43229-6605

Jon L. Craig
Oklahoma Department Of Environmental Quality
707 N. Robinson, 8th Floor
Oklahoma City, OK 73102

Marty L. Link
Nebraska Department Of Environmental Quality
P.O. Box 98922
Lincoln, NE 68509-8922

Kevin Frederick, P.G.
Wyoming Dept. of Environmental Quality DEQ/WQD
122 W. 25th ST. - 4W
Cheyenne, WY 82002

John Norman
Alaska Oil and Gas Conservation Commission
333 West 7th Avenue, Suite 100
Anchorage, AK 99501-3935

Peter T Goodmann
Kentucky Division of Water
14 Reilly Road
Frankfort, KY 40601

David Terry
Massachusetts Dept Of Environmental Protection
One Winter Street, 6th Floor
Boston, MA 02108

Bradley J. Field
New York Dept. Of Environmental Conservation Division Of Mineral Resources
625 Broadway
Albany, NY 12233-6500

James Martin
West Virginia Dept. Of Environmental Protection
Office Of Oil & Gas
601 57th Street, SE
Charleston, WV 25304

Jamie L. Crawford
Mississippi Dept. Of Environmental Quality Office Of Land and Water Resources
P.O. Box 2309
Jackson, MS 39225

Michael Lemcke
Wisconsin Department Of Natural Resources
P.O. Box 7921
Madison, WI 53707

Leslie Savage
Texas Railroad Commission
1701 N. Congress
P.O. Box 12967, Capitol Station
Austin, TX 78711-2967

Stan Belieu
Nebraska Oil and Gas Conservation Commission
922 Illinois Street, P.O. Box 399
Sidney, NE 69162

Tom Richmond
Montana Board of Oil & Gas Conservation
2535 St. John's Avenue
Billings, MT 59102

Harold P. Bopp
California Department Of Conservation Div Of Oil, Gas, and Geothermal Resources
801 K Street, MS 20-20
Sacramento, CA 95814-3530

Mike Paque, Executive Director
The Ground Water Protection Council
13308 N. MacArthur Boulevard
Oklahoma City, OK 73142
State Oil and Natural Gas Regulations Designed to Protect Water Resources

EXECUTIVE SUMMARY

Over the past several years the GWPC has been asked, “Do state oil and gas regulations protect water?” How do their rules apply? Are they adequate? The first step in answering these questions is to evaluate the regulatory frameworks within which programs operate. That is the purpose of this report.

State regulation of oil and natural gas exploration and production activities are approved under state laws that typically include a prohibition against causing harm to the environment. This premise is at the heart of the regulatory process. The regulation of oil and gas field activities is managed best at the state level where regional and local conditions are understood and where regulations can be tailored to fit the needs of the local environment. Hence, the experience, knowledge and information necessary to regulate effectively most commonly rests with state regulatory agencies. Many state agencies use programmatic tools and documents to apply state laws including regulations, formal and informal guidance, field rules, and Best Management Practices (BMPs). They are also equipped to conduct field inspections, enforcement/oversight, and witnessing of specific operations like well construction, testing and plugging.

Regulations alone cannot convey the full measure of a regulatory program. To gain a more complete understanding of how regulatory programs actually function, one has to evaluate the use of state guides, manuals, environmental policy processes, environmental impact statements, requirements established by permit and many other practices. However, that is not the purpose of this study. This study evaluates the language of state oil and gas regulations as they relate to the direct protection of water resources. It is not an evaluation of state programs.

To conduct the study, state oil and gas regulations were reviewed in the following areas: 1) permitting, 2) well construction, 3) hydraulic fracturing, 4) temporary abandonment, 5) well plugging, 6) tanks, 7) pits, and 8) waste handling and spills. Within each area specific sub-areas were included to broaden the scope of this review. For example, in the area of pits, a review was conducted of sub-areas such as pit liners, siting, construction, use, duration and closure. The selection of the twenty-seven states for this study was based upon the last full-year list (2007) of producing states compiled by the U.S. Energy Information Administration.

In the area of well construction, state regulations were evaluated to determine whether the setting of surface casing below ground water zones was required, whether cement circulation on surface casing was also required, and whether the state utilized recognized cement standards. Attachment 3 is a listing of the programmatic areas and sub-areas reviewed.

After evaluation, each state was given the opportunity to review and comment on the findings and to provide updated information concerning their regulations. Thirteen states responded. These responses were incorporated into the study.

One of the most important accomplishments of the study was the development of a regulations reference document (Addendum). This document contains excerpted language from each state’s oil and gas regulations related to the programmatic areas included in the study. Hyperlinks to web versions of each
state's oil and gas regulations are included as well as some of the forms used by state agencies to implement those regulations. A web enabled version of the study (to be completed by September, 2009) will also contain numerous hyperlinked text segments designed to provide the reader with an easy and effective way to review references and regulations.

Key Messages and Suggested Actions:

Key Message 1: State oil and gas regulations are adequately designed to directly protect water resources through the application of specific programmatic elements such as permitting, well construction, well plugging, and temporary abandonment requirements.

Suggested Action 1: States should review current regulations in several programmatic areas to determine whether or not they meet an appropriate level of specificity (e.g. use of standard cements, plugging materials, pit liners, siting criteria, and tank construction standards etc...)

Key Message 2: Experience suggests that state oil and gas regulations related to well construction are designed to be protective of ground water resources relative to the potential effects of hydraulic fracturing. However, development of Best Management Practices (BMPs) related to hydraulic fracturing would assist states and operators in insuring continued safety of the practice; especially as it relates to hydraulic fracturing of zones in close proximity to ground water, as determined by the regulatory authority.

Suggested Action 2: A study of effective hydraulic fracturing practices should be considered for the purpose of developing (BMPs); which can be adjusted to fit the specific conditions of individual states.

Key Message 3: Many states divide jurisdiction over certain elements of oil and gas regulation between the oil and gas agency and other state water protection agencies. This is particularly evident in the areas of waste handling and spill management.

Suggested Action 3: States with split jurisdiction of programs should insure that formal memorandums of agreement (MOAs) between agencies exist and that these MOAs are maintained to provide more effective and efficient implementation of regulations.

Key Message 4: The state review process conducted by the national non-profit organization State Review of Oil and Natural Gas Environmental Regulations (STRONGER) is an effective tool in assessing the capability of state programs to manage exploration and production waste and in measuring program improvement over time.

Suggested Action 4: The state review process should be continued and, where appropriate, expanded to include state oil and gas programmatic elements not covered by the current state review guidelines.

Key Message 5: The implementation and advancement of electronic data management systems has enhanced regulatory capacity and focus. However, further work is needed in the areas of paper-to-digital data conversion and inclusion of more environmental data.

Suggested Action 5: States should continue to develop and install comprehensive electronic data management systems, convert paper records to electronic formats and incorporate widely scattered environmental data as expeditiously as possible. Federal agencies should provide financial assistance to states in these efforts.
Modern Shale Gas Development in the United States: A Primer

EXECUTIVE SUMMARY

Natural gas production from hydrocarbon rich shale formations, known as "shale gas," is one of the most rapidly expanding trends in onshore domestic oil and gas exploration and production today. In some areas, this has included bringing drilling and production to regions of the country that have seen little or no activity in the past. New oil and gas developments bring change to the environmental and socio-economic landscape, particularly in those areas where gas development is a new activity. With these changes have come questions about the nature of shale gas development, the potential environmental impacts, and the ability of the current regulatory structure to deal with this development. Regulators, policy makers, and the public need an objective source of information on which to base answers to these questions and decisions about how to manage the challenges that may accompany shale gas development.

Natural gas plays a key role in meeting U.S. energy demands. Natural gas, coal and oil supply about 85% of the nation’s energy, with natural gas supplying about 22% of the total. The percent contribution of natural gas to the U.S. energy supply is expected to remain fairly constant for the next 20 years.

The United States has abundant natural gas resources. The Energy Information Administration estimates that the U.S. has more than 1,744 trillion cubic feet (tcf) of technically recoverable natural gas, including 211 tcf of proved reserves (the discovered, economically recoverable fraction of the original gas-in-place). Technically recoverable unconventional gas (shale gas, tight sands, and coalbed methane) accounts for 60% of the onshore recoverable resource. At the U.S. production rates for 2007, about 19.3 tcf, the current recoverable resource estimate provides enough natural gas to supply the U.S. for the next 90 years. Separate estimates of the shale gas resource extend this supply to 116 years.

Natural gas use is distributed across several sectors of the economy. It is an important energy source for the industrial, commercial and electrical generation sectors, and also serves a vital role in residential heating. Although forecasts vary in their outlook for future demand for natural gas, they all have one thing in common: natural gas will continue to play a significant role in the U.S. energy picture for some time to come.

The lower 48 states have a wide distribution of highly organic shales containing vast resources of natural gas. Already, the fledgling Barnett Shale play in Texas produces 6% of all natural gas produced in the lower 48 States. Three factors have come together in recent years to make shale gas production economically viable: 1) advances in horizontal drilling, 2) advances in hydraulic fracturing, and, perhaps most importantly, 3) rapid increases in natural gas prices in the last several years as a result of significant supply and demand pressures. Analysts have estimated that by 2011 most new reserves growth (50% to 60%, or approximately 3 bcf/day) will come from unconventional shale gas reservoirs. The total recoverable gas resources in four new shale gas plays (the Haynesville, Fayetteville, Marcellus, and Woodford) may be over 550 tcf. Total annual production volumes of 3 to 4 tcf may be sustainable for decades. This potential for production in the
known onshore shale basins, coupled with other unconventional gas plays, is predicted to contribute significantly to the U.S.'s domestic energy outlook.

Shale gas is present across much of the lower 48 States. The most active shales to date are the Barnett Shale, the Haynesville/Bossier Shale, the Antrim Shale, the Fayetteville Shale, the Marcellus Shale, and the New Albany Shale. Each of these gas shale basins is different and each has a unique set of exploration criteria and operational challenges. Because of these differences, the development of shale gas resources in each of these areas faces potentially unique opportunities and challenges.

The development and production of oil and gas in the U.S., including shale gas, are regulated under a complex set of federal, state, and local laws that address every aspect of exploration and operation. All of the laws, regulations, and permits that apply to conventional oil and gas exploration and production activities also apply to shale gas development. The U.S. Environmental Protection Agency administers most of the federal laws, although development on federally-owned land is managed primarily by the Bureau of Land Management (part of the Department of the Interior) and the U.S. Forest Service (part of the Department of Agriculture). In addition, each state in which oil and gas is produced has one or more regulatory agencies that permit wells, including their design, location, spacing, operation, and abandonment, as well as environmental activities and discharges, including water management and disposal, waste management and disposal, air emissions, underground injection, wildlife impacts, surface disturbance, and worker health and safety. Many of the federal laws are implemented by the states under agreements and plans approved by the appropriate federal agencies.

A series of federal laws governs most environmental aspects of shale gas development. For example, the Clean Water Act regulates surface discharges of water associated with shale gas drilling and production, as well as storm water runoff from production sites. The Safe Drinking Water Act regulates the underground injection of fluids from shale gas activities. The Clean Air Act limits air emissions from engines, gas processing equipment, and other sources associated with drilling and production. The National Environmental Policy Act (NEPA) requires that exploration and production on federal lands be thoroughly analyzed for environmental impacts. Most of these federal laws have provisions for granting "primacy" to the states (i.e., state agencies implement the programs with federal oversight).

State agencies not only implement and enforce federal laws; they also have their own sets of state laws to administer. The states have broad powers to regulate, permit, and enforce all shale gas development activities—the drilling and fracture of the well, production operations, management and disposal of wastes, and abandonment and plugging of the well. State regulation of the environmental practices related to shale gas development, usually with federal oversight, can more effectively address the regional and state-specific character of the activities, compared to one-size-fits-all regulation at the federal level. Some of these specific factors include: geology, hydrology, climate, topography, industry characteristics, development history, state legal structures, population density, and local economics. State laws often add additional levels of environmental protection and requirements. Also, several states have their own versions of the federal NEPA law, requiring environmental assessments and reviews at the state level and extending those reviews beyond federal lands to state and private lands.

A key element in the emergence of shale gas production has been the refinement of cost-effective horizontal drilling and hydraulic fracturing technologies. These two processes, along with the implementation of protective environmental management practices, have allowed shale gas
development to move into areas that previously would have been inaccessible. Accordingly, it is important to understand the technologies and practices employed by the industry and their ability to prevent or minimize the potential effects of shale gas development on human health and the environment and on the quality of life in the communities in which shale gas production is located.

Modern shale gas development is a technologically driven process for the production of natural gas resources. Currently, the drilling and completion of shale gas wells includes both vertical and horizontal wells. In both kinds of wells, casing and cement are installed to protect fresh and treatable water aquifers. The emerging shale gas basins are expected to follow a trend similar to the Barnett Shale play with increasing numbers of horizontal wells as the plays mature. Shale gas operators are increasingly relying on horizontal well completions to optimize recovery and well economics. Horizontal drilling provides more exposure to a formation than does a vertical well. This increase in reservoir exposure creates a number of advantages over vertical wells drilling. Six to eight horizontal wells drilled from only one well pad can access the same reservoir volume as sixteen vertical wells. Using multi-well pads can also significantly reduce the overall number of well pads, access roads, pipeline routes, and production facilities required, thus minimizing habitat disturbance, impacts to the public, and the overall environmental footprint.

The other technological key to the economic recovery of shale gas is hydraulic fracturing, which involves the pumping of a fracturing fluid under high pressure into a shale formation to generate fractures or cracks in the target rock formation. This allows the natural gas to flow out of the shale to the well in economic quantities. Ground water is protected during the shale gas fracturing process by a combination of the casing and cement that is installed when the well is drilled and the thousands of feet of rock between the fracture zone and any fresh or treatable aquifers. For shale gas development, fracture fluids are primarily water based fluids mixed with additives that help the water to carry sand proppant into the fractures. Water and sand make up over 98% of the fracture fluid, with the rest consisting of various chemical additives that improve the effectiveness of the fracture job. Each hydraulic fracture treatment is a highly controlled process designed to the specific conditions of the target formation.

The amount of water needed to drill and fracture a horizontal shale gas well generally ranges from about 2 million to 4 million gallons, depending on the basin and formation characteristics. While these volumes may seem very large, they are small by comparison to some other uses of water, such as agriculture, electric power generation, and municipalities, and generally represent a small percentage of the total water resource use in each shale gas area. Calculations indicate that water use for shale gas development will range from less than 0.1% to 0.8% of total water use by basin. Because the development of shale gas is new in some areas, these water needs may still challenge supplies and infrastructure. As operators look to develop new shale gas plays, communication with local water planning agencies, state agencies, and regional water basin commissions can help operators and communities to coexist and effectively manage local water resources. One key to the successful development of shale gas is the identification of water supplies capable of meeting the needs of a development company for drilling and fracturing water without interfering with community needs. While a variety of options exist, the conditions of obtaining water are complex and vary by region.

After the drilling and fracturing of the well are completed, water is produced along with the natural gas. Some of this water is returned fracture fluid and some is natural formation water. Regardless of the source, these produced waters that move back through the wellhead with the gas represent a stream that must be managed. States, local governments, and shale gas operators seek to manage produced water in a way that protects surface and ground water resources and, if possible, reduces...
future demands for fresh water. By pursuing the pollution prevention hierarchy of "Reduce, Re-use, and Recycle" these groups are examining both traditional and innovative approaches to managing shale gas produced water. This water is currently managed through a variety of mechanisms, including underground injection, treatment and discharge, and recycling. New water treatment technologies and new applications of existing technologies are being developed and used to treat shale gas produced water for reuse in a variety of applications. This allows shale gas-associated produced water to be viewed as a potential resource in its own right.

Some soils and geologic formations contain low levels of naturally occurring radioactive material (NORM). When NORM is brought to the surface during shale gas drilling and production operations, it remains in the rock pieces of the drill cuttings, remains in solution with produced water, or, under certain conditions, precipitates out in scales or sludges. The radiation from this NORM is weak and cannot penetrate dense materials such as the steel used in pipes and tanks.

Because the general public does not come into contact with gas field equipment for extended periods, there is very little exposure risk from gas field NORM. To protect gas field workers, OSHA requires employers to evaluate radiation hazards, post caution signs and provide personal protection equipment when radiation doses could exceed regulatory standards. Although regulations vary by state, in general, if NORM concentrations are less than regulatory standards, operators are allowed to dispose of the material by methods approved for standard gas field waste. Conversely, if NORM concentrations are above regulatory limits, the material must be disposed of at a licensed facility. These regulations, standards, and practices ensure that shale gas operations present negligible risk to the general public and to workers with respect to potential NORM exposure.

Although natural gas offers a number of environmental benefits over other sources of energy, particularly other fossil fuels, some air emissions commonly occur during exploration and production activities. Emissions may include NOx, volatile organic compounds, particulate matter, SO2, and methane. EPA sets standards, monitors the ambient air across the U.S., and has an active enforcement program to control air emissions from all sources, including the shale gas industry. Gas field emissions are controlled and minimized through a combination of government regulation and voluntary avoidance, minimization, and mitigation strategies.

The primary differences between modern shale gas development and conventional natural gas development are the extensive uses of horizontal drilling and high-volume hydraulic fracturing. The use of horizontal drilling has not introduced any new environmental concerns. In fact, the reduced number of horizontal wells needed coupled with the ability to drill multiple wells from a single pad has significantly reduced surface disturbances and associated impacts to wildlife, dust, noise, and traffic. Where shale gas development has intersected with urban and industrial settings, regulators and industry have developed special practices to alleviate nuisance impacts, impacts to sensitive environmental resources, and interference with existing businesses. Hydraulic fracturing has been a key technology in making shale gas an affordable addition to the Nation's energy supply, and the technology has proved to be an effective stimulation technique. While some challenges exist with water availability and water management, innovative regional solutions are emerging that allow shale gas development to continue while ensuring that the water needs of other users are not affected and that surface and ground water quality is protected. Taken together, state and federal requirements along with the technologies and practices developed by industry serve to reduce environmental impacts from shale gas operations.
May 27, 2009

Mike Paque
Executive Director
Ground Water Protection Council
13309 North MacArthur Boulevard
Oklahoma City, Oklahoma 73142

Dear Mike:

In recent months, the Ohio Department of Natural Resources, Division of Mineral Resources Management (DMRM) has become aware of website and media releases reporting that the State of Ohio has documented cases of ground water contamination caused by the standard industry practice of hydraulic fracturing. Such reports are not accurate. For example, some articles inaccurately portrayed hydraulic fracturing as the cause of a natural gas incident in Bainbridge Township of Geauga County that resulted in an in-home explosion in December 2007. This portrayal is not consistent with the findings or conclusions of the DMRM.

DMRM completed a thorough investigation into the cause of a natural gas invasion into fresh water aquifers in Bainbridge Township. The DMRM investigation found that this incident was caused by a defective primary cement job on the production casing, which was further complicated by operator error. As a consequence of this finding, the operator corrected the construction problem by completing remedial cementing operations. The findings and conclusions of this investigation are available on the web at http://www.dnr.state.oh.us/bainbridge/tabid/20484/default.aspx.

While an explosion significantly damaged one house, the investigation did not find any evidence to support the claim "that pressure caused by hydraulic fracturing pushed the gas...through a system of cracks into the ground water aquifer" as reported by some media accounts. In actuality, the team of geologists who completed the evaluation of the gas invasion incident in Bainbridge Township concluded that the problem would have occurred even if the well had never been stimulated by hydraulic fracturing.

After 25 years of investigating citizen complaints of contamination, DMRM geologists have not documented a single incident involving contamination of ground water attributed to hydraulic fracturing. Over this time, the Ohio DMRM has consistently taken decisive action to address oil and gas exploration and production practices that have caused documented incidents of ground water contamination. The DMRM has initiated amendments to statutes and rules, designed permit conditions, refined standards...
operating procedures, and developed best management practices to improve protection of ground water resources. These actions resulted in substantive changes including:

1. elimination of tens of thousands of earthen pits for produced water storage;
2. development of a model Class II brine injection well program;
3. development of technical standards for synthetic liners used in pits during drilling operations;
4. tighter standards for construction and mechanical integrity testing for annular disposal wells;
5. detailed plugging regulations; and,
6. establishment of an orphaned well plugging program funded by a severance tax on oil and gas production.

The Ohio DMRM will continue to assign the highest priority to improving protection of water resources and public health and safety.

In conclusion, the Ohio DMRM has not identified hydraulic fracturing as a significant threat to ground water resources.

Sincerely,

Scott R. Kell, Deputy Chief

SRK/csc

Enclosure

cc: Cathryn Loucas, Deputy Director, ODNR
 Mike Shelton, Chief, Legislative Services, ODNR
 John Husted, Chief, DMRM
Dear Mr. Paque:

I am the program manager for Pennsylvania’s Ground Water Protection Program in the Pennsylvania Department of Environmental Protection (DEP). I have been concerned about press reports stating extensive groundwater pollution and contamination of underground sources of drinking water in Pennsylvania, as a result of hydraulic fracturing to stimulate gas production from deep, gas bearing rock formations. DEP has not concluded that the activity of hydraulic fracturing of these formations has caused widespread groundwater contamination.

After review of DEP’s complaint database and interviews with regional staff that investigate groundwater contamination related to oil and gas activities, no groundwater pollution or disruption of underground sources of drinking water has been attributed to hydraulic fracturing of deep gas formations. All investigated cases that have found pollution, which are less than 80 in over 15 years of records, have been primarily related to physical drilling through the aquifers, improper design or setting of upper and middle well casings, or operator negligence.

If you have any questions or concerns, you may contact me by e-mail at josless@state.pa.us or by telephone at 717-772-4048.

Sincerely,

Joseph J. Lee, Jr., P.G., chief
Source Protection Section
Division of Water Use Planning
May 29, 2009

Mr. Michael Paque, Executive Director
Ground Water Protection Council
13308 N. MacArthur Blvd.
Oklahoma City, OK 73142

Dear Mike:

As per your request, I have reviewed the New Mexico Oil Conservation Division Data concerning water contamination caused by Hydraulic Fracturing in New Mexico.

While we do currently list approximately 421 ground water contamination cases caused by pits and approximately an equal number caused by other contamination mechanisms, we have found no example of contamination of usable water where the cause was claimed to be hydraulic fracturing.

Sincerely,

Mark E. Fesmire, PE
Director, New Mexico Oil Conservation Division
May 27, 2009

Mr. Michel Paque, Executive Director
Ground Water Protection Council
13308 N. MacArthur Blvd.
Oklahoma City, OK 73142

Dear Mr. Paque:

This letter is in response to your recent inquiry regarding any cases of drinking water contamination that have resulted from hydraulic fracturing operations to stimulate oil and gas wells in Alabama. I can state with authority that there have been no documented cases of drinking water contamination caused by such hydraulic fracturing operations in our State.

The U.S. Environmental Protection Agency (EPA) approved the State Oil and Gas Board’s (Board) Class II Underground Injection Control (UIC) Program in August 1982, pursuant to Section 1425 of the Safe Drinking Water Act (SDWA). This approval was made after EPA determined that the Board’s program accomplished the objectives of the SDWA, that being to protect underground sources of drinking water. Obtaining primacy for the Class II UIC Program, however, was not the beginning of the Board’s ground-water protection programs. These programs, to include the regulation and approval of hydraulic fracturing operations, have been actively implemented continually since the Board was established in 1945, pursuant to its legislative mandates.

The point to be made here is that the State of Alabama has a vested interest in protecting its drinking water sources and has adequate rules and regulations, as well as statutory mandates, to protect those sources from all oil and gas operations. The fact that there has been no documented case of contamination from these operations, to include hydraulic fracturing, is a testament to the proactive regulation of the industry by the Board. Additional federal regulations will not provide any greater level of protection for our drinking water sources than is currently being provided.

If we can be of further assistance in this matter, please let me know.

Sincerely,

David E. Bolin
Deputy Director

Mobile Regional Office, 4173 Commanders Drive, Mobile, AL 36615-1421, Phone (251) 438-4848
Final SGEIS 2015, Page A15A-16
May 29, 2009

Mike Paque, Executive Director
Ground Water Protection Agency
13308 N. MacArthur Blvd.
Oklahoma City, OK 73142

Re: Hydraulic Fracturing of Gas Wells in Texas

Dear Mr. Paque:

I am pleased that representatives of the Ground Water Protection Council will be appearing before the U.S. House Committee on Natural Resources next week on the issue of hydraulic fracturing. I was asked to participate but had a longstanding commitment to tour energy projects in Canada that prevented me from personally participating.

I sincerely hope that you will clear up the misconception that there are “thousands” of contamination cases in Texas and other states resulting from hydraulic fracturing. The Railroad Commission of Texas is the chief regulatory agency over oil and gas activities in this state. Though hydraulic fracturing has been used for over 50 years in Texas, our records do not indicate a single documented contamination case associated with hydraulic fracturing.

The Texas Groundwater Protection Committee (TGPC) tracks groundwater pollution in Texas. All Texas water protection agencies, including the Railroad Commission, are members. Each year, the TGPC publishes a Joint Groundwater Monitoring and Contamination Report, which can be found at http://www.tceq.state.tx.us/comm_exec/forms_pubs/pubs/sfr/056_07_index.html. The 2007 report cites a total of 354 active groundwater cases attributed to oil and gas activity – this in a state with over 255,000 active oil and gas wells. The majority of these cases are associated with previous practices that are no longer allowed, or result from activity now prohibited by our existing regulations. A few cases were due to blowouts that primarily occur during drilling activity. Not one of these cases was caused by hydraulic fracturing activity.

Hydraulic fracturing plays a key role in the development of virtually all unconventional gas resources in Texas. As of this year, over 11,000 gas wells have been completed (and hydraulically fractured) in the Barnett Shale reservoir, one of the nation’s most active and largest natural gas fields. Since 2000, over five trillion cubic feet of gas has been produced from this one reservoir and the Barnett Shale production currently contributes over 20% of Texas’ total natural gas production. While the volume of gas-in-place in the Barnett Shale is estimated to be over 27 trillion cubic feet, recovery of the gas is difficult because of the shale’s low permeability. The remarkable success of the Barnett Shale results in large part from the use of horizontal drilling coupled with hydraulic fracturing. Even with this intense activity, there are no known instances of ongoing groundwater contamination in the Barnett Shale play.
Regulation of oil and gas exploration and production activities, including hydraulic fracturing, has traditionally been the province of the states. Most oil and gas producing state have had effective programs in place for decades. Regulating hydraulic fracturing as underground injection under the federal Safe Drinking Water Act would impose significant additional costs and regulatory burdens and could ultimately reverse the significant U.S. domestic unconventional gas reserve additions of recent years – harming domestic energy security. I urge the U.S. Congress to leave the regulatory authority over hydraulic fracturing and other oil and gas activities where it belongs – at the state level.

Sincerely,

Victor G. Carrillo, Chairman
Railroad Commission of Texas

cc: Commissioner Michael Williams
Commissioner Elizabeth Ames Jones
John J. Tintera, Executive Director
Part B

IOGCC’s Statements from Oil & Gas Regulators from 12 Member States
REGULATORY STATEMENTS ON HYDRAULIC FRACTURING
SUBMITTED BY THE STATES
JUNE 2009

The following statements were issued by state regulators for the record related to hydraulic fracturing in their states. Statements have been compiled for this document.

ALABAMA:

Nick Tew, Ph.D., P.G.
Alabama State Geologist & Oil and Gas Supervisor
President, Association of American State Geologists

There have been no documented cases of drinking water contamination that have resulted from hydraulic fracturing operations to stimulate oil and gas wells in the State of Alabama.

The U.S. Environmental Protection Agency (EPA) approved the State Oil and Gas Board of Alabama’s (Board) Class II Underground Injection Control (UIC) Program in August 1982, pursuant to Section 1425 of the Safe Drinking Water Act (SDWA). This approval was made after EPA determined that the Board’s program accomplished the objectives of the SDWA, that is, the protection of underground sources of drinking water. Obtaining primacy for the Class II UIC Program, however, was not the beginning of the Board’s ground-water protection programs. These programs, which include the regulation and approval of hydraulic fracturing operations, have been continuously and actively implemented since the Board was established in 1945, pursuant to its mission and legislative mandates.

The State of Alabama, acting through the Board, has a vested interest in protecting its drinking water sources and has adequate rules and regulations, as well as statutory mandates, to protect these sources from all oil and gas operations, including hydraulic fracturing. The fact that there has been no documented case of contamination from these operations, including hydraulic fracturing, is strong evidence of effective regulation of the industry by the Board. In our view, additional federal regulations will not provide any greater level of protection for our drinking water sources than is currently being provided.

ALASKA:

Cathy Foerster
Commissioner
Alaska Oil and Gas Conservation Commission

There have been no verified cases of harm to ground water in the State of Alaska as a result of hydraulic fracturing.

State regulations already exist in Alaska to protect fresh water sources. Current well construction standards used in Alaska (as required by Alaska Oil and Gas Conservation Commission statutes
and regulations) properly protect fresh drinking waters. Surface casing is always set well below fresh waters and cemented to surface. This includes both injectors and producers as the casing/cementing programs are essentially the same in both types of wells. There are additional casings installed in wells as well as tubing which ultimately connects the reservoir to the surface. The AOGCC requires rigorous testing to demonstrate the effectiveness of these barriers protecting fresh water sources.

By passing this legislation [FRAC Act] it is probable that every oil and gas well within the State of Alaska will come under EPA jurisdiction. EPA will then likely set redundant construction guidelines and testing standards that will merely create duplicate reporting and testing requirements with no benefit to the environment. Additional government employees will be required to monitor the programs, causing further waste of taxpayer dollars.

Material safety data sheets for all materials used in oil and gas operations are required to be maintained on location by Hazard Communication Standards of OSHA. Therefore, requiring such data in the FRAC bill is, again, merely duplicate effort with and accomplishes nothing new.

COLORADO:

David Neslin
Director
Colorado Oil and Gas Conservation Commission

To the knowledge of the Colorado Oil and Gas Conservation Commission staff, there has been no verified instance of harm to groundwater caused by hydraulic fracturing in Colorado.

INDIANA:

Herschel McDivitt
Director
Indiana Department of Natural Resources

There have been no instances where the Division of Oil and Gas has verified that harm to groundwater has ever been found to be the result of hydraulic fracturing in Indiana. In fact, we are unaware of any allegations that hydraulic fracturing may be the cause of or may have been a contributing factor to an adverse impact to groundwater in Indiana.

The Division of Oil and Gas is the sole agency responsible for overseeing all aspects of oil and gas production operations as directed under Indiana’s Oil and Gas Act. Additionally, the Division of Oil and Gas has been granted primacy by the U.S. Environmental Protection Agency, to implement the Underground Injection Control (UIC) Program for Class II wells in Indiana under the Safe Drinking Water Act.
Kentucky:

Kim Collings, EEC
Director
Kentucky Division of Oil and Gas

In Kentucky, there have been alleged contaminations from citizen complaints but nothing that can be substantiated, in every case the well had surface casing cemented to surface and production casing cemented.

Louisiana:

James Welsh
Commissioner of Conservation
Louisiana Department of Natural Resources

The Louisiana Office of Conservation is unaware of any instance of harm to groundwater in the State of Louisiana caused by the practice of hydraulic fracturing. My office is statutorily responsible for regulation of the oil and gas industry in Louisiana, including completion technology such as hydraulic fracturing, underground injection and disposal of oilfield waste operations, and management of the major aquifers in the State of Louisiana.

Michigan:

Harold Fitch
Director, Office of Geological Survey
Department of Environmental Quality

My agency, the Office of Geological Survey (OGS) of the Department of Environmental Quality, regulates oil and gas exploration and production in Michigan. The OGS issues permits for oil and gas wells and monitors all aspects of well drilling, completion, production, and plugging operations, including hydraulic fracturing.

Hydraulic fracturing has been utilized extensively for many years in Michigan, in both deep formations and in the relatively shallow Antrim Shale formation. There are about 9,900 Antrim wells in Michigan producing natural gas at depths of 500 to 2000 feet. Hydraulic fracturing has been used in virtually every Antrim well.

There is no indication that hydraulic fracturing has ever caused damage to ground water or other resources in Michigan. In fact, the OGS has never received a complaint or allegation that hydraulic fracturing has impacted groundwater in any way.
OKLAHOMA:

Lori Wrotenbery
Director, Oil and Gas Conservation Division
Oklahoma Corporation Commission

You asked whether there has been a verified instance of harm to groundwater in our state from the practice of hydraulic fracturing. The answer in no. We have no documentation of such an instance. Furthermore, I have consulted the senior staffs of our Pollution Abatement Department, Field Operations Department, and Technical Services Department, and they have no recollection of having ever received a report, complaint, or allegation of such an instance. We also contacted the senior staffs of the Oklahoma Department of Environmental Quality, who likewise, have no such knowledge or information.

While there have been incidents of groundwater contamination associated with oil and gas drilling and production operations in the State of Oklahoma, none of the documented incidents have been associated with hydraulic fracturing. Our agency has been regulating oil and gas fracturing operations in the state for over 90 years. Tens of thousands of hydraulic fracturing operations have been conducted in the state in the last 60 years. Had hydraulic fracturing caused harm to groundwater in our state in anything other than a rare and isolated instance, we are confident that we would have identified that harm in the course of our surveillance of drilling and production practices and our investigation of groundwater contamination incidents.

TENNESSEE:

Paul Schmierbach
Manager
Tennessee Department of Environmental Conservation

We have had no reports of well damage due to fracking.

TEXAS:

Victor G. Carrillo
Chairman
Railroad Commission of Texas

The practice of reservoir stimulation by hydraulic fracturing has been used safely in Texas for over six decades in tens of thousands of wells across the state.

Recently in his introductory Statement for the Record (June 9, 2009) of the Fracturing Responsibility and Awareness of Chemicals (FRAC) Act, Senator Robert Casey stated:
“Now, the oil and gas industry would have you believe that there is no threat to drinking water from hydraulic fracturing. But the fact is we are already seeing cases in Pennsylvania, Colorado, Virginia, West Virginia, Alabama, Wyoming, Ohio, Arkansas, Utah, Texas, and New Mexico where residents have become ill or groundwater has become contaminated after hydraulic fracturing operations began in the area.”

This statement perpetuates the misconception that there are many surface or groundwater contamination cases in Texas and other states due to hydraulic fracturing. This is not true and here are the facts: Though hydraulic fracturing has been used for over 60 years in Texas, our Railroad Commission records do not reflect a single documented surface or groundwater contamination case associated with hydraulic fracturing.

Hydraulic fracturing plays a key role in the development of unconventional gas resources in Texas. As of this year, over 11,000 gas wells have been completed - and hydraulically fractured - in the Newark East (Barnett Shale) Field, one of the nation’s largest and most active natural gas fields. Since 2000, over 5 Tcf (trillion cubic feet) of gas has been produced from this one reservoir and Barnett Shale production currently contributes over 20% of total Texas natural gas production (over 7 Tcf in 2008 – more than a third of total U.S. marketed production). While the volume of gas-in-place in the Barnett Shale is estimated to be over 27 Tcf, conventional recovery of the gas is difficult because of the shale’s low permeability. The remarkable success of the Barnett Shale results in large part from the use of horizontal drilling coupled with hydraulic fracturing. Even with this intense activity, there are no known instances of ongoing surface or groundwater contamination in the Barnett Shale play.

Regulating oil and gas exploration and production activities, including hydraulic fracturing, has traditionally been the province of the states, which have had effective programs in place for decades. Regulating hydraulic fracturing as underground injection under the federal Safe Drinking Water Act would impose significant additional costs and regulatory burdens and could ultimately reverse the significant U.S. domestic unconventional gas reserve additions of recent years – substantially harming domestic energy security. Congress should maintain the status quo and let the states continue to responsibly regulate oil and gas activities, including hydraulic fracturing.

In summary, I am aware of no verified instance of harm to groundwater in Texas from the decades long practice of hydraulic fracturing.

SOUTH DAKOTA:

Fred Steece
Oil and Gas Supervisor
Department of Environment and Natural Resource

Oil and gas wells have been hydraulically fractured, "fracked," in South Dakota since oil was discovered in 1954 and since gas was discovered in 1970. South Dakota has had rules in place, dating back to the 1940’s, that require sufficient surface casing and cement to be installed in
wells to protect ground water supplies in the state’s oil fields. Producing wells are required to have production casing and cement, and tubing with packers installed. The casing, tubing, and cement are all designed to protect drinking waters of the state as well as to prevent commingling of water and oil and gas in the subsurface. In the 41 years that I have supervised oil and gas exploration, production and development in South Dakota, no documented case of water well or aquifer damage by the fracking of oil or gas wells, has been brought to my attention. Nor am I aware of any such cases before my time.

WYOMING:

Rick Marvel
Engineering Manager
Wyoming Oil and Gas Conservation Commission

Tom Doll
Oil and Gas Commission Supervisor
Wyoming Oil and Gas Conservation Commission

- No documented cases of groundwater contamination from fracture stimulations in Wyoming.
- No documented cases of groundwater contamination from UIC regulated wells in Wyoming.
- Wyoming took primacy over UIC Class II wells in 1982, currently 4,920 Class II wells permitted.

Wyoming’s 2008 activity:
- Powder River Basin Coalbed Wells – 1,699 new wells, no fracture stimulation.
- Rawlins Area (deeper) Coalbed Wells – 109 new wells, 100% fracture stimulated.
- Statewide Conventional Gas Wells – 1,316 new wells, 100% fracture stimulated – many wells with multi-zone fracture stimulations in each well bore, some staged and some individual fracture stimulations.
- Statewide Oil Wells – 237 new wells, 75% fracture stimulated.

The Wyoming Oil and Gas Commission Rules and Regulations are specific in requiring the operator receive approval prior to performing hydraulic fracturing treatments. The Rules require the operator to provide detailed information regarding the hydraulic fracturing process, to include the source of water and/or trade name fluids, type of proponents, as well as estimated pump pressures. After the treatment is complete the operator is required to provide actual fracturing data in detail and resulting production results.

Under Chapter 3, Section 8 (c) The Application for Permit to Drill or Deepen (Form 1) states…”information shall also be given relative to the drilling plan, together with any other information which may be required by the Supervisor. Where multiple Applications for Permit
to Drill will be sought for several wells proposed to be drilled to the same zone within an area of geologic similarity, approval may be sought from the Supervisor to file a comprehensive drilling plan containing the information required above which will then be referenced on each Application for Permit to Drill.” Operators have been informed by Commission staff to include detailed information regarding the hydraulic fraction stimulation process on the Form 1 Application for Permit to Drill.

The Rules also state, in Chapter 3, Section 1 (a) “A written notice of intention to do work or to change plans previously approved on the original APD and/or drilling and completion plan (Chapter 3, Section 8 (c)) must be filed with the Supervisor on the Sundry Notice (Form 4), unless otherwise directed, and must reach the Supervisor and receive his approval before the work is begun. Approval must be sought to acidize, cleanout, flush, fracture, or stimulate a well. The Sundry Notice must include depth to perforations or the openhole interval, the source of water and/or trade name fluids, type proponents, as well as estimated pump pressures. Routine activities that do not affect the integrity of the wellbore or the reservoir, such as pump replacements, do not require a Sundry Notice. The Supervisor may require additional information.” Most operators will submit the Sundry Notice Form 4 to provide the specific detail for the hydraulic fracturing treatment even though the general information might have been provided under the Form 1 Application for Permit to Drill.

After the hydraulic fracture treatment is complete, results must be reported to the Supervisor. Chapter 3, Section 12 Well Completion or Recompletion Report and Log (Form 3) state “upon completion or recompletion of a well, stratigraphic test or core hole, or the completion of any remedial work such as plugging back or drilling deeper, acidizing, shooting, formation fracturing, squeezing operations, setting a liner, gun perforating, or other similar operations not specifically covered herein, a report on the operation shall be filed with the Supervisor. Such report shall present a detailed account of the work done and the manner in which such work was performed; the daily production of the oil, gas, and water both prior to and after the operation; the size and depth of perforations; the quantity of sand, crude, chemical, or other materials employed in the operation and any other pertinent information of operations which affect the original status of the well and are not specifically covered herein.”
This page intentionally left blank.