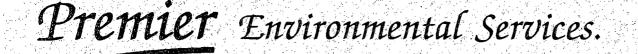
FILE NAME

"Report.VCP.y00615.2003-08-01.DUSR.Site1_2_3.pdf"


NOTE

Contains folded images. Images must be copied in their entirety.

Images may contain color.

- Documents must be returned in the same arrangement in which they were received.

Please return electronic copies to Sally Dewes

ORGANIC AND INORGANIC ANALYSES IN AQUEOUS AND NON-AQUEOUS SAMPLES

VERITECH LABORATORIES FAIRFIELD, NEW JERSEY

REPORT NUMBERS:

August, 2003

Prepared for The Port Authority of NY & NJ Jersey City, New Jersey

Prepared by Premier Environmental Services 2815 Covered Bridge Road Merrick, New York 11566 (516)223-9761

NYS DEC Data Usability Summary Report

DATA VALIDATION FOR:	Volatile Organic Analyses, Base Neutral Semivolatile Organic Analyses, Pesticide Analyses and PCB Analyses	
SITE:	HH-Port Ivory Site	
CONTRACT LAB:	Hampton-Clarke, Inc. Veritech Laboratories Fairfield, New Jersey	
REVIEWER:	Renee Cohen	
DATE REVIEW COMPLETED:	August, 2003	
MATRIX:	Aqueous and Non-Aqueous	

The data validation was performed according to the guidelines in the described in the New York State Department of Environmental Conservation, Division of Environmental Remediation, Guidance for the Development of Data Usability Summary Reports (DUSR). In addition the data was been reviewed using the protocol specified in the NYS Analytical Services Protocol ('95).

All data are considered valid and acceptable except those analytes which have been rejected "R" (unreliable/unusable). Due to various QC problems some analytes may have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material, "U" (non-detect), or "JN" (presumptive evidence for the presence of the material at an estimated value) flag. All actions are detailed on the attached sheets.

Several factors should be noted for all persons using this data. Persons using this data should be aware that no result is guaranteed to be accurate even if it has passed all QC tests. The main purpose of this review is to appropriately qualify outliers and to determine whether the results presented meet the specific site/project criteria for data quality and data use.

This data assessment is for a total of twelve (12) aqueous, twenty-five (25) soil, seven (7) Field Blank and one (1) Trip Blank samples that were collected at the site. All of the samples were shipped to Veritech Laboratories located in Fairfield, New Jersey. The samples were analyzed for the parameters marked on the Chain of custody documents that accompanied the samples to the laboratory.

A cross-reference between Field Sample ID and Laboratory Sample ID is located in Table 1 of this report. A list of definitions that may be used in this report is located in Appendix A. Copies of qualified data result pages are located in Appendix B of this report and a copy of Chain of Custody (COC) documentation associated with sampling event is located in Appendix C.

1. OVERVIEW:

The samples were submitted to the laboratory for the analyses requested on the Chain of Custody (COC) documentation. The samples were analyzed for the organic analytes using EPA Test Methods for the Evaluation of Solid Waste (SW 846), Method 8260/8270. Proper custody transfer of the samples was documented in the laboratory report. The laboratory provided a deliverables package similar to that of a New Jersey Reduced Deliverable for Non-CLP parameters.

<u>Samples Collected 11/21/00, Received 11/22/00</u> – Thirteen (13) soil and eight (8) aqueous and two (2) Field Blank samples were collected on November 21, 2000 and delivered to the Veritech Laboratories in Fairfield, NJ on November 22, 2000. The samples were reported in laboratory report 11240942. The samples were analyzed for the parameters listed on the COC documents. New Jersey Reduced Deliverables were requested on the COC documents.

Samples Collected 11/29/02, Received 11/30/00 – Four (4) aqueous, one (1) Field Blank and one (1) Trip blank sample were collected on November 29, 2002 and delivered to the Veritech Laboratories in Fairfield, NJ. The samples were reported in laboratory report 12011513. The initial data report provided for review did not contain the COC associated with this data set. The COC was requested and provided for review. A copy is located in Appendix C of this report. The samples were analyzed for the parameters listed on the COC documents. The laboratory report pages all indicate that the samples were submitted on December 1, 2000, however based on the COC documents, samples were received on November 30, 2000. All reference to receipt date in this report is November 29, 2000.

<u>Samples Collected 5/28/02 and 5/29/02, Received 5/30/02</u> – Seven (7) soil and two (2) Field Blank samples were collected on May 28, 2002 and May 29, 2002 and delivered to the Veritech Laboratories in Fairfield, NJ. The samples were received at the proper temperature without custody seals. The samples were reported in laboratory report 05311131. The COC documents associated with the data set indicated that all samples were to be analyzed for the NYS Stars list of VOA analytes, MTBE and TBA, the soil samples were analyzed for the NYS Stars list of PAH analytes. The COC was requested and provided for review. A copy of the COC documents is located in Appendix C of this report.

<u>Samples Collected 5/30/02, Received 5/31/02</u> – Two (2) soil samples and one (1) Field Blank samples were collected on May 30, 2003 and delivered to the Veritech Laboratories in Fairfield, NJ. The samples were received at the proper temperature without custody seals. The samples were reported in laboratory report 05311819. The COC documents associated with the data set indicated that all samples were to be analyzed for the NYS Stars list of VOA analytes. In addition, the soil samples were analyzed for the NYS Stars list of PAH analytes. The COC was requested and provided for review. A copy of the COC documents is located in Appendix C of this report.

Samples Collected 6/26/02, Received 6/26/02 – Three (3) soil and one (1) Field Blank samples were collected on June 26, 2002 and delivered to the Veritech Laboratories in Fairfield, NJ. The samples were received at the proper temperature without custody seals. The samples were reported in laboratory report 06281539. The COC documents associated with the data set indicated that all samples were to be analyzed for the NYS Stars list of VOA analytes. In addition, the soil samples were analyzed for the NYS Stars list of PAH analytes. The COC was requested and provided for review. A copy of the COC documents is located in Appendix C of this report.

2. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Preserved volatile organic analyses are required to be analyzed within 10 days of validated time of sample receipt (VTSR) in accordance with the NYSDEC ASP, Rev '95. The technical holding time for properly preserved aqueous and non-aqueous samples is 14 days from collection. Base Neutral Semivolatile Organic Analyses are to be prepared/extracted within five (5) days of validated time of sample receipt (VTSR) in accordance with the NYSDEC ASP, Rev '95. The technical holding time for properly preserved aqueous samples is to be prepared/extracted within five (5) days of validated time of sample receipt (VTSR) in accordance with the NYSDEC ASP, Rev '95. The technical holding time for properly samples is to prepare the aqueous samples within 7 days of collection and the soil samples within fourteen days of collection.

Volatile Organic Analyses

Samples Received 11/22/00 - All of the field samples and QC samples associated with this data set were analyzed within the ten (10) days of VTSR with the exception of sample PG-G-7N-112100S005. This sample was analyzed three (3) days beyond the ten (10) day VTSR. The sample was analyzed within the EPA method holding time, therefore, no action was taken.

Samples Received 11/30/00 - All of the field samples and QC samples associated with this data set were analyzed within the ten (10) days of VTSR.

Samples Received 5/30/02 - All of the field samples and QC samples associated with this data set were analyzed within the ten (10) days of VTSR.

Samples Received 5/31/02 - All of the field samples and QC samples associated with this data set were analyzed within the ten (10) days of VTSR.

Samples Received 6/26/02 - All of the field samples and QC samples associated with this data set were analyzed one (1) day beyond the ten (10) day of VTSR. The samples were analyzed within the method holding time, therefore, no action was taken based on this outlier.

Base Neutral Semivolatile Organic Analyses

Samples Received 11/22/00 – The soil samples in this data set were collected on November 21, 2000 and received November 22, 2000. The samples were extracted in one (1) batch on November 30, 2000. This is three (3) days beyond the NYS DEC ASP holding time for extraction. The samples were prepared within the method holding time, therefore, no action was taken based on this outlier.

Samples Received 11/30/00 – The aqueous samples in this data set were collected on November 29, 2000 and received November 30, 2000. The laboratory result pages indicated that the samples were received for this analysis on December 1, 2000. The samples were extracted on December 6, 2000. This is one (1) day beyond the NYS DEC ASP holding time for extraction. The samples were prepared within the method holding time, therefore, no action was taken based on this outlier.

Samples Received 5/30/02 - The soil samples in this data set were received at the laboratory on May 30, 2002. They were prepared in one (1) extraction batch on June 3, 2002. The soil samples were extracted within the NYS ASP holding time.

2. HOLDING TIME (cont'd)

Base Neutral Semivolatile Organic Analyses

Sample Received May 31, 2002 – The soil samples in this data set were received at the laboratory on May 31, 2002. They were prepared in one (1) extraction batch on June 3, 2002. The soil samples were extracted within the NYS ASP holding time.

Sample Received June 26, 2002 – The soil samples in this data set were received at the laboratory on June 27, 2002. They were prepared in one (1) extraction batch on July 2, 2002. The soil samples were extracted within the ASP holding time. The extracts were analyzed within the NYSDEC holding time.

Pesticide/PCB Analyses -

Samples Received 11/22/00 – The aqueous samples in this data set were collected on November 21, 2000 and received November 22, 2000. The samples were extracted on November 30, 2000. This is three (3) days beyond the NYS DEC ASP holding time for extraction. The samples were prepared within the method holding time, therefore, no action was taken based on this outlier.

Samples Received 11/30/00 – The aqueous samples in this data set were collected on November 29, 2000 and received November 30, 2000. The samples were extracted on December 6, 2000. This is one (1) day beyond the NYS DEC ASP holding time for extraction. The samples were prepared within the method holding time, therefore, no action was taken based on this outlier.

Polychlorinated Biphenyl's (PCB's)

Samples Received 11/22/00 – The aqueous samples in this data set were collected on November 21, 2000 and received November 22, 2000. The samples were extracted on November 30, 2000. This is three (3) days beyond the NYS DEC ASP holding time for extraction. The samples were prepared within the method holding time, therefore, no action was taken based on this outlier.

Samples Received 11/30/00 – The aqueous samples in this data set were collected on November 29, 2000 and received November 30, 2000. The samples were extracted on December 6, 2000. This is one (1) day beyond the NYS DEC ASP holding time for extraction. The samples were prepared within the method holding time, therefore, no action was taken based on this outlier.

3. SURROGATES:

All samples are spiked with surrogate compounds prior to sample preparation to evaluate the overall laboratory performance and the efficiency of the analytical technique. If the measured surrogate concentrations are outside the QC limits, qualifiers were applied to the effected samples.

Volatile Organic Analyses

Samples Received 11/22/00 – Surrogate recovery limits were not cited on the data result pages or in the data report. Surrogate recoveries were reported on the quantitation reports for each sample. The surrogate recoveries were reviewed, however no limits were cited for comparison.

Samples Received 11/30/00 - Surrogate recovery limits were not cited on the data result pages or in the data report. Surrogate recoveries were reported on the quantitation reports for each sample. The surrogate recoveries were reviewed, however no limits were cited for comparison.

Samples Received 5/30/02 – The samples in this data set were fortified with the surrogates; 1,2-Dichloroethanr-d4, Toluene-d8 and Bromofluorobenzene. In-house surrogate recovery limits were utilized by the laboratory. The percent recovery of each surrogate met QC criteria in all field and QC samples associated with this data set.

Samples Received 5/31/02 - The samples in this data set were fortified with the surrogates; 1,2-Dichloroethanr-d4, Toluene-d8 and Bromofluorobenzene. In-house surrogate recovery limits were utilized by the laboratory. The percent recovery of each surrogate met QC criteria in all field and QC samples associated with this data set.

Samples Received 6/27/2002 - The samples in this data set were fortified with the surrogates; 1,2-Dichloroethanrd4, Toluene-d8 and Bromofluorobenzene. In-house surrogate recovery limits were utilized by the laboratory. The percent recovery of each surrogate met QC criteria in all field and QC samples associated with this data set.

Base Neutral Semivolatile Organic Analyses

Samples Received 11/22/00 – Surrogate recovery limits were not cited on the data result pages or in the data report. Surrogate recoveries were reported on the quantitation reports for each sample. The surrogate recoveries were reviewed, however no limits were cited for comparison.

Samples Received 11/30/00 - Surrogate recovery limits were not cited on the data result pages or in the data report. Surrogate recoveries were reported on the quantitation reports for each sample. The surrogate recoveries were reviewed, however no limits were cited for comparison.

Samples Received May 30, 2002 - The samples in this data set were fortified with the Base Neutral surrogates; Nitrobenzene-d5, 2-Fluorobiphenyl and Terphenyl-d14. The laboratory reported in-house surrogate recovery limits with this data set. The percent recovery of each surrogate in the soil samples in this data set met QC criteria.

Samples Received May 31, 2002 - The samples in this data set were fortified with the Base Neutral surrogates; Nitrobenzene-d5, 2-Fluorobiphenyl and Terphenyl-d14. The laboratory reported in-house surrogate recovery limits with this data set. The percent recovery of each surrogate in the soil samples in this data set met QC criteria.

Samples Received June 27, 2002 - The samples in this data set were fortified with the Base Neutral surrogates; Nitrobenzene-d5, 2-Fluorobiphenyl and Terphenyl-d14. The laboratory reported in-house surrogate recovery limits with this data set. The percent recovery of each surrogate in the soil samples in this data set met QC criteria.

over-

3. SURROGATES (cont'd):

Pesticide Analyses – Each sample was spiked with the surrogate compounds TCMX and DCB. Surrogate recovery in Pesticides is advisory, therefore, no action was taken based on surrogate recovery.

Samples Received 11/22/00 – Surrogate recovery limits were not cited on the data result pages or in the data report. Surrogate recoveries were reported on the quantitation reports for each sample. The surrogate recoveries were reviewed, however no limits were cited for comparison.

Samples Received 11/30/00 - Surrogate recovery limits were not cited on the data result pages or in the data report. Surrogate recoveries were reported on the quantitation reports for each sample. The surrogate recoveries were reviewed, however no limits were cited for comparison.

PCB Analyses - - Each sample was spiked with the surrogate compounds TCMX and DCB. Surrogate recoveries were not summarized in the data report. Surrogate recovery in Pesticides is advisory, therefore, no action was taken based on surrogate recovery.

Samples Received 11/22/00 – Surrogate recovery limits were not cited on the data result pages or in the data report. Surrogate recoveries were reported on the quantitation reports for each sample. The surrogate recoveries were reviewed, however no limits were cited for comparison.

Samples Received 11/30/00 - Surrogate recovery limits were not cited on the data result pages or in the data report. Surrogate recoveries were reported on the quantitation reports for each sample. The surrogate recoveries were reviewed, however no limits were cited for comparison.

4. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data. The laboratory used the in-house generated recovery criteria and RPD (precision) data for reporting purposes.

Volatile Organic Analyses

Samples Received November 22, 2000 – Matrix spike/spike duplicate data was not summarized in this data report.

Samples Received November 30, 2000 – Matrix spike/spike duplicate data was not summarized in this data report.

Samples Received May 30, 2002 – Batch QC was utilized for the MS/MSD analyses. No action is taken based on batch QC analyses.

Samples Received May 31, 2002 – Batch QC was utilized for the MS/MSD analyses. No action is taken based on batch QC analyses.

Samples Received June 27, 2002 – Batch QC was utilized for the MS/MSD analyses. No action is taken based on batch QC analyses.

Base Neutral Semivolatile Organic Analyses

Samples Received November 22, 2000 – Matrix spike/spike duplicate data was not summarized in this data report.

Samples Received November 30, 2000 – Matrix spike/spike duplicate data was not summarized in this data report.

Samples Received May 30, 2002 - Batch QC was utilized for the MS/MSD analyses. No action is taken based on batch QC analyses.

Samples Received May 31, 2002 – Sample PG-PGB2W4-053002S001 was utilized for the MS/MSD analysis. In house matrix spike recovery and RPD limits were utilized. All recovery and RPD's met QC limits.

Samples Received June 27, 2002 - Batch QC was utilized for the MS/MSD analyses. No action is taken based on batch QC analyses.

Pesticide Analyses

Samples Received November 22, 2000 – Matrix spike/spike duplicate data was not summarized in this data report.

Samples Received November 30, 2000 - Matrix spike/spike duplicate data was not summarized in this data report.

Polychlorinated Biphenyl Analyses

Samples Received November 22, 2000 – Matrix spike/spike duplicate data was not summarized in this data report.

Samples Received November 30, 2000 – Matrix spike/spike duplicate data was not summarized in this data report.

5. BLANK SPIKE ANALYSIS:

The NY ASP protocol requires that a blank spike analysis be performed with each sample batch. The blank spike analysis is used to insure that the analytical system is in control. The laboratory applied in-house recovery limits for each analyte.

Volatile Organic Analytes

Samples Received November 22, 2000 - Blank Spike data was not summarized in this data report.

Samples Received November 30, 2000 - Blank Spike data was not summarized in this data report.

Samples Received May 30, 2002 - The laboratory performed one blank spike analysis with this data set. The sample was spiked with the matrix spike compounds. All spike recoveries in the blank spike sample met QC criteria.

Samples Received May 31, 2002 - The laboratory performed one blank spike analysis with this data set. The sample was spiked with all reported analytes. All spike recoveries in the blank spike sample met QC criteria.

Samples Received June 27, 2002 - The laboratory performed one blank spike analysis with this data set. The sample was spiked with the matrix spike compounds. All spike recoveries in the blank spike sample met QC criteria.

Base Neutral Semivolatile Organic Analytes

Samples Received November 22, 2000 - Blank spike data was not summarized in this data report.

Samples Received November 30, 2000 - Blank Spike data was not summarized in this data report.

Samples Received May 30, 2002 - The laboratory performed one blank spike analysis with this data set. The sample was spiked with the matrix spike compounds. All spike recoveries in the blank spike sample met QC criteria.

Samples Received May 31, 2002 - The laboratory performed one blank spike analysis with this data set. The sample was spiked with all reported analytes. All spike recoveries in the blank spike sample met QC criteria.

Samples Received June 27, 2002 - The laboratory performed one blank spike analysis with this data set. The sample was spiked with the matrix spike compounds. All spike recoveries in the blank spike sample met QC criteria.

Pesticide Analyses

Samples Received November 22, 2000 - Blank spike data was not summarized in this data report.

Samples Received November 30, 2000 - Blank Spike data was not summarized in this data report.

Polychlorinated Biphenyl analyses

Samples Received November 22, 2000 - Blank spike data was not summarized in this data report.

Samples Received November 30, 2000 - Blank Spike data was not summarized in this data report.

6. BLANK CONTAMINATION:

Quality assurance (QA) blanks, such as the method, trip, field, or rinse blanks are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations. Samples are then qualified based on blank contamination when detected.

A) Method Blank contamination

Volatile Organic Analyses

Samples Received November 22, 2000 – Three (3) soil and one (1) aqueous method blanks are associated with this data set. The aqueous method blank was free from contamination. The soil method blank analyzed November 27, 2000 was free from contamination. The soil method blanks analyzed 11/28/00 and 12/5/00 each contained Methylene Chloride (0.0048J mg/kg, 0.00375 mg/kg) respectively. When Methylene Chloride was detected in associated field samples, it has been negated in accordance with the validation guidelines.

Qualified data result pages are located in Appendix B of this report.

Samples Received November 30, 2000 - Two (2) method blank analyses are associated with this data set. The aqueous method blank samples were free from contamination of target analytes.

Samples Received May 30, 2002 – Three (3) method blank analyses are associated with this data set. The aqueous method blank was free from contamination of all analytes. Two (2) soil blanks was free from contamination of all target analytes, however, Methylene Chloride was detected at a concentration of 2.24 and 2.60 ug/l. Data was not qualified based on this method blank contamination.

Samples Received May 31, 2002 – Two (2) method blank analyses are associated with this data set. The aqueous method blank was free from contamination of all analytes. The soil blank was free from contamination of all target analytes, however, Methylene Chloride was detected at a concentration of 2.24 ug/l. Data was not qualified based on this method blank contamination.

Samples Received June 27, 2002 – Three (3) method blank analyses are associated with this data set. The aqueous method blank was free from contamination of all analytes. The soil blanks was free from contamination of all target analytes, however, Methylene Chloride was detected at a concentration of 3.63 ug/kg. Data was not qualified based on this method blank contamination.

6. BLANK CONTAMINATION (cont'd)

Base Neutral Semivolatile Organic Analyses

Samples Received November 22, 2000 - One (1) method blank is associated with this data set. It was analyzed on the two instruments that the samples were analyzed on. This method blank contained Bis 2-ethylhexylphthalate and Di-n-butylphthalate. These analytes are common laboratory contaminants. When these analytes were detected in associated field samples, they have been negated in accordance with the validation guidelines.

Qualified data result pages are located in Appendix B of this report.

Samples Received November 30, 2000 – One (1) method blank sample analysis is associated with this data set. The aqueous method blank samples were free from contamination of target analytes.

Samples Received May 30, 2002 - One (1) method blank is associated with this data set. It was analyzed on the two instruments that the samples were analyzed on. The method blank analyzed on GCMS X was free from contamination of all target analytes. The method blank analyzed on GCMS Z was free from contamination of all target analytes. This method blank analyzed on GCMS Z was free from contamination of all target analytes. This method blank analysis reported the Bis 2-ethylhexylphthalate (0.88 ppb) and Di-n-butylphthalate (1.04 ppb). Data was not qualified based on this method blank contamination.

Samples Received May 31, 2002 - One (1) method blank is associated with this data set. It was analyzed on the two instruments that the samples were analyzed on. The method blank analyzed on GCMS Z was free from contamination of all target analytes. This method blank analysis reported the Bis 2-ethylhexylphthalate and Di-n-butylphthalate. These analytes are common laboratory contaminants. The method blank sample analyzed on GCMS X was free from contamination of all target analytes. Data was not qualified based on this method blank contamination.

Samples Received June 27, 2002 - Two (2) method blank are associated with this data set. Each was analyzed on Instrument "X". Each of the method blanks were free from contamination of all target analytes.

Pesticide Analyses

Samples Received November 22, 2000 – The method blank associated with this data set was free from contamination of target analytes.

Samples Received November 30, 2000 – One (1) method blank sample analysis is associated with this data set. The aqueous method blank samples were free from contamination of target analytes.

Polychlorinated Biphenyl Analyses

Samples Received November 22, 2000 – The method blank associated with this data set was free from contamination of target analytes.

Samples Received November 30, 2000 – One (1) method blank sample analysis is associated with this data set. The aqueous method blank samples were free from contamination of target analytes.

6. BLANK CONTAMINATION (cont'd)

B) Field Blank contamination

Volatile Organic Analyses

Sample Received November 22, 2000 – Sample PB-FB01-112100S001 was free from contamination of target analytes with the exception of Chloromethane (1.8 J ug/L). This analyte was not detected in any field samples, therefore, no action was taken. Sample PG-FB02-112100S001 was free from contamination of target analytes.

Sample Received November 30, 2000 - Sample PB-FB-01-112900WQ01 was free from contamination of target analytes.

Samples Received May 30, 2002 – Two (2) field blank samples are associated with this data set. Both Field blank samples were free from contamination of all target analytes.

Samples Received May 31, 2002 – Sample PG-FB-01-053002WQ01 was free from contamination of all target organic analytes.

Samples Received June 27, 2002 – Sample PG-FB-01-062602WQ01 was free from contamination of all target organic analytes.

Base Neutral Semivolatile Organic Analyses

Sample Received November 22, 2000 - The Field Blank samples were not analyzed for this parameter.

Sample Received November 30, 2000 -Sample PB-FB-01-112900WQ01 was free from contamination of target analytes with the exception of Bis(2-ethylhexyl)phthalate (11 ug/l). This analyte was detected in all of the samples in this data set and has been qualified as required.

Qualified data result pages are located in Appendix B of this report.

Pesticide Analyses

Sample Received November 22, 2000 - The Field Blank samples were not analyzed for this parameter.

Sample Received November 30, 2000 - Sample PB-FB-01-112900WQ01 was free from contamination of target analytes.

Polychlorinated Biphenyl Analyses

Sample Received November 22, 2000 - The Field Blank samples were not analyzed for this parameter.

Sample Received November 30, 2000 - Sample PB-FB-01-112900WQ01 was free from contamination of target analytes.

C) Trip Blank contamination

Volatile Organic Analyses

Sample Received November 22, 2000 - A Trip Blank was not submitted with this data set.

Sample Received November 30, 2000 – Sample PB-TB-01-112900WQ01 was free from contamination of target analytes.

7. GC/MS CALIBRATION:

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. USEPA data validation criteria is the same for all analytes in both GC/MS Volatile and GC/MS Semivolatile Organic analyses, therefore, all text discussion is for VOA and SVOA samples analyses.

A) RESPONSE FACTOR

The response factor measures the instrument's response to specific chemical compounds. USEPA data review requires that the response factor of all analytes be greater than or equal to 0.05 in both initial and continuing calibration analyses. A value less than 0.05 indicates a serious detection and quantitation problem (poor sensitivity). USEPA data validation criteria states that if the minimum RRF criteria is not met in an initial calibration the positive results are qualified "J". Non detect results in the initial calibration curve analysis, effected positive analytes will be qualified "J" estimated. Those analytes not detected are not qualified. The SW-846 Methods cite specific analytes known as System Performance Check Compounds (SPCC). Minimum response criteria is set for these analytes. If the minimum criteria is not met, analyses must stop and the source of problems must be found and corrected. Data associated with this set has been reviewed for the criteria in the cited in the EPA Method and the USEPA criteria.

Volatile Organic Analyses

Samples Received November 22, 2000 – Initial and Continuing calibration data was not submitted with this sample set. Data was not reviewed/qualified based on calibration data.

Samples Received November 30, 2000 – Initial and Continuing calibration data was not submitted with this sample set. Data was not reviewed/qualified based on calibration data.

7. GC/MS CALIBRATION (cont'd):

Volatile Organic Analyses

Samples Received May 30, 2002 – One (1) aqueous calibration curve is associated with this data set. The laboratory performed an initial five (5) point multi level calibration on June 3, 2002. The RRF of all target analytes met QC criteria with the exception of Tert-Butyl Alcohol (TBA) (0.033). This analyte has been qualified "R" unusable, due to the low response factor, in all of the aqueous sample in this data set. One (1) soil calibration on May 20, 2002. The RRF of all target analytes met QC criteria with the exception of Tert-Butyl Alcohol (TBA) (0.033). This analyte has been qualified "R" unusable, due to the low response factor, in all of the exception of Tert-Butyl Alcohol (TBA) (0.024). This analyte has been qualified "R" unusable, due to the low response factor, in all of the soil samples in this data set.

Three (3) continuing calibration standards are associated with the aqueous sample analyses. The analytes with low response factors in the initial calibration curve were also low in the continuing calibration standard analyses. No additional action was taken.

All qualified data result pages are located in Appendix B of this report.

Samples Received May 31, 2002 - One (1) aqueous calibration curve is associated with this data set. The laboratory performed an initial five (5) point multi level calibration on June 3, 2002. The RRF of all target analytes met QC criteria with the exception of Tert-Butyl Alcohol (TBA) (0.0329). This analyte has been qualified "R" unusable, due to the low response factor, in all of the aqueous sample in this data set. One (1) soil calibration on May 20, 2002. The RRF of all target analytes met QC criteria with the exception of Tert-Butyl end an initial five (5) point multi level calibration on May 20, 2002. The RRF of all target analytes met QC criteria with the exception of Tert-Butyl Alcohol (TBA) (0.0386). This analyte has been qualified "R" unusable, due to the low response factor, in all of the soil samples in this data set.

Three (3) continuing calibration standards are associated with the aqueous sample analyses. The analytes with low response factors in the initial calibration curve were also low in the continuing calibration standard analyses. No additional action was taken.

All qualified data result pages are located in Appendix B of this report.

Samples Received June 27, 2002 - One (1) aqueous calibration curve is associated with this data set. The laboratory performed an initial five (5) point multi level calibration on July 8, 2002. The RRF of all target analytes met QC criteria in this calibration curve analysis. Two (2) soil calibration curves are associated with this data set. The laboratory performed an initial five (5) point multi level calibration on June 26, 2002 and June 27, 2002. In the calibration curve analyzed June 26, 2002, the RRF of all target analytes met QC criteria with the exception of Tert-Butyl Alcohol (TBA) (0.0272). In the calibration curve analyzed July 8, 2002, the RRF of all target analytes met QC criteria with the exception of Tert-Butyl Alcohol (TBA) (0.0236). This analyte has been qualified "R" unusable, due to the low response factor, in all of the soil samples in this data set.

One (1) continuing calibration standard is associated with the samples in this data set. The analytes with low response factors in the initial calibration curve were also low in the continuing calibration standard analyses. No additional action was taken.

All qualified data result pages are located in Appendix B of this report.

7. GC/MS CALIBRATION (cont'd)

Base Neutral Semivolatile Organic Analyses

Samples Received November 22, 2000 – Initial and Continuing calibration data was not submitted with this sample set. Data was not reviewed/qualified based on calibration data.

Samples Received November 30, 2000 – Initial and Continuing calibration data was not submitted with this sample set. Data was not reviewed/qualified based on calibration data.

Samples Received May 30, 2002 -

Three (3) initial calibration curves are associated with this data set. The laboratory performed the initial multi level calibrations on May 28, 2002, June 5, 2002 and June 6, 2002. The RRF for all target compounds met QC criteria in each of the initial calibration curves. Four (4) continuing calibration standards are associated with this data set. The response factor of each target analyte met QC criteria.

Samples Received May 31, 2002 -

Three (3) initial calibration curves are associated with this data set. The laboratory performed the initial multi level calibrations on May 28, 2002 and June 5, 2002. The RRF for all target compounds met QC criteria in each of the initial calibration curves. Two (2) continuing calibration standards are associated with this data set. The response factor of each target analyte met QC criteria.

Samples Received June 27, 2002 -

Two (2) initial calibration curves are associated with this data set. The laboratory performed the initial multi level calibrations on July 2, 2002. The RRF for all target compounds met QC criteria in each of the initial calibration curves. Four (4) continuing calibration standards are associated with this data set. The response factor of each target analyte met QC criteria.

7. GC/MS CALIBRATION (cont'd)

B) PERCENT RELATIVE STANDARD DEVIATION (RSD) AND PERCENT DIFFERENCE (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the compounds in the continuing calibration standard to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Region II data validation criteria states that the percent RSD of the initial calibration curve must be less than or equal to 30%. The %D must be <25% in the continuing calibration standard. This criteria has been applied to all target analytes. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects may be flagged "UJ", based on professional judgement. If %RSD and %D grossly exceed QC criteria (>90%), non-detects data may be qualified "R", unuseable. Data associated with this set has been reviewed for the criteria in the cited in the USEPA Data Validation Guidelines.

Volatile Organic Analyses

Samples Received November 22, 2000 – Initial and Continuing calibration data was not submitted with this sample set. Data was not reviewed/qualified based on calibration data.

Samples Received November 30, 2000 – Initial and Continuing calibration data was not submitted with this sample set. Data was not reviewed/qualified based on calibration data.

Samples Received May 30, 2002 - One (1) aqueous calibration curve is associated with this data set. All target analyte RSD% met QC criteria.

One (1) soil calibration curve is associated with this data set. All target analyte RSD% met QC criteria.

Three (3) continuing calibration standards are associated with the samples in this data set. The %Difference of all target analytes met QC criteria in the CCV associated with the soil samples. The %Difference of all target analytes met QC criteria for all target analytes with the exception of that listed below:

6/4/02 FB2957.D Tert-Butyl Alcohol 47.44 Naphthalene 46.30 Methyl-t-butyl Ether 26.85	Date of Analysis	File ID	Analyte	%Difference
	6/4/02	FB2957.D	Naphthalene	46.30

The aqueous samples have been qualified "UJ/J" estimated for the analytes that did not meet %Difference QC criteria with the exception of Tert Butyl Alcohol. This analyte was previously qualified "R" unusable due to the low response factor in both the initial and continuing calibration standard analysis.

Qualified data result pages are located in Appendix B of this report.

7. GC/MS CALIBRATION (cont'd)

Volatile Organic Analyses

Samples Received May 31, 2002 - One (1) aqueous calibration curve is associated with this data set. All target analyte RSD% met QC criteria.

One (1) soil calibration curve is associated with this data set. All target analyte RSD% met QC criteria.

Three (3) continuing calibration standards are associated with the samples in this data set. The %Difference of all target analytes met QC criteria in the CCV associated with the soil samples. The %Difference of all target analytes met QC criteria for all target analytes with the exception of that listed below:

Date of Analysis	File ID	Analyte	%Difference
6/4/02	FB2957.D	Tert-Butyl Alcohol Naphthalene Methyl-t-butyl Ether	47.44 46.30 26.85

The aqueous sample has been qualified "UJ/J" estimated for the analytes that did not meet %Difference QC criteria with the exception of Tert Butyl Alcohol. This analyte was previously qualified "R" unusable due to the low response factor in both the initial and continuing calibration standard analysis.

Qualified data result pages are located in Appendix B of this report.

Samples Received June 27, 2002 - One (1) aqueous calibration curve is associated with this data set. All target analyte RSD% met QC criteria.

Two (2) soil calibration curves are associated with this data set. All target analyte RSD% met QC criteria in each of the calibration curves.

One (1) continuing calibration standards are associated with the samples in this data set. The %Difference of all target analytes met QC criteria in the CCV associated with the soil samples.

7. GC/MS CALIBRATION (cont'd):

B) PERCENT RELATIVE STANDARD DEVIATION (RSD) AND PERCENT DIFFERENCE (%D) (Cont'd)

Base Neutral Semivolatile Organic Analyses -

Samples Received November 22, 2000 – Initial and Continuing calibration data was not submitted with this sample set. Data was not reviewed/qualified based on calibration data.

Samples Received November 30, 2000 – Initial and Continuing calibration data was not submitted with this sample set. Data was not reviewed/qualified based on calibration data.

Samples Received May 30, 2002 - All %RSD criteria of the target analytes was met in each of the initial calibration curves analyzed in this data set. Four (4) continuing calibration standard analyses are associated with this data set. All QC criteria (%D) of the target analytes was met in each of the continuing calibration standard analyses associated with this data set.

Samples Received May 31, 2002 - All %RSD criteria of the target analytes was met in each of the initial calibration curves analyzed in this data set. Two (2) continuing calibration standard analyses are associated with this data set. All QC criteria (%D) of the target analytes was met in each of the continuing calibration standard analyses associated with this data set.

Samples Received June 27, 2002 - All %RSD criteria of the target analytes was met in each of the initial calibration curves analyzed in this data set. Four (4) continuing calibration standard analyses are associated with this data set. All QC criteria (%D) of the target analytes was met in each of the continuing calibration standard analyses associated with this data set.

8. GC/MS MASS SPECTROMETER TUNING:

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is Bromofluorobenzene (BFB). The tuning compound for semivolatile organic analyses is decafluorotriphenylphosphine (DFTPP). If the mass calibration is in error, or missing, all associated data will be classified as unusable, "R".

Volatile Organic Analyses/Base Neutral Semivolatile Organic Analyses

Samples Received November 22, 2000 – BFB and DFTPP Tune criteria was not submitted with this sample set. Data was not reviewed/qualified based on Tune data.

Samples Received November 30, 2000 – BFB and DFTPP Tune criteria was not submitted with this sample set. Data was not reviewed/qualified based on calibration data.

Samples Received May 30, 2002 - All instrument Tuning criteria (BFB/DFTPP) was met for these sample analyses.

Samples Received May 31, 2002 - All instrument Tuning criteria (BFB/DFTPP) was met for these sample analyses.

Samples Received June 27, 2002 - All instrument Tuning criteria (BFB/DFTPP) was met for these sample analyses.

9. GC/MS INTERNAL STANDARDS PERFORMANCE:

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every run. The method recommends that the internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The method recommends that the retention time of the internal standard must not vary more than ± 30 seconds from the associated continuing calibration standard. The EPA CLP validation guidelines state that if the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified estimated, "J", and all non-detects below 50% are qualified "UJ", non detects above 100% should not be qualified or "R" if there is a severe loss of sensitivity. The internal standard evaluation criteria is applied to all field and QC samples.

Volatile Organic Analyses

Samples Received November 22, 2000 – Internal Standard area counts and retention time data was not submitted with this sample set. Data was not reviewed/gualified based on this data.

Samples Received November 30, 2000 – Initial and Continuing calibration data was not submitted with this sample set. Data was not reviewed/qualified based on this data.

Samples Received May 30, 2002 – All internal standard area counts and retention times met QC criteria in the samples associated with this data set. The Internal Standard area of 1,4-Dichlorobenzene-d4 exceeded QC criteria in the initial analysis of sample PG-PGA5N5-052802S002. The sample was reanalyzed, all QC criteria was met. Data from the reanalysis was reported.

Samples Received May 31, 2002 – All internal standard area counts and retention times met QC criteria in the samples associated with this data set.

Samples Received June 27, 2002 – All internal standard area counts and retention times met QC criteria in the samples associated with this data set.

9. GC/MS INTERNAL STANDARDS PERFORMANCE (cont'd):

Base Neutral Semivolatile Organic Analyses

Samples Received November 22, 2000 – Internal Standard area counts and retention time data was not submitted with this sample set. Data was not reviewed/qualified based on this data.

Samples Received November 30, 2000 – Internal Standard area counts and retention time data was not submitted with this sample set. Data was not reviewed/qualified based on this data.

Samples Received May 30, 2002 - All samples were fortified with the internal standards 1,4-Dichlorobenzene-d4, Naphthalene-d8, Acenaphthene-d10, Phenanthrene-d10, Chrysene-d12 and Perylene-d12. All Internal Standard QC criteria was met for these analyses with the exception of Phenanthrene-d10 in sample PG-PGA5N5-052802S002. The sample was reanalyzed and comparable data was obtained. The data from the initial analysis was reported. The target analytes associated with this Internal Standard have been qualified "UJ/J" estimated.

Qualified data result pages are located in Appendix B of this report.

Samples Received May 31, 2002 - All samples were fortified with the internal standards 1,4-Dichlorobenzene-d4, Naphthalene-d8, Acenaphthene-d10, Phenanthrene-d10, Chrysene-d12 and Perylene-d12. All Internal Standard QC criteria was met for these analyses with the exception of sample PG-PGB2W4-053002S001 and the associated MS/MSD. The sample was reanalyzed and all Internal Standard QC criteria were met. The data from the reanalysis was reported in the data set.

Samples Received June 27, 2002 – All internal standard area counts and retention times met QC criteria in the samples associated with this data set.

10. COMPOUND IDENTIFICATION:

Target compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within \pm 0.06 RRT units of the standard compound, and have an ion spectra which has a ratio of the primary and secondary ion intensities with 20% of that in the standard compound. Target compounds are identified on the GC by using the analytes retention time. Concentration is quantitated from the initial calibration curve.

Volatile Organic Analyses

Samples Received November 22, 2000 – Samples were analyzed via EPA Method 8260. Tentatively Identified Compounds (TIC's) were reported with this data set. The total TIC's were not summarized on the laboratory Report of Analysis data sheets. The laboratory did not provide analyte spectra or TIC scans for review with this data report. All sample results were reported to the MDL/ PQL when dilution was not performed. Data was reported in accordance with the cited method.

Sample PG-UST7-2-112100S005 was analyzed at a five (5) time dilution due to the matrix interference exhibited in the sample chromatogram.

Sample PG-UST7-2-112100S006 was analyzed at a five (5) time dilution due to the matrix interference exhibited in the sample chromatogram.

Sample PG-PD-06-112100S004 was analyzed at a five (5) time dilution due to the matrix interference exhibited in the sample chromatogram.

Samples Received November 30, 2000 – Samples were analyzed via EPA Method 8260. Tentatively Identified Compounds (TIC's) were reported with this data set. The total TIC's were not summarized on the laboratory Report of Analysis data sheets. The laboratory did not provide analyte spectra or TIC scans for review with this data report. All sample results were reported to the MDL/ PQL when dilution was not performed. Data was reported in accordance with the cited method.

Samples Received May 30, 2002 – Tentatively Identified Compounds (TIC's) were not requested with this data set. The laboratory did not provide analyte spectra for review with this data report. The soil samples and Field Blank samples in this data set were free from contamination of all target analytes. All samples were analyzed without dilution. Soil sample data are reported on a dry weight basis.

Samples Received May 31, 2002 – Tentatively Identified Compounds (TIC's) were not requested with this data set. The laboratory did not provide analyte spectra for review with this data report. The soil samples and Field Blank samples in this data set were free from contamination of all target analytes.

Samples Received June 27, 2002 – Tentatively Identified Compounds (TIC's) were not requested with this data set. The laboratory did not provide analyte spectra for review with this data report. The Field Blank sample in this data set was free from contamination of all target analytes. The chromatogram of sample PG-PGB3E3-062602S003 exhibited matrix interference. The sample was analyzed without dilution and reported. All QC associated with this sample met QC criteria except where noted in the above report.

10. COMPOUND IDENTIFICATION (cont'd):

Base Neutral Semivolatile Organic Analyses

Samples Received November 22, 2000 – Samples were analyzed via EPA Method 8270. Tentatively Identified Compounds (TIC's) were reported with this data set. The total TIC's were not summarized on the laboratory Report of Analysis data sheets. The laboratory did not provide analyte spectra or TIC scans for review with this data report. All sample results were reported to the MDL/ PQL when dilution was not performed. Data was reported in accordance with the cited method.

A number of the samples exhibited matrix interference in the sample chromatogram. Additional cleanup procedures or extract dilution may have reduced the matrix interference. This may have lead to the detection of additional target analytes in the effected samples.

Samples Received November 30, 2000 – Samples were analyzed via EPA Method 8270. Tentatively Identified Compounds (TIC's) were reported with this data set. The total TIC's were not summarized on the laboratory Report of Analysis data sheets. The laboratory did not provide analyte spectra or TIC scans for review with this data report. All sample results were reported to the MDL/ PQL when dilution was not performed. Data was reported in accordance with the cited method.

Samples Received May 30, 2002 – Samples were analyzed via EPA Method 8270. The soil samples in this data set were reported to the laboratory method detection limit. All soil sample results were reported on a dry weight basis. All sample extracts were analyzed without dilution. Low-level target analytes were detected in each of the sample extracts. Spectra for positive analytes were not provided by the laboratory for review.

A number of the samples exhibited matrix interference in the sample chromatogram. Additional cleanup procedures or extract dilution may have reduced the matrix interference. This may have lead to the detection of additional target analytes in the effected samples.

Samples Received May 31, 2002 – Samples were analyzed via EPA Method 8270. The soil samples in this data set were reported to the laboratory method detection limit. All soil sample results were reported on a dry weight basis. All sample extracts were analyzed without dilution. Low-level target analytes were detected in each of the sample extracts. Spectra for positive analytes were not provided by the laboratory for review.

A number of the samples exhibited matrix interference in the sample chromatogram. Additional cleanup procedures or extract dilution may have reduced the matrix interference. This may have lead to the detection of additional target analytes in the effected samples.

Samples Received June 27, 2002 – Samples were analyzed via EPA Method 8270. The soil samples in this data set were reported to the laboratory method detection limit. All sample extracts were analyzed without dilution. Low-level target analytes were detected in each of the sample extracts. Spectra for positive analytes were not provided by the laboratory for review. All soil sample results were reported on a dry weight basis.

A number of the samples exhibited matrix interference in the sample chromatogram. Additional cleanup procedures or extract dilution may have reduced the matrix interference. This may have lead to the detection of additional target analytes in the effected samples.

10. COMPOUND IDENTIFICATION (cont'd)

Pesticide Analyses

Samples Received November 22, 2000 – Samples were analyzed via EPA Method 8081. All sample results were reported to the MDL/ PQL. Data was reported in accordance with the cited method.

A number of the samples exhibited matrix interference in the sample chromatogram. Additional cleanup procedures or extract dilution may have reduced the matrix interference. This may have lead to the detection of additional target analytes in the effected samples.

Samples Received November 30, 2000 – Samples were analyzed via EPA Method 8081. All sample results were reported to the MDL/ PQL. Data was reported in accordance with the cited method.

Polychlorinated Biphenyl Analyses

Samples Received November 22, 2000 – Samples were analyzed via EPA Method 80821. All sample results were reported to the MDL/ PQL. Data was reported in accordance with the cited method.

A number of the samples exhibited matrix interference in the sample chromatogram. Additional cleanup procedures or extract dilution may have reduced the matrix interference. This may have lead to the detection of additional target analytes in the effected samples.

Samples Received November 30, 2000 – Samples were analyzed via EPA Method 80821. All sample results were reported to the MDL/ PQL. Data was reported in accordance with the cited method.

12 OVERALL ASSESSMENT:

Analytical QC criteria was met for these analyses. The data reported agrees with the raw data provided in the final report. The laboratory provided a complete data package and reported all data using acceptable protocols and laboratory qualifiers as defined in the report package.

All data was reported to the laboratory MDL/PQL on the result page. Soil sample results are reported on a dry weight basis. A number of the samples exhibited matrix interference in the sample chromatogram. Additional cleanup procedures or extract dilution may have reduced the matrix interference. This may have lead to the detection of additional target analytes in the effected samples.

The data provided for this data set is acceptable for use, with the noted data qualifiers.

NYS DEC Data Usability Summary Report

DATA VALIDATION FOR:	Total Metals, Miscellaneous Wet Chemistry
SITE:	Port Ivory
CONTRACT LAB:	Veritech Laboratories Fairfield, New Jersey
REVIEWER:	Renee Cohen
DATE REVIEW COMPLETED:	August, 2003
MATRIX:	Aqueous and Non-Aqueous

This data assessment is for eight (8) aqueous, thirteen (13) soil and two (2) Field Blank samples collected November 21, 2000 and delivered to Veritech Laboratories located in Fairfield, NJ. An additional four (4) aqueous, one (1) Trip Blank and one (1) Field Blank sample were collected November 29, 2000 and shipped to Veritech Laboratories and received at the laboratory on November 30, 2000.

The data evaluation was performed according to the guidelines noted in the "National Functional Guidelines for Inorganic Data Review, February 1994 and the NYSDEC ASP. A Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines of the Division of Environmental Remediation.

Several factors should be noted for all persons using this data. Persons using this data should be aware that no result is guaranteed to be accurate even if it has passed all QC tests. The main purpose of this review is to appropriately qualify outliers and to determine whether the results presented meet the specific site/project criteria for data quality and data use.

Table 1 of this report contains a cross reference between the Field Sample ID's and the Laboratory Sample ID's.

The samples were also analyzed for a number of organic parameters. The data review associated with the inorganic analytes is located in the Inorganic Data Usability Report (DUSR). Appendix A of this Data Usability Summary Report (DUSR) contains a summary of the data qualifiers that may be used in the report. Appendix B contains the qualified data result pages. Appendix C contains the Chain of Custody (COC) documents associated with this data set.

1. OVERVIEW

<u>Samples Collected 11/21/00, Received 11/22/00</u> – Twenty one (21) soil and two (2) Field Blank samples were collected on November 21, 2000 and delivered to the Veritech Laboratories in Fairfield, NJ. The samples were reported in laboratory report 11240942. The samples were analyzed for the parameters listed on the COC documents. New Jersey Reduced Deliverables were requested on the COC documents.

<u>Samples Collected 11/29/00, Received 11/30/00</u> – Four (4) aqueous, one (1) Field Blank and one (1) Trip Blank were collected on November 29, 2000 and delivered to the Veritech Laboratories in Fairfield, NJ. The samples were reported in laboratory report 12011513. The samples were analyzed for the parameters listed on the COC documents. New Jersey Reduced Deliverables were requested on the COC documents.

2. HOLDING TIME

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Metals with the exception of Mercury, are required to be digested and analyzed within 180 days of Verified Time of Sample Receipt (VTSR). Mercury samples are to be digested and analyzed within 26 days of VTSR. The miscellaneous wet chemistry analytes have specific holding times cited in the approved method.

<u>Samples Collected 11/21/00, Received 11/22/00</u> - Sample preparation data was not provided in the data report. The laboratory chronicles listed both the preparation date and analysis dates for the TAL metals and miscellaneous Wet Chemistry analyses. Based on the data provided, all samples were prepared and analyzed within the method holding time.

<u>Samples Collected 11/29/00, Received 11/30/00</u> - Sample preparation data was not provided in the data report. The laboratory chronicles listed both the preparation date and analysis dates for the TAL metals and miscellaneous Wet Chemistry analyses. Based on the data provided, all samples were prepared and analyzed within the method holding time.

3. CALIBRATION ANALYSIS

Inductively Coupled Plasma (ICP) was utilized for these analyses. The ICP was calibrated using the calibration standards required by the manufacturer. An initial calibration verification (ICV) standard is then analyzed to verify instrument calibration.

Samples Collected 11/21/00, Received 11/22/00 – The laboratory did not provide calibration data for this data set.

Samples Collected 11/29/00, Received 11/30/00 – The laboratory did not provide calibration data for this data set.

4. ICP CRDL STANDARD

The CRDL standard is used for the verification of instrument linearity near the CRDL. The CRDL standard control limits are 80%-120% recovery. If the CRDL standard falls outside of the control limits, associated data less than or equal to the 10X the CRDL are qualified estimated (J or UJ) or rejected (R) depending on the recovery of the CRDL standard and the concentration of the analyte in the sample. When the CRDL standard exceeds the control limit, indicating a high bias samples are qualified estimated (J or UJ).

Samples Collected 11/21/00, Received 11/22/00 – The laboratory did not provide CRDL standard data for this data set.

Samples Collected 11/29/00, Received 11/30/00 – The laboratory did not provide CRDL standard data for this data set.

5. ICP INTERFERENCE CHECK STANDARD

The Interference Check Standard (ICS) is used to verify the laboratory interelement and background correction factors of the ICP. Two solutions comprise the ICS A and ICS AB. Solution A consists of the interferent metals while solution AB is the group of target analytes and the interferents metals. An ICS analysis consists of analyzing both solutions consecutively for all wavelengths used for each analyte reported by ICP.

Samples Collected 11/21/00, Received 11/22/00 – The laboratory did not provide ICSA and ICSAB data for this data set.

<u>Samples Collected 11/29/00, Received 11/30/00</u> – The laboratory did not provide ICSA and ICSAB data for this data set.

6. MATRIX SPIKE (MS) ANALYSIS

The spike sample analysis provides information about the effect of the sample matrix upon the digestion and measurement methodology. The spike control limits are 75%-125% when the sample concentration is less than four (4) times the spike added. If the matrix spike recoveries fall in the range of 30%-74%, the sample results are may be biased low and are qualified as estimated (J or UJ). If the matrix spike recoveries fall in the range of 126%-200%, sample results may be biased high. Positive results are qualified estimated (J). If the spike recovery is greater than 125% and the reported sample results are less than the IDL the data point is acceptable for use. If the matrix spike recovery is greater than 200%, the associated sample data are unusable and are rejected (R). If matrix spike results are less than 30%, the associated non-detect results are qualified unusable and rejected (R), and the results reported above the IDL are qualified estimated (J).

<u>Samples Collected 11/21/00</u>, Received 11/22/00 – The laboratory did not provide Matrix Spike data to review for this data set.

<u>Samples Collected 11/29/00, Received 11/30/00</u> – The laboratory did not provide Matrix Spike data to review for this data set.

7. POST DIGESTION SPIKE ANALYSIS

The post digestion spike sample analysis provides additional information about the effect of the sample matrix upon the digestion and measurement methodology. The post digestion spike is performed for each analyte that the predigestion spike recovery falls outside the 75-125% control limit.

<u>Samples Collected 11/21/00, Received 11/22/00</u> – The laboratory did not provide Post Digestion Spike data to review for this data set.

<u>Samples Collected 11/29/00, Received 11/30/00</u> – The laboratory did not provide Post Digestion Spike data to review for this data set.

8. DUPLICATE SAMPLE ANALYSIS

The laboratory duplicate sample analysis is used to evaluate the laboratory precision of the method for each analyte. If the duplicate sample analysis results for a particular analyte fall outside the control windows of 20% RPD or +/- CRDL, whichever is appropriate depending upon the concentration of the sample, the associated sample results are qualified "J" estimated.

<u>Samples Collected 11/21/00, Received 11/22/00</u> – The laboratory did not provide Duplicate sample data to review for this data set.

<u>Samples Collected 11/29/00, Received 11/30/00</u> – The laboratory did not provide Duplicate sample data to review for this data set.

9. ICP SERIAL DILUTION

The serial dilution analysis indicates whether significant physical or chemical interference's exist due to the sample matrix. If the concentration of any analyte in the original sample is greater than 50 times the instrument detection limit (IDL), an analysis of a 5-fold dilution samples must yield results which have a percent difference (%D) of less than or equal to 10 with the original sample results. If the %D of the serial dilution exceeds the 10% (and is not greater than 100%) for a particular analyte, all the associated sample results are qualified estimated (J).

Samples Collected 11/21/00, Received 11/22/00 – The laboratory did not provide ICP Serial Dilution data to review for this data set.

Samples Collected 11/29/00, Received 11/30/00 – The laboratory did not provide ICP Serial Dilution data to review for this data set.

10. BLANKS

Blank analyses are assessed to determine the existence and magnitude of contamination problems. The criteria for the evaluation of blanks applies to all blanks, including but not limited to reagent blanks, method blanks and field blanks. The responsibility for action in the case of an unsuitable blank result depends upon the circumstances and the origin of the blank itself. If the problem with any blank exists, then all associated data must be carefully evaluated to determine whether there is inherent variability in the data for that case, or the problem is an isolated occurrence not affecting other data.

<u>Samples Collected 11/21/00, Received 11/22/00</u> – The laboratory provided method blank data with the data set. The summary forms indicate that all ICB and CCB data associated with the TAL Metals met QC criteria.

The Method Blank data associated with the Wet Chemistry analytes was free from contamination.

The Field Blank Samples were not analyzed for TAL Metals or the Wet Chemistry analytes.

<u>Samples Collected 11/29/00, Received 11/30/00</u> – The laboratory provided method blank data with the data set. The summary forms indicate that all ICB and CCB data associated with the TAL Metals met QC criteria.

The Method Blank data associated with the Wet Chemistry analytes was free from contamination.

The Field Blank Samples were not analyzed for TAL Metals or the Wet Chemistry analytes.

11. LABORATORY CONTROL SAMPLE ANALYSIS (LCS)

The laboratory control sample (LCS) analysis provides information about the efficiency of the laboratory digestion procedure. If the recovery of any analyte is outside the established control limits, then laboratory performance and method accuracy are in question. Professional judgment is used to determine of data should be qualified or rejected.

Samples Collected 11/21/00, Received 11/22/00 – The laboratory did not provide LCS data to review for this data set.

Samples Collected 11/29/00, Received 11/30/00 - The laboratory did not provide LCS data to review for this data set.

12. INSTRUMENT QC DATA

Samples Collected 11/21/00, Received 11/22/00 – The laboratory did not provide Instrument QC Data to review for this data set.

Samples Collected 11/29/00, Received 11/30/00 - The laboratory did not provide Instrument QC Data to review for this data set.

13. COMPOUND IDENTIFICATION

<u>Samples Collected 11/21/00, Received 11/22/00</u> - The samples in this data set were analyzed for TAL Metals. Sample data was summarized on the Report of Analysis pages. Raw data was not provided for review with this data set. The samples were analyzed for miscellaneous wet chemistry analytes. Raw data was not provided for review.

<u>Samples Collected 11/29/00, Received 11/30/00</u> - The samples in this data set were analyzed for TAL Metals. Sample data was summarized on the Report of Analysis pages. Raw data was not provided for review with this data set. The samples were analyzed for miscellaneous wet chemistry analytes. Raw data was not provided for review.

14. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

This data set included the reporting of twelve (12) aqueous, thirteen (13) soil and one (1) Trip Blank and three (3) Field Blank samples. The samples were analyzed TAL metals and Wet Chemistry analytes as noted on the COC documents that accompanied the data set.

Based on the limited data provided for review, the data results associated with this sampling event are valid and acceptable for use with the noted data qualifiers.

TABLE 1

CLIENT SAMPLE ID

LABORATORY SAMPLE ID

PG-SW-01-1122100WS01
PG-SW-02-1122100WS02
PG-SW-03-1122100WS03
PG-SED-1-112100SD01
PG-SED-2-112100SD01
PG-SED-3-112100SD01
PG-SED-4-112100SD01
PG-SED-5-112100SD01
PG-UST7-2-112100S005
PG-UST7-2-112100S006
PPG-FILL11-112100S001
PPG-FILL11-112100S002
PG-PD-01-112100S002
PG-PD-01-112100S006
PG-PD-06-112100S004
PG-PD-06-112100S007
PG-G-02-112100S001
PG-G-02-112100S003
PG-G-02-112100S004
PG-G-7N-112100S005
PG-G-7N-112100S006
PG-FB01-112100S001
PG-FB02-112100S001
PG-PAMW01D112900WG01
PG-TMW-01-112900WG01
DG_DAMW11D112000WG01

PG-TMW-01-112900WG01 PG-PAMW11D112900WG01 PG-BW-13-112900WG01 PG-FB-01-112900WQ01 PG-TB-01-112900WQ01

AB19608 AB19609 AB19610 AB19611 AB19612 AB19613 AB19614 AB19615 AB19616 AB19617 AB19618 AB19619 AB19620 AB19621 AB19622 AB19623 AB19624 AB19625 AB19626 AB20012 AB20013

AB19604 AB19605 AB19606 AB19607

AB20013 AB20014 AB20015 AB20016 AB20017

CLIENT SAMPLE ID

LABORATORY SAMPLE ID

말 하는 것 같은 것 같	·승규님 이 나라 관계 전 전
PG-PGA5N5-052802S001	AB58483
PG-PGA5N5-052802S002	AB58484
> PG-PGA5E3-052902S002	AB58485
PG-PGA5E3-052902S003	AB58486
PG-PGA5W5-052902S001	AB58487
PG-PGA5W5-052902S002	AB58488
PG-PGA5W5-052902S003	AB58489
PG-PGFB01-052802WQ01	AB58490
PG-PGFB01-052902WQ01	AB58491
PG-PGB2W4-053002S001	AB58574
PG-PGB2W4-053002S002	AB58575
PG-FB-01-053002WQ01	AB58576
PG-PGB3E3-0626025003	AB60464
PG-PGOP1S1-0626025003	AB60465
PG-PGOP1W1-0626025003	AB60466
PG-FB-01-062602WQ01	AB60467
医马达德 医外侧下的 医马根的 法公司 网络马克尔马德国美国金德国美国德国	

APPENDIX A

DATA QUALIFIER DEFINITIONS

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

N - The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ - The analysis indicates the presence of an analyte that has been "tentatively identiifed" and the associated numerical value represents its approximate concentration.

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

R - The sample results are unreliable/unuseable. The presence or absence of the analyte cannot be verified.

K - The analyte is present. The reported value may be biased high. The actual value is expected to be lower than reported.

L - The analyte is present. The reported value may be biased low. The actual value is expected to be higher than reported.

UL – The analyte was not detected, and the reported quantitation limit is probably higher than reported.

APPENDIX B

CT #: PH-0671

MA #: NJ386 NY #

NJ #: 14622 PA #: 68-463

NY #: 11408

Report Of Analysis

veritech laboratories

To: PORT AUTHORITY OF MATERIALS ENGINEE 241 ERIE ST. ROOM 234 JERSEY CITY			ttention: roject: 197	Dorian Bailey HH-Port Ivory P&G Site	Date Collected: Date Submitted Date Reported:	5/28/0 : 5/31/0 6/7/02	2
Lab# Sample ID TestGroup/Analyte	Units	MDL PQL RL	Result	Lab# Sam TestGroup/Analyte	ple ID Units	MDL PQL RL	
AB58483 PG-PGA5N	5-052802800	1		AB58484 PG-PGA	5N5-052802SO02		
% Solids SM2540G				% Solids SM2540G			
% Solids	percent		74	% Solids	percent		64
Base Neutrals (Stars List 2)	•				•		
				Base Neutrals (Stars List	2) 8270		
Acenaphthene	mg/kg	0.45	0.11J	Acenaphthene	mg/kg	0.52	ND
Anthracene	mg/kg	0.45	0.23J	Anthracene	mg/kg	0.52	ND VJ
Benzo[a]anthracene	mg/kg	0.45	0.28J	Benzo[a]anthracene	mg/kg	0.52	0.10J
Benzo[a]pyrene	mg/kg	0.45	0.29J	Benzo[a]pyrene	. mg/kg	0.52	0.074J
Benzo[b]fluoranthene	mg/kg	0.45	0.76	Benzo(b)fluoranthene	mg/kg	0.52	0.17J
Benzo[g,h,i]perylene	mg/kg	0.45	0.22J	Benzo[g,h,i]perylene	mg/kg	0.52	ND
Benzo[k]fluoranthene	mg/kg	0.45	0.24J	Benzo{k]fluoranthene	mg/kg	0.52	0.067J
Chrysene	mg/kg	0.45	0.40J	Chrysene	mg/kg	0.52	0.14J
Dibenzo[a,h]Anthracene	mg/kg	0.45	ND	Dibenzo[a,h]Anthracene	mg/kg	0.52	ND
Fluoranthene	mg/kg	0.45	0.85	Fluoranthene	mg/kg	0.52	6.1 7
Fluorene	mg/kg	0.45	0.12J	Fluorene	mg/kg	0.52	ND
Indeno[1,2,3-cd]pyrene	mg/kg	0.45	0.26J	Indeno[1,2,3-cd]pyrene	mg/kg	0.52	ND
Naphthalene Phenanthrene	mg/kg	0.45	0.37J	Naphthalene	mg/kg	0.52	0.17J
	mg/kg	0.45	0.61	Phenanthrené	mg/kg	0.52	NDUJ
Pyrene	mg/kg	0.45	0.52	Pyrene	mg/kg	0.52	0.25J
Volatile Organics (Stars List)	8260			Volatile Organics (Stars L	.ist) 8260		
1,2,4-Trimethylbenzene	mg/kg	0.0014	ND	1,2,4-Trimethylbenzene	mg/kg	0.0016	ND
1,3,5-Trimethylbenzene	mg/kg	0.0014	ND	1,3,5-Trimethylbenzene	mg/kg	0.0016	ND
4-Isopropyltoluene	mg/kg	0.0014	ND	4-Isopropyltoluene	mg/kg	0.0016	ND
Benzene	mg/kg	0.0014	ND	Benzene	mg/kg	0.0016	ND
Ethylbenzene	mg/kg	0.0014	ND	Ethylbenzene	mg/kg	0.0016	ND
Isopropylbenzene	mg/kg	0.0014	ND	Isopropylbenzene	mg/kg	0.0016	ND
M&p-Xylenes	mg/kg	0.0027	ND	M&p-Xylenes	mg/kg	0.0031	ND
Methyl-t-butyl ether	mg/kg	0.0014	ND	Methyl-t-butyl ether	mg/kg	0.0016	ND
Naphthalene	mg/kg	0.0014	ND	Naphthalene	mg/kg	0.0016	ND
N-Butylbenzene	mg/kg	0.0014	ND	N-Butylbenzene	mg/kg	0.0016	ND
N-Propylbenzene	mg/kg	0.0014	ND	N-Propylbenzene	mg/kg	0.0016	ND
Ö-Xylene	mg/kg	0.0014	ND	O-Xylene	mg/kg	0 .0016	ND
Sec-Butylbenzene	mg/kg	0.0014	ND	Sec-Butylbenzene	mg/kg	0.0016	ND
t-Butyl Alcohol	mg/kg	0.014	ND R	t-Butyl Alcohol	mg/kg	0.016	NDR
T-Butylbenzene	mg/kg	0.0014	ND	T-Butylbenzene	mg/kg	0.0016	ND
Toluene	mg/kg	0.0014	ND	Toluene	mg/kg	0.0016	ND

ND = Not Detected

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004 conda Katala

Lab# Sample ID		MDL PQL		Lab# Samp	le ID	MDL. PQL	
TestGroup/Analyte	Units	RL	Result	TestGroup/Analyte	Units	RL	Result
AB58485 PG-PGA5E	3-052902SO02			AB58486 PG-PGA5	E3-052902SO03		Gin China
							-undi-
% Solids SM2540G				% Solids SM2540G			
% Solids	percent		82	% Solids	percent	7	9
Base Neutrals (Stars List 2)	8270			Base Neutrals (Stars List 2) 8270		
Acenaphthene	mg/kg	0.41	ND	Acenaphthene	mg/kg	0.42 N	D
Anthracene	mg/kg	0.41	ND	Anthracene	mg/kg		D
Benzo[a]anthracene	mg/kg	0.41	ND	Benzo(a)anthracene	mg/kg	0.42 N	D
Benzojalpyrene	mg/kg	0.41	ND	Benzojajpyrene	mg/kg	0.42 N	D
Benzo[b]fluoranthene	mg/kg	0.41	ND	Benzo[b]fluoranthene	mg/kg	0.42 N	
Benzo[g,h,i]perylene	mg/kg	0.41	ND	Benzo(g,h,i)perylene	mg/kg	0.42 N	D
Benzo[k]fluoranthene	mg/kg	0.41	ND	Benzo[k]fluoranthene	mg/kg	0.42 N	D
Chrysenø	mg/kg	0.41	ND	Chrysene	mg/kg	0.42 N	D
Dibenzo[a,h]Anthracene	mg/kg	0.41	ND	Dibenzo[a,h]Anthracene	mg/kg	0.42 N	D
Fluoranthene	mg/kg	0.41	ND	Fluoranthene	mg/kg	0.42 N	D
Fluorene	mg/kg	0.41	ND	Fluorene	mg/kg	0.42 N	Ð
Indeno[1,2,3-cd]pyrene	mg/kg	0.41	ND	Indeno[1,2,3-cd]pyrene	mg/kg	0.42 N	D
Naphthalene	mg/kg	0.41	ND	Naphthalene	mg/kg	0.42 N	D
Phenanthrene	mg/kg	0.41	ND	Phenanthrene	mg/kg	0.42 N	D
Pyrene	mg/kg	0.41	ND	Pyrene	mg/kg	0.42 N	D
Volatile Organics (Stars Lis	t) 8260			Volatile Organics (Stars Lis	st) 8260		
1,2,4-Trimethylbenzene	, mg/kg	0.0012	ND	1,2,4-Trimethylbenzene	, mg/kg	0.0013 N	n .
1,3,5-Trimethylbenzene	mg/kg	0.0012	ND	1,3,5-Trimethylbenzene	mg/kg	0.0013 N	
4-Isopropyitoluene	mg/kg	0.0012	ND	4-isopropyitoluene	mg/kg	0.0013 N	
Benzene	mg/kg	0.0012	ND	Benzene	mg/kg	0.0013 N	
Ethylbenzene	mg/kg	0.0012	ND	Ethylbenzene	mg/kg	0.0013 N	-
Isopropylbenzene	mg/kg	0.0012	ND	Isopropylbenzene	mg/kg	0.0013 N	
M&p-Xylenes	mg/kg	0.0024	ND	M&p-Xylenes	mg/kg	0.0025 N	
Methyl-t-butyl ether	mg/kg	0.0012	ND	Methyl-t-butyl ether	mg/kg	0.0013 N	
Naphthalene	mg/kg	0.0012	ND	Naphthalene	mg/kg	0.0013 N	D
N-Butylbenzene	mg/kg	0.0012	ND	N-Butylbenzene	mg/kg	0.0013 N	D
N-Propylbenzene	mg/kg	0.0012	ND	N-Propylbenzene	mg/kg	0.0013 N	D
O-Xylene	mg/kg	0.0012	ND	O-Xylene	mg/kg	0.0013 N	D
Sec-Butylbenzene	mg/kg	0.0012	ND	Sec-Butylbenzene	mg/kg	0.0013 N	D
t-Butyl Alcohol	mg/kg	0.012	NDR	t-Butyl Alcohol	mg/kg	0.013 N	D R
T-Butylbenzene	mg/kg	0.0012	ND	T-Butylbenzene	mg/kg	0,0013 NI	D
Toluene	mg/kg	0.0012	ND	Toluene	mg/kg	0.0013 NI	D .

ND = Not Detected

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004 Veritech Project: 05311131

Page 2 of 4

	nple ID	MDL: PQL	Desult	Lab# Sample		MD PQ	L ·
TestGroup/Analyte	Units	RL	Result	TestGroup/Analyte	Units	RL	Result
AB58487 PG	-PGA5W5-052902SO0			AB58488 PG-PGA5W	5-0529028002		('a. 1.
% Solids SM2540G				% Solids SM2540G			
% Solids	percent		81	% Solid s	percent		54
Base Neutrals (Stars	: List 2) 8270			Base Neutrals (Stars List 2)	8270		
Acenaphthene	, mg/kg	0.41	0.046J	Acenaphthene	mg/kg	0,62	ND
Anthracene	mg/kg	0.41	0.16J	Anthracene	mg/kg	0.62	ND
Benzo[a]anthracene	mg/kg	0.41	0.55	Benzo[a]anthracene	mg/kg	0.62	ND
Benzojajpyrene	mg/kg	0.41	0.47	Benzojajpyrene	mg/kg	0.62	ND
Benzo[b]fluoranthene	mg/kg	0.41	0.80	Benzo[b]fluoranthene	mg/kg	0.62	0.081J
Benzolg,h,i]perylene	mg/kg	0.41	0.13J	Benzo(g,h,i)perylene	mg/kg	0.62	ND
Benzo[k]fluoranthene	mg/kg	0.41	0.35J	Benzojkifluoranthene	mg/kg	0.62	ND
Chrysene	mg/kg	0.41	0.50	Chrysene	mg/kg	0.62	ND
Dibenzo[a,h]Anthracene	mg/kg	0.41	ND	Dibenzo[a,h]Anthracene	mg/kg	0.62	ND
Fluoranthene	mg/kg	0.41	0.97	Fluoranthene	mg/kg	0.62	ND
Fluorene	mg/kg	0.41	ND	Fluorene	mg/kg	0.62	ND
Indeno[1,2,3-cd]pyrene	mg/kg	0.41	0.15J	Indeno[1,2,3-cd]pyrene	mg/kg	0.62	ND
Naphthalene	mg/kg	0.41	0.15J	Naphthalene	mg/kg	0.62	ND
Phenanthrene	mg/kg	0.41	0.64	Phenanthrene	mg/kg	0.62	ND
Pyrene	mg/kg	0.41	0.53	Pyrene	mg/kg	0.62	ND
Volatile Organics (Si	0.0			Volatile Organics (Stars List		0.02	110
e (•	0.0040		• •	•		
1,2,4-Trimethylbenzene	mg/kg	0.0012	ND	1,2,4-Trimethylbenzene	mg/kg	0.0019	ND
1,3,5-Trimethylbenzene	mg/kg	0.0012	ND	1,3,5-Trimethylbenzene	mg/kg	0.0019	ND
4-Isopropyttoluene	mg/kg	0.0012	ND	4-Isopropyltoluene	mg/kg	0.0019	ND
Benzene	mg/kg	0.0012	ND	Benzene	mg/kg	0.0019	ND
Ethylbenzene	mg/kg	0.0012	ND	Ethylbenzene	mg/kg	0.0019	ND
Isopropylbenzene	mg/kg	0.0012	ND	Isopropylbenzene	mg/kg	0.0019	ND
M&p-Xylenes	mg/kg	0.0025	ND	M&p-Xylenes	mg/kg	0.0037	ND
Methyl-t-butyl ether	mg/kg	0.0012	ND	Methyl-t-butyl ether	mg/kg	0.0019	ND
Naphthalene	mg/kg	0.0012	ND	Naphthalene	mg/kg	0.0019	ND
N-Butylbenzene	mg/kg	0.0012	ND	N-Butylbenzene	mg/kg	0.0019	ND
N-Propylbenzene	mg/kg	0.0012	ND	N-Propylbenzene	mg/kg	0.0019	ND
O-Xylene	mg/kg	0.0012	ND	O-Xylene	mg/kg	0.0019	ND
Sec-Butylbenzene	mg/kg	0.0012	ND O	Sec-Butylbenzene	mg/kg	0.0019	ND
t-Butyl Alcohol	mg/kg	0.012	ND R	t-Butyi Alcohol	mg/kg	0.019	NDR
T-Butylbenzene	mg/kg	0.0012	ND	T-Butylbenzene	mg/kg	0.0019	ND
Toluene	mg/kg	0.0012	ND	Toluene	mg/kg	0.0019	ND

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004 Veritech Project: 05311131

Lab# Sample ID TestGroup/Analyte		MDL PQL	Bocult		Lab#	Sample		Р		La K
	Units	RL	Result		TestGroup/	Analyte	Unit	s R		esult
AB58489 PG-PGA5	N5-052902SO0	3			AB58491	PG-PGFB01	-052902WQ0	1		ուստե
% Solids SM2540G					Volatile Organi					
% Solids	percent		75		1,2,4-Trimethylbenze			1.0	ND	
	-		15		1,3,5-Trimethylbenze		ug/l ug/l	1.0	ND ND	
Base Neutrals (Stars List 2)	8270				4-Isopropyltoluene		ug/l	1.0	ND	
Acenaphthene	mg/kg	0.44	ND		Benzene		ug/l	1.0	ND	
Anthracene	mg/kg	0.44	ND		Ethylbenzene		ug/l	1.0	ND	
Benzo(a)anthracene	mg/kg	0.44	ND .		Isopropylbenzene		ug/l	1.0	ND	
Benzo(a)pyrene	mg/kg	0.44 0.44	ND 0.072J		M&p-Xylenes		ug/l	2.0	ND	
Benzo[b]fluoranthene Benzo[g,h,i]perylene	mg/kg mg/kg	0.44	0.0725 ND	•	Methyl-t-butyl ether		ug/l	1.0	NDVC	-
Benzo[k]fluoranthene	mg/kg	0.44	ND		Naphthalene		ug/l	1.0	ND U T	5
Chrysene	mg/kg	0.44	0.087J		N-Butylbenzene		ug/t	1.0	ND	
Dibenzo[a,h]Anthracene	mg/kg	0.44	ND		N-Propylbenzene		ug/l	1.0	ND	
Fluoranthene	mg/kg	0.44	0.052J		O-Xylene		ug/l	1.0	ND	
Fluorene	mg/kg	0.44	ND		Sec-Butylbenzene		ug/i	1.0	ND O	
Indeno[1,2,3-cd]pyrene	mg/kg	0.44	ND		t-Butyl Alcohol T-Butylbenzene		ug/l	10 1.0	ND R ND	
Naphthalene	mg/kg	0.44	ND		Toluene		ug/l ug/l	1.0	ND	
Phenanthrene	mg/kg *	0.44	0.088J		Toldelle		ugn	1.0	ND	
Pyrene	mg/kg	0.44	ND		· ·					
Volatile Organics (Stars Lis	t) 8260									
1,2,4-Trimethylbenzene	•	0.0013	ND							
1,2,4-Trimethylbenzene	mg/kg mg/kg	0.0013	ND		•					
4-Isopropyltoluene	mg/kg	0.0013	ND							
Benzene	mg/kg	0.0013	ND							
Ethylbenzene	mg/kg	0.0013	ND							
sopropylbenzene	mg/kg	0.0013	ND							
M&p-Xylenes	mg/kg	0.0027	ND							
Methyl-t-butyl ether	mg/kg	0.0013	ND							
Naphthalene	mg/kg	0.0013	ND		•					
N-Butylbenzene	mg/kg	0.0013	ND							
N-Propylbenzene	mg/kg	0.0013	ND							
O-Xylene	mg/kg	0.0013	ND		•					
Sec-Butylbenzene	mg/kg	0.0013	ND .							
t-Butyl Alcohol	mg/kg	0.013	ND P							
T-Butylbenzene	mg/kg	0.0013	ND							
Toluene	mg/kg	0.0013	ND							
AB58490 PG-PGFB0	1-052802WQ01									
Volatile Organics (Stars Lis					·					
2,4-Trimethylbenzene	•	10	ND							
1,3,5-Trimethylbenzene	ug/l ug/l	1.0 1.0	ND ND			•				
4-Isopropyltoluene		1.0	ND							
Benzene	ug/l ug/l	1.0	ND							
Ethylbenzene	ug/l	1.0	ND							
sopropylbenzene	ug/l	1.0	ND							
M&p-Xylenes	ug/l	2.0	ND							
Methyl-t-butyl ether	ug/i	1.0	ND							
Vaphthalene	ug/l	1.0	NDVJ							
i-Butylbenzene	ug/l	1.0	NDVJ							
1-Propylbenzene	ug/l	1.0	ND							
D-Xylene	ug/l	1.0	ND							
Sec-Butylbenzene	ug/l	1.0	ND							
-Butyl Alcohol	ug/l	10	NDR			•				
F-Butylbenzene	ug/l	1.0	ND							
Foluene	vg/i	1,0	ND							•

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

CT #: PH-0671

		NY #:	11408
MA #:	NJ386		

NJ #: 14622

PA #: 68-463

Report Of Analysis

veritech laboratories

To: PORT AUTHORITY OF MATERIALS ENGINEEI 241 ERIE ST. ROOM 234 JERSEY CITY			ttention: roject: 97	Dorian Bailey HH-Port Ivory P&G Site	Date Collected: Date Submitted: Date Reported:	5/30/02 5/31/02 6/7/02	
Lab# Sample ID	• - 27	MDL PQL		Lab# Sai	nple ID	MDL	
TestGroup/Analyte	Units	RL	Result	TestGroup/Analyte	Units	PQL RL	Result
AB58574 PG-PGB2W	4-053002SO	01		AB58575 PG-PG	B2W4-053002SO02		
% Solids SM2540G				% Solids SM2540G			
% Solids	percent		74	% Solids	percent		76
Base Neutrals (Stars List 2)	8270			Base Neutrals (Stars Lis	t 2) 8270		
Acenaphthene	mg/kg	0.45	ND	Acenaphthene	mg/kg	0,44	ND
Anthracene	mg/kg	0.45	0.099.1	Anthracene	mg/kg	0.44	ND
Benzo[a]anthracene	mg/kg	0.45	0.073J	Benzo[a]anthracene	mg/kg		ND
Benzo[a]pyrene	mg/kg	0.45	0.048J	Benzo(a)pyrene	mg/kg		ND
Benzo(b)fluoranthene	mg/kg	0.45	0.24J	Benzo[b]fluoranthene	mg/kg		ND
Benzo(g,h,i)perylene	mg/kg	0.45	0.073J	Benzo(g,h,i)perylene	mg/kg		ND
Benzo[k]fluoranthene	mg/kg	0.45	0.050J	Benzo[k]fluoranthene	mg/kg		ND
Chrysene	mg/kg	0.45	0.17J	Chrysene	mg/kg		ND
Dibenzo[a,h]Anthracene	mg/kg	0.45	ND	Dibenzo(a,h)Anthracene	mg/kg		ND
Fluoranthene	mg/kg	0.45	0.19J	Fluoranthene	mg/kg		ND
Fluorene	mg/kg	0.45	ND	Fluorene	mg/kg		ND
Indeno[1,2,3-cd]pyrene	mg/kg	0.45	0.073J	indeno[1,2,3-cd]pyrene	mg/kg		ND
Naphthalene	mg/kg	0.45	0.095J	Naphthalene	mg/kg		0.065J
Phenanthrene	mg/kg	0.45	0.16J	Phenanthrene	mg/kg		ND
Pyrene	mg/kg	0.45	0.077J	Pyrene	mg/kg		ND
Volatile Organics (Stars List) 8260			Volatile Organics (Stars			
1,2,4-Trimethylbenzene	mg/kg	0.0014	ND	1,2,4-Trimethylbenzene	mg/kg	0.0013	ND
1,3,5-Trimethylbenzene	mg/kg	0.0014	ND	1,3,5-Trimethylbenzene	mg/kg		ND
4-Isopropyitoluene	mg/kg	0.0014	ND	4-Isopropyltoluene	mg/kg		ND
Benzene	mg/kg	0.0014	ND	Benzene	mg/kg		ND
Ethylbenzene	mg/kg	0.0014	ND	Ethylbenzene	mg/kg		ND
Isopropylbenzene	mg/kg	0.0014	ND	Isopropylbenzene	mg/kg		ND
M&p-Xylenes	mg/kg	0.0027	ND	M&p-Xylenes	mg/kg		ND
Methyl-t-butyl ether	mg/kg	0.0014	ND	Methyl-t-butyl ether	mg/kg		ND
Naphthalene	mg/kg	0.0014	ND	Naphthalene	mg/kg		ND
N-Butylbenzene	mg/kg	0.0014	ND	N-Butylbenzene	mg/kg		ND
N-Propylbenzene	mg/kg	0.0014	ND	N-Propylbenzene	mg/kg		ND
O-Xylene	mg/kg	0.0014	ND	O-Xylene	mg/kg		ND
Sec-Butylbenzene	mg/kg	0.0014	ND	Sec-Butylbenzene	mg/kg		ND
t-Butyl Alcohol	mg/kg	0.014	NDR	t-Butyl Alcohol	mg/kg		ND R
T-Butylbenzene	mg/kg	0.0014	ND	T-Butylbenzene	mg/kg		ND
Toluene	mg/kg	0.0014	ND	Toluene	mg/kg		ND

ND = Not Detected

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

Lab# Sample ID		MDL PQL			Lab#	Sample ID		MDL PQL	
TestGroup/Analyte	Units	RL	Result		TestGroup/Anal	yte	Units	RL	Result
AB58576 PG-FB-01	-053002WQ01								ť.,i
Volatile Organics (Stars Li	51) 8260								
1,2,4-Trimethylbenzene	ug/l	1.0	ND						
1,3,5-Trimethylbenzene	ug/i	1.0	ND						
4-Isopropyltoluene	ug/l	1.0	ND						
Benzene	ug/l	1.0	ND		1. S.				
Ethylbenzene	ug/l	1.0	ND						
Isopropylbenzene	ug/l	1.0	ND	-					
M&p-Xylenes	ug/l	2.0	ND						
Methyl-t-butyl ether	ug/l	1.0	NDVJ						
Naphthalene	ug/l	1.0	NDVJ						
N-Butylbenzene	ug/l	1.0	ND						
N-Propylbenzene	ug/l	1.0	ND						
0-Xylene	ug/l	1.0	ND						
Sec-Butylbenzene	ug/l	1.0	ND			*			
-Butyl Alcohol	ug/l	10	ND R						
T-Butylbenzene	ug/l	1.0	ND						
Toluene	ug/i	1.0	ND		and the second	•			

CT #: PH-0671

NY #: 11408 MA #: NJ386

PA #: 68-463 NJ #: 14622

Report Of Analysis

NC 9914

veritech laboratories

To: PORT AUTHORITY C MATERIALS ENGINE 241 ERIE ST. ROOM 234 JERSEY CITY			ttention: roject: 197	Dorian Bailey HH-Port Ivory P&G Site	Date Collected: Date Submitted: Date Reported:	6/26/0 6/28/0 7/9/02	2
Lab# Sample I TestGroup/Analyte	D 🐨 Units	MDL PQL RL	Result	Lab# Sam TestGroup/Analyte	ple ID Units	MDL PQL RL	
AB60464 PG-PGB	3E3-062602SO0	3	<u></u>	AB60465 PG-PGC	P1S1-062602SO3		<u></u>
% Solids SM2540G				% Solids SM2540G	N 101-0020023003.		
% Solids	percent		77	% Solids	percent		83
							63
Base Neutrals (Stars List	2) 8270			Base Neutrals (Stars List	2) 8270		
Acenaphthene	mg/kg	0.43	ND	Acenaphthene	mg/kg	0.40	0.097 J
Anthracene	mg/kg	0.43	0.053J	Anthracene	mg/kg	0.40	0.28J
Benzo[a]anthracene	mg/kg	0.43	0.14J	Benzo[a]anthracene	mg/kg	0.40	0.68
lenzo[a]pyrene	mg/kg	0.43	0.11J	Benzo[a]pyrene	mg/kg	0.40	0.60
Senzo[b]fluoranthene	mg/kg	0.43	0.21J	Benzo[b]fluoranthene	mg/kg	0.40	0.61
lenzo[g,h,i]perylene	mg/kg	0.43	0.088J	Benzo[g,h,i]perylene	mg/kg	0.40	0.33J
enzo[k]fluoranthene	mg/kg	0.43	0.057J	Benzo[k]fluoranthene	mg/kg	0.40	0.22J
hrysene	mg/kg	0.43	0.16J	Chrysene	mg/kg	0.40	0.69
Dibenzo[a,h]Anthracene	mg/kg	0.43	ND	Dibenzo[a,h]Anthracene	mg/kg	0.40	0.040J
luoranthene	mg/kg	0.43	0.33J	Fluoranthene	mg/kg	0.40	1.2
luorene	mg/kg	0.43	0.059J	Fluorene	mg/kg	0.40	0.088J
ndeno[1,2,3-cd]pyrene	mg/kg	0.43	0.077J	Indeno[1,2,3-cd]pyrene	mg/kg	0.40	0.27J
laphthalene	mg/kg	0.43	0.11J	Naphthalene	mg/kg	0.40	0.10J
henanthrene	mg/kg	0.43	0.32J	Phenanthrene	mg/kg	0.40	0.97
yrene	mg/kg	0.43	0.273	Pyrene	. mg/kg	0.40	1.5
olatile Organics (Stars L	ist) 8260			Volatile Organics (Stars I	.ist) 8260		
2,4-Trimethylbenzene	mg/kg	0.0013	ND	1,2,4-Trimethylbenzene	mg/kg	0.0012	ND
3,5-Trimethylbenzene	mg/kg	0.0013	ND	1,3,5-Trimethylbenzene	mg/kg	0.0012	ND
-Isopropyltoluene	mg/kg	0.0013	0.0018	4-Isopropyltoluene	mg/kg	0.0012	ND
enzene	mg/kg	0.0013	ND	Benzene	mg/kg	0.0012	ND
thylbenzene	mg/kg	0.0013	ND	Ethylbenzene	mg/kg	0.0012	ND
sopropylbenzene	mg/kg	0.0013	ND	Isopropylbenzene	mg/kg	0.0012	ND
f&p-Xylenes	mg/kg	0.0026	0.0015J	M&p-Xylenes	mg/kg	0.0024	ND
lethyi-t-butyl ether	mg/kg	0.0013	ND	Methyl-t-butyl ether	mg/kg	0.0012	ND
laphthalene	mg/kg	0.0013	ND	Naphthalene	mg/kg	0.0012	ND
-Butylbenzene	mg/kg	0.0013	ND	N-Butylbenzene	mg/kg		ND
-Propylbenzene	mg/kg	0.0013	ND	N-Propylbenzene	mg/kg		ND
)-Xylene	mg/kg	0.0013	ND	Ö-Xylene	mg/kg		ND
ec-Butylbenzene	mg/kg	0.0013	ND	Sec-Butylbenzene	mg/kg		ND
Butyl Alcohol	mg/kg	0.013	NDR	t-Butyl Alcohol	mg/kg		NDR
-Butylbenzene	mg/kg	0.0013	ND	T-Butylbenzene	mg/kg		ND
oluene	mg/kg	0.0013	ND	Toluene	mg/kg	0.0012	ND

38

ND = Not Detected

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

ab# Sample ID		MDL PQL	-		imple ID	MDL PQL		1
estGroup/Analyte	Units	RL	Result	TestGroup/Analyte	Uni	ts RL	Result	
B60466 PG-PGOP1	N1-062602SO	3						<u>ل</u> ين ار
Solids SM2540G								
Solids	oorcool		84					
	percent		04					
ase Neutrals (Stars List 2) 8		ŕ						
cenaphthene	mg/kg	0.40	ND		4			
nthracene	mg/kg	0.40	ND					
enzo[a]anthracene	mg/kg	0.40 0.40	0,066J 0.053J		*			
enzo[a]pyrene enzo[b]fluoranthene	mg/kg mg/kg	0.40	0.088J					
enzo[g,h,i]perylene	mg/kg	0.40	ND					
enzo[k]fluoranthene	mg/kg	0.40	ND					
hrysene	mg/kg	0.40	0.071J					
ibenzo[a,h]Anthracene	mg/kg	0.40	ND					
luoranthene	mg/kg	0.40	0.12J					
luorene	mg/kg	0.40	ND	· ·				
deno[1,2,3-cd]pyrene	mg/kg	0.40	ND		1. State 1.			
aphthalene	mg/kg	0.40	ND					
henanthrene	mg/kg	0.40	0.093J					
yrene	mg/kg	0.40	0.11J					
'olatile Organics (Stars List)	8260							
2,4-Trimethylbenzene	mg/kg	0.0012	ND			· .		
3,5-Trimethylbenzene	mg/kg	0.0012	ND					
isopropyltoluene	mg/kg	0.0012	ND					
enzene	mg/kg	0.0012	ND					
lhylbenzene	mg/kg	0.0012	ND			·		
opropylbenzene	mg/kg	0.0012 0.0024	ND ND					
&p-Xylenes ethyl-t-butyl ether	mg/kg mg/kg	0.0024	ND					
aphthalene	mg/kg	0.0012	ND					
Butylbenzene	mg/kg	0.0012	ND					
Propylbenzene	mg/kg	0.0012	ND					
-Xylene	mg/kg	0.0012	ND					
ec-Butylbenzene	mg/kg	0.0012	NÐ					
Butyl Alcohol	mg/kg	0.012	NDR					
Butylbenzene	mg/kg	0.0012	ND					
bluene	mg/kg	0.0012	ND					
B60467 PG-FB-01-06	2602WQ01	2 A - 1						
olatile Organics (Stars List)	8260							
2,4-Trimethylbenzene	ug/i	1.0	ND					
3,5-Trimethylbenzene	ug/l	1.0	NÐ					
Isopropyltoluene	ug/l	1.0	ND					
enzene	ug/l	1.0	ND					
hylbenzene	ug/l	1.0	ND	· ·				
opropylbenzene	ug/l	1.0	ND					
&p-Xylenes ethyl-t-butyl ether	ี บg/l บg/l	2.0 1.0	ND ND					
aphthalene	ug/i	1.0	ND					
Butylbenzene	ug/l	1.0	ND					
Propylbenzene	ug/l	1.0	ND					
Xylene	ug/l	1.0	ND					
ec-Butylbenzene	ug/l	1.0	ND					
Butyl Alcohol	ug/ł	10	ND					
Butylbenzene	ug/l	1.0	ND					
bluene	ug/l	1.0	ND					

s MDL/PQL	Result
······································	
t	87
0.29	ND
0.16	ND
Π	2200
0.0038	ND
0.0038	ND
0.0038	ND
0.0077	ND
0.0038	ND
0.0038 0.0038	ND ND
0.0038	ND
0.038	ND
0.019	ND
0.019	ND
0.019	ND
0.019	. ND
0.019	ND
0.019	ND
0.019	ND
	7.3
	ND
ş	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

Veritech Project: 11240942

-	SampleiD		Units	MDL/PQL	Result
Te	stGroup	Analyte			
Se	mivolatile O	rganics + 25 (8270)			
		1,2,4-Trichlorobenzene	rng/kg	0.19	ND
		1,2-Dichlorobenzene	mg/kg	0.19	ND
		1,2-Diphenylhydrazine	mg/kg	0.038	ND
		1,3-Dichlorobenzene	mg/kg	0.19	ND
		1,4-Dichlorobenzene	mg/kg	0.19	ND
		2,4,6-Trichlorophenol		0.19	ND
		2,4-Dichlorophenol	mg/kg mg/kg	0,19	ND
		2,4-Dimethylphenol		0.19	ND
		2,4-Dinitrophenol	mg/kg mg/kg	0.38	ND
		2,4-Dinitrotoluene	mg/kg	0.19	ND
		2,6-Dinitrotoluene		0.19	ND
		2.Chloronaphthalene	mg/kg mg/kg	0.19	ND
		2-Chlorophenol 2-Nitrophenol	mg/kg	0.19 0.19	ND ND
		•	mg/kg	0.19	ND
		3,3'-Dichlorobenzidine	mg/kg		
		4,6-Dinitro-2-methylphenol	mg/kg	0.19 0.19	ND ND
		4-Bromophenyl-phenylether	mg/kg		
		4-Chloro-3-methylphenol	mg/kg	0.19	ND
		4-Chlorophenyl-phenylether	mg/kg	0.19	ND
		4-Nitrophenol	mg/kg	0.19	ND
		Acenaphthene	mg/kg	0.19	0.26
		Acenaphthylene	mg/kg	0.19	ND
	•	Anthracene	mg/kg	0.19	0.60
		Benzidine	mg/kg	0.38	ND
		Benzo[a]anthracene	rng/kg	0.19	0.32
		Benzo[a]pyrene	mg/kg	. 0.19	0.19
		Benzo[b]fluoranthene	mg/kg	0.19	0.12J
		Benzo[g,h,i]perylene	mg/kg	0.19	0.12J
		Benzo[k]fluoranthene	mg/kg	0.19	0.066J
		Bis(2-Chloroethoxy)methane	mg/kg	0.19	ND
		Bis(2-Chloroethyl)Ethe:	mg/kg	0,19	ND
		Bis(2-Chloroisopropyl)ether	mg/kg	0.19	ND
		Bis(2-Ethylhexyl)phthalate	mg/kg	0.19	ND
		Butylbenzylphthalate	mg/kg	0.19	ND
		Chrysene	mg/kg	0.19	0.31
		Di-n-butylphthalate	mg/kg	0.19	ND
	•	Di-n-octylphthalate	mg/kg	0.19	ND
		Dibenzo[a,h]Anthracene	mg/kg	0.19	ND
		Diethylphthalate	mg/kg	0.19	ND
		Dimethylphthalate	mg/kg	0.19	ND
		Fluoranthene	mg/kg	0.19	0.25
		Fluorene	mg/kg	0.19	0.38
		Hexachlorobenzene	mg/kg	0.19	ND
		Hexachlorobutadiene	mg/kg	0.19	ND
		Hexachlorocyclopentadiene	mg/kg	0.57	ND
		Hexachloroethane	mg/kg	0.19	ND
		Indeno[1,2,3-cd]pyrene	mg/kg	0.19	0.044J
		Isophorone	mg/kg	0.19	ND
		N-Nitroso-Di-N-Propylamine	mg/kg	0.19	ND
		N-Nitrosodimethylamine	mg/kg	0.19	ND
		N-Nitrosodiphenylamine	mg/kg	0.19	ND
		Naphthalene	mg/kg	0.19	ND
		Nitrobenzene	mg/kg	0.19	ND
		Pentachiorophenol	mg/kg	0.19	ND
		Phenanthrene	mg/kg	0.19	1.4
		Phenoi	mg/kg	0.19	ND
		Pyrene	mg/kg	0.19	1.8

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

Veritech Project: 11240942

ab#	Samplel		Units	MDL/PQL	Result
	TestGroup	Analyte	······································		
	TAL Metais (S	ioil) 6010			
		Aluminum	mg/kg	970	8200
1 A. A.	·	Antimony	mg/kg	1.7	ND
		Arsenic	mg/kg	2.3	4.7
		Barium	mg/kg	11	110
		Beryllium	mg/kg	0.46	-94
		Cadmium	mg/kg	0.34	ND
		Calcium	mg/kg	1100	2300
		Chromium	mg/kg	4.6	19
		Cobalt	mg/kg	1.9	11
		Copper	mg/kg	4.4	15
		Iron	mg/kg	2700	23000
		Lead	mg/kg	4.6	12
		Magnesium	mg/kg	680	4100
		Manganese	mg/kg	19	430
		Nickel	mg/kg	2.8	41
		Potassium	mg/kg	460	1600
		Selenium	mg/kg	2.9	ND
		Silver	mg/kg	0.57	94
		Sodium	mg/kg	460	ND
		Thallium	mg/kg	1.4	ND
		Vanadium	mg/kg	11	28
		Zinc	mg/kg	11	54
	Total Petroleu	m Hydrocarbons (Soil)			
	rotal recioied	Total Petroleum Hydrocarbons (Soil)	mg/kg	200	1100
	Volatile Organ	lics + 15 (8260)		200	1100
	Volume organ	•			
		1,1,1-Trichloroethane	mg/kg	0.029	ND
		1,1,2,2-Tetrachloroethane	mg/kg	0.029	ND
		1,1,2-Trichloroethane	mg/kg	0.029	ND
		1,1-Dichloroethane	mg/kg	0.029	ND
		1,1-Dichloroethene	mg/kg	0.029	ND
		1,2-Dichloroethane	mg/kg	0.029	ND
		1,2-Dichloropropane	mg/kg	0.029	ND
		2-Chloroethylvinylether	mg/kg	0.029	ND
	,	Acrolein	mg/kg	0.086	ND
	· •	Acrylonitrile	mg/kg	0.040	ND
		Benzene	mg/kg	0.0057	ND
		Bromodichloromethane	mg/kg	0.029	ND
		Bromoform	mg/kg	0.029	ND
'		Bromomethane	mg/kg	0.029	ND
		Carbon tetrachloride	mg/kg	0.029	ND
		Chlorobenzene	mg/kg	0.029	ND
		Chloroethane	mg/kg	0.029	ND
		Chloroform	mg/kg	0.029	ND
		Chloromethane	mg/kg	0.029	ND
		Cis-1,3-Dichloropropene	mg/kg	0.029	ND
		Dibromochloromethane	mg/kg	0.029	ND
		Ethylbenzene	mg/kg	0.0057	ND
		M&p-Xylenes	mg/kg	0.011	ND ALL
		Methylene chloride	mg/kg	0.029	0.01648
		O-Xylene	mg/kg	0.0057	ND
		Tetrachloroethene	mg/kg	0.029	ND
		Toluene	mg/kg	0.0057	ND
		Trans-1,2-Dichloroethene	mg/kg	0.029	ND
		Trans-1,3-Dichloropropene	mg/kg	0.029	ND
		Trichloroethene	mg/kg	0.029	ND
		Vinyl chloride	mg/kg	0.029	ND

.

Page 8 of 46

ab#	SampleID TestGroup	Analyte	Units	MDL/PQL	Result	
B1961	3 PG-UST7-	2-112100SO06				
	% Solids SM25	40G		•		
		% Solids	percent		83	
	Cyanide (soil/w	(acta)	•			
	Cyanice (Soli/W					
· · · ·		Cyanide	mg/kg	0.30	ND	
	Mercury (soil/w	/aste) 7471A				
		Mercury	mg/kg	0.17	ND	
	Oil & Grease			•		
	OIL OF OIL G26	27.8 2			·	
		Oil & Grease	mg/kg	80	5300	
	Organochlorine	e Pesticides 8081				
	-	Aldrin	mg/kg	0.004	ND	
		Alpha-BHC	mg/kg	0.004	ND	
		Beta-BHC	mg/kg	0.004	ND	
		Chlordane	mg/kg	0.008	ND	
		Delta-BHC	mg/kg	0.004	ND	
		Dieldrin	mg/kg	0.004	ND	
	÷	Endosulfan I	mg/kg	0.004	ND	
		Endosulfan II	mg/kg	0.004	ND	
		Endosulfan Sulfate	mg/kg	0.004	ND	
		Endrin	mg/kg	0.004	ND	
		Endrin Aldehyde	mg/kg	0.004	ND	
		Endrin Ketone	mg/kg	0.004	ND	
		Gamma-BHC	mg/kg	0.004	ND	
		Heptachlor Heptachlor Epoxide	mg/kg	0.004 0.004	ND ND	
		Methoxychlor	mg/kg mg/kg	0.004	ND	
		P.P'-DDD	mg/kg	0.004	ND	
		P.P-DDE	mg/kg	0.004	ND	
		P.P'-DDT	mg/kg	0.004	ND	
		Toxaphene	mg/kg	0.04	ND	
	PCB 8082					
	. 00 0004					
		Aroclor-1016	mg/kg	0.02	ND	
		Aroclor-1221 Aroclor-1232	mg/kg	0.02 0.02	ND ND	
		Aroclor-1232	mg/kg	0.02	ND	
		Aroclor-1242 Aroclor-1248	mg/kg	0.02	ND	
		Aroclor-1254	mg/kg	0.02	ND	
	,	Arocior-1260	mg/kg	0.02	ND	
	nH 90450			•	··-	
	pH 9045C					
		рH	units		7.4	
	Phenols (soil/w	aste) 9065				
	•	Phenol	mg/kg	1.5	ND	

Page 9 of 46

#	Samplell		Units	MDL/PQL	Result	ς.
	TestGroup	Analyte			······	
	Semivolatile (Drganics + 25 (8270)				
		1,2,4-Trichlorobenzene	mg/kg	0.20	ND	
		1,2-Dichlorobenzene	mg/kg	0.20	ND	
		1,2-Diphenylhydrazine	mg/kg	0.040	ND	
		1,3-Dichlorobenzene	mg/kg	0.20	ND	
		1,4-Dichlorobenzene	mg/kg	0.20	ND	
		2,4,6-Trichlorophenot	mg/kg	0.20	ND	
		2,4-Dichlorophenol	mg/kg	0.20	ND	
		2,4-Dimethylphenol		0.20	ND	
		2,4-Dinitrophenol	mg/kg	0.40	ND	
		2,4-Dinitrotoluene	mg/kg	0.20		
			mg/kg		ND	
		2,6-Dinitrotoluene	mg/kg	0.20	ND	
		2-Chloronaphthalene	mg/kg	0.20	ND	
		2-Chlorophenol	mg/kg	0.20	ND	
		2-Nitrophenol	mg/kg	0.20	ND	
		3,3'-Dichlorobenzidine	mg/kg	. 0.20	ND	
		4,6-Dinitro-2-methylphenol	mg/kg	0.20	ND	
		4-Bromophenyl-phenylether	mg/kg	0.20	ND	
		4-Chloro-3-methylphenol	mg/kg	0.20	ND	
		4-Chlorophenyl-phenylether	mg/kg	0.20	ND	
		4-Nitrophenol	mg/kg	0.20	ND	
		Acenaphthene	mg/kg	0.20	0.27	
		Acenaphthylene	mg/kg	0.20	ND	
		Anthracene	mg/kg	0.20	0.49	
		Benzidine	mg/kg	0.40	ND	
		Benzo[a]anthracene	mg/kg	0.20	0.40	
		Benzo[a]pyrene	mg/kg	0.20	0.28	
		Benzo[b]fluoranthene	mg/kg	0.20	0.10J	
		Benzo[g,h,i]perylene	mg/kg	0.20	0.18J	
		Benzo[k]fluoranthene	mg/kg	0.20	0.075J	
		Bis(2-Chloroethoxy)methane	mg/kg	0.20	ND	
		Bis(2-Chloroethyl)Ether	mg/kg	0.20	ND	
		Bis(2-Chloroisopropyl)ether	mg/kg	0.20	ND	
		Bis(2-Ethylhexyl)phthalate	mg/kg	0.20	0.428 U	
		Butylbenzylphthalate	mg/kg	0.20	ND	
		Chrysene				
		Di-n-butylphthalate	mg/kg	0.20 0.20	0.61 0.11 کالو	
			mg/kg			
		Di-n-octylphthalate	mg/kg	0.20	0.057J	
		Dibenzo[a,h]Anthracene	mg/kg	0.20	ND	
		Diethylphthalate Dimothylphthalata	mg/kg	0.20	ND	
		Dimethylphthalate	mg/kg	0.20	ND	
		Fluoranthene	mg/kg	0.20	0.27	
		Fluorene	mg/kg	0.20	ND	
		Hexachlorobenzene	mg/kg	0.20	ND	
	,	Hexachlorobutadiene	mg/kg	0.20	ND	
•		Hexachlorocyclopentadiene	mg/kg	0.60	ND	
		Hexachloroethane	mg/kg	0.20	ND	
		Indeno[1,2,3-cd]pyrene	mg/kg	0.20	0.050J	
		Isophorone	mg/kg	0.20	ND	
		N-Nitroso-Di-N-Propylamine	' mg/kg	0.20	ND	
		N-Nitrosodimethylamine	mg/kg	0.20	ND	
		N-Nitrosodiphenylamine	mg/kg	0.20	ND	
		Naphthalene	mg/kg	0.20	0.056J	
		Nitrobenzene	mg/kg	0.20	ND	
		Pentachlorophenol	mg/kg	0.20	ND	
		Phenanthrene	mg/kg	0.20	ND	
		Phenol	mg/kg	0.20	ND	
		Pyrene	mg/kg	0.20		

Page 10 of 45

SampleID TestGroup	Analyte	Units	MDL/PQL	Result
 			<u> </u>	
TAL Metals 60	10			•
	Aluminum	mg/kg	1000	5200
	Antimony	mg/kg	1.7	ND
	Arsenic	mg/kg	2.4	6.6
	Barium	mg/kg	12	92
	Beryllium	mg/kg	0.48	.53
	Cadmium	mg/kg	0.36	ND
	Calcium	mg/kg	1200	3600
	Chromium	mg/kg	4.8	14
	Cobalt	mg/kg	2	6.3
	Copper	mg/kg	4.6	22
	Iron	mg/kg	2800	19000
	Lead	mg/kg	4.8	40
	Magnesium	mg/kg	710	2600
	Manganese	mg/kg	20	310
	Nickel	mg/kg	2.9	14
	Potassium	mg/kg	480	850
	Selenium	mg/kg	3	ND
	Silver	mg/kg	0.6	.83
	Sodium	mg/kg	480	ND
	Thallium	mg/kg	1.4	ND
	Vanadium	mg/kg	12	22
	Zinc	mg/kg	12	59
Total Potrolog	m Hydrocarbons (Soil)			
rolar Petroleu	· · · · · · · · · · · · · · · · · · ·	· ·		100
	Total Petroleum Hydrocarbons (Soil)	mg/kg	41	460
Volatile Organ	lics + 15 (8260)			
	1,1,1-Trichloroethane	mg/kg	0.030	ND
	1,1,2,2-Tetrachloroethane	mg/kg	0.030	ND
	1,1,2-Trichloroethane	mg/kg	0.030	ND
	1,1-Dichloroethane	mg/kg	0.030	ND
	1,1-Dichloroethene	mg/kg	0.030	ND
	1,2-Dichloroethane	mg/kg	0.030	ND
	1,2-Dichloropropane	mg/kg	0.030	ND
	2-Chloroethylvinylether	mg/kg	0.030	ND
	Acrolein	mg/kg	0.090	ND
	Acrylonitrile	mg/kg	0.042	ND
	Benzene	mg/kg	0.0060	ND
	Bromodichloromethane	mg/kg	0.030	ND
	Bromoform	mg/kg	0.030	ND
	Bromomethane	mg/kg	0.030	ND
	Carbon tetrachloride	, mg/kg	0.030	ND
	Chlorobenzene	mg/kg	0.030	ND
	Chloroethane	mg/kg	0.030	ND '
	Chloroform	mg/kg	0.030	ND ·
	Chloromethane	mg/kg	0.030	ND
	Cis-1,3-Dichloropropene	mg/kg	0.030	ND
	Dibromochloromethane	mg/kg	0.030	ND
	Ethylbenzene	mg/kg	0.0060	ND
	M&p-Xylenes	mg/kg	0.012	ND
	Methylene chloride	mg/kg	0.030	0.015JB ⁴ ()
	O-Xylene			
		mg/kg	0.0060	ND
	Tetrachioroethene	mg/kg	0.030	ND
•	Toluene	mg/kg	0.0060	ND
	Trans-1,2-Dichloroethene	mg/kg	0.030	ND
	Trans-1,3-Dichloropropene	mg/kg	0.030	ND
	Trichloroethene	mg/kg	0.030	ND
	Vinyl chloride	mg/kg	0.030	ND .

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004 Veritech Project: 11240942

_ab# T	SampleID estGroup	Analyte	· · · · ·	Units	MDL/PQL		Result	
	PG-FILL11-1	121005001			······································			
AB19614	PO-FILLI (-)	12 1003001						
%	Solids SM2540	G			•			
	9	6 Solids		percent			60	
~				• • • • • • • • • • • • • • • • • • • •				
C	yanide (soil/was			•	*			
	· C	Cyanide		mg/kg	0.42		ND	
N	lercury (soil/was	ste) 7471A						
	•	lercury		mg/kg	0.24		.25	
-					0.2.1		.20	
. 0)il & Grease							
	C	Dil & Grease		mg/kg	110		370	
C	Organochlorine P	esticides 8081						
	•	Idrin		mg/kg	0.0056		ND	
		lipha-BHC		mg/kg	0.0056		ND	
		eta-BHC		mg/kg	0.0056		ND	
		Chlordane		mg/kg	0.011	2	ND	the second second
		elta-BHC		mg/kg	0.0056		ND	
	0	lieldrin		mg/kg	0.0056		ND	
	E	ndosulfan I		mg/kg	0.0056		ND	
	. 8	ndosulfan II		mg/kg	0.0056		ND	
	E	ndosulfan Sulfate		mg/kg	0.0056		ND	
	E	ndrin		mg/kg	0.0056		ND	
	E	ndrin Aldehyde		mg/kg	0.0056		ND	
		ndrin Ketone		mg/kg	0.0056		.43	
		amma-BHC		mg/kg	0.0056		ND	
		eptachlor		mg/kg	0.0056		ND	
		eptachlor Epoxide		mg/kg	0.0056		ND	
		lethoxychlor		mg/kg	0.0056		ND	
		,P'-DDD ,P'-DDE		mg/kg	0.0056		ND	,
		,P*-DDE ,P*-DDT		mg/kg mg/kg	0.0056 0.0056		ND ND	
		oxaphene		mg/kg	0.056		ND	
_		oxaphono		ingi kg	0.000		ND	
P	CB 8082							
	A	rocior-1016		mg/kg	0.028		ND	
		roclor-1221		mg/kg	0.028		ND	
1. A.		roclor-1232		mg/kg	0.028		ND	
		roclor-1242		mg/kg	0.028		ND	
		roclor-1248		mg/kg	0.028		ND	
		roclor-1254		mg/kg	0.028		ND	
		roclor-1260		mg/kg	0.028		ND	
p	H 9045C	•						
-	pi	H		units			7.8	1
~								
P	henols (soil/was	•						
	P	henol		mg/kg	2.1		ND	

o#	SamplelD		Units	MDL/PQL	Result	
	TestGroup	Analyte				
	Semivolatile C	Organics + 25 (8270)				
		1,2,4-Trichlorobenzene	mg/kg	0.28	ND	
		1,2-Dichlorobenzene	mg/kg	0.28	ND	
		1,2-Diphenylhydrazine	mg/kg	0.056	ND	
•		1,3-Dichlorobenzene	mg/kg	0.28	ND	
		1,4-Dichlorobenzene	mg/kg	0.28	ND	
		2,4,6-Trichlorophenol	mg/kg	0.28	ND	
		2,4-Dichlorophenol	mg/kg	0.28	ND	
		2,4-Dimethylphenol	mg/kg	0.28 0.56	ND	
		2,4-Dinitrophenol 2,4-Dinitrotoluene	mg/kg		ND	
		-	mg/kg	0.28	ND	
		2,6-Dinitrotoluene	mg/kg	0.28	ND	
		2-Chloronaphthalene	mg/kg	0.28	ND	
		2-Chlorophenol	mg/kg	0.28	ND	
		2-Nitrophenol	mg/kg	0.28	ND	
		3,3'-Dichlorobenzidine	mg/kg	0.28	ND	
		4,6-Dinitro-2-methylphenol	mg/kg	0.28	ND	
		4-Bromophenyl-phenylether	mg/kg	0.28	ND	
		4-Chloro-3-methylphenol	mg/kg	0.28	ND	
		4-Chlorophenyl-phenylether	mg/kg	0.28	ND	
		4-Nitrophenol	mg/kg	0.28	ND	
		Acenaphthene	mg/kg	0.28	ND	
		Acenaphthylene	mg/kg	0.28	ND	
		Anthracene	mg/kg	0.28	ND	
		Benzidine	mg/kg	0.56	ND	
		Benzo[a]anthracene	mg/kg	0.28	ND	
		Benzo[a]pyrene	mg/kg	0.28	ND	
		Benzo{b]fluoranthene	mg/kg	0.28	ND	
		Benzo[g,h,i]perylene	mg/kg	0.28	ND	
		Benzo[k]fluoranthene	mg/kg	0.28	ND	
		Bis(2-Chloroethoxy)methane	mg/kg	0.28	ND	
		Bis(2-Chloroethyl)Ether	mg/kg	0.28	ND	
		Bis(2-Chloroisopropyl)ether	mg/kg	0.28	ND	
		Bis(2-Ethylhexyl)phthalate	mg/kg	0.28	0.44B	
		Butylbenzylphthalate	mg/kg	0.28	ND	
		Chrysene	mg/kg	0.28	ND	
		Di-n-butylphthalate	mg/kg	0.28	ND	•
		DI-n-octylphthalate	mg/kg	0.28	ND	
		Dibenzo{a,h]Anthracene	mg/kg	0.28	ND	
		Diethylphthalate	mg/kg	0.28	ND	
		Dimethylphthalate	mg/kg	0.28	ND	
		Fluoranthene	mg/kg	0.28	0.056J	
		Fluorene	mg/kg	0.28	ND	
		Hexachlorobenzene	mg/kg	0.28	ND	
		Hexachlorobutadiene				
		Hexachlorocyclopentadiene	mg/kg	0.28	ND	
		Hexachiorocyclopentaclene	mg/kg	0.83	ND	
			mg/kg	0.28	ND	
		Indeno[1,2,3-cd]pyrene	mg/kg	0.28	ND	
		Isophorone	mg/kg	0.28	ND	
		N-Nitroso-Di-N-Propylamine	mg/kg	0.28	ND	
		N-Nitrosodimethylamine	mg/kg	0.28	ND	
		N-Nitrosodiphenylamine	mg/kg	0.28	ND	
		Naphthalene	mg/kg	0.28	ND	
		Nitrobenzene	mg/kg	0.28	ND	
		Pentachlorophenol	mg/kg	0.28	NÐ	
		Phenanthrene	mg/kg	0.28	0.086J	
		Phenol	mg/kg	0.28	ND	
		Pyrene	mg/kg	0.28	ND	

Page 13 of 46

SampleID		Units	MDL/PQL	Result	
TestGroup	Analyte	onito		Result	
 TAL Metals 601	0	······································			<u> </u>
	Aluminum	mg/kg	1400	4300	
	Antimony	mg/kg	2.4	ND	
	Arsenic		3.3	4	•
	Barium	mg/kg	3.3 17	4 86	
		mg/kg		-	
	Beryllium	mg/kg	0.67	ND	
	Cadmium	mg/kg	0.5	ND	
	Calcium	mg/kg	1700	14000	
	Chromium	mg/kg	6.7	ND	
	Cobalt	mg/kg	2.8	5.1	
	Copper	mg/kg	6.3	27	
	Iron	mg/kg	3900	6500	
	Lead	mg/kg	6.7	35	
	Magnesium	mg/kg	980	2400	,
	Manganese	mg/kg	27	120	
	Nickel	mg/kg	4.1	87	
	Potassium	mg/kg	670	ND	
	Selenium	mg/kg	4.2	ND	
	Silver		0.83	1.2	
		mg/kg			
	Sodium	mg/kg	670	1600	
	Thallium	mg/kg	2	ND	
	Vanadium	mg/kg	17	ND	
	Zinc	mg/kg	17	92	
Total Petroleum	Hydrocarbons (Soil)				
	Total Petroleum Hydrocarbons (Soil)	mg/kg	57	ND	
Volatile Organic	s + 15 (8260)				
	1,1,1-Trichloroethane	mg/kg	0.0083	NÐ	
	1,1,2,2-Tetrachloroethane	mg/kg	0.0083	ND	
	1,1,2-Trichloroethane	mg/kg	0.0083	ND	
	1,1-Dichloroethane	mg/kg	0,0083	ND	
	1,1-Dichloroethene	mg/kg	0.0083	ND	
	1,2-Dichloroethane	mg/kg	0.0083	ND	
	1,2-Dichloropropane		0.0083	ND	
		mg/kg			
	2-Chloroethylvinylether	mg/kg	0.0083	ND	
	Acrolein	mg/kg	0.025	ND	
	Acrylonitrile	mg/kg	0.012	ND	
	Benzene	mg/kg	0.0017	ND	
	Bromodichloromethane	mg/kg	0.0083	ND	
	Bromoform	mg/kg	0.0083	ND	
	Bromomethane	mg/kg	0.0083	ND	
	Carbon tetrachloride	mg/kg	0.0083	ND	
	Chlorobenzene	mg/kg	0.0083	ND	
	Chloroethane	mg/kg	0.0083	ND	
	Chloroform	mg/kg	0.0083	ND	
	Chloromethane	mg/kg	0.0083	ND	
	Cis-1,3-Dichloropropene	mg/kg	0.0083	ND	
	Dibromochloromethane		0.0083	ND	
		mg/kg			
	Ethylbenzene	mg/kg	0.0017	ND	
	M&p-Xylenes	mg/kg	0.0033	ND	
	Methylene chloride	mg/kg	0.0083	0.013	
	O-Xylene	mg/kg	0.0017	ND	
	Tetrachloroethene	mg/kg	0.0083	ND	
	Toluene	mg/kg	0.0017	ND	
	Trans-1,2-Dichloroethene	mg/kg	0.0083	ND	
	Trans-1,3-Dichloropropene	mg/kg	0.0083	ND	
	Trichloroethene	mg/kg	0.0083	ND	
	Vinyl chloride	mg/kg	0.0083	ND	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

Page 14 of 46

o# Sampl		Units	MDL/PQL	Result		
TestGroup	Analyte					
819615 PG-FIL	L11-112100SO02					
			1.e			
% Solids SI	A2540G			4		
	% Solids	percent		82		
Cyanide (se	oil/waste)					
, (*	Cyanide	mg/kg	0.30	ND		
••			0.00	110		
Mercury (se	pil/waste) 7471A		•			
	Mercury	mg/kg	1.7	22		
Oil & Greas	e					
	Oil & Grease	mg/kg	81	850		
		119:49		000		
Organochic	orine Pesticides 8081	· .				
	Aldrin	mg/kg	0.0041	ND		
	Alpha-BHC	mg/kg	0.0041	ND 1		
	Beta-BHC	mg/kg	0.0041	ND		
	Chlordane	mg/kg	0.0081	ND		
	Delta-BHC	mg/kg	0.0041	ND		
	Dieldrin	mg/kg	0.0041	ND		
	Endosulfan 1	mg/kg	0.0041	ND		
	Endosulfan II	mg/kg	0.0041	ND		
	Endosulfan Sulfate Endrin	mg/kg	0.0041	ND		
	Endrin Aldehyde	mg/kg	0.0041 0.0041	ND ND		
	Endrin Ketone	mg/kg mg/kg	0.0041	ND		
	Gamma-BHC	mg/kg	0.0041	ND		
	Heptachlor	mg/kg	0.0041	ND		
	Heptachlor Epoxide	mg/kg	0.0041	ND		
	Methoxychlor	mg/kg	0.0041	ND		
	P,P-DDD	mg/kg	0.0041	ND		
	P,P'-DDE	mg/kg	0.0041	ND		
	P,P'-DDT	mg/kg	0.0041	ND		
	Toxaphene	mg/kg	0.041	ND		
PCB 8082		•				
	Arocior-1016		0.02	ND		
	Aroclor-1221	mg/kg mg/kg	0.02	ND ···		
	Aroclor-1221 Aroclor-1232	mg/kg	0.02	ND		
	Aroclor-1242	mg/kg	0.02	ND		
	Aroclor-1248	mg/kg	0.02	ND		
	Aroclor-1254	mg/kg	0.02	ND		
	Aroclot-1260	mg/kg	0.02	ND		
pH 9045C		····er-ne	·			
F	рН	units		7.9		
Phenole (co	il/waste) 9065					
1 11611013 (30		·		·		
	Phenol	mg/kg	1.5	ND		

Page 15 of 46

TestGroup	Analida	Units	MDL/PQL	Result
	Analyte			
Semivolatile (Organics + 25 (8270)			
	1,2,4-Trichlorobenzene	mg/kg	0.20	ND
	1,2-Dichlorobenzene	mg/kg	0.20	ND
	1,2-Diphenylhydrazine	mg/kg	0.041	ND
	1,3-Dichlorobenzene	mg/kg	0.20	ND
	1,4-Dichlorobenzene	mg/kg	0.20	ND
	2,4,6-Trichlorophenol	mg/kg	0.20	ND
	2,4-Dichlorophenol	mg/kg	0.20	ND
	2,4-Dimethylphenol	mg/kg	0.20	ND
	2,4-Dinitrophenol	mg/kg	0.41	ND
	2,4-Dinitrotoluene	mg/kg	0.20	ND
	2,6-Dinitrotoluene	mg/kg	0.20	ND
	2-Chloronaphthalene	mg/kg	0.20	ND
	2-Chlorophenol	mg/kg	0.20	ND
	2-Nitrophenol	mg/kg	0.20	ND
	3,3'-Dichlorobenzidine	mg/kg	0.20	ND
	4,6-Dinitro-2-methylphenol	mg/kg	0.20	ND
	4-Bromophenyl-phenylether	mg/kg	0.20	ND
	4-Chloro-3-methylphenol	mg/kg	0.20	ND
	4-Chlorophenyl-phenylether	mg/kg	0.20	ND
	4-Oniorophenol	mg/kg	0.20	ND
	-		0.20	0.093J
	Acenaphthene	mg/kg		
	Acenaphthylene	mg/kg	0.20	ND
	Anthracene	mg/kg	0.20	0.34
	Benzidine	mg/kg	0.41	ND
	Benzo[a]anthracene	mg/kg	0.20	0.96
	Benzo[a]pyrene	mg/kg	0.20	1.0
	Benzo[b]fluoranthene	mg/kg	0.20	1.4
	Benzo[g,h,i]perylene	mg/kg	0.20	0.42
	Benzo[k]fluoranthene	mg/kg	0.20	0.59
	Bis(2-Chloroethoxy)methane	mg/kg	0.20	ND
	Bis(2-Chloroethyl)Ether	mg/kg	0.20	ND
	Bis(2-Chloroisopropyl)ether	mg/kg	0.20	ND
	Bis(2-Ethylhexyl)phthalate	mg/kg	0.20	0.10 JE
	Butylbenzylphthalate	mg/kg	0.20	ND *
	Chrysene	mg/kg	0.20	1.0
	Di-n-butylphthalate	mg/kg	0.20	0.11,JB V
	DI-n-octylphthalate	mg/kg	0.20	0.054J
	Dibenzo[a,h]Anthracene	mg/kg	0.20	0.17J
	Diethylphthalate	mg/kg	0.20	ND
	Dimethylphthalate	mg/kg	0.20	ND
	Fluoranthene	mg/kg	0.20	1.5
	Fluorene	mg/kg	0.20	0.15J
	Hexachlorobenzene	mg/kg	0.20	ND
	Hexachlorobutadiene	mg/kg	0.20	ND
	Hexachlorocyclopentadiene	mg/kg	0.61	ND
	Hexachloroethane	mg/kg	0.20	ND
	Indeno[1,2,3-cd]pyrene	mg/kg	0.20	0.37
	Isophorone	mg/kg	0.20	ND
	N-Nitroso-Di-N-Propylamine	mg/kg	0.20	ND ND
	N-Nitrosodimethylamine	mg/kg	0.20	ND
	N-Nitrosodiphenylamine	mg/kg	0.20	ND
	Naphthalene	mg/kg	0.20	
	Nitrobenzene			0.27
	Pentachlorophenol	mg/kg	0.20	ND
	Pentachiorophenol	mg/kg	0.20	ND
		mg/kg	0.20	1.3
X	Phenol Pyrene	mg/kg	0.20	ND

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

Page 16 of 46

	Samplel		Units	MDL/PQL	Result	
	TestGroup	Analyte		·		
	TAL Metals 60)10				
		Aluminum	mg/kg	1000	3500	
		Antimony	mg/kg	1.8	6.9	
		Arsenic	mg/kg	2.4	21	
		Barium	mg/kg	12	640	
		Beryllium		0.49	ND	
		-	mg/kg			
		Cadmium	mg/kg	0.37	8.4	
		Calcium	mg/kg	1200	18000	
		Chromium	mg/kg	4.9	64	
		Cobalt	mg/kg	2	23	
		Copper '	mg/kg	4.6	1000	
		Iron	mg/kg	14000	87000	
		Lead	mg/kg	4.9	1100	
		Magnesium	mg/kg	720	7000	
		Manganese	mg/kg	20	910	
		Nickel	mg/kg	3	530	
		Potassium	mg/kg	490	ND	
		Selenium	mg/kg	3	3.1	
		Silver		0.61	•	
			mg/kg		-86	
		Sodium	mg/kg	490	ND	
		Thallium	mg/kg	1.5	ND	
		Vanadium	mg/kg	12	25	
		Zinc	mg/kg	12	1500	
	Total Petroleu	m Hydrocarbons (Soil)				
		Total Petroleum Hydrocarbons (Soil)	mg/kg	41	110	
	Volatile Organ	lics + 15 (8260)				
		1.1,1-Trichloroethane	mg/kg	0.0061	ND	
		1,1,2,2-Tetrachloroethane	mg/kg	0.0061	ND	
		1,1,2-Trichloroethane	mg/kg	0.0061	ND	
		1,1-Dichloroethane	mg/kg	0.0061	0.0025J	
		1,1-Dichloroethene	mg/kg	0.0061	ND	
		1,2-Dichloroethane	mg/kg	0.0061	ND	
		1,2-Dichloropropane	mg/kg	0.0061	ND	
		2-Chloroethylvinylether	mg/kg	0.0061	ND	•
		Acrolein		0.018	ND	
			mg/kg			
		Acrylonitrile	mg/kg	0.0085	ND	
		Benzene	mg/kg	0.0012	ND	
		Bromodichloromethane	mg/kg	0.0061	ND	
		Bromoform	mg/kg	0.0061	ND	
		Bromomethane	mg/kg	0.0061	ND	
		Carbon tetrachloride	mg/kg	0.0061	NÐ	
		Chlorobenzene	mg/kg	0.0061	ND	
	,	Chloroethane	mg/kg	0.0061	ND	
		Chloroform	mg/kg	0.0061	ND	
•		Chloromethane	mg/kg	0.0061	ND	
		Cis-1,3-Dichloropropene	mg/kg	0.0061	ND	
		Dibromochloromethane	mg/kg	0.0061	ND	
		Ethylbenzene	mg/kg	0.0012	ND	
		M&p-Xylenes	mg/kg	0.0024	ND	
		Methylene chloride	mg/kg		0.0071	
		O-Xylene	mg/kg	0.0012	ND	
		Tetrachloroethene	mg/kg	0.0061	ND	
		Toluene	mg/kg	0.0012	ND	
		Trans-1,2-Dichloroethene	mg/kg	0.0061	ND	
		Trans-1,3-Dichloropropene	rng/kg	0.0061	ND	
		Trichloroethene	mg/kg	0.0061	ND	
		Vinyl chloride	mg/kg	0.0061	ND	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

Page 17 of 46

#	SampleID TestGroup	Analyte	Units	MDL/PQL	Result	
19616	PG-PD-01	112100SO02				
13010					•	
	% Solids SM25	40G				
		% Solids	percent		89	
	Cyanide (soil/v	vacto)				
	Cyanice (Solin	-				
		Cyanide	mg/kg	0.28	ND	
	Mercury (soil/v	waste) 7471A				
		Mercury	mg/kg	0.16	ND	
		······································				
	Oil & Grease					
		Oil & Grease	mg/kg	75	170	
	Organochlorin	e Pesticides 8081				
	guilden of in		an a llea	0.0037	ND	
		Aldrin Alpha-BHC	mg/kg mg/kg	0.0037 0.0037	ND ND	
		Beta-BHC	mg/kg	0.0037	ND	
		Chiordane	mg/kg	0.0075	ND	
		Delta-BHC	mg/kg	0.0037	ND	
		Dieldrin	mg/kg	0.0037	ND	
		Endosulfan I	mg/kg	0.0037	ND	
		Endosulfan II	mg/kg	0.0037	ND	
		Endosulfan Sulfate	mg/kg	0.0037	ND	
		Endrin	mg/kg	0.0037	ND	
		Endrin Aldehyde	mg/kg	0.0037	ND	
•		Endrin Ketone	mg/kg	0.0037	ND	
		Gamma-BHC	mg/kg	0.0037	ND	
		Heptachior	mg/kg	0.0037	ND	
		Heptachlor Epoxide	mg/kg	0.0037	ND	
	•	Methoxychlor	mg/kg	0.0037	ND	
		P,P'-DDD	mg/kg	0.0037	ND	
		P,P-DDE	mg/kg	0.0037	ND	
		P,P-DDT	mg/kg	0.0037 0.037	ND	
		Toxaphene	mg/kg	0.037	ND .	
	PCB 8082					
		Aroclor-1016	mg/kg	0.019	ND	
		Aroclor-1221	mg/kg	0.019	ND	
		Aroclor-1232	mg/kg	0.019	ND	
		Aroclor-1242	mg/kg	0.019	ND	
		Aroclor-1248	mg/kg	0.019	ND	
		Aroclor-1254	mg/kg	0.019	ND	
		Aroclor-1260	mg/kg	0.019	ND	
	pH 9045C				`	
	P11 2040 0	•				
		pH	units		8.4	
	Phenols (soil/w	vaste) 9065				
	•	Phenot	mg/kg	1.4	ND	
			1119119	1.7		

Page 18 of 46

Samplell TestGroup	Analyte	Units	MDL/PQL	Result
			······································	
Semivolatile (Organics + 25 (8270)			
	1,2,4-Trichlorobenzene	mg/kg	0.19	ND
	1,2-Dichlorobenzene	mg/kg	0.19	ND
	1,2-Diphenylhydrazine	mg/kg	0.037	ND
	1,3-Dichlorobenzene	mg/kg	0.19	ND
	1,4-Dichlorobenzene	mg/kg	0.19	ND
	2,4,6-Trichlorophenol	mg/kg	0.19	ND
	2,4-Dichlorophenol	mg/kg	0.19	ND
	2,4-Dimethylphenol	mg/kg	0.19	ND
	2,4-Dinitrophenol	mg/kg	0.37	ND
	2,4-Dinitrotoluene	mg/kg	0.19	ND
	2,6-Dinitrotoluene	mg/kg	0.19	ND
	2-Chloronaphthalene	mg/kg	0.19	ND
	2-Chlorophenol			
	•	mg/kg	0.19	ND
	2-Nitrophenol	mg/kg	0.19	ND
	3,3'-Dichlorobenzidine	mg/kg	0.19	ND
	4,6-Dinitro-2-methylphenol	mg/kg	0.19	ND
	4-Bromophenyl-phenylether	mg/kg	0.19	ND .
	4-Chloro-3-methylphenol	mg/kg	0.19	ND
	4-Chlorophenyl-phenylether	mg/kg	0.19	ND
	4-Nitrophenol	mg/kg	0.19	ND
	Acenaphthene	mg/kg	0.19	ND
	Acenaphthylene	mg/kg	0.19	ND
	Anthracene	mg/kg	0.19	ND
	Benzidine	mg/kg	0.37	ND
	Benzo(a)anthracene	mg/kg	0.19	ND
	Benzo[a]pyrene	mg/kg	0.19	ND
	Benzo[b]fluoranthene	mg/kg	0.19	ND
	Benzo[g,h,i]perylene	mg/kg	0.19	ND
	Benzo[k]fluoranthene	mg/kg	0.19	ND
	Bis(2-Chloroethoxy)methane	mg/kg	0.19	ND
	Bis(2-Chloroethyl)Ether	mg/kg	0.19	ND
	Bis(2-Chloroisopropyl)ether	mg/kg	0.19	ND
	Bis(2-Ethylhexyl)phthalate	mg/kg	0.19	0.086,JB V
	Butylbenzylphthalate	mg/kg	0.19	ND
	Chrysene	mg/kg	0.19	ND
	Di-n-butylphthalate	mg/kg	0.19	ND
	DI-n-octylphthalate	mg/kg	0.19	ND
	Dibenzo[a,h]Anthracene	mg/kg	0.19	ND
	Diethylphthalate	mg/kg	0.19	ND
	Dimethylphthalate	mg/kg	0.19	ND
	Fluoranthene	mg/kg	0.19	ND
	Fluorene	mg/kg	0.19	ND
	Hexachlorobenzene		0.19	ND
	Hexachlorobutadiene	mg/kg	0.19	
		mg/kg		ND
	Hexachlorocyclopentadiene Hexachloroethane	mg/kg	0.56	ND
		mg/kg	0.19	ND
	Indeno[1,2,3-cd]pyrene	mg/kg	0.19	ND
	Isophorone	mg/kg	0.19	ND
	N-Nitroso-Di-N-Propylamine	mg/kg	0.19	ND
	N-Nitrosodimethylamine	mg/kg	0.19	ND
	N-Nitrosodiphenylamine	mg/kg	0.19	ND
	Naphthalene	mg/kg	0.19	ND
	Nitrobenzene	mg/kg	0.19	ND
	Pentachlorophenol	mg/kg	0.19	ND
	Phenanthrene	mg/kg	0.19	ND
	Phenol	mg/kg	0.19	ND
	Pyrene	mg/kg	0.19	ND

Page 19 of 46

SampleID TestGroup	Analyte	Units	MDL/PQL	Result
 ·····				
TAL Metals 60	· · ·			
	Aluminum	mg/kg	4700	ND
	Antimony	mg/kg	8.1	ND
	Arsenic	mg/kg	11	13
	Barium	mg/kg	56	170
	Beryllium	mg/kg	2.2	ND
	Cadmium	mg/kg	1.7	ND
	Calcium	mg/kg	5600	16000
	Chromium	mg/kg	22	ND
	Cobalt	mg/kg	9.3	ND
	Copper	mg/kg	21	92
	Iron	mg/kg	13000	ND
	Lead	mg/kg	22	80
	Magnesium	mg/kg	3300	ND
	Manganese	mg/kg	91	ND
	Nickel	mg/kg	14	23
	Potassium	mg/kg	450	ND
	Selenium	mg/kg	14	ND
	Silver	mg/kg	2.8	ND
	Sodium	mg/kg	450	ND
	Thailium	mg/kg	6.7	ND
	Vanadium	mg/kg	56	ND
	Zinc ,	mg/kg	56	240
Total Petroleu	m Hydrocarbons (Soil)			
	Total Petroleum Hydrocarbons (Soil)	mg/kg	38	ND
Volatile Organ	ics + 15 (8260)			
	1,1,1-Trichloroethane	mg/kg	0.0056	ND
	1,1,2,2-Tetrachloroethane	mg/kg	0.0056	ND
	1,1,2-Trichloroethane	mg/kg	0.0056	ND
	1,1-Dichloroethane	mg/kg	0.0056	ND
	1,1-Dichloroethene	mg/kg	0.0056	ND
	1,2-Dichloroethane	mg/kg	0.0056	ND
	1,2-Dichloropropane	mg/kg	0.0056	ND
	2-Chloroethylvinylether	mg/kg	0.0056	ND
	Acrolein	mg/kg	0.017	ND
	Acrylonitrile	mg/kg	0.0078	ND
	Benzene	mg/kg	0.0011	ND
	Bromodichloromethane	mg/kg	0.0056	ND
	Bromoform	mg/kg	0.0056	ND
	Bromomethane	mg/kg	0.0056	ND
	Carbon tetrachloride	mg/kg	0.0056	ND
	Chlorobenzene	mg/kg	0.0056	ND
	Chloroethane	mg/kg	0.0056	ND
	Chloroform	mg/kg	0.0056	ND
	Chloromethane		0.0056	ND
	Cis-1,3-Dichloropropene	mg/kg		
		mg/kg	0.0056	ND
	Dibromochloromethane	mg/kg	0.0056	ND
	Ethylbenzene	mg/kg	0.0011	ND
	M&p-Xylenes Mathuka a stanida	mg/kg	0.0022	ND
	Methylene chloride	mg/kg	0.0056	0.0073
	O-Xylene	mg/kg	0.0011	ND
	Tetrachloroethene	mg/kg	0.0056	ND
	Toluene	mg/kg	0.0011	ND
	Trans-1,2-Dichloroethene	mg/kg	0.0056	ND
	Trans-1,3-Dichloropropene	mg/kg	0.0056	ND
	Trichloroethene	mg/kg	0.0056	ND
	Vinyl chloride	mg/kg	0.0056	ND

Page 20 of 46

.ab#	SampleID TestGroup	Analyte	Units	MDL/PQL	Result	
AB1961	7 PG-PD-01	112100SO06				
101001		· · · · · · · · · · · · · · · · · · ·				
	% Solids SM25	40G				
		% Solids	percent		79	
	Cyanide (soil/v	vaste)				
	,	Cyanide	mg/kg	0.32	ND	
			myng	0.32	ND	
	Mercury (soil/v	vaste) 7471A				
		Mercury	mg/kg	0.18	ND	
	Oil & Grease					
	On a Grease		_ ·			
		Oil & Grease	mg/kg	84	370	
	Organochlorin	e Pesticides 8081				
	- ,	Aldrin	តាg/kg	0.0042	ND	
		Alpha-BHC	mg/kg	0.0042	ND	
	*	Beta-BHC	mg/kg	0.0042	ND	
		Chlordane	mg/kg	0.0084	ND	
		Delta-BHC	mg/kg	0.0042	ND	
		Dieldrin	mg/kg	0.0042	ND	
		Endosulfan I	mg/kg	0.0042	ND	
		Endosulfan II	mg/kg	0.0042	ND	
		Endosulfan Sulfate	mg/kg	0.0042	ND	
		Endrin	mg/kg	0.0042	ND	
		Endrin Aldehyde	mg/kg	0.0042	ND	
		Endrin Ketone	mg/kg	0.0042	ND	
		Gamma-BHC Heptachlor	mg/kg	0.0042	ND	
		•	mg/kg	0.0042	ND	
		Heptachlor Epoxide Methoxychlor	mg/kg mg/kg	0.0042 0.0042	ND ND	
		P,P'-DDD	mg/kg	0.0042	ND	
		P,P'-DDE	mg/kg	0.0042	ND	
		P.P.DDT	mg/kg	0.0042	ND	
		Toxaphene	mg/kg	0.042	ND	
	PCB 8082					
		and the second		and the second second		
		Aroclor-1016	mg/kg	0.021	ND	
	·	Aroclor-1221	mg/kg	0.021	ND	
		Aroclor-1232	mg/kg	0.021	ND	
		Aroclor-1242 Aroclor-1248	mg/kg	0.021	ND	
		Aroclor-1248 Aroclor-1254	mg/kg mg/kg	0.021 0.021	ND ND	
		Aroclor-1260	mg/kg	0.021	ND	
			inging .	0.021		
	р Н 9045С		,			
		рН	units		7.0	
	Phenols (soil/w	(aste) 9065				
	1 1101013 (3011/W	-				
		Phenol	mg/kg	1.6	ND	

Page 21 of 46

Samplell		Units	MDL/PQL	Result
 TestGroup	Analyte			
Semivolatile (Organics + 25 (8270)			
	1,2,4-Trichlorobenzene	mg/kg	0.21	ND
	1,2-Dichlorobenzene	mg/kg	0.21	ND
	1,2-Diphenylhydrazine	mg/kg	0.042	ND
	1,3-Dichlorobenzene	mg/kg	0.21	ND
	1,4-Dichlorobenzene	mg/kg	0.21	ND
	2,4,6-Trichlorophenol	mg/kg	0.21	ND
	2,4-Dichlorophenol	mg/kg	0.21	ND
	2,4-Dimethylphenol	mg/kg	0.21	ND
	2,4-Dinitrophenol	mg/kg	0.42	ND
	2,4-Dinitrotoluene	mg/kg	0.21	ND
	2,6-Dinitrotoluene		0.21	ND
	•	mg/kg		
	2-Chioronaphthalene	mg/kg	0.21	ND
	2-Chlorophenol	mg/kg	0.21	ND
	2-Nitrophenol	mg/kg	0.21	ND
	3,3'-Dichlorobenzidine	mg/kg	0.21	ND
	4,6-Dinitro-2-methylphenol	mg/kg	0.21	ND
	4-Bromophenyl-phenylether	mg/kg	0.21	ND
	4-Chloro-3-methylphenol	mg/kg	0.21	ND
	4-Chlorophenyl-phenylether	mg/kg	0.21	ND
	4-Nitrophenol	mg/kg	0.21	ND
	Acenaphthene	mg/kg	0.21	ND
	Acenaphthylene	mg/kg	0.21	ND
	Anthracene	mg/kg	0.21	ND
	Benzidine	mg/kg	0.42	ND
	Benzo[a]anthracene	mg/kg	0.21	ND
	Benzo[a]pyrene	mg/kg	0.21	ND
	Benzo[b]fluoranthene	mg/kg	0.21	ND
	Benzo[g,h,i]perylene	mg/kg	0.21	ND
	Benzo[k]fluoranthene	mg/kg	0.21	ND
	Bis(2-Chloroethoxy)methane	mg/kg	0.21	ND
	Bis(2-Chloroethyl)Ether	mg/kg	0.21	ND
	Bis(2-Chloroisopropyl)ether	mg/kg	0.21	ND ,
	Bis(2-Ethylhexyl)phthalate	mg/kg	0.21	0.225
	Butylbenzylphthalate	mg/kg	0.21	ND
	Chrysene	mg/kg	0.21	ND
•	Di-n-butylphthalate	mg/kg	0.21	ND
	DI-n-octylphthalate	mg/kg	0.21	ND
	Dibenzo(a,h)Anthracene			
		mg/kg	0.21	ND
	Diethylphthalate Directhylphthalate	mg/kg	0.21	ND
	Dimethylphthalate	mg/kg	0.21	ND
	Fluoranthene	mg/kg	0.21	ND
	Fluorene	mg/kg	0.21	ND
•	Hexachlorobenzene	mg/kg	0.21	ND
	Hexachlorobutadiene	mg/kg	0.21	ND
	Hexachlorocyclopentadiene	mg/kg	0.63	ND
	Hexachloroethane	mg/kg	0.21	ND
	Indeno[1,2,3-cd]pyrene	mg/kg	0.21	ND
	Isophorone	mg/kg	0.21	ND
	N-Nitroso-Di-N-Propylamine	mg/kg	0.21	ND
	N-Nitrosodimethylamine	mg/kg	0.21	ND
	N-Nitrosodiphenylamine	mg/kg	0.21	ND
	Naphthalene	mg/kg	0.21	ND
	Nitrobenzene	mg/kg	0.21	ND
	Pentachlorophenol	mg/kg	0.21	ND
	Phenanthrene	mg/kg	0.21	ND
	Phenol	mg/kg	0.21	ND
	Pyrene	mg/kg	0.21	ND

Page 22 of 46

	SampleID	Apolito	Units	MDL/PQL	Result
Test	sroup	Analyte	·····		
TAL	Metals 6010				
	Alum	inum	mg/kg	1100	1100
	Antim	οηγ	mg/kg	1.8	ND
	Arser	•	mg/kg	2.5	ND
	Bariu		mg/kg	13	13
	Beryl			0.51	ND
	•		mg/kg		
	Cadr		mg/kg	0.38	ND
	Calci		mg/kg	1300	ND
	Chron		mg/kg	5.1	ND
	Coba		mg/kg	2.1	ND
÷	Сорр	er	mg/kg	4.8	5.8
	Iron		mg/kg	3000	4500
	Lead		mg/kg	5.1	ND
	Magn	esium	mg/kg	750	ND
	Mang	anese	mg/kg	21	ND
	Nicke		mg/kg	3.1	ND
	Potas		mg/kg	510	ND
	Selen		mg/kg	3.2	ND
	Silver			0.63	ND
			mg/kg		
	Sodiu		mg/kg	510	ND
	Thalli		mg/kg	1.5	ND
	Vana	dium	mg/kg	13	ND
	Zinc		mg/kg	13	17
Total	Petroleum Hyd	rocarbons (Soil)			
	Total	Petroleum Hydrocarbons (Soil)	mg/kg	43	ND
Volati	le Organics + 1	5 (8260)	•		
	1,1,1	Trichloroethane	mg/kg	0.0063	ND
	1,1,2,	2-Tetrachloroethane	mg/kg	0.0063	ND
	1.1.2	Trichloroethane	mg/kg	0.0063	ND
		ichloroethane	mg/kg	0.0063	ND
		ichloroethene	mg/kg	0.0063	ND
		ichloroethane			
			mg/kg	0.0063	ND
		ichloropropane	mg/kg	0.0063	ND
		oroethylvinylether	mg/kg	0.0063	ND
	Acrole		mg/kg	0.019	ND
		onitrile	mg/kg	0.0088	ND
	Benze	ene	··· mg/kg	0.0013	ND
	Brom	odichloromethane	mg/kg	0.0063	ND
	Brom	oform	mg/kg	0.0063	ND
		omethane	mg/kg	0.0063	ND
		on tetrachloride	mg/kg	0.0063	ND
		obenzene		0.0063	
			mg/kg		ND
		pethane	mg/kg	0.0063	ND
	Chlore		mg/kg	0.0063	ND
		omethane	mg/kg	0.0063	ND
		3-Dichloropropene	mg/kg	0.0063	ND
	Dibro	mochloromethane	mg/kg	0.0063	ND
	Ethylt	penzene	mg/kg	0.0013	ND
		Kylenes	mg/kg	0.0025	ND
		tene chloride	mg/kg	0.0063	0.0026JB
	O-Xyl		mg/kg	0.0013	ND
		chloroethene		0.0063	
	Tolue		mg/kg		ND
			mg/kg	0.0013	ND
		-1,2-Dichloroethene	mg/kg	0.0063	ND
		-1,3-Dichloropropene	mg/kg	0.0063	ND
		oroethene	mg/kg	0.0063	ND
	Minul	chloride	mg/kg	0.0063	ND

#	SampleID		Units	MDL/PQL	Result	
	TestGroup	Analyte	Units	WIDDPQL	Result	
1961	8 PG-PD-06112	1005004			· .	
	% Solids SM2540G					
	% S	iolids	percent		47	
	Cyanide (soil/waste			1		
	Суа	nide	mg/kg	0.53	ND	
	Mercury (soil/waste	e) 7471A				÷
		cury	mg/kg	0.3	ND	
	Oil & Grease					
	Oil	& Grease	mg/kg	140	470	
	Organochlorine Pes	sticides 8081	•		-	
	Aldı		mg/kg	0.0071	ND	
		na-BHC	mg/kg	0.0071	ND	
		a-BHC	mg/kg	0.0071	ND	
	Chie	ordane	mg/kg	0.014	ND	• .
	Dett	a-BHC	mg/kg	0.0071	ND .	
	Diel	drin	mg/kg	0.0071	ND	
		osulfan I	mg/kg	0.0071	ND	
		osulfan II	mg/kg	0.0071	ND	
		osulfan Sulfate	mg/kg	0.0071	ND	
	End		mg/kg	0.0071	ND	
		rin Aldehyde	mg/kg	0.0071	ND	
		rin Ketone	mg/kg	0.0071	ND	
		nma-BHC	mg/kg	0.0071	ND	
	•	tachlor	mg/kg	0.0071	ND	
		tachlor Epoxide hoxychlor	. mg/kg mg/kg	0.0071 0.0071	ND ND	
		-DDD	mg/kg	0.0071	ND	
		-DDE	mg/kg	0.0071	ND	
		-DDT	mg/kg	0.0071	ND	
	-	aphene	mg/kg	0.071	ND	
	PCB 8082		0		· .	
	,					
		clor-1016	mg/kg	0.035	ND	
		clor-1221	mg/kg	0.035	ND	
		clor-1232 clor-1242	mg/kg	0.035	ND	
		clor-1242	mg/kg mg/kg	0.035 0.035	ND ND	
		clor-1254	mg/kg	0.035	.051	
		clor-1260	mg/kg	0.035	ND	
	pH 9045C					
	рп 9045С рН	`	units		7.3	
	Phenols (soil/waste	9065	Units		1.0	
	Phe	nol	mg/kg	2.7	ND	

.

Samplel		Units	MDL/PQL	Result
TestGroup	Analyte			
Semivolatile	Organics + 25 (8270)			
	1,2,4-Trichlorobenzene	mg/kg	0.35	ND
	1,2-Dichlorobenzene	mg/kg	0.35	ND
	1,2-Diphenylhydrazine	mg/kg	0.071	ND
	1,3-Dichlorobenzene	mg/kg	0.35	ND
	1,4-Dichlorobenzene	mg/kg	0.35	ND
	2,4,6-Trichlorophenol	mg/kg	0.35	ND
	2,4-Dichlorophenol	mg/kg	0.35	ND
	2,4-Dimethylphenol	mg/kg	0.35	0.63
	2,4-Dinitrophenol	mg/kg	0.71	ND
	2,4-Dinitrotoluene	mg/kg	0.35	ND
	2,6-Dinitrotoluene	mg/kg	0.35	ND
	2-Chioronaphthalene	mg/kg	0.35	ND
	2-Chlorophenol	mg/kg	0.35	ND
	2-Chiorophenol	mg/kg	0.35	ND ,
	3,3'-Dichlorobenzidine	mg/kg	0.35	ND
	4,6-Dinitro-2-methylphenol	mg/kg	0.35	ND
	4-Bromophenyi-phenyiether	mg/kg	0.35	ND
	4-Chloro-3-methylphenol	mg/kg	0.35	0.20J
	4-Chlorophenyl-phenylether	mg/kg	0.35	ND
	4-Nitrophenol	mg/kg	0.35	ND
	Acenaphthene	mg/kg	0.35	0,084J
	Acenaphthylene	mg/kg	0.35	ND
	Anthracene	mg/kg	0.35	0.088J
	Benzidine	mg/kg	0.71	ND
	Benzo[a]anthracene	mg/kg	0.35	0.11J
	Benzo[a]pyrene	mg/kg	0.35	ND
	Benzo[b]fluoranthene	mg/kg	0.35	ND
			0.35	ND
	Benzo[g,h,i]perylene	mg/kg	0.35	ND
	Benzo[k]fluoranthene Bis(2-Chloroethoxy)methane	mg/kg	0.35	ND
	Bis(2-Chloroethyl)Ether	mg/kg mg/kg	0.35	ND
	Bis(2-Chloroisopropyl)ether	mg/kg	0.35	ND A
	Bis(2-Ethylhexyl)phthalate	mg/kg	0.35	0.438
	Butylbenzylphthalate	mg/kg	0.35	ND
	Chrysene	mg/kg	0.35	0.095J
	Di-n-butylphthalate	mg/kg	0.35	ND
	DI-n-octylphthalate	mg/kg	0.35	0.11J
	Dibenzo[a,h]Anthracene	mg/kg	0.35	ND
	Diethylphthalate	mg/kg	0.35	ND
	Dimethylphthalate	mg/kg	0.35	ND
	Fluoranthene	mg/kg	0.35	0.35J
	Fluorene	mg/kg	0.35	0.13J
	Hexachlorobenzene	mg/kg	0.35	ND
	Hexachlorobutadiene	mg/kg	0.35	ND
	Hexachlorocyclopentadiene		1.1	ND
	Hexachloroethane	mg/kg	0.35	
		mg/kg	0.35	ND
	Indeno[1,2,3-cd]pyrene Isopherene	mg/kg		ND
	Isophorone N-Nitroso-Di-N-Propylamine	mg/kg	0.35	ND
	N-Nitrosodimethylamine	mg/kg mg/kg	0.35 0.35	ND
	N-Nitrosodiphenylamine			ND
		mg/kg	0.35	ND 0.351
	Naphthalene Nitrobonzono	mg/kg	0.35	0.35J
	Nitrobenzene Bentachlaraphanai	mg/kg	0.35	ND
	Pentachlorophenol Phenanthrene	mg/kg	0.35	ND
		mg/kg	0.35	0.37
	Phenol	mg/kg	0.35	ND
	Pyrene	mg/kg	0.35	0.26J

Page 25 of 46

ib#	SampleID		Units	MDL/PQL	Result
<u>т</u>	estGroup	Analyte	·····		
т	AL Metals 60	10			
		Aluminum	mg/kg	1800	3600
		Antimony	mg/kg	3.1	ND
		Arsenic	mg/kg	4.3	ND
		Barium	mg/kg	21	27
		Beryllium		0.85	ND
		Cadmium	mg/kg	0.64	ND
		Calcium	mg/kg		
			mg/kg	21000	270000
		Chromium	mg/kg	8.5	10
		Cobalt	mg/kg	3.5	ND
		Copper	mg/kg	8.1	13
		Iron	mg/kg	5000	ND
		Lead	mg/kg	8.5	12
		Magnesium	mg/kg	1300	3000
		Manganese	mg/kg	34	58
		Nickel	mg/kg	5.2	8.8
	- ·	Potassium	mg/kg	850	ND
		Selenium	mg/kg	5,3	ND
		Silver	mg/kg	1.1	ND
		Sodium	mg/kg	850	2300
•		Thallium	mg/kg	2.6	ND
		Vanadium	mg/kg	21	ND
		Zinc	mg/kg	21	46
т	otal Petroleu	m Hydrocarbons (Soil)			
•		Total Petroleum Hydrocarbons (Soil)	mg/kg	72	ND
v	olatile Organ	ics + 15 (8260)			
. *	viatile Organ				
		1,1,1-Trichloroethane	mg/kg	0.053	ND
		1,1,2,2-Teirachloroethane	mg/kg	0.053	ND
		1,1,2-Trichloroethane	mg/kg	0.053	ND
		1,1-Dichloroethane	mg/kg	0.053	ND
		1,1-Dichloroethene	mg/kg	0.053	ND
		1,2-Dichloroethane	mg/kg	0.053	ND
		1,2-Dichloropropane	mg/kg	0.053	ND
		2-Chloroethylvinylether	mg/kg	0.053	ND
		Acrolein	mg/kg	0.16	• ND
		Acrylonitrile	mg/kg	0.074	ND
		Benzene	mg/kg	0.011	ND
		Bromodichloromethane		0.053	ND
		Bromoform	mg/kg		
		Bromomethane	mg/kg	0.053	ND
		Carbon tetrachloride	mg/kg	0.053	ND
			mg/kg	0.053	ND
		Chlorobenzene	mg/kg	0.053	ND
		Chloroethane	mg/kg	0.053	ND
		Chloroform	mg/kg	0.053.	ND
		Chloromethane	mg/kg	0.053	ND
		Cis-1,3-Dichloropropene	mg/kg	0.053	ND
		Dibromochloromethane	mg/kg	0.053	ND
		Ethylbenzene	mg/kg	0.011	ND
		M&p-Xylones	mg/kg	0.021	ND
		Methylene chloride	mg/kg	0.053	0.025#B V
	•	O-Xylene	mg/kg	0.011	ND
		Tetrachloroethene	mg/kg	0.053	ND
		Toluene	mg/kg	0.011	0.025
		Trans-1,2-Dichloroethene	mg/kg	0.053	ND
		Trans-1,3-Dichloropropene	mg/kg	0.053	ND
		Trichloroethene			
		Vinyl chloride	mg/kg mg/kg	0.053 0.053	ND ND
		A HIAL COLORIDE		111153	

Veritech Report Of Analysis 175 Route 46 West, Unit D. Fairfield, NJ 07004

Veritech Project: 11240942

Page 26 of 46

Sample		Units	MDL/PQL	Result
TestGroup	Analyte		.	
9619 PG-PD-	06112100SO07			
% Solids SN	2540G			
	% Solids	percent		26
Cyanide (so	il/waste)			
, , ,	Cyanide	mg/kg	0.96	ND
Moroury (co				
Mercury (So	il/waste) 7471A			
	Mercury	mg/kg	0.55	ND
Oil & Grease	•			
	Oil & Grease	mg/kg	260	6200
Organochlo	ine Pesticides 8081			
- <i>i</i> gunoomo	Aldrin	mg/kg	0.013	ND
	Alpha-BHC	mg/kg	0.013	ND
	Beta-BHC	mg/kg	0.013	ND
	Chlordane	mg/kg	0.026	ND
	Delta-BHC	mg/kg	0.013	ND
	Dieldrin	mg/kg	0.013	ND
•	Endosulfan 1	mg/kg	0.013	ND
	Endosulfan II	mg/kg	0.013	ND
	Endosulfan Sulfate	mg/kg	0.013	ND
	Endrin	mg/kg	0.013	ND
	Endrin Aldehyde	mg/kg	0.013	ND
	Endrin Ketone	mg/kg	0.013	ND
	Gamma-BHC	mg/kg	0.013	ND
	Heptachlor	mg/kg	0.013	ND
	Heptachlor Epoxide	mg/kg	0.013	ND
	Methoxychlor	mg/kg	0.013	ND
	P,P'-DDD	mg/kg	0.013	ND
	P,P-DDE	mg/kg	0.013	ND
	P,P'-DDT	mg/kg	0.013	ND
	Toxaphene	mg/kg	0.13	ND
PCB 8082				
	Aroclor-1016	mg/kg	0.064	ND
	Aroclor-1221	mg/kg	0.064	ND
	Arocior-1232	mg/kg	0.064	ND
	Aroclor-1242	mg/kg	0.064	ND
	Arocior-1248	mg/kg	0.064	ND
	Aroclor-1254	mg/kg	0.064	ND
	Aroclor-1260	mg/kg	0.064	ND
pH 9045C	`			
F	рН	units		10
Phenols (soi	l/waste) 9065			
	Phenot	mg/kg	4.8	25
		mg/kg	4.0	23

Samplel		Units	MDL/PQL	Result
TestGroup	Analyte			
Semivolatile (Organics + 25 (8270)			
	1,2,4-Trichlorobenzene	mg/kg	0.64	ND
	1,2-Dichlorobenzene	mg/kg	0.64	ND
	1,2-Diphenylhydrazine	mg/kg	0.13	ND
	1,3-Dichlorobenzene	mg/kg	0.64	ND
	1,4-Dichlorobenzene	mg/kg	0.64	ND
	2,4,6-Trichlorophenol	mg/kg	0.64	ND
	2,4-Dichlorophenol	mg/kg	0.64	ND
	2,4-Dimethylphenol	mg/kg	0.64	ND
	2,4-Dinitrophenol	mg/kg	1.3	ND
	2,4-Dinitrotoluene		0.64	ND
	•	mg/kg		
	2,6-Dinitrotoluene	mg/kg	0.64	ND
	2-Chloronaphthalene	mg/kg	0.64	ND
	2-Chlorophenol	mg/kg	0.64	ND
	2-Nitrophenol	mg/kg	0.64	ND
	3,3'-Dichlorobenzidine	mg/kg	0.64	ND
	4,6-Dinitro-2-methylphenol	mg/kg	0.64	ND
	4-Bromophenyl-phenylether	mg/kg	0.64	ND
	4-Chioro-3-methylphenol	mg/kg	0.64	ND
	4-Chlorophenyl-phenylether	mg/kg	0.64	ND
	4-Nitrophenol	mg/kg	0.64	ND
	Acenaphthene	mg/kg	0.64	1.2
	Acenaphthylene	mg/kg	0.64	ND
	Anthracene	mg/kg	0.64	1.1
	Benzidine	mg/kg	1.3	ND
	Benzo[a]anthracene	mg/kg	0.64	0.42J
	Benzoja]pyrene	mg/kg	0.64	ND
	Benzo[b]fluoranthene	mg/kg	0.64	ND
	Benzo[g,h,i]perylene	mg/kg	0.64	ND
	Benzo[k]fluoranthene	mg/kg	0.64	ND
	Bis(2-Chloroethoxy)methane	mg/kg	0.64	ND
	Bis(2-Chloroethyl)Ether	mg/kg	0.64	ND
	Bis(2-Chloroisopropyl)ether	mg/kg	0.64	ND
	Bis(2-Ethylhexyl)phthalate	mg/kg	0.64	0.655 U
	Butylbenzylphthalate	mg/kg	0.64	ND
	Chrysene	mg/kg	0.64	0.33J
	Di-n-butylphthalate	mg/kg	0.64	0.15/8 V
		_		ND
	Di-n-octylphthalate Dibeozofa blAnthracone	mg/kg	0.64	
	Dibenzo[a,h]Anthracene Diethylphthalate	mg/kg	0.64	ND
	Diethylphthalate Dimethylphthalate	mg/kg	0.64	ND
	Dimethylphthalate	mg/kg	0.64	_ ND
	Fluoranthene Fluorene	mg/kg	0.64	2.1
		mg/kg	0.64	1.7
	Hexachiorobenzene	mg/kg	0.64	ND
	Hexachlorobutadiene	mg/kg	0.64	ND
	Hexachlorocyclopentadiene	mg/kg	1.9	ND
	Hexachloroethane	mg/kg	0.64	ND
	Indeno[1,2,3-cd]pyrene	mg/kg	0.64	ND
	Isophorone	mg/kg	0.64	ND
	N-Nitroso-Di-N-Propylamine	mg/kg	0.64	ND
	N-Nitrosodimethylamine	mg/kg	0.64	ND
	N-Nitrosodiphenylamine	mg/kg	0.64	ND
	Naphthalene	mg/kg	0.64	0.48J
	Nitrobenzene	mg/kg	0.64	ND
	Pentachlorophenol	mg/kg	0.64	ND
	Phenanthrene	mg/kg	0.64	6.5
	Phenol	mg/kg	0.64	0.19J
	Pyrene	mg/kg	0.64	1.3

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004 Veritech Project: 11240942

b#	Samplel TestGroup	Analyte	Units	MDL/PQL	Result	
	TAL Metals 60	10				
		Aluminum	mg/kg	3200	5500	
		Antimony	mg/kg	5.6	ND	
		Arsenic	mg/kg	7.7	14	
		Barium	mg/kg	38	160	
		Beryllium	mg/kg	1.5	ND	
		-				
•			mg/kg	1.2	51	
		Calcium	mg/kg	3800	150000	
		Chromium	mg/kg	15	ND	
		Cobait	mg/kg	6.3	ND	
		Copper	mg/kg	15	560	
		Iron	mg/kg	9100	9300	
	4 · · ·	Lead	mg/kg	15	340	
		Magnesium	mg/kg	2300	58000	
		Manganese	mg/kg	62	190	
		Nickel	mg/kg	9.4	120	
•		Potassium	mg/kg	1500	ND	
		Selenium	mg/kg	9.6	ND	
		Silver		· · ·		
			mg/kg	1.9	ND	
	*	Sodium	mg/kg	1500	9700	
		Thallium	mg/kg	4.6	ND	
		Vanadium	mg/kg	38	ND	
		Zinc	mg/kg	38	4500	
	Total Petroleu	m Hydrocarbons (Soil)				
		Total Petroleum Hydrocarbons (Soil)	mg/kg	130	210	
	Volatile Organ					
	rolatile organ	1,1,1-Trichloroethane	mg/kg	0.019	ND	
		1,1,2,2-Tetrachloroethane	mg/kg	0.019	ND	
		1,1,2-Trichloroethane		0.019	ND	
			mg/kg			
		1,1-Dichloroethane	mg/kg	0.019	ND	
		1,1-Dichloroethene	mg/kg	0.019	ND	
		1,2-Dichloroethane	. mg/kg	0.019	ND	
		1,2-Dichloropropane	mg/kg	0.019	ND	
		2-Chloroethylvinylether	mg/kg	0.019	ND	
		Acrolein	mg/kg	0.058	ND	
		Acrylonitrile	mg/kg	0.027	ND	
		Benzene	mg/kg	0.0038	0.035	
		Bromodichloromethane	mg/kg	0.019	ND	
		Bromoform	mg/kg	0.019	ND	
		Bromomethane				
			mg/kg	0.019	ND	
		Carbon tetrachloride	mg/kg	0.019	ND	
		Chlorobenzene	mg/kg	0.019	ND	
		Chloroethane	mg/kg	0.019	ND '	
		Chloroform	mg/kg	0.019	ND	
		Chloromethane	mg/kg	0.019	ND	
		Cis-1,3-Dichloropropene	mg/kg	0.019	ND	
		Dibromochloromethane	mg/kg	0.019	ND	
		Ethylbenzene	mg/kg	0.0038	0.012	
		M&p-Xylenes	mg/kg	0.0077	0.029	
		Methylene chloride	mg/kg	0.019	0.010JB	
			mg/kg	0.0038	0.018	
		Tetrachloroethene	mg/kg	0.019	ND	
		Toluene	mg/kg	0.0038	0.28	
		Trans-1,2-Dichloroethene	mg/kg	0.019	ND	
		Trans-1,3-Dichloropropene	mg/kg	0.019	ND	
		Trichloroethene	mg/kg	0.019	ND	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

Veritech Project: 11240942

Page 29 of 46

• •	SampleID		Units	MDL/PQL	Result	
Test	Sroup	Analyte				
620	PG-G-02-112100	SO01				
	ids SM2540G					
	% Soli	ds	percent		86	
Cvan	ide (soil/waste)					
• • • • •	Cyanic	le	mg/kg	0.29	ND	· · · ·
More	-		0.0			
Merci	ury (soil/waste) 7					
	Mercu	ry .	mg/kg	0.17	.25	
Oil &	Grease					
	Oil & (Grease	mg/kg	78	ND	+ 1
•						
Orgai	nochlorine Pesti	ciaes 8087				
	Aldrin		mg/kg	0.0039	ND	
	Alpha-		mg/kg	0.0039	ND	
	Beta-B		mg/kg	0.0039	ND	
	Chlord		mg/kg	0.0078	ND	
	Delta-I		mg/kg	0.0039 0.0039	ND. ND	
	Dieldri Endos		mg/kg		ND	
	Endos		mg/kg mg/kg	0.0039 0.0039	ND ·	
		ulfan Sulfate	mg/kg	0.0039	ND	
	Endrin		mg/kg	0.0039	ND	
		Aldehyde	mg/kg	0.0039	ND	
		Ketone	mg/kg	0.0039	ND	
	Gamm		mg/kg	0.0039	ND	
	Heptad		mg/kg	0.0039	ND	
	•	chlor Epoxide	mg/kg	0.0039	ND	
	Metho		mg/kg	0.0039	ND	
	P.P-D	DD	mg/kg	0.0039	ND	
	P.P.D	DE	mg/kg	0.0039	NÐ	
	P,P'-D	DT	mg/kg	0.0039	ND	
	Toxapl	nene	mg/kg	0.039	ND	
PCB 8	3082					
	Aroclo	-1016	mg/kg	0.019	ND	
	Arocio		mg/kg	0.019	ND	
	Arocio		mg/kg	0.019	ND	
	Aroclo		mg/kg	0.019	ND	
	Arocio		mg/kg	0.019	ND	
	Aroclo		mg/kg	0.019	ND	
	Aroclo	r-1260	mg/kg	0.019	ND	
pH 90	45C					
P11.00	-300 рН		units		8.3	
Dhan		065			0.0	
Pheno	ols (soil/waste) 9					
	Phenol	l	mg/kg	1.4	ND	

Page 30 of 46

Samplel			Units	MDL/PQL	Result	
TestGroup	Analyte					
Semivolatile (Drganics + 25 (8270)					
	1,2,4-Trichlorobenzene		mg/kg	0.19	ND	
	1,2-Dichlorobenzene		mg/kg	0,19	ND	
	1,2-Diphenylhydrazine		mg/kg	0.039	ND	
	1,3-Dichlorobenzene		mg/kg	0.19	ND	
	1,4-Dichlorobenzene			0.19	ND	
		· .	mg/kg			
	2,4,6-Trichlorophenol		mg/kg	0.19	ND	
	2,4-Dichlorophenol		mg/kg	0.19	ND	
	2,4-Dimethylphenol		mg/kg	.0.19	ND	
	2,4-Dinitrophenol		mg/kg	0.39	ND	
	2,4-Dinitrotoluene		mg/kg	0.19	ND	
	2,6-Dinitrotoluene		mg/kg	0.19	ND	
	2-Chioronaphthalene		mg/kg	0.19	ND	
	2-Chlorophenol		mg/kg	0.19	ND	
	2-Nitrophenol		mg/kg	0.19	ND	
	3,3'-Dichlorobenzidine		mg/kg	0.19	ND	
	4,6-Dinitro-2-methylphenol		mg/kg	0.19	ND	
	4-Bromophenyl-phenylether		mg/kg	0.19	ND	
	4-Chloro-3-methylphenol	and the second second second	mg/kg	0.19	ND	
	4-Chlorophenyl-phenylether		mg/kg	0.19	ND	
	4-Nitrophenol	· ·	mg/kg	0.19	ND	
	Acenaphthene	•	mg/kg	0.19	ND	
	Acenaphthylene		mg/kg	0.19	0.12J	
	Anthracene			0.19	0.081J	
			mg/kg			
· · · ·	Benzidine		mg/kg	0.39	ND	
	Benzo[a]anthracene		mg/kg	0.19	0.64	
	Benzo[a]pyrene		mg/kg	0.19	0.56	
	Benzo[b]fluoranthene		mg/kg	0.19	0.86	
	Benzo[g,h,i]perylene		mg/kg	0.19	0.39	
	Benzo[k]fluoranthene	·	mg/kg	0.19	0.21	
	Bis(2-Chloroethoxy)methane		mg/kg	0.19	ND	
	Bis(2-Chloroethyl)Ether		mg/kg	0.19	ND	
·	Bis(2-Chloroisopropyl)ether		mg/kg	0.19	ND	
	Bis(2-Ethylhexyl)phthalate		mg/kg	0.19	0.21	
	Butylbenzylphthalate		mg/kg	0.19	ND	
	Chrysene		mg/kg	0.19	0.73	
	Di-n-butylphthalate		mg/kg	0,19	0.055JB	
	DI-n-octyiphthalate		mg/kg	0.19	ND	
	Dibenzo[a,h]Anthracene		mg/kg	0.19	0.16J	
	Diethylphthalate		mg/kg	0.19	ND	
	Dimethylphthalate			0.19	ND	
			mg/kg			
	Fluoranthene		mg/kg	0.19	1.2	
	Fluorene		mg/kg	0.19	ND	
	Hexachlorobenzene		mg/kg	0.19	ND	
	Hexachlorobutadiene		mg/kg	0.19	ND	
	Hexachlorocyclopentadiene		mg/kg	0.58	ND	
	Hexachloroethane		mg/kg	0.19	ND	
	Indeno[1,2,3-cd]pyrene		mg/kg	0.19	0.36	
	Isophorone		mg/kg	0.19	ND	
	N-Nitroso-Di-N-Propylamine		mg/kg	0.19	ND	
	N-Nitrosodimethylamine		mg/kg	0.19	ND	
	N-Nitrosodiphenylamine		mg/kg	0.19	ND	
	Naphthalene		mg/kg	0.19	0.087J	
	Nitrobenzene		mg/kg	0.19	ND	
	Pentachlorophenol					
	-		mg/kg	0.19	ND	
	Phenanthrene		mg/kg	0.19	0.53	
	Phenol		mg/kg	0.19	ND	
•	Pyrene		mg/kg	0.19	1.0	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004 Veritech Project: 11240942

TestGroup	Analyte	Units	MDL/PQL	Result
 TAL Matala 00				·····
TAL Metals 60				
	Aluminum	mg/kg	980	4000
	Antimony	mg/kg	1.7	6.9
	Arsenic	mg/kg	2.3	240
	Barium	mg/kg	12	280
	Beryllium	. mg/kg	0.47	1.7
	Cadmium	mg/kg	0.35	.45
	Calcium	mg/kg	1200	11000
	Chromium	mg/kg	4.7	38
	Cobalt	mg/kg	.1,9	15
	Copper	mg/kg	4.4	410
	Iron	mg/kg	14000	45000
	Lead	mg/kg	4.7	820
	Magnesium	mg/kg	690	4800
	Manganese	mg/kg	19	330
	Nickel	mg/kg	2.8	380
	Potassium	mg/kg	470	ND
	Selenium	mg/kg	2.9	3
	Silver	mg/kg	0.58	ND
	Sodium	mg/kg	470	ND
	Thallium	mg/kg	1.4	ND
	Vanadium	mg/kg	12	25
	Zinc	mg/kg	12	1100
Total Petroleu	m Hydrocarbons (Soil)			1100
rotari ciroicu	Total Petroleum Hydrocarbons (Soil)	mg/kg	40	ND
Volatile Organ				
rolatile organ	1,1,1-Trichloroethane	mg/kg	0.0058	ND
	1,1,2,2-Tetrachloroethane		0.0058	ND
		mg/kg		
	1,1,2-Trichloroethane	mg/kg	0.0058	ND
	1,1-Dichloroethane	mg/kg	0.0058	ND
	1,1-Dichloroethene	mg/kg	0.0058	ND
	1,2-Dichloroethane	mg/kg	0.0058	ND
	1,2-Dichloropropane	mg/kg	0.0058	ND
	2-Chloroethylvinylether	mg/kg	0.0058	ND
	Acrolein	~ mg/kg	0.017	ND
	Acrylonitrile	mg/kg	0.0081	ND
	Benzene	mg/kg	0.0012	ND
	Bromodichloromethane	mg/kg	0.0058	ND
	Bromoform	mg/kg	0.0058	ND
	Bromomethane	mg/kg	0.0058	ND
	Carbon tetrachloride	mg/kg	0.0058	ND
	Chlorobenzene	mg/kg	0.0058	ND
	Chloroethane	mg/kg	0.0058	ND
	Chloroform	mg/kg	0.0058	ND
	Chloromethane	mg/kg	0.0058	ND
	Cis-1,3-Dichloropropene	mg/kg	0.0058	ND
	Dibromochloromethane	mg/kg	0.0058	ND
	Ethylbenzene			
		mg/kg	0.0012	ND
	M&p-Xylenes Methylana chlorida	mg/kg	0.0023	ND D DDGG IF I I
	Methylene chloride	mg/kg	0.0058	0.0056,18
	O-Xylene	mg/kg	0.0012	ND
	Tetrachioroethene	mg/kg	0.0058	ND
	Toluene	mg/kg	0.0012	ND
	Trans-1,2-Dichloroethene	mg/kg	0.0058	ND
	Trans-1,3-Dichloropropene	mg/kg	0.0058	ND
	Trichloroethene	mg/kg	0.0058	ND
	Vinyl chloride	mg/kg	0.0058	ND

Page 32 of 46

ıb#	Samplell TestGroup	Analyte	Units	MDL/PQL	Result	
B1962	1 PG-G-02	-112100SO03		· · · · · · · · · · · · · · · · · · ·		
_		· _ · · · · · · · · · · · · · · · · · ·				
	% Solids SM2					
		% Solids	percent		52	
	Cyanide (soil/	waste)				
		Cyanide	mg/kg	0.48	ND	
	Manager (11					
	Mercury (soil				· · · ·	
		Метситу	mg/kg	0.27	ND	
	Oil & Grease	·				
		Oil & Grease	mg/kg	130	ND	
	Owwarashlari					
	organochiorn	ne Pesticides 8081				
		Aldrin	mg/kg	0.0064	ND	
		Alpha-BHC	mg/kg	0.0064	ND	
		Beta-BHC	mg/kg	0.0064	ND	
		Chlordane	mg/kg	0.013	ND	
		Delta-BHC	mg/kg	0.0064	ND	
		Dieldrin	mg/kg	0.0064	ND	
		Endosulfan I	mg/kg	0.0064	ND	
		Endosulfan II	mg/kg	0.0064	ND	
		Endosulfan Sulfate	mg/kg	0.0064	ND	
		Endrin	mg/kg	0.0064	ND	
		Endrin Aldehyde	mg/kg	0.0064	ND	
		Endrin Ketone Gamma-BHC	mg/kg	0.0064	ND	
		Heptachlor	mg/kg	0.0064	ND	
		Heptachlor Epoxide	mg/kg	0.0064 0.0064	ND ND	
		Methoxychlor	mg/kg mg/kg	0.0064	ND	
		P,P'-DDD	mg/kg	0.0064	ND	
		P,P-DDE	mg/kg	0.0064	ND	
		P,P'-DDT	mg/kg	0.0064	ND	
		Toxaphene	mg/kg	0.064	ND	
		-			••=	
	PCB 8082			and an inclusion of the		
		Aroclor-1016	mg/kg	0.032	ND	
		Aroclor-1221	mg/kg	0.032	ND	
		Aroclor-1232	mg/kg	0.032	ND	
		Aroclor-1242	mg/kg	0.032	ND	
		Aroclor-1248	mg/kg	0.032	ND	
		Aroclor-1254	mg/kg	0.032	ND	
	•	Aroclor-1260	mg/kg	0.032	ND	
`	рН 9045С					
		рН	units		7.9	
	Dhanels (s. 31					
	Phenols (soil/					
		Phenol	mg/kg	2.4	ND	

Page 33 of 46

ab# SampleID	· ·	Units	MDL/PQL	Result
TestGroup	Analyte	·	· · · · · · · · · · · · · · · · · · ·	· .
Semivolatile C	rganics + 25 (8270)			·
	1,2,4-Trichlorobenzene	mg/kg	0.32	ND
	1,2-Dichlorobenzene	mg/kg	0.32	ND
	1,2-Diphenylhydrazine	mg/kg	0.064	ND
	1,3-Dichlorobenzene	mg/kg	0.32	ND
	1,4-Dichlorobenzene	mg/kg	0.32	ND
· .	2,4,6-Trichlorophenol	mg/kg	0.32	ND
· · · ·	2,4-Dichlorophenol	mg/kg	0.32	ND
	2,4-Dimethylphenol	mg/kg	0.32	ND
	2,4-Dinitrophenol	mg/kg	0.64	ND
	2,4-Dinitrotoluene	mg/kg	0.32	ND
	2,6-Dinitrotoluene	mg/kg	0.32	ND
	2-Chloronaphthalene		0.32	ND
	•	mg/kg		
	2-Chlorophenol	mg/kg	0.32	ND
	2-Nitrophenol	mg/kg	0.32	ND
	3,3'-Dichlorobenzidine	mg/kg	0.32	ND
	4,6-Dinitro-2-methylphenol	mg/kg	0.32	ND
	4-Bromophenyl-phenylether	mg/kg	0.32	ND
1. Sec. 1. Sec	4-Chloro-3-methylphenol	mg/kg	0.32	ND
	4-Chlorophenyi-phenyiether	mg/kg	0.32	ND
	4-Nitrophenol	mg/kg	0.32	ND
	Acenaphthene	mg/kg	0.32	ND
	Acenaphthylene	mg/kg	0.32	ND
	Anthracene	mg/kg	0.32	ND
	Benzidine	mg/kg	0.64	ND
	Benzo[a]anthracene	mg/kg	0.32	ND
	Benzo[a]pyrene	mg/kg	0.32	ND
	Benzo[b]fluoranthene	mg/kg	0.32	ND
	Benzo[g,h,i]perylene	mg/kg	0.32	ND
	Benzo[k]fluoranthene	mg/kg	0.32	ND
	Bis(2-Chloroethoxy)methane	mg/kg	0.32	ND
	Bis(2-Chloroethyl)Ether	mg/kg	0.32	ND
	Bis(2-Chloroisopropyl)ether	mg/kg	0.32	ND A
	Bis(2-Ethylhexyl)phthalate	mg/kg	0.32	0.31,8
	Butylbenzylphthalate	mg/kg	0.32	ND
	Chrysene		0.32	ND
	-	mg/kg		
	Di-n-butylphthalate	mg/kg	0.32	ND
	DI-n-octylphthalate	mg/kg	0.32	ND
	Dibenzo[a,h]Anthracene	mg/kg	0.32	ND
	Diethylphthalate	mg/kg	0.32	ND
	Dimethylphthalate	mg/kg	0.32	ND
,	Fluoranthene	mg/kg	0.32	0.085J
	Fluorene	mg/kg	0.32	ND
	Hexachlorobenzene	mg/kg	0.32	ND
	Hexachlorobutadiene	mg/kg	0.32	ND
	Hexachlorocyclopentadiene	mg/kg	0.96	ND
. ,	Hexachloroethane	mg/kg	0.32	ND
	Indeno[1,2,3-cd]pyrene	mg/kg	0.32	ND
	Isophorone	mg/kg	0.32	ND
	N-Nitroso-Di-N-Propylamine	mg/kg	0.32	ND
	N-Nitrosodimethylamine	mg/kg	0.32	ND
	N-Nitrosodiphenylamine	mg/kg	0.32	ND
	Naphthalene	mg/kg	0.32	0.11J
	Nitrobenzene	mg/kg	0.32	ND
	Pentachlorophenol	mg/kg	0.32	ND
	Phenanthrene	mg/kg	0.32	0.093J
	Phenol	mg/kg	0.32	0.065J
	Pyrene			
	- yiene	mg/kg	0.32	0.077J

Veritech Project: 11240942

Page 34 of 46

	SamplelI TestGroup	Analyte	Units	MDL/PQL	Result
		· · · · · · · · · · · · · · · · · · ·			
	TAL Metals 60	010			
		Aluminum	mg/kg	1600	3600
		Antimony	mg/kg	2.8	ND
		Arsenic	mg/kg	3.8	29
		Barium	mg/kg	19	500
		Beryllium	mg/kg	0.77	1.8
		Cadmium	mg/kg	0.58	ND
		Calcium	mg/kg	1900	15000
		Chromium	mg/kg	7.7	ND
		Cobalt	mg/kg	3.2	6.7
		Copper	mg/kg	7.3	210
•		Iron	mg/kg	4500	54000
		Lead	mg/kg	7.7	140
		Magnesium	mg/kg	1100	2300
		Manganese	mg/kg	31	340
		Nickel	mg/kg	4.7	83
		Potassium	mg/kg	770	ND
		Selenium	mg/kg	4.8	4.9
		Silver	mg/kg	0.96	ND
		Sodium	mg/kg	770	ND
		Thallium	mg/kg	2.3	ND
		Vanadium	mg/kg	19	ND
		Zinc	mg/kg	19	1100
	Total Potrolou	m Hydrocarbons (Soil)			
	Total Felloleu	Total Petroleum Hydrocarbons (Soil)		65	
			mg/kg	65	ND
	Volatile Organ	nics + 15 (8260)			
		1,1,1-Trichloroethane	mg/kg	0.0096	ND
		1,1,2,2-Tetrachioroethane	mg/kg	0.0096	ND
		1,1,2-Trichloroethane	mg/kg	0.0096	ND
		1,1-Dichloroethane	mg/kg	0.0096	ND
		1,1-Dichloroethene	mg/kg	0.0096	ND
		1,2-Dichloroethane	mg/kg	0.0096	ND
		1,2-Dichloropropane	mg/kg	0.0096	ND
		2-Chloroethylvinylether	mg/kg	0.0096	ND
		Acrolein	mg/kg	0.029	ND
		Acrylonitrile	mg/kg	0.013	ND
		Benzene	mg/kg	0.0019	ND
		Bromodichloromethane	mg/kg	0.0096	ND
		Bromoform	mg/kg	0.0096	ND
		Bromomethane	mg/kg	0.0096	ND
		Carbon tetrachloride	mg/kg	0.0096	ND
		Chlorobenzene	mg/kg	0.0096	ND
		Chloroethane	mg/kg	0.0096	ND
		Chloroform	mg/kg	0.0096	ND
		Chloromethane	mg/kg	0.0096	ND
		Cis-1,3-Dichloropropene		0.0096	
		Dibromochloromethane	mg/kg mg/kg	0.0096	ND
		Ethylbenzene	mg/kg		ND
		M&p-Xylenes	mg/kg	0.0019	ND
			mg/kg	0.0038	ND
		Methylene chloride	mg/kg	0.0096	0.0048JB
		O-Xylene	mg/kg	0.0019	ND
		Tetrachloroethene	mg/kg	0.0096	ND
		Toluene	mg/kg	0.0019	ND
		Trans-1,2-Dichloroethene	mg/kg	0.0096	ND
		Trans-1,3-Dichloropropene	mg/kg	0.0096	ND
		Trichloroethene	mg/kg	0.0096	ND
		Vinyl chloride	mg/kg	0.0096	ND

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

ab# Sam TestGrou	pleiD p Analyte	Units	MDL/PQL	Result	
			······································		
B19622 PG-	3-02-112100SO04				
% Solids	SM2540G				
	% Solids	percent		81	
Oursida		•			
Cyanide	(soil/waste)				
	Cyanide	mg/kg	0.31	ND	
Mercury	(soil/waste) 7471A				
•	Mercury	mg/kg	0.18	ND	
	•				
Oil & Gre					
	Oil & Grease	mg/kg	82	NÐ	
Organoc	nlorine Pesticides 8081				
0.91.100	Aldrin	mg/kg	0.0041	ND	
	Alpha-BHC	mg/kg	0.0041	ND	
	Beta-BHC	mg/kg	0.0041	ND	
	Chlordane	mg/kg	0,0082	ND	
· · · · · · · · · · · · · · · · · · ·	Delta-BHC	mg/kg	0.0041	ND	
	Dieldrin	mg/kg	0.0041	ND	
	Endosulfan I	mg/kg	0.0041	ND	
	Endosulfan II	mg/kg	0.0041	ND	
	Endosulfan Sulfate	mg/kg	0.0041	ND	
	Endrin	mg/kg	0.0041	ND	
	Endrin Aldehyde	mg/kg	0.0041	ND	
	Endrin Ketone	mg/kg	0.0041	ND	
	Gamma-BHC	mg/kg	0.0041	ND	
	Heptachlor	mg/kg	0.0041	ND	
	Heptachlor Epoxide	mg/kg	0.0041	ND	
,	Methoxychlor	mg/kg	0.0041	ND	
	P,P'-DDD	mg/kg	0.0041	ND	
	P,P'-DDE	mg/kg	0.0041	ND	
	P,P'-DDT	mg/kg	0.0041	ND	
	Toxaphene	mg/kg	0.041	ND	
PCB 8082	•				
			0.001		
•	Aroclor-1016 Aroclor-1221	mg/kg	0.021	ND ND	
	Aroclor-1221 Aroclor-1232	mg/kg ‴ mg/kg	0.021	ND	
•	Aroclor-1242	mg/kg	0.021	ND	
	Aroclor-1242	mg/kg	0.021	ND	
	Aroclor-1254	mg/kg	0.021	ND	
	Aroclor-1260	mg/kg	0.021	ND	
			<i>u.u.</i> .		
рН 90450					`
	рН	units		7.7	
Phenols	soil/waste) 9065				
1 1.611010	•				
	Phenol	mg/kg	1.5	ND	

Page 36 of 46

Samplel		Units	MDL/PQL	Result
 TestGroup	Analyte			
Semivolatile (Drganics + 25 (8270)			
	1,2,4-Trichlorobenzene	mg/kg	0.21	ND
	1,2-Dichlorobenzene	mg/kg	0.21	ND
	1,2-Diphenylhydrazine	mg/kg	0.041	ND
	1,3-Dichlorobenzene	mg/kg	0.21	ND
	1,4-Dichlorobenzene	mg/kg	0.21	ND
	2,4,6-Trichlorophenol	mg/kg	0.21	ND
	2,4-Dichlorophenol	mg/kg	0.21	ND
	2,4-Dimethylphenol	mg/kg	0.21	ND
	2,4-Dinitrophenol	mg/kg	0.41	ND
	2,4-Dinitrotoluene	mg/kg	0.21	ND
	2,6-Dinitrotoluene	mg/kg	0.21	ND
	2-Chloronaphthalene	mg/kg	0.21	ND
	2-Chlorophenol	mg/kg	0.21	ND
	2-Nitrophenol	mg/kg	0.21	ND
	3,3'-Dichlorobenzidine		0.21	ND
		mg/kg		
	4,6-Dinitro-2-methylphenol	mg/kg	0.21	ND ND
	4-Bromophenyl-phenylether	mg/kg	0.21	ND
	4-Chloro-3-methylphenol	mg/kg	0.21	ND
	4-Chlorophenyl-phenylether	mg/kg	0.21	ND
	4-Nitrophenol	mg/kg	0.21	ND
	Acenaphthene	mg/kg	0.21	ND
	Acenaphthylene	mg/kg	0.21	ND
	Anthracene	mg/kg	0.21	ND
	Benzidine	mg/kg	0.41	ND
	Benzo[a]anthracene	mg/kg	0.21	ND
	Benzo[a]pyrene	mg/kg	0.21	0.048J
	Benzo[b]fluoranthene	mg/kg	0.21	ND
	Benzo[g,h,i]perylene	mg/kg	0.21	ND
	Benzo[k]fluoranthene	mg/kg	0.21	ND
	Bis(2-Chloroethoxy)methane	mg/kg	0.21	ND
	Bis(2-Chloroethyl)Ether	mg/kg	0.21	ND
	Bis(2-Chloroisopropyl)ether	mg/kg	0.21	ND 🖉
	Bis(2-Ethylhexyl)phthalate	mg/kg	0.21	0.148 V
	Butylbenzylphthalate	mg/kg	0.21	ND
	Chrysene	mg/kg	0.21	ND
	Di-n-butylphthalate	mg/kg	0.21	ND
	DI-n-octylphthalate	mg/kg	0.21	NĎ
	Dibenzo[a,h]Anthracene	mg/kg	0.21	ND
	Diethylphthalate	mg/kg	0.21	ND
	Dimethylphthalate	mg/kg	0.21	ND
	Fluoranthene	mg/kg	0.21	ND
	Fluorene	mg/kg	0.21	ND
	Hexachlorobenzene	mg/kg	0.21	ND
	Hexachlorobutadiene	mg/kg	0.21	ND
	Hexachlorocyclopentadiene	mg/kg	0.62	ND
	Hexachloroethane			
	Indeno[1,2,3-cd]pyrene	mg/kg	0.21	ND
		mg/kg	0.21	ND
	Isophorone	mg/kg	0.21	ND
	N-Nitroso-Di-N-Propylamine	mg/kg	0.21	ND
	N-Nitrosodimethylamine	mg/kg	0.21	ND
	N-Nitrosodiphenylamine	mg/kg	0.21	ND
	Naphthalene	mg/kg	0.21	ND
	Nitrobenzene	mg/kg	0.21	ND
	Pentachlorophenol	mg/kg	0.21	ND
	Phenanthrene	mg/kg	0.21	ND
	Phenol	mg/kg	0.21	ND
	Pyrene	mg/kg	0.21	ND

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

	SampleID	A	· · · ·	Units	MDL/PQL	Result
Test	sroup	Analyte			··	
TAL	Metals 6010					
	Atuminum			mg/kg	1000	3600
	Antimony			mg/kg	1.8	ND
	Arsenic				2.5	
	Barium			mg/kg		4
				mg/kg	12	38
	Beryllium			mg/kg	0.49	ND
	Cadmium	4 - P		mg/kg	0.37	ND
	Calcium			mg/kg	1200	ND
	Chromium		1	mg/kg	4.9	6.5
	Cobalt			mg/kg	2	ND
	Copper		•	mg/kg	4.7	12
	Iron			mg/kg	2900	11000
	Lead			mg/kg	4.9	5.8
	Magnesium	0		mg/kg	730	ND
	Manganese			mg/kg	20	36
	Nickel	-			3	
				mg/kg		3.3
	Potassium			mg/kg	490	ND
	Selenium			mg/kg	3.1	ND
	Silver			∵ mg/kg	0.62	ND
	Sodium			mg/kg	490	ND
	Thallium			mg/kg	1.5	ND
	Vanadium			mg/kg	12	14
	Zinc			mg/kg	12	23
Total	Petroleum Hydroca	rhons (Soil)				
		leum Hydrocarbons (Soi	in	mg/kg	42	NÐ
			•)	mynky	42	ND
Volat	le Organics + 15 (82	· ·				
	1,1,1-Trichl			mg/kg	0.0062	ND
	1,1,2,2-Tet	rachloroethane		mg/kg	0.0062	NÐ
	1,1,2-Trichl	loroethane		mg/kg	0.0062	ND
	1,1-Dichlor	oethane		mg/kg	0.0062	ND
	1,1-Dichlor	oethene		mg/kg	0.0062	ND
	1,2-Dichlor			mg/kg	0.0062	ND
	1,2-Dichlor			mg/kg	0.0062	ND
		hylvinylether			0.0062	ND
		iyiviiyiediei		mg/kg		
	Acrolein		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	mg/kg	0.019	ND
	Acrylonitrile	3		mg/kg	0.0086	ND
	Benzene	•		mg/kg	0.0012	ND
				mg/kg	0.0062	ND
	Bromodich			mg/kg	0.0062	ND
	Bromodichl Bromoform				0.0062	ND
				mg/kg	0.0002	
	Bromoform	nane	· · · · · · · · · · · · · · · · · · ·	mg/kg mg/kg	0.0062	ND
	Bromoform Bromometh Carbon tetr	nane rachloride	•	mg/kg	0.0062	
	Bromoform Bromometh Carbon tetr Chlorobenz	nane rachloride rene	·	mg/kg mg/kg	0.0062 0.0062	ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chloroethar	nane rachloride rene ne		mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062	ND ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chloroethar Chloroform	nane rachloride rene ne		mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062	ND ND ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chloroethat Chloroform Chloroform	nane rachloride ne ne nane		mg/kg mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062	ND ND ND ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chlorothau Chloroform Chlorometh Cis-1,3-Dic	nane rachloride rene ne nane hloropropene		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062	ND ND ND ND ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chloroetha Chloroform Chlorometh Cis-1,3-Dic Dibromochl	nane rachloride rene ne nane hloropropene loromethane		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062	ND ND ND ND ND ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chloroform Chloroform Chlorometh Cis-1,3-Dic Dibromochl Ethylbenzer	nane rachloride rene ne nane htloropropene loromethane ne		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062	ND ND ND ND ND ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chloroethai Chlorometh Cis-1,3-Dic Dibromochl Ethylbenzet M&p-Xylend	nane rachloride rene na nane hloropropene loromethane ne es		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0012 0.0012	ND ND ND ND ND ND ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chloroform Chloroform Chlorometh Cis-1,3-Dic Dibromochl Ethylbenzer	nane rachloride rene na nane hloropropene loromethane ne es		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062	ND ND ND ND ND ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chloroethai Chlorometh Cis-1,3-Dic Dibromochl Ethylbenzet M&p-Xylend	nane rachloride rene na nane hloropropene loromethane ne es		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0012 0.0012	ND ND ND ND ND ND ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chloroethat Chloroform Chlorometh Cis-1,3-Dic Dibromochl Ethylbenzet M&p-Xylene O-Xylene	nane achloride tene ne hane hloropropene loromethane ne es chloride		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0012 0.0012 0.0025 0.0062 0.0012	ND ND ND ND ND ND 0.0040,18 ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chloroothat Chloroform Chlorometh Cis-1,3-Dic Dibromochl Ethylbenzet M&p-Xylene Methylene o O-Xylene Tetrachloro	nane achloride tene ne hane hloropropene loromethane ne es chloride		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0012 0.0025 0.0062 0.0012 0.0012 0.0012	ND ND ND ND ND ND ND 0.0040,18 ND ND ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chlorocethal Chlororethal Chlororetha Chlorormeth Cis-1,3-Dic Dibromochl Ethylbenzet M&p-Xylene Methylene e O-Xylene Tetrachloro Toluene	nane rachloride ene ne hane hloropropene loromethane ne es chloride wethene		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0012 0.0025 0.0062 0.0012 0.0012 0.0062 0.0012	ND ND ND ND ND ND ND 0.0040,00 ND ND ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chloroethai Chlorometh Cis-1,3-Dic Dibromochl Ethylbenzet M&p-Xylene Methylene o O-Xylene Tetrachloro Toluene Trans-1,2-D	nane rachloride rene ne nane htloropropene loromethane ne es chloride rethene Dichloroethene		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0012 0.0025 0.0062 0.0012 0.0062 0.0012 0.0062 0.0012 0.0062	ND ND ND ND ND ND ND 0.0040,JB ND ND ND ND ND ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chloroethar Chloroethar Chlorometh Cis-1,3-Dic Dibromochl Ethylbenzer M&p-Xylene Tetrachloro Toluene Trans-1,2-D Trans-1,3-D	nane rachloride rene ne hane hloropropene loromethane ne es chloride rethene Dichloroethene Dichloropropene		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0012 0.0025 0.0062 0.0012 0.0062 0.0012 0.0062 0.0062	ND ND ND ND ND ND 0.0040,00 ND ND ND ND ND ND ND
	Bromoform Bromometh Carbon tetr Chlorobenz Chloroethai Chlorometh Cis-1,3-Dic Dibromochl Ethylbenzet M&p-Xylene Methylene o O-Xylene Tetrachloro Toluene Trans-1,2-D	nane achloride tene ne hane hloropropene loromethane ne es chloride tethene Dichloroethene Dichloropropene hene		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0012 0.0025 0.0062 0.0012 0.0062 0.0012 0.0062 0.0012 0.0062	ND ND ND ND ND ND ND 0.0040,JB ND ND ND ND ND ND

Page 38 of 46

b#	SampleID	· · · ·	Units	MDL/PQL	Result
	TestGroup	Analyte			
B19623	PG-G-7N-112	1005005			
D1302					
	% Solids SM25400	6			
	%	Solids	percent		87
	Cyanide (soil/wast	te)			
		yanide		0.00	
	-		mg/kg	0.29	ND
	Mercury (soil/was	te) 7471A			
	M	ercury	mg/kg	0.16	ND
	Oil & Grease				
	Oi	1 & Grease	mg/kg	77 .	460
	Organochlorine Pe	esticides 8081			· · ·
	=	drin	mg/kg	0.0038	ND
		pha-BHC	mg/kg	0.0038	ND
		ta-BHC	mg/kg	0.0038	ND
		hlordane	mg/kg	0.0077	ND
		elta-BHC	mg/kg	0.0038	ND
		eldrin	mg/kg	0.0038	ND
	En	idosulfan I	mg/kg	0.0038	ND
	En	dosulfan II	mg/kg	0.0038	ND
	En	idosulfan Sulfate	mg/kg	0.0038	ND
	En	Idrin	mg/kg	0.0038	ND
	En	idrin Aldehyde	mg/kg	0.0038	ND
	En	idrin Ketone	mg/kg	0.0038	ND
	Ga	amma-BHC	mg/kg	0.0038	ND
	He	eptachlor	mg/kg	0.0038	ND
	He	ptachlor Epoxide	mg/kg	0.0038	ND
		ethoxychlor	mg/kg	0.0038	ND
		P'-DDD	mg/kg	0.0038	.0093
		P'-DDE	mg/kg	0.0038	.039
		P'-DDT	mg/kg	0.0038	ND
		xaphene	mg/kg	0.038	ND
	PCB 8082				
		oclor-1016	mg/kg	0.019	ND
		oclor-1221	mg/kg	0.019	NÐ
		octor-1232	mg/kg	0.019	ND
		oclor-1242	mg/kg	0.019	ND
		oclor-1248	. mg/kg	0.019	ND
		oclor-1254	mg/kg	0.019	ND
	Are	pclar-1260	mg/kg	0.019	ND
	рН 9045С			N Contraction of the second se	
	рН	I	units		8.6
·	Phenols (soil/wast	e) 9065			
	Ph	enol	mg/kg	1,4	6.5

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

		Amalite	Units	MDL/PQL	Result
	TestGroup	Analyte	· · · · ·		
	Semivolatile (Drganics + 25 (8270)			
		1,2,4-Trichlorobenzene	mg/kg	0,19	ND
		1,2-Dichlorobenzene	mg/kg	0.19	ND
		1,2-Diphenylhydrazine	mg/kg	0.038	ND
		1,3-Dichlorobenzene	mg/kg	0.19	ND
		1,4-Dichlorobenzene	mg/kg	0.19	ND
		2,4,6-Trichlorophenol	mg/kg	0.19	ND
		2,4-Dichlorophenol	mg/kg	0.19	ND
		2,4-Dimethylphenol	mg/kg	0.19	ND
		2,4-Dinitrophenol		0.38	ND
			mg/kg		
		2,4-Dinitrotoluene	mg/kg	0.19	ND
		2,6-Dinitrotoluene	mg/kg	0.19	ND
	· ·	2-Chloronaphthalene	mg/kg	0.19	ND
		2-Chlorophenol	mg/kg	0.19	ND
		2-Nitrophenol	mg/kg	0.19	ND
		3,3'-Dichlorobenzidine	mg/kg	0.19	ND
		4,6-Dinitro-2-methylphenol	mg/kg	0.19	ND
		4-Bromophenyl-phenylether	mg/kg	0.19	ND
		4-Chloro-3-methylphenol	mg/kg	. 0.19	ND
		4-Chlorophenyl-phenylether	mg/kg	0.19	ND
		4-Nitrophenol	mg/kg	0.19	ND
		Acenaphthene	mg/kg	0.19	ND
		Acenaphthylene	mg/kg	0.19	ND
		Anthracene	mg/kg	0.19	ND
		Benzidine	mg/kg	0.38	ND
		Benzo[a]anthracene	mg/kg	0.19	ND
		Benzo(a)pyrene	mg/kg	0.19	ND
•		Benzo[b]fluoranthene	mg/kg	0.19	ND
		Benzo[g,h,i]perylene	mg/kg	0.19	ND
		Benzo[k]fluoranthene	mg/kg	0.19	ND
		Bis(2-Chloroethoxy)methane	mg/kg	0.19	ND
		Bis(2-Chloroethyl)Ether	mg/kg	0.19	ND
		Bis(2-Chloroisopropyl)ether	mg/kg	0.19	ND
		Bis(2-Ethylhexyl)phthalate		0,19	0.12.JB ⁴ V
			mg/kg		ND ND
		Butylbenzylphthalate	mg/kg	0.19	
		Chrysene	mg/kg	0.19	ND 0.064,18
		Di-n-butylphthalate	mg/kg	0.19	
		Di-n-octylphthalate	mg/kg	0.19	ND *
		Dibenzo[a,h]Anthracene	mg/kg	0.19	ND
		Diethylphthalate	mg/kg	0.19	ND
		Dimethylphthalate	mg/kg	0.19	ND
		Fluoranthene	mg/kg	0.19	ND
		Fluorene	mg/kg	0.19	ND
		Hexachlorobenzene	mg/kg	0.19	ND
		Hexachlorobutadiene	mg/kg	0.19	ND
		Hexachlorocyclopentadiene	mg/kg	0.57	ND
		Hexachloroethane	mg/kg	0.19	ND
		Indeno[1,2,3-cd]pyrene	mg/kg	0.19	ND
		Isophorone	mg/kg	0.19	ND
		N-Nitroso-Di-N-Propylamine	mg/kg	0.19	ND
		N-Nitrosodimethylamine	mg/kg	0.19	ND
		N-Nitrosodiphenylamine	mg/kg	0.19	ND
	•	Naphthalene	mg/kg	0.19	ND
		Nitrobenzene	mg/kg	0.19	ND
		Pentachlorophenol	mg/kg	0.19	ND
		Phenanthrene		0.19	ND
		Phenol	mg/kg		
		Phenoi Pyrene	mg/kg mg/kg	0.19 0.19	ND ND

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

# Samplel	······	Units	MDL/PQL	Result
TestGroup	Analyte			
TAL Metals 6	010			•
	Aluminum	mg/kg	970	1500
	Antimony	mg/kg	1.7	ND
	Arsenic	mg/kg	2.3	ND
	Barium	mg/kg	11	45
•			0.46	ND
	Beryllium	mg/kg		
	Cadmium	mg/kg	0.34	ND
	Calcium	mg/kg	1100	14000
	Chromium	mg/kg	4.6	7.8
	Cobalt	mg/kg	1.9	ND
	Copper	mg/kg	4.4	16
	Iron	mg/kg	2700	13000
	Lead	mg/kg	4.6	72
	Magnesium	mg/kg	680	1800
	Manganese	mg/kg	19	93
	Nickel	mg/kg	2.8	12
• • •	Potassium	mg/kg	460	ND
	Selenium	mg/kg	2.9	ND
	Silver	mg/kg	0.57	ND
	Sodium		460	
-	Thallium	mg/kg		ND
		mg/kg	1.4	ND
	Vanadium 	mg/kg	11	ND
	Zinc	mg/kg	11	52
Total Petrole	ım Hydrocarbons (Soil)			
	Total Petroleum Hydrocarbons (Soil)	mg/kg	39	410
Volatile Orga	nics + 15 (8260)			
	1,1,1-Trichloroethane	mg/kg	0.0057	ND
	1,1,2,2-Tetrachloroethane	mg/kg	0.0057	ND
	1,1,2-Trichloroethane	mg/kg	0.0057	ND
	1,1-Dichloroethane	mg/kg	0.0057	ND
	1,1-Dichloroethene	mg/kg	0.0057	ND
	1,2-Dichloroethane	mg/kg	0.0057	ND
	1,2-Dichloropropane	mg/kg	0.0057	ND
	2-Chloroethylvinylether		0.0057	
	• •	mg/kg		ND
	Acrolein	mg/kg	0.017	ND
	Acrylonitrile	mg/kg	0.0080	ND
	Benzene	mg/kg	0.0011	ND
	Bromodichloromethane	mg/kg	0.0057	ND
	Bromoform	mg/kg	0.0057	ND
	Bromomethane	mg/kg	0.0057	ND
	Carbon tetrachloride	mg/kg	0.0057	ND
	Chlorobenzene	mg/kg	0.0057	ND
	Chloroethane	mg/kg	0.0057	ND
	Chloroform	mg/kg	0.0057	ND
	Chloromethane	mg/kg	0.0057	ND
	Cis-1,3-Dichloropropene	mg/kg	0.0057	ND
	Dibromochloromethane	mg/kg	0.0057	ND
	Ethylbenzene			
	•	mg/kg	0.0011	ND
	Map-Xylenes	mg/kg	0.0023	ND
	Methylene chloride	mg/kg	0.0057	0.00678 V
	O-Xylene	mg/kg	0.0011	ND
	Tetrachloroethene	mg/kg	0.0057	ND
	Toluene	mg/kg	0.0011	ND
	Trans-1,2-Dichloroethene	mg/kg	0.0057	ND
	Trans-1,3-Dichloropropene	mg/kg	0.0057	ND
	Trichloroethene	mg/kg	0.0057	ND
	Vinyl chloride	mg/kg	0.0057	ND

Page 41 of 46

)#	SampleID TestGroup	Analyte	Units	MDL/PQ	L Re	esult	
					<u></u>	- 	
19624	PG-G-7N-1	12100SO06					
	% Solids SM254	0G			•	•	
		% Solids	percent		81		
			percent		. 01		
	Cyanide (soil/wa	aste)					
		Cyanide	mg/kg	0.31	ND		
	Mercury (soil/wa	aste) 7471A					
		Mercury	mg/kg	0.18	ND		· .
		mercury	ing/kg	0.10	ND		
	Oil & Grease						
		Oil & Grease	mg/kg	82	. ND		
	Organochlorine	Pesticides 8081					
	organoemonne	Aldrin		0.0044	ND		
		Alpha-BHC	mg/kg mg/kg	0.0041 0.0041	ND ND		
		Beta-BHC	mg/kg	0.0041	ND		
		Chlordane	mg/kg	0.0082	ND		
		Delta-BHC	mg/kg	0.0041	ND		
•		Dieldrin	mg/kg	0.0041	ND		
		Endosulfan l	mg/kg	0.0041	ND		
		Endosulfan II	mg/kg	0.0041	ND		
		Endosulfan Sulfate	mg/kg	0.0041	ND		
		Endrin	mg/kg	0.0041	ND		
		Endrin Aldehyde	mg/kg	0.0041	ND		
		Endrin Ketone	mg/kg	0.0041	ND		
		Gamma-BHC	mg/kg	0.0041	ND		
		Heptachior	mg/kg	0.0041	ND		
		Heptachlor Epoxide	mg/kg	0.0041	ND		
		Methoxychlor P,P'-DDD	mg/kg mg/kg	0.0041 0.0041	. ND ND		
		P.P'-DDE	mg/kg	0.0041	ND ND		
		P,P'-DDT	mg/kg	0.0041	ND		
		Toxaphene	mg/kg	0.041	ND		
	PCB 8082						
		Aroclor-1016	mg/kg	0.021	ND		•
		Aroclor-1221	mg/kg	0.021	ND		
		Aroclor-1232	mg/kg	0.021	ND		
		Aroclor-1242 Aroclor-1248	mg/kg	0.021	ND		
		Aroclor-1240	mg/kg mg/kg	0.021 0.021	ND ND		
		Aroclor-1260	mg/kg	0.021	ND	·· ·	
				0.021	ND		
	pH 9045C	x .					
		рН _	units		8.0		
	Phenols (soil/wa	ste) 9065					
	•	Phenot	malka				
		r lieliut	mg/kg	1.5	ND ND		

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

	Samplel		Units	MDL/PQL	Result
÷	TestGroup	Analyte	Units	MDL/FQL	Nesun
			<u></u>		
	Semivolatile C	Organics + 25 (8270)			
	•	1,2,4-Trichlorobenzene	mg/kg	0.21	ND
		1,2-Dichlorobenzene	mg/kg	0.21	ND
		1,2-Diphenylhydrazine	mg/kg	0.041	ND
		1,3-Dichlorobenzene	mg/kg	0.21	ND
•		1,4-Dichlorobenzene	mg/kg	0.21	ND ,
		2,4,6-Trichlorophenol	mg/kg	0.21	ND
		2,4-Dichlorophenol	mg/kg	0.21	ND
		2,4-Dimethylphenol	mg/kg	0.21	ND
		2,4-Dinitrophenol	mg/kg	0.41	ND
		2,4-Dinitrotoluene	mg/kg	0.21	ND
		2,6-Dinitrotoluene	mg/kg	0.21	ND
		2-Chloronaphthalene	mg/kg	0.21	ND
		2-Chiorophenol	mg/kg	0.21	ND
		2-Nitrophenol	mg/kg	0.21	ND
		3,3'-Dichlorobenzidine	mg/kg	0.21	ND
		4,6-Dinitro-2-methylphenol	mg/kg	0.21	ND
		4-Bromophenyl-phenylether	mg/kg	0.21	ND
		4-Chloro-3-methylphenol	mg/kg	0.21	ND
		4-Chlorophenyl-phenylether	mg/kg	0.21	ND
		4-Nitrophenol	mg/kg	0.21	ND
		Acenaphthene	mg/kg	0.21	ND
		Acenaphthylene	mg/kg	0.21	ND
		Anthracene	mg/kg	0.21	ND
		Benzidine	mg/kg	0.41	ND
		Benzo[a]anthracene	mg/kg	0.21	ND
		Benzo[a]pyrene	mg/kg	0.21	ND
		Benzo[b]fluoranthene	mg/kg	0.21	ND
		Benzo[g,h,i]perylene	mg/kg	0.21	ND
		Benzo[k]fluoranthene	mg/kg	0.21	ND
		Bis(2-Chloroethoxy)methane	mg/kg	0.21	ND
		Bis(2-Chloroethyl)Ether	mg/kg	0.21	ND
		Bis(2-Chloroisopropyl)ether	mg/kg	0.21	ND /
		Bis(2-Ethylhexyl)phthalate	mg/kg	0.21	0.379
		Butylbenzylphthalate			ND ND
			mg/kg	0.21	
		Chrysene Die butdabbelate	mg/kg	0.21	ND
		Di-n-butylphthalate	mg/kg	0.21	0.071,18
		DI-n-octylphthalate	mg/kg	0.21	ND
		Dibenzo[a,h]Anthracene	mg/kg ····	0.21	ND
		Diethylphthalate	mg/kg	0.21	ND
	•	Dimethylphthalate	mg/kg	0.21	ND
		Fluoranthene	mg/kg	0.21	ND
		Fluorene	mg/kg	0.21	ND
		Hexachlorobenzene	mg/kg	0.21	ND
		Hexachlorobutadiene	mg/kg	0.21	ND
		Hexachlorocyclopentadiene	mg/kg	0.62	ND
		Hexachloroethane	mg/kg	0.21	ND
		Indeno[1,2,3-cd]pyrene	. mg/kg	0.21	ND
		Isophorone	mg/kg	0.21	ND
		N-Nitroso-Di-N-Propylamine	mg/kg	0.21	ND
		N-Nitrosodimethylamine	mg/kg	0.21	ND
		N-Nitrosodiphenylamine	mg/kg	0.21	ND
		Naphthalene	mg/kg	0.21	ND
		Nitrobenzene	mg/kg	0.21	ND
		Pentachlorophenol	mg/kg	0.21	ND
		Phenanthrene	mg/kg	0.21	ND
		Phenol	mg/kg	0.21	ND
		Pyrene	mg/kg	0.21	ND

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004 Veritech Project: 11240942

.

SampleID TestGroup	Analyte	Units	MDL/PQL	Result	
 				·····	
TAL Metals 601	10				
	Aluminum	mg/kg	1000	2400	
	Antimony	mg/kg	1.8	ND	
	Arsenic	mg/kg	2.5	3.3	
	Barium	mg/kg	12	22	
	Beryllium	mg/kg	0.49	ND	
	Cadmium	mg/kg	0.37	ND	
	Calcium	mg/kg	1200	ND	
	Chromium		4.9	5.5	
	Cobait	mg/kg mg/kg	2	3.2	
			4.7	9	
	Copper	mg/kg			
	Iron	mg/kg	2900	7000	
	Lead	mg/kg	4.9	7.7	
	Magnesium	mg/kg	730	ND	
	Manganese	mg/kg	20	33	
	Nickel	mg/kg	3	3.6	
	Potassium	mg/kg	490	ND	
	Selenium	mg/kg	3.1	ND	
	Silver	mg/kg	0.62	ND	
	Sodium	mg/kg	490	ND	
	Thallium	rng/kg	1.5	ND	
	Vanadium	mg/kg	12	ND	
	Zinc	mg/kg	12	67	
Total Petroleun	n Hydrocarbons (Soil)				
	Total Petroleum Hydrocarbons (Soil)	mg/kg	42	62	
Volatile Organi					
V Gaule Of gam			0.0000		
	1,1,1-Trichloroethane	mg/kg	0.0062	ND	
	1,1,2,2-Tetrachloroethane	mg/kg	0.0062	ND	
	1,1,2-Trichloroethane	mg/kg	0.0062	ND	
	1,1-Dichloroethane	mg/kg	0.0062	, ND	
	1,1-Dichloroethene	mg/kg	0.0062	ND	
	1,2-Dichloroethane	mg/kg	0.0062	ND	
	1,2-Dichloropropane	mg/kg	0.0062	ND	
	2-Chloroethylvinylether	mg/kg	0.0062	ND	
	Acrolein	mg/kg	0.019	ND	
	Acrylonitrile	mg/kg	0.0086	ND	
	Benzene	mg/kg	0.0012	ND	
	Bromodichloromethane	mg/kg	0.0062	ND	
	Bromoform	mg/kg	0.0062	ND	
	Bromomethane	mg/kg	0.0062	ND	
	Carbon tetrachloride	mg/kg	0.0062	NÐ	
	Chlorobenzene	mg/kg	0.0062	ND	
	Chloroethane	mg/kg	0.0062	ND	
	Chloroform	mg/kg	0.0062	ND	
	Chloromethane	mg/kg	0.0062	ND	
	Cis-1,3-Dichloropropene	mg/kg	0.0062	ND	
	Dibromochloromethane	mg/kg	0.0062	ND	
	Ethylbenzene	mg/kg	0.0012	ND .	
	M&p-Xylenes	mg/kg mg/kg	0.0012	ND .	
	Methylene chloride	mg/kg	0.0023	0.0028 JB ()	
	O-Xylene				
	•	mg/kg	0.0012	ND	
	Tetrachloroethene	mg/kg	0.0062	ND	
	Toluene	mg/kg	0.0012	ND -	
	Trans-1,2-Dichloroethene	mg/kg	0.0062	ND	
	Trans-1,3-Dichloropropene	mg/kg	0.0062	ND	
	Trichloroethene	mg/kg	0.0062	ND	
	Vinyl chloride		0.0062	ND	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

CT #: PH-0671

MA #: NJ386 NY #: 11408 PA #: 68-463

JERSEY CITY

NJ #: 14622

Report Of Analysis veritech laboratories

To: PORT AUTHORITY OF NY & NJ MATERIALS ENGINEERING DIV. 241 ERIE ST. ROOM 234

NJ

Attention: D Project: H 07310-1397

Dorian Bailey HH-Port Ivory Date Collected:11/29/00Date Submitted:12/1/00Date Reported:1/2/01

Lab#	SampleID TestGroup	Analyte		Units	MDL/PQL	Result
AB20012	D PG-PAMW	01D112900WG01			······································	
ADZUUT		01011200011001		and the second second	•	
	Cyanide (water)) EPA 335.2				
		Cyanide		mg/L	0.01	0.016
	Mercury (water)	245 1	· · · ·			
	weiculy (water					
		Mercury		ug/i	0.21	ND
	Oil & Grease					
		Oil & Grease		mg/l	1	15
	Organochloring	e Pesticides 608				
	organocinorine	Aldrin		n	A 47	
		Alpha-BHC		ug/i ug/i	0.02 0.02	ND ND
		Beta-BHC		ug/l	0.02	ND
		Chlordane		ug/l	0.2	ND
		Delta-BHC		ug/l	0.02	ND
		Dieldrin		ug/l	0.02	ND
		Endosulfan I		ug/l	0.02	ND
		Endosutian II		ug/1	0.02	ND
		Endosulfan Sulfate		ug/l	0.02	ND
		Endrin		ndų	0.02	ND
		Endrin Aldehyde		ug/l	0.02	ND
	1	Endrin Ketone		ug/l	0.02	ND
		Gamma-BHC		ug/t	0.02	ND
		Heptachlor		ug/l	0.02	ND
		Heptachlor Epoxide		ug/l	0.02	ND
		Methoxychlor P.P'-DDD		ug/l	0.02	ND
		P,P-DDE		ug/1 ug/1	0.02	ND ND
		P,P-DDT		ug/l	0.02	ND
		Toxaphene		บฐ/1	1	ND
					•	100
	PCB 608					•
		Arocior-1016		ug/l	0.5	ND
		Aroclor-1221		ug/l	0.5	ND
		Aroclor-1232		ug/i	0.5	ND
		Aroclor-1242	•	ndyj	0.5	ND
		Aroclor-1248		ug/l	0.5	ND
		Aroclor-1254		ug/l	0.5	ND
		Arocior-1260		ug/l	0.5	ND
	Phenols (water)) 420.1			,	
		Phenol		mg/i	0.05	ND

MDL used for 600 and 200 series methods. PQL used for SW846 methods. ND = Not Detected

Veritech Project: 12011513

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

Page 1 of 16

# Sample TestGroup	Analyte	Units	MDL/PQL	Result	
	······				[
Sernivolatile	Organics + 25 (625)				
	1,2,4-Trichlorobenzene	ug/i	0.27	ND	
	1,2-Dichlorobenzene	ug/i	0.26	ND	
	1,2-Diphenylhydrazine	ug/l	0.24	ND	
	1,3-Dichlorobenzene	ug/l	0.27	ND	
	1,4-Dichlorobenzene	ug/l	0.20	ND	
	2,4,6-Trichlorophenol	ug/i	2.1	ND	
	2,4-Dichlorophenal	ug/l	2.0	ND	
	2,4-Dimethylphenol	ug/l	1.4	ND	
	2,4-Dinitrophenoi	ug/l	0.47	ND	
	2,4-Dinitrotoluene	ug/i	0.16	ND	•
· · ·	2,6-Dinitrotoluene	սց/լ	0.27	ND	
	2-Chloronaphthaiene	ug/t	0.22	ND	
	2-Chiorophenol	ug/i	1.4	ND	
	2-Nitrophenol	ug/l	2.1	ND	
	3,3'-Dichlorobenzidine	ug/l	2.7	. ND	
	4,6-Dinitro-2-methylphenol	ug/i	1.2	ND	
	4-Bromophenyl-phenylether	ug/t	0.23	ND	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4-Chioro-3-methylphenol	ug/l	1.9	ND	
-	4-Chlorophenyl-phenylether	ugit	0.32	ND	
	4-Nitrophenol	ug/l	1.6	ND	
	Acenaphthene	ug/i	0.31	ND	
	Acenaphthylene	ug/l	0.26	ND	
	Anthracene	ug/l	0.25	ND	
	Benzidine	ug/l	3.4	ND	
	Benzojajanthracene	ug/i	0.20	ND	
	Benzola]pyrene	ugA	0.24	ND	
	Benzo[b)fluoranthene	ug/l	0.49	ND	
	Benzo[g,h,i]perylene	ug/l	0.36	ND	
	Benzofk)fluoranthene	ug/l	0.50	ND	
	Bis(2-Chloroethoxy)methane	ug/i	0.21	ND	
	Bis(2-Chloroethyl)Ether	ug/l	0.15	ND	
	Bis(2-Chloroisopropyl)ether	ug/l	0.14	ND	
	Bis(2-Ethylhexyl)phthalate	ug/i	0.37		
	Butylbenzylphthalate	ug/l	0.29	8.2 U ND	
	Chrysene	ug/l	0.30	ND	
	Di-n-butylphthalate	ugn	0.26	ND	
	Di-n-octylphihalate	ug/ł	0.80	ND	
	Dibenzofa,hjAnthracene	ug/i	0.34	ND	
	Diethylphthalate	ug/l	0.31	ND.	
	Dimethylphthalate	ug/l	0.24	ND	
	Fluoranthene	ug/1	0.29	ND	
	Fluorene	ug/i	0.28	ND	
	Hexachlorobenzene	ug/l	0.28	ND	
	Hexachlorobutadiene	1/1	0.25	ND	
4.	Hexachlorocyclopentadiene	ug/l	2.5	ND ,	
	Hexachloroethane	ug/l	0.26	ND	
	Indeno[1,2,3-cd]pyrene	ug/l	0.34	ND	
	Isophorone	· ug/l	0.21	ND	
	N-Nitroso-Di-N-Propylamine	ug/l	0.22	ND	
	N-Nitrosodimethylamine	ug/l	0.28	ND	
	N-Nitrosodiphenylamine	ug/l	0.32	ND	
	Naphthalene	ug/l	0.36	ND	
	Nitrobenzene	ug/l	0.33	ND	
	Pentachlorophenol	ug/i	2.0	ND	
	Phenanthrene Phenol	ug/l vg/l	0.27 1.2	ND ND	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

Veritech Project: 12011513

Page 2 of 16

	SampleI			Units	MDL/PQL	Result	
	TestGroup	Analyte	<u></u>				174,5 5,4,5
	TAL Metals (W	Vater) 200.7					قريبة الم
		Aluminum		ug/l	58	ND	
		Antimony		ug/i	3.3	ND	
		Arsenic		ug/l	3.6	13	
		Barium		ug/t	23	62	
		Beryllium		ug/l	2.5	ND	
		Cadmium		ug/l	1.4	ND	
		Calcium		ug/i	380	36000	
		Chromium		ug/i	16	ND	
		Cobalt		ug/l	4.6	ND	· *
		Copper		ug/l	20	ND	
		tron		ug/l	68	5100	
		Lead		ug/l	3.4	DM	
		Magnesium		ug/i	260	79000	
		Manganese		ug/l	12	90	
		Nickel		ug/l	15	, ND	
		Potassium		ug/i	3500	39000	
		Selenium		ug/i	20	ND	
		Silver		ug/i	5.2	ND	· · ·
		Sodium		ug/l	30000	840000	
		Thallium		ug/l	3.1	ND	
		Vanadium		ug/i	4.3	12	
		Zinc		ug/l	20	ND	
	Tetal Detrolou				20	110	
	Total Petroleu	m Hydrocarbons (Wate					-
		Total Petroleum Hydrocarbon	as	mg/l	1.0	ND	
•	Volatile Organ	nics + 15 (624)					
•	Volatile Organ	1,1,1-Trichloroethane	• •	ug/l	0.44	ND	
•	Volatile Orgar	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane		ug/i ug/i	0.42	ND	•
	Volatile Orgar	1,1,1-Trichloroethane		••			•
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane		ug/l	0.42	ND	
•	Volatile Orgar	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane		ug/l	0.42 0.50	ND ND	
	Volatile Orgar	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane		បន្វ/i បន្វ/i បន្ទ/i បន្ទ/i	0.42 0.50 0.35	ND ND ND ND	
	Volatile Orgar	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane		មនូវ មនូវ មនូវ មនូវ មនូវ	0.42 0.50 0.35 0.41	ND ND ND ND ND	•
•	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroppane		ug/i ug/i ug/i ug/i ug/i ug/i	0.42 0.50 0.35 0.41 0.44 0.44	ND ND ND ND ND	•
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2,2-Dichloropropane		սգ/i սգ/i սգ/i սգ/i սգ/i սգ/i սգ/i	0.42 0.50 0.35 0.41 0.44 0.44 1.1	ND ND ND ND ND ND	•
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2,2-Dichloroptopane 2-Chloroethylvinylether Acrolein		បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0	ND ND ND ND ND ND ND	
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Chloroethylvinylether Acrolein Acrylein		បន្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ រត្ត// គ្រូ//	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6	ND ND ND ND ND ND ND ND	
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrylonitrile Benzene		បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32	ND ND ND ND ND ND ND ND ND ND	• • •
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrolein Benzene Bromodichloromethane		បន្ត/1 បន្ត/1 បន្ត/1 បន្ត/1 បន្ត/1 បន្ត/1 បន្ត/1 បន្ត/1	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30	ND ND ND ND ND ND ND ND ND ND ND	
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylvinylether Acrolein Acrylonitrile Benzene Bromofichloromethane Bromoform		បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ មន្ត// បន្ត// បន្ត//	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32	ND ND ND ND ND ND ND ND ND ND ND ND	• • •
•	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Chloroethylvinytether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromomethane		បន្ត/ បត្ត/ បត្ត/ បត្ត/ ចត្ត/ ចត្ត/ ចត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.32	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Chloroethylvinylether Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride		បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.30 0.32 0.55 0.23	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
•	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene		បន្ត/ បត្ត/ បត្ត/ បត្ត/ ចត្ត/ ចត្ត/ ចត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.30 0.32 0.55 0.23 0.25	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Chloroethylvinylether Acroloin Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chloroethane		បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.30 0.32 0.55 0.23	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene		បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.30 0.32 0.55 0.23 0.25	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Chloroethylvinylether Acroloin Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chloroethane		បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/ បន្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
•	Volatile Organ	1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chloroethane Chloroethane Chloroethane		បន្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ មត្ត/ មត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52 0.52 0.45	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
•	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Chloroethane 2-Chloroethylvinylether Acrolein Acrolein Acrolein Bromodichloromethane Bromodichloromethane Bromomethane Carbon tetrachloride Chloroethane Chloroethane Chloromethane Chloromethane Chloromethane		បន្ត/ បន្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.32 0.23 0.23 0.25 0.23 0.25 0.23 0.25 0.52 0.45 0.32 0.32	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroptopane 2-Chloroethylvinylether Acroloin Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroptom Chloroethane Chloroptom Chloroptom		បន្ទ/1 បន្ទ/1 បន្ទ/1 បន្ទ/1 បន្ទ/1 បន្ទ/1 បន្ទ/1 បន្ទ/1 បន្ទ/1 បន្ធ/1 បន្ធ/1 បន្ធ/1 បន្ធ/1 បន្ធ/1 បន្ធ/1 បន្ធ/1 បន្ធ/1 បន្ធ/1	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.23 0.25 0.52 0.52 0.45 0.32 0.35 0.41	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
•	Volatile Organ	1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylvinytether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chloroethane Chloroethane Chloroethane Chloroethane Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene		បន្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ មត្ត/ មត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.55 0.23 0.55 0.52 0.45 0.32 0.52 0.45 0.32	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
•	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Chloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromodichloromethane Carbon tetrachloride Chlorobenzene Chloroform Chloroform Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene M&p-Xylenes		បន្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ ធត្ត/ ធត្ត/ ចត ប ចត (ចត្ត/ ចក្ត/ ចក្ត/ ចត្ត/ ចក្ត/ ចត្ត/ ចក្ត ចក្ត/ ចក្ត/ ចក្ត/ ចក្ ប ចក្ ចក ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ ចក ចក្ត/ ចក ចក ចក ចក្ ច ចក្ ច ចក្ ច ចក ចក ចក ចក ចក ចក ចក ចក ចក ចក ចក ចក ច	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52 0.52 0.45 0.32 0.32 0.52 0.45 0.32 0.35 0.41 0.15 0.81	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
•	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,7-Tetrachloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromodichloromethane Carbon tetrachloride Chlorobenzene Chlorobenzene Chlorothane Chloroform Chloroform Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene M&p-Xylenes Methylene chloride		បន្ត/ បន្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.32 0.30 0.32 0.55 0.23 0.25 0.55 0.23 0.25 0.52 0.52 0.52 0.52 0.45 0.32 0.35 0.41 0.35 0.41 0.35	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthane 2-Chloroethylvinylether Acroloin Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene M&Bp-Xylenes Methylene chloride O-Xylene		បន្ត/ បន្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.55 0.23 0.55 0.23 0.55 0.52 0.45 0.32 0.35 0.41 0.15 0.81 0.85 0.36	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	Volatile Organ	1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylvinytether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chloroethane Chloroethane Chloroethane Chloroethane Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene M&p-Xylenes Methylene chloride O-Xylene Tetrachloroethene		បន្ត/ បត្ត/	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.32 0.55 0.23 0.55 0.23 0.55 0.23 0.55 0.52 0.45 0.32 0.45 0.32 0.45 0.32 0.35 0.41 0.15 0.81 0.85 0.36 0.34	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	Volatile Organ	1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Chloroethylvinytether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromodichloromethane Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene M&p-Xylenes Methylene chloride O-Xylene Tetrachloroethene Toluene		បន្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ ធត្ត/ ធត្ត/ ចត បត្ត/ ចក្ត/ ចត្ត/ ចត្ត/ ចត្ត/ ចត្ត/ ចក្ ប ចក្ ប ចក ចក្ត/ ចក ចក ច ចក ច ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.32 0.32 0.32 0.55 0.23 0.25 0.55 0.23 0.55 0.23 0.55 0.23 0.55 0.45 0.32 0.32 0.35 0.32 0.35 0.41 0.35 0.31 0.85 0.36 0.34 0.24	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
•	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon tetrachloride Chlorobenzene Chloroethane Chloroethane Chloroform Chloroform Chloroform Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene M&p-Xylenes Methylene chloride O-Xyleme Tetrachlocoethene Toluene Trans-1,2-Dichloroethene		սգ/I սգ/I սգ/I սգ/I սգ/I սգ/I սգ/I սգ/I	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52 0.45 0.32 0.55 0.23 0.55 0.23 0.25 0.45 0.32 0.35 0.41 0.15 0.31 0.81 0.85 0.36 0.34 0.24 0.24	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	Volatile Organ	1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Chloroethylvinytether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromodichloromethane Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene M&p-Xylenes Methylene chloride O-Xylene Tetrachloroethene Toluene		បន្ត/ បត្ត/ បត្ត/ បត្ត/ បត្ត/ ធត្ត/ ធត្ត/ ចត បត្ត/ ចក្ត/ ចត្ត/ ចត្ត/ ចត្ត/ ចត្ត/ ចក្ ប ចក្ ប ចក ចក្ត/ ចក ចក ច ចក ច ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្ត/ ចក្	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.32 0.32 0.32 0.55 0.23 0.25 0.55 0.23 0.55 0.23 0.55 0.23 0.55 0.45 0.32 0.32 0.35 0.32 0.35 0.41 0.35 0.31 0.85 0.36 0.34 0.24	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	Volatile Organ	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon tetrachloride Chlorobenzene Chloroethane Chloroethane Chloroform Chloroform Chloroform Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene M&p-Xylenes Methylene chloride O-Xyleme Tetrachlocoethene Toluene Trans-1,2-Dichloroethene		սգ/I սգ/I սգ/I սգ/I սգ/I սգ/I սգ/I սգ/I	0.42 0.50 0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52 0.45 0.32 0.55 0.23 0.55 0.23 0.25 0.45 0.32 0.35 0.41 0.15 0.31 0.81 0.85 0.36 0.34 0.24 0.24	ND ND ND ND ND ND ND ND ND ND ND ND ND N	

Veritech Project: 12011513

Page

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

Page 3 of 16

o#	SampleID TestGroup	Analyte		Units	MDL/PQL	Result	
32001:	3 PG-TMW-01-	112900WG01			······		[* z·
	Cyanide (water) E	DA 225 2					
	C	/anide		mg/l	0.01	0.01	
	Mercury (water) 2	45.1					
	M	ercury		บg/I	0.21	ND	
	Oil & Grease						
						4	
	0	& Grease		mg/l	1	13	
	Organochlorine P	esticides 608					
	-	drin		ug/l	0.02	ND	
		pha-BHC		ug/l	0.02	ND	
		ta-BHC		ug/t	0.02	ND	
	Ci	hlordane		ug/l	0.2	ND	
	De	elta-BHC	and the second	ug/l	0.02	ND	
	Di	eldrin		ug/l	0.02	ND	
	Ef	ndosulfan l		ug/l	0.02	ND	
	E	ndosulfan II		ug/i	0.02	ND	
	E	idosulfan Sulfate		ug/i	0.02	ND	
	Er	ndrin		ug/l	0.02	ND	
	Er	ndrin Aldehyde		ug/i	0.02	ND	
	Er	ndrin Ketone		ug/l	0.02	ND	
	Ga	amma-BHC		ug/l	0.02	ND	
	He	eptachlor		ug/i	0.02	NĎ	
	He	eptachlor Epoxide	•	ug/l	0.02	ND	
		ethoxychlor		ug/l	0.02	ND	
		P'-DDD		ug/l	0.02	ND	
		P'-DDE		uq/i	0.02	ND	
		P'-DDT		ug/l	0.02	ND	
	To	xaphene		ug/i	1	ND	
	PCB 608						
	,	oclor-1016		ug/l	0.5	ND	
		oclor-1221		ug/i	0.5	ND	
		octor-1232		ug/i	0.5	ND ND	
		ocior-1242		ug/i	0.5	ND	
		oclor-1248		ug/i	0.5	ND	
		oclor-1254		ug/l	0.5	ND	
		oclor-1260	· · · · · · · · · · · · · · · · · · ·	ug/l	0.5	ND	
	•			- 27 -			
	Phenols (water) 4						
	· Ph	enot		mq/i	0.05	ND	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

s# Sample		Units	MDL/PQL	Result	
TestGroup	Analyte				
Semivolatil	e Organics + 25 (625)				
	1,2,4-Trichlorobenzene	ug/ł	0.27	ND	
	1,2-Dichlorobenzene	ug/l	0.26	ND	
	1,2-Diphenylhydrazine	ug/I	0.24	ND	
	1,3-Dichlorobenzene	ug/l	0.27	ND	
	1,4-Dichlorobenzene	սց/i	0.20	ND	
	2,4,6-Trichlorophenol	ug/l	2.1	ND	
	2,4-Dichlorophenol	ug/I	2.0	ND	
	2,4-Dimethylphenol	ug/l	1.4	ND	
	2,4-Dinitrophenol	ug/l	0.47	ND	
	2,4-Dinitrotoluene	ug/l	0.16	ND	
	2,6-Dinitrotoluene	ug/l	0.27	ND	
	2-Chloronaphthalene	ug/i	0.27		
				ND	
	2-Chiorophenol	ug/l	1.4	ND	
	2-Nitrophenol	ug/l	2.1	ND	
	3,3'-Dichlorobenzidine	ug/l	2.7	ND	
	4,6-Dinitro-2-methylphenol	ug/I	· 1.2	ND	
	4-Bromophenyl-phenylether	ug/l	0.23	ND	
	4-Chloro-3-methylphenol	ug/i	1.9	ND	
	4-Chlorophenyl-phenylether	ug/l	0.32	ND	
	4-Nitrophenol	ug/l	1.6	ND	
	Acenaphthene	ug/l	0.31	1.1	
	Acenaphthylene	ug/1	0.26	ND	
	Anthracene	ug/l	0.25	ND	
	Benzidine	ug/i	3.4	ND	
	Benzolalanthracene	ug/l	0.20	ND	
	Benzojajpyrene	ug/l	0.24	ND	
	Benzo(b)fluoranthene	ug/l	0.49	ND	
	Benzo[g,h,i]perylene	ug/l	0.36	ND	
	Benzo[k)fluoranthene	ug/l	0.50	ND	
	Bis(2-Chloroethoxy)methane	ug/t	0.21	ND	
	Bis(2-Chloroethyl)Ether	ug/l	0.15	ND	
	Bis(2-Chloroisopropyl)ether		0.14	ND	
		ug/l			
	Bis(2-Ethylhexyl)phthalate	ug/l	0.37	9.2 U	
	Butylbenzylphthalate	l/gu	0.29	ND	
	Chrysene	ug/l	0.30	ND	
	Di-n-butylphthalate	ug/t	0.26	ND	
	DI-n-octylphthalate	ug/i	0.80	ND	
	Dibenzo(a,h)Antivacene	ug/i	0.34	ND	
	Diethylphthalate	ugA	0.31	ND	
	Dimethylphthalate	ug/l	0.24	ND	
	Fluoranthene	ug/i	0.29	ND	
	Fluorene	កម្មរុ	0.28	ND	
	Hexachtorobenzene	ug/l	0.28	ND	
	Hexachlorobutadiene	ug/1	0.25	ND	
	Hexachlorocyclopentadiene	ug/i	2.5	ND	
	Hexachloroethane	ugʻi	0.26	ND	
	Indeno[1,2,3-cd]pyrene	ug/t -	0.34	ND	
	Isophorone	ug/1	0.21	ND	
	N-Nitroso-Di-N-Propylamine	ug/l	0.22	ND	
	N-Nitrosodimethylamine	ug/l	0.28	ND	
	N-Nitrosodiphenylamine	ug/l	0.32	ND	
	Naphthalene	ug/l	0.36	ND	
	Nitrobenzene	ug/i	0.23	ND	
	Pentachlorophenol	ug/l	2.0	ND	
	Phenanthrene	ugh	0.27	ND	
	Phenol	បណ្ណា បណ្ណា	1.2	ND	
	e indirut	UQVI	<u>ه. د</u>	NU	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004 Veritech Project: 12011513

Page 5 of 16

	Samplell TestGroup	Analyte	Units	MDL/PQL	Result
	TestGroup				
	TAL Metals 20	00.7			
		Atuminum	ug/l	58	1600
		Antimony	ug/1	3.3	ND
		Arsenic	ug/l	3.6	ND
		Barium	ug/l	23	39
		Beryllium	ug/l	2.5	ND
		Cadmium	ug/l	1.4	ND
		Calcium	ug/l	380	36000
		Chromium	ug/i	16	22
		Cobalt	ugh	4.6	6.3
		Copper	บญ่ไ	20	ND
		tron	ug/l	88	3100
		Lead	ug/l	3.4	ND
		Magnesium	ug/l	260	8600
		Manganese	ug/i	12	2400
		Nickel	บฏ/เ	15	28
		Potassium	ug/i	700	6300
		Selenium	ug/l	20	ND
		Silver	ug/i	5.2	ND
		Sodium	ug/l	600	22009
		Thallium	ugi	3.1	ND
		Vanadium	ug/l	4.3	47
		Zinc	ug/l	20	40
			5,47	20	40
	Total Petroleu	im Hydrocarbons (Water)			
		Total Petroleum Hydrocarbons	mg/i	1.0	ND
	Volatile Organ	nics + 15 (624)		,	
		1,1,1-Trichloroethane	ug/l	0.44	ND
		1,1,2,2-Tetrachloroethane	ug/l	0.42	ND
		1,1,2-Trichloroethane	1/2/1	0.50	ND
		1,1-Dichloroethane	ug/t	0.35	ND
		1,1-Dichloroethene	ug/i	0.41	ND
		1,2-Dichloroethane	ug/i	0.44	ND
		1,2-Dichloropropane	ug/l	0.44	ND
	,	2-Chloroethylvinylether	սցո	1.1	ND
		Acrolein			
			ug/l	3.0	ND
		Acrylonitrile	ug/l	6.6	ND
	• • • • •	Benzene	ug/l	0.32	ND
		Bromodichloromethane	ug/i	0.30	NÐ
		Bromoform	ug/l	0.32	ND
		Bromomethane	ug/i	0.55	ND
		Carbon tetrachloride	ug/l	0.23	ND
		Chlorobenzene	ug/l .	0.25	ND
		Chloroethane	ug/i	0.52	ND
		Chieroform	ug/l	0.45	ND
		Chloromethane	ug/l	0.32	ND
	1	Cis-1,3-Dichloropropene	ug/l	0.35	ND
•		Dibromochloromethane	ug/l	0.41	ND
		Ethylberzene	ug/l	0.15	ND
		M&p-Xylenes	ug/l	0.81	ND
		Methylene chloride	ug/l	0.85	ND
		O-Xylene	ug/i		
		-		0.36	ND
		Tetrachloroethene	ug/i	0.34	ND
		Toluene	ug/l	0.24	" ND
		Trans-1,2-Dichloroethene	ug/l	0.46	ND
		Trans-1,3-Dichloropropene	ug/l	0.24	ND
			••		
		Trichloroethene	ug/l	0.37	ND

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

· · .

Veritech Project: 12011513

Page 6 of 16

b#	SampleID TestGroup	Analyte	Units	MDL/PQL	Result	
B2001	4 PG-PAMW11D11	2900WG01				['
	Cyanide (water) EPA					
	Cyanide	<u>.</u>	mg/i	0.01	0.012	
	Mercury (water) 245.1					
	Mercury		ug/l	0.21	ND	
	Oil & Grease					
	Oil & G	rease	mg/l	1	18	
	Organochlorine Pesti	cides 608				
	Aldrin		ug/t	0.02	ND	
	Alpha-E	HC	ug/l	0.02	ND	
	Beta-Bl		ug/l	.0.02	ND	
	Chlorda		ug/l	0.2	ND	
	Deita-B	HC	ug/l	0.02	ND	
	Dieldrin	1	ug/i	0.02	ND	
	Endosu	lfan l	ມມູກ	0.02	ND	
	Endosu	lfan 11	ug/i	0.02	ND	
	Endosu	lfan Sulfate	ug/l	0.02	ND	
	Endrin		ugli	0.02	ND	
	Endrin	Aldehyde	ug/l	0.02	ND	
	Endrin	Ketone	ug/I	0.02	ND	
	Gamma	-BHC	ug/l	0.02	ND	
	Heptaci	hker	ug/l	0.02	ND	
	Heptac	nior Epoxide	ug/l	0.02	ND	
	Methox	ychlor	ug/1	0.02	ND	
	P,P'-DD	D	ug/i	0.02	ND	
	P,P'-DD	E .	ug/I	0.02	ND	
	P,P'-DD	T	ug/l	0.02	ND	
	Toxaph	ene	ug/l	1	ND	
	PCB 608					
	Arocior	1815	ug/1	0.5	ND	
	Arocior	· · · · · · · · · · · · · · · · · · ·	ug/i	0.5	ND	
	Aroctor		ug/l	0.5	ND	
	Aroclor		ug/l	0.5	ND	
	Arocior		ug/1	0.5	ND	
	Aroclor		սգ/	0.5	ND	
	Arocior		ug/l "	0.5	ND	
			····			
	Phenols (water) 420.1					
	Phenol		mg/t	0.05	ND	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

Veritech Project: 12011513

Page 7 of 16

TestGroup	Analyte	Units	MDL/PQL	Result	
TestGroup	Алануте				
Semivolatile	Organics + 25 (625)				
	1,2,4-Trichlorobenzene	ug/t	0.27	ND	
	1,2-Dichlorobenzene	ug/l	0.26	ND	
	1,2-Diphenylhydrazine	ug/l	0.24	ND	
	1,3-Dichlorobenzene	ug/l	0.27	ND	
	1,4-Dichlorobenzene	ug/l	0.20	ND	
	2,4,6-Trichlorophenol	ug/t	2.1	ND	
	2,4-Dichlorophenol	ug/ł	2.0	ND	
	2,4-Dimethylphenol	ug/l	1.4	ND	
	2,4-Dinitrophenol	ug/l	0.47	ND	
	2,4-Dinitrotokuene	ug/l	0.16	ND	
	2,6-Dinitrotoluene	ug/t	0.27	ND	
	2-Chloronaphthalene	ug/l	0.22	ND	
	2-Chlorophenol	ug/i	1.4	ND	
	2-Nitrophenol	ug/i	2.1	ND	
	3,3'-Dichlorobenzidine	ug/i	2.7	ND	
	4,6-Dinitro-2-methylphenol	ug/i	1.2	ND	
	4-Bromophenyl-phenylether	ug/t	0.23	ND	
	4-Chloro-3-methylphenol	ug/l	. 1.9	ND	
	4-Chlorophenyt-phenylether	ug/l	0.32	ND	
	4-Nitrophenol	ug/l	1.6	ND	
	Acenaphthene	ug/l	0.31	ND	
	Acenaphthylene	ug/l	0.26	ND	
	Anthracene	ngh	0.25	ND	
	Benzidine	Lgu Va	3.4	ND	
	Benzola]anthracene	ug/l	0.20	ND	
	Benzola)pyrene	ug/l	0.24	ND	
	Benzo(b)fluoranthene	ug/l	0.49	ND	
	Benzo[g,h,i]perviene	ug/l	0.36	ND	
	Benzo[k]fluoranthene	ug/i	0.50	ND	
	Bis(2-Chloroethoxy)methane	ug/l	0.21	ND	
	Bis(2-Chloroethyl)Ether	ug/i	0.15	ND	
	Bis(2-Chloroisopropyl)ether	ug/l	0.14	ND	
	Bis(2-Ethylhexyl)phthalate	ug/l	0.37	9.7 U	
	Butylbenzylphthalate	ug/l	0.29	ND	
	Chrysene	· ug/i	0.30	ND	
	Di-n-butylphthalate	ug/l	0.26	ND	
	DI-n-octylphthatate	Ug/i	0.80	ND	
	Dibenzola, h)Anthracene	ug/i	0.34	ND	
	Diethylphthalate	ug/l	0.31	ND	
	Dimethylphthalate	ug/l	0.24	. ND	
	Fluoranthene Fluorene	ndu	0.29 0.28	ND . ND	
	r worene Hexachlorobenzene	. ug/l ug/l	0.28	ND	
	Hexachlorobutadiene	ug/l	0.25	ND	
	Hexachlorocyclopentadiene	ug/i	2.5	ND	
	Hexachloroethane	՝ սց/i	0.26	ND	
	Indeno[1,2,3-cd]pyrene	ug/l	0.34	ND	
	Isophorone	ug/l	0.21	ND	
	N-Nitroso-Di-N-Propylamine	ug/1	0.22	ND	
	N-Nitrosodimethylamine	ug/l	0.28	ND	
	N-Nitrosodiphenylamine	ug/i	0.32	ND	
	Naphthalene	ug/l	0.32	ND	
	Nitrobenzene	ug/l	0.23	ND	
	Pentachlorophenol	ug/l	2.0	ND	
	Phenanthrene	ug/i	0.27	ND	
	Phenoi	ug/l	1.2	ND	
	Pyrene	ug/l	0.27	ND	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004 Veritech Project: 12011513

Page 8 of 16

		A 6.4.	Units	MDL/PQL	Result	
T	estGroup	Analyte			·····	
T.	AL Metals 200.7					
	Aku	กลักษณ	ug/l	58	82	
	Anti	mony	ug/l	3.3	ND	
	Ars		ug/l	3.6	ND	
	Bari		ug/i	23	150	
		/lium	ug/l	2.5	ND	
		ការែក	ug/l	1.4	ND	
		zium	ug/l	380	64000	
		ากกับสาย	ug/i	16	ND	
	Cob		ug/l	4.6	ND	
	Cop		ug/i	20	ND	
	Iron		ug/l	88	170	
	Lea		ug/l	3.4	ND	
		nesium	បប្រវ	260	9400	
		ganese	ug/l	12	910	
	Nick		ug/i	15	ND	
		Issium	ug/l	700	880	
		nium	ug/l	20	ND	
	Silv		nð\t	5.2	ND	
	Sod		nd\]	600	27000	
		lium	ug/i	3.1	ND	
		adium	ug/i	4.3	ND	
	Zinc		ug/I	20	ND	
T	otal Petroleum Hy	drocarbons (Water)				
	•	I Petroleum Hydrocarbons	rng/i	1.0	ND	
A						
v	olatile Organics +	• •				
		1-Trichloroethane	ug/l	0.44	ND	
		2,2-Tetrachloroethane	ug/i	0.42	ND	
		2-Trichloroethane	ug/i	0.50	ND	
		Dichloroethane	ug/l	0.35	DND	
		Dichloroethene	սցՈ	0.41	ND	
		Dichforoethane	ug/i	0.44	ND	
		Dichloropropane	ug/l	0.44	ND	
		iloroethylvinylether	ug/l	1.1	NÐ	
	Acro		ບດູ/ໂ	3.0	ND	
		lonitrile	ug/l	6.6	ND	
		zene	ug/l	0.32	ND	
		nodichtoromethane	ug/t	0.30	ND	
		noform	ug/!	0.32	ND	
	Bron	nomethane	ug/l	0.55	ND	
	Carl	oon tetrachloride	ug/t	0.23	ND	
	Chie	robenzene	ug/l	0.25	ND	
	Chie	roethane	ugA	0.52	ND	
	Chic	roform	nayı	0.45	ND	
	Chic	romethane	ug/i	0.32	ND	
	Cis-	1,3-Dichloropropene	ug/i	0.35	ND	
		omochloromethane	ug/l	0.41	ND	
		lbenzene	ug/i	0.15	ND	
	•	-Xylenes	ug/l	0.81	ND	
		wiene chloride	ug/l	0.85	ND	
		viene	ug/l	0.36	ND	
		achloroethene	ug/l	0.34	ND	
	Tolu		ug/i	0.24	ND	
		is-1,2-Dichloroethene		0.46	ND .	
		is-1,2-Dichloropropene	ug/i ug/i	0.46 Q.24	ND .	
		is-1,3-Dichloropropene hloroethene	ug/i	0.24 0.37	ND	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004 Veritech Project: 12011513

Page 9 of 16

_ab#	SampleID TestGroup	Analyte	Units	MDL/PQL	Result	
AB20015	PG-BW-13-11	2900WG01				K. K
	Cyanide (water) E	PA 335 2			•	
	υγ	yanide	mạ/l	0.01	ND .	
	Mercury (water) 24	45.1				
	Me	ercury	սց/1	0.21	ND	
	Oil & Grease		•			
		1 & Grease	mg/l	1	80	
				•		
	Organochlorine P					
		drin	սգ/	0.02	ND	
		pha-BHC	ndy	0.02	ND	
		Ha-BHC	uq/l	0.02	ND	
		hordane	Ug/I	0.2	ND	
		elta-BHC	ug/l	0.02	ND	
		eldrin	ug/i	0.02	ND	
		idosulfan l	ug/l	0.02	ND	
		idosulfan II	ug/l	0.02	ND	
		dosulfan Sulfate	ug/l	0.02	ND	
		ndrin .	ug/l	0.02	ND	
		drin Aldehyde	ug/f	0.02	ND	
		idrin Ketone	ug/1	0.02	ND	
		amma-BHC	ug/l	0.02	ND	
		plachlor	ug/f	0.02	ND	
		eptachlor Epoxide	ug/l	0.02	ND	
		ethoxychlor Bi boo	ug/i	0.02	ND	
		P'-DDD P'-DDE	ug/1	0.02	ND ND	
		P-DDE P-DDT	ug/i ug/i	0.02 0.02	ND	
		xaphene	ug/l	1	ND	
		, and the second s	5.47	•	ND	
	PCB 608					
	Ar	octor-1016	ug/i	0.5	ND	
	Ar	oclor-1221	ug/ł	0.5	ND	
	Ar	oclor-1232	ug/t	0.5	ND	
	Are	oclor-1242	ug/t	0.5	ND	
		octor-1248	ug/l	0.5	ND	
		oclor-1254	ug/i	0.5	ND	
	An	oclor-1260	ug/i	0.5	ND	
	Phenols (water) 42	20.1				
		enol	-mm//	0.05	0.098	
	Ph	eno:	mg/t	0.00	0.038	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004 Veritech Project: 12011513

Page 10 of 16

Sample TestGroup	Analyte	Units	MDL/PQL	Result
Testoloap	Analyte			
Semivolatile	Organics + 25 (625)	•		
	1,2,4-Trichlorobenzene	ug/1	0.27	ND
	1,2-Dichlorobenzene	ug/l	0.26	ND
	1,2-Diphenylhydrazine	ug/l	0.24	ND
	1,3-Dichlorobenzene	ug/i	0.27	ND
	1,4-Dichlorobenzene	ug/l	9.20	ND
	2,4,6-Trichlorophenol	ug/1	2.1	ND
	2,4-Dichlorophenol	ug/l	2.0	ND
	2,4-Dimethylphenol	ug/l	1.4	ND
	2,4-Dinitrophenol	ug/i	0.47	ND
	2,4-Dinitrotoluene	ug/l	0.16	ND
	2,6-Dinitrotoluene	ug/1	0.27	ND
	2-Chloronaphthale ne	ug/l	0.22	ND
	2-Chlorophenol	ug/l	1.4	ND
	2-Nitrophenol	ug/l	2.1	ND
	3,3'-Dichlorobenzidine	ug/I	2.7	ND
	4,6-Dinitro-2-methylphenol	រៃពួម	1.2	ND
	4-Bromophenyl-phenylether	ug/l	0.23	ND
	4-Chloro-3-methylphenol	ug/l	1.9	ND
	4-Chlorophenyl-phenylether	ug/i	0.32	ND
	4-Nitrophenol	ug/l	1.6	ND
	Acenaphthene	ug/l	0.31	ND
	Acenaphthylene	ug/l	0.26	ND
	Anthracene	ugi	0.25	ND
	Benzidine	ug/)	3.4	ND
	Benzojajanthracene	ug/l	0.20	ND
	Benzofajpyrene	ug/i	0.24	ND
	Benzo[b]fluoranthe.ne	ug/t	0.49	ND
	Benzolg, h, ilperviene	ug/i	0.36	ND
	Benzo(k)fluoranthe ne	ug/l		ND
	Bis(2-Chloroethoxy)methane	աց/(0.50	ND
	Bis(2-Chloroethyl)Ether	սց/1	0.15	ND
	Bis(2-Chloroisopropyl)ether			
		ugh	0.14	ND 7.1 V
	Bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	ug/i	0.37	
	Chrysene	ug/1	0.29	ND
	•	ug/i	0.30	ND
	Di-n-butylphthalate	ug/l	0.26	ND
	DI-n-octy/phthalate	. ug/l	0.80	ND
	Dibenzo(a,h)Anthracene	ug/i	0.34	ND
	Diethylphthalate	ug/i	0.31	ND
	Dimethylphthalate	ug/l	0.24	ND
	Fluoranthene	បណ្ដ	0.29	ND
	Fluorene	ug/l	0.28	ND
	Hexachlorobenzene	ug/l	0.28	ND
	Hexachtorobutadiene	ug/I	0.25	ND
	Hexachlorocyclopentadiene	ug/l	2.5	ND
	Hexachloroethane	ug/i	0.26	ND
	Indeno[1,2,3-cd]pyrene	ug/t	0.34	ND
	Isophorone	ug/l	0.21	ND
	N-Nitroso-Di-N-Propylamine	ug/l	0.22	ND
	N-Nitrosodimethylamine	ug/l	0.28	ND
	N-Nitrosodiphenylamine	ug/l	0.32	ND
•	Naphthalene	ug/i	0.36	ND
	Nitrobenzene	ug/i	0.23	ND
	Pentachiorophenol	ug/i	2.0	ND
	Phenanthrene	ug/i	0.27	ND
	Phenol	ug/l	1.2	2.6

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004

Veritech Project: 12011513

Page 11 of 16

Samplel		Units	MDL/PQL	Result	
 TestGroup	Analyte				
TAL Metals 2	00.7				_
	Aluminum	ug/l	58	210	
	Antimony	ug/l	3.3	ND	
	Arsenic	սց/i	3.6	15	
	Barium	ug/l	23	59	
	Beryllium	ug/l	2.5	ND	
	Cadmium	ug/i	1.4	ND	
	Calcium	ug/l	380	47000	
	Chromium	ug/l	16	ND	
	Cobalt	ug/l	4.6	ND	
	Copper	ug/i	20	ND	
	Iron	ug/i	88	ND	
	Lead	ug/l	3.4	ND	
	Magnesium	ug/t	260	4400	
	Manganese	ug/l	12	ND	
	Nickel	ug/i	15	ND	
	Potassium	ug/i	3500	70000	
	Selenium	ug/i	20	ND	
	Silver	ug/l	5.2	ND	
	Sodium	ug/t	30000	930000	
	Thallium	ug/l	3.1	ND	
	Vanadium	ug/i	4.3	10	
	Zinc	ug/i	20	ND	
Total Petrole	um Hydrocarbons (Water)				
	Total Petroleum Hydrocarbons	mg/l	1.0	ND	
Volatile Orga	nics + 15 (624)				
	1,1,1-Trichloroethane	ug/i	0.44	NO	
	1,1,2,2-Tetrachloroethane	ug/l	0.42	ND	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	1,1,2-Trichloroethane	ug/i	0.50	ND	
		ug/i ug/i	0.50 6.35	ND ND	
	1,1,2-Trichloroethane				
	1,1,2-Trichloroethane 1,1-Dichloroethane	ug/l	0.35	ND	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	ug/l	0.35 0.41	ND ND	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane	ug/l ug/l ug/l	0.35 D.41 0.44	ND ND ND	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloropropane	ug/i ug/i ug/i ug/i	0.35 D.41 0.44 0.44	ND ND ND ND	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloropcopane 2-Chloroethylvinylether	បន្ត/ មណ្ណ/ បណ្ណ/ បណ្ណ/i បណ្ណ/i	0.35 D.41 0.44 0.44 1.1	ND ND ND ND ND	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein	បន្ត/1 បន្ត/1 បន្ត/1 បន្ត/1 បន្ត/1	0.35 0.41 0.44 0.44 1.1 3.0	ND ND ND ND ND	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloropethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrylonitrile	ଏସ୍ଟ/1 ସ୍ଟେମୀ ସ୍ଟେମୀ ସ୍ଟେମୀ ସ୍ଟେମୀ ସ୍ଟେମ	0.35 0.41 0.44 0.44 1.1 3.0 6.6	ND ND ND ND ND ND	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrytonitrile Benzene	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.35 0.41 0.44 1.1 3.0 6.6 0.32	ND ND ND ND ND ND ND	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 2-Chloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane	ଧ୍ୟୁ/ ଜୁୁମା ଜୁୁମା ଜୁୁମା ଜୁୁମା ଜୁୁମା ଜୁୁମା	0.35 0.41 0.44 1.1 3.0 6.6 0.32 0.30	ND ND ND ND ND ND ND ND	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrytonitrile Benzene Bromodichloromethane Bromodichloromethane	ଧ୍ୟ/1 ଜନ୍ମ/1 ଜନ୍ମ/1 ଜନ୍ମ/1 ଜନ୍ମ/1 ଜନ୍ମ/1 ଜନ୍ମ/ ଜନ୍ମ/ ଜନ୍ମ/	0.35 0.41 0.44 1.1 3.0 6.6 0.32 0.30 0.32	ND ND ND ND ND ND ND ND ND	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 2-Chloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromothane Carbon tetrachloride Chlorobenzene	ଧର୍ମୀ ଜନ୍ମୀ ତନ୍ମୀ ତନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ	0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55	ND ND ND ND ND ND ND ND ND	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromodichloromethane Carbon tetrachloride Chlorobenzene Chloroethane	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.35 0.41 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 2-Chloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromothane Carbon tetrachloride Chlorobenzene	ଧ୍ୟୁ/ ଜୁମ୍ମ ଜୁମ୍ମ ଜୁମ୍ମ ଜୁମ୍ମ ଜୁମ୍ମ ଜୁମ୍ମ ଜୁମ୍ମ	0.35 0.41 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25	ND ND ND ND ND ND ND ND ND ND ND ND	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromodichloromethane Carbon tetrachloride Chlorobenzene Chloroethane	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.35 0.41 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrylonitrile Benzene Bromodichloromethane Bromodichloromethane Bromomethane Carbon tetrachloride Chloroethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52 0.45	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromomethane Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloroform Chloroform Chloroformethane Chloroform Chloroformethane Chloroformethane Chloroformethane	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52 0.45 0.32 0.35 0.35 0.41	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromomethane Carbon tetrachloride Chloroetnane Chloroberzene Chloromethane	ଧ୍ୟ/1 ଜନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ ଜନ୍ମୀ	0.35 0.41 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.23 0.25 0.52 0.55 0.52 0.45 0.32 0.35	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrolein Acrolein Bromodichloromethane Bromodichloromethane Bromodethane Carbon tetrachloride Chlorobenzene Chlorobenzene Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene M&p-Xylenes	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52 0.45 0.32 0.35 0.35 0.41	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromomethane Carbon tetrachloride Chloroetnane Chloroberzene Chloromethane	ଧ୍ୟ/ ଜନ୍ମ/ ଜନ/ ଜନ/ ଜନ/ ଜନ/ ଜନ/ ଜନ/ ଜନ/ ଜନ	0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52 0.52 0.45 0.32 0.35 0.35 0.35 0.41 0.15	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrolein Acrolein Bromodichloromethane Bromodichloromethane Bromodethane Carbon tetrachloride Chlorobenzene Chlorobenzene Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene M&p-Xylenes	ଧ୍ୟୁମ ଜୁମୀ ଓଟ୍ମମୀ ଓଟ୍ମମୀ ଜୁମୀ ଜୁମୀ ଜୁମୀ ଜୁମୀ ଜୁମୀ ଜୁମୀ ଜୁମୀ ଜ	0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.32 0.23 0.23 0.25 0.23 0.25 0.45 0.32 0.45 0.32 0.35 0.45 0.32 0.35 0.41 0.15 0.81	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrylonitrile Benzene Bromodichloromethane Bromodichloromethane Bromomethane Carbon tetrachloride Chlorobenzene Chlorobenzene Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene M&p-Xylenes Methylenes	ଧ୍ୟ/1 ଜନ୍ମୀ ଜନ୍ମ የጉ የጉ የጉ የጉ የጉ የጉ የጉ የጉ የጉ የጉ የጉ የጉ የጉ	0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.32 0.32 0.55 0.23 0.25 0.52 0.52 0.45 0.32 0.55 0.52 0.45 0.32 0.35 0.41 0.15 0.81 0.85	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromomethane Carbon tetrachloride Chlorobenzene Chlorobenzene Chlorobethane Chlorobethane Chlorobethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Ethylbenzene M&By-Xylenes Methylene chloride O-Xylene	սգ/۱ սգ/۱ սգ/۱ սգ/۱ սգ/۱ սգ/۱ սգ/۱ սգ/۱	0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52 0.45 0.32 0.35 0.45 0.32 0.35 0.41 0.15 0.81 0.85 0.36	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrylonitrile Benzene Bromodichloromethane Bromomethane Carbon tetrachloride Chloroberzene Chloroberzene Chloroform Chloromethane Cis-1,3-Dichloropropene Dibromethane Ethylbenzene M&p-Xylenes Metrylene chloride O-Xylene Tetrachloroethene	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52 0.45 0.32 0.45 0.32 0.35 0.45 0.32 0.35 0.41 0.15 0.81 0.85 0.36 0.34	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrolein Acrylonitrille Benzene Bromodichloromethane Bromomethane Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroform Chloroethane Cis-1,3-Dichloroprope ne Dibromochloromethane Ethylbenzene M&p-Xylenes Methylene chloride O-Xylene Tetrachloroethene Toluene	ଧ୍ୟ/1 ଧ୍ୟ/1	0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.32 0.32 0.23 0.25 0.23 0.25 0.52 0.45 0.32 0.35 0.45 0.32 0.35 0.41 0.15 0.81 0.85 0.36 0.34 0.24	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 2-Chloroethylvinylether Acrylonitrile Benzene Bromodichloromethane Bromodichloromethane Bromodethane Carbon tetrachloride Chloroethane Chloroethane Chloropenzene Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene M&p-Xylenes Methylenes Methylenesis Methylene	الها الم المها المها المها المها المها المها المها المها المها المها الم الم الما الم الم الما الم الم الم	0.35 0.41 0.44 0.44 1.1 3.0 6.6 0.32 0.30 0.32 0.55 0.23 0.25 0.52 0.45 0.32 0.55 0.52 0.45 0.32 0.35 0.41 0.81 0.85 0.36 0.34 0.34 0.24 0.24 0.46	ND ND ND ND ND ND ND ND ND ND ND ND ND N	

Veritech Report Of Analysis 175 Route 46 West, Unit D, Fairfield, NJ 07004 Veritech Project: 12011513

Page 12 of 16

Premier Environmental Services.

APPENDIX C

2815 COVERED BRIDGE ROAD, MERRICK, NEW YORK 11566 (516) 223-9761 • FAX (516) 223-0983

Facility Howlaw of Hook Project Info. HH - Port I vory P#61/te Destination Laboratory: HC V Lab Case/SDG: EQuils Sys_Sample_Code Contract bit	ateriais Engineering Division - 241 Erie Stre Jersey City, NJ 07310	et, Room 234		Contac Contac Contac	et Phon et Fax l	e No. No.	(2	01) 2 201) 2	16-	2963 [2963 [2158	Ange (201)	los Z 216-2	260 960	<u>//s</u>	· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Project Info. HH - Port Ivor						ory:	, Fi	IC.	V		Lab Cas	e/SDG	• •	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EQuIS Sys_Sample_Code Loc(8)Date(6)Matrix(2)Type(2)Co		b Sample	Date of Collection Year	Geotech Cross Id		# of Containers	Preservative Codes (MeOH No.)	Grab or Composite	Har A	NY star			Tes	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	P = P = A = N = D = B = P = A	195001AF	358483	5/28/2			2								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1					┼─┤	17			~+-+		+
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				5/24/09											+
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				111			-								1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										-					+
$\frac{-PGFBOI-052802WQOI 584905/28/08}{+CI}$ $\frac{+CI}{+CI}$ $\frac{-PGFBOI-052902WQOI 584915/28/08}{+CI}$ $\frac{+CI}{+CI}$ $\frac{-PGFBOI-052902WQOI 584915/29/08}{+CI}$ $\frac{-PGFBOI-0529000}{+CI}$ $\frac{-PGFBOI-0529000}{+CI}$ $\frac{-PGFBOI-05290000}{+CI}$ $\frac{-PGFBOI-05290000}{+CI}$ $\frac{-PGFBOI-05290000}{+CI}$ $\frac{-PGFBOI-05290000000}{+CI}$ $-PGFBOI-052900000000000000000000000000000000000$	-PGASWS-									/					1
Died By: Cas Mart Preservatives: Ding Method:			58489	V					. 1	5	~	6			1
pled By: <u>Cons Mart</u> pling Method: Preservatives: 1. Ice 2. HCl 3. HNO3 TAT: <u>STD</u> Deliverables: NJ Reduced Data Sum. OTHER OLE Week TAT OTHER	-PGFB01-05280	2MQOI	58490	5/28/08				HCI		1					
pled By: <u>Gras Mart</u> pling Method: <u>TAT:</u> <u>STD</u> Deliverables: NJ Reduced Data Sum. 1. Ice 2. HCl 3. HNO3 OTHER Obe Week TAT OTHER	V-PGFB01-05290		58491	5/29/02			\mathbf{V}	HCI		/			/		
pled By: <u>Current for the standing</u> <u>Preservatives:</u> pling Method: <u>TAT: STD</u> <u>Deliverables: NJ Reduced</u> Data Sum. 1. Ice 2. HCl 3. HNO3															1
		1. Ice 2.	HC1			<i>TA</i> OT	T: HER	Oye i		<u>K 77</u> 41			Reduced	Data Si	um.
		••••••••••••••••••••••••••••••••••••••								1					•
elinquished By: Date: 5/30/02 11:10 Received By: ARMA HCI Date: 5/30/02 11:10 elinquished By: Preug HCI Date: 5/30/02 1645 Received By: AMANANA HCI Date: 5/30/02 1646	elinquished By:				:/0_ R	eceived]	By:	Q_{μ}	h A	Japin	2 H		Date: 5	130/02	11:10

CONDITION UPON	RECEIPT FORM			Verifech
Date Received:	5/30/0-2	Filed By:	RM	
Client:	'PA-	Project/Account:	Howland	Hook
Veritech Project #				
YES NO			INI	TIAL CONDITIONS
	Is there a corresponding Cha	in of Custody included v	with the samples?	
[2]	Are the samples in a containe	er such as a cooler or ice	e chest?	
[] [3]	Are the custody seals intact? IF NO, please circle or	ne of the following:	missing bi	roken N.A.
<u>4.0</u> °C [4]	Please specify the temperatur	re inside the container.		
YES NO			SAMI	PLE INFORMATION
[/ [5]	Are the samples properly ref	rigerated (where require	d), have they arrive	ed on ice?
[6]	Are the samples within holdi	ng times for the paramet	ters listed on the C	OC?
	If NO, list parameters	and associated samples:	· · · · · · · · · · · · · · · · · · ·	
. [7]	Are all of the sample bottles	intact? If NO, specify s	sample numbers be	low:
	broken: leaking:			
[] [8]	Are all of the sample labels of	_	IO, specify:	· · · · · · · · · · · · · · · · · · ·
[7]	Do the contents of the contai		NO, specify:	
[10]	Is there enough sample sent f	for the analyses listed or	the COC? If NO	, specify:
	Are the samples preserved co	prrectly (see Preservatio	n Form for actual i	oH readings)?
	(8g - 12g) and accompanied			
	·····			
				OTHER
[13]	Specify:			
L				
NO. ACI	ΓΙΟΝ		COR	RECTIVE ACTIONS
	······			· · · · · · · · · · · · · · · · · · ·
·				

00014

E PORTAUTHORITY OF NY & MU	Chain-1	of-Cus	stody						PA PROJ. 05311	1819	3 NO <u>5</u>
Materials Engineering Division - 241 Erie Street, Room 2	34	Contact		Dorian	Ba	iley/	Ange	2/05	Zafire 2960	lis	
Jersey City, NJ 07310			Phone No. Fax No.	(201) (201)	2/6-	29631	(201)	216-	2960		
Facility Howland Hook		Contact		-(201)	216-	-178	<u></u>				
Project Info. HH - Port Ivory P46	Site	Destina	tion Labora	tory	HC	1 /		Lah C	ase/SDG:	· · · · · · · · · · · · · · · · · · ·	
Charge Code CP11-234-323		Destina			1/2					, 	J
arannan mananan da karanan karana karan			adaad Agada Agarta Sata		26 s. 1 et	an is see and	nte anti ci constituit	and a second state of the second	en er sterne till som forsøre	nigera statisticatos, a	
EQuIS Sys_Sample_Code Loc(8)Date(6)Matrix(2)Type(2)Counter(2)	Contract Lab Sample ID	Date of Collection Year Time of Collection	Geotech Cross Id	# of Containers Preservative Codes (MeOH No.)	Grab or Composite	4 VOA	~ PAHI		diskette		
		Date of Year Time of	Geotec	# of Containers Preservativ Codes (MeOH	Grab or	NY Sta ATRE	WY Har		100 B ers/Analyt	tas	
PG-PGB2W4-05300250	AR58571	5/30/02	·]	2							
- PG B2W4-05300250	2 58575	111		2							
-FB-01-053002Wa0	1 58576	II		2. HC	1						·
						-		·			
											1
	- -										
				<u></u>							· .
<u>╶┼╶┽╶┽╍┼╶╄╌╂╌╂╌╂╸╉╴</u> ┨╴╋╍┥				<u> </u>							· · ·
npling Method:1.	<i>servatives:</i> ce 2. HCl NaOH 5. MeOH	3. HNO3 6. H2S	0	AT: THER OLE			Delive THE		NJ Reduced	Data Si	10th
Relinquished By:	Date: 5/31	102 3:	40 Received		Me	due	etto		Date: 5	71 10	
Relinquished By:Relinquished By:	Date: Date:		Received						Date: Date:		

٠,٣

.

CUNDITION UPON	RECEIPT FORM		Veritech
Date Received: Client: Veritech Project #	5/31/02 PA	Filed By: Project/Account:	RM POFINTYRGSITE
YES NO [1] [2] [3]	Are the samples in a con Are the custody seals int	Chain of Custody included v stainer such as a cooler or ice tact? cle one of the following:	•
<u>40</u> °C [4]	· •	rature inside the container.	
YES NO [5] [6] [7] [7] [8] [9] [10] [10] [11] [12]	Are the samples within h If NO, list parame Are all of the sample bo broken: leaking: Are all of the sample lab Do the contents of the co Is there enough sample s Are the samples preserve Are all soil VO(NJ) sam (8g - 12g) and accompa	bels or numbers legible? If N ontainer match the COC? If sent for the analyses listed on ed correctly (see Preservation oples properly preserved in m	ample numbers below:
[13]			OTHER
NO. AC	FION		CORRECTIVE ACTIONS
			,
VCUR9.DOC			00030

đ

iterials Engineer	ing Division - Jersey City, I		treet, Roo	m 234		Cont	act Na act Ph act Fa	one No.	(2	201) 21 201) 21	16-	2963/	(201)	2/05 Z 2/6-2	0628 fire 1 960	15	
Facility	Howlan	d Hook				Cont	act En	nail:									
Project Info.	HH - Po	+ Ivo	ry Pt	6514	Le_	Desti	nation	Labora	tory:	h	1C	V	•	Lab Cas	e/SDG:		
Charge Code		P11-2			and the second sec		n affertes types er st. A		an an an	1999 AND IN AND A SUM		- 		the first of the state of the state	and the state of the state of the state	and any state from the second	
							<u> </u>							· · · · · · · · · · · · · · · · · · ·			
	QuIS Sys_S ate(6)Matrix(2)	Contract Lab Sample ID	Date of Collection Year	Time of Collection		# of Containers	Preservative Codes (MeOH No.)	Grab or Composite	NY SHAL VOAT	NY Has PAHI	E.R.m. di Kette			
		·				T. Z	····			·				Parameter.	s/Analyte	əs	
PG-PGP	3 E 3 -	0628	5025		AB60464	6/26/02	2		2		╞╌┥	~	-		-		
-PGO	PISI	-062	602	503 503					2			12			1		ļ
	0 P 1 W 1 - 01 - 0	- 062	2602		60466 V 60467				2	Itel	$\left\{ - \right\}$						<u> </u>
		- 20	- 000		4 60761			<u> </u>	<u></u>	1/01							
										}	+						<u>+</u>
																	<u> </u>
						, ,											
npled By: <u>6</u> npling Method:	tranker	· · · · · · · · · · · · · · · · · · ·	_	Preserva 1. Ice 4. NaO	2. HCl	3. HN 6. F	03 I2SO4		TAT: THE				Delive THE	rables: NJ R	Reduced)Data Su	im.
		- RA				/				<u> </u>	<u> </u>			1	{		لمستقرب
elinquished By:		Lando	·		Date: 6/27	7/02 /	15=35				<u>لعد</u>	her	7 1)ate: 6 [12 15	35
elinquished By: elinquished By:					Date: Date:		<u> </u>	Receive Receive							Date:		
undragrice D h.		······						1000146	<u>ــــــــــــــــــــــــــــــــــــ</u>		<u> </u>			¹	Date:		2000

CONDITION UPON	RECEIPT FORM Veritech
Date Received: Client: Veritech Project #	6/27/02 Filed By: RM Project/Account: Howland Hook
YES NO	INITIAL CONDITIONS Is there a corresponding Chain of Custody included with the samples?
/ [2] / [3]	Are the samples in a container such as a cooler or ice chest? Are the custody seals intact? IF NO, please circle one of the following: missing - broken N.A.
<u>4,0</u> °C [4]	Please specify the temperature inside the container.
YES NO [5]	SAMPLE INFORMATION Are the samples properly refrigerated (where required), have they arrived on ice? Are the samples within holding times for the parameters listed on the COC? If NO, list parameters and associated samples:
[7]	Are all of the sample bottles intact? If NO, specify sample numbers below: broken: leaking: Are all of the sample labels or numbers legible? If NO, specify:
[]	Do the contents of the container match the COC? If NO, specify:
	Is there enough sample sent for the analyses listed on the COC? If NO, specify:
	Are all soil VO(NJ) samples properly preserved in methanol with the correct soil weights (8g - 12g) and accompanied by dry soil?
[13]	OTHER
NO. ACT	TION CORRECTIVE ACTIONS
•	0004d

÷

	ring Division - 241 Eri Jersey City, NJ 0731		4		Con	tact	Name Phone No.	(2	01) 21	6-2	i/e- 2963	/ (2	Inje/0 01)21	,s 16-	Zafir	240 e [í]		
				٦			Fax No. Email:	(-	201) 2	16-	215							
Facility	Howland Hook			-{				<u> </u>				~						
Project Info.	HH-PORT IVO		TE	4	Des	tinati	on Laborat	tory:	F	<u> </u>	V		La	ab Ca	ase/SD	G:		
Charge Code	501-2	233-295	* 	ang tanàna ang taona amin'	egentelium her bu	unsedering: es	and the second	contra was	terry in a subject to a subject to a	Ar mar		9163 4 17 599	en de la factiva de la factoria da	at Density of the	to also grand to be	Instruction and	***********	
			· · ·			·					s		······································	هير جستا کرد.				Billio (1997)
	EQuIS Sys_Sample ate(6)Matrix(2)Type			Contract b Sample ID ,	Date of Collection Year	Time of Collection	Geotech Cross ld	# of Containers	Preservative Codes (MeOH No.)	Grab or Composite	VOAS	PPBNA, +25 PetIPCRC	AL Metals Cyanide	TPHC	PH Phenol		EQUIS Di, Kede	
					l	<u> </u>	_ <u></u>	I		L			Par	amete	ars/Ana	lytes		
PG-SW-	-01 - 1191	OOWSOI	4	B19604	11/21/0	d	56-1	2	HNO2		┼╌┼				1	$\left\{ - \right\}$	+7	·
J-SW.	-02-	02		19605	1	 	SW-2	2			┼╌┼			╏╌┼╴	1		1	*****
	-03-			19606		+	(W-3	2		-				┟╼╼┼╾		+	ŤŤ	
- S E !	D-1-	5D01		19607			5ED-1	1		<u> </u>	┼╌┼			┠╼┼╸	┿╍┾╾╸	+	17	
	D - Z -	5501	┼╌┼╌┼	19608			SED-1	1		<u> </u>	╞╾┼			╏──┼─	╶┼╾┼╾╸	+		
	>-3-	SDO	/	19609			SED-3	1			<u> </u> -					┼╌╌┼╸		
- 5 E	0-4-	500	111	19610			SED-4	1							+			
1-SE2) - 5 -	V SDOI		19611	V	1	SED-5	1					1				14	
			1.	<u></u>				1									╼┾╼╼┼╸	
						1		1							+	╏╌┼╴	╶┼╼╌┼╸	
npling Method:	ifar Kohlsaat (Ki	1. I	laOH	HCl 5. MeOH	1	H2SO	4		One	· · ·			eliverabi THER	les: A E G	I Reduc	ed Di	ata Sum	
Relinquished By: Relinquished By: Relinquished By:	Dief	Afars		te: 1/22/ te: 1/22/ te:	50	1301	Received Received Received	By:_		le f Ar	<i>y</i>	Aler na	N HC		Date: // Date: _/ Date: _/	427) 422	0 11 13.	25- 00 487.

TE PORTAUTHORITY OF AV& AU

5月到1月2072595799	戲	;啊	例	518JA	例門	で見て	18	TD	観対	I
-----------------	---	----	---	-------	----	-----	----	----	----	---

PAGE 2 OF 3 PA PROJECT SDG NO 1 ?

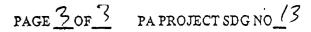
7.

Materials Engineering Division - 241 Erie Street, Room 234 Jersey City, NJ 07310

Facility	Howland Hook
Project Info.	HH-PORT IVORY P&G SITE
Charge Code	501-233-295

77

Destination Laborat	tory:	HCV	Lab Case/SDG:
Contact Email:			
Contact Fax No.	(201	216-2158	
Contact Phone No.	(201)	216-2963	1 (201) 216-2960
Contact Name	Doria	4 Bailey	[Angelos Lafire 11]


EQuIS Sys_Sample_Code Loc(8)Date(6)Matrix(2)Type(2)Counter(2)	Contract Lab Sample ID,	Date of Collection Year	Time of Collection	Geotech Cross Id	# of Containers	Preservative Codes (MeOH No.)	omposit	VOAS	Pet 10CRS	TAL Mer	1 U	DEG	PH Obecol		FRUIS DER A	1
											P	aran	neter	s/Ana	lytes	Ĩ	
G-UST7-2-1121005	005	AB19612	11/21/02		UST75-5	3			4	1	-	~			11	-	1
T - UST7 - 2 - T	06	19613			UST7,5-6				\neg	11			1		T	7	7
-FILL12-	01	. 19614		<u> </u>	Fill 11 5-1											L	
-FILL11-	02	19615		1	Fill 11, 5-8						ŀ						$\overline{1}$
-PD-01	02	19616			PD-1,5-2											-	1
-PD-01	06	19617			PD-1,5-6											-	-
-PD-06	04	19618		/	D-6, 5-4												
-PD-06	07	¥ 19619	V	/	D-6,5-7	V				V	1	Y	\mathbf{k}		V	-	Ţ.
										ľ							1
													\top				1
pied By: John Zaks / Do un Howe	Preserva 1. Ice 4. NaOI	2. HCl	3. HN 6. H	03 12SO4		(<i>T:</i> THER	One	Wee	5		eliver THEI	ables	R	Reduc	ied I	Data Si Keth	1m. C
inquished By:		Date: 11 22 Date: //2	al		Received		4 , x _ x	<u>le</u>	X	lu	v		<u> </u>		1/2	100	112
inquished By:		Date:	The -		Received Received		C.J	ŢŢ,ĄĿ	Ls	3.2	\geq	46		Date:	i/2Ă	17	· 00

2.000

IE PORT AUTHORITY OF NY& NJ

Snam-Or-Sastony

laterials Engineering Division - 241 Erie Street, Room 23 Jersey City, NJ 07310 Facility Howland Hook		Con	tact] tact]	Name Phone No. Fax No. Email:	(2	orian 01) 21 201) 2	6-2		31/	Au (20)	ige, () 2	/ <u>6</u> 5 216		29	lire 60	115		
Project Info. HH-PORT IVORY PtG SI	TE	Dest	inati	on Laborat	ory:	F	f C	ĪV	/]	Lab	Ca	.se/S	DG	;		
Charge Code 501-233-295		·····		<u>.</u>														
NA TA DUNANT PROTECTION PROCESSION OF THE DESCRIPTION OF THE PROTECTION OF THE DESCRIPTION OF THE PROTECTION OF T	gala na agang manakan kata kata na pang na na pang na manang na pang na manang na pang na pang na pang na pang	449-5 - 19620 A. HU		an an tao ao amin'ny faritr'i Andrewski a san an amin'ny faritr'o ana amin'ny faritr'o amin'ny faritr'o amin'ny	2000 To 10 100 F	anna i an Astal (1943)		2		ы <u>, с</u> тала, т	**************************************						a di sa bisis da sa	Translation and
EQuIS Sys_Sample_Code Loc(8)Date(6)Matrix(2)Type(2)Counter(2)	Contract Lab Sample ID	Date of Collection Year	Time of Collection	Geotech Cross Id	# of Containers	Preservative Codes (MeOH No.)	Grab or Composite	PPVOAS + 15 + Xale	PP BNA, +25	+100	4	Cranide Tour	0 4 1	エ	phenol		EQUIS DEKede	
											Pa	aran	nete	ors/A	naly	rtes	1	
PG-G-02-1121005001	AB19620		ļ	6-2,5-1	3			1	2	-	~	~	4		-		4	
7-6-02-03	19621			6-2, 5-3						T		\dashv	T				17	
1-6-02-04	19672	ļ	ļ	6-2, 5-4		+	·	·	·	\downarrow		\parallel		\downarrow	$-\parallel$		4	·
-G-7M-05	19623	ļ	· .	6-71,5-5	1 1	ļ		<u> </u>		\downarrow	_	_	_	\downarrow			1-1-	
1 - 6 - 7 M - 06	19624	<u> </u>	<u> </u>	6-7N, 5-6		<u> </u>	<u> </u>	<u> </u>		4		_ 1	,	┼╌┼	<u> </u>	4	14	
$\frac{-FBO}{-FBO} = \frac{O}{1}$	19625			FB-1	2	HC1	┠──┤	1						+			14	
V - FBO2 - V O/	¥ 19626			FB-2	1-6	Hc1				<u> </u>	<u> </u>			+				
				· · · · · · · · · · · · · · · · · · ·				┼╌┤						┼╍┼			┽╾┼╾	
						+	\vdash	$\left - \right $		-+-		_		+			+	
Impling Method:	Date: 1/2-2 Date:		H2SO	4 Or Received	Ву:_ Ву:_	<u>One</u> D [le	ef.			OT.	HER		<u>- A</u>	Date Date	5 d +4/-	Da 25 Ke 27/01	1 112	•

Mate	rials Enginee					Root	m 234	4			No. of Concession, name	and the second value of th	Name		orian		ni/e	2/	An.	<u>e/</u>	25	Zz	0115 fin		
		Jersey.	ity, nj o	7310						. · · · ·		the second s	Phone No. Fax No.	and the second secon	201)2	16-			أمع) Z	6-	29	960		<u></u>
Fa	cility	Howl	and H	ooK.]	Cor	itact	Email:	1											
	oject Info.	HH-	PORT	VOR	r P	4 G	50	TE		J	Des	tinati	on Labora	tory		HO	CL	/		L	ab C	Casel	/SDG		
Ch	arge Code	<u> </u>	501	-27	33.	29	5	<u> </u>		<u>]</u>						~~~~									
	Loc(8)D	EQUIS S ate(6)Ma	ys_Sam atrix(2)T	pie_C ype(2	ode Cour	nter(2	2)		C La	Contract b Sample iD	Date of Collection Year	Time of Collection	Geotech Cross Id	# of Containers	Proservative Codes (MeOH No.)	Grab or Composita	PPV0A1+15+1-214.	10 0 vA +25	ret PCBS	1 3	PHC	066	phenol		EQUIS DIM de
											L	<u> </u>	<u> </u>			<u> </u>	₩~		<u>-</u>		1	ters	Anal	VIAS	Twi
7	GI-PA	HWC	DIE	170	201	7 42	60	10	AA	3,20012	1 destar	T	PAN 10	Tu	1	<u> </u>	12	1	オ		17	77			17
	G-TM				<u>'</u> f f	五		1	1	20013		1	746-20	11	<u>+</u>			+++	rh	.1	\mathbf{H}				++
p		1 101	╼┥╼┥╗	ŤŻ	11	S.		L	T	20014	1		PANIE ALC	<u>, </u>	1		 -				\dagger				\ddagger
P	6-34				(w	60			20015		i	- Bu -D	Ì				#1							##
	G-FB	-011	Li			6	QO	1		20016	l		FB-1	Y			\mathbb{N}	V	5	in	V	1/1	VI	·	M
P	6-10	-01			╺┼┤	W	90	21	re	20017	1		173	2	ļ		14								P
						_ - -					<u> </u>	4		<u> </u>	<u> </u>	1	Щ_								
			╾┼╌┼╾┥		4!			$\left \right $			<u> </u>	<u> </u>	1			_			\rightarrow	4			\square	 	
		_{-{-}	╶┽╌┼╴┦					÷			+	+		┼	<u> </u>		╢	-	4-	÷-	$\left[- \right]$	<u> </u>			44
				1.		i	1				i .	ļ	1	1		1	[]							<u>_</u>	1.1
:mp nip	led By: ling Method:_	DP je	M				Pres 1. k 4. N	ce	2.	HC1 5. MeOH		NO3 H2SC		THE	R <u> Ön</u>	stp we			OTH	IER_	E	QU	ecuce 15 d	Dal Lis Ke	ia Sun He
		<u> </u>	- Vu	5	»T						lee li				<u> </u>			2	_	3.	1 (
	nquished By:		Jer	21.94	¥					te: <u>11/30/</u> te:	10 16	18_	_ Received	d By: d By:	<u>Leco</u>	م ماد م	Ą	1000	a	\$	_		ale:	<u></u>)	ú
	nquished By: nquished By:								Da				Received	d By:_	"TCM.	<u>A4</u>	4,5	\$	a the second second			_ Da	ate: <u>+</u> 2	ile l	כ/יו"

1

聖 いいっ/ いいう