PILOT TEST REPORT FOR IN SITU TREATMENT USING ENHANCED BIOREMEDIATION

Ekonol Polyester Resins, NYSDEC # V00653-9 6600 Walmore Rd. Town of Wheatfield, Niagara County, New York

Prepared for:

New York State Department of Environmental Conservation Division of Hazardous Waste Remediation 270 Michigan Avenue Buffalo, New York 14203

Submitted by:

Atlantic Richfield Company

A BP affiliated company 4850 East 49th Street Cuyahoga Heights, Ohio 44125

Prepared by:

PARSONS

40 LA RIVIERE DR, SUITE 350 BUFFALO, NEW YORK 14202

April 2009

TABLE OF CONTENTS

	rage
SECTION 1 PROJECT DESCRIPTION	1-1
1.1 INTRODUCTION	1-1
1.2 PILOT TEST OBJECTIVES	
1.3 SCOPE OF WORK	1-1
SECTION 2 Pilot Test Implementation	
2.1 FIELD ACTIVITIES	
2.2 SYSTEM INSTALLATION TREATMENT AREA	
CHARACTERIZATION	2-1
2.2.1 SYSTEM INSTALLATION	2-1
2.2.2 TREATMENT AREA CHARACTERIZATION	2-2
Hydraulic Characteristics	2-2
Baseline Sampling	
2.3 TREATMENT APPLICATION	2-2
2.4 PERFORMANCE MONITORING	
2.5 BIOAUGMENTATION INJECTION PLAN	2-4
2.6 pH BUFFERING	2-4
2.7 WASTE DISPOSAL	
SECTION 3 PILOT TEST RESULTS	3-1
3.1 HYDROGEOLOGY	
3.2 SUBSTRATE DISTRIBUTION	3-1
3.3 GEOCHEMICAL AND BIOLOGICAL CHANGES	
3.3.1 Sulfate and Sulfide	
3.3.2 ORP	
3.3.3 Chloride as an Indicator of Reductive Dechlorination	3-1
3.3.4 Carbon Dioxide, Alkalinity, and pH	
3.3.5 TOC, Metabolic Acids, and Biomass	
3.4 CHLORINATED HYDROCARBON CHANGES	
3.5 EVALUATION OF PILOT TEST OBJECTIVES	
SECTION 4 CONCLUSIONS	
SECTION 5 REFERENCES	

LIST OF FIGURES

- Figure 1.1: Site Location Map
- Figure 1.2: Site Plan and Pilot Test Layout
- Figure 2.1: Monitoring Well and Injection Borehole Locations
- Figure 3.1: Photograph of Typical Rock Core
- Figure 3.2: Diagram of Fracture Character
- Figure 3.3: Groundwater Elevation Map Deep Wells
- Figure 3.4: Distribution of Bromide in Groundwater Following Substrate Injections
- Figure 3.5: Trends of Geochemical Indicators at Selected Monitoring Wells
- Figure 3.6: Trends of Microbial Populations
- Figure 3.7: Trends of Chlorinated Ethenes in Inner Treatment Zone Wells
- Figure 3.8: Percent Decrease in Total Chlorinated Ethenes
- Figure 3.9: Spatial Representation of Change in Total VOCs (contour map showing difference between baseline and 26-week events)

LIST OF TABLES

ii

- Table 2.1: Summary of Monitoring Well Construction
- Table 2.2: Summary of Substrate Injection and Loading Rates
- Table 3.1: Summary of Water Level Measurements
- Table 3.2: Laboratory Results for Geochemical Parameters
- Table 3.3: Results of Field Laboratory Measurements
- Table 3.4: Summary of Field Parameter Readings
- Table 3.5: Results of the Microbial Census Survey
- Table 3.6: Laboratory Results Summary of Volatile Analytes

LIST OF APPENDICES

Appendix A: Well Information: boring logs, caliper log summary, borehole video snap shots, well development records

Appendix B: Substrate Breakthrough Plots

Appendix C: Low-flow Groundwater Sampling Sheets

Appendix D: Data Usability Summary Reports

Attachments: CD – E-copy of this report

PROJECT DESCRIPTION

This report describes the methods and results of a pilot test that were performed to assess the applicability and feasibility of enhanced *in situ* bioremediation for chlorinated compounds of concern (COCs) in bedrock groundwater at the former Ekonol Polyester Resins facility (the Site) in Wheatfield, New York. All work reported in this document was completed in accordance with the Pilot Test Work Plan for *In Situ* Treatment Using Enhanced Bioremediation (Parsons, 2007). The work plan was approved by the New York State Department of Environmental Conservation (NYSDEC) on August 29, 2007.

1.1 INTRODUCTION

The former Ekonol Polyester Resins facility is located at 6600 Walmore Road, approximately one-half mile north of Niagara Falls Boulevard (Route 62) in the Town of Wheatfield, New York (Figure 1.1). The Site is impacted by chlorinated compounds of concern (COCs) related to previous Site operations. Major activities associated with the Site remediation are:

- initial removal of the containment tank,
- various phases of Site characterization and groundwater monitoring,
- remedial alternatives assessment, and
- laboratory treatability testing and initiation of the pilot test.

The potential treatment program being evaluated consists of a substrate (emulsified vegetable oil, sodium bromide and Site groundwater) injected as a carbon source into the bedrock groundwater to promote biodegradation of chlorinated COCs.

1.2 PILOT TEST OBJECTIVES

The goal of the field-scale pilot test described in this report is to determine if enhanced *in situ* bioremediation is a viable treatment option for chlorinated COCs in bedrock groundwater at the Site. The objectives of the pilot test are presented in the results section of this report, along with an assessment of how the results of pilot test fulfilled the data requirements of each objective.

1.3 SCOPE OF WORK

The pilot test was comprised of (1) treatment area characterization and system installation (2) treatment application and (3) performance monitoring. Injection boreholes were used to apply the substrate to the fractured bedrock for the treatment application. Eight monitoring wells were included in the performance monitoring program. Figure 1.2

provides a Site plan and a layout of the pilot test area. Details of the pilot test program are provided in Section 2.

Pilot Test Implementation

2.1 FIELD ACTIVITIES

Field activities associated with this project include mobilization, installation of system components (i.e., injection and monitoring wells), evaluation of local bedrock hydraulics, baseline characterization, injection of substrate, injection of a bioaugmentation culture, injection of a buffering agent, performance monitoring, and waste handling. The following is a timeline of pertinent events completed during the pilot test:

- November December, 2007:
- January 14- 15, 2008:
- June 17 June 19, 2008:
- July 21 23, 2008:
- August 19 -20, 2008:
- September 29 October 1, 2008:
- November 24 25, 2008:
- December 11, 2008, 2008:

Well Installations Baseline Groundwater Sampling Pilot Test Injection at INJ-01 and INJ-04 Performance Monitoring No. 1 Bioaugmentation INJ-01 and INJ-04 Performance Monitoring No. 2 Buffered INJ-01 and INJ-04 Performance Monitoring No. 3

2.2 SYSTEM INSTALLATION TREATMENT AREA CHARACTERIZATION

2.2.1 SYSTEM INSTALLATION

System installation for the pilot test consisted of advancing five injection boreholes and installing eight groundwater monitoring wells. Locations of the performance monitoring wells and injection boreholes are shown on Figure 2.1.

Seven bedrock performance monitoring wells (PMW-2D through PMW-8D) were constructed of 2-inch diameter stainless steel screens and risers. One performance monitoring well (PMW-1D) was installed with a 4-inch diameter stainless steel screen and riser. The five injection boreholes (INJ-01 through INJ-05) were drilled and left as open bedrock wells. The location and elevation of all wells and boreholes installed for this pilot study were surveyed by a land surveyor who was registered in the State of New York. Table 2.1 provides a summary of the construction details for the performance monitoring wells and injection boreholes. Boring logs for all of the wells are provided in Appendix A.

Injection boreholes and monitoring wells were developed after installation and prior to sampling. Development water was collected and staged in a polyethylene tank or 55gallon drums pending proper disposal. The development records for each well are provided in Appendix A.

2.2.2 TREATMENT AREA CHARACTERIZATION

Prior to injecting the substrate, the treatment area was characterized for local hydraulic properties, COC concentrations, and microbiological and geochemical indicator parameters.

Hydraulic Characteristics

Local groundwater hydraulics were characterized through fracture observations and down hole measurements, water level measurements and drawdown tests during drilling and well development. A downhole caliper was used to evaluate the number and size of fractures in the bedrock water bearing zone for each boring location. In addition, a downhole camera was used to visually identify the number and size of fractures in the injection boreholes. Photos of the fractures in the boreholes and a summary of the data collected using the downhole caliper are provided in Appendix A. Water level measurements were collected during monitoring events performed in January, May, June, and July 2008. Drawdown test measurements were collected during well development in January 2008.

Baseline Sampling

To document baseline concentrations and biogeochemical conditions, groundwater sampling was completed prior to the substrate injection. Chemical parameters analyzed and results from the baseline sampling event are presented in Section 3 of this report. Well purging data and field measurements are presented in Appendix A.

2.3 TREATMENT APPLICATION

Prior to application of the substrate, an underground injection control permit from the United States Environmental Protection Agency (USEPA) for this project was obtained. Approximately 1,136 gallons of substrate and water were injected into INJ-01 and INJ-04 (approximately 568 gallons into each borehole). Table 2.2 provides a summary of the substrate injection for this pilot study.

Substrate

A slow-release emulsified vegetable oil commercial remediation product (SRS^{TM}) was used as the source of carbon for this pilot test. The SRS contained 60% vegetable oil, as well as low concentrations of lactic acid and nutrients that enhance substrate distribution and microbial growth. Sodium bromide (less than 1,000 mg/L) was also added to the substrate mixture as a conservative tracer.

Makeup Water

Site groundwater was extracted from pilot tests wells for use as make-up water in the substrate. The makeup water was mixed with the SRSTM and sodium bromide in 600 gallon tanks using a pump.

The injection of contaminated groundwater mixed with the slow release substrate for *in situ* remediation was approved by the USEPA Groundwater Compliance Section using Underground Injection Control Identification Number UICID 08NY06307453.

Injection and Monitoring

Prior to substrate injection, pressure transducers were deployed in multiple wells surrounding the injection point to measure and record changes in pressure and water level elevation during substrate injection. Injection system pressures were monitored to avoid excessive pressure which could constitute a health and safety risk or fracture the bedrock matrix. The substrate was injected at rates ranging from 1 to 6 gallons per minute (gpm), during which no measureable pressure was recorded in the injection wells.

Groundwater samples were collected using a bailer from various performance monitoring wells during the injections to document that a minimum 15-foot radius of influence had been achieved. Bailer samples were examined for visual presence of the vegetable oil emulsion, which has a milky color that is easily observed in the field. Additionally, pressure transducers and specific conductivity probes were installed in multiple wells surrounding the injection points to measure and record changes in pressure and conductivity during substrate injection. Because the substrate has a higher specific conductivity than site groundwater, the conductivity probes are able to detect when the substrate arrived at each well. Bromide, a conservative tracer that was added to the substrate/water mixture, was analyzed in the field using a bromide probe as a confirmation of substrate distribution.

An injection of unamended Site groundwater was used to help remove residual vegetable oil from the injection borehole. The volume of this groundwater "push" was approximately 35 gallons.

2.4 PERFORMANCE MONITORING

The effects of the substrate injection were monitored over time by collecting groundwater samples from the eight newly-installed performance monitoring wells (PMW-1D – PMW-8D), two existing monitoring wells (RMW-2D and RMW-4D), and two injection boreholes (INJ-01 and INJ-02). Performance monitoring events were completed at approximately 4 weeks, 13 weeks, and 26 weeks after injection of the substrate. Details and results of the sampling and analysis are discussed in Section 3.

During substrate injection (June 2008), field readings were collected from all five injection boreholes, PMW-1D through PMW-8D, RMW-2D, and RMW-4D for bromide, oxidation reduction potential (ORP), conductivity, and pH. While bailing water from INJ-05, dense non-aqueous phase liquid (DNAPL) was observed. Subsequent to observing

DNAPL, the wells and boreholes were checked twice per week and DNAPL, when present, was recovered by either bailing or pumping. INJ-05 was the only location where DNAPL was observed.

After the June 2008 substrate injection, approximately four liters of DNAPL were recovered. On subsequent attempts, less than 500 milliliters (mL) of DNAPL were recovered, with the volume of DNAPL recovered decreasing over time. A total of approximately 4.9 liters of DNAPL were removed between July and September 2008.

In August, the post-injection monitoring and DNAPL recovery was reduced to an every other week schedule. From August to December 2008, 0 to 20 mL of DNAPL was recoverable from INJ-05, per event.

2.5 BIOAUGMENTATION INJECTION PLAN

Prior to the bioaugmentation injection, data from the performance monitoring event that was conducted 4 weeks after substrate injection was evaluated to confirm that a suitable anaerobic environment had been established. An injection of a microbial consortium including both *Dehalococcoides* and *Deahlobacter* species was performed at INJ-01 and INJ-04. The bioaugmentation culture was not genetically engineered or modified. The purpose of the augmentation was to determine if the addition of the microbe populations, given above, would accelerate the COC degradation.

The bioaugmentation was conducted approximately eight weeks after the substrate injections. The augmentation consisted of initially extracting groundwater from INJ-01 and INJ-04 under a nitrogen "blanket". The groundwater was then mixed with SRSTM (used to prevent oxygenation of the water) at approximately a 4:1 ratio (4 gallons water : 1 gallon SRSTM,). Subsequently two liters of *Dehalococcoides* (DHC) and *Deahlobacter* (DHB) at concentrations greater than $1x10^{10}$ microbes/L each was added to mixture. After confirming that DO concentrations were less than 0.5 mg/L, approximately 120 – 130 gallons of the bioaugmentation solution was pumped into INJ-01 and approximately 100 gallons was pumped into INJ-04. Following each injection, 23 gallons of un-amended groundwater was pumped into each well to help distribute the bioaugmentation solution farther out into the formation.

2.6 pH BUFFERING

The pH was monitored prior to injection and at least monthly during the pilot test to assist in determining if the buffering capacity of site bedrock was sufficient to maintain a pH above 6.0 (see Section 3.3.4). A drop in pH from a pre-injection range between 6.9 and 7.5 to values around 6.0 was observed in the treatment area over the first 4 months of pilot test monitoring. During week 23, a buffering solution was injected into INJ-01 and INJ-04 to evaluate whether pH levels could be increased in the injection area. The buffering solution at INJ-01 consisted of 148 gallons of groundwater extracted from INJ-01 mixed with 3 pounds of sodium bicarbonate (baking soda). The buffering solution at INJ-04 consisted of 140 gallons of groundwater extracted from INJ-04 mixed with 6

pounds of sodium bicarbonate. The buffered groundwater was then pumped back into the well. All extracted groundwater was pumped into a polyethylene tank that was sparged with nitrogen to keep DO concentrations below 0.5 mg/L.

2.7 WASTE DISPOSAL

Investigation-derived waste (IDW) generated during the pilot test included soil from installation of the injection and monitoring wells, purge water from development and sampling of groundwater monitoring wells, equipment decontamination rinsate, and personal protective equipment (PPE) used during sampling activities.

Soil cuttings generated during field activities were collected in DOT approved 55gallon steel drums and staged onsite. A sample of the containerized soil was collected and submitted for volatile organic compound (VOC) analysis by USEPA Method SW8260B. In addition, the soil was subjected to the toxicity characteristic leaching procedure.

Purge water generated during monitoring well development and initial (baseline) groundwater sampling was collected in a bulk storage tank. This purge water was sampled for VOCs by USEPA Method SW8260B, and properly disposed. All other decontamination and purge water generated during subsequent sampling events was containerized in 55-gallon drums and staged onsite. The drummed water was sampled, analyzed for VOC analysis by USEPA Method SW8260B, and properly disposed.

Expendable sampling equipment that was generated during field activities (e.g., PPE, sample tubing) were bagged, stored in 55-gallon drums, and disposed as a solid waste. Miscellaneous trash generated during field activities (e.g., empty sand bags, bentonite containers) was disposed of as municipal trash.

PILOT TEST RESULTS

3.1 HYDROGEOLOGY

The hydrogeology and geology are consistent with previous site reports, including the depth and character of the fracture system. Boring logs were prepared for wells drilled during the pilot test (Appendix A). The soils from ground surface to approximately 10 to 12 feet below ground surface (bgs) appear to be a gradation of glaciolacustrine clay (little silt) with varves less than 2 millimeters to a fine grained till (clay, some silt, some sand, some gravel) at approximately 10 to 12 feet bgs. The clayey till interval is approximately 12 to 15 feet bgs where the contact to top of rock exists.

Well borings were cored approximately 10 feet into bedrock. The rock was consistent with previous drilling operations: Lockport dolomite. The dolomite is hard, massive, fine grained (saccrocoidal) with a scattering of fragmented coral fossils (favosites) and vugs. Vugs contained varying amounts of crystals including dolomite, calcite, gypsum, and galena. Mineralizations also occurred as irregular seams and closed vugs. Drill core observations indicate a continuous stromatalite deposit approximately 22 to 24 feet bgs. Figure 3.1 is a photograph of PMW-2D demonstrating a typical core. Several fractures were noted throughout the pilot test area. Near the top of rock (12 to 14 feet bgs), 1 to 2 closed, tight factures were observed. At approximately 22 to 24 feet bgs, 1 to 2 smooth, undulating, open, water bearing fractures were observed. Observations from multiple drilling cores indicated that fractures and other characteristics of the dolomitic bedrock are similar across the pilot test area.

Groundwater flow appears to be controlled by 1 to 2 near-horizontal fractures, spaced approximately 1 foot apart (vertically). The fractures are located approximately 22 to 24 feet bgs, where the stromatolite deposit is located. The effects of the fractures were noted during drilling as a slight change in core barrel advancement and the loss of drilling water. Boreholes were completed one to two feet below the depth where the drill water was lost. Additional characterization was completed using rock cores, borehole caliper measurements, and downhole camera videos. Appendix A contains a summary of the caliper measurements, core photos, and photos from the downhole camera. Observations indicated that the upper fracture is not continuous across the area, but the lower fracture is considered less permeable than the lower fracture. The upper fracture was typically tight to part open, and the lower fracture was typically open with an aperture ranging from 0.1 to 0.2 feet.

Downhole camera and drill core observations indicate that the fractures have a block and cavity character. Figure 3.2 is a conceptual drawing in which there is an open cavity bounded above and below by blocks of bedrock. These blocks are rock fragments, partially connected to the massive rock. The blocks are separated from the intact bedrock

by smaller fractures. This block and cavity character may cause higher tortuosity and larger volumes of dead-ended pore space than a smooth, flat facture.

During well development, drawdown observations were recorded. Drawdown in the open borehole injection wells was less than 0.5 feet while pumping at a rate of 2.5 gpm. Drawdown in the performance monitoring wells (finished with sand pack and well screen) was 2 to 3 feet at a pumping rate of approximately 2.5 gpm for all locations other than PMW-1D. The higher drawdown observed in performance monitoring wells is attributed to development of the sand pack. Drawdown at PMW-1D was considerably higher than other performance monitoring wells. PMW-1D was pumped dry at approximately 2 gpm. See Appendix A for well development records.

Depth to groundwater measurements were collected several times during the pilot test period. The depth to water ranges from approximately 6 to 8 feet bgs, which corresponds to elevations ranging from 577 to 579 feet above mean sea level (Table 3.1). Groundwater elevations varied by approximately 1 to 2 feet between measurement periods. Table 2.2 is a summary of groundwater elevation measurements collected during the pilot test.

The potentiometric surface in May 2008 (pre-injection) is shown in Figures 3.3. Groundwater flow is generally towards the south. The hydraulic gradient measured across the Site in May 2008 was approximately 0.003 feet/foot. Appendix A contains the water level measurements from this event. The direction and gradient are consistent with previous data.

3.2 SUBSTRATE DISTRIBUTION

Distribution of substrate was evaluated through visual observation of emulsified substrate, increases in specific conductivity and/or bromide using field instruments, and/or analysis of bromide and total organic carbon (TOC) concentrations in groundwater samples that are submitted to a fixed-based laboratory for analysis.

Bromide and Conductivity: Substrate was visually observed in all pilot test wells, including upgradient wells PMW-1D and RMW-2D. Conductivity measurements and the increase in bromide confirmed substrate break-through at each of the wells in the pilot test area (Appendix B). Figure 3.4 presents the concentration of bromide tracer recorded the day after the injections. Dilute bromide concentrations were observed in the up-gradient and downgradient wells. Based on the concentrations of bromide and conductivity measured during injection, the pilot test area is interpreted to have attained substrate concentrations in the range of 80-100% of the concentration of the injection mixture.

TOC: TOC measurements collected during performance monitoring in July 2008 (1 month after injection) provided further evidence that substrate was distributed throughout the injection area (see discussion below regarding TOC concentrations).

Radius of Influence: The radius of influence was achieved using approximately one quarter of the substrate volume estimated in the work plan. The reduction in the actual

injection volume is attributed to significantly lower bedrock porosity than originally estimated. Based on break-through volumes and the injection interval, the effective porosity in the pilot test area is estimated as approximately 1 percent (or less), which is lower than the 5 percent effective porosity assumed in the work plan phase.

The relatively rapid arrival times of dilute substrate concentrations observed in upgradient withdrawal wells during substrate injection suggests a high degree of fracture continuity across the pilot test area. This continuity results in favorable conditions for distributing the substrate in targeted areas.

3.3 GEOCHEMICAL AND BIOLOGICAL CHANGES

A consistent pattern of geochemical changes was induced as the result of substrate injection. Tables 3.2 through 3.4 and Figure 3.4 – 3.9 present analytical data collected during this pilot test. The most pronounced effects of the substrate were evident in wells PMW-3D, RMW-4D, PMW-4D and PMW-6D immediately downgradient of the injection points (INJ-01 and INJ-04). These wells define the inner treatment zone (Figure 3.4). Other wells in the pilot test area are considered outer treatment zone wells and are located upgradient, side-gradient, or downgradient to this inner treatment zone.

3.3.1 Sulfate and Sulfide

Sulfate: Sulfate reduction is related to the effectiveness of chlorinated VOC treatment as sulfate can be an inorganic electron acceptor that competes with chlorinated VOCs for available electron donors (i.e., carbon substrate). The natural levels of sulfate at the Site are greater than 1200 mg/L, as measured during the baseline monitoring event. Concentrations of sulfate within the inner treatment zone were reduced after the injection with concentrations ranging from 4 to 750 mg/L by December 2008.

Sulfide: Sulfide is a byproduct of sulfate reduction, and may limit dechlorination. During the baseline event, the concentrations of hydrogen sulfide were less than 0.9 mg/L, with the exception of 4.0 mg/L measured at well RMW-4D. Increases in hydrogen sulfide above the method detection limit of 5.0 mg/L were measured in October 2008, but returned to levels that were approximately the same as the baseline event by December 2008. Sulfide accumulation was temporary and did not inhibit the overall dechlorination process.

3.3.2 ORP

ORP conditions prior to substrate injection were moderately to strongly anaerobic, ranging from -126 to -352 millivolts (mV; Table 3.3). ORP conditions were reduced to less than -350 to -400 mV following substrate injection and strongly anaerobic conditions were established across the pilot test area. Figure 3.5 shows the reduction of ORP to values greater than -300 mV for the inner treatment zone wells. By the end of the 6-month pilot test, there was indication of slight increases in ORP. This increase in ORP, which corresponds to reduced TOC concentrations, is expected because a reduced TOC loading means that there is less electron donor available for driving redox conditions lower.

Nevertheless, the redox condition at this Site in December 2008 was sufficiently reduced to support efficient removal of chlorinated VOCs under an ORP range that is typical of sulfate reduction and methanogenesis (the highly anaerobic state that is most conducive to rapid biodegradation affecting the widest range of chlorinated COCs. (Bouwer, 1994).

3.3.3 Chloride as an Indicator of Reductive Dechlorination

Chloride ions are removed from chlorinated COCs during reductive dechlorination. Chloride concentrations in groundwater are expected to increase above baseline levels in areas where reductive dechlorination is being stimulated. Concentrations of chloride increased across the entire in the pilot test area. For example, chloride increased by more than a factor of three in RMW-4D and PMW-6D (see Figure 3.5).

3.3.4 Carbon Dioxide, Alkalinity, and pH

Dissolved Carbon Dioxide: Carbon dioxide is produced during the biodegradation of anthropogenic or native organic carbon. Baseline carbon dioxide concentrations ranged from 100 to 300 mg/L, and generally increased after substrate injection. The maximum concentration of carbon dioxide was measured just downgradient of the treatment area at concentrations that ranged between 3,000 and 4,000 mg/L. This suggests that biological activity increased substantially within and downgradient of the injection area as a result of substrate addition.

Alkalinity: Alkalinity is a measure of the ability of groundwater to buffer changes in pH. Microorganisms capable of the reductive dechlorination of COCs are known to grow optimally in environments with pH of greater than 6.0 (Volkering and Pijls, 2004). The buffering capacity of Site groundwater is an important factor controlling for pH and whether reductive dechlorination will occur. Additionally, alkalinity is another measure of microbial activity. Baseline concentrations of total alkalinity ranged from 260 mg/L to 360 mg/L. Following injection, alkalinity increased during the test to as high as 600 to 700 mg/L. However, in several locations, the alkalinity decreased to baseline levels, or lower, by the 6-month sampling event.

pH: A notable drop in pH was observed throughout the pilot test area, and several wells decreased below 6.0 (Table 3.4 and Figure 3.5).. The decrease stabilized in the range of 5.8 - 6.2 and began increasing approximately four months after the injection. The results indicate that bedrock buffering capacity was marginally sufficient to maintain pH at acceptable levels following the substrate injection.

As discussed in Section 2.7, groundwater in the vicinity of INJ-01 and INJ-04 was buffered approximately 5 months after the substrate injection with a goal of increasing pH around the injection wells (INJ-01 and INJ-04). It is unclear whether the buffering solution increased pH. The data do demonstrate, however, that the pH appears to have stabilized approximately 3 months following substrate injection (Figure 3.5), which was prior to the addition of the sodium bicarbonate buffering solution.

3.3.5 TOC, Metabolic Acids, and Biomass

Stimulation of biological activity may also be measured by analysis of TOC, volatile fatty acids (VFAs) and biomass. TOC concentrations in groundwater quantify the non-specific amount of organic carbon present. VFAs provide a more specific measurement of the types of organic compounds available for supporting microbial growth. Biomass concentrations provide direct measurements of the size of various microbial populations in the area of interest.

VFAs were measured for groundwater samples collected during each sample event (Table 3.2). Microbial biomass was also measured in the pilot test area (Table 3.5). Elevated concentrations of VFAs and biomass are indicative of biodegradation stimulated by the injection of the substrate. Furthermore, VFAs are further fermented to produce molecular hydrogen, which is the primary electron donor utilized for reductive dechlorination of chlorinated VOCs.

VFA concentrations measured prior to substrate injection were all below the analytical reporting limits (0.5 - 2 mg/l), indicating that there was little bioavailable organic carbon present in the aqueous phase prior to substrate injection. Total VFA concentrations increased substantially to approximately 200 mg/L to 900 mg/L, during the four-month period after the injection. These concentrations are indicative of significant biological degradation of the substrate. As of December 2008, concentrations of VFAs remained elevated within the inner treatment zone, ranging from 128 mg/L to 778 mg/L.

The microbial data shows (Table 3.5 and Figure 3.6) that total microbial mass has grown due to the substrate injection, but the direct impact of the bioaugmentation injection of chlorinated ethene concentrations is uncertain. DHC species are dominant in the injection wells, and DHB is dominant elsewhere. DHB domination of microbial population appears to correspond to the wells with the best overall degradation of chlorinated ethenes, but it is unclear how much, if any, of the increase in the DHB population resulted from the bioaugmentation injection.

3.4 CHLORINATED HYDROCARBON CHANGES

Groundwater analytical data collected during performance monitoring are presented in Table 3.6 Changes in TCE, cis-1,2-DCE, and VC concentrations over time in the inner treatment zone are plotted in Figure 3.7.

TCE: Within the injection zone (PMW-3D, RMW-4, PMW-4D, and PMW-6D), baseline concentrations of TCE ranged from 100,000 μ g/L to 240,000 μ g/L. Concentrations of TCE at these locations decreased to levels ranging from 310 to 1,000 μ g/L by the end of the 6-month sampling event. Most of the TCE decrease occurred in the period between the injection and the first performance monitoring event. These observations indicate the substrate injection resulted in sharp immediate decreases in TCE.

cis 1,2-DCE: As the concentration of TCE decreased during the first month of the test, the concentration of cis-1,2-DCE increased. Within the treatment area, concentrations of cis-1,2-DCE ranged from approximately 27,000 μ g/L to 46,000 μ g/L during the baseline event, and increased to the range of 85,000 to 160,000 μ g/L during the first performance monitoring event. The concentrations of cis 1,2-DCE decreased during the remainder of the test. By the third performance monitoring event, the concentrations ranged from 5,600 to 23,000 μ g/L. Overall, cis-1,2-DCE concentrations decreased from during the pilot test by approximately 10,000 to 35,000 μ g/L.

VC: During the baseline event, concentrations of VC ranged from 420 to 2,100 μ g/L, indicating that the degradation of DCE isomers by reductive dechlorination through VC occurs naturally at the Site. Trends in VC concentrations during the pilot test varied over time by location. In some locations, VC increased slightly, whereas at other locations VC decreased slightly. At several locations (PMW-2D, PMW-4D, PMW-5D, RMW-4D), a minor spike in VC was apparent during the first and second performance monitoring events, with maximum concentrations ranging between 1,100 and 2,600 μ g/L. At downgradient locations MW-7D and PMW-7D, VC concentrations of 1,400 to 2,600 μ g/L.

Figure 3.9 shows the percent change in the molar concentration of total chlorinated ethenes (i.e., the sum of TCE, cis-1,2-DCE and VC concentrations) for ten monitoring wells and one injection borehole between the baseline (January 2008) and final (December 2008) monitoring events. Decreases that ranged between 81 percent and 97 percent were observed in the inner treatment zone wells PMW-3D, RMW-4, PMW-4D, and PMW-6D (Figure 3.8, and Table 3.7). Reduction in total chlorinated ethenes was also observed at both downgradient wells (39 percent at PWM-7D and 56 percent at MW-7D). The change in total chlorinated ethene concentrations at wells outside of the inner treatment zone varied between a 67 percent increase at INJ-01 and a 52 percent decrease at PMW-8D. The wide range of total chlorinated ethene removal percentages may be attributed to variation in the amount of substrate reaching these wells and the occurrence of chlorinated VOCs migrating into the pilot test area from impacted upgradient groundwater.

3.5 EVALUATION OF PILOT TEST OBJECTIVES

The objectives indentified in the pilot test work plan (Parsons, 2007) were established to evaluate the effectiveness of enhanced bioremediation for treating chlorinated VOCs in bedrock. Each objective is listed below with a statement regarding the pilot test results in relation to the objective:

> • Create optimal geochemical conditions for anaerobic dechlorination. Decreases of ORP, elevated concentrations of organic carbon (TOC and VFAs), decreases in sulfate, and stabilized pH across the inner treatment zone indicate that optimal conditions for anaerobic bio-dechlorination can be achieved (Figure 3.5 and Table 3.1).

- Enhance the rates of *in situ* biodegradation of COCs. Within the treatment area, the concentration of COCs decreased by 81 to 97 percent in six months.
- Determine if enhanced *in situ* bioremediation is suitable to achieve the Site remediation goals for groundwater. Significant decreases of COCs indicate that *in situ* bioremediation can accelerate the time required to achieve site remediation goals for groundwater.
- **Refine injection methodology and estimate a radius of influence**. Results of the testing indicate that an injection rate of up to 6 gpm results in no back pressure in the injection well. The low effective porosity of the rock (1 percent or less) and the presence of a significant horizontal bedrock fracture suggest that a radius of influence as large as 50 feet could be achieved by injection alone.
- Assess the impacts of the injection of substrates and microorganisms on hydrogeology, especially groundwater movement. Based on the observations made during the bedrock characterization and the pilot test monitoring, changes in the hydrogeology due to the substrate and microorganisms are not expected. The fracture apertures are significant enough to reduce the potential for a lowered hydraulic conductivity. Observations during the bioaugmentation and the buffering event did not indicate changes in hydraulic conductivity.
- Assess the potential for solubility of inorganics (e.g., arsenic), generation of gases (e.g., methane, hydrogen or hydrogen sulfide), and other undesirable effects. Results indicate that the substrate injection did not have a significant impact on solubility of inorganic compounds or produce other potentially undesirable affects.
- Determine optimal design parameters for potential full-scale application of enhanced anaerobic bioremediation at the Site. Information gained during the pilot test, including substrate loadings, buffering capacity, fracture geometry, and effective porosity, have been evaluated and can be used in future design and evaluation of a larger-scale application of enhanced bioremediation.

CONCLUSIONS AND PATH FORWARD

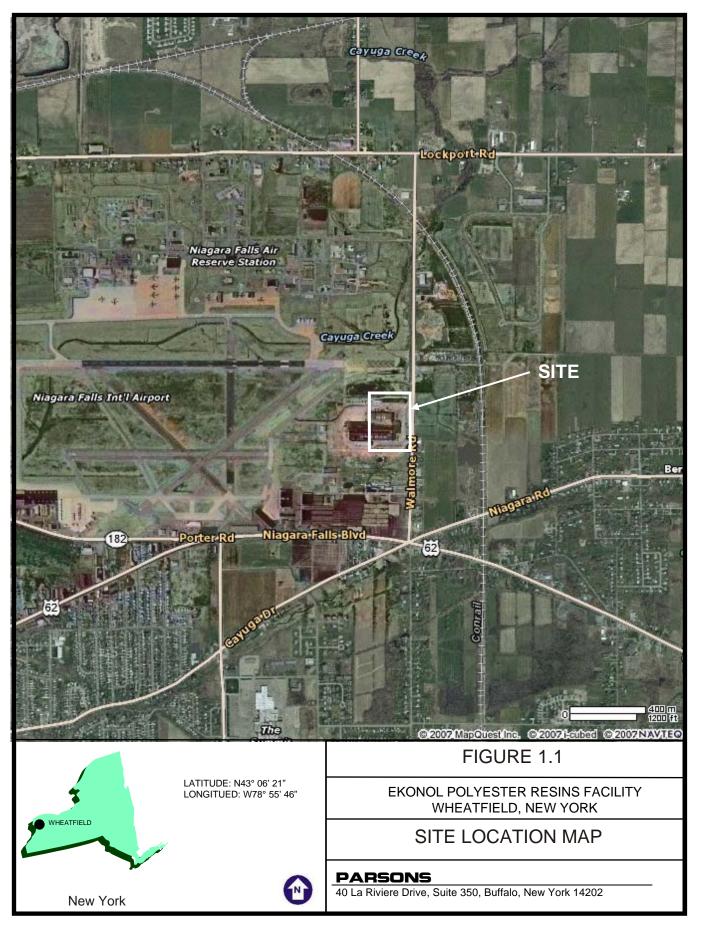
This report presents the results of a pilot test for enhanced *in-situ* bioremediation of chlorinated solvents via organic substrate addition at the Ekonol Polyester Resins Site in Wheatfield, New York. The historical distribution of TCE and the intermediate dechlorination product *cis*-1,2-DCE in groundwater suggests that limited reductive dechlorination of chlorinated ethenes has occurred at the Site under natural conditions, and that the process was limited by an electron donor (organic substrate).

Overall, enhanced *in situ* bioremediation of chlorinated COCs in groundwater appears to be a viable treatment option for COCs in bedrock groundwater at the Site. Additional data are needed.

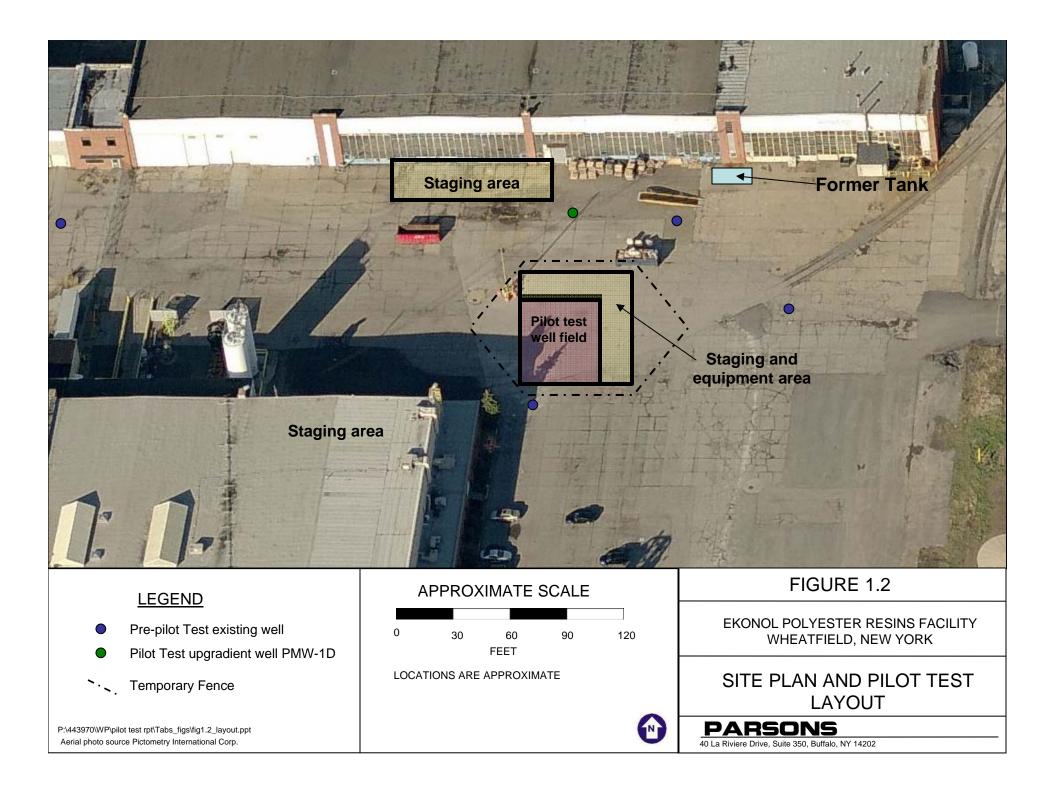
The data collected support the following conclusions:

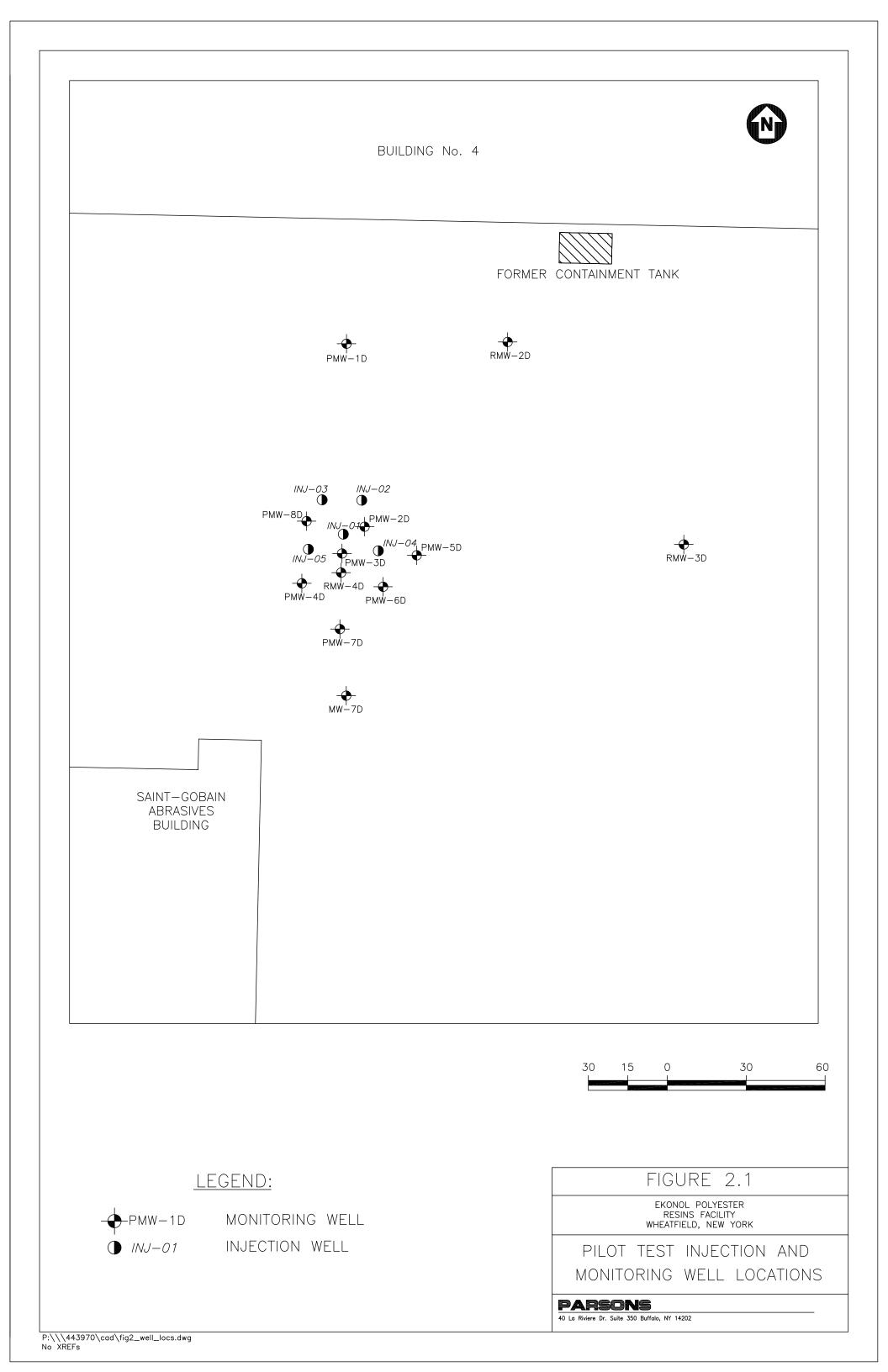
- Transformation of TCE was rapidly achieved without sustained accumulation of DCE or VC.
- The changes in chlorinated VOC concentrations indicate that the observed decrease in TCE was enhanced by the addition of the substrate and biodegradation processes.
- An initial increase followed by a decline in DCE concentrations indicates that degradation of DCE has occurred.
- The observed VC concentrations indicate that the degradation pathway of DCE isomers to VC is limited. These data indicate that biodegradation can be enhanced, with a low probability of long-term VC accumulation.
- Decreases of total chlorinated ethenes within the inner treatment zone ranged from 81 to 97%, in a 6-month period.
- The depth to groundwater, high transmissivity, and fracture network are suitable for distribution of substrate throughout the source area, in direct contact with the impacted groundwater.
- The hydraulic gradient is relatively low, which provides sufficient residence time of Site groundwater within the inner treatment zone, for enhancing COC degradation.
- The native microbial population may be suitable for supporting optimal conditions for dechlorination after the addition of an electron donor (i.e., organic substrate). Available data do not indicate that application of a bioaugmentation culture will enhance the rate of COC removal; however, bioaugmentation may be beneficial in future injection applications.

<u>Path Forward</u>: Additional data are necessary to further evaluate the groundwater response to the initial injection and prepare for the design phase. Potential additional groundwater parameters are acetylene, selected cations/anions, and microbial analyses.

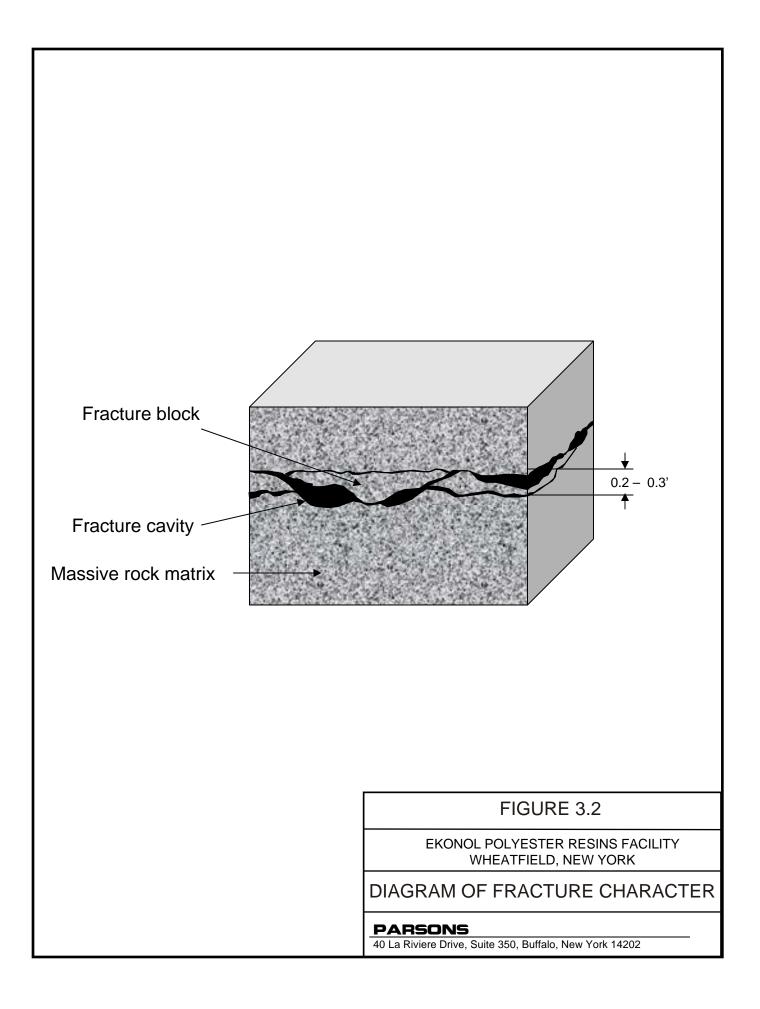

These data will be collected during a site-wide groundwater monitoring event anticipated for completion at the end of May 2009. Following collection and analysis of the additional data, an update to this report with plans for further action will be provided to NYSDEC.

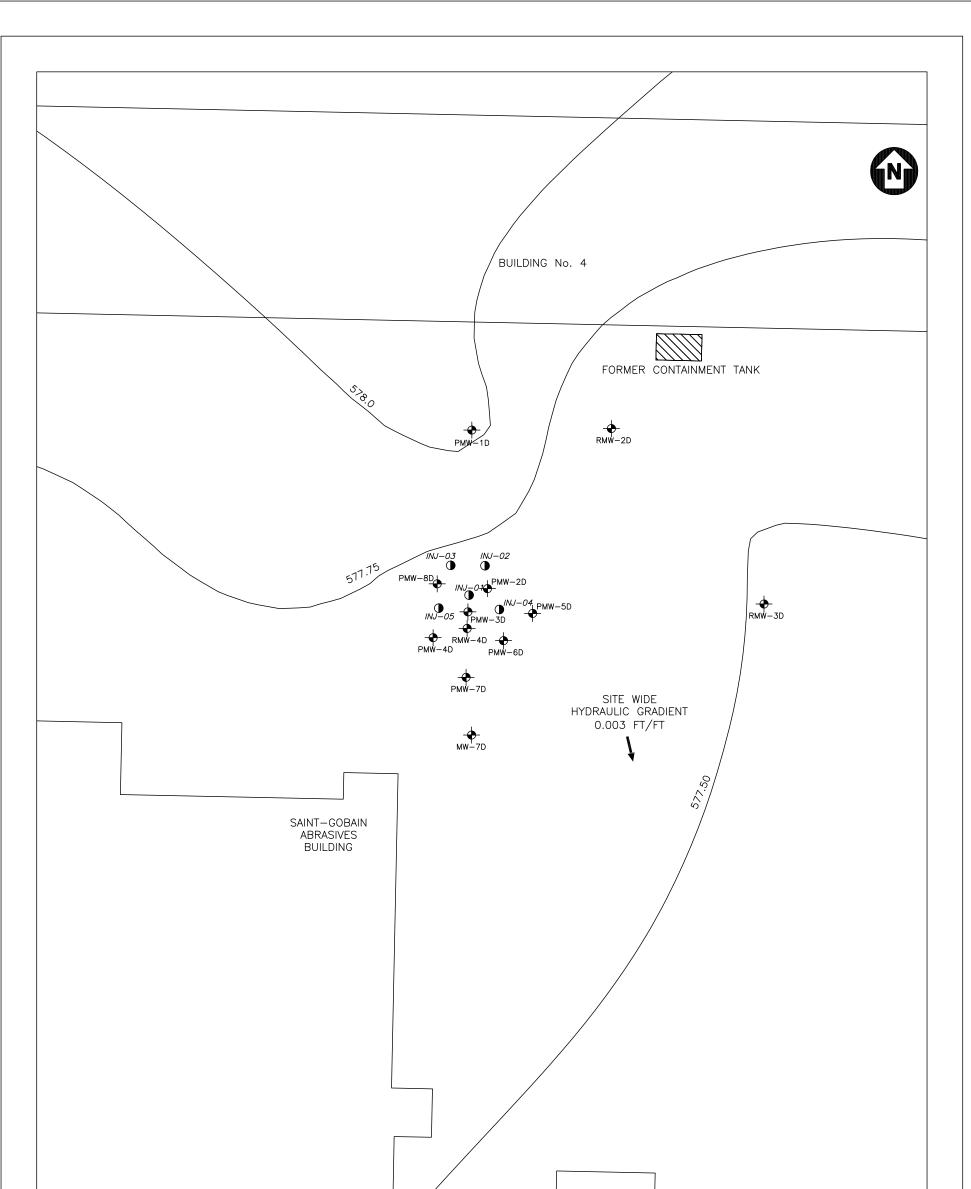
REFERENCES

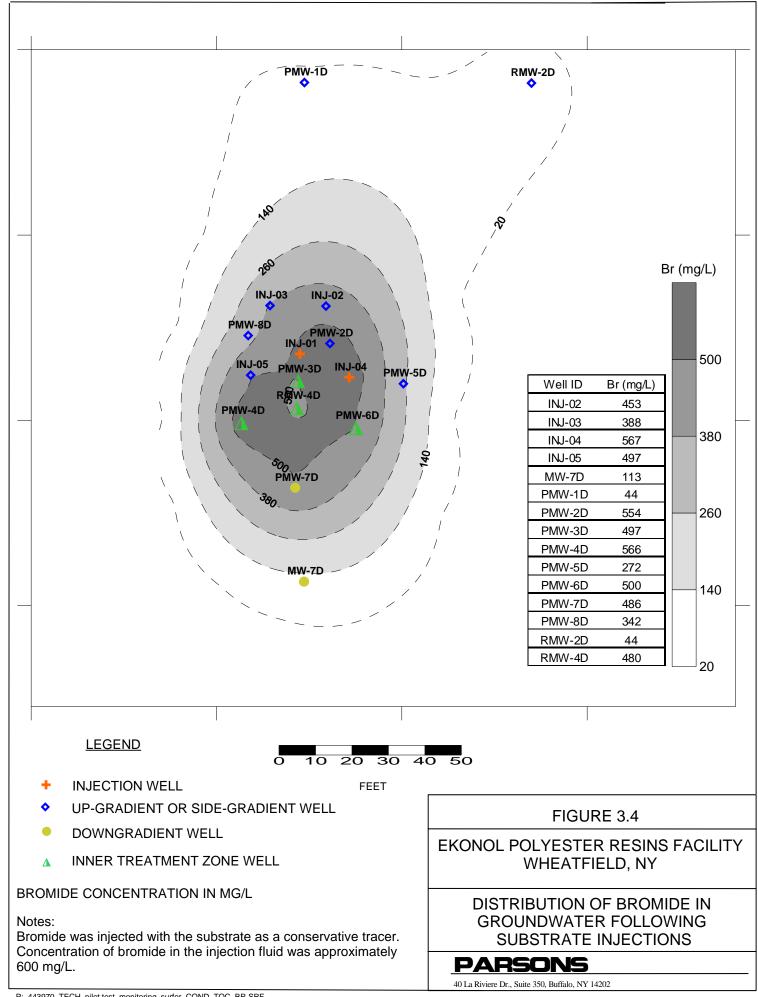

- Becker, Matthew W. 2004. Using Tracers to Understand Advection, Dispersion, and Diffusion in Fractured Rock: U.S. EPA/NGWAFractured Rock Conference:State of the Science and Measuring Success in Remediation September 13-15, 2004Portland, Maine, pp. 685 – 693.
- Bouwer, E.J. 1994. Bioremediation of Chlorinated Solvents Using Alternate Electron Acceptors. In: *Handbook of Bioremediation*. CRC Press, Boca Raton, Florida.
- Parsons. 2007. Letter to the NYSDEC: Treatability Testing Summary and Pilot Test Scope of Work.


EKONOL POLYESTER RESINS SITE BIOREMEDIATION PILOT TEST

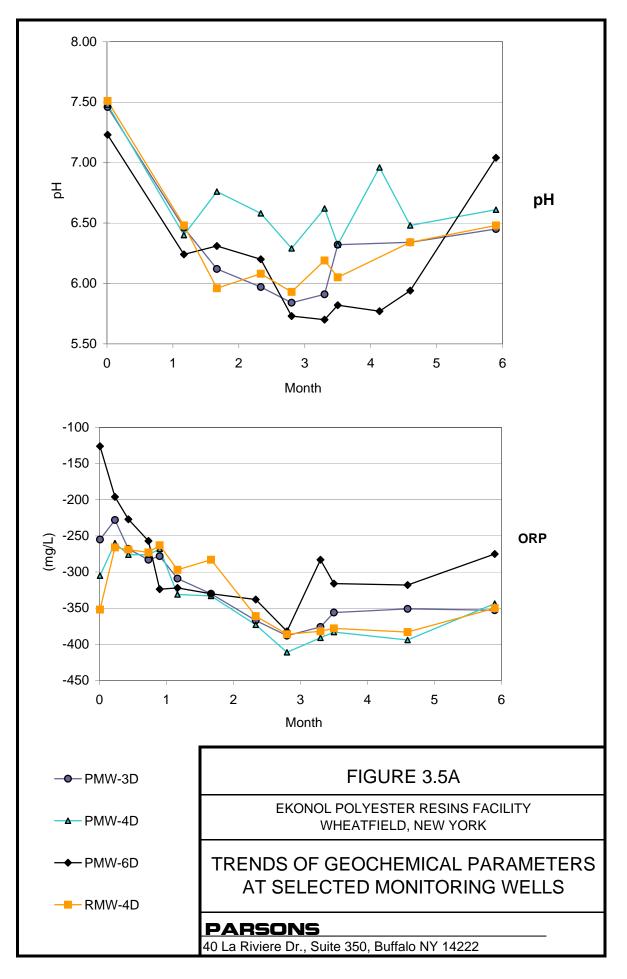
FIGURES

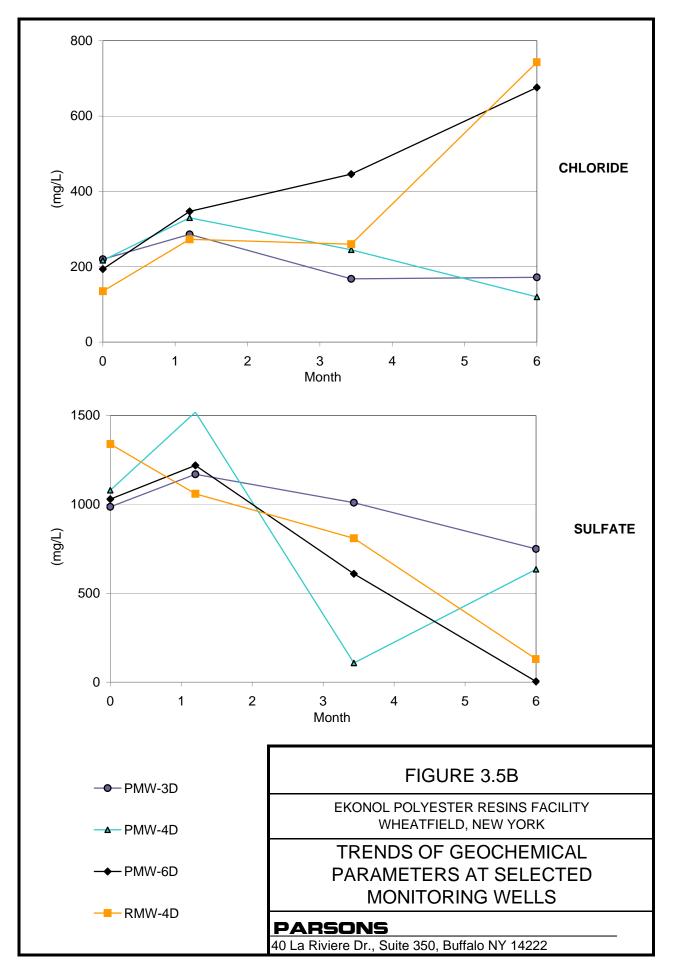


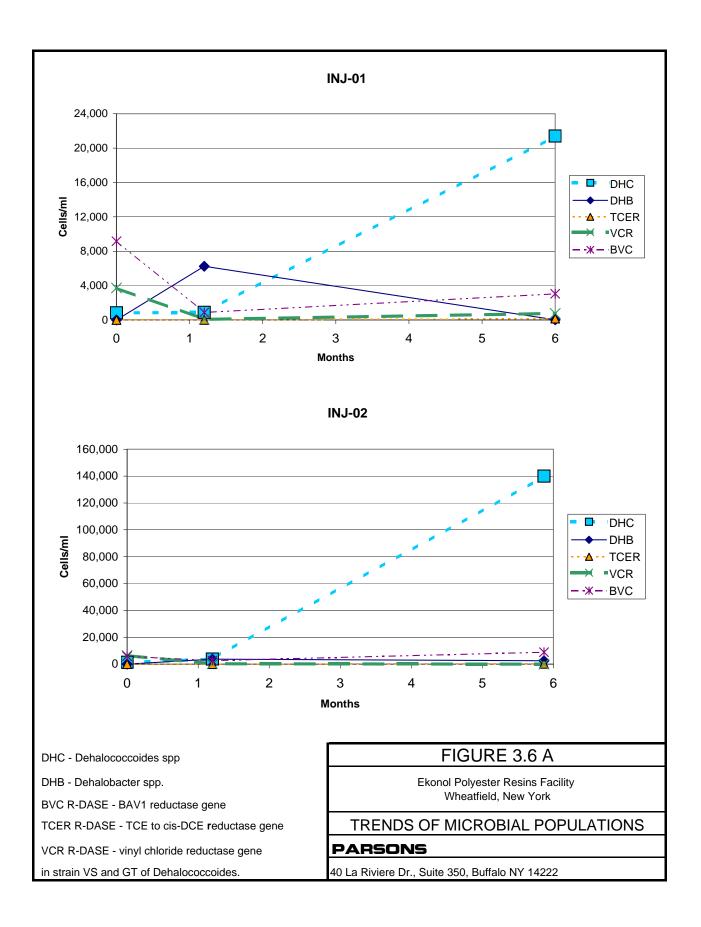

P:\443970\WP\pilot test rpt\figure1.1_site_loc.ppt

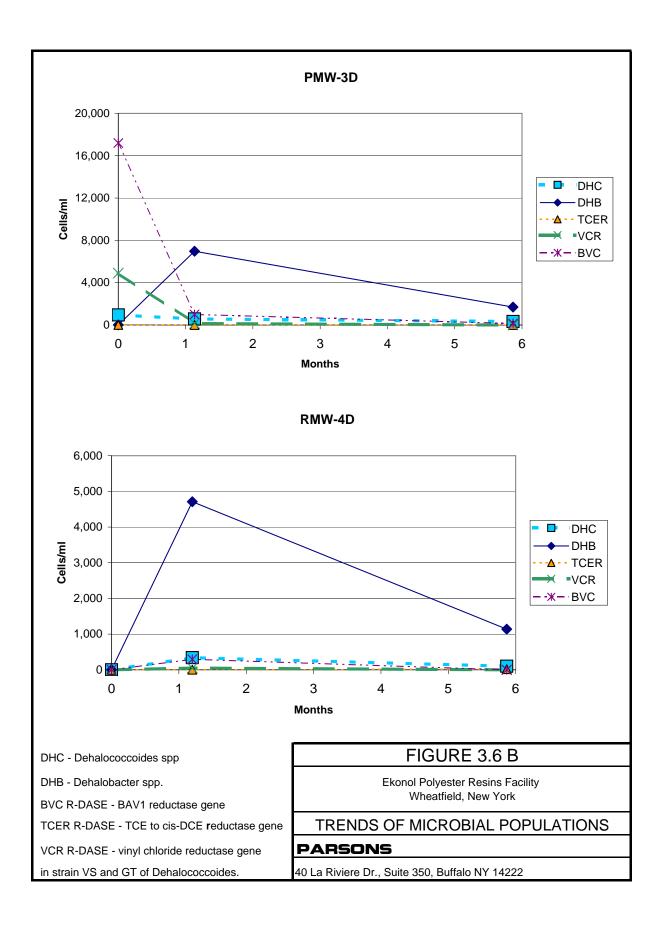


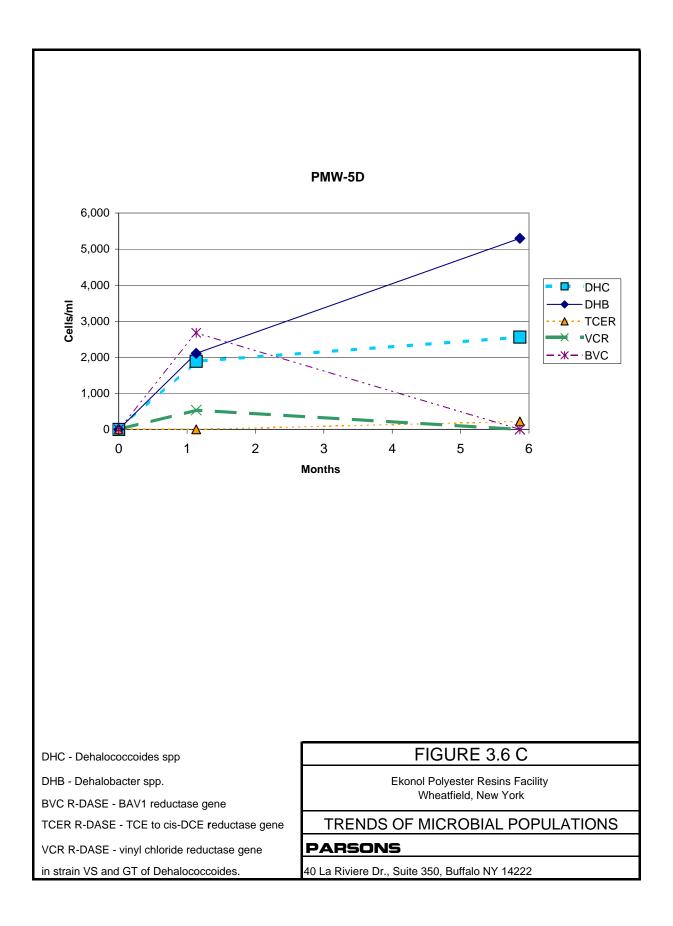
Run 1 = 14.5' - 19.7' Rec = 98% RD = 100% Run 2 = 19.7 - 24.8 μ Meter loss 222, 10 return 23.3 Run 3 = 24.8 - 25.4' Rec = 94% ROD = 100 Run 3 = 24.8 - 25.4' Rec = 30% RQD = NA 12/4/07 PMW-2d TOR 12.5 12.2 23.3 M **Partial water** Water loss loss no return FIGURE 3.1 EKONOL POLYESTER RESINS FACILITY WHEATFIELD, NEW YORK PHOTOGRAPH OF TYPICAL ROCK CORE NOTES: CORE IS APPROXIMATELY 2.5 INCHES IN DIAMETER PARSONS 40 La Riviere Drive, Suite 350, Buffalo, New York 14202

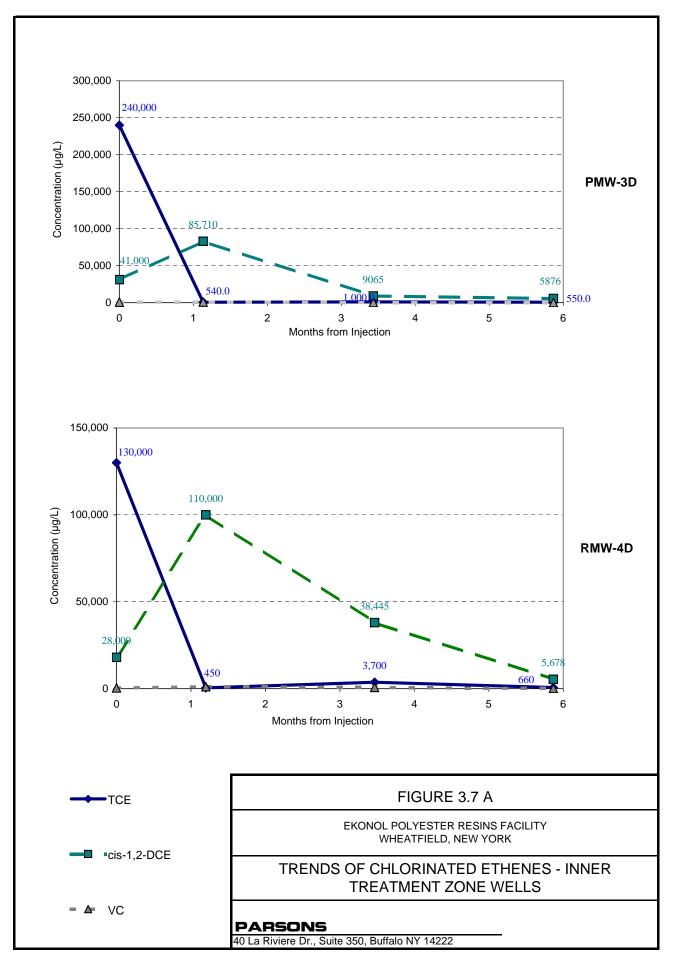


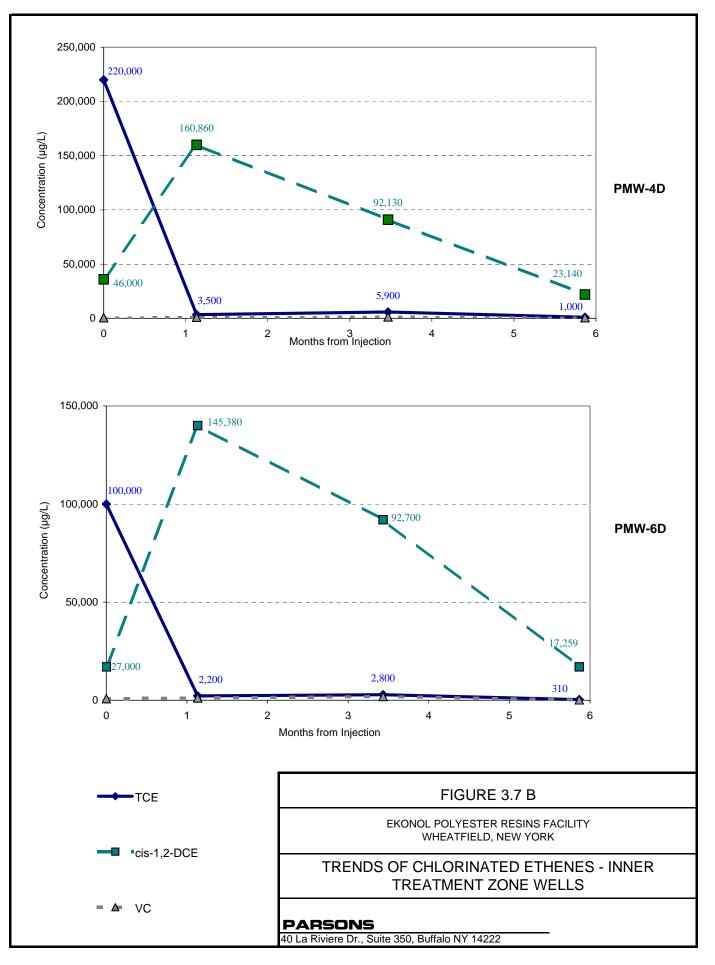


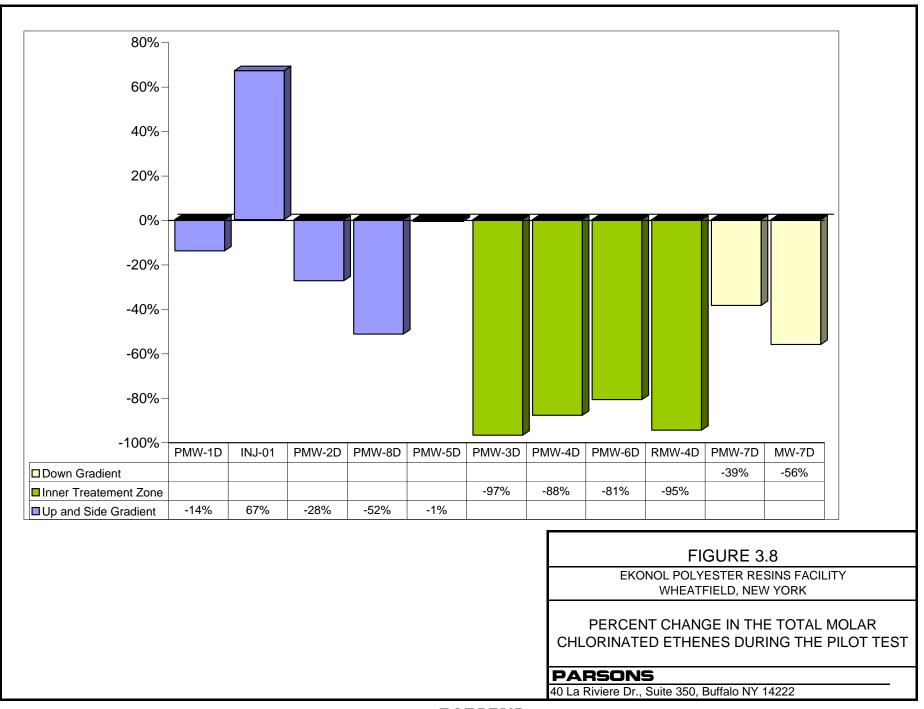

	Monitoring Well ID	Water Level Elevation 5/22/2008						
		(Feet)		EGEND:				
	RMW-2D	577.48	<u> </u>	LOLND.				
	RMW-4D	577.54				30 15 0	30	60
	INJ-01	577.69	- PMW-1D	MONITORING	VVELL			
	INJ-02	577.69	● INJ-01	INJECTION \	VELL			-
	INJ-03	577.71	-					
	INJ-04	577.69						
	INJ-05	577.67						
	PMW-1D	578.08				FIGUR		
	PMW-2D	577.70				IIGUN	L J.J	
	PMW-3D	577.68				EKONOL P		
	PMW-4D	577.68				RESINS		
	PMW-5D	577.71				WHEATFIELD,		
	PMW-6D	577.70						
	PMW-7D	577.68						
	PMW-8D	577.67			GR	OUNDWATER E	LEVATION	MAP
						DEEP	WFLLS	
Note: Th	ne water table d	ontours are bas	ed on, not only the pilot to	est wells but	also	DEEI	WLLLO	
the remainder of the deep wells onsite. Therefore the contour outside the wells					s PA	rsons		
shown here are interpolated, not extrapolated.					40 La Riviere Dr. Suite 350 Buffalo, NY 14202			
						···· ··· ···· ···· ····		

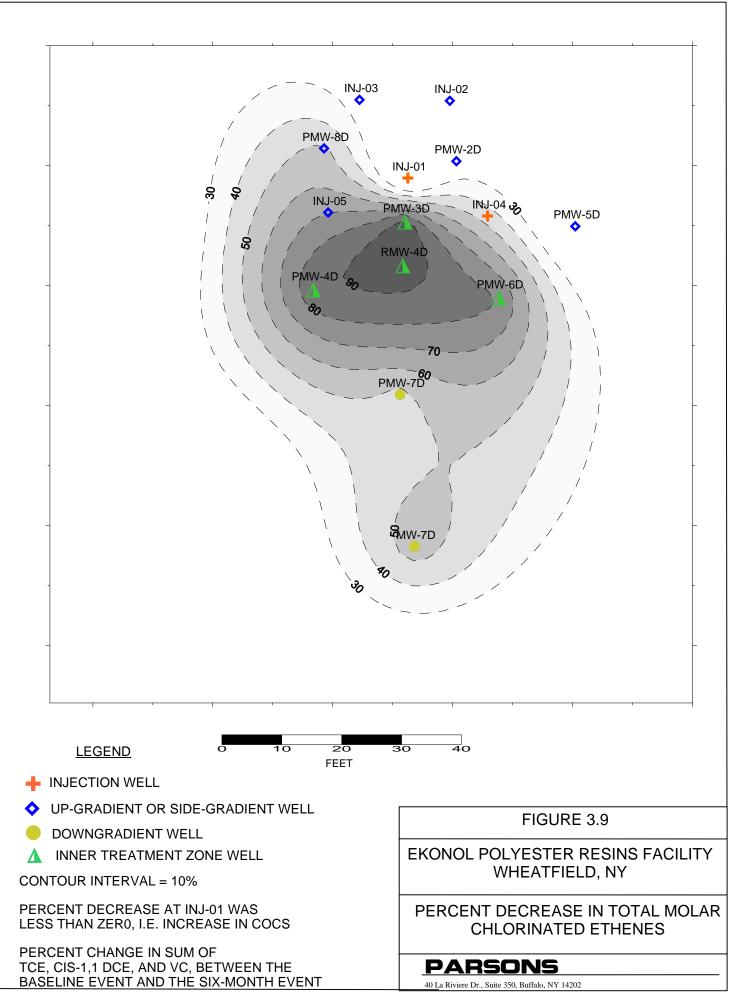



P:_443970_TECH_pilot test_monitoring_surfer_COND_TOC_BR.SRF









P:_443970_TECH_pilot test_monitoring_surfer_COND_TOC_change_cocs.SRF

EKONOL POLYESTER RESINS SITE BIOREMEDIATION PILOT TEST

TABLES

TABLE 2.1

SUMMARY OF MONITORING WELL CONSTRUCTION

				Well	Wells	Fracture zone	Elevation	Survey	Survey
Well/Borehole		Completion	Screened or Open Rock Well	Diameter	Interval	Interval	Top of Casing ^{c/}	Easting ^{d/}	Northing ^{d/}
Identification	Zone	Date		(inches)	(teet bgs) [™]	(feet bgs)	(feet amsl)	(feet)	(feet)
Injection Wells									
INJ-01	Injection	19-Nov-07	Open Rock	4.0 ^{e/}	14.5 - 25.8	21.5 - 23	585.70	1056172.53	1132217.92
INJ-02	Upgradient	28-Nov-07	Open Rock	4.0 ^{e/}	15 - 25.6	21.9 - 22.9	585.54	1056179.53	1132230.81
INJ-03	Upgradient	28-Nov-07	Open Rock	4.0 ^{e/}	13.2 - 24.9	22.4 - 23.4	585.35	1056164.47	1132230.97
INJ-04	Injection	27-Nov-07	Open Rock	4.0 ^{e/}	14.5 - 25.6	20.5 - 22.8	585.58	1056185.83	1132211.60
INJ-05	Side Gradient	21-Nov-07	Open Rock	4.0 ^{e/}	11.0 - 26.0	22.3 - 23.4	585.60	1056159.24	1132212.19
Monitoring Wells	5								
PMW-1D	Upgradient	20-Nov-07	Screened	2.0	16.5 - 23.5	22-25	585.66	1056173.74	1132291.16
PMW-2D	Upgradient	19-Nov-07	Screened	2.0	14.5 - 25.4	22.2 - 23.3	585.85	1056180.62	1132220.74
PMW-3D	Treatment	20-Nov-07	Screened	2.0	14.5 - 25.8	21.9 - 25.8	585.98	1056172.04	1132210.57
PMW-4D	Treatment	26-Nov-07	Screened	2.0	14.5 - 26.0	21.7 - 23.2	585.73	1056156.77	1132199.23
PMW-5D	Side Gradient	3-Dec-07	Screened	2.0	15 - 25.9	23.5 -24.0	585.73	1056200.45	1132209.88
PMW-6D	Treatment	27-Nov-07	Screened	2.0	15.0 - 25.9	23.5 - 23.7	585.86	1056187.65	1132197.91
PMW-7D	Upgradient	19-Nov-07	Screened	2.0	14.0 - 25.3	23.5	585.82	1056171.23	1132181.82
PMW-8D	Upgradient	27-Nov-07	Screened	2.0	14.5 - 25.6	22.5 - 23.4	585.46	1056158.56	1132222.87
Existing Wells									
RMW-4D	Treatment	24-Oct-03	Screened	2.0	15.0 - 32.5	23.0 - 23.8	585.76	1056171.69	1132203.28
MW-7D	Downgradient	3-Oct-06	Open Rock	4.0 ^{e/}	15.4 - 30.4	23.4	585.84	1056173.63	1132156.49

^{av} feet bgs indicates depth in feet below ground surface.
 ^{ov} feet amsl indicates elevation in feet above mean sea level.
 ^{cr} Vertical coordinates in feet relative to North American Vertical Datum of 1929 (NAVD29).
 ^{av} Horizontal Datum = North American Vertical Datum (NAD) 1983/96, Projection = New York West Zone, Units U.S. Survey Feet

e/ Nominal dimension

TABLE 2.2
SUMMARY OF SUBSTRATE INJECTION AND LOADING RATES

l	njection Point	S		S	ubstrate Inj	ection Mixtu	ıre	-	Post-Emulsion Push	Total	Volume	Approximate Injection Parameters	
Well ID	Injection Interval (feet)	Injection Spacing (feet)	Emulsion Volume (gallons)	Product Weight (pounds)	-	able Oil oonent (pounds)	Lactic Acid Component (pounds)	Makeup Water (gallons)	Makeup Water (gallons)	Substrate (pounds)	Water/ Substrate (gallons)	Injection Interval (feet)	Effective Porosity (percent)
Injection Wells													
INJ01	14.5 - 25.8	15	83	660	51	396	21.2	450	35	417	568	10	1%
INJ02	14.5 - 25.6	15	83	660	51	396	21.2	450	35	417	568	10	1%
SUBTOTAL:			166	1,320	102	792	42	900	70	835	1,136		
	Weight E	mulsion Pro	oduct (lbs):	1,320									
SUBSTRATE L	OADING RAT	ES											
				Substrate La	ctic Acid Co	ncentration:	4,489	milligrams pe	er liter				
				Sub	strate Oil Co	ncentration:	83,761	milligrams pe	er liter	Residual Pe	rcent Oil in Su	bstrate Mixture:	8.9%

NOTES: Vegetable Oil Emulsion Product

1. Emulsion product is 60 percent soybean oil by weight.

2. Vegetable oil/emulsifier mix is 7.8 pounds per gallon.

TABLE 3.1

SUMMARY OF WATER LEVEL MEASUREMENTS

Well ID	Depth to Water 1/14/2008 (Feet BTOC)	Water Elevation 1/14/2008 (Feet)	Depth to Water 5/22/2008 (Feet BTOC)	Water Elevation 5/22/2008 (Feet)	Depth to Water 6/25/2008 (Feet BTOC)	Water Elevation 6/25/2008 (Feet)	Depth to Water 7/1/2008 (Feet BTOC)	Water Elevation 7/1/2008 (Feet)
INJ-01	6.71	578.99	8.01	577.69	8.02	577.68	8.01	577.69
INJ-02	6.54	579.00	7.85	577.69	7.78	577.76	7.81	577.73
INJ-03	6.33	579.02	7.64	577.71	7.60	577.75	7.59	577.76
INJ-04	6.59	578.99	7.89	577.69	7.96	577.62	7.89	577.69
INJ-05	6.62	578.98	7.93	577.67	7.88	577.72	7.88	577.72
PMW-1D	6.55	579.11	7.58	578.08	7.51	578.15	7.92	577.74
PMW-2D	6.84	579.01	8.15	577.70	8.05	577.80	8.09	577.76
PMW-3D	6.99	578.99	8.30	577.68	8.22	577.76	8.20	577.78
PMW-4D	6.74	578.99	8.05	577.68	7.96	577.77	8.05	577.68
PMW-5D	6.73	579.00	8.02	577.71	7.97	577.76	7.98	577.75
PMW-6D	6.90	578.96	8.16	577.70	8.09	577.77	8.10	577.76
PMW-7D	6.84	578.98	8.14	577.68	7.09	578.73	8.14	577.68
PMW-8D	6.48	578.98	7.79	577.67	7.75	577.71	7.78	577.68
MW-7D	6.85	578.99	8.15	577.69	8.19	577.65	7.16	578.68
RMW-2D	6.41	579.43	8.66	577.18	7.70	578.14	NM	NM
RMW-3D	6.81	578.90	8.12	577.59	NM	NM	NM	NM
RMW-4D	6.88	578.88	8.22	577.54	7.97	577.79	8.00	577.76

NM - NOT MEASURED

HORIZONTAL. DATUM - NAD 83/96, VERT. DATUM, PROJECTION NEW YORK WEST ZONE - NGVD 29, UNITS - U.S. SURVEY FEET

TABLE 3.2 LABORATORY RESULTS FOR GEOCHEMICAL PARAMETERS

		Months from	Carbon	Arsenic	Manganese	Selenium	Chloride	Bromi
Well ID	Date	Injection	mg/l	mg/l	mg/l	mg/l	mg/l	mg/
DUL 01	15 1 00	D I	6		101/4	11NT / A	220	1.17
INJ-01	15-Jan-08	Baseline	6 202 I	#N/A	#N/A	#N/A	229	10
	24-Jul-08	1.2	202 J	#N/A	#N/A	#N/A	335 J	6.64
	29-Sep-08	3.4	333	#N/A	#N/A	#N/A	539	4
	15-Dec-08	6.0	441	#N/A	#N/A	#N/A	564	5
PMW-1D	15-Jan-08	Baseline	12	0.01 U	0	0.01 U	265	1
	25-Jul-08	1.2	22.4 J	0.01 UJ	0.479 J	0.01 UJ	424 J	2.04
	1-Oct-08	3.5	33	0.01 U	0	0.01 U	833	1 U
	11-Dec-08	5.9	45	0.01 U	0	0.01 U	482	2
PMW-2D	16-Jan-08	Baseline	8	#N/A	#N/A	#N/A	230	1 U
	23-Jul-08	1.2	1020	#N/A	#N/A	#N/A	358	22
	29-Sep-08	3.4	748	#N/A	#N/A	#N/A	552	9
	11-Dec-08	5.9	194	#N/A	#N/A	#N/A	442	17
PMW-3D	15-Jan-08	Baseline	11	0.01 U	0	0.01 U	220	1 U
	22-Jul-08	1.1	1800	0.01 U	0	0.01 U	286	11
	29-Sep-08	3.4	558	0.01 U	0	0.01 U	168	5
	11-Dec-08	5.9	204	0.01 U	0	0.01 U	172	2
PMW-4D	16-Jan-08	Baseline	12	0.01 U	0	0.01 U	217	1 U
	22-Jul-08	1.1	237	0.01 U	1	0.01 U	330	10
	30-Sep-08	3.5	227	0.01 U	0	0.01 U	245	4
	11-Dec-08	5.9	113	0.01 U	0	0.01 U	120	2
PMW-5D	15-Jan-08	Baseline	5	#N/A	#N/A	#N/A	189	1 U
	22-Jul-08	1.1	332	#N/A	#N/A	#N/A	273	9
	29-Sep-08	3.4	383	#N/A	#N/A	#N/A	977	4
	11-Dec-08	5.9	196	#N/A	#N/A	#N/A	216	3
PMW-6D	14-Jan-08	Baseline	7	#N/A	#N/A	#N/A	194	1 U
	22-Jul-08	1.1	627	#N/A	#N/A	#N/A	347	27
	29-Sep-08	3.4	565	#N/A	#N/A	#N/A	446	6
	11-Dec-08	5.9	266	#N/A	#N/A	#N/A	676	1
PMW-7D	16-Jan-08	Baseline	9	0.01 U	0	0.01 U	226	1 U
	24-Jul-08	1.2	417 J	0.01 UJ	0.497 J	0.01 UJ	288 J	20.5
	30-Sep-08	3.5	531	0.01 U	0	0.01 U	219	5
	11-Dec-08	5.9	476	0.01 U	0	0.01 U	213	5
PMW-8D	14-Jan-08	Baseline	11	#N/A	#N/A	#N/A	222	1
	23-Jul-08	1.2	551	#N/A	#N/A	#N/A	320	21
	29-Sep-08	3.4	190	#N/A	#N/A	#N/A	283	5
	11-Dec-08	5.9	263	#N/A	#N/A	#N/A	254	4
MW-7D	15-Jan-08	Baseline	8	0.01 U	0	0.01 U	206	0 U
··· · -	25-Jul-08	1.2	480 J	0.01 UJ	0.723 J	0.01 UJ	330 J	25.2
	30-Sep-08	3.5	212	0.01 U	1	0.01 U	260	4
	11-Dec-08	5.9	278	0.01 U	1	0.01 U	232	4
RMW-4D	15-Jan-08	Baseline	8	#N/A	#N/A	#N/A	135	1
	24-Jul-08	1.2	387 J	#N/A	#N/A	#N/A	273 J	8.82
	30-Sep-08	3.5	294	#N/A	#N/A	#N/A	260	3
	50 50p 00	5.9	168	#N/A	#N/A	#N/A	743	2

ITALICIZED VALUES REPRESENTS DETECTION LIMIT WHEN THE PARAMETER WAS NOT DETECTED

INJECTION OF SUBSTRATE WAS COMPLETED ON 18-JUNE-08

µg/L - MICROGRAMS PER LITER

mg/L - MILLIGRAMS PER LITER

J = ESTIMATED VALUE

U = BELOW DETECTION LIMITS

UJ = ESTIMATED NON-DETECT POSSIBLY BIASED LOW

E - EXCEEDANCE

#NA - Well was not sampled for this parameter

TABLE 3.2 LABORATORY RESULTS FOR GEOCHEMICAL PARAMETERS

		Months from	Sulfate	Acetic Acid	Butyric Acid	Lactic Acid	Propionic Acid	Pyruvic Acid	Total Volati Fatty Acid
Well ID	Date	Injection	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
INJ-01	15-Jan-08	Baseline	1480	1 U	2 U	1 U	1 U	0.5 U	<5.5 U
11NJ-01				-	-		-		
	24-Jul-08	1.2	1150 J	160 J	17 J	1 UJ	140 J	0.5 UJ	319
	29-Sep-08	3.4	917	310	35	1 U	130	0.5 U	477
	15-Dec-08	6.0	260	340	120	2 U	160	1 U	623
PMW-1D	15-Jan-08	Baseline	1460	1 U	2 U	1 U	1 U	0.5 U	<5.5 U
	25-Jul-08	1.2	2200 J	33 J	2 UJ	1 UJ	1.6 J	0.5 UJ	38
	1-Oct-08	3.5	1210	22	3	1	7	0.5 U	33
	11-Dec-08	5.9	1530	20	2 U	1 U	6	0.5 U	30
PMW-2D	16-Jan-08	Baseline	1410	1 U	2 U	1 U	1 U	0.5 U	<5.5 U
	23-Jul-08	1.2	1250	210	32	1 U	260	0.5 U	504
	29-Sep-08	3.4	843	370	73	1 U	240	0.5 U	685
	11-Dec-08	5.9	270	560	210	5 U	320	2.5 U	778
PMW-3D	15-Jan-08	Baseline	987	1 U	2 U	1 U	1 U	0.5 U	<5.5 U
	22-Jul-08	1.1	1170	170	24	1 U	170	0.5 U	366
	29-Sep-08	3.4	1010	140	48	7	75	0.5 U	270
	11-Dec-08	5.9	750	140	56	1 U	42	0.5 U	240
PMW-4D	16-Jan-08	Baseline	1080	1 U	2 U	1 U	1 U	0.5 U	<5.5 U
FIVEV-4D		1.1	1520	180	13	1 U 1 U	190	0.5 U	385
	22-Jul-08								
	30-Sep-08	3.5	108	170	12	1 U	55	0.5 U	239
	11-Dec-08	5.9	635	150	2 U	1 U	12	0.5 U	166
PMW-5D	15-Jan-08	Baseline	710	1 U	2 U	1 U	1 U	0.5 U	<5.5 U
	22-Jul-08	1.1	982	170	15	1 U	120	0.5 U	307
	29-Sep-08	3.4	730	370	28	1 U	130	0.5 U	530
	11-Dec-08	5.9	352	230	24	2 U	54	1 U	311
PMW-6D	14-Jan-08	Baseline	1030	1 U	2 U	1 U	1 U	0.5 U	<5.5 U
	22-Jul-08	1.1	1220	210	32	1 U	240	0.5 U	484
	29-Sep-08	3.4	610	510	52	1 U	200	0.5 U	764
	11-Dec-08	5.9	4	180	37	1 U	26	0.5 U	245
PMW-7D	16-Jan-08	Baseline	1170	1 U	2 U	1 U	1 U	0.5 U	<5.5 U
	24-Jul-08	1.2	984 J	290 J	17 J	1 UJ	300 J	0.5 UJ	609
	30-Sep-08	3.5	724	660	51	1 U	190	0.5 U	903
	11-Dec-08	5.9	72	560	18	5 U	51	2.5 U	637
PMW-8D	14-Jan-08	Baseline	1590	1 U	2 U	1 U	1 U	0.5 U	<5.5 U
1 101 00 -0D	23-Jul-08	1.2	1390	170	2 U 14	1 U 1 U	160	0.5 U 0.5 U	< <i>3.5 U</i> 346
		3.4							
	29-Sep-08 11-Dec-08	3.4 5.9	2410 1210	200 230	13 37	1 U 2 U	70	0.5 U	285 309
	11-Dec-08	5.9	1210	230	37	2 U	39	1 U	309
MW-7D	15-Jan-08	Baseline	1150	1 U	2 U	1 U	1 U	0.5 U	<5.5 U
	25-Jul-08	1.2	1190 J	280 J	16 J	1 UJ	390 J	0.5 UJ	688
	30-Sep-08	3.5	1280	320	6	1 U	59	0.5 U	386
	11-Dec-08	5.9	649	420	10 U	5 U	45	2.5 U	483
RMW-4D	15-Jan-08	Baseline	1340	1 U	2 U	1 U	1 U	0.5 U	<5.5 U
	24-Jul-08	1.2	1060 J	210 J	13 J	1 UJ	190 J	0.5 UJ	415
	30-Sep-08	3.5	810	340	27	1 U	120	0.5 U	489
	11-Dec-08	5.9	130	74	18	1 U	34	0.5 U	128
				1 7 1		~			

ITALICIZED VALUES REPRESENTS DETECTION LIMIT WHI

INJECTION OF SUBSTRATE WAS COMPLETED ON 18-JUNE

 $\mu g/L~$ - MICROGRAMS PER LITER

mg/L - MILLIGRAMS PER LITER

J = ESTIMATED VALUE

U = BELOW DETECTION LIMITS

UJ = ESTIMATED NON-DETECT POSSIBLY BIASED LOW

E - EXCEEDANCE

#NA - Well was not sampled for this parameter

TABLE 3.3 RESULTS OF FIELD LABORATORY MEASUREMENTS

		Ferrous Iron	Manganese	Carbon Dioxide	Hydrogen Sulfide	Alkalinity (as CaCO ₃) ^{a/}
Well ID	Date	mg/L	mg/L	mg/L	mg/L	mg/L
INJ-01	Jan-08	1	<0.1	382	0.1	340
	Jul-08	3	0.2	1600	1.8	680
	Sep-08	NM	NM	NM	NM	760
	Oct-08	<0.1	3	5500	5	480
	Dec-08	<0.1	2.2	5500	<0.01	800
INJ-02	Jan-08	NM	<0.1	NM	NM	NM
	Jul-08	4	<0.1	1600	2.1	700
	Sep-08	NM	NM	NM	NM	800
	Oct-08	NM	NM	NM	NM	NM
	Dec-08	< 0.1	< 0.1	636	2.5	650
PMW-1D	Jan-08	2	<0.1	240	0.3	420
	Jul-08	3	0.1	NM	0.4	560
	Sep-08	NM	NM	NM	NM	680
	-					
	Oct-08	< 0.1	0.1	806	5	390
	Dec-08	< 0.1	0.3	746	1.6	380
PMW-2D	Jan-08	1	<0.1	212	0.2	340
	Jul-08	3	<0.1	1672	2	520
	Sep-08	NM	NM	NM	NM	780
	Oct-08 Dec-08	1.0 0.6	3 0.6	766 936	5 0.2	480 160
PMW-3D	Jan-08	<0.1	<0.1	138	0.3	260
	Jul-08	1	<0.1	1508	2.2	460
	Sep-08	NM	NM	NM	NM	600
	Oct-08	NM	3	6000	5	480
	Dec-08	< 0.1	< 0.1	825	1.25	450
DI (UV AD						
PMW-4D	Jan-08 Jul-08	1	<0.1 0.1	200 900	0.9	300
		1				540
	Sep-08	NM	NM	NM	NM	680
	Oct-08	NM	0.8	1298	5	650
	Dec-08	0.4	< 0.1	827	2.25	180
PMW-5D	Jan-08	1	<0.1	200	0.1	300
11110 50	Jul-08	2	1.8	598	2	460
		NM	NM	NM	NM	720
	Sep-08					
	Oct-08	NM	2.75	672	5	480
	Dec-08	0.0	1.8	515	0.01	40
PMW-6D	Jan-08	1	<0.1	196	<0.01	280
	Jul-08	4	0.1	1749	2	600
	Sep-08	NM	NM	NM	NM	500
	Oct-08	NM	3	1272	5	576
	Dec-08	< 0.1	0.9	1487	2.25	370
DI GUI CD						
PMW-7D	Jan-08	1	<0.1	194	0.3	320
	Jul-08	1	0.2	1200	1.8	620
	Sep-08	NM	NM	NM	NM	760
	Oct-08	NM	2.75	3462	5	680
	Dec-08	< 0.1	1.2	3850	< 0.01	730
PMW-8D	Jan-08	1	<0.1	265	0.3	320
-	Jul-08	2	<0.1	1114	1.5	540
	Sep-08	NM	NM	NM	NM	NM
	Oct-08	NM	2.75	900	5	480
	Dec-08	0.6	2.1	670	0.03	834
RMW-4D	Jan-08	<0.1	< 0.1	96	4	320
	Jul-08	1	0.15	900	2.2	580
	Sep-08	NM	NM	NM	NM	440
	•		0.9	4024		
	Oct-08 Dec-08	NM <0.1	<0.006	4024 1196	5 2	615 200
MW-7D	Jan-08	<0.1	<0.1	140	0.5	360
	Jul-08	< 0.1	NM	NM	0.8	NM
	Sep-08	NM	NM	NM	NM	740
	Oct-08	NM	3	3450	5	565

NM = not measured

 $^{a\prime}\text{CaCO}_3$ - calcium carbonate, refers to type of alkalinity test.

		Specific Conductivity	Oxidataion Reduction Potential	pH
Well ID	Date	mS/cm	mv	SU
INJ-01	1/15/08	3.84	-184	7.22
1113-01				
	6/17/08	#N/A	#N/A	#N/A
	6/20/08	5.4	#N/A	#N/A
	6/25/08	4.21	-210	#N/A
	7/1/08	5.02	-186	#N/A
	7/10/08	4.48	-243	#N/A
	7/15/08	4.84	-234	#N/A
	7/23/08	3.6	-300	6.11
	8/7/08	4.57	-339	6.54
	8/27/08	4.21	-380	6.20
	9/10/08	5.21	-380	5.88
	9/25/08	4.54	-384	5.95
			-373	
	10/1/08	5.41		5.94
	10/20/2008	#N/A	#N/A	#N/A
	11/3/2008	4.28	-364	5.97
	12/12/08	2.52	-356	6.04
	12,12,00	2.02		0.01
INJ-02	1/15/08	4.36	-146	7.01
	6/17/08	#N/A	#N/A	#N/A
	6/20/08	5.03		#N/A
			#N/A	
	6/25/08	4.08	-266	#N/A
	7/1/08	4.14	-206	#N/A
	7/10/08	3.62	-249	#N/A
	7/15/08	3.07	-198	#N/A
	7/23/08	3.7	-304	6.32
	8/7/08	2.98	-256	6.48
	8/27/08	2.83	-344	6.08
	9/10/08	3.44	-343	5.54
	9/25/08	2.98	-376	5.7
	10/1/08	#N/A	#N/A	#N/A
	10/20/08	#N/A	#N/A	#N/A
	11/3/08	1.06	-273	5.79
		2.276	-329	6.03
	12/12/08	2.270	-329	0.03
INJ-03	1/15/08	#N/A	#N/A	#N/A
	6/17/08	#N/A	#N/A	#N/A
	6/20/08	5.05	#N/A	#N/A
	6/25/08	3.17	-195	#N/A #N/A
	7/1/08	3.2	-190	#N/A #N/A
	7/10/08	3.25	-262	#N/A #N/A
	7/15/08	3.07	-202 -211	#N/A #N/A
	7/23/08	#N/A	-211 #N/A	#N/A #N/A
	8/7/08	3.49	-300	#IN/A 6.04
	8/27/08	3.49	-300	5.71
	9/10/08	3.2 4.9	-304 -395	6.10
	9/25/08	4.9 4.41	-395 -386	6.05
	10/1/08	4.41 #N/A	-380 #N/A	#N/A
	10/20/08	#N/A	#N/A	5.58
	11/3/08	4.1	-399	5.95
	12/12/08	#N/A	#N/A	#N/A
INJ-04	1/15/08	#N/A	#N/A	#N/A
11 NJ- 04				
	6/17/08	#N/A	#N/A	#N/A
	6/20/08	4.12	#N/A	#N/A
	6/25/08	3.37	-191	#N/A
	7/1/08	3.96	-184	#N/A
	7/10/08 7/15/08	3.38	-238	#N/A
	7/15/08	3.05	-232	#N/A
	7/23/08	#N/A	#N/A	#N/A
	8/7/08 8/27/08	2.92 3.75	-239	6.28
	8/27/08	3.75	-347	6.07
	9/10/08	4.17	-347	5.30
	9/25/08	4.31	-380	5.88
	10/1/08	#N/A	#N/A	#N/A
	10/20/08	#N/A	#N/A	5.53
	11/3/08	4.07	-351	5.72
	12/12/08	#N/A	#N/A	#N/A
				1

		Specific Conductivity	Oxidataion Reduction Potential	pH
Well ID	Date	mS/cm	mv	SU
INJ-05	1/15/08	#N/A	#N/A	#N/A
IINJ-05				
	6/17/08	#N/A	#N/A	#N/A
	6/20/08	5.02	#N/A	#N/A
	6/25/08	4.39	-196	#N/A
	7/1/08 7/10/08	5.07	-145	#N/A
		4.47	-247	#N/A
	7/15/08 7/23/08	4.63 #N/A	-244 #N/A	#N/A
	8/7/08	4.42	-257	#N/A 5.95
	8/27/08	4.42	-237 -340	5.95
	9/10/08	4.04	-340	5.62
	9/25/08	4.16 #N/A	-362 #N/A	5.62 #N/A
	10/1/08	#N/A #N/A	#N/A #N/A	#N/A #N/A
	10/20/08	#N/A	#N/A #N/A	#N/A #N/A
	11/3/2008	#N/A	#N/A	#N/A
	12/12/08	#N/A	#N/A	#N/A
PMW-1D	1/15/08	#N/A	#N/A	6.85
1 101 00 - 112				
	6/17/08	#N/A	#N/A	#N/A
	6/20/08	#N/A	#N/A	#N/A
	6/25/08	#N/A	#N/A	#N/A
	7/1/08	#N/A	#N/A	#N/A
	7/10/08	#N/A	#N/A	#N/A
	7/15/08	#N/A	#N/A	#N/A
	7/23/08	#N/A	#N/A	6.27
	8/7/08	#N/A	#N/A	7.22
	8/27/08	#N/A	#N/A	5.98
	9/10/08	#N/A	#N/A	6.68
	9/25/08	#N/A	#N/A	#N/A
	10/1/08	5.2	-355	6.8
	10/20/08	#N/A	#N/A	#N/A
	11/3/2008	#N/A	#N/A	#N/A
	12/12/08	3.794	-361	6.91
	12/12/08	5.794	-301	0.91
PMW-2D	1/15/08	4.04	-183	7.47
	6/17/08	2.8	#N/A	#N/A
	6/20/08	5.54	#N/A	#N/A
	6/25/08	5.66	-138	#N/A
	7/1/08	5.28	-133	#N/A
	7/10/08	4.46	-282	#N/A
	7/15/08	5.22	-229	#N/A
	7/23/08	4.07	-294	6.40
	8/7/08	4.25	-261	5.65
	8/27/08	3.94	-306	5.74
	9/10/08	4.93	-364	5.45
	9/25/08	4.46	-347	5.55
	10/1/08	4.57	-347	5.72
	10/20/08	#N/A	#N/A	#N/A
	11/3/08	4.1	-331	5.62
	12/12/08	2.198	-324	5.67
PMW-3D	1/15/08	2.83	-255	7.46
	6/17/08	3.03	#N/A	#N/A
	6/20/08	5.42	#N/A	#N/A
	6/25/08	4.9	-228	#N/A
	7/1/08	4.37	-268	#N/A
	7/10/08	3.67	-283	#N/A
	7/15/08	3.4	-278	#N/A
	7/23/08	3.35	-309	6.46
	8/7/08	3.13	-330	6.12
	8/27/08	2.8	-367	5.97
	9/10/08	3.28	-388	5.84
	9/25/08	2.96	-376	5.91
	10/1/08	3.04	-356	6.32
	10/20/08	#N/A	#N/A	#N/A
	11/3/08	2.32	-351	6.34
	12/12/08	1.607	-353	6.45
				_
	1		I	I

		Specific Conductivity	Oxidataion Reduction Potential	pH
Well ID	Date	mS/cm	mv	SU
PMW-4D	1/15/08	2.86	-305	7.48
	6/17/08	3.1	#N/A	#N/A
	6/20/08	5.09	#N/A	#N/A
	6/25/08	4.36	-260	#N/A
	7/1/08	3.62	-276	
				#N/A
	7/10/08	3.35	-276	#N/A
	7/15/08	3.23	-268	#N/A
	7/23/08	4	-331	6.40
	8/7/08	2.93	-333	6.76
	8/27/08	2.64	-373	6.58
	9/10/08	3.28	-411	6.29
	9/25/08	3.06	-391	6.62
	10/1/08	5.11	-383	6.32
	10/20/08	#N/A	#N/A	6.96
	11/3/08	3.11	-394	6.48
	12/12/08	1.592	-344	6.61
PMW-5D	1/15/08	2.28	-203	7.24
1 141 44 - 3D	6/17/08	2.20 #N/A	-203 #N/A	7.24 #N/A
	6/20/08	4.81	#N/A	#N/A
	6/25/08	4.26	-229	#N/A
	7/1/08	4.17	-264	#N/A
	7/10/08	3.47	-236	#N/A
	7/15/08	3.42	-285	#N/A
	7/23/08	2.99	-298	6.68
	8/7/08	2.99	-326	6.43
	8/27/08	2.69	-317	6.32
	9/10/08	4.32	-382	
	9/25/08	4.32 3.27		5.78
			-310	5.94
	10/1/08	4.11	-371	5.9
	10/20/08	#N/A	#N/A	6.08
	11/3/08	2.31	-342	6.07
	12/12/08	1.558	-326	6.16
PMW-6D	1/15/08	3.65	-126	7.23
	6/17/08	2.29	#N/A	#N/A
	6/20/08	5.43	#N/A	#N/A
	6/25/08	4.52	-196	#N/A
	7/1/08	5.11	-227	#N/A
	7/10/08	4.38	-257	#N/A
	7/15/08	4.1	-324	#N/A
	7/23/08	4.2	-322	6.24
	8/7/08	3.94	-330	6.31
	8/27/08	3.31	-338	6.20
	9/10/08	4.73	-382	5.73
	9/25/08	1.78	-283	5.7
	10/1/08	4.07	-316	5.82
	10/20/08	#N/A	#N/A	5.77
	11/3/08	0.94	-318	5.94
	12/12/08	1.92	-275	7.04
	12/12/00	1.02	210	T-V-T
PMW-7D	1/15/08	3.13	-169	7.27
	6/17/08	#N/A	#N/A	#N/A
	6/20/08	5.27	#N/A	#N/A #N/A
	6/25/08	4.35	-166	#N/A
	7/1/08	5.16	-206	#N/A
	7/10/08	4.32	-222	#N/A
	7/15/08	4.5	-293	#N/A
	7/23/08	3.8	-327	6.34
	8/7/08	2.94	-326	6.54
	8/27/08	3.27	-359	6.18
	9/10/08	4.04	-379	5.7
	9/25/08	3.7	-361	5.88
	10/1/08	4.4	-386	5.95
	10/20/08	#N/A	#N/A	#N/A
	11/3/08	2.82	-374	6.22
	12/12/08	2.498	-353	6.34

Well ID PMW-8D	Date	Specific Conductivity mS/cm	Oxidataion Reduction Potential	рН
		mS/cm	mv	SU
111111 025	1/15/08	4.02	-155	7.73
	6/17/08	#N/A	#N/A	#N/A
	6/20/08	5.89	#N/A	#N/A
	6/25/08	5.48	-225	#N/A
	7/1/08	6.04	-229	#N/A
	7/10/08	4.93	-285	#N/A
	7/15/08	4.96	-266	#N/A
	7/23/08	4.1	-327	6.30
	8/7/08	4.33	-268	6.31
	8/27/08	3.44	-371	6.33
	9/10/08	4.83	-396	6.08
	9/25/08	4.46	-396	6.23
	10/1/08	5.71	-378	6.19
	10/20/08	#N/A	#N/A	6.70
	11/3/08	3.31	-400	6.5
	12/12/08	2.218	-390	6.51
MW-7D	1/15/08	3.15	-275	7.51
	6/17/08	#N/A	#N/A	#N/A
	6/20/08	#N/A	#N/A	#N/A
	6/25/08	#N/A	#N/A	#N/A
	7/1/08	4.46	-209	#N/A
	7/10/08	4.28	-227	#N/A
	7/15/08	4.04	-209	#N/A
	7/23/08	#N/A	-388	5.90
	8/7/08	3.61	-243	5.96
	8/27/08	2.56	-333	6.08
	9/10/08	4.1	-333	5.82
	9/25/08	4.98	-399	6.17
	10/1/08	5.17	-385	6.13
		5.17 #N/A	-385 #N/A	
	10/20/08			#N/A
	11/3/08	2.8	-314	5.95
	12/12/08	1.948	-334	6.04
DMW 4D	1/15/08	2.08	250	7.54
RMW-4D	1/15/08	2.98	-352	7.51
	6/17/08	#N/A	#N/A	#N/A #N/A
	6/20/08	5.43	#N/A	#N/A
	6/25/08	4.31	-266	#N/A
	7/1/08	3.72	-269	#N/A
	7/10/08	3.27	-273	#N/A
	7/15/08	3.26	-263	#N/A
	7/23/08	3.65	-297	6.48
	8/7/08	2.86	-283	5.96
	8/27/08	2.31	-361	6.08
	9/10/08	3.32	-386	5.93
	9/25/08	2.95	-382	6.19
	10/1/08	4.19	-378	6.05
	10/20/08	#N/A	#N/A	#N/A
	11/3/08	2.85	-383	6.34
	12/12/08	2.88	-350	6.48

#NA = Not Applicable, typically due to no sampling being taken. mS/cm - millisiemens / cm

mV - Millivolts

SU - Standard Units

TABLE 3.5 RESULTS OF MICROBIAL CENSUS SURVEY

			DECHLORINA	TING BACTERIA		FUNCTIONAL GENES	
Sample ID	Sample Date	Monthes	DHB (cells/ml)	DHC (cells/ml)	BVC R-DASE (cells/ml)	TCE R-DASE (cells/ml)	VCR R-DASE (cells/ml)
INJ-01	1/15/2008	Baseline	2.00E+00	8.33E+02	9.16E+03	3.07E+00	3.72E+03
	7/24/2008	1.2	6.25E+03	8.88E+02	8.75E+02	5.00E+00 U	7.57E+01
	12/15/2008	6.0	1.93E+01	2.14E+04	3.04E+03	1.60E+02	7.68E+02
INJ-02	1/16/2008	Baseline	8.43E+00	1.37E+03	5.83E+03	4.63E+00	6.39E+03
	7/24/2008	1.2	3.70E+03	3.76E+03	2.62E+03	9.97E-01 J	2.73E+02
	12/11/2008	5.9	2.48E+03	1.40E+05	8.85E+03	2.61E+02	6.00E-01 U
PMW-3D	1/15/2008	Baseline	4.24E+00	9.54E+02	1.72E+04	7.21E+00	4.91E+03
	7/22/2008	1.1	6.97E+03	5.78E+02	9.97E+02	3.26E-01 J	1.47E+02
	12/11/2008	5.9	1.69E+03	3.36E+02	1.44E+02	5.00E-01 U	2.50E+00
PMW-5D	1/15/2008	Baseline	1.00E+00 U	5.00E-01 U	5.00E-01 U	5.00E-01 U	5.00E-01 U
	7/22/2008	1.1	2.11E+03	1.89E+03	2.68E+03	1.89E+00	5.36E+02
	12/11/2008	5.9	5.30E+03	2.56E+03	5.00E-01 U	2.22E+02	5.00E-01 U
RMW-4D	1/15/2008	Baseline	1.00E+00 U	5.00E-01 U	5.00E-01 U	5.00E-01 U	5.00E-01 U
	7/24/2008	1.2	4.71E+03	3.41E+02	2.95E+02	1.43E+00 U	4.92E+01
	12/11/2008	5.9	1.14E+03	1.01E+02	2.00E-01 J	1.72E+01	5.00E-01 U

Notes:

DHC - Dehalococcoides spp

DHB - Dehalobacter spp.

BVC R-DASE - reductase gene that is responsible for the breakdown of vinyl chloride in strain BAV1.

TCE R-DASE - reductase gene that is responsible for the breakdown of TCE to cis-DCE.

VCR R-DASE - reductase gene that is responsible for the breakdown of vinyl chloride to ethene in strain VS and GT of Dehalococcoides.

cells/ml - number of microbial cells per milliliter of sample.

U - Result was less than value given in table.

J - Estimated value

 TABLE 3.6

 LABORATORY RESULTS SUMMARY OF VOLATILE ANALYTES

		Months from	PCE ^{a/}	TCE ^{a/}	cis-1,2-DCE	trans-DCE	1,1-DCE	VC ^{a/}	Ethene	Ethane	Ethene + Ethane	Methane	TCA	1,1,-DCA
Well ID	Date	Injection	µg/l ^{c/}	µg/l	µg/l	μg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	μg/l
INJ-01	15-Jan-08	Baseline	840 J	100000	23000	5000 U	5000 U	1600 J	17	7	24	78	5000 U	5000 U
	24-Jul-08	1.2	5000 UJ	2600 J	150000 J	380 J	5000 UJ	1600 J	52 J	9.2 J	61.2	100 J	5000 UJ	5000 UJ
	29-Sep-08	3.4	5000 U	3300 J	110000	920 J	210 J	2900 J	16.0	6.5	22.5	100	5000 U	5000 U
	15-Dec-08	6.0	100 J	14000	150000 J	1100 J	220 J	3500	12	6.4	18.4	66	1300 U	62 J
PMW-1D	15-Jan-08	Baseline	930 J	180000	36000	5000 U	5000 U	2100	19	5.1	24.1	120	5000 U	5000 U
	25-Jul-08	1.2	280 J	17000 J	82000 J	200 J	260 J	3900 J	16 J	3.8 J	19.8	68 J	2500 UJ	2500 UJ
	1-Oct-08	3.5	5000 U	38000	110000	1900 J	310 J	2200	23	14	37	230	5000 U	5000 U
	11-Dec-08	5.9	2500 U	14000	130000 J	1500 J	280 J	4800	25	18	43	200	2500 U	2500 U
PMW-2D	16-Jan-08	Baseline	910 J	110000	27000	5000 U	5000 U	1600 J	19	6.9	26	87	5000 U	5000 U
	23-Jul-08	1.2	5000 U	1100 J	150000	580 J	380 J	1800 J	34	7.6	41.6	110	5000 U	5000 U
	29-Sep-08	3.4	5000 U	3200 J	120000	680 J	210 J	2600	16	5.8	21.8	89	5000 U	5000 U
	11-Dec-08	5.9	1000 U	2300	76000	260 J	88 J	1600	9.3	6.6	15.9	39	1000 U	40 J
PMW-3D	15-Jan-08	Baseline	1400 J	240000	31000	5000 U	5000 U	640 J	20	9.6	30	82	5000 U	5000 U
	22-Jul-08	1.1	2500 U	540 J	83000	210 J	2500 U	760 J	24	16	40	120	2500 U	2500 U
	29-Sep-08	3.4	13 J	1000	9000	50 J	15 J	99 J	4.7	35	39.7	160	16 J	250 U
	11-Dec-08	5.9	250 U	550	5600	26 J	250 U	130 J	8.7	6.4	15.1	36	250 U	250 U
PMW-4D	16-Jan-08	Baseline	1100 J	220000	36000	5000 U	5000 U	690 J	17	10	27	94	5000 U	5000 U
	22-Jul-08	1.1	5000 U	3500 J	160000	510 J	350 J	1100 J	38	12	50	110	5000 U	5000 U
	30-Sep-08	3.5	1300 U	5900	91000	990 J	140 J	1400	10	9.1	19	77	1300 U	1300 U
	11-Dec-08	5.9	1000 U	1000	22000	140 J	1000 U	680 J	14	17	31	120	1000 U	1000 U
PMW-5D	15-Jan-08	Baseline	1700 J	91000	11000	2500 U	2500 U	420 J	19	5.9	24.9	60	750 J	2500 U
	22-Jul-08	1.1	5000 U	950 J	100000	430 J	5000 U	1800 J	72	10	82	120	5000 U	5000 U
	29-Sep-08	3.4	2500 U	4800	92000	500 J	200 J	2400	18	8.8	26.8	85	2500 U	2500 U
	11-Dec-08	5.9	2500 U	6900	71000	540 J	110 J	1300 J	21	15	36	100	2500 U	10 J

ITALICIZED VALUES REPRESENT DETECTION LIMIT WHEN THE PARAMETER WAS NOT DETECTED

INJECTION OF SUBSTRATE WAS COMPLETED ON 18-JUNE-08

J = ESTIMATED VALUE

U = BELOW DETECTION LIMITS

UJ = ESTIMATED NON-DETECT POSSIBLY BIASED LOW

TABLE 3.6 LABORATORY RESULTS SUMMARY OF VOLATILE ANALYTES

		Months from	PCE ^{a/}	TCE ^{a/}	cis-1,2-DCE	trans-DCE	1,1-DCE	VC ^{a/}	Ethene	Ethane	Ethene + Ethane	Methane	TCA	1,1,-DCA
Well ID	Date	Injection	μg/l ^{c/}	µg/l	µg/l	μg/l	µg/l	μg/l	µg/l	μg/l	µg/l	µg/l	µg/l	μg/l
PMW-6D	14-Jan-08	Baseline	1000 J	100000	17000	5000 U	5000 U	820 J	16	6.5	23	62	500 J	5000 U
	22-Jul-08	1.1	5000 U	2200 J	140000	380 J	5000 U	1200 J	37	11	48	100	5000 U	5000 U
	29-Sep-08	3.4	2500 U	2800	92000	540 J	160 J	1900 J	14	12	26	71	2500 U	2500 U
	11-Dec-08	5.9	500 U	310 J	17000	230 J	29 J	170 J	12	3.6	16	56	41 J	500 U
PMW-7D	16-Jan-08	Baseline	950 J	160000	27000	5000 U	5000 U	860 J	18	7.2	25	80	5000 U	5000 U
	24-Jul-08	1.2	5000 UJ	5000 UJ	120000 J	5000 UJ	5000 UJ	940 J	37 J	7.4 J	44	76 J	5000 UJ	5000 UJ
	30-Sep-08	3.5	5000 U	2300 J	100000	840 J	280 J	1700 J	13	7.5	21	59	5000 U	5000 U
	11-Dec-08	5.9	1000 U	2400	84000	400 J	110 J	2600	6.3	7.8	14	230 J	1000 U	66 J
PMW-8D	14-Jan-08	Baseline	1200 J	240000	28000	5000 U	5000 U	1100 J	17	5.1	22	78	5000 U	5000 U
	23-Jul-08	1.2	1000 U	2900 J	110000	310 J	240 J	1500 J	29	7.2	36	100	1000 U	1000 U
	29-Sep-08	3.4	240 J	34000	76000	420 J	200 J	2100	16	5.9	22	92	2500 U	2500 U
	11-Dec-08	5.9	600 J	66000 D	48000	310 J	95 J	2300	2.0	6.2	8.2	5	1300 U	1300 U
MW-7D	15-Jan-08	Baseline	720 J	140000	26000	5000 U	5000 U	690 J	15	12	27	82	360 J	5000 U
	25-Jul-08	1.2	5000 UJ	5000 UJ	130000 J	360 J	5000 UJ	900 J	28 J	16 J	44	72 J	5000 UJ	5000 UJ
	30-Sep-08	3.5	2500 U	1200 J	59000	740 J	140 J	1500	13	4.4	17	55	2500 U	2500 U
	11-Dec-08	5.9	2500 U	2600	53000	250 J	2500 U	1400 J	15	5.3	20.3	62	2500 U	2500 U
RMW-4D	15-Jan-08	Baseline	570 J	130000	18000	5000 U	5000 U	430 J	14	19	33	110	5000 U	5000 U
	24-Jul-08	1.2	5000 UJ	450 J	100000 J	5000 UJ	5000 UJ	1100 J	46 J	15 J	61	110 J	5000 UJ	5000 UJ
	30-Sep-08	3.5	1300 UJ	3700 J	38000 J	370 J	75 J	680 J	7.1	23	30	130	1300 UJ	1300 UJ
	11-Dec-08	5.9	250 U	660	5400	28 J	250 U	79 J	2.1	28	30	130	250 U	250 U

ITALICIZED VALUES REPRESENT DETECTION LIMIT WHEN THE PARAMETER WAS NOT DETECTED

INJECTION OF SUBSTRATE WAS COMPLETED ON 18-JUNE-08

J = ESTIMATED VALUE

U = BELOW DETECTION LIMITS

UJ = ESTIMATED NON-DETECT POSSIBLY BIASED LOW

EKONOL POLYESTER RESINS SITE BIOREMEDIATION PILOT TEST

Appendix A

- Well Information
- Boring Logs
- Caliper Log Summary
- Borehole Video Snap Shots
- Well Development Records

MAY, 2009 WATER LEVEL MEASUREMENTS

TableEkonol FacilityGroundwater Summary TableWheatfield, New YorkMay, 2008

Monitoring Well ID	Northing	Easting	Top of Well Casing Elevation (Feet)	Depth to Water 5/22/2008 (Feet TOC)	Water Level Elevation 5/22/2008 (Feet)
Shallow					
MW-1S	1132468.53	1056192.71	585.06	4.71	580.35
MW-2S	1132311.92	1056254.14	585.11	3.28	581.83
MW-3S	1132228.17	1056317.60	584.83	4.45	580.38
MW-4S	1132220.46	1056183.51	585.79	8.07	577.72
MW-5S	1132454.91	1056429.00	585.66	7.82*	NA
MW-6S	1132123.45	1056266.92	585.64	7.88	577.76
MW-7S	1132148.61	1056161.35	586.46	5.91	580.55
MW-8S	1132192.87	1056062.61	586.19	5.78	580.41
MW-9S	1132273.82	1056094.38	586.10	7.92	578.18
MW-10S	1132303.24	1056442.61	585.77	7.65	578.12
MW-11S	1132005.83	1056372.98	586.00	7.85	578.15
MW-12S	1132057.93	1056235.49	586.11	7.98	578.13
)еер					
MW-7D (b)	1132156.49	1056173.63	586.16	8.15	578.01
MW-10D	1132241.44	1055990.20	585.47	7.78	577.69
MW-11D	1132119.94	1056434.68	588.42	11.13	577.29
MW-12D	1132286.53	1055849.97	585.85	8.14	577.71
MW-13D	1131373.46	1056401.65	587.89	11.92	575.97
MW-14D	1132399.34	1056477.88	587.70	9.87	577.83
MW-15D	1131333.59	1055873.33	585.76	9.15	576.61
MW-16D	1131176.05	1056393.84	586.96	12.67	574.29
MW-17D	1131980.99	1056444.40	587.31	9.94	577.37
MW-18D	1132083.84	1056621.36	587.07	9.36	577.71
MW-19D	1131339.31	1055674.08	585.44	7.70	577.74
MW-20D	1131530.44	1056045.44	586.17	NR	NA
MW-21D	1131532.09	1055862.75	585.90	8.19	577.71
RMW-1D	1132461.00	1056171.00	585.93	7.74	578.19
RMW-2D	1132291.00	1056235.00	586.14	8.66	577.48
RMW-3D	1132214.00	1056302.00	586.01	8.12**	NA
RMW-4D (b)	1132203.28	1056171.69	585.76	8.22	577.54
INJ-01	1132217.92	1056172.53	585.70	8.01	577.69
INJ-02	1132230.81	1056179.53	585.54	7.85	577.69
INJ-03	1132230.97	1056164.47	585.35	7.64	577.71
INJ-04	1132211.60	1056185.83	585.58	7.89	577.69
INJ-05	1132212.19	1056159.24	585.60	7.93	577.67
PMW-1D	1132291.16	1056173.74	585.66	7.58	578.08
PMW-2D	1132220.74	1056180.62	585.85	8.15	577.70
PMW-3D	1132210.57	1056172.04	585.98	8.30	577.68
PMW-4D	1132199.23	1056156.77	585.73	8.05	577.68
PMW-5D	1132209.88	1056200.45	585.73	8.02	577.71
PMW-6D	1132197.91	1056187.65	585.86	8.16	577.70
PMW-7D	1132181.82	1056171.23	585.82	8.14	577.68
PMW-8D	1132222.87	1056158.56	585.46	7.79	577.67

Notes:

* 5/22/08 survey information is not current do to well changes.

** Water elevation not calculated due to anomally, from "flooded" well head and / or outdate survey

NR - Water level data not recorded.

NA - No Applicable

The RMW series wells are the replacement wells for MW-1, MW-2, MW-3 and MW-4.

(b) indicates new coordinates

Survey:

Horizontal Datum = Nad 1983/96 Projection = New York West Zone

Vertical Datum = NGVD 1929

Pilot Test Boring Logs

	Atla	Ekonol Pilot Test Wheatfield, New York antic Richfield Company vember/Docember 2007	INJ-05 PMW	PMW-94	реми-	-5D			Date Completed Drilling Method Sampling Method Drilling Firm Lead Driller Geologist Project Manager Reviewed By Regulatory Agency	: 12/13/07 11:30 : Auger, Core : Split Spoon, Air Ham., HQ Core : NORTH-COAST DRLG : Justin Ashcraft : Jim Schuetz : Mark Raybuck : Jim Schuetz : NYSDEC	PID Model PID Calibration Location	WELL INJ-01 (Page 1 of 1) : MiniRay : 100 ppm Isobutylene : Pikot Test area NE of : Saint Gobain Building
epth in eet	Surf. Elev.	Water Levels ✓ After Completion: -6.0' BTOC ✓ DESCRIPTIC	DN	uscs	GRAPHIC	PID-ppm	Recovery %	Blow Count	Well: INJ-01 TOC Height:	Steel Flush Cover	Moi Constru	hitoring Well ction Information
0- 2- 3- 4-		SANDY CLAY, 0.0' - 5.0'. Hand dug. Moist, hard, red, brown, gray, Clay an trace Gravel (fine-coarse).	d Silt,			0.0	NA	HAND	- 19 63 - 19	Surface Casing Expandable Cap	CONSTRUCTION Boring Diameter WELL RISER Material Diameter Joints WELL SOREEN SAND PACK SEAL GROUT Material	: ~8* O.D. upper, ~4* lower : Stainless Steel : 4* : None : No screen, open borehole : none : Soil casing : Cement-Bentonite
5— 6— 7—				CL		0.0	NA	NA			WELL HEAD Protection Well Cap Well Pad STEEL CASING Diameter Placment Notes: AH - Air Hammer	: Bolt Down Flush Cover : Expandable Plug : 2'x2'x8" : 4-inch : Near surface to 12.5 ft.
- 8— - 9—						0.0	NA	NA			NA - Not Applicable due to I	echnique
10— - 11— -						0.0	NA 0%	NA 50/0.1		- Grout		
12- - 13- - 14-		12.5' - 14.5'. 2' Rock Socket. Top of 12.5'. No recovery at 12.5'.	Rock at	Dolo		0.0	100%	NA				
- 15— 16— - 17—		14.5' - 18.0'. Dolomite, light-medium (frequent styolites, minor pitting, filled v Horizontal fracture at 17.0', may be m		Dolo		0.0	100%	95%		- Rock Socket w/ 4" AH. - Open Bedrock Well - 17.0': Fracture		
18 — - 19 — - 20 —		18.0' - 22.0'. Solid Dolomite, similar to less vugs, less pits. Fracture at 21.5'. Lost water with no r		Dolo		0.0	100%	95%				
21- - 22- - 23-		22.0' - 25.8'. Similar to above. Litholo at 22.5' to a lighter color. Major fracture at 23.0'.	ogy change							-21.5': Water loss -23.0': Fracture		
23- - 24- - 25-				Dolo		0.0	100%	95%				
- 26 -										-Total Depth		

P	Atla	Ekonol Pilot Test Mheatfield, New York antic Richfield Company vember/December 2007	PMW-80 INJ-010	PMW-20	24 PMW-		dius circle	2	Date Started Date Completed Drilling Method Sampling Method Drilling Firm Lead Driller Geologist Project Manager Reviewed By Regulatory Agency	: 11/28/2007 14:00 : 12/11/07 11:30 : Auger, AH, HQ core : Split Spoon, HQ core : NORTHCOAST DRLG : Justin Ashcraft : Jim Schuetz : Mark Raybuck : Jim Schuetz : NYSDEC	PID Model PID Calibration Location	GWELL INJ-02 (Page 1 of 1) : MiniRay : 100 ppm Isobutylene : Pilot Test area NE of : Saint Gobain
Depth in feet	Surf. Elev.	Water Levels After Completion: ~ 6.0' BTOC DESCRIPTION	N	NSCS	GRAPHIC	PID-ppm	Rec %	Blow Count / RQD%	Well: INJ-02 TOC Height:	- Steel Flush Cover	Moi Constru	hitoring Well ction Information
0		0.0' - 5.0'. Hand dug. Similar to nearby wells. Moist, hard, red, brown, gray, CLAY an trace GRAVEL (f-c).	nd SILT,			0.0		HAND			CONSTRUCTION Boring Diameter WELL RISER Material Diameter Joints WELL Interval (bgs)	: -8* O.D. upper, -4* lower : Stainless Steel :4* :Threaded : Open Rock Hole : 13.0-25.6'
- 4 5 6 7				CL		0.0		NA			GROUT Material WELL HEAD Protection Well Cap Well Pad STEEL CASING Diameter Placment AH - Air Hammer	: Soils casing : Cement-Bentonite : Bolt Down Flush Cover : Expandable Plug : 2x2x8* : 4-inch : Near surface to 12.5 ft.
- 8— - 9—						0.0	NA	NA				
- 10- - 11-						0.0	NA	NA		- Grout		
- 12- - 13-		13.0' - 15.0'. 2' Rock Socket. Top of f	Pook of			0.0	0%	50/0.1		-13.0': Rock Socket		
- 14 — - 15 —		13.0°. Soft Rock ~ 1.0° - 1.5' into rock.		Dolo		0.0		NA				
- 16— - 17— - 18—		See INJ-01		Dolo		0.0		NA				
19 - 19 - 20 - 21 -				Dolo		0.0		NA	-0	Open Bedrock Well		
- 22— - 23— -												
24— - 25— - 26—				Dolo		0.0		NA		Total Depth 25.6		
27 —												

	V Atla	RSONS Ekonol Pilot Test Vheatfield, New York antic Richfield Company rember/December 2007		0'''''	PMW-!	5D			Sampling Method Drilling Firm Lead Driller Geologist Project Manager Reviewed By Regulatory Agency	: HQ Core : NORTHCOAST DRLG : Justin Ashcraft : Jim Schuetz : Jim Schuetz : Jim Schuetz : NYSDEC	PID Model PID Calibration Location	(Page 1 of : MiniRay : 100 ppm Isobutylene : Pilot Test area NE of : Saint Gobain
	Surf. Elev.	Water Levels After Completion: ~6.0' BTOC DESCRIPTIO 0.0' - 5.0'. Hand dug.	N	nscs	GRAPHIC	PID-ppm	Recovery %	Blow Count / RQD%	Well: INJ-03 TOC Height:	Steel Flush Cover		onitoring Well uction Information
- 1_ 2_ - 3_ - 4_ - 5_ - 6_ - 7_ - 8_ - 9_ - 10_		Similar to PMW-8D Moist, hard, red, brown, gray, CLAY ar trace GRAVEL (f-c). Top of Rock at 12.5'.	d SILT,	CL		0.0	NA NA NA	NA		Surface Casing Expandable Cap Concrete	CONSTRUCTION Boring Diameter WELL RISER Material Diameter Joints WELL SCREEN Material Diameter Joints Opening Length SAND PACK Material SEAL Material GROUT Material WELL HEAD Protection Well Pad STEEL CASING Diameter Placment	: ~8" O.D. upper, ~4" lower : Flush mount : No screen open rock hole : : : : : : : : : : : : :
- 11- - 12- - 13- - 14- - 15- - 16- - 17-		 11.0' - 13.2'. Rock Socket. No recovery at 11.0'. 13.2' - 17.6'. Similar to other borings. higher in the formation ∧. Natural 30 degree rough joint at 12.5'. Flat smooth joint at 15.9'. 	ToR ~1.0'	Dolo		0.0	0.0%	95%		— Pock Socket — Open Bedrock Well — 15.0': Rough Joint — 15.9': Flat Smooth Joint		
- 18- - 19- - 20- - 21- - 22-		17.6' - 22.4'. Similar to above. Horizontal, flat smooth joint at 20.5'. Large smooth joint marker bed at 22.4' loss, no return	. Water	Dolo		0.0	100%	95%		— 20.5': Flat Smooth Joint — 22.4': Large Smooth Joint, No I	Return	
23— 24— 25—		22.4' - 24.9'. Similar to above. Natural joint at 24.9	Dolo		0.0	100%	95%		- 24.9: Natural Joint, Total Dept			

	Atla	Ekonol Pilot Test Wheatfield, New York antic Richfield Company vember/December 2007		J ^{INJ-0}	2 Р ^{ми–}	-5D			Sampling Method : HC Core Drilling Firm : NORTHCOAST DRLG Lead Driller : Justin Ashcraft Geologist : Jim Schuetz Project Manager : Mark Raybuck Reviewed By : Jim Schuetz Regulatory Agency : NYSDEC	PID Model PID Calibration Location	: MiniRay : 100 ppm Isobutylene : Pilot Test area NE of : Saint Gobain
Depth in feet 0 2 3 3 4 5 6 7 8 9 10 11 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 -			N Id SILT,	CL Dolo	GRAPHIC	0.0 0.0	Kecovery %	Blow Count	Regulatory Agency : NYSDEC Well: INJ-04 TOC Height: Steel Flush Cover Surface Casing Expandable Cap Concrete		nitoring Well ction Information
14 — - 15 — - 16 — - 17 — - 18 — - 19 — - 20 —		14.5' - 20.3'. Massive, hard, dolomite, minor coral pitting. Few stylolites. Por stromatolite from 16.1' to 16.5'. Crysta joints at 16.5'. No breaks, full intact rock core.	light gray, sisbly I filled	Dolo		95	88%	NA	- 12.5 -14.5': Rock Socket - Open Bedrock Well - 16.1' - 16.5': Possible stromatilite - 16.5': Crystal filled Joint		
21 — 22 — 23 — 24 — 25 —		20.3' - 24.8'. Massive Dolomite similar Horizontal fracture at 22.6', mostly sm Marker bed change at 23.3', possible s Open vug with dolomite and gypsom a Drill break with Galena at 24.2'. Tight natural joints at 24.2' and 24.8'.	oth. tromatilite. : 24.0'.	Dolo		0.0	88%	95%	- 22.6': Horizontal Fracture - 23.3': Possible Stromatilite - 24.0': Open vug with Dolomite - and Gypsum - 24.2': Natural Joint - 24.8': Natural Joint		

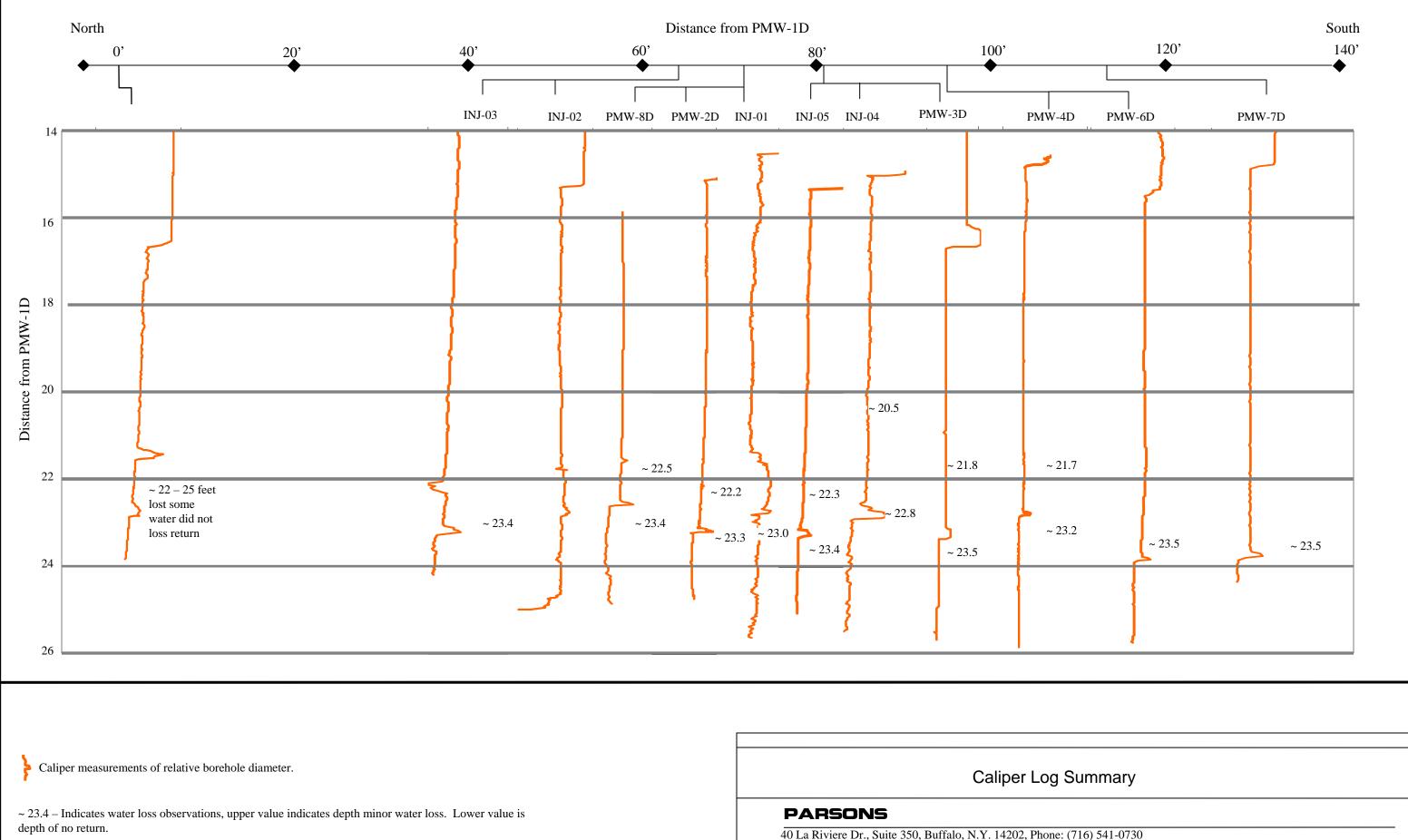
Ν		INJ-02 PMW-20 WW-3D PMW-6D	од _{РМW-}	15 ft rad	dius circle	e	Date Started : 11/20/2007 10:07 Date Completed : 12/06/07 11:45 Drilling Method : Auger, AH, HQ Core Sampling Method : SS, HQ Core Drilling Firm : NORTHCOAST DRLG Lead Driller : Justin Ashcraft Geologist : Jim Schuetz Project Manager : Mark Raybuck Reviewed By : Jim Schuetz Regulatory Agency : NYSDEC
lepth Surf. in Elev. feet	Water Levels After Completion: -6.0' BTOC	uscs	GRAPHIC	PID-ppm	Recovery %	Blow Count / RQD%	Well: INJ-05 TOC Height: Construction Information
0- - 1- - 2- - - 3- - - 4- - 5- - 6- - 7-	0.0' - 5.0'. Hand dug. Moist, hard, red, brown, gray, CLAY and Silt, trace Gravel (fine-coarse).	CL		0.0	NA	HAND	Surface Casing CONSTRUCTION Boring Diameter :-8" O.D. upper, -4" lower Expansion Cap WELL SCREEN Material : No Screen : Open Rock Well GROUT Material : No Screen : Open Rock Well GROUT Material : Cement-Bentonite WELL HEAD Protection Protection : Bolt Down Flush Cover Well Cap Will Cap : Expandable Plug STEEL CASING Diameter Diameter : 4-inch Placment Notes: Notes: AH - Air Hammer SS - Split Spoon Sample
8- 9- 10- 11- 12-				0.0	NA NA 0.0%	NA NA 50/0.1	Grout
12 - 13 - 14 - 15 - 16 - 17 -	12.5' - 14.5'. 2' Rock Socket. Top of Rock at 12.5'. No recovery at 12.5'. Run 1: 14.5' - 19.7'. Dolomite, hard massive, very fine grained. Natural tight joint at 15.3'. Crystaline section from ~15.9' - 16.4'. Only one natural fracture.	Dolo					Rock Socket Open Bedrock Well - 15.3': Natural Joint - 15.9' - 16.4': Crystals
- 18- - 19- - 20- - 21-	Run 2: 19.7' - 24.75'. Dolomite, massive. Flat, <5 degree fracture at 22.3. Large open fracture at 23.4. Undulating moderately tight fracture at 23.7. Tight fracture at 24.6.			0.0	90%	100%	
- 22 23 24 25	Run 3: 24.75' - 25.3'. Increase in coral pitting and remnant fossils in bottom of section.	Dolo		0.0	96%	89%	- 23.4": Open Fracture

	A	Ekonol Pilot Test Wheatfield, New York Atlantic Richfield Company November/December 2007			U-04 PM	W-5D	radius c	1	Date Started : 11/17/2007 16:00 Date Completed : 12/07/07 10:00 Drilling Method : Auger, AH, HQ core Sampling Method : SS, HQ Core Drilling Firm : NORTHCOAST DRLG Lead Driller : Justin Ashcraft Geologist : Jin Schuetz Project Manager : Mark Raybuck Reviewed By : Jim Schuetz Regulatory Agency : NYSDEC	PID Model PID Calibration Location	WELL PMW-1D (Page 1 of 1) : MiniRay : 100 ppm Isobutylene : Pilot Test Area NE of : Saint Gobain
epth in eet	Surf. Elev.	Water Levels After Completion: -6' BTOC		nscs	GRAPHIC	PID-ppm	Recovery %	Blow Count / RQD%	Well: PMW-3D TOC Height:	M Constr	onitoring Well uction Information
0		SANDY CLAY, 0.0' - 5.0'. Hand dug. Similar to PMW-6D. Moist, stiff, red brown, Clay, and Silt, trace S (fine).	and	CL		0.0	NA	HAND	Concrete	CONSTRUCTION Boring Diameter WELL RISER Material Diameter Joints WELL SCREEN Material Diameter Joints Opening Length SAND PACK Material SEAL Material GROUT Material	: ~10° O.D. upper, ~6° lowe : Stainless Steel : 4 : Threaded : Stainless Steel : 4-inch : Threaded : 0.01-inch slots : 10-feet : #00 Silica Filter Sand : Bentonite Pellets : Cement-Bentonite
5— 6— 7—		5.0' - 13.0'. Similar to PMW-6D. Wet, red, brown, CLAY and SILT, trace SAN (fine). Sheen on soils, not PID hits. Top of Rock 14.5'.	ID			0.0	NA	NA		WELL HEAD Protection Well Cap Well Pad STEEL CASING Diameter Placment	: Bolt Down Flush Cover : Expandable Plug : 2'x2'x8" : 6-inch : Near surface to 15 ft.
- 8— 9—						0.0	NA	NA	Steel Casing	Notes: AH Air Hammer HQ Core	
- - 10 - 11				CL		0.0	NA	NA	Grout Bentonite Seal 8.5-11.5' bgs		
- 12— - 13—						0.0	NA	NA			
- 14 — -		14.5' - 16.5'. Rock Socket. Top of Rock at 1	14.5'			0.0	NA	NA			
15 — - 16 —				Dolo		0.0	NA	NA	Rock Socket		
17 — - 18 — - 19 — - 20 — - 21 —		Well drilled with a 6" Tricon Bit. Not cored Started losing water at 22'. Softer rock, but s had water return. Driller changed to clean water, SILT at bottom of hole needs to be washed out. 22.0' - 25.0', lost some water, but did not completely lose return. End 6" roller bit at 25.0' below ground surfac Pumped 70 gallons of water prior to building well, but could not remove all cuttings from ti well. ~1.5' of SAND (coarse) in bottom of bc could not be removed, placed well on top of SAND (coarse). Sheen in development water, strong chemic odor. Well Head PID >200ppm, but dissipat quicky.	æ. he rring	Dolo		0.0	NA	NA	- #00 Sand Pack 11.5-23.5' bgs		
22 — - 23 — - 24 —									- 22.0' - Softer rock slight water loss End Cap - 23.5' - Total Depth		

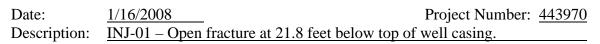
	A	Ekonol Pilot Test Wheatfield, New York Atlantic Richfield Company November/December 2007	0 4			₩-5D	Γ		Drilling Method Sampling Method Drilling Firm Lead Driller Geologist Project Manager Reviewed By Regulatory Agency	: Auger, AH, HQ-core : SS, Core : NORTHCOAST DRLG : Justin Ashcraft : Jim Schuetz : Mark Raybuck : Jim Schuetz : NYSDEC	PID Calibration Location	(Page 1 of 1) MiniRay 100 ppm Isobutylene Pilot Test Area NE of Saint Gobain
oth i et	Surf. Elev.	Water Levels After Completion: ~6' BTOC DESCRIPTION		nscs	GRAPHIC	PID-ppm	Recovery %	Blow Count \ RQD%	Well: PMW-2D	teel Flush Cover	Moni Construc	toring Well tion Information
0 1 2 3 4		0.0' - 5.0'. Hand dug. Similar to PMW-6D. Moist, stiff, red, brown, gray, CLAY and S Top of Rock at 12.5'.	ILT.			0.0	NA	HAND		Surface Casing Expandable Cap Concrete	CONSTRUCTION Boring Diameter WELL RISER Material Diameter Joints WELL SCREEN Material Diameter Diameter Diameter SAND PACK Material SEAL Material	: ~8" O.D. upper, ~4" low : Stainless Steel : 2" : Threaded : Stainless Steel : 2-Inch : Threaded : Other Steel : 10-feet : #00 Silica Filter Sand : Bentonite Pellets
5— 6— 7—				CL		0.0	NA	NA			GROUT Material WELL HEAD Protection Well Cap Well Pad STEEL CASING Diameter Placment	: Cement-Bentonite : Bolt Down Flush Cover : Expandable Plug : 2'x2'x8' : 4-inch : Near surface to 14 ft.
- 8– - 9–						0.0	NA	NA	Star Star Star Star Star Star Star Star	eel Casing out	Notes: AH - Air Hammer SS - 2" Split Spoon W.Loss - Drill water loss	
- 11- - 12-						0.0	NA	NA	Be	ntonite Seal 10.4 - 13.4'		
- 3- - 4-		TOR - 12.5' bgs 12.5' - 14.5'. Rock Socket.		Dolo								
- 15— 16— - 17— - 18—		Run 1: 14.5' - 19.7'. Dolomite, hard, gra grained. Coral pitted texture, very small mm). Tight, partial drill break at 16.1'. Jo 16.6 with calcite and gypsum.	/, fine <1 int at	Dolo		0.0	98%	100		l': Drill Break S': Joint		
- 9- - 20-		Run 2: 19.7' - 24.8'. Massive with two jo Large dissolution at 22.2 and 23.3. Wate at 22.2'. No return at 23.3. The fractures	r loss s are							Sand Pack 13.4-25.4'		
- 2 2 - 23 -		bounded in the marker bed (stromatolite) thin, black, deformed-like seams.	with	Dolo		0.0	94%	100		2: Dissolution Joint W. Loss 8: Dissolution Joint, No Return		
24 — 25 — -		Run 3: 24.8' - 25.4'. Dolomite similar to 19.7'. Slightly darker, gray, brown, more		Dolo		0.0	30%	NA	End	Cap I: Total Depth		

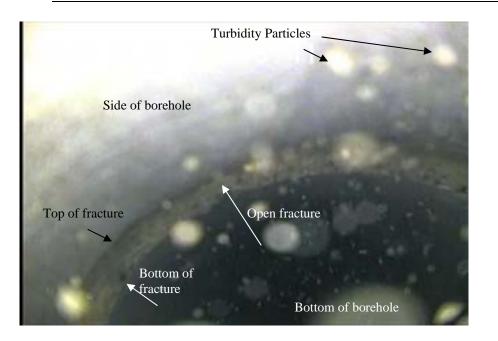
7	A	Ekonol Pilot Test Wheatfield, New York tlantic Richfield Company lovember/December 2007	NJ-02 PMW- W-3D PMW-	-04 PM	/	radius c	T	Date Completed : 12/11/07 BORING/WELL PMW-3D Drilling Method : Auger, AH, Air Hammer (Page 1 of 1) Sampling Method : SS, HQ core (Page 1 of 1) Drilling Firm : Justin Ashcraft PID Calibration : 100 ppm Isobutylene Geologist : Jim Schuetz PID Calibration : 100 ppm Isobutylene Project Manager : Mark Raybuck : Saint Gobain Regulatory Agency : NYSDEC
	Surf. Elev.	Water Levels After Completion: -6' BTOC DESCRIPTION	 nscs	GRAPHIC	PID-ppm	Recovery %	Blow Count / RQD%	Well: PMW-3D TOC Height: Steel Flush Cover
0		0.0' - 5.0'. Hand dug.	CL		0.0	NA	HAND	Surface CONSTRUCTION Casing Boring Diameter : ~8° O.D. upper, ~4" lower WELL RISER Material : Stainless Steel Diameter : 2" Joints : Threaded WELL SCREEN Material : Stainless Steel
5		5.0' - 13.0'. Similar to PMW-6D. Moist, hard, red, brown, gray, CLAY and SILT, trace SAND (c-f). Top of Rock 13.0'.	CL		0.0	NA	NA	Grout Material : Cement-Bentonite Material : Cement-Bentonite WELL HEAD Protection :: Bolt Down Flush Cover Well Gap : Expandable Plug Well Pad : 2x2:x8° STEEL CASING Diameter Diameter : 4-inch Placment : Near surface to 15 ft. Notes: SS - 2° stainless steel split spoon sampler AH - Air Hammer W.Loss - drill water loss
- 12— 13— 14— -		13.0' - 14.5'. Rock Socket. Top of Rock at 13.0 Run 1: 14.5' - 19.0'. Dolomite, hard, gray, fine	Dolo		0.0	0.0%	50/0.1'	Bentonite Seal (10.8-13.8')
15— - 16— - 17— - 18— -		Run 1: 14.5' - 19.0'. Dolomite, hard, gray, fine grained, saccharoidial. Minor coral pits. Tight, rough fracture at 15.9' and 16.5'.	Dolo		0.0	82%	95%	- 15.9': Fracture - 16.5': Fracture
19 — 20 — 21 — 22 — 23 —		GRAVEL, Poorly Graded, Run 2: 19.0' - 24.0': 19.0' to 21.9' - Massive, dolomite, gray, hard, fine grained. Contiuous core, no breaks. 21.9' to 24.0' - Same as above but with black, undulateing bedding planes (stromatolite). Fractures every 4" - 6".	Dolo		0.0	95	78%	- #00 Sand Pack (13.8-25.8') Screen (15.8-25.8) - 21.9': Slight Water Loss - 23.5': No Return
24 — - 25 — - 26 —		Run 3: 24.0' - 25.8'. Dolomite, gray, brown, hard, fine grained. Pitted and vugged with coral remnant texture. One, 6cm, coral fossil at bottom.	 Dolo		0.0	72%	100%	End Cap 25.5: Total Depth

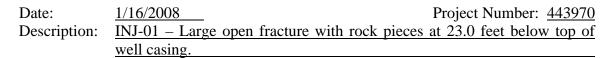
P	Α	Ekonol Pilot Test Wheatfield, New York Atlantic Richfield Company November/December 2007				v−5D	radius c	Incle	Date Started Date Completed Drilling Method Sampling Method Drilling Firm Lead Driller Geologist Project Manager Reviewed By Regulatory Agency	: 11/2/12007 : 11/26/2007 16:00 : Auger, AH, HQ core : SS, HQ core : NORTHCOAST DRLG : Justin Ashcraft : Jim Schuetz : Mark Raybuck : Jim Schuetz : NYSDEC	PID Model PID Calibration Location	WELL PMW-4D (Page 1 of 1) : MiniRay : 100 ppm Isobutylene : Pilot Test Area NE of : Saint Gobain
Depth in feet	Surf. Elev.	Water Levels After Completion: ~6' BTOC DESCRIPTION		USCS	GRAPHIC	PID-ppm	Recovery %	low Count / RQD%	Well: PMW-4D	Steel Flush Cover		nitoring Well ction Information
0		0.0' - 5.0'. Hand dug. Similar to PMW-3D. Moist, stiff, red, brown, gray mottle, CLAY SILT, trace SAND (c-f). Top of Rock at 12.5'.	' and	CL		0.0	NA	HAND		- Surface Casing - Expandable Cap - Concrete Grout	CONSTRUCTION Boring Diameter WELL RISER Material Joints WELL SCREEN Material Diameter Joints Opening Length SAND PACK Material SEAL Material GROUT Material GROUT Material WELL HEAD Protection Well Cap Well Pad STEEL CASING Diameter Placment Notes: CME-75	: ~8" O.D. upper, ~4" lower : Stainless Steel : 2" : Threaded : Stainless Steel : 2-Inch : Threaded : 0.01-inch slots : 10-feet : #00 Silica Filter Sand : Bentonite Pellets : Cement-Bentonite : Bolt Down Flush Cover : Expandable Plug : 2 x2 x8" : 4-inch : Near surface to 16 ft.
9- - 10- - 11- - 12- - 13-		12.5' TOR 12.5' - 14.5'. Rock Socket.		Dolo		0.0	NA	NA		Bentonite Seal (11-13.5')	SS - 2° stainless steel spl AH - Air Hammer W.Loss - drill water loss	t spoon sampler
14	· · · ·	Run 1: 14.5' - 19.7'. Dolomite, hare, fine grained, gray, correla with other cores. Rough, tight fractures at 14.7', 15.5', 16.1' 16.7'. Vugs with crystals between 14.7. and 15.4	and	Dolo		0.0	90%	81	- 14 - 15 - 16 - 16	1.7': Fracture 1.7' - 15.5': Vugs with crystals 5.5': Fracture 5.1': Fracture		
20 — 21 — 22 — 23 — 23 —		Run 2: 19.7' - 24.9': Massive dolomite, same as above. Smooth fracture at 21.7', water loss with r return. Change to marker bed at 22.5', with irregu undulating black seams to 24.9'.		Dolo		0.0	90%	84	Sc	10 Sand Pack sreen (15.5-25.5') .7': Smooth Fracture, No Return		
25 — 26 —		Run 3: 24.9' - 26.5'. Dolomite same as above with coral pits an vugs in the lower foot of the core.	nd	Dolo		0.0	90%	84	10.00 	nd Cap .0': Total Depth		

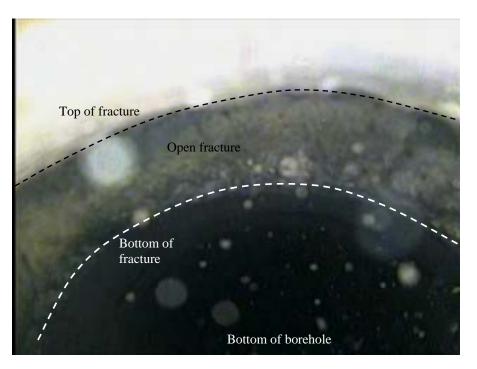

P	A	Ekonol Pilot Test Wheatfield, New York Atlantic Richfield Company November/December 2007	PMW-8D		Γ	/15 ft N-5D	radius ci	rcle	Date Started : 11/27/2008 Date Completed : 12/3/2008 Drilling Method : HQ, Core, Auger, Sampling Method : Split Spoon Drilling Firm : NORTH-COAST D Lead Driller : Justin Ashcraft Geologist : Jim Schuetz Project Manager : Mark Raybuck Reviewed By : Jim Schuetz Regulatory Agency : NYSDEC	(rage rorr)
Depth in feet	Surf. Elev.	Water Levels After Completion: -6' BTOC DESCRIPTION 0' - 5.0'. Hand dug.		nscs	GRAPHIC	PID-ppm	Recovery %	Blow Count / RQD%	Well: PMW-5D TOC Height: Steel Flush Cover	Monitoring Well Construction Information
1- - - - - - - - - - - - - - - - - - -		Moist, stiff, red, brown, gray mottle, CLAY Silt, trace Sand (coarse) 13.0' - 15'. Rock Socket. Top of Rock at Run 1: 15' - 19.7'. Dolomite, hard, gray, f grained, saccaroidial. Minor pits. Full, int	13.0'.	CL		0.0	NA	NA	Caing Expandable Cap Expandable Cap Concrete Overburden Casing Stainless Steel Casin Grout	AH - Air Hammer W.Loss - drill water loss
		rained, saccaroidial. Minor pits. Full, int core run. Run 2: 19.7' - 24.85'. Massive. Dolomite as above. Thin, undulating seams at 23.4 24.55'. Large Fracture at 24.0'. Tight Fra 24.85'. Gradual water loss until 23.5', the return.	same '- cuture at	Dolo		0.0	85%	100	- #00 Sand Pack (13.4-2 Stainless Steel Screen - 23.5': W. Loss No Retu - 24.0': Large Fracture	n (15.4-25.4')
25- - 26-	-	Run 3: 24.85' - 25.7'. Dolomite same as a Gray, brown, with pits and small vugs. Tig fracture at 25.7'.		Dolo		0.0	100%	78%	24.85': Tight Fracture 25.7': Tight Fracture, T End Cap	Fotal Depth

		Ekonol Pilot Test Wheatfield, New York Atlantic Richfield Company November/December 2007	VPMW-3D	-20 U-04 PN	W-5D	T		Sampli Drilling Lead D Geolog Project Review	ling Method : HQ, Core (Page 1 of 1) npling Method : Split Spoon ling Firm : NORTHCOAST DRLG PID Model : MiniRay d Driller : Justin Ashcraft PID Calibration : 100 ppm Isobutylene
Pepth in feet	Surf. Elev.	Water Levels ✓ After Completion: -6' BTOC ✓ DESCRIPTION SAND, Well Graded, 0' - 5.0'. Hand dug.	nscs	GRAPHIC	PID-ppm	Recovery %	Blow Count	RQD %	Steel Flush Cover Steel Flush Cover Construction Information CONSTRUCTION
- 1 2 3 4		Moist, stiff, red, brown, gray mottle, CLAY and Silt, trace Sand (coarse)	CL		0.0	NA	HAND		Casing Boring Diameter :-4" O.D. upper, -4" tow WELL RISER Material :SS Diameter :2" Joints : Threaded WELL SCREEN Material :SS Diameter :2" Joints : Threaded Opening :0.01-inch slots Length :10-feet SAND PACK Material :#00 Silica Filter Sand SEAL Material :Bentonite Pellets GROUT
5— 6— 7—		5.0' - 7.0'. Moist, very stiff, red-brown, and gray. CLAY and Silt. Laminated. Gypsum crystals embedded in CLAY.	CL		0.0	60%	5 8 9 10		Material : Cement-Bentonite WELL HEAD WELL HEAD Protection : Bolt Down Flush Cover Well Cap : Expandable Plug Well Pad : 2x2x8* STEEL CASING Diameter Diameter : 4-inch Placement : Near surface to 15 ft.
- 8		SAND, Poorly Graded, 7' - 9'. Moist, stiff, red-brown, gray and tan, Clay and Silt, laminated alternating colors.	CL		0.0	100%	4 3 6 7		Stainless Steel Casing Notes: CME-75 SS - 2' stainless steel split spoon sampler AH - Air Hammer WLoss - drill water loss
9— - 10— -		9' - 11'. Same as above.	CL		0.0	100%	15 10 7 9		
11 — - 12 — -		11' - 13'. Wet, stiff, red-brown, SILT, little CLAY, little Sand (fine-coarse), trace Gravel (fine-coarse). Gravel piece in tip. Refusal at 12.5'.	ML		0.0	100%	5 7 9		3' Bentonite Seal
13— - 14— -		TOR 12.5' 12.5' - 15'. Rock Socket.	Dolo		0.0	100%	50 NA		
15— 16— 17— 17— 18— 19—		Run 1: 15' - 19.7'. Massive, gray, hard, dolomite, stylotic horizons, fine grained, small pits.	Dolo		0.0	96%	92%		
- 20— - 21— -		Run 2: 19.7' - 24.6'. Dolomite same as above, pitting at bottom, one large natural fracture. Massive dolomite, one large water bearing fracture at 23.7', in irregular bedded marker, may be stromatilite. Gypsum filled vug at 20.0'.							- 19.6': Bed Plane Fracture - #00 Sand Pack Stainless Steel Screen
22 — - 23 — - 24 —			Dolo		0.0	99%	100		-23.5': Lost Drill Water
- 25 — -		Run 3: 24.6' - 25.9'. Fine grain dolomite, similar to above marker bed. Bottom 3" has coral pitting.	Dolo		0.0	99%	100		End Cap

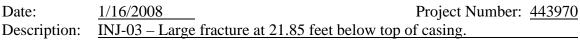

	Alantic Richfield Company November/December 2007 Water Levels	RMW-49	W-04 PN	W-5D			Sampling Method Drilling Firm Lead Driller Geologist Project Manager Reviewed By Regulatory Agency	: SS, HQ core : NORTHCOAST DRLG : Justin Ashcraft : Jim Schuetz : Mark Raybuck : Jim Schuetz : NYSDEC	PID Model : MiniRay PID Calibration : 100 ppm Isobutylene Location : Pilot Test Area NE of : Saint Gobain
Surf Elev	▲ After Completion: -6' BTOC		GRAPHIC	PID-ppm	Recovery %	Blow Count	Well: PMW-7D TOC Height:	- Steel Flush Cover	Monitoring Well Construction Information
	0.0' - 5.0'. Hand dug. Moist, stiff, red, brown, gray mottled, Clay and Silt, trace Sand (coarse).	CL		0.0	NA	HAND		Surface Casing Casing Concrete	CONSTRUCTION Boring Diameter :-8" O.D. upper, -4" I WELL RISER : Material : Stainless Steel Diameter :2" Joints : Threaded WELL SCREEN Material Material : Stainless Steel Diameter :2.1nch Joints : Threaded Opening :0.01-inch slots Length : 10-feet SAND PACK Material Material : Bentonite Pellets GROUT Material : Cement-Bentonite WELL IHEAD Protection : Bolt Down Flush Cov Well Pad : 2.42x8" : 242x8"
-				0.0	NA	NA		-Steel Casing - Grout	STEEL CASING Diameter : 4-inch Placment : Near surface to 14 ft Notes: Drill rig: CME-75 SS - 2° stainless steel split spoon sampler AH - Air Hammer W.Loss - drill water loss
-	12.0'- 14.0' Wet bard gray brown Silt and			0.0	NA	NA		- Bentonite Seal	
-	12.0' - 14.0'. Wet, hard, gray, brown, Silt and Clay, little Sand (fine-coarse), trace Gravel. Top of Rock at 12.2' Rock Socket 12.2' - 14.0'. Run 1: 14.0' - 18.9'. Dolomite, hard, gray, fine grained. Small pitted vugs. Fracture at 14.3', horizontal, undulating with sealed vertical fracture below. More vugs at 16.8' - 16.9', one to two styolities.	Dolc		0.0	50%	50		- 14.3': Horizontal Fracture	
		Dolc		0.0	83%	85%		– 16.8'-16.9': Small Vugs	
-	Run 2: 18.9' - 23.0'. Full core, no fractures. Dolomite same as above with few to no coral pits. Two stylolites, saccaroidal. Lighter colored inter bedding and ~6.0" lighter colored band at 21.6" -22.3'.	Dolc		0.0	100%	100%		– #00 Sand Pack – Screen	
	Run 3: 23.0' - 25.3'. Dolomite same as above with few to no pits. Thin black irregular but smooth bedding planes, appear as if deformed (stromatolite). Open fracture at 23.5, water loss with no return. Partially open fracture at ~25.0.	Dolc		0.0	87%	73%		–23.5': Open Fracture - No Return –25.0': Partially Open Fracture – End Cap –25.5': Total Depth	

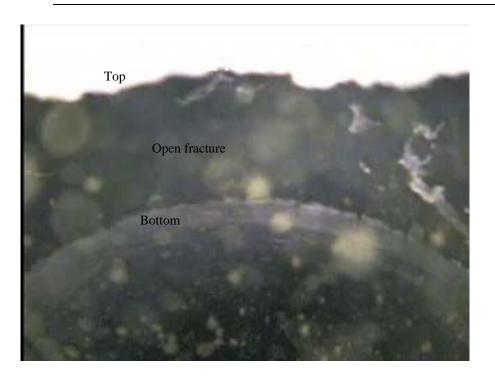

P	Δ				Ϊ	v-5D	radius ci		Date Completed : 11/27/2007 Drilling Method : Auger, AH, HQ Core Sampling Method : Split Spoon, HQ core Drilling Firm : NORTHCOAST DRLG Lead Driller : Justin Ashcraft Geologist : Jim Schuetz Project Manager : Mark Raybuck Reviewed By : Jim Schuetz Regulatory Agency : NYSDEC	BORING/WELL PMW-8D (Page 1 of 1) PID Model : MiniRay PID Calibration : 100 ppm Isobutylene Location : Pilot Test Area NE of : Saint Gobain
Depth in feet 2	N Surf. Elev. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Atlantic Richfield Company PMW-4D November/December 2007 Water Levels ✓ After Completion: -6' BTOC ✓		CL	GRAPHIC	0.0 0.0	A X X Kecovery %	DUCH Blow Count A		Monitoring Well Construction Information CONSTRUCTION Boring Diameter :-8" O.D. upper, -4" lower WELL RISER Material : Stainless Steel Diameter :2" Joints :: Threaded WELL SCREEN Material Material :: Stainless Steel Diameter :2" Joints :: Threaded WELL SCREEN Material Material :: Bentonich slots Length :: 10-feet SAND PACK Material Material :: Bentonite Pellets GROUT :: Bolt Down Flush Cover Well Pad :: Zx2x8'' STEEL CASING Diameter Diameter :: 4-inch Placment :: 4-inch Placment :: 4-inch Diameter : 4-inch Diameter :: 4-inch Diameter : 4-inch
- 10 - 11 - 12 - 13 - 14 - 15 - 16		12.3' - 14.5'. Rock Socket. Top of Rock a Run 1: 14.5' - 19.3'. Dolomite, hard, gray. Natural tight fractures at 15.2' and 15.3'. Massive. Crystals imbedded in rock at 15. vugs.		Dolo		0.0	NA	NA	Bentonite Seal (10.3-13.3) Steel Casing Rock socket 15.2: Natural Tight Fracture 15.3: Natural Tight Fracture 15.8: Crystals in rock	Lg. Large No return - drill water no longer returning up casing.
- 17 - 18 - 19 - 20 - 21		Run 2: 19.3' - 24.7'. Dolomite same as ab Natural fracture at 22.5', minor water loss. return at large smooth fracture at 23.4'. Ti fracture at 24.5', fracture occur in same ms bed with irregular black seams (stromatolit	No ght arker	Dolo		0.0	99%	96%		
22- 23- 24- 25- 		Run 3: 24.7' - 25.6'. Massive dolomite, sa above, darker gray with more pits.	ime as	Dolo		0.0	85%	70%	22.5: Natural Fracture W.Loss 23.4: Lg. Fracture No return 24.5: Tight Fracture End Cap Total Depth	


Caliper Log Summary

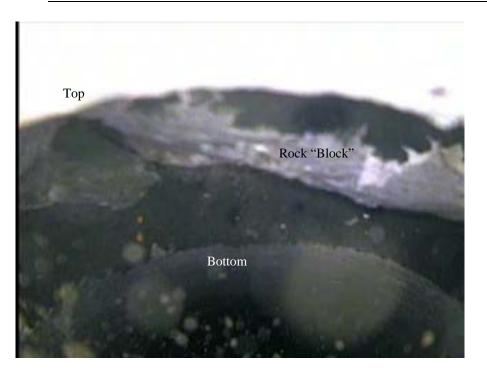


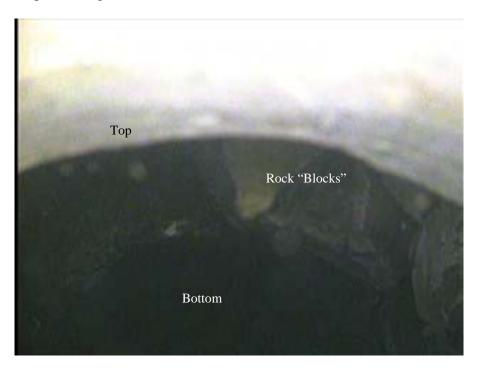
Pilot Test Borehole Photograph Log



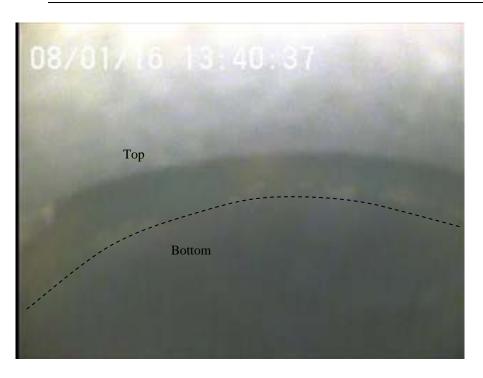

P:\443970\TECH\pilot test\borehole video\Borehole Snapshots\Ekonol_Borehole_Photolog.doc

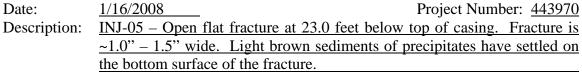
Date:1/16/2008Project Number: 443970Description:INJ-02 - Large fracture at 22.0 feet below top of casing. Possible fracture
at 22.8 feet below top of casing; too turbid for a clear view.

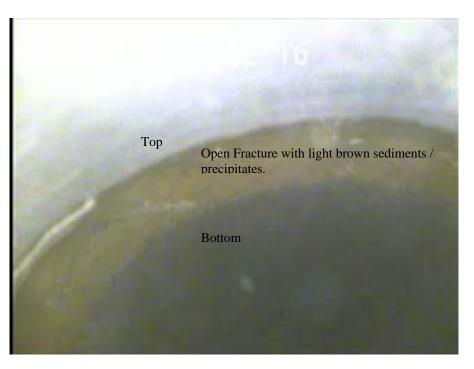

Тор



Date:1/16/2008Project Number: 443970Description:INJ-03 - Large fracture with blocks at 22.8 feet below top of casing.




Date:1/16/2008Project Number:443970Description:INJ-04 - Very large fracture, ~2" - 3" wide, some blocks. Fracture is 22.6feet below top of casing.



P:\443970\TECH\pilot test\borehole video\Borehole Snapshots\Ekonol_Borehole_Photolog.doc

Date:1/16/2008Project Number: 443970Description:INJ-05 - Open fracture at 21.6 feet below top of casing.

P:\443970\TECH\pilot test\borehole video\Borehole Snapshots\Ekonol_Borehole_Photolog.doc

Well Development Records

nol 970 3. EPS 2008 r purmping/su mersible - min 9/2008 12:05 9/2008 14:05 5 DTW ft. 17.95 < 4.0'	ii typhon	Vol. gal. 20.00	<u>рН</u> 6.89		Well ID: Static water Level Total Depth Casing Diameter WATER VOLUME CALC = (Total Depth of Well - 1-inch = 0.041 4-inch = 0.64 Well Volume: Spec. Cond. mS/cm	Depth To Water) x Casing Volumes Casing Volumes 1.5-inch = 0.092 6-inch = 1.4 11.0464 Temp.	s (gal/ft.): 2-inch = 8-inch = Turb.	0.16	3-inch = 0.36 10 inch = 4	
S. EPS 2008 r purmping/su mersible - min 9/2008 12:05 9/2008 14:05 5 DTW ft. 17.95 <4.0'	ii typhon Pump Rate ml/min. 2.50	gal.			Total Depth Casing Diameter <u>WATER VOLUME CALC</u> = (Total Depth of Well - 1-inch = 0.041 4-inch = 0.64 Well Volume: Spec. Cond.	23.5 4" CULATION • Depth To Water) x Casi Casing Volumes 1.5-inch = 0.092 6-inch = 1.4 11.0464 Temp.	s (gal/ft.): 2-inch = 8-inch = Turb.	0.16		
2008 r purmping/su mersible - min 9/2008 12:05 9/2008 14:05 5 DTW ft. 17.95 <4.0'	ii typhon Pump Rate ml/min. 2.50	gal.			Casing Diameter WATER VOLUME CALC = (Total Depth of Well - 1-inch = 0.041 4-inch = 0.64 Well Volume: Spec. Cond.	4" CULATION • Depth To Water) x Casi Casing Volumes 1.5-inch = 0.092 6-inch = 1.4 11.0464 Temp.	s (gal/ft.): 2-inch = 8-inch = Turb.	0.16		
r purmping/su mersible - min 9/2008 12:05 9/2008 14:05 5 DTW ft. 17:95 <4.0'	ii typhon Pump Rate ml/min. 2.50	gal.			WATER VOLUME CALC = (Total Depth of Well - 1-inch = 0.041 4-inch = 0.64 Well Volume: Spec. Cond.	CULATION • Depth To Water) x Casi Casing Volumes 1.5-inch = 0.092 6-inch = 1.4 11.0464 Temp.	s (gal/ft.): 2-inch = 8-inch = Turb.	0.16		
mersible - min 9/2008 12:05 9/2008 14:05 5 DTW ft. 17:95 <4.0'	ii typhon Pump Rate ml/min. 2.50	gal.			= (Total Depth of Well - 1-inch = 0.041 4-inch = 0.64 Well Volume: Spec. Cond.	Depth To Water) x Casing Volumes Casing Volumes 1.5-inch = 0.092 6-inch = 1.4 11.0464 Temp.	s (gal/ft.): 2-inch = 8-inch = Turb.	0.16		
mersible - min 9/2008 12:05 9/2008 14:05 5 DTW ft. 17:95 <4.0'	ii typhon Pump Rate ml/min. 2.50	gal.			1-inch = 0.041 4-inch = 0.64 Well Volume: Spec. Cond.	Casing Volumes 1.5-inch = 0.092 6-inch = 1.4 11.0464 Temp.	s (gal/ft.): 2-inch = 8-inch = Turb.	0.16		
9/2008 12:05 9/2008 14:05 5 DTW ft. 17.95 <4.0'	Pump Rate ml/min. 2.50	gal.			4-inch = 0.64 Well Volume: Spec. Cond.	1.5-inch = 0.092 6-inch = 1.4 11.0464 Temp.	2-inch = 8-inch = Turb.	2.5		
9/2008 14:05 5 DTW ft. 17.95 <4.0'	Pump Rate ml/min. 2.50	gal.			4-inch = 0.64 Well Volume: Spec. Cond.	6-inch = 1.4 11.0464 Temp.	8-inch = Turb.	2.5		
DTW ft. 17.95 <4.0'	Pump Rate ml/min. 2.50	gal.			Well Volume: Spec. Cond.	11.0464 Temp.	Turb.		10 inch = 4	
DTW ft. 17.95 <4.0'	ml/min. 2.50	gal.			Spec. Cond.	Temp.		Comments		
ft. 17.95 <4.0'	ml/min. 2.50	gal.						Comments		
17.95 <4.0'	2.50		6 80	mg/L	mS/cm	90		1		
<4.0'		20.00	6 80			°C	NTU			
	2.50		0.05		4.23	54.80	Trubid			
		15.00	6.73		3.63	55.40	750.00			
12.70	2.50	10.00	6.77		3.32	54.80	Turbid	surged between s	samples	
15.90	2.50	35.00	6.77		3.23	55.70	850.00			
19.40	2.50	20.00	6.82		3.14	54.40	500.00			
21.76	2.50	20.00	6.79		3.29	54.20	500.00			
22.80	2.50	5.00	6.81		3.07	54.00	250.00			
	Total	135.00								
					1					
								1		
					<u> </u>					
					_					
	19.40 21.76 22.80	19.40 2.50 21.76 2.50 22.80 2.50 Total Image: state st	19.40 2.50 20.00 21.76 2.50 20.00 22.80 2.50 5.00 Total 135.00 Image: Constraint of the second	19.40 2.50 20.00 6.82 21.76 2.50 20.00 6.79 22.80 2.50 5.00 6.81 Total 135.00 135.00 Image: Constraint of the second o	19.40 2.50 20.00 6.82 21.76 2.50 20.00 6.79 22.80 2.50 5.00 6.81 Total 135.00 Image: Constraint of the state of the st	19.40 2.50 20.00 6.82 3.14 21.76 2.50 20.00 6.79 3.29 22.80 2.50 5.00 6.81 3.07 Total 135.00 1000 1000 Image: Constraint of the second s	19.40 2.50 20.00 6.82 3.14 54.40 21.76 2.50 20.00 6.79 3.29 54.20 22.80 2.50 5.00 6.81 3.07 54.00	19.0 19.40 2.50 20.00 6.82 3.14 54.40 500.00 21.76 2.50 20.00 6.79 3.29 54.20 500.00 22.80 2.50 5.00 6.81 3.07 54.00 250.00 22.80 7.01 135.00 6.81 3.07 54.00 250.00 10.10 135.00 6.81 3.07 54.00 250.00 11.00 135.00 6.81 3.07 54.00 250.00 11.01 135.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 11.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 11.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 11.01 1.01 1.01 1.01 1.01 1.01 <th1.01< th=""> 1.01 <th1.01< td="" th<=""><td>19.00 2.50 20.00 6.82 3.14 54.40 500.00 21.76 2.50 20.00 6.79 3.29 54.20 500.00 22.80 2.50 5.00 6.81 3.07 54.00 250.00 70tal 135.00 6.81 3.07 54.00 250.00 10.01 135.00 6.81 3.07 54.00 250.00 10.01 135.00 6.81 3.07 54.00 250.00 10.01 135.00 6.81 3.07 54.00 250.00 10.01 135.00 6.81 3.07 54.00 250.00 10.01 135.00 1 1 1 1 1 1 10.01 135.00 1 1 1 1 1 1 1 10.01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>19.402.5020.006.823.1454.40500.0021.762.5020.006.793.2954.20500.0022.802.505.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.0011111Total135.0011111Total1111111Total1111111Total1111111Total1111111Total1111111To</td></th1.01<></th1.01<>	19.00 2.50 20.00 6.82 3.14 54.40 500.00 21.76 2.50 20.00 6.79 3.29 54.20 500.00 22.80 2.50 5.00 6.81 3.07 54.00 250.00 70tal 135.00 6.81 3.07 54.00 250.00 10.01 135.00 6.81 3.07 54.00 250.00 10.01 135.00 6.81 3.07 54.00 250.00 10.01 135.00 6.81 3.07 54.00 250.00 10.01 135.00 6.81 3.07 54.00 250.00 10.01 135.00 1 1 1 1 1 1 10.01 135.00 1 1 1 1 1 1 1 10.01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19.402.5020.006.823.1454.40500.0021.762.5020.006.793.2954.20500.0022.802.505.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.006.813.0754.00250.00Total135.0011111Total135.0011111Total1111111Total1111111Total1111111Total1111111Total1111111To

					WEI	LL DEVELOPMENT REC	<u>ORD</u>			
Project Name:	Ekonol]	Well ID:	PMW-2D			
Job Number:	443970					Static water Level	6.65			
Personnel:	JWS. EPS					Total Depth	24			
Date:	1/9/2008					Casing Diameter	2"			
					-	WATER VOLUME CAL	CULATION			
Development type:	over purmping/su	urging			-	= (Total Depth of Well -	Depth To Water) x Casi	ing Volume p	er Foot	
Pump type:	submersible - mi	ni typhon					Casing Volumes	s (gal/ft.):		
Start Date and Time:	1/9/2008 9:45				-	1-inch = 0.041	1.5-inch = 0.092	2-inch =	0.16	3-inch = 0.36
End Date and Time:	1/9/2008 10:0	5				4-inch = 0.64	6-inch = 1.4	8-inch =	= 2.5	10 inch = 4
Flow Rate:	~2.5 gpm					Well Volume:	2.776			
Time	DTW	Pump Rate	Vol.	рН	DO	Spec. Cond.	Temp.	Turb.	Comments	
24 hr.	ft.	ml/min.	gal.		mg/L	mS/cm	°C	NTU		
9:55	11.20	2.50	15.00	7.11		2.20	53.50	550.00		
10:00	10.52	2.50	15.00	7.08		2.35	54.70	230.00		
10:05	N/A	2.50	10.00	7.06		2.34	55.30	23.00		
		Total	40.00							
0	Deller					1	1			
Comments:	Drillers purged	~200 gallons from	well after drillin	ng						
						PARSONS				

					WEL	L DEVELOPMENT REC	<u>ORD</u>				
Project Name:	Ekonol]	Well ID:	PMW-3D				
Job Number:	443970					Static water Level	6.75				
Personnel:	JWS. EPS					Total Depth	25				
Date:	1/8/2008					Casing Diameter	2"				
						WATER VOLUME CALC	CULATION				
Development type:	over purmping/s	urging				= (Total Depth of Well -	Depth To Water) x Casi	ing Volume p	er Foot		
Pump type:	submersible - mi	ni typhon					Casing Volumes	s (gal/ft.):			
Start Date and Time:	1/8/2008 15:2	0				1-inch = 0.041	1.5-inch = 0.092	2-inch =	0.16	3-inch = 0.36	
End Date and Time:	1/8/2008 15:5	5]	4-inch = 0.64	6-inch = 1.4	8-inch =	2.5	10 inch = 4	
Flow Rate:	~2.4					Well Volume:	2.92				
Time	DTW	Pump Rate	Vol.	рН	DO	Spec. Cond.	Temp.	Turb.	Comments		
24 hr.	ft.	ml/min.	gal.		mg/L	mS/cm	°C	NTU			
15:30	13.5'	2.40	20.00	7.50		2.41	58.80	700.00			
15:35	15.2'	2.40	20.00	7.21		2.35	58.60	120.00			
15:40	12.6'	2.40	20.00	7.20		2.36	58.30	31.00			
15:55	13.6'	2.40	30.00	7.19		2.35	58.70	16.00			
		Total	90.00								
Commonto		200 gollong from			I	1			1		
Comments:	Drillers purged	~200 gallons from	weil atter drilli	ng							<u> </u>
						PARSONS					

Project Name:	Ekonol				1	Well ID:	PMW-4D				
Job Number:	443970					Static water Level	6.46				
Personnel:	JWS. EPS					Total Depth	25				
Date:	1/9/2008					Casing Diameter	2"				
Development type:	over purmping/s	uraina				WATER VOLUME CAL					
						= (Total Depth of Well	- Depth To Water) x Cas	ing Volume p	er Foot		
Pump type:	submersible - m						Casing Volumes	s (gal/ft.):			
Start Date and Time:						1-inch = 0.041	1.5-inch = 0.092	2-inch =	0.16	3-inch = 0.36	
End Date and Time:	1/9/2008 9:35	5				4-inch = 0.64	6-inch = 1.4	8-inch =	2.5	10 inch = 4	
Flow Rate:	~2.5					Well Volume:	2.9664				
Time	DTW	Pump Rate	Vol.	рН	DO	Spec. Cond.	Temp.	Turb.	Comments		
24 hr.	ft.	ml/min.	gal.		mg/L	mS/cm	°C	NTU			
9:15	9.98	2.50	50.00	7.25		2.47	52.60	130.00			
9:25	9.78	2.50	30.00	7.06		2.41	53.40	110.00			
9:35	9.45	2.50	20.00	7.13		2.46	52.40	32.00			
		Total	100.00								
						1					
	1								1		

/surging mini typhon :15 :50 Pump Rate ml/min. 2.50 2.50 2.50 2.50 2.50 2.50	Vol. gal. 15.00 20.00 15.00 	PH 7.04 7.07 7.06 7.05		1-inch = 0.041 4-inch = 0.64 Well Volume: Spec. Cond. mS/cm 1.99 2.03 2.08	PMW-5D 6.56 24.96 <i>CULATION</i> - Depth To Water) x Casing Volumes 1.5-inch = 0.092 6-inch = 1.4 2.944 Temp. °C 53.40 53.70 53.80		= 0.16	3-inch = 0.36 10 inch = 4	
Pump Rate ml/min. 2.50 2.50 2.50 2.50 2.50 2.50	gal. 15.00 20.00 15.00 	7.04 7.07 7.06	DO mg/L 	Total Depth Casing Diameter WATER VOLUME CAL = (Total Depth of Well 1-inch = 0.041 4-inch = 0.64 Well Volume: Spec. Cond. mS/cm 1.99 2.03 2.08	24.96 CULATION Depth To Water) x Casi Casing Volumes 1.5-inch = 0.092 6-inch = 1.4 2.944 Temp. °C 53.40 53.70	s (gal/ft.): 2-inch = 8-inch = Turb. NTU 750.00 450.00	= 0.16 = 2.5		
Pump Rate ml/min. 2.50 2.50 2.50 2.50 2.50 2.50	gal. 15.00 20.00 15.00 	7.04 7.07 7.06	DO mg/L 	Casing Diameter <i>WATER VOLUME CAL</i> = (Total Depth of Well 1-inch = 0.041 4-inch = 0.64 Well Volume: Spec. Cond. mS/cm 1.99 2.03 2.08	CULATION - Depth To Water) x Casi Casing Volumes 1.5-inch = 0.092 6-inch = 1.4 2.944 Temp. °C 53.40 53.70	s (gal/ft.): 2-inch = 8-inch = Turb. NTU 750.00 450.00	= 0.16 = 2.5		
Pump Rate ml/min. 2.50 2.50 2.50 2.50 2.50 2.50	gal. 15.00 20.00 15.00 	7.04 7.07 7.06	DO mg/L 	WATER VOLUME CAL = (Total Depth of Well 1-inch = 0.041 4-inch = 0.64 Well Volume: Spec. Cond. mS/cm 1.99 2.03 2.08	- Depth To Water) x Casing Volumes Casing Volumes 1.5-inch = 0.092 6-inch = 1.4 2.944 Temp. °C 53.40 53.70	s (gal/ft.): 2-inch = 8-inch = Turb. NTU 750.00 450.00	= 0.16 = 2.5		
Pump Rate ml/min. 2.50 2.50 2.50 2.50 2.50 2.50	gal. 15.00 20.00 15.00 	7.04 7.07 7.06	 	= (Total Depth of Well	- Depth To Water) x Casing Volumes Casing Volumes 1.5-inch = 0.092 6-inch = 1.4 2.944 Temp. °C 53.40 53.70	s (gal/ft.): 2-inch = 8-inch = Turb. NTU 750.00 450.00	= 0.16 = 2.5		
Pump Rate ml/min. 2.50 2.50 2.50 2.50 2.50 2.50	gal. 15.00 20.00 15.00 	7.04 7.07 7.06	 	1-inch = 0.041 4-inch = 0.64 Well Volume: Spec. Cond. mS/cm 1.99 2.03 2.08	Casing Volumes <u>1.5-inch = 0.092</u> <u>6-inch = 1.4</u> 2.944 Temp. °C 53.40 53.70	s (gal/ft.): 2-inch = 8-inch = Turb. NTU 750.00 450.00	= 0.16 = 2.5		
Pump Rate ml/min. 2.50 2.50 2.50 2.50 2.50	gal. 15.00 20.00 15.00 	7.04 7.07 7.06	 	4-inch = 0.64 Well Volume: Spec. Cond. mS/cm 1.99 2.03 2.08	1.5-inch = 0.092 6-inch = 1.4 2.944 Temp. °C 53.40 53.70	2-inch = 8-inch = Turb. NTU 750.00 450.00	= 2.5		
Pump Rate ml/min. 2.50 2.50 2.50 2.50 2.50 2.50	gal. 15.00 20.00 15.00 	7.04 7.07 7.06	 	4-inch = 0.64 Well Volume: Spec. Cond. mS/cm 1.99 2.03 2.08	6-inch = 1.4 2.944 Temp. °C 53.40 53.70	8-inch = Turb. NTU 750.00 450.00	= 2.5		
Pump Rate ml/min. 2.50 2.50 2.50 2.50	gal. 15.00 20.00 15.00 	7.04 7.07 7.06	 	Spec. Cond. mS/cm 1.99 2.03 2.08	2.944 Temp. °C 53.40 53.70	Turb. NTU 750.00 450.00		10 inch = 4	
ml/min. 2.50 2.50 2.50 2.50 2.50	gal. 15.00 20.00 15.00 	7.04 7.07 7.06	 	Spec. Cond. mS/cm 1.99 2.03 2.08	Temp. °C 53.40 53.70	NTU 750.00 450.00	Comments		
ml/min. 2.50 2.50 2.50 2.50 2.50	gal. 15.00 20.00 15.00 	7.04 7.07 7.06	mg/L 	mS/cm 1.99 2.03 2.08	°C 53.40 53.70	NTU 750.00 450.00	Comments		
2.50 2.50 2.50 2.50 2.50	15.00 20.00 15.00 	7.07		1.99 2.03 2.08	53.40	750.00 450.00			
2.50 2.50 2.50	20.00	7.07		2.03	53.70	450.00			
2.50		7.06		2.08					
2.50					53.80	190.00			
		7.05							
Total				2.17	53.60	80.00			
	65.00								
1			1						
<u> </u>									
	d ~200 gallons from	d ~200 gallons from well after drilli	d ~200 gallons from well after drilling.	d ~200 gallons from well after drilling.	d ~200 gallons from well after drilling.	d ~200 gallons from well after drilling.	d ~200 gallons from well after drilling.	d ~200 gallons from well after drilling.	d ~200 gallons from well after drilling.

					WEL	L DEVELOPMENT REC	<u>ORD</u>				
Project Name:	Ekonol					Well ID:	PMW-6D				
Job Number:	443970					Static water Level	6.62				
Personnel:	JWS. EPS					Total Depth	25				
Date:	1/9/2008					Casing Diameter	2"				
						WATER VOLUME CAL	CULATION				
Development type:	over purmping/s	urging				= (Total Depth of Well -	Depth To Water) x Cas	ing Volume p	er Foot		
Pump type:	submersible - mi	ini typhon					Casing Volumes	s (gal/ft.):			
Start Date and Time:	1/9/2008 11:0	5				1-inch = 0.041	1.5-inch = 0.092	2-inch =	0.16	3-inch = 0.36	
End Date and Time:	1/9/2008 11:3	0				4-inch = 0.64	6-inch = 1.4	8-inch =	2.5	10 inch = 4	
Flow Rate:	~2.5					Well Volume:	2.9408				
Time	DTW	Pump Rate	Vol.	рН	DO	Spec. Cond.	Temp.	Turb.	Comments		
24 hr.	ft.	ml/min.	gal.		mg/L	mS/cm	°C	NTU			
11:15	13.80	2.50	40.00	7.05		2.28	54.00	Turbid			
11:20	10.75	2.50	15.00	7.09		2.22	55.40	90.00			
11:30	11.20	2.50	20.00	7.06		2.22	54.60	50.00			
		Total	75.00								
Comments:		~200 gallons from	well after drilli	a							
Comments.	Drillers purged	~200 yaii0115 110111		iy.							
						PARSONS					

					WELL D	EVELOPMENT RECORI	<u>2</u>			
Project Name:	Ekonol]	Well ID:	PMW-7D			
Job Number:	443970					Static water Level	6.76			
Personnel:	Jim Schuetz, Eth	an Shapiro				Total Depth	24.3			
Date:	1/7/2008					Casing Diameter	2"			
						WATER VOLUME CAL	CULATION			
Development type:	over purmping/s	urging				= (Total Depth of Well	- Depth To Water) x Cas	ing Volume p	er Foot	
Pump type:	submersible - mi	ni typhon					Casing Volumes	s (gal/ft.):		
Start Date and Time:	1/7/2008 11:4	5				1-inch = 0.041	1.5-inch = 0.092	2-inch =	= 0.16	3-inch = 0.36
End Date and Time:	1/7/2008 12:2	5				4-inch = 0.64	6-inch = 1.4	8-inch =	= 2.5	10 inch = 4
Flow Rate:	5G/1 min 52 sec	= 2.68 GPM]	Well Volume:	2.8064	•		
Time	DTW	Pump Rate	Vol.	pН	DO	Spec. Cond.	Temp.	Turb.	Comments	
24 hr.	ft.	ml/min.	gal.		mg/L	mS/cm	°C	NTU		
11:50	10.98	~2.7	20.00	7.43		3.37	58.80	700.00	Developed 100 C	GAL prior to setting well
12:15	10.94		40.00	7.18		2.74	57.50	85.00		
12:25	10.80			7.09		2.73	57.80	35.00		
		Total	100.00							
	L				1	1		<u> </u>		
Comments:	Drillers purged	~200 gallons from	well after drillir	ıg.						
						PARSONS				

					<u>WEI</u>	L DEVELOPMENT REC	<u>ORD</u>			
Project Name:	Ekonol]	Well ID:	PMW-8D			
Job Number:	443970					Static water Level	6.2			
Personnel:	JWS. EPS					Total Depth	25.5			
Date:	1/8/2008				-	Casing Diameter				
						WATER VOLUME CAL	CULATION			
Development type:	over purmping/s	urging			_	= (Total Depth of Well -	Depth To Water) x Casi	ing Volume p	er Foot	F
Pump type:	submersible - m	ini typhon					Casing Volumes	s (gal/ft.):		
Start Date and Time:	1/8/2008 14:5	0				1-inch = 0.041	1.5-inch = 0.092	2-inch =	= 0.16	3-inch = 0.36
End Date and Time:	1/8/2008 15:0	5				4-inch = 0.64	6-inch = 1.4	8-inch =	= 2.5	10 inch = 4
Flow Rate:	~2.4 gpm					Well Volume:	3.088	0		
Time	DTW	Pump Rate	Vol.	рН	DO	Spec. Cond.	Temp.	Turb.	Comments	
24 hr.	ft.		gal.		mg/L	mS/cm	°C	NTU		
14:45	9.95	2.40		7.20		2.69	59.80	230.00	sheen on water	
14:58	9.72	2.40	40.00	7.17		2.59	59.20	90.00		
15:05	9.80	2.40	75.00	7.18		2.54	58.90	29.00		
		Total	135.00							
Comments:					r pump was re	emoved water level came	I			
	Drillers purged	~200 gallons from	well after drillir	ng.		PARSONS				

					<u>WEI</u>	LL DEVELOPMENT REC	CORD			
Project Name:	Ekonol					Well ID:	INJ-01			
Job Number:	443970					Static water Level	6.46 from high	nest point of	steel (north side))
Personnel:	JWS. EPS					Total Depth	25.14			
Date:	1/8/2008					Casing Diameter	4"			
						WATER VOLUME CAL	CULATION			
Development type:	over purmping/s	urging				= (Total Depth of Well	- Depth To Water) x Casi	ing Volume p	er Foot	
oump type:	submersible - m	ini typhon					Casing Volumes	s (gal/ft.):		
Start Date and Time:	1/8/2008 10:4	5				1-inch = 0.041	1.5-inch = 0.092	2-inch =	- 0.16	3-inch = 0.36
End Date and Time:	1/8/2008 11:4	5				4-inch = 0.64	6-inch = 1.4	8-inch =	= 2.5	10 inch = 4
Flow Rate:	~2.4					Well Volume:	11.9552	0		
Time	DTW	Pump Rate	Vol.	рН	DO	Spec. Cond.	Temp.	Turb.	Comments	
24 hr.	ft.		gal.		mg/L	mS/cm	°C	NTU		
10:56	7.04	2.40		7.12		2.49	59.00	30.00	was turbid at first	t, very lt. silt
11:10	7.04	2.40		7.21		2.51	58.60	22.00		
11:25	7.04	2.40		7.15		2.47	58.30	8.00		
11:45	7.04	2.40		7.15		2.45	58.60	5.20		
		Total	144.00							
Comments:	At ~15' slight o	bstruction in well			I	<u> </u>				
	Drillers purged	~200 gallons from	well after drillir	ng.		PARSONS				

					WE	LL DEVELOPMENT REC	ORD				
Project Name:	Ekonol]	Well ID:	INJ-02				
Job Number:	443970					Static water Level	6.52				
Personnel:	JWS. EPS					Total Depth	25.5				
Date:	1/8/2008					Casing Diameter	4"				
						WATER VOLUME CAL	CULATION				
Development type:	over purmping/s	surging				= (Total Depth of Well -	Depth To Water) x Casi	ing Volume p	er Foot		
Pump type:	submersible - m	ini typhon					Casing Volumes	s (gal/ft.):			
Start Date and Time:	1/8/2008 9:00)				1-inch = 0.041	1.5-inch = 0.092	2-inch =	0.16	3-inch = 0.36	
End Date and Time:	1/8/2008 10:2	25				4-inch = 0.64	6-inch = 1.4	8-inch =	2.5	10 inch = 4	
Flow Rate:	~2.5]	Well Volume:	12.147				
Time	DTW	Pump Rate	Vol.	рН	DO	Spec. Cond.	Temp.	Turb.	Comments		
24 hr.	ft.		gal.		mg/L	mS/cm	°C	NTU			
9:15	6.59	2.50		7.46		2.87	57.50	450.00			
9:40	6.75	2.50	~50	7.38		2.59	58.50	130.00			
10:00		2.50		7.28		2.48	58.80	90.00	removed all of sil	lt 10:10	
10:15	6.95	2.50	~100	7.27		2.60	58.90	23.00			
10:20		2.50		7.25		2.59	59.10	16.00			
10:25	6.95	2.50	~150	7.25		2.57	58.90	16.00			
		Total	300.00								
	1										
		<u> </u>			1	1	I	1	1		
Comments:		water, strong chen ~200 gallons from									
	Dimers purged	-200 gailons nom		ıy.		PARSONS					

					<u>WEI</u>	LL DEVELOPMENT REC	ORD				
Project Name:	Ekonol					Well ID:	INJ-03				
Job Number:	443970					Static water Level	6.02				
Personnel:	JWS. EPS					Total Depth	27				
Date:	1/8/2008					Casing Diameter	4"				
						WATER VOLUME CAL	CULATION				
Development type:	over purmping/s	urging				= (Total Depth of Well -	Depth To Water) x Casi	ng Volume p	er Foot		
Pump type:	submersible - m	ini typhon					Casing Volumes	s (gal/ft.):			
Start Date and Time:	1/8/2008 13:2	5				1-inch = 0.041	1.5-inch = 0.092	2-inch =	0.16	3-inch = 0.36	
End Date and Time:	1/8/2008 14:2	0				4-inch = 0.64	6-inch = 1.4	8-inch =	2.5	10 inch = 4	
Flow Rate:	~2.4					Well Volume:	13.4272			·	
Time	DTW	Pump Rate	Vol.	рН	DO	Spec. Cond.	Temp.	Turb.	Comments		
24 hr.	ft.		gal.		mg/L	mS/cm	°C	NTU			
13:32	6.08	2.40		7.15		3.07	59.80	Turbid			
13:55	6.72	2.40		7.16		2.62	58.70	70.00			
14:10	6.70	2.40	-	7.19		2.60	59.60	36.00			
14:20	6.74	2.40		7.17		2.54	59.00	31.00			
		Total	115.00								
	1										
									1		
						1			<u> </u>		
Comments:	Sheen on wate										
	Drillers purged	~200 gallons from	well atter drillir	ng.		PARSONS					

					WEL	L DEVELOPMENT REC	ORD				
Project Name:	Ekonol]	Well ID:	INJ-04				
Job Number:	443970					Static water Level	6.43				
Personnel:	JWS. EPS					Total Depth	24.83				
Date:	1/7/2008					Casing Diameter	4"				
						WATER VOLUME CAL	CULATION				
Development type:	over purmping/s					= (Total Depth of Well -	Depth To Water) x Casi	ing Volume p	er Foot		
Pump type:	submersible - mi	ni typhon					Casing Volumes	s (gal/ft.):	T		
Start Date and Time:	1/7/2008 14:1	0				1-inch = 0.041	1.5-inch = 0.092	2-inch =	0.16	3-inch = 0.36	
End Date and Time:	1/7/2008 14:5	5				4-inch = 0.64	6-inch = 1.4	8-inch =	2.5	10 inch = 4	
Flow Rate:	~2.7]	Well Volume:	11.776				
Time	DTW	Pump Rate	Vol.	рН	DO	Spec. Cond.	Temp.	Turb.	Comments		
24 hr.	ft.	GPM	gal.		mg/L	mS/cm	°C	NTU			
14:20	7.24	2.70	25.00	7.03		2.82	58.60	150.00	Turbid at first		
14:30	7.25	2.70	50.00	7.11		2.78	58.30	35.00			
14:40	7.26	2.70	75.00	7.13		2.69	58.00	32.00			
14:50		2.70	100.00	7.14		2.63	58.10	23.00			
		Total	100.00								
									1		
Comments:	Drillers purged	~200 gallons from	well after drillir	ng.		PARSONS					

V

Project Name:	Ekonol
Job Number:	443970
Personnel:	JWS. EPS
Date:	1/7/2008
Development type:	over purmping/surging
Pump type:	submersible - mini typhon
Start Date and Time:	1/7/2008 15:00
End Date and Time:	1/7/2008 16:21
Flow Rate:	~2.7 gpm

Spec. Cond.	Temp.	Turb.	Comments		
Well Volume:	9.8048				
4-inch = 0.64	6-inch = 1.4	8-inch =	2.5	10 inch = 4	
1-inch = 0.041	1.5-inch = 0.092	2-inch =	0.16	3-inch = 0.36	
	Casing Volume	s (gal/ft.):			
	I - Depth To Water) x Cas	ing Volume pe	er Foot		
WATER VOLUME CA					
Casing Diameter	4"				
Total Depth	23.22				
Static water Level	7.9				
Well ID:	INJ-05				

Time	DTW	Pump Rate	Vol.	рН	DO	Spec. Cond.	Temp.	Turb.	Comments
24 hr.	ft.	ml/min.	gal.		mg/L	mS/cm	°C	NTU	
15:10		2.70	15.00	8.83		3.36	58.20	Turbid	
15:25		2.70	50.00	7.35		3.05	58.40	Turbid	
16:05	7.05	2.70	70.00	7.21		2.63	58.50	360.00	
16:15		2.70	-	7.15		2.58	58.10	80.00	
16:21		2.70	-	7.16		2.57	58.30	45.00	
		Total	200.00						

Comments: Sheen on water.

Drillers purged ~200 gallons from well after drilling.

Appendix B

- Substrate Breakthrough Plots
- Porosity Calculations

POROSITY CALCULATION

Porous media conceptual model

This sheet calculates effective porosity given:

$$n_e = \frac{V}{\pi r^2 \cdot H}$$

porosity ne =

··e	—	poroony				
r	=	Radius	=		feet	Measured distance between monitoring wells and INJ-01
н	=	Thickness	=	10	feet	Based on drill logs.
V	=	Volume of substrate	=		cubic feet	Volume is based on breakthrough times read from real-time data see the breakthrough plots presented later in this appendix: Breakthrough_monitoring.xls
			Volume		Estimated	
			Pumped	Volume	Porosity	
Well ID	Distance (r)	Time of Breakthrough	(gal.)	(cu. ft.)	(unitless)	
PMW-2D	8.6	16:12	182	24	0.010	—
PMW-3D) 14.8	16:14	186	25	0.004	
-		-				

0.001

0.001

Based on assumed 10' fractured rock unit.

16:23

16:30

24.6

25.2

For comparison the aperture of an open smooth fracture based on PMW-2D observations is estimated at: 0.10434 feet

205

219

27

29

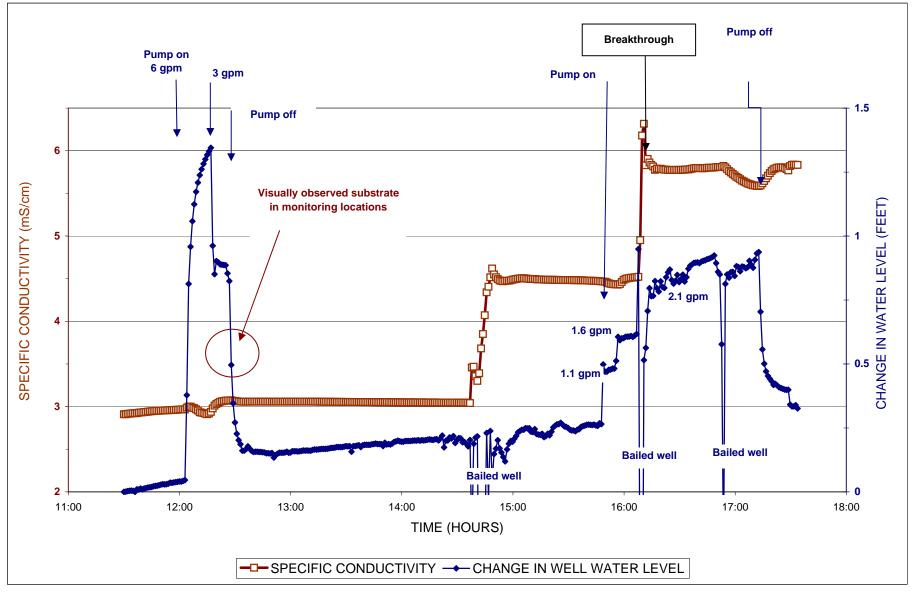
PMW-4D

PMW-6D

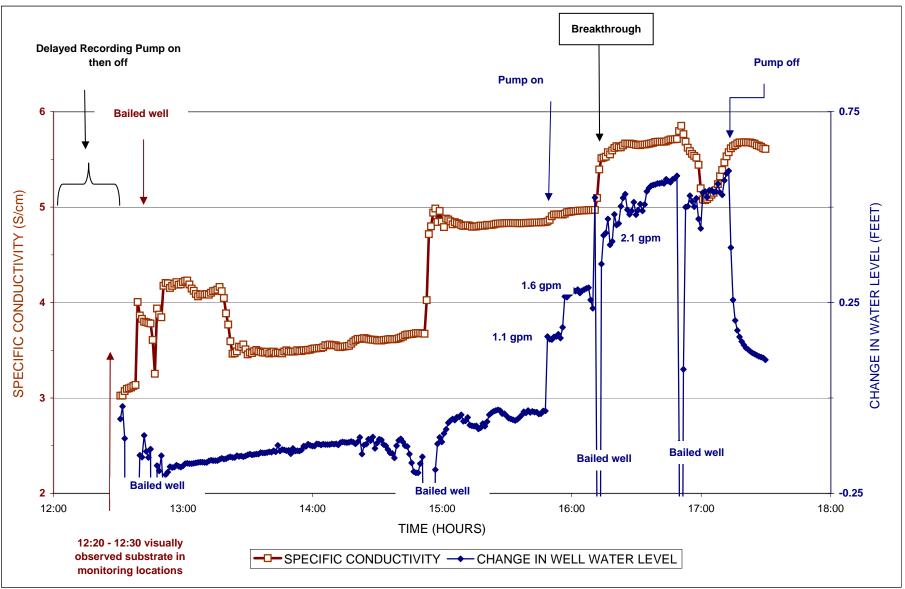
INJECTION TIMES, VOLUMES, AND BREAKTHROUGH SUMMARY

Field Data

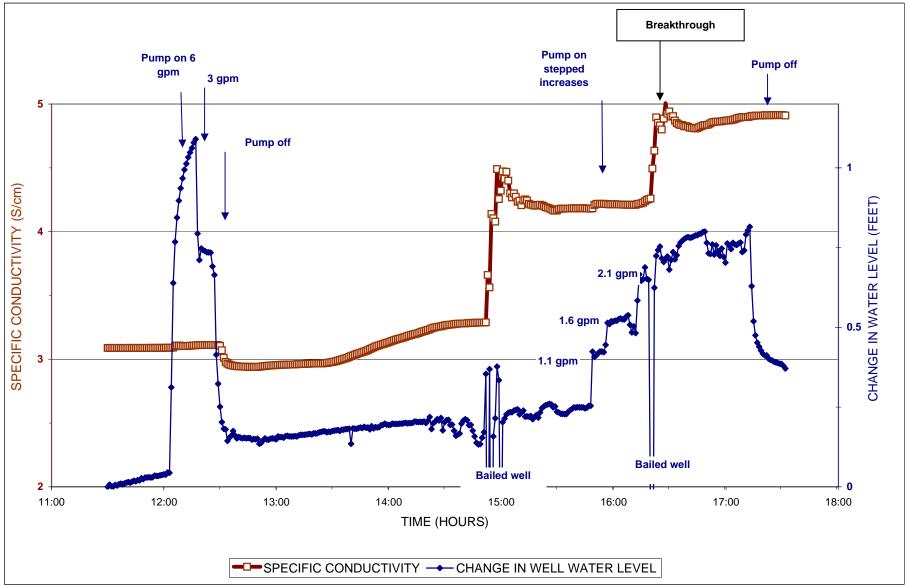
Times and flow rates for calculating volumes.

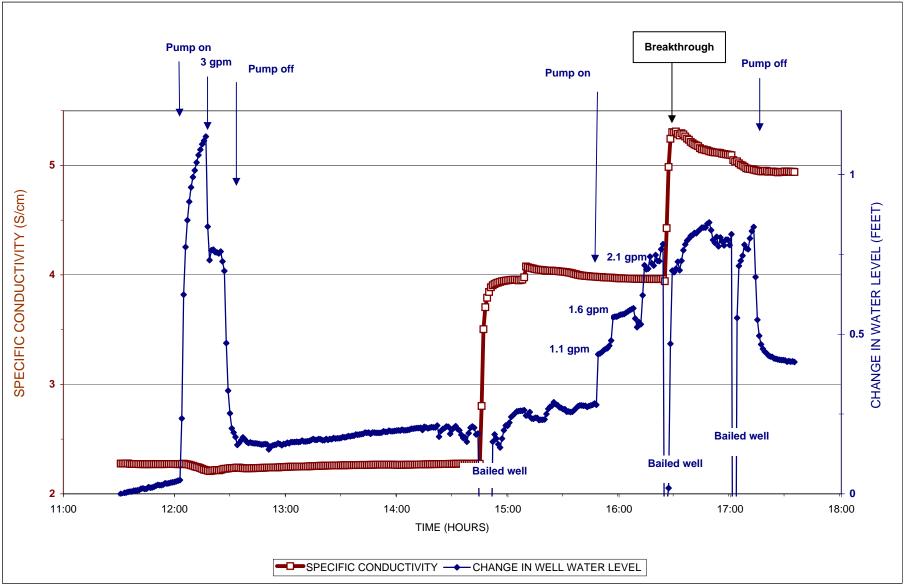

Actual injection volumes and time of break-through

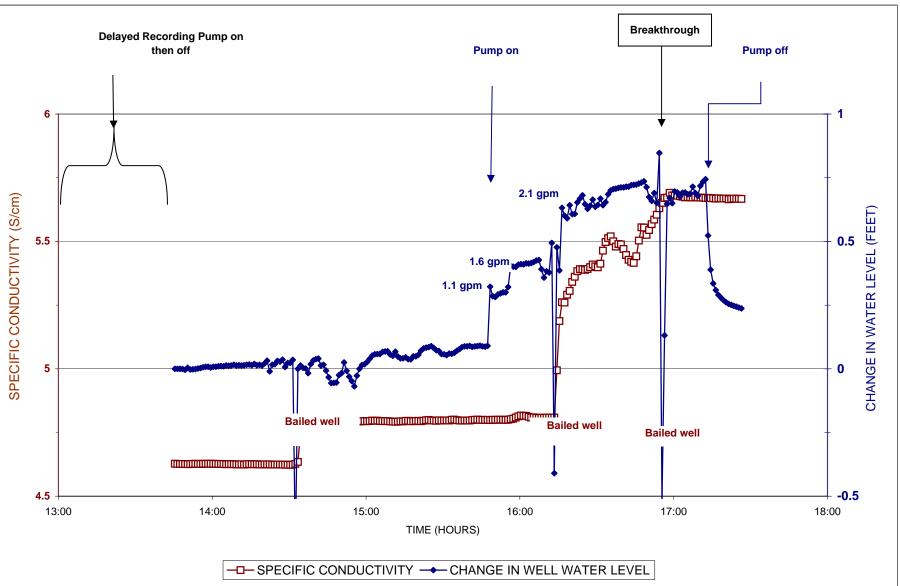
Time	Flow rate (gpm)	Flow Rate Cumulative Volume (gpm)	Metered Volume (gallons)	Observations
6/17/2008 12:03	5.5			Injection start
6/17/2008 12:25				Visual of SRS at PMW-3D
6/17/2008 12:28	5.5	137	130	Stopped pump
6/17/2008 15:46	1.1	137		Re-Started
6/17/2008 15:52	1.6	144		Increased pump rate
6/17/2008 16:00	2.1	156		Increased pump rate
6/17/2008 16:12	2.1	182		Breakthrough PMW-2D from breakthrough plots
6/17/2008 16:14	2.1	186		Breakthrough PMW-3D from breakthrough plots
6/17/2008 16:23	2.1	205		Breakthrough PMW-4D from breakthrough plots
6/17/2008 16:30	2.1	219		Breakthrough PMW-6D from breakthrough plots
6/17/2008 16:56	2.1	274		Breakthrough PMW-8D from breakthrough plots


Notes:

The times of breakthrough were depicted from the conductivity plots. It appears that bailing the well was related to the increases of conductivity. This likely due to a lack of mixing in the well (prior to bailing), and the conductivity probe being slightly above or below the fracture where the substrate was flowing.


Since the bailing was related to when the breakthrough was realized in the well, the times and volumes may be more dependant on when the well was bailed than the actual porosity of the rock. This circumstance introduces error into the calculation, and therefore use of these estimates should account for the potential error. By depicting the time of breakthrough at the highest concentration, which is also typically after the well was bailed, it is likely that the porosity estimate is biased high, and therefore overestimating porosity.


OBSERVATIONS OF WATER LEVEL AND SPECIFIC CONDUCTIVITY AT PMW-2D DURING INJECTION AT INJ-01


OBSERVATIONS OF WATER LEVEL AND SPECIFIC CONDUCTIVITY AT PMW-3D DURING INJECTION AT INJ-01

OBSERVATIONS OF WATER LEVEL AND SPECIFIC CONDUCTIVITY AT PMW-4D DURING INJECTION AT INJ-01

OBSERVATIONS OF WATER LEVEL AND SPECIFIC CONDUCTIVITY AT PMW-6D DURING INJECTION AT INJ-01

OBSERVATIONS OF WATER LEVEL AND SPECIFIC CONDUCTIVITY AT PMW-8D DURING INJECTION AT INJ-01

Appendix C

• Low-Flow GW Sampling Sheets

Baseline Monitoring Event

amplers						Monitored N	Natural Attenu	ation Sample Set (Y/N	N)?	Y		
urging					-			W	ATER VOLU	IME CALC		
								tal Depth of Well - Depth T				
	Method:	Peristaltic Pump		Date/Time:	1/15/08 11	:15	Static	WL 6.78				
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond. mS/cm	Temp. °C	TDS	ORF mv		Comments
24 hr. 11:15	ft. 6.84	ml/min. 600	gal. 0.7	7.76	mg/L 0.00	NTU 643	2.67	12.8	g/L 1.7	-188		
11:25	6.84	600	1.8	7.75	0.00	626	2.93	13.2	1.9	-190)	
11:35	6.84	600	3.0	7.20	0.00		4.62	13.7	3.8	-174	ļ	
11:45	6.85	600	5.0	7.16	0.00	34	4.76	13.5	3.0	-177	,	
11:53	6.85	600	7.0	7.16	0.00	28	4.76	12.9	3.0	-180)	
12:00	6.85	600	8.5	7.18	0.00	27	4.59	13.1	2.9	-182	2	
12:25	6.85	600		7.21	0.00	<20	3.64	12.9	2.5	-185	5	
12:32	6.85	600 Mothod:	14.0	7.22	0.00	17	3.84	12.8	2.5	-184		15 galloos
ampling	q Data neters	Method:	14.0 Peristaltic Pu		-	Date/Time:			Total Volum		purged:	15 gallons
ampling	q Data neters				0.00	Date/Time:			Total Volum	e of Water	purged:	15 gallons Method
ampling	q Data neters	Method:	Peristaltic Pu		HACH TE	Date/Time:	1/15/08 1	2:45	Total Volum	e of Water SAMPLE SI	purged:	
ield Paran	g Data neters	Method:	Peristaltic Pu	mp	HACH TE	Date/Time:	1/15/08 1	2:45 Parameter	Total Volum	e of Water SAMPLE Si e	purged: ET Pres.	Method
F <mark>ampling</mark> ield Parar	g Data neters H	Method:	Peristaltic Pu 2	mp Ferrous Irc	HACH TE Don (mg/L) Se (mg/L) at CaCO ₃	Date/Time: ST KITS 1.0	1/15/08 1	2:45 Parameter Select VOCs	Total Volum Bottl 3-40r	e of Water SAMPLE SI e	Purged: ET Pres. HCI	Method EPA 8260
<mark>Sampling</mark> ield Parar F Spec. Cor Turbidi	g Data neters P DH nd.(mS/cm)	Method: IORRIBA 7.2: 3.8-	Peristaltic Pu 2	mp Ferrous Iro Manganes Alkalinity a	HACH TE on (mg/L) se (mg/L) at CaCO ₃ /L) a Sulfide	Date/Time: ST KITS 1.0 0	1/15/08 1	2:45 Parameter Select VOCs MEE RSK-175	Total Volum Bottl 3-40rr 3-40rr	e of Water SAMPLE SI e nL nL	Purged: ET Pres. HCI HCI	Method EPA 8260 SW3810 modified
ampling ield Parar F Spec. Cor Turbidi DO (g Data meters DH nd.(mS/cm) ty (NTU)	Method: IORRIBA 7.2: 3.8 17	Peristaltic Pu 2 4	mp Ferrous Irc Manganes Alkalinity a (mg Hydrogen	HACH TE on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide /L)	Date/Time: ST KITS 1.0 0 340	1/15/08 1	2:45 Parameter Select VOCs MEE RSK-175 TOC	Total Volum Bottl 3-40rr 3-40rr 3-40rr	e of Water SAMPLE Si e nL nL nL plastic	Purged: ET Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
ield Paran F Spec. Cor Turbidi DO (Tem	g Data neters DH nd.(mS/cm) ty (NTU) (mg/L)	Method: IORRIBA 7.2: 3.8- 17 0.0	Peristaltic Pu 2 4 0	mp Ferrous Iro Manganes Alkalinity a (mg. Hydrogen (mg.	HACH TE on (mg/L) se (mg/L) at CaCO ₃ /L) a Sulfide /L) (mg/L)	Date/Time: ST KITS 1.0 0 340 0.1	<u> </u>	2:45 Parameter Select VOCs MEE RSK-175 TOC Bromide, Chloride, Sulfate	Total Volum Bottl 3-40m 3-40m 3-40m 1-250mL ţ	e of Water SAMPLE Si e nL nL nL plastic	Purged: ET Pres. HCI HCI H2SO4 none	Method EPA 8260 SW3810 modified SW9060 lab specified

				-	Well ID:	INJ-02		Well Diame	eter:	4"	Inches
amplers: <u>JWS</u>				_	Monitored N	Natural Attenuat	ion Sample Set (`	(/N)?	Ν		
urging Data								WATER VOLU			
Method:	Poriotaltia Rump		Date/Time:	1/16/09 1	1.05		Depth of Well - Dept	n To Water)x C	asing Volu	ume per Foot	
	Peristaltic Pump					Static W		I		-	
TimeDTW24 hr.ft.	Pump Rate ml/min.	Vol. gal.	рН	DO mg/L	Turbidity NTU	Spec. Cond. mS/cm	°C	TDS g/L	ORI mv		Comments
11:08 6.92	800	1.0	7.39	1.95	25	4.21	13.9	2.7	-147		
11:13 6.93	800	1.5	7.23	0.29		4.20	14.2	2.7	-148	3	
11:18 6.90	300		7.05	0.00	7	4.39	14.2	2.8	-139)	
11:23 6.90	300	3.0	7.03	0.00	8.2	4.40	13.9	2.8	-141	1	
11:28 6.90	300	4.0	7.01	0.00	6	4.36	13.9	2.8	-146	6	
ampling Data	Method:	Peristaltic P	ump		Date/Time:	1/15/08 11:4	40	Total Volume	e of Water	r purged:	4.2 gallons
	Method:	Peristaltic P	ump	_	Date/Time:	1/15/08 11:4	40		e of Water		4.2 gallons
eld Parameters	Method:	Peristaltic P	ump	- HACH TI			40 Parameter		SAMPLE SI		4.2 gallons Method
eld Parameters	-		ump	HACH TI		1/15/08 11:4			SAMPLE SI e	ET	
eld Parameters F	IORRIBA		ump	HACH TI		1/15/08 11:4	Parameter	Bottle	SAMPLE SI e	ET	
eld Parameters F	IORRIBA 7.01		ump	HACH TI			Parameter	Bottle	SAMPLE SI e	ET	
eld Parameters F pH Spec. Cond.(mS/cm)	IORRIBA 7.01 4.36	3	ump	HACH TI			Parameter	Bottle	SAMPLE SI e	ET	
eld Parameters PH Spec. Cond.(mS/cm) Turbidity (NTU)	IORRIBA 7.01 4.36)	ump	HACH TI			Parameter	Bottle	SAMPLE SI e	ET	
pH Spec. Cond.(mS/cm) Turbidity (NTU) DO (mg/L)	IORRIBA 7.01 4.36 6 0.00)	ump	HACH TI			Parameter	Bottle	SAMPLE SI e	ET	

	e Ekonol				-	Well ID:	PMW-1D	-	Well Diamet	er: <u>4"</u>		Inches
amplers	: JWS				-	Monitored N	Natural Attenu	uation Sample Set (Y/N	N)?	Y		
urging	Data								ATER VOLUN			
	Method:	Peristaltic Pump		Date/Time:	1/15/08 8	00		otal Depth of Well - Depth T WL 6.64	o Water) x Ca	sing Volume	e per Foot	
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.		TDS	ORP		
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
8:15	6.84	400	0.5	6.43	0.38	73.3	4.70	12.2	3.0	-88		
9:20	6.88	400	0.8	6.63	0.00	12.0	4.82	12.8	3.0	-107		
8:30		400	1.5	6.75	0.00	4.1	4.64	13.0	3.0	-124		
8:35	6.95	400	2.5	6.81	0.00	9.5	4.25	13.3	2.7	-135		
8:40	6.95	400	3.0	6.83	0.00	3.0	4.12	13.2	2.6	-138		
8:50	6.95	400	4.5	6.85	0.00	10.1	3.99	13.3	2.6	-142		
ampling	a Data											
eld Parai	neters	Method:	Peristaltic P	ump	_	Date/Time:	1/15/08	9:00	Total Volume	•	irged:	6 gallons
eld Parai		Method:	Peristaltic P	ump	- HACH TE		1/15/08	9:00 Parameter		of Water pu	Irged: Pres.	6 gallons Method
		-		ump Ferrous In					S	•	Ũ	
	I	IORRIBA	5	Ferrous Ir	on (mg/L) se (mg/L)			Parameter	S/ Bottle	•	Pres.	Method
Spec. Co	ЪН	IORRIBA 6.85	5	Ferrous In	on (mg/L) se (mg/L) at CaCO ₃	ST KITS 2.0		Parameter Select VOCs	S, Bottle 3-40mL	•	Pres. HCI	Method EPA 8260
l Spec. Co Turbidi	bH nd.(mS/cm)	IORRIBA 6.85 3.90	5	Ferrous Ir Mangane: Alkalinity :	on (mg/L) se (mg/L) at CaCO ₃ I/L) n Sulfide	ЕST KITS 2.0 0		Parameter Select VOCs MEE RSK-175	S, Bottle 3-40mL 3-40mL		Pres. HCI HCI	Method EPA 8260 SW3810 modified
Spec. Co Turbidi DO	DH nd.(mS/cm) ty (NTU)	IORRIBA 6.85 3.99 10.1	5	Ferrous Ir Mangane: Alkalinity a (mg Hydrogen	on (mg/L) se (mg/L) at CaCO ₃ //L) n Sulfide //L)	2.0 0 420		Parameter Select VOCs MEE RSK-175 TOC	S/ Bottle 3-40mL 3-40mL 3-40mL		Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
I Spec. Co Turbidi DO Terr	hd.(mS/cm) ty (NTU) mg/L)	IORRIBA 6.85 3.99 10.1 0.00	5	Ferrous Ir Manganes Alkalinity (mg Hydroget (mg	on (mg/L) se (mg/L) at CaCO ₃ //L) n Sulfide //L) (mg/L)	2.0 0 420 0.3)	Parameter Select VOCs MEE RSK-175 TOC Bromide, Chloride, Sulfate	S/ Bottle 3-40mL 3-40mL 3-40mL	AMPLE SET	Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060 lab specified

Comments: Did Sudan IV test at beginning of sample. No DNAPL but Pink hue on "ball" indicates TPH > 500 ppm

ite Name	e Ekonol				-	Well ID:	PMW-2D	-	Well Diam	eter:	2	Inches
amplers	DC Burk	ert			_	Monitored I	Natural Attenu	uation Sample Set (Y/N	۹)?	Y		
urging l	<u>Data</u>									UME CALCU		
	No. d	Desister Miss Design		Dete Time	4/40/00 4/		= (To	tal Depth of Well - Depth T	o Water) x 0	Casing Volum	e per Foot	
	Method:	Peristaltic Pump		_Date/Time:								
Time 24 hr.	DTW ft.	Pump Rate ml/min.	Vol. gal.	рН	DO mg/L	Turbidity NTU	Spec. Cond. mS/cm	Temp. °C	TDS g/L	ORP mv		Comments
10:35	7.16	250		7.66	3.19	555	2.7	11.6	1.8	-139		
10:50	7.23	250	3.75 L	7.57	1.10	176	11.6	11.6	2.2	-157		
11:00	7.23	250	6.25 L	7.52	0.97	189	11.6	11.6	2.4	-175		
11:15	7.23	250	8.75 L	7.53	0.93	119	0.2	12.0	2.5	-178		
11:20	7.23	250	10 L	7.52	0.94	98.7	11.9	11.9	2.6	-182		
			11.25	7.47	1.00	63.4	11.8	11.8	2.5	-183	D.O. susp	ect
Sampling	neters	Method:	Peristaltic P	ump	-	Date/Time:	1/16/08 1			SAMPLE SET	•	Markad
								Parameter	Bott		Pres.	Method
р	H	7.4	7	Ferrous Ire	on (mg/L)	1.0		Select VOCs	3-40r	nL	HCI	EPA 8260
Spec. Cor	id.(mS/cm)	4.0	4	Manganes	se (mg/L)	0		MEE RSK-175	3-40r	mL	HCI	SW3810 modified
Turbidit	y (NTU)	20 (Lal	Mott)	Alkalinity a (mg	-	340)	тос	3-40	mL	H2SO4	SW9060
DO (mg/L)	1.0 (sus	spect)	Hydroger (mg		0.2		Bromide, Chloride, Sulfate	1-250mL	plastic	none	lab specified
	o.(°C)	11.	8	Sulfate	(mg/L)	>200	D	Volatile Fatty Acids				lab specified
Tem	(a/L)	2.5	5	CO ₂ (r	mg/L)	212	2					
Tem TDS	(9, -)											

Comments:

Jilo Huin	e Ekonol					Well ID:	PMW-3D		Well Diam	neter [.]	2	Inches
					-			-		-		
Samplers	: DC Burk	ert			-	Monitored N	Natural Attenu	uation Sample Set (Y/N	N)?	Y		
Purging	Data								ATER VOL			
	Method:	Peristaltic Pump		Date/Time:	1/15/00 1/	1.4 5	= (10	otal Depth of Well - Depth T	o vvater) x o	Casing Volu	ime per Foot	
				_				_			_	
Time 24 hr.	DTW ft.	Pump Rate	Vol.	рН	DO mg/L	Turbidity NTU	Spec. Cond. mS/cm	Temp. °C	TDS g/L	ORF mv		Comments
24 m. 14:15	7.08	ml/min. 220	gal.	7.30	3.39	403	2.88	11.3	g/∟ 1.8	-243		
14:30	7.16	220	3.3 L	7.48	0.99	199	2.84	11.3	1.8	-246		
14:45	7.18	220	6.6 L	7.47	0.90	180	2.83	11.6	1.8	-255		
14:50	7.18	220	9.9 L	7.46	0.90	166	2.82	11.8	1.8	-252		
14:55	7.18	220	13.2	7.46	0.87	107	2.83	11.9	1.8	-255		
	_											
	neters	Method:	Peristaltic Pu	ımp	-	Date/Time:	1/15/08 1		Total Volum	SAMPLE SI	ET	
	neters	Method:	Peristaltic Pu	ump	HACH TE		1/15/08 1	5:00 Parameter	Total Volum Bott	SAMPLE SI		Method
ield Parar	neters			ump Ferrous Irc			1/15/08 1			SAMPLE SI	ET	Method EPA 8260
Field Parar	neters F	IORRIBA	6	Ferrous Iro	on (mg/L) se (mg/L)	EST KITS	1/15/08 1	Parameter	Bott	SAMPLE SI	ET Pres.	
Spec. Cor	neters H	HORRIBA	6 3	Ferrous Iro	on (mg/L) se (mg/L) at CaCO ₃	ST KITS	1/15/08 1	Parameter Select VOCs	Bott 3-40r	SAMPLE SE	ET Pres. HCI	EPA 8260
Field Parar F Spec. Cor Turbidi	neters F bH nd.(mS/cm)	HORRIBA 7.4 2.8	6 ع (1) ر	Ferrous Iro Manganes Alkalinity a	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide	0.4	1/15/08 1	Parameter Select VOCs MEE RSK-175	Bott 3-40 3-40	SAMPLE SI tile mL mL mL	ET Pres. HCI HCI	EPA 8260 SW3810 modified
Field Parar F Spec. Cor Turbidi DO (neters bH nd.(mS/cm) ty (NTU)	HORRIBA 7.4 2.8 3 NTU	6 3 J ⁽¹⁾ (2)	Ferrous Iro Manganes Alkalinity a (mg Hydroger	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide /L)	0.4 0 260		Parameter Select VOCs MEE RSK-175 TOC	Bott 3-40i 3-40i 3-40i	SAMPLE SI tile mL mL mL	ET Pres. HCI HCI H2SO4	EPA 8260 SW3810 modified SW9060
Field Parar F Spec. Cor Turbidi DO (Tem	neters H nd.(mS/cm) ty (NTU) mg/L)	HORRIBA 7.4 2.8 3 NTU .87 .87	6 3 J ⁽¹⁾ (2) 9	Ferrous Iro Manganes Alkalinity a (mg Hydroger (mg	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide /L) (mg/L)	0.4 0 260 0.3)	Parameter Select VOCs MEE RSK-175 TOC Bromide, Chloride, Sulfate	Bott 3-40i 3-40i 3-40i	SAMPLE SI tile mL mL mL	ET Pres. HCI HCI H2SO4	EPA 8260 SW3810 modified SW9060 lab specified

Comments: Duplicate labeled PMW-103D, 1/15/08, 1500

	e Ekonol				_	Well ID:	PMW-4D		Well Diam	eter:	2	Inches
Samplers	: DC Burk	ert			_	Monitored N	Natural Attenu	ation Sample Set (Y/N	N)?	Y		
Purging I	Data							W	ATER VOLU	IME CALCU	ILATION	
							= (To	tal Depth of Well - Depth T	o Water) x C	asing Volum	ne per Foot	
	Method:	Peristaltic Pump		Date/Time:	1/16/08 8:	:00	_					
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.	0.70	mg/L	NTU	mS/cm	°C	g/L	mv	2.0.0	
8:10	7.00	200		6.72	3.95	395	3.00	8.3	2.0	-137	D.O. Susp	pect
8:30	7.10	200	6 L	7.44	2.81	281	2.91	10.6	1.9	-295		
8:40	7.11	200	7 L	7.32	2.33	233	2.89	11.3	1.8	-299		
8:45	7.11	200	7.5 L	7.47	2.44	244	2.87	11.4	1.8	-303		
8:50	7.11	200	8 L	7.48	1.61	161	2.86	11.7	1.8	-305		
	+											
	neters	Method:	Peristaltic P	ump		Date/Time:	1/1562008			SAMPLE SET		6 gallon
ield Paran	neters F	IORRIBA				EST KITS	1/1562008	Parameter	Bottl	SAMPLE SET	Pres.	Method
ield Paran	neters			ump Ferrous Irc			1/1562008			SAMPLE SET		
ield Paran	neters F	IORRIBA	8	Ferrous Iro	on (mg/L) se (mg/L)	EST KITS	1/1562008	Parameter	Bottl	SAMPLE SET	Pres.	Method
Spec. Cor	heters H	ORRIBA	8	Ferrous Irc	on (mg/L) se (mg/L) at CaCO ₃	EST KITS 0.6	1/1562008	Parameter Select VOCs	Bottl 3-40n	SAMPLE SET e	Pres.	Method EPA 8260
ield Paran p Spec. Cor Turbidit	H H. H.	ORRIBA 7.4	8 6 Mott)	Ferrous Iro Manganes Alkalinity a	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide	EST KITS 0.6 0	1/1562008	Parameter Select VOCs MEE RSK-175	Bottl 3-40n 3-40n	SAMPLE SET e	Pres. HCI HCI	Method EPA 8260 SW3810 modified
p p Spec. Cor Turbidit DO (H H. H. ((mS/cm) y (NTU)	ORRIBA 7.4 2.8 60 (Lat	8 6 Mott) spect)	Ferrous Iro Manganes Alkalinity a (mg Hydroger	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide /L)	EST KITS 0.6 0 300		Parameter Select VOCs MEE RSK-175 TOC	Botti 3-40n 3-40n 3-40n	SAMPLE SET e	Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
ield Paran P Spec. Cor Turbidit DO (Tem	H H ad.(mS/cm) y (NTU) mg/L)	ORRIBA 7.4 2.8 60 (Lat 1.01 (su:	8 6 Mott) spect) 7	Ferrous Iro Manganes Alkalinity a (mg Hydroger (mg	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide /L) (mg/L)	0.6 0 300 0.9		Parameter Select VOCs MEE RSK-175 TOC Bromide, Chloride, Sulfate	Bottl 3-40n 3-40n 3-40n 1-250mL	SAMPLE SET e	Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060 lab specified

Comments: Ms/MSD on VOCs, Sample degassing noticed

amplers	: JWS					Monitored N	Natural Attenu	ation Sample Set (Y/I	N)?	Y		
urging					-		—		, ATER VOLI			
urging	Dala						= (To	tal Depth of Well - Depth T				
	Method:	Peristaltic Pump		Date/Time:	1/15/08 14	1:15	Static	WL 6.85				
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.	7.00	mg/L	NTU	mS/cm	°C	g/L	mv	Turner of an	
14:25	7.00	600	1.0	7.29	0.93	error	2.46	12.6	1.6	-230	Turned pu	imp down
14:30			1.5	7.27	0.00	748	2.35	12.3	1.5	-228		
14:35	7.00	300		7.25	0.00	50	2.32	12.7	1.5	-230	Turned pu	imp down
14:50	7.00	600	2.5	7.24	0.00	10	2.26	13.3	1.5	-210		
15:00	7.00	600	4.2	7.25	0.00		2.26	13.6	1.5	-201		
15:05	7.00	600	5.5	7.24	0.00	9.31	2.28	13.6	1.5	-203		
	meters	-	Peristaltic P	ump	-	Date/Time:	1/15/08 1		Total Volum	SAMPLE SE	T	5 gallons
eld Parar	<u>meters</u>	IORRIBA			HACH TE			Parameter	Bott	SAMPLE SE	T Pres.	Method
eld Parar	meters	-		ump Ferrous Ire						SAMPLE SE	T	
ield Parar	<u>meters</u>	IORRIBA	4		on (mg/L)			Parameter	Bott	SAMPLE SE	T Pres.	Method
ield Parar F Spec. Con	meters F	ORRIBA 7.24	4	Ferrous Ire	on (mg/L) se (mg/L) at CaCO ₃	ST KITS 0.9		Parameter Select VOCs	Bott 3-40r	SAMPLE SE	T Pres. HCI	Method EPA 8260
Spec. Co Turbidi	meters P DH nd.(mS/cm)	ORRIBA 7.24 2.28	4 3	Ferrous Iro Manganes Alkalinity a	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide	ST KITS 0.9 0		Parameter Select VOCs MEE RSK-175	Bott 3-40r 3-40r	SAMPLE SE	T Pres. HCI HCI	Method EPA 8260 SW3810 modified
eld Parar F Spec. Col Turbidi DO (meters PH nd.(mS/cm) ity (NTU)	ORRIBA 7.24 2.28 9.31	4 3 1	Ferrous Ire Manganes Alkalinity a (mg Hydroger	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide /L)	0.9 0 300		Parameter Select VOCs MEE RSK-175 TOC	Bott 3-40r 3-40r 3-40r	SAMPLE SE Ie nL nL plastic	T Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
eld Parar F Spec. Col Turbidi DO (Tem	meters pH nd.(mS/cm) ity (NTU) (mg/L)	ORRIBA 7.24 2.28 9.31 0.00	4 3 1 0	Ferrous Ire Manganes Alkalinity a (mg Hydroger (mg	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide /L) (mg/L)	0.9 0 300 0.1		Parameter Select VOCs MEE RSK-175 TOC Bromide, Chloride, Sulfate	Bott 3-40r 3-40r 3-40r 1-250mL	SAMPLE SE Ie nL nL plastic	T Pres. HCI HCI H2SO4 none	Method EPA 8260 SW3810 modified SW9060 lab specified

mplers:	JWS					Monitored N	Natural Attenu	ation Sample Set (Y/N	٨)?	Y		
·					-			· · ·		IME CALC		
Purging Data					WATER VOLUME CALCULATION = (Total Depth of Well - Depth To Water) x Casing Volume per Foot							
	Method:	Peristaltic Pump		_Date/Time:	1/14/08 13	3:45	Static	WL 6.90				
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond. mS/cm	Temp.	TDS	ORP)	Comments
24 hr. 13:50	ft. 7.10	ml/min. 600	gal.	6.68	mg/L 0.21	NTU 390	4.18	°C 13.3	g/L 3.0	mv -106		
13:58	7.10	600	2.5	7.14	0.00	83.3	4.22	13.8	2.7	-127		
14:02	7.10	450	3.2	7.17	0.00	87.5	3.73	13.9	2.4	-128		
14:08	7.10	450	5.0	7.20	0.00	113	3.62	14.1	2.3	-129		
14:15	7.05	450		7.24	0.00	38	3.08	13.3	2.0	-130		
14:20	7.05	450	6.0	7.23	0.00	22	3.65	13.2	2.9	-126		
ampling	n Data											
	neters		Peristaltic Pu	Imp	_	Date/Time:	1/14/08 1			SAMPLE SE	T	
	neters	Method:	Peristaltic Pu	ımp	- HACH TE		1/14/08 1	4:15 Parameter		SAMPLE SE		Method
eld Paran	neters			imp Ferrous Ire						SAMPLE SE	T	Method EPA 8260
ield Paran	neters F	IORRIBA	3		on (mg/L)			Parameter	Bottl	SAMPLE SE	Pres.	
ield Paran p Spec. Cor	neters F	IORRIBA 7.23	3	Ferrous Ir	on (mg/L) se (mg/L) at CaCO ₃	ST KITS 0.9		Parameter Select VOCs	Bottl 3-40n	SAMPLE SE	Pres.	EPA 8260
Spec. Cor Turbidit	neters PH nd.(mS/cm)	IORRIBA 7.23 3.65	3	Ferrous In Manganes Alkalinity a	on (mg/L) se (mg/L) at CaCO ₃ J/L) n Sulfide	ST KITS 0.9 0		Parameter Select VOCs MEE RSK-175	Bottl 3-40n 3-40n	SAMPLE SE	Pres. HCI	EPA 8260 SW3810 modified
eld Paran p Spec. Cor Turbidit DO (neters PH nd.(mS/cm) ty (NTU)	IORRIBA 7.23 3.65 22	3 5 0	Ferrous Irr Manganes Alkalinity a (mg Hydroger	on (mg/L) se (mg/L) at CaCO ₃ //L) n Sulfide //L)	0.9 0 280		Parameter Select VOCs MEE RSK-175 TOC	Botti 3-40n 3-40n 3-40n	SAMPLE SE	Pres. HCI HCI H2SO4	EPA 8260 SW3810 modified SW9060
eld Paran p Spec. Cor Turbidit DO (Tem	neters PH nd.(mS/cm) ty (NTU) (mg/L)	IORRIBA 7.23 3.65 22 0.00	3 5 0 2	Ferrous Irr Manganes Alkalinity a (mg Hydroger (mg	on (mg/L) se (mg/L) at CaCO ₃ y/L) n Sulfide y/L) (mg/L)	0.9 0 280 0)	Parameter Select VOCs MEE RSK-175 TOC Bromide, Chloride, Sulfate	Bottl 3-40n 3-40n 3-40n 1-250mL	SAMPLE SE	T Pres. HCI HCI H2SO4 none	EPA 8260 SW3810 modified SW9060 lab specified

	Ekonol				-	Well ID:	PMW-7D	-	Well Diame	eter:	2	Inches
amplers	JWS				_	Monitored N	Natural Attenu	uation Sample Set (Y/N	۹)?	Y		
Purging I	Data								ATER VOLU			
	Mathadu	Deristoltia Dump		Data/Tima	1/10/00 0	20		otal Depth of Well - Depth T	o Water) x C	asing Volur	ne per Foot	
		Peristaltic Pump		Date/Time:			Static					
Time 24 hr.	DTW ft.	Pump Rate ml/min.	Vol. gal.	рН	DO mg/L	Turbidity NTU	Spec. Cond. mS/cm	Temp. °C	TDS g/L	ORP mv		Comments
8:20	7.19	500	0.1	7.01	3.04	485	3.62	12.4	2.3	-148		
8:28	7.19	500	1.3	7.34	0.62	271	3.25	13.4	2.1	-180		
8:35	7.29	500	2.4	7.32	0.03	14	3.20	13.7	2.0	-177		
8:48	7.29	500	5.5	7.27	0.00		3.14	13.9	2.0	-172		
8:59	7.20	300	6.2	7.27	0.00	6.8	3.16	13.4	2.0	-168		
	neters	-	Peristaltic P	ump	-		1/16/08 9			SAMPLE SE	Г	6.5 gallons
eld Paran	neters F	IORRIBA			HACH TI	EST KITS		Parameter	Bottle	SAMPLE SE	Pres.	Method
ield Paran	neters	-		ump Ferrous Ird			1/16/08 9			SAMPLE SE	Г	
ield Paran	neters F	IORRIBA	7		on (mg/L)	EST KITS	Duf	Parameter	Bottle	SAMPLE SE	Pres.	Method
Spec. Cor	heters H	HORRIBA 7.27	7	Ferrous Iro	on (mg/L) se (mg/L) at CaCO ₃	EST KITS 1.0	Duf 1.0	Parameter Select VOCs	Bottle 3-40ml	SAMPLE SE	T Pres. HCI	Method EPA 8260
ield Paran p Spec. Cor Turbidit	heters H d.(mS/cm)	HORRIBA 7.27 3.13	3	Ferrous Iro Manganes Alkalinity a	on (mg/L) se (mg/L) at CaCO ₃ I/L) n Sulfide	EST KITS 1.0 0	Duf 1.0 0	Parameter Select VOCs MEE RSK-175	S Bottle 3-40ml 3-40ml	SAMPLE SE	T Pres. HCI HCI	Method EPA 8260 SW3810 modified
p p Spec. Cor Turbidit DO (H d.(mS/cm) y (NTU)	HORRIBA 7.27 3.13 6	7	Ferrous Iro Manganes Alkalinity a (mg Hydroger	on (mg/L) se (mg/L) at CaCO ₃ //L) n Sulfide //L)	EST KITS 1.0 0 320	Duf 1.0 0 320	Parameter Select VOCs MEE RSK-175 TOC	S Bottle 3-40ml 3-40ml	SAMPLE SE	T Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
p p Spec. Cor Turbidit DO (Tem	H H. d.(mS/cm) y (NTU) mg/L)	HORRIBA 7.27 3.13 6 0.00	7 3) 5	Ferrous Iro Manganes Alkalinity a (mg Hydroger (mg	on (mg/L) se (mg/L) at CaCO ₃ //L) n Sulfide //L) (mg/L)	EST KITS 1.0 0 320 0	Duf 1.0 0 320 0	Parameter Select VOCs MEE RSK-175 TOC Bromide, Chloride, Sulfate	8 Bottle 3-40ml 3-40ml 3-40ml 1-250mL p	SAMPLE SE	T Pres. HCI HCI H2SO4 none	Method EPA 8260 SW3810 modified SW9060 lab specified

Comments: Horriba turbidity error, will use separate meter

					LOW	FLOW WE	ELL SAMPI	ING RECORD				
Site Name	e Ekonol				_	Well ID:	PMW-8D	_	Well Diam	neter:	2	Inches
Samplers	DC Burk	ert			_	Monitored N	Natural Atten	uation Sample Set (Y/	N)?	Y		
Purging I	Data									UME CALCU		
	Method:	Peristaltic Pump)	Date/Time:	1/14/08 13	3:10	= (1	otal Depth of Well - Depth ⊺	lo Water) x	Casing Volun	ne per ⊦oot	
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Commente
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
13:15	6.48	680		8.81	1.54	NA	5.08	13.6	3.2	-163		
13:22	6.58	680	1.3	8.07	1.07	442	4.42	13.9	2.8	-167		
13:26	6.58	640	2.0	7.83	0.85	354	4.27	13.9	2.7	-162		
13:30	6.58	640		7.73	0.83	162	4.24	13.6	2.7	-161		
13:36	6.56	640	3.0	7.73	0.81	131	4.15	13.5	2.7	-159		
13:39	6.56	640		7.76	0.77	448	4.13	13.4	2.6	-157		
13:42	6.56	640	3.5	7.83	0.72	153	4.11	13.5	2.6	-156		
13:45	6.56	640		7.70	0.72	134	4.05	13.6	2.6	-156		
13:48	6.56	640		7.71	0.72	137	4.04	13.5	2.6	-156		
13:51	6.56	640	4.0	7.73	0.71	139	4.02	13.6	2.6	-155		
Sampling Field Paran		Method:	Peristaltic P	ump	_	Date/Time:	1/14/08	13:55	Total Volum	ne of Water p	J	4.1 gallons
		HORRIBA			HACH TE	ST KITS		Parameter	Bot		Pres.	Method
р	Н	7.73	3 ⁽¹⁾	Ferrous In	on (mg/L)	1.0		Select VOCs	3-40	mL	HCI	EPA 8260
Spec. Cor	id.(mS/cm)	4.0	2	Mangane		0		MEE RSK-175	3-40	mL	HCI	SW3810 modified
Turbidit	y (NTU)	18 (La	Mott)	Alkalinity (mg	-	320		тос	3-40	mL	H2SO4	SW9060
DO (mg/L)	0.7	'1	Hydroger (mg		0.3		Bromide, Chloride, Sulfate	1-250mL	plastic	none	lab specified
Tem	o.(°C)	13.	.6	Sulfate	(mg/L)	>200)	Volatile Fatty Acids	1-250 A	mber	none	lab specified
TDS	(g/L)	2.0	6	CO ₂ (1	mg/L)	265		Disolved Metals - total iron (Field filtered, Select wells only)			Nitric acid	EPA 200.7 or 200.9

* NOTE * HACH test kits are only required for MNA analysis wells.

Comments: (1) error 5 on Horiba, 6.89 using Hanna HI991301

-155

PARSONS

ORP (mv)

	Ekonol				_	Well ID:	RMW-4D		Well Diam	eter:	2	Inches
Samplers	: DC Burk	ert			_	Monitored N	Natural Attenu	ation Sample Set (Y/N	N)?	Y		
Purging I	<u>Data</u>								ATER VOLU			
							= (To	tal Depth of Well - Depth T	o Water) x C	asing Volun	ne per Foot	
	Method:	Peristaltic Pump		Date/Time:	1/15/08 10):50						
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		
11:20	6.84	240		6.98	1.15	NA	3.16	12.8	2.0	-353	D.O. cal in	question
11:40	6.95	240	4.8 L	7.46	1.07	444	3.00	12.7	1.9	-362		
11:50	6.95	240	7.2 L	7.52	1.05	335	2.96	12.1	1.9	-356		
12:00	6.95	240	9.6 L	7.50	1.03	273	2.98	11.8	1.9	-351		
12:05	6.95	240	10.8 L	7.50	0.99	268	2.97	12.0	1.9	-352		
12:10	6.95	240	12 L	7.51	0.98	260	2.98	11.7	1.9	-352		
			<u></u>					11				
Sampling	Data	Method:	Peristaltic Pu	Imp		Date/Time:	1/15/08 1	2.15	Total Volum	e of Water r	uraed.	
iold Doron	neters	Method.		ump	-	Date/Time.	1/15/00 1	2.15		•	0	
ieiu raiali					HACH TI					SAMPLE SET	Pres.	Method
	F							Parameter	Bott			
			1	Eorroug Ir				Parameter	Bottl	si.		
	H	IORRIBA	1	Ferrous Ire		0.2		Parameter Select VOCs	3-40n	۱L	HCI	EPA 8260
p				Ferrous Ire	on (mg/L)						HCI HCI	
p Spec. Cor	Н	7.5	8		on (mg/L) se (mg/L) at CaCO ₃	0.2		Select VOCs	3-40n	nL		EPA 8260
p Spec. Cor Turbidit	H nd.(mS/cm)	2.98	8 'U ⁽¹⁾	Manganes Alkalinity a	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide	0.2		Select VOCs MEE RSK-175	3-40n 3-40n	nL	HCI	EPA 8260 SW3810 modified
p Spec. Cor Turbidit DO (H nd.(mS/cm) y (NTU)	7.5 ⁻ 2.94 28 NT	8 U ⁽¹⁾ ₂₎	Manganes Alkalinity a (mg Hydroger	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide /L)	0.2 0 320		Select VOCs MEE RSK-175 TOC	3-40n 3-40n 3-40n	nL nL plastic	HCI H2SO4	EPA 8260 SW3810 modified SW9060
p Spec. Cor Turbidit DO (H ud.(mS/cm) y (NTU) mg/L) p.(°C)	7.5 [°] 2.94 28 NT .98 [°]	8 U ⁽¹⁾ ²⁾ 7	Manganes Alkalinity a (mg Hydroger (mg	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide /L) (mg/L)	0.2 0 320 4.0		Select VOCs MEE RSK-175 TOC Bromide, Chloride, Sulfate	3-40n 3-40n 3-40n 1-250mL	nL nL plastic	HCI H2SO4 none	EPA 8260 SW3810 modified SW9060 lab specified

Comments: (1) LaMott 2020 (2) suspect (3) 1.0 liters water through filter 1/18/08 Note well had pressure when first opened

	e Ekonol				-	Well ID:	MW-7D	-	Well Diame	ter: <u>4</u> "		Inches
amplers	: DC Burk	ert			_	Monitored N	Natural Attenu	uation Sample Set (Y/N	J)?	Ν		
urging	Data								ATER VOLUI			
	Method:	Peristaltic Pump		Date/Time:	1/15/08 8-	00	= (To	otal Depth of Well - Depth T	o Water) x Ca	asing Volum	ie per Foot	
Time	DTW	Pump Rate	Vol.	pH	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
8:25	6.88	2.5	3	7.03	1.46	39.9	1.88	11.6	1.2	-149		
8:35	6.89	2.5	2.5 L	7.43	1.12	39.1	2.55	11.2	1.7	-196		
8:45	6.89	2.5	5 L	7.48	1.03	9.2	3.03	11.6	1.9	-243		
8:55	6.89	2.5	7.5 L	7.47	0.99	16.6	3.10	11.5	2.0	-257		
9:00	6.89	2.5	8.75	7.51	1.00	17.9	3.13	11.5	2.0	-264		
9:05	6.89	2.5	10.0	7.51	0.98	18.8	3.15	11.7	2.0	-268		
9:10	6.89	2.5	11.25	7.51	1.03	17.8	3.16	11.8	2.0	-281		
9:15	6.89	2.5	12.5	7.51	1.03	17.7	3.15	11.9	2.0	-275		
		Method:	Peristaltic P	ump	-	Date/Time:	1/15/08 9	9:20	Total Volume	of Water p	0	12.5 gallons
	neters	Method:	Peristaltic P	ump	HACH TE		1/15/08 \$	9:20 Parameter		SAMPLE SET	0	12.5 gallons Method
ield Parar	neters	-		ump Ferrous Iro				 	S	SAMPLE SET		
ield Parar ډ	neters F	IORRIBA	1		on (mg/L)	ST KITS		Parameter	Bottle	GAMPLE SET	Pres.	Method
Spec. Cor	neters F	IORRIBA 7.51	1	Ferrous Iro	on (mg/L) se (mg/L) at CaCO ₃	ST KITS 0.4		Parameter Select VOCs	S Bottle 3-40mL	SAMPLE SET	Pres.	Method EPA 8260
ield Parar F Spec. Cor Turbidi	neters H nd.(mS/cm)	IORRIBA 7.51 3.15	1 5 7	Ferrous Iro Manganes Alkalinity a	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide	ССТ КІТЅ 0.4 0		Parameter Select VOCs MEE RSK-175	S Bottle 3-40mL 3-40mL	GAMPLE SET	Pres. HCI HCI	Method EPA 8260 SW3810 modified
eld Parar F Spec. Coi Turbidi DO (neters PH nd.(mS/cm) ty (NTU)	IORRIBA 7.51 3.15 17.7	1 5 7 3	Ferrous Iro Manganes Alkalinity a (mg Hydroger	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide /L)	ST KITS 0.4 0 360		Parameter Select VOCs MEE RSK-175 TOC	S Bottle 3-40mL 3-40mL 3-40mL	GAMPLE SET	Ргез. НСІ НСІ Н2SO4	Method EPA 8260 SW3810 modified SW9060
eld Parar F Spec. Cor Turbidi DO (Tem	neters H nd.(mS/cm) ty (NTU) mg/L)	IORRIBA 7.51 3.15 17.7 1.03	1 5 7 3	Ferrous Iro Manganes Alkalinity a (mg Hydroger (mg	on (mg/L) se (mg/L) at CaCO ₃ /L) n Sulfide /L) (mg/L)	0.4 0 360 0.5)	Parameter Select VOCs MEE RSK-175 TOC Bromide, Chloride, Sulfate	S Bottle 3-40mL 3-40mL 3-40mL	AMPLE SET	Ргез. НСІ НСІ Н2SO4	Method EPA 8260 SW3810 modified SW9060 lab specified

Comments: D.O. calibrated ok but I question the accuracy given -275 ORP

Performance Monitoring Event #1

					LOW	FLOW WE	ELL SAMPL	ING RECORD				
Site Name	:	Eko	onol			Well ID:	INJ-01	-	Well Diamete	er:	4	Inches
Samplers:		JD	ЭB			Monitored Na	tural Attenuatio	n Sample Set (Y/N)?	_			
Purging	Data								WATER VOLU	ME CALCULA	TION	
								= (Total Depth	of Well - Depth	To Water) x Ca	asing Volum	e per Foot
	Method:	geopump/l	low-flow	Date/Time:	7/24	/08 8:17	_			7.8		
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.	_	mg/L	NTU	mS/cm	°C	g/L	mv		Comments
8:17						start	purge					
8:23	8.00	170m 4mm	0.5	5.91	0.43	119	4.400	15.40	2.8	-173	clear w/ bl	ack particles
8:28	8.00	170m 4mm	6.0	5.98	0.42	114	4.300	15.30	2.7	-180	clear w/ bl	ack particles
8:33	8.00	170m 4mm	6.03	6.03	0.36	101	4.200	15.40	2.7	-195	clear w/ bl	ack particles
8:38	8.00	170m 4mm	6.1	6.06	0.33	95	4.100	15.20	2.6	-215	clear w/ bl	ack particles
8:43	8.00	170m 4mm	6.1	6.07	0.33	104	4.100	15.10	2.6	-228	clear w/ bl	ack particles
8:48	8.00	170m 4mm	6.08	6.08	0.33	99	4.100	15.10	2.6	-245	clear w/ bl	ack particles
8:53	8.00	170m 4mm	6.1	6.08	0.33	91	100.000	15.10	2.5	-255	clear w/ bl	ack particles
8:58	8.00	170m 4mm	6.1	6.09	0.34	91	3.900	15.10	2.5	-265	clear w/ bl	ack particles
9:03		170m 4mm	2.5	6.09	0.35	99	3.900	15.10	2.5	-273	clear w/ bl	ack particles
Sampling Field Parar	meters	Method:	geopum	p/low-flow		Date/Time:	7/24/2008		:	e of Water pure		5.25 gallons
	H	IORRIBA			HACH TE	SIKIIS		Parameter	Bottle	9	Pres.	Method
ł	рН	6.1	1	Ferrous Iro	on (mg/L)	3.2 mg	g/L	Select VOCs	3-40m	L	HCI	EPA 8260
Spec. Co	nd.(mS/cm)	3.60	0	Sulfa	ate	>200 m	ig/L	MEE RSK-175	3-40m	L	HCI	SW3810 modified
				Manga	nese	0.20)	Note: MEE only at select no	umber of wells, se	e sampling matrix	c	
Turbidi	ity (NTU)	83.0	00	Manga					-			
	ity (NTU) (mg/L)	83.0		CC		>1600 (x2 multipl						
DO			4	-	2	•	ier					
DO (Tem	(mg/L)	0.44	4 '0	со	nity	multipl	ier 0					

Comments: DNA sample @ 0958

ite Name:		Eko	nol		-	Well ID:	INJ-01 c	ont.	Well Diamete	er:	4	Inches
amplers:		JD	В		_	Monit	tored Natural At	tenuation Sample Set (Y	′/N)?			_
urging D	Data								NATER VOLU	ME CALCULA	TION	
								= (Total Depth o	f Well - Depth	Fo Water) x Ca	asing Volum	e per Foot
	Method:	geopump/le	ow-flow	Date/Time:								
Time	DTW	Pump Rate	Vol.	pН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Commonto
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
9:08		170m 4mm	2.75	6.09	0.40	103.80	3.90	15.10	2.50	-274	clear w/ b	lack particles
9:13		170m 4mm	3.00	6.11	0.39	95.70	3.90	15.10	2.50	-282	clear w/ b	lack particles
9:18		170m 4mm	3.25	6.11	0.41	92.80	3.80	15.10	2.40	-287	clear w/ b	lack particles
9:23		170m 4mm	3.50	6.09	0.42	89.30	3.80	15.00	2.40	-292	clear w/ b	lack particles
9:28		170m 4mm	3.75	6.10	0.43	83.40	3.70	14.90	2.40	-296	clear w/ b	lack particles
9:33		170m 4mm	4.50	6.11	0.44	83.30	3.70	14.70	2.40	297	clear w/ b	lack particles
9:38		170m 4mm	5.25	6.11	0.43	82.40	3.60	14.70	2.30	-300		lack particles
9:43		170m 4mm	5.25	6.11	0.44	83.00	3.60	14.70	2.30	-300		lack particles
3.43			5.25	0.11	0.44	00.00	3.00	14.70	2.00	-500	cical w/ b	ack particles
Sampling	Data											
		Method:	geopum	p/low-flow	_	Date/Time:			Total Vol	ume of Water	purged:	
		Method:	geopum	p/low-flow	-	Date/Time:				ume of Water	purged:	
	eters	Method:	geopum	p/low-flow	HACH TE			Parameter		SAMPLE SET	purged: Pres.	Method
	<u>ieters</u> H	-	geopum	p/low-flow Ferrous Irc						SAMPLE SET		Method EPA 8260
ield Param pl	H	-	geopum	Ferrous Irc	on (mg/L)			Parameter Select VOCs	Bottle 3-40m	SAMPLE SET	Pres. HCI	EPA 8260
ïeld Param pl	H	-	geopum		on (mg/L)			Parameter	Bottle	SAMPLE SET	Pres.	
ïeld Param pl	H H d.(mS/cm)	-	geopum	Ferrous Irc	on (mg/L) ate			Parameter Select VOCs	Bottle 3-40m 3-40m	SAMPLE SET	Pres. HCI HCI	EPA 8260
ield Param pl Spec. Con Turbidity	H H d.(mS/cm) y (NTU)	-	geopum	Ferrous Irc Sulfa Manga	on (mg/L) ate nese			Parameter Select VOCs MEE RSK-175	Bottle 3-40m 3-40m	SAMPLE SET	Pres. HCI HCI	EPA 8260
Spec. Con	H H d.(mS/cm) y (NTU)	-	geopum	Ferrous Irc Sulfa	on (mg/L) ate nese			Parameter Select VOCs MEE RSK-175	Bottle 3-40m 3-40m	SAMPLE SET	Pres. HCI HCI	EPA 8260
ield Param pl Spec. Con Turbidity	H H d.(mS/cm) y (NTU) ng/L)	-	geopum	Ferrous Irc Sulfa Manga	n (mg/L) ate nese			Parameter Select VOCs MEE RSK-175	Bottle 3-40m 3-40m	SAMPLE SET	Pres. HCI HCI	EPA 8260
eld Param pl Spec. Con Turbidity DO (r Temp	H H d.(mS/cm) y (NTU) ng/L) p.(°C)	-	geopum	Ferrous Irc Sulfa Manga CC Alkali	on (mg/L) ate nese 0 ₂ nity			Parameter Select VOCs MEE RSK-175	Bottle 3-40m 3-40m	SAMPLE SET	Pres. HCI HCI	EPA 8260
ield Param pl Spec. Con Turbidity DO (r	H H d.(mS/cm) y (NTU) ng/L) p.(°C)	-	geopum	Ferrous Irc Sulfa Manga CC Alkali Hydrogen	n (mg/L) ate nese 0 ₂ nity a Sulfide			Parameter Select VOCs MEE RSK-175	Bottle 3-40m 3-40m	SAMPLE SET	Pres. HCI HCI	EPA 8260

Comments: DNA sample @ 0958

					<u>LO11</u>	1 2011 11	ELL SAMPLIN				
Site Name:		Eko	nol			Well ID:	INJ-02		Well Diame	er: 4	Inches
Samplers:		EP	S			Monit	tored Natural Atten	uation Sample Set	(Y/N)?		
Purging [= (Total Depth		JME CALCULATIO To Water) x Casing	
	Method:	geopump/l	ow-flow	Date/Time:	me: 7/24/08 15:10 7.84						
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP	Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv	
13:15			0.40	10.55	0.60	938.00	3.54	15.61	2.30	-169	
13:20	8.49		0.70	10.70	0.53	162.00	3.66	15.55	2.30	-176	
13:25			1.20	10.85	0.46	194.00	3.65	15.63	2.30	-186	
13:30			1.70	11.02	0.45	434.00	3.62	15.89	2.30	-201	
13:35			2.10	11.36	0.44	648.00	3.65	15.52	2.30	-220	
13:40			2.50	11.74	0.45	791.00	3.70	15.54	2.40	-244	
13:45	8.41		3.00	11.98	0.44	927.00	3.73	15.57	2.40	-259	
13:50			3.50	12.11	0.43	988.00	100.00	15.62	2.40	-268	
13:55			4.00	12.43	0.43	1071.00	3.74	15.71	2.40	-286	
14:00			4.40	12.51	0.42	1080.00	3.72	15.74	2.40	-294	

Field Parameters

purg

Н	ORRIBA	HACH TE	ST KITS
рН	6.32	Ferrous Iron (mg/L)	4.00
Spec. Cond.(mS/cm)	3.70	Sulfate	>200 mg/L
Turbidity (NTU)	369.00	Manganese	0.00
DO (mg/L)	0.43	CO ₂	>1600 (x2 800 multiplier
Temp.(°C)	15.76	Alkalinity	700.00
TDS (g/L)	2.30	Hydrogen Sulfide	2.10
ORP (mv)	-304.00	<u>* NOTE *</u> HACH test kits are analysis wells.	only required for MNA

	SAMPLE S	SET	
Parameter	Bottle	Pres.	Method
Select VOCs	3-40mL	HCI	EPA 8260
MEE RSK-175	3-40mL	HCI	SW3810 modified
Note: MEE only at select num	ber of wells, see sampling	matrix	
Į	1		

Comments: Purge to stability - only sampling microbes

							ELL SAMPL					
Site Name:		Eko	nol		_	Well ID:	INJ-02 (Co	ont'd)	Well Diamet	er:	4	Inches
amplers:		EP	PS S		-	Moni	tored Natural At	ttenuation Sample Set ()	(/N)?			_
Purging [Data								WATER VOLL			
								= (Total Depth c	of Well - Depth	To Water) x C	asing Volur	ne per Foot
	Method:	geopump/l	ow-flow	_Date/Time:			_					
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond. mS/cm	Temp. °C	TDS	ORP		Comments
24 hr. 14:05	ft. 	ml/min. 	gal. 4.80	12.47	mg/L 0.46	NTU 580.00	3.96	15.76	g/L 2.50	-292		
14:10			5.20	12.85	0.40	383.00	3.71	15.73	2.40	-301		
14:15			5.70	12.53	0.43	378.00	3.70	15.74	2.40	-304		
14:13			6.20	12.51	0.44	369.00	3.70	15.74	2.40	-304		
14.50			0.20	12.55	0.43	309.00	5.70	13.70	2.50	-504		
ampling	Data											
		Method:			_	Date/Time:			Total Vo	lume of Wate	r purged:	
eld Param	<u>neters</u>									SAMPLE SET		
	Н	ORRIBA			HACH TE	ST KITS		Parameter	Bottl	e	Pres.	Method
р	н			Ferrous Irc	on (mg/L)			Select VOCs	3-40m	۱L	HCI	EPA 8260
Spec. Con	id.(mS/cm)			Sulfa	ate			MEE RSK-175	3-40m	۱L	HCI	SW3810 modified
Turbidit	y (NTU)			Manga	inese			Note: MEE only at select nu	mber of wells, se	e sampling matr	x	1
DO (I	mg/L)			сс) ₂							
Tem	o.(°C)			Alkali	inity							
	(g/L)			Hydrogen	n Sulfide							
	(mv)					only required for	MNA					

Comments: Purge to stability - only sampling microbes

Site Name:		Ekc	onol			Well ID:	PMW-1	D	Well Diamet	er:	4	Inches
			PS		-			ttenuation Sample Set ()				_
			•		-					IME CALCULA		
Purging [= (Total Depth of				me per Foot
	Method:	geopump/	low-flow	Date/Time:	7/25	/08 8:30	_		V	/L = 6.7		
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		
24 hr.	ft.	ml/min.	gal.	•	mg/L	NTU	mS/cm	°C	g/L	mv		Comments
8:35			0.30	10.75	0.41	111.00	5.72	17.55	3.60	-180		
9:00			0.60	11.14	0.34	50.00	8.77	18.50	3.60	-208		
9:05			0.90	11.24	0.38	41.80	5.72	19.00	3.60	-216		
9:10	6.95		1.10	11.58	0.28	18.30	5.72	18.40	3.60	-237		
9:15			1.30	11.61	0.30	24.70	5.70	19.60	3.60	-242		
9:20			1.50	11.88	0.25	17.90	5.84	17.59	3.70	-256		
9:25			1.70	12.11	0.25	13.40	5.62	19.06	3.50	-273		
9:35			2.00	12.21	0.76	17.60	100.00	16.63	3.70	-288	Battery c	lead on pump
9:45			2.50	13.28	0.40	40.00						
			2.50	15.20	0.40	18.00	3.61	16.15	3.50	-341		
9:50	7.00		3.10	13.55	0.40	11.60	3.61 5.58	16.15 16.26	3.50 3.50	-341 -356		
ampling	I Data neters	Method:	3.10		0.40	11.60 Date/Time:		16.26 0:05	3.50 Total Vo	-356 lume of Water		4.5 gallons
ampling	I Data neters		3.10	13.55		11.60 Date/Time:	5.58	16.26	3.50 Total Vo	-356 lume of Water	purged: Pres.	4.5 gallons Method
ampling	I Data neters	Method:	3.10 geopum	13.55	0.40	11.60 Date/Time:	5.58	16.26 0:05	3.50 Total Vo	-356 lume of Water SAMPLE SET e		
Sampling iield Param P	<mark>] Data</mark> neters H	Method:	3.10 geopum 7	13.55 p/low-flow	0.40 HACH TE	11.60 Date/Time:	5.58 7/25/08 1 j/L	16.26	3.50 Total Vo	-356 Iume of Water SAMPLE SET e	Pres.	Method
Sampling Field Param P Spec. Con	I Data neters H	Method: ORRIBA 6.2	3.10 geopum 7 2	13.55 p/low-flow Ferrous Iro	0.40 HACH TE on (mg/L) ate	11.60 Date/Time: ST KITS 3.2 mg	5.58 7/25/08 1 //L g/L	16.26 0:05 Parameter Select VOCs	3.50 Total Vc Bottt 3-40n 3-40n	-356 Iume of Water SAMPLE SET e nL nL	Pres. HCI HCI	Method EPA 8260
Sampling ield Paran p Spec. Con Turbidit	I Data neters H H	Method: ORRIBA 6.2 5.4;	3.10 geopum 7 2	13.55 p/low-flow Ferrous Iro Sulfa	0.40 HACH TE on (mg/L) ate	11.60 Date/Time: ST KITS 3.2 mg >200 m	5.58 7/25/08 1 //L g/L get a	16.26 0:05 Parameter Select VOCs MEE RSK-175	3.50 Total Vc Bottt 3-40n 3-40n	-356 Iume of Water SAMPLE SET e nL nL	Pres. HCI HCI	Method EPA 8260
ield Param p Spec. Con Turbidit DO (i	H H H H H H H H H H H H H H H H H H H	Method: ORRIBA 6.2 5.4 8.20	3.10 geopum 7 2 0	13.55 p/low-flow Ferrous Iro Sulfa Manga	0.40 HACH TE on (mg/L) ate nese	11.60 Date/Time: ST KITS 3.2 mg >200 m 0.10 could not	5.58 	16.26 0:05 Parameter Select VOCs MEE RSK-175	3.50 Total Vc Bottt 3-40n 3-40n	-356 Iume of Water SAMPLE SET e nL nL	Pres. HCI HCI	Method EPA 8260
Spec. Con Turbidit DO (i Temp	H H H (MC.(mS/cm) (NTU) mg/L)	Method: ORRIBA 6.2 5.4 8.2 0.4	3.10 geopum 7 2 0 2 2 6	13.55 p/low-flow Ferrous Iro Sulfa Manga CC Alkali Hydrogen	0.40 HACH TE on (mg/L) ate nese D ₂ nity	11.60 Date/Time: ST KITS 3.2 mg >200 m 0.10 could not readin	5.58 7/25/08 1 y/L g/L gget a ig 0	16.26 0:05 Parameter Select VOCs MEE RSK-175	3.50 Total Vc Bottt 3-40n 3-40n	-356 Iume of Water SAMPLE SET e nL nL	Pres. HCI HCI	Method EPA 8260

ite Name:		Eko	nol		_	Well ID:	PMW-1D (C	Cont'd)	Well Diamet	er:	4	Inches
amplers:		EP	S		_	Moni	itored Natural At	ttenuation Sample Set (Y	(/N)?			
urging C	Data								WATER VOLU	JME CALCULA	ATION	
								= (Total Depth o	of Well - Depth	To Water) x C	asing Volun	ne per Foot
	Method:	geopump/l	ow-flow	Date/Time:			_					
Time	DTW	Pump Rate	Vol.	pH	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		• ·
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
9:55			3.50	13.72	0.40	8.90	5.43	16.15	3.40	-367		
10:00			3.80	13.83	0.41	8.80	5.42	16.14	3.40	-367		
10:05			4.50	13.84	0.42	8.20	5.42	16.26	3.40	-368		
omolina	Dete											
ampling	Data	Method:	geopur	p/low-flow		Date/Time:			Total Vo	olume of Water	purged:	
eld Param	neters	-			-					SAMPLE SET		
	н	ORRIBA			HACH TE	ST KITS		Parameter	Bott		Pres.	Method
pl				Ferrous Irc				Select VOCs	3-40n	nL	HCI	EPA 8260
				1 onodo ne	511 (111 <u>9</u> , E)				0 101		1101	2.7.0200
Spec. Con	d.(mS/cm)			Sulfa	ate			MEE RSK-175	3-40n	nL	HCI	SW3810 modified
Turbidit	v (NTU)			Manga	nese			Note: MEE only at select nu	mber of wells, se	e sampling matri	x	
T di bidit.) ((110)			manga								
DO (r	mg/L)			CC	D ₂							
Temp	o.(°C)			Alkali	inity							
TDS	(g/L)			Hydrogen	n Sulfide							
						only required for	r MNA					
ORP	(mv)			analysis wells.				1				1

ite Name:		Eko	nol		-	Well ID:	PMW-2	2D	Well Diame	er:	2	Inches
amplers:		EF	PS		_	Moni	tored Natural At	ttenuation Sample Set ()	(/N)?			_
urging C	Data								WATER VOLU			
	Marthand	0		Data (Tima)	7/00	100.0.05		= (Total Depth o	of Well - Depth		Casing Volum	e per Foot
	Method:	Geopump/		Date/Time:		/08 9:25		-		7.35	1	
Time 24 hr.	DTW ft.	Pump Rate ml/min.	Vol. gal.	рН	DO mg/L	Turbidity NTU	Spec. Cond. mS/cm	Temp. °C	TDS g/L	ORP mv		Comments
9:30			0.50	10.68	0.62	>1000	4.59	16.58	2.90	-202		
9:35	8.06		1.00	11.00	0.68	>1000	4.45	16.34	2.80	-224		
9:40			1.50	11.37	0.58	>1000	4.35	16.38	2.80	-245		
9:45			2.00	11.46	0.56	>1000	4.35	16.48	2.80	-253		
9:50			2.50	11.66	0.56	>1000	4.31	16.10	2.80	-260		
9:55	7.95		3.00	11.69	0.55	>1000	4.29	16.07	2.70	-262		
10:00	7.95		3.50	11.90	0.53	>1000	4.24	16.23	2.70	-297		
10:05	7.95		4.00	11.91	0.53	>1000	100.00	16.48	2.70	-297		
10:10	7.95		4.50	12.03	0.53	>1000	4.12	16.51	2.70	-284		
10:15	7.96		5.00	12.13	0.52	>1000	4.05	16.64	2.60	-291	cloudy	
ampling		Method:	Geopum	p/low flow	-	Date/Time:	7/23/08 1	0:25	Total Vo	olume of Wat		6 gallons
	н	ORRIBA		1	НАСН ТЕ	ST KITS		Parameter	Bott	SAMPLE SET	Pres.	Method
pl		6.40	0	Ferrous Irc		3.00)	Select VOCs	3-40r	nL	HCI	EPA 8260
Spec. Con	d.(mS/cm)	4.07	7	Sulfa	ate	200.0	00	MEE RSK-175	3-40r	nL	HCI	SW3810 modified
Turbidit	y (NTU)	>100	00	Manga	nese	0.00)	Note: MEE only at select nu	mber of wells, se	e sampling ma	atrix	
DO (r	mg/L)	0.52	2	CC) ₂	1672.0	00					
Temp	o.(°C)	16.5	51	Alkali	nity	520.0	00					
TDS	(g/L)	2.60	0	Hydrogen	Sulfide	2.00)					
	(mv)	-294.	00	<u>* NOTE *</u> HACH analysis wells.	H test kits are	only required for	r MNA					

ite Name:		Eko	nol		-	Well ID:	PMW-2D (C	Cont'd)	Well Diamete	er:	2	Inches
amplers:		EP	S		_	Moni	tored Natural At	ttenuation Sample Set ()	(/N)?			_
urging l	Data								WATER VOLU	ME CALCULA	ATION	
								= (Total Depth c	of Well - Depth 7	Го Water) x C	asing Volum	ne per Foot
	Method:	Geopump/I	ow flow	Date/Time:								
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.		TDS	ORP		Commonto
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
10:20	7.96		5.50	12.14	0.52	>1000	4.06	16.42	2.60	-292		cloudy
10:25	7.96		6.00	12.18	0.52	>1000	4.07	16.51	2.60	-294	cloudy	
ampling	Data											
		Method:	Geopun	p/low flow		Date/Time:			Total Vol	ume of Water	purged:	
eld Paran	neters								Ś	SAMPLE SET		
	Н	ORRIBA			HACH TE	EST KITS		Parameter	Bottle)	Pres.	Method
p	н			Ferrous Iro	on (mg/L)			Select VOCs	3-40m	L	HCI	EPA 8260
Spec. Cor	nd.(mS/cm)			Sulfa	ate			MEE RSK-175	3-40ml	L	HCI	SW3810 modified
Turbidit	ty (NTU)			Manga	nese			Note: MEE only at select nu	mber of wells, see	e sampling matri	x	
												T
DO (mg/L)			CO	2							
Tem	р.(^о С)			Alkali	nity							
TDS	(g/L)			Hydrogen	Sulfide							
ORP	' (mv)			<u>* NOTE *</u> HACH analysis wells.	H test kits are	only required for	MNA		1			

te Name:		Eko	nol			Well ID:	PMW-3	3D	Well Diamer	ter:	2	Inches
mplers:		EP	S			Monit	ored Natural At	ttenuation Sample Set ()	(/N)?			_
urging l	Data									JME CALCULAT		
								= (Total Depth o	f Well - Depth	To Water) x Cas	sing Volun	ne per Foot
	Method:	geopump/l	ow-flow	Date/Time:	7/22/	08 14:50				WL = 9'		
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.		TDS	ORP	_	Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		
14:55	9.00		0.25	11.21	0.00	>1000	3.37	16.61	2.10	-302		
15:00	9.00		0.50	11.30	0.38	>1000	3.32	16.40	2.10	-310		
15:05	9.00		1.00	11.23	0.38	>1000	3.34	16.47	2.10	-311		
15:10	9.44		1.25	11.23	0.46	>1000	3.33	16.33	2.10	-312		
15:15			1.75	11.27	0.38	>1000	3.34	16.31	2.10	-312		
15:20			2.25	11.22	0.39	>1000	3.36	16.81	2.20	-311		
15:25			3.00	11.21	0.35	>1000	3.35	16.59	2.20	-309		
15:30	9.14		3.50	11.18	0.36	>1000	100.00	16.81	2.10	-308		
15:35			4.50	11.01								
			4.50	11.21	0.35	>1000	3.35	16.80	2.10	-309		
			4.50	11.21	0.35	>1000	3.35	16.80	2.10	-309		
ampling	neters	Method:		p/low-flow		Date/Time:		15:35	Total Vo	Dume of Water p	0	4.5 gallons
ampling eld Paran	neters H	ORRIBA	geopum	p/low-flow	HACH TE	Date/Time:	7/22/08 1	5:35 Parameter	Total Vo	Dlume of Water p	Pres.	Method
ampling eld Paran p	neters H	ORRIBA 6.46	geopum	p/low-flow Ferrous Iro	HACH TE	Date/Time: ST KITS 1.00	7/22/08 1	5:35 Parameter Select VOCs	Total Vo	Dlume of Water p SAMPLE SET Ie	Pres. HCI	
ampling eld Paran p	neters H	ORRIBA	geopum	p/low-flow	HACH TE	Date/Time:	7/22/08 1	5:35 Parameter	Total Vo	Dlume of Water p SAMPLE SET Ie	Pres.	Method
ampling eld Paran p Spec. Cor	neters H	ORRIBA 6.46	geopum	p/low-flow Ferrous Iro	HACH TE n (mg/L) ate	Date/Time: ST KITS 1.00	7/22/08 1	5:35 Parameter Select VOCs	Total Vo Bott 3-40r 3-40r	Dlume of Water p SAMPLE SET Ie nL nL	Pres. HCI	Method EPA 8260
ampling eld Paran p Spec. Cor Turbidit	neters H oH nd.(mS/cm)	ORRIBA 6.46 3.35	geopum 5 5	p/low-flow Ferrous Iro Sulfa	HACH TE n (mg/L) ate	Date/Time: ST KITS 1.00 >200	7/22/08 1	5:35 Parameter Select VOCs MEE RSK-175	Total Vo Bott 3-40r 3-40r	Dlume of Water p SAMPLE SET Ie nL nL	Pres. HCI	Method EPA 8260
amplinc eld Paran p Spec. Cor Turbidit DO (neters H oH nd.(mS/cm) ty (NTU)	ORRIBA 6.46 3.35 >100	geopum 5 5 10	p/low-flow Ferrous Iro Sulfa Mangar	HACH TE n (mg/L) ate nese	Date/Time: ST KITS 1.00 >200 0.00	7/22/08 1	5:35 Parameter Select VOCs MEE RSK-175	Total Vo Bott 3-40r 3-40r	Dlume of Water p SAMPLE SET Ie nL nL	Pres. HCI	Method EPA 8260
ampling eld Paran p Spec. Cor Turbidit DO (Temj	neters H oH nd.(mS/cm) ty (NTU) mg/L)	ORRIBA 6.46 3.35 >100 0.35	geopum 5 5 10 5 0	p/low-flow Ferrous Iro Sulfa Manga	HACH TE n (mg/L) ate nese	Date/Time: ST KITS 1.00 >200 0.00 1508 m	7/22/08 1	5:35 Parameter Select VOCs MEE RSK-175	Total Vo Bott 3-40r 3-40r	Dlume of Water p SAMPLE SET Ie nL nL	Pres. HCI	Method EPA 8260

Site Name:		Eko	nol		-	Well ID:	PMW-4	ID	Well Diame	ter:	2	Inches
Samplers:		JD	В		-	Monit	tored Natural At	ttenuation Sample Set (Y/N)?			_
Purging	<u>Data</u>							= (Total Depth of		UME CALCUL		e per Foot
	Method:	geopump/l	ow-flow	Date/Time:	7/22/	08 14:50	_	(· • • • • • • • • • • • • • • •		7.9	g	
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		<u> </u>
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
14:50						start	purge					
14:55	8.15	70 ml/min	0.25	6.54	0.48	109.30	3.20	17.40	2.00	-325	p. cloudy	
15:00	8.20	70 ml/min	0.50	6.55	0.49	126.00	3.30	17.90	2.10	-325	p. cloudy	
15:05	8.20	70 ml/min	0.75	6.51	0.49	144.00	3.50	18.10	2.20	-326	p. cloudy	
15:10	8.20	70 ml/min	1.00	6.49	0.39	200.00	3.60	17.90	2.40	-330	p. cloudy	
15:15	8.20	70 ml/min	1.25	6.47	0.37	235.00	3.80	17.60	2.50	-332	p. cloudy	
15:20	8.20	70 ml/min	1.75	6.46	0.36	273.00	3.90	17.80	2.50	-333	p. cloudy	
15:25	8.20	70 ml/min	2.00	6.44	0.36	251.00	100.00	17.60	2.50	-332	p. cloudy	
15:30	8.20	70 ml/min	2.25	6.43	0.36	244.00	4.00	17.40	2.50	-332	p. cloudy	
	- Dete			4			•		•	1		
Sampling	Data	Method:	geopun	np/low-flow	_	Date/Time:	7/22/08 1	5:50	Total Vo	olume of Wate	r purged:	3.6 gallons
ield Parar	neters				-					SAMPLE SET		
	н	ORRIBA			HACH TE	ST KITS		Parameter	Bott		Pres.	Method
ŗ	Н	6.40)	Ferrous Irc	on (mg/L)	1.3 mg	g/L	Select VOCs	3-40r	nL	HCI	EPA 8260
Spec. Cor	nd.(mS/cm)	4.00)	Sulfa	ate	>200 m	ig/L	MEE RSK-175	3-40r	nL	HCI	SW3810 modified
Turbidi	ty (NTU)	251.0	00	Manga	nese	0.10)	Note: MEE only at select nu	umber of wells, se	ee sampling matr	ix	I
	mg/L)	0.39	9	СС	0 ₂	900 mg (1xmultip	5					
DO (16.3	0	Alkali	nity	540.0	0					
	p.(°C)											
Tem	p.(°C) (g/L)	2.60)	Hydrogen	Sulfide	2.00						

Comments:

Site Name:		Eko	nol		_	Well ID:	PMW-4D (C	Cont'd)	Well Diame	ter:	2	Inches
amplers:		JD	В		_	Monit	tored Natural At	ttenuation Sample Set ()	(/N)?			_
urging [Data								WATER VOL	UME CALCU	JLATION	
								= (Total Depth o	of Well - Depth	To Water) >	<pre>k Casing Volum</pre>	e per Foot
	Method:	geopump/le	ow-flow	Date/Time:								
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		comments
15:30	8.20	70 mL/min	2.50	6.43	0.42	252.00	4.00	17.40	2.60	-330		p. cloudy
15:35	8.20	70 mL/min	2.75	6.41	0.39	249.00	4.00	15.90	2.60	-329	p. cloudy	
15:40	8.20	70 mL/min	3.00	6.41	0.38	2252.00	4.00	16.40	2.60	-329	p. cloudy	
15:45	8.25	70 mL/min	3.25	6.41	0.38	253.00	4.10	16.10	2.60	-330	p. cloudy	
15:50	8.25	70 mL/min	3.60	6.40	0.39	251.00	4.00	16.30	2.60	-331	p. cloudy	
											1,	
	_											
		Method:	geopum	p/low-flow	_	Date/Time:			Total Ve	olume of Wa		
	neters	-	geopum	p/low-flow	-					SAMPLE SET	T	Mathod
ïeld Param	neters H	Method:	geopum		HACH TE			Parameter	Bott	SAMPLE SE	T Pres.	Method
ield Param	neters	-	geopum	p/low-flow Ferrous Iro						SAMPLE SE	T	Method EPA 8260
ield Param	neters H	-	geopum		on (mg/L)			Parameter	Bott	SAMPLE SET	T Pres.	EPA 8260
Spec. Con	neters H	-	geopum	Ferrous Iro	on (mg/L) ate			Parameter Select VOCs	Bott 3-40r 3-40r	SAMPLE SET	T Pres. HCI HCI	
Field Param p Spec. Con	H H d.(mS/cm) y (NTU)	-	geopum	Ferrous Iro	on (mg/L) ate anese			Parameter Select VOCs MEE RSK-175	Bott 3-40r 3-40r	SAMPLE SET	T Pres. HCI HCI	EPA 8260
Field Param P Spec. Con Turbidit	neters H Id.(mS/cm) y (NTU) mg/L)	-	geopum	Ferrous Iro Sulf	on (mg/L) ate anese D ₂			Parameter Select VOCs MEE RSK-175	Bott 3-40r 3-40r	SAMPLE SET	T Pres. HCI HCI	EPA 8260
ield Param p Spec. Con Turbidit DO (r Temp	neters H Id.(mS/cm) y (NTU) mg/L)	-	geopum	Ferrous Iro Sulf Manga	on (mg/L) ate anese D ₂ inity			Parameter Select VOCs MEE RSK-175	Bott 3-40r 3-40r	SAMPLE SET	T Pres. HCI HCI	EPA 8260

Comments:

to Namo:		Eko	nol			Well ID:	PMW-5I	`	Well Diamet	tor.	2	Inches
								Sample Set (Y/N)?		<u> </u>	2	
•		EP	3			MONITOLEU Matt		Sample Set (1/14)?				
urging [<u>Data</u>							= (Total Depth	WATER VOLU		ULATION x Casing Volume	e per Foot
	Method:	geopump/l	ow flow	Date/Time:	7/22/	08 10:20				7.02		
Time	DTW	Pump Rate	Vol.	pH	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		
24 hr.	ft.	ml/min.	gal.	P11	mg/L	NTU	mS/cm	°C	g/L	mv		Comments
10:25	7.02		0.00	10.50	3.66	>1000	3.31	18.04	1.90	-206	pH very hi	gh
10:30			0.75	10.85	1.92	>1000	3.11	16.39	1.90	-230		
10:45	8.40		1.25	10.83	0.91	>1000	2.98	16.26	1.90	-247		
10:50			1.75	11.14	0.59	>1000	3.04	15.59	1.90	-266	pH increas	sing!
10:55	8.40		2.25	11.28	0.46	>1000	2.93	15.50	1.90	-275		
11:00			2.75	11.42	0.47	959	2.93	15.49	1.90	-280		
11:05	8.40		3.50	11.50	0.44	>1000	2.93	15.51	1.90	-283		
11:10			4.00	11.59	0.42	>1000	100.00	15.60	1.90	-289		
11:15			4.75	11.67	0.44		2.99	15.58	1.90	-294		
11:20			5.25	11.72	0.42	834	2.98	15.68	1.90	-297		
11:25			6.00	11.75	0.43	842	2.99	15.44	1.90	-298		
	Dete					- -				-		
ampling	Data	Method:	geopur	np/low flow		Date/Time:	7/22/08 1	1:25	Total Vo	olume of Wa	ater purged:	6 gallons
eld Param	neters	-								SAMPLE SE	T	
	H	IORRIBA			HACH TE	ST KITS		Parameter	Bott		Pres.	Method
a	н	6.68	3	Ferrous Ir		1.8 mg/	1	Select VOCs	3-40r		HCI	EPA 8260
pec. Con	id.(mS/cm)	2.99	9	Sul	fate	>200		MEE RSK-175	3-40r	nL	HCI	SW3810 modified
Turbidit	y (NTU)	842.0	00	Mang	anese	0.00		тос	1-100mL	, glass	HCL	SW9060
DO (I	mg/L)	0.43	3	C	O ₂	598.00)	Metals	1-500 mL	plastic	Nitric acid	lab specified
Temp	o.(°C)	15.4	4	Alka	linity	460 g/8	8	Chloride	1-250mL,	plastic	none	lab specified
TDO	(g/L)	1.90)	Hydroge	n Sulfide	2.00		Nitrate/Nitrite	1-250mL,	plastic	Sulfuric acid	lab specified
IDS												

Comments: Stopped pumping to change tubing - cracked & drwaing air

pH w/ second Horiba was 6.68

te Name: umplers: urging Data Method: Time DTW					Well ID:	PMW-6D	`			0	
urging Data Method:	JDE	3				PIVIVV-6L)	Well Diamet	er:	2	Inches
Method:		-			Monitored Natu	ural Attenuation S	Sample Set (Y/N)?				
								WATER VOLU			
							= (Total Depth	of Well - Depth	To Water)	x Casing Volume	e per Foot
Time DTW	geopump/lo	ow-flow	Date/Time:	7/22/	08 10:13				7.84		
	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr. ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		
10:13			start	pump							
10:18 7.80	70 ml/min	0.25	5.96	2.38	>1000	4.70	16.70	3.00	-265		
10:23 7.90	70 ml/min	0.50	6.07	2.40	>1000	4.50	16.20	2.90	-301		
10:28 7.95	70 ml/min	0.75	6.14	1.71	>1000	4.40	16.00	2.80	-311		
10:33 8.05	70 ml/min	1.25	6.20	1.24	>1000	4.40	15.90	2.80	-319	slowed do	wn pump
10:38 8.05	70 ml/min	1.50	6.21	1.13	>1000	4.30	16.30	2.70	-320		
10:43 8.05	70 ml/min	1.80	6.24	1.03	>1000	4.20	16.60	2.70	-323		
10:48 8.05	70 ml/min	2.25	6.24	0.98	>1000	100.00	16.80	2.70	-323	slowed dov	wn pump
10:53 8.05	70 ml/min	2.50	6.26	0.85	>1000	4.20	17.30	2.70	-326		
10:58 8.05		2.75	6.27	0.84	>1000	4.20	17.10	2.70	-325		
11:03 8.05		3.00	6.24	0.84	>1000	4.20	17.10	2.70	-322		
								I			
ampling Data	Method:	aeopum	p/low-flow		Date/Time:	7/22/08 11	1.10	Total Vo	lume of W:	ater purged:	3 gallons
eld Parameters		goopum			Date, fille.	1122/00 11					o gallono
нс	ORRIBA		1	HACH TE			Parameter	Bottl	SAMPLE SE	T Pres.	Method
			E e me u e la			//					
рН	6.24		Ferrous Ir	on (mg/L)	4.0 mg	/L	Select VOCs	3-40n	IL.	HCI	EPA 8260
Spec. Cond.(mS/cm)	4.20		Sulf	fate	>200		MEE RSK-175	3-40n	۱L	HCI	SW3810 modified
Turbidity (NTU)	>1000	0	Manga	anese	0.1 mg	/L	TOC	1-100mL,	glass	HCL	SW9060
DO (mg/L)	0.84		CC	O ₂	1749 mg	g/L	Metals	1-500 mL	plastic	Nitric acid	lab specified
Temp.(°C)	17.10)	Alka	linity	600 g/	g	Chloride	1-250mL,	plastic	none	lab specified
TDS (g/L)	2.70		Hydroger	n Sulfide	2.00		Nitrate/Nitrite	1-250mL,	plastic	Sulfuric acid	lab specified
ORP (mv)	-322.0	00	<u>* NOTE *</u> HACH wells.	H test kits are or	nly required for MN	IA analysis	Sulfate	1-250mL,	plastic	none	lab specified

Comments:

Site Name:		Ek	onol			Well ID:	PMW-	7D	Well Diamet	er:	2	Inches
Samplers:		J	DB			Monit	ored Natural A	ttenuation Sample Set (Y/N)?			_
Purging	Data								WATER VOLL	IME CALCUL	ATION	
								= (Total Depth of	of Well - Depth	To Water) x C	Casing Volume	e per Foot
	Method:	geopump	/low-flow	Date/Time:	7/24/	08 13:00				6.6		
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.		TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		comments
12:57				start	purge							
13:03			allons before rea									
13:22	6.80	170 mL/min	3.00	6.11	0.26	989.00	3.80	14.90	2.40	-230	cloudy/gra	у
13:27	6.80		3.50	6.30	0.28	933.00	3.80	15.70	2.40	-277	cloudy/gra	у
13:32	6.80		4.00	6.33	0.28	903.00	3.80	15.50	2.40	-313	cloudy/gra	у
13:37	6.80		4.50	6.34	0.28	850.00	3.80	15.60	2.40	-316	cloudy/gra	у
13:42	6.80		5.00	6.33	0.31	832.00	3.80	15.50	2.40	-323	cloudy/gra	у
13:47	6.80		5.50	6.34	0.35	762.00	100.00	15.80	2.40	-325	cloudy/gra	у
13:52	6.80		6.00	6.33	0.37	757.00	3.80	15.80	2.50	-326	cloudy/gra	
13:57	6.80	170 mL/min	7.00	6.33	0.38	749.00	3.80	15.70	2.50	-326	cloudy/gra	
Sampling		Method:	geopump	/low-flow		Date/Time:	7/24/08	14:07		lume of Wate	r purged:	8
	н	ORRIBA			HACH TE			Parameter	Bottl	SAMPLE SET	Pres.	Method
F	н	6.3	34	Ferrous Irc		1.0 mg	/L	Select VOCs	3-40m	L	HCI	EPA 8260
Spec. Cor	nd.(mS/cm)	3.8	30	Sulfa	ate	>200 mg	g/L	MEE RSK-175	3-40m	L	HCI	SW3810 modified
Turbidi	ty (NTU)	16.	00	Manga	nese	0.20		Note: MEE only at select nu	umber of wells, se	e sampling matr	ix	-
	mg/L)	0.4	14	CC	2	1200.0	0					
DO (0,				nit.	62.00						
	p.(°C)	16.	00	Alkali	riity							
Tem		16. 2.5		Alkali Hydrogen	-	1.80						

Comments: Duplicate PMW-70D @ 1428

ite Name:		Eko	nol		-	Well ID:	PMW-7D (C	Cont'd)	Well Diamete	er:	2	Inches
amplers:		JD	В		_	Moni	tored Natural At	ttenuation Sample Set (Y	′/N)?			
urging [Data				-				NATER VOLU	IME CALCUL	ATION	
	<u>vatu</u>							= (Total Depth o				e per Foot
	Method:	geopump/le	ow-flow	Date/Time:			_					
Time	DTW	Pump Rate	Vol.	pН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Commonto
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	٥C	g/L	mv		Comments
14:02	6.80		7.50	6.33	0.42	722.00	3.80	15.70	2.40	-326		cloudy/gray
14:07	6.80		8.00	6.34	0.44	701.00	3.80	16.00	2.50	-327	cloudy/gra	ау
ampling	Data											
amping	Data	Method:	geopum	p/low-flow	_	Date/Time:			Total Vo	lume of Wate	r purged:	
eld Param	neters									SAMPLE SET		
	H	ORRIBA			HACH TE	ST KITS		Parameter	Bottl		Pres.	Method
р	Н			Ferrous Irc	on (mg/L)			Select VOCs	3-40m	L	HCI	EPA 8260
pec. Con	d.(mS/cm)			Sulfa	ate			MEE RSK-175	3-40m	L	HCI	SW3810 modified
Turbidit	y (NTU)			Manga	nese			Note: MEE only at select nu	mber of wells, se	e sampling matr	ix	·
	,,,,							-				
DO (r	mg/L)			CC) ₂							
-	<i>.</i>			٨								
Temp	o.(°C)			Alkali	nity							
TDS	(g/L)			Hydrogen	Sulfide							
000	(100) ()			* NOTE * HACH	H test kits are	only required for	r MNA					
	(mv)			analysis wells.						1		

Comments: Duplicate PMW-70D @ 1428

Site Name:		Eko	nol		-	Well ID:	PMW-8	BD	Well Diamet	er:	2	Inches
amplers:		JD	В		_	Moni	tored Natural A	ttenuation Sample Set ()	(/N)?			_
Purging I	Data								WATER VOLU	ME CALCUL	ATION	
								= (Total Depth c	of Well - Depth	To Water) x C	Casing Volume	e per Foot
	Method:	geopump/l	ow-flow	Date/Time:	7/23	/08 9:08	<u> </u>			6.9		
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
9:08				start	purge							
9:13	7.20	70 mL/min	0.50	6.13	0.49	>1000	5.20	16.20	3.30	-283	white/cloud	ły
9:18	7.20	70 mL/min	0.75	6.33	0.40	>1000	5.20	15.90	3.30	-312	white/cloud	dy
9:23	7.20	70 mL/min	1.00	6.42	0.33	>1000	4.90	16.00	3.20	-321	p. white/clo	budy
9:28	7.20	70 mL/min	1.25	6.42	0.31	>1000	4.80	16.00	3.10	-323	p. cloudy	
9:33	7.25	70 mL/min	1.50	6.43	0.29	617.00	4.80	16.00	3.10	-324	p. cloudy	
9:38	7.25	70 mL/min	2.00	6.42	0.28	735.00	4.60	16.00	3.00	-324	p. cloudy	
9:43	7.25	70 mL/min	2.25	6.41	0.26	604.00	100.00	16.00	2.90	-324	p. cloudy	
9:48	7.25	70 mL/min	2.50	6.39	0.26	666.00	4.50	16.10	2.90	-324	p. cloudy	
9:53	7.25	100 mL/min	2.75	6.34	0.26	734.00	4.40	16.20	2.80	-323	p. cloudy	
Sampling Field Paran		Method:	geopum	p/low-flow		Date/Time:	7/23/08 1	10:28		lume of Wate	r purged:	7
	н	ORRIBA			НАСН ТЕ			Parameter	Bottl	SAMPLE SET	Pres.	Method
p	н	6.30)	Ferrous Iro		1.6 mg	g/L	Select VOCs	3-40m		HCI	EPA 8260
Spag Cor	nd.(mS/cm)	4.10)	Sulfa	ate	>200 m	ıg/L	MEE RSK-175	3-40m	L	HCI	SW3810 modified
Spec. Coi		>100	0	Manga	nese	0.00)	Note: MEE only at select nu	mber of wells, se	e sampling matr	ix	
Turbidit	iy (NTU)											
Turbidit	mg/L)	0.29)	со	2	559x2 mult 1114 m						
Turbidit	, ,			CO	-		ig/L					
Turbidit DO (Tem	mg/L)	0.29	0		nity	1114 m	ig/L 0					

*VOC samples effervesing

ite Name:		Eko	nol			Well ID:	PMW-8D (C	cont'd)	Well Diamet	er:	2	Inches
amplers:		JD	В			Monit	ored Natural At	tenuation Sample Set (Y/N)?			_
urging D	Data								WATER VOLU	JME CALCULA	TION	
								= (Total Depth of	of Well - Depth	To Water) x Ca	asing Volum	ne per Foot
	Method:	geopump/le	ow-flow	Date/Time:			. L					
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.		TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		
9:58	7.25	100 mL/min	3.00	6.32	0.26	1079.00	4.30	16.10	2.70	-324		p. cloudy
10:03	7.25	100 mL/min	3.50	6.31	0.25	>1000	4.30	16.00	2.80	-324	cloudy	
10:08	7.25	100 mL/min	4.00	6.30	0.26	>1000	4.30	16.10	2.70	-324	cloudy	
10:13	7.25	100 mL/min	4.50	6.29	0.27	>1000	4.20	16.20	2.70	-325	cloudy	
10:18	7.25	100 mL/min	5.00	6.28	0.28	>1000	4.20	16.30	2.70	-236	cloudy	
10:23	7.25	100 mL/min	5.50	6.34	0.30	>1000	4.10	16.20	2.60	-327	cloudy	
10:28	7.25	100 mL/min	6.00	6.30	0.29	>1000	4.10	16.20	2.60	-327	cloudy	
		Method:	geopun	np/low-flow	-	Date/Time:				olume of Water	purged:	
	neters	Method:	geopun	np/low-flow	HACH TE			Parameter		SAMPLE SET	purged: Pres.	Method
eld Param	neters		geopun	p/low-flow Ferrous Irc						SAMPLE SET		Method EPA 8260
eld Param pl	neters H		geopun		on (mg/L)			Parameter	Botti	SAMPLE SET	Pres.	
pec. Con	neters H		geopun	Ferrous Irc	on (mg/L) ate			Parameter Select VOCs	Bottl 3-40n 3-40n	SAMPLE SET	Pres. HCI HCI	EPA 8260
eld Param pl pec. Con Turbidity	<u>heters</u> H H.		geopun	Ferrous Irc	on (mg/L) ate nese			Parameter Select VOCs MEE RSK-175	Bottl 3-40n 3-40n	SAMPLE SET	Pres. HCI HCI	EPA 8260
pld Param pl pec. Con Turbidity	H H d.(mS/cm) y (NTU) mg/L)		geopun	Ferrous Irc Sulfa Manga	n (mg/L) ate nese			Parameter Select VOCs MEE RSK-175	Bottl 3-40n 3-40n	SAMPLE SET	Pres. HCI HCI	EPA 8260
pld Param pl pec. Con Turbidit DO (r	H H d.(mS/cm) y (NTU) mg/L) o.(°C)		geopun	Ferrous Irc Sulfa Manga CC	n (mg/L) ate nese 2 nity			Parameter Select VOCs MEE RSK-175	Bottl 3-40n 3-40n	SAMPLE SET	Pres. HCI HCI	EPA 8260

*VOC samples effervesing

Site Name:		Ekor	nol		-	Well ID:	RMW-4	Đ	Well Diame	er:	2	Inches
amplers:		EP	S		_	Moni	tored Natural At	ttenuation Sample Set (Y/N)?			_
ourging [Data								WATER VOLU			
								= (Total Depth of	of Well - Depth	To Water) x	Casing Volum	ne per Foot
	Method:	geopump/lo	ow-flow	Date/Time:	7/24	/08 8:20			V	VL = 7.4		
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.		TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		
8:25			0.50	10.52	0.73	>1000	2.51	14.85	1.70	-171		
8:30			1.25	11.43	0.50	>1000	3.68	16.07	2.40	-221	Turned pu	ump down
8:35	8.12		1.70	11.74	0.50	>1000	3.73	16.03	2.40	-242		
8:40			2.10	11.97	0.45	975.00	3.69	16.07	2.40	-255		
8:45			2.40	12.14	0.46	847.00	3.67	16.01	2.30	-266		
8:50			2.70	12.21	0.48	780.00	3.66	16.04	2.40	-270		
8:55	8.02		3.00	12.30	0.47	660.00	3.66	16.02	2.40	-276		
9:00			3.30	12.89	0.48	784.00	100.00	15.98	2.30	-282		
9:05	8.12		3.70	12.45	0.48	692.00	3.65	16.03	2.30	-286		
9:10	0.12		3.10	12.45	0.40	032.00	5.05	10.05	2.00	-200		
			4.00	12.51	0.49	658.00	3.65	15.97	2.30	-290		
			4.00	12.51	0.49	658.00	3.65	15.97	2.30	-290		
	Data				0.49							
Sampling		Method:		12.51 p/low-flow	0.49	658.00 Date/Time:				-290 Dlume of Wa	ter purged:	5.4 gallons
ampling	neters	-				Date/Time:		9:30	Total Vo	olume of Wa	Г	¥
Sampling	neters H	ORRIBA	geopum	p/low-flow	НАСН ТЕ	Date/Time:	7/24/08 \$	9:30 Parameter	Total Vo	Diume of Wa	Pres.	5.4 gallons Method
Sampling	neters	-	geopum		НАСН ТЕ	Date/Time:	7/24/08 \$	9:30	Total Vo	Diume of Wa	Г	
Sampling Field Param	neters H	ORRIBA	geopum	p/low-flow	HACH TE	Date/Time:	7/24/08 \$	9:30 Parameter	Total Vo	SAMPLE SET	Pres.	Method
Sampling Field Param P Spec. Con	neters H	ORRIBA 6.48	geopum	p/low-flow	HACH TE n (mg/L)	Date/Time: ST KITS 1.20	7/24/08 \$	9:30 Parameter Select VOCs	Total Vo Bott 3-40r 3-40r	SAMPLE SET	Pres. HCI HCI	Method EPA 8260
Sampling Field Param P Spec. Con Turbidit	neters H H nd.(mS/cm)	ORRIBA 6.48 3.65	geopum 3 5	p/low-flow Ferrous Iro Sulfa	HACH TE on (mg/L) ate	Date/Time: ST KITS 1.20 >200	7/24/08 5	9:30 Parameter Select VOCs MEE RSK-175	Total Vo Bott 3-40r 3-40r	SAMPLE SET	Pres. HCI HCI	Method EPA 8260
Sampling ield Param P Spec. Con Turbidit DO (i	H H hd.(mS/cm) ty (NTU)	ORRIBA 6.48 3.65 348.0	geopum	p/low-flow Ferrous Iro Sulfa Manga	HACH TE on (mg/L) ate nese	Date/Time: ST KITS 1.20 >200 0.15	7/24/08 { 	9:30 Parameter Select VOCs MEE RSK-175	Total Vo Bott 3-40r 3-40r	SAMPLE SET	Pres. HCI HCI	Method EPA 8260
Sampling ield Param P Spec. Con Turbidit DO (i Temp	neters H nd.(mS/cm) ny (NTU) mg/L)	ORRIBA 6.48 3.65 348.0 0.48	geopum	p/low-flow Ferrous Iro Sulfa Manga	HACH TE on (mg/L) ate nese	Date/Time: ST KITS 1.20 >200 0.15 450x2=	7/24/08 { 	9:30 Parameter Select VOCs MEE RSK-175	Total Vo Bott 3-40r 3-40r	SAMPLE SET	Pres. HCI HCI	Method EPA 8260

*VOC samples effervesing

						FLOW WE						
Site Name:		Eko	nol		-	Well ID:	RMW-4D (0	Cont'd)	Well Diame	ter:	2	_Inches
Samplers:		EP	PS		-	Moni	tored Natural A	ttenuation Sample Set ((/N)?			_
ourging [<u>Data</u>									JME CALCULAT		
								= (Total Depth o	of Well - Depth	To Water) x Cas	ing Volur	ne per Foot
	Method:	geopump/le		_Date/Time:			<u> </u>					
Time 24 hr.	DTW ft.	Pump Rate ml/min.	Vol. gal.	рН	DO mg/L	Turbidity NTU	Spec. Cond. mS/cm	Temp. °C	TDS g/L	ORP mv	_	Comments
9:15	11.		4.30	12.53	0.49	598.00	3.65	16.64	2.30	-293		
9:20			4.60	12.59	0.50	558.00	3.65	16.04	2.30	-295		
9:25			5.00	12.60	0.48	556.00	3.64	15.95	2.30	-296		
9:30			5.40	12.61	0.47	548.00	3.65	15.98	2.30	-297		
ampling	Data	Mathadi				Dete						
		Method:				Date/Time:			Total Vo	plume of Water p	urged:	
	neters	-			HACH TE					SAMPLE SET		Method
ield Param	neters	Method:		Ferrous Iro	HACH TE			Parameter Select VOCs	Total Vo Bott 3-40r	SAMPLE SET	urged: Pres. HCI	Method EPA 8260
ield Param	neters H	-		Ferrous Iro	on (mg/L)			Parameter	Bott	SAMPLE SET	Pres.	
Spec. Con	neters H	-			on (mg/L) ate			Parameter Select VOCs	Bott 3-40r 3-40r	SAMPLE SET	Pres. HCI	EPA 8260
<u>ield Param</u> p Spec. Con Turbidit	H H H.	-		Sulfa	on (mg/L) ate nese			Parameter Select VOCs MEE RSK-175	Bott 3-40r 3-40r	SAMPLE SET	Pres. HCI	EPA 8260
eld Param P Spec. Con Turbidit DO (r	H H H. H. M.(mS/cm) y (NTU)	-		Sulfa	n (mg/L) ate nese			Parameter Select VOCs MEE RSK-175	Bott 3-40r 3-40r	SAMPLE SET	Pres. HCI	EPA 8260
ield Param p Spec. Con Turbidit DO (r	H H (mS/cm) y (NTU) mg/L) c.(°C)	-		Sulfa Manga CO	on (mg/L) ate nese 0 ₂ nity			Parameter Select VOCs MEE RSK-175	Bott 3-40r 3-40r	SAMPLE SET	Pres. HCI	EPA 8260

*VOC samples effervesing

ite Name	:	Eko	nol		-	Well ID:	MW-7	D	Well Diamet	er:	4	Inches
amplers:		JD	B			Monit	tored Natural A	ttenuation Sample Set ()	(/N)?			_
Purging	<u>Data</u>								WATER VOLU			
								= (Total Depth o	of Well - Depth		Casing Volum	ne per Foot
	Method:	geopump/l	ow-flow	Date/Time:	7/25	5/08 8:50				8.45		
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond. mS/cm	Temp. °C	TDS	ORP mv		Comments
24 hr. 8:50	ft.	ml/min. 	gal. 	start	mg/L purge	NTU 			g/L 			
8:55	8.50		1.00	5.44	0.44	>1000	4.10	14.70	2.60	-176		
9:00	8.50		2.00	5.68	0.57	>1000	4.00	15.00	2.60	-167	Slowed d	own pump
9:05	8.50		2.50	5.76	0.78	>1000	4.00	16.10	2.60	-192		
9:10	8.50		2.50	5.81	0.95	>1000	4.00	16.40	2.60	-240		
9:15	8.50		2.45	5.82	1.01	973.00	4.20	16.60	2.70	-297		
9:20	8.50		3.00	5.88	1.00	500.00	4.00	16.50	2.60	-339		
0					0.00	470.00			-			
9:25	8.50		3.25	5.90	0.98	470.00	100.00	16.60	2.60	-343		
9:30	8.50		3.25 3.50	5.90	0.98	430.00	4.00	16.60	2.60 2.60	-343 -363		
9:30 Samplin	8.50 g Data		3.50					16.60	2.60 Total Vo	-363 blume of Wa		3.5 gallons
9:30 Samplin	8.50 g Data meters		3.50	5.90		430.00 Date/Time:	4.00	16.60	2.60 Total Vo	-363 Dlume of Wa		3.5 gallons
9:30 Sampling	8.50 g Data meters	 Method:	3.50 geopum	5.90	0.91	430.00 Date/Time:	4.00	16.60	2.60 Total Vo	-363 blume of Wa SAMPLE SET	r -	
9:30 Sampling ield Parar	8.50 g Data meters H	 Method:	3.50 geopum)	5.90 p/low-flow	0.91 HACH TE	430.00 Date/Time:	4.00	16.60	2.60 Total Vo	-363 Dlume of Wa SAMPLE SET	Pres.	Method
9:30 Sampling Tield Paran	8.50 g Data meters H	 Method: ORRIBA 5.90	3.50 geopum	5.90 p/low-flow Ferrous Iro	0.91 HACH TE on (mg/L) ate	430.00 Date/Time: EST KITS 0.10	4.00 7/25/08 1	16.60	2.60 Total Vo Botti 3-40n 3-40n	-363 Dlume of Wa SAMPLE SET InL	Pres. HCI HCI	Method EPA 8260
9:30 Sampling Tield Paran Spec. Co Turbidi	8.50 g Data meters H oH nd.(mS/cm)	 Method: ORRIBA 5.90 4.00	3.50 geopum 0	5.90 p/low-flow Ferrous Iro Sulfa	0.91 HACH TE on (mg/L) ate	430.00 Date/Time: EST KITS 0.10 >200 m	4.00 7/25/08 1 gg/L get a	16.60 10:25 Parameter Select VOCs MEE RSK-175	2.60 Total Vo Botti 3-40n 3-40n	-363 Dlume of Wa SAMPLE SET InL	Pres. HCI HCI	Method EPA 8260
9:30 iampling ield Parat Spec. Co Turbidi DO	8.50 g Data meters DH nd.(mS/cm) ity (NTU)	 Method: ORRIBA 5.9(4.0(207.(3.50 geopum 0 0 00 3	5.90 p/low-flow Ferrous Irc Sulfa Manga	0.91 HACH TE on (mg/L) ate nese	430.00 Date/Time: ST KITS 0.10 >200 m over detection could not	4.00 7/25/08 1 g/L on limits get a	16.60 10:25 Parameter Select VOCs MEE RSK-175	2.60 Total Vo Botti 3-40n 3-40n	-363 Dlume of Wa SAMPLE SET InL	Pres. HCI HCI	Method EPA 8260
9:30 ield Parat Spec. Co Turbidi DO Tem	8.50 g Data meters DH nd.(mS/cm) ity (NTU) (mg/L)	 Method: ORRIBA 5.90 4.00 207.0	3.50 geopum 0 0 00 3 0	5.90 p/low-flow Ferrous Iro Sulfa Manga	0.91 HACH TE on (mg/L) ate nese	430.00 Date/Time: EST KITS 0.10 >200 m over detection could not readin	4.00 7/25/08 1 g/L get a 19 a reading	16.60 10:25 Parameter Select VOCs MEE RSK-175	2.60 Total Vo Botti 3-40n 3-40n	-363 Dlume of Wa SAMPLE SET InL	Pres. HCI HCI	Method EPA 8260

*VOC samples effervesing

					LOW	FLOW WE	ELL SAMPL	ING RECORD				
Site Name:		Eko	nol			Well ID:	MW-7D (Co	ont'd)	Well Diamet	er:	4	Inches
Samplers:		JD	B			Monit	tored Natural At	tenuation Sample Set (Y	(/N)?			_
Purging D	<u>Data</u>									JME CALCUL		
								= (Total Depth o	f Well - Depth	To Water) x C	Casing Volum	e per Foot
	Method:	Persitaltic	: Pump	Date/Time:			_					
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Commonito
9:35	8.50		4.00	5.91	0.86	326.00	4.00	16.70	2.50	-369		
9:40	8.50		4.50	5.91	0.81	364.00	4.00	16.80	2.60	-368		
9:45	8.50		4.75	5.92	0.75	330.00	4.00	16.80	2.50	-368		
9:50	8.50		5.00	5.92	0.70	301.00	3.90	16.90	2.50	-371		
9:55	8.50		5.25	5.92	0.65	360.00	4.00	17.10	2.50	-373		
10:00	8.50		5.50	5.91	0.60	287.00	4.00	17.00	2.50	-385		
10:05	8.50		5.75	5.90	0.55	210.00	3.90	16.90	2.50	-387		
10:10	8.50		6.00	5.90	0.50	208.00	100.00	16.90	2.50	-390		
10:15	8.50		6.50	5.90	0.49	209.00	4.00	17.10	2.50	-389		
10:20	8.50		6.75	5.90	0.48	207.00	4.00	17.10	2.60	-388		
Sampling	Data											
Sampling		Method:				Date/Time:			Total Vo	olume of Wate	r purged:	
Field Param	<u>ieters</u>									SAMPLE SET		
	н	ORRIBA			HACH TE	ST KITS		Parameter	Bott		Pres.	Method
pl				Ferrous Iro				Select VOCs	3-40n	nL	HCI	EPA 8260
Spec. Con	d.(mS/cm)			Sulfa	ate			MEE RSK-175	3-40n	nL	HCI	SW3810 modified

HORRIBA	HACH TEST KITS
рН	Ferrous Iron (mg/L)
Spec. Cond.(mS/cm)	Sulfate
Turbidity (NTU)	Manganese
DO (mg/L)	CO ₂
Temp.(°C)	Alkalinity
TDS (g/L)	Hydrogen Sulfide
ORP (mv)	* NOTE * HACH test kits are only required for MNA analysis wells.

	SAMPLE S	SET	
Parameter	Bottle	Pres.	Method
Select VOCs	3-40mL	HCI	EPA 8260
MEE RSK-175	3-40mL	HCI	SW3810 modified
Note: MEE only at select num	ber of wells, see sampling	matrix	

Comments: Samples effervesing w/ acid

Performance Monitoring Event #2

					LOW	FLOW WI	ELL SAMPL	ING RECORD				
Site Name:		Eko	nol			Well ID:	TS-INJ-1	,	Well Diamet	er:	4	Inches
Samplers:		D.C. Burkert	t/C.A. Huey			Moni	tored Natural At	ttenuation Sample Set (Y/I	N)?	Yes		
Purging	Data									IME CALCU		
								= (Total Depth of	Well - Depth	To Water) x	Casing Volum	e per Foot
	Method:	Perista	altic	Date/Time:	9/30	/08 9:35	_		26 - 8.5 = 1	7.5 x 0.60 = ²	11.55	
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.		TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
9:37	*	360		5.89	0.55	120	5.59	15.17	3.5	-370	initial	
10:15	*	360	2.0	5.93	0.00	190	5.50	15.25	3.5	-374		
10:25	*	360	3.0	5.94	0.00	160	5.44	15.13	3.4	-374		
10:30	*	360	3.25	5.94	0.00	160	5.41	15.14	3.4	-373		
10:35	*	360	4.0	5.93	0.00	160	5.42	15.13	3.4	-373		
Sampling	<u>Data</u>	Method:	Per	istalitc		Date/Time:	9/30/2008	10.40	Total Vo	lume of Wat	er puraed.	5
ield Parar	neters	inotitou.	1 01			Bato, fillio.	0,00,2000				or purgou.	0
		ORRIBA			НАСН ТЕ	ET KITS		Parameter	Bottl	SAMPLE SET	Pres.	Method
		5.94	1	Ferrous Iro		0		Select VOCs	3-40m		HCI	EPA 8260
ł	νH	5.94	+	Ferrous ind	n (mg/∟)	0		Select VOCS	3-4011	IL .	HCI	EPA 8200
Spec. Cor	nd.(mS/cm)	5.41	1	Sulfa	ate	>200	1	MEE RSK-175	3-40m	۱L	HCI	SW3810 modified
Turbidi	ty (NTU)	160)	Manga	nese	Rust co >3.0		тос	3-40m	۱L	H2SO4	SW9060
DO (mg/L)	0		со	2	5500	2	Dissolve Metals - total iron (Field filtered, Select wells only)	1-500 mL	plastic	Nitric acid	lab specified
Tem	p.(°C)	15.1	3	Alkali	nity	480		Bromide, Chloride, Sulfate	1-250mL (plastic	none	lab specified
				Hydrogen	Sulfide	5		Volatile Fatty Acids				lab specified
TDS	(g/L)	3.4		riyarogen	ounao	-		-				

Comments: * Not able to detect water level. (1) Sulfate: read 125 before test, >200 after reagent added. (2) CO₂ color turned grey not pink.

					LOW	FLOW WE	ELL SAMPL	ING RECORD				
Site Name:		Eko	onol			Well ID:	PMW-1D	-	Well Diamet	er:	4	Inches
Samplers:		C. Huey, (C. Burkett			Moni	tored Natural At	ttenuation Sample Set (Y/I	N)?	Yes		
Purging	Data							W	ATER VOLU	IME CALCU	JLATION	
								= (Total Depth of	Well - Depth	To Water) x	Casing Volume	e per Foot
	Method:	GeoPu	ump	Date/Time:	10/1	/08 8:43	_		26 - 8.64	x 0.66 = 11.5	5 gal	
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	-	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		
9:05	9.48	320		7.22	0.00	33	5.26	14.93	3.3	-317		
9:10	9.21	320	4.9	6.89	0.00	37	5.26	14.91	3.3	-330		
9:15	9.06	320	5.3	6.92	0.00	37	5.32	14.89	3.4	-344		
9:20	9.08	320	5.7	7.28	0.00	50	5.34	14.88	3.4	-381		
9:30	9.08	320	6.5	8.19	0.00	850	5.29	14.90	3.3	-398		
9:45	9.08	320	7.75	6.77	0.00	95	5.26	14.91	3.3	-358		
9:55	9.02	02 320 8.6 6.78				31	5.24	14.94	3.3	-360		
10:00	9.06				0.00	32	5.21	14.87	3.3	-360		
10:05		320	9.6	6.80	0.00	30	5.22	14.91	3.2	-357		
Sampling Field Parar		Method:	Geo	Pump		Date/Time:	10/1/2008	10:10		lume of Wa		12
	н	IORRIBA			HACH TE	EST KITS		Parameter	Bottl		Pres.	Method
þ	эΗ	6.80	0	Ferrous Iro	n (mg/L)	0		Select VOCs	3-40n	ηL	HCI	EPA 8260
Spec. Cor	nd.(mS/cm)	5.20	0	Sulfa	ate	>200)	MEE RSK-175	3-40mL		HCI	SW3810 modified
Turbidi	ty (NTU)	30		Manga	nese	0.1		тос	3-40n	ηL	H2SO4	SW9060
DO (mg/L)				CO ₂ 806			Dissolve Metals - total iron (Field filtered, Select wells only)	1-500 mL	plastic	Nitric acid	lab specified
	n (°C)	14.9)1	Alkali	nity	390		Bromide, Chloride, Sulfate	1-250mL	plastic	none	lab specified
Tem	p.(U)											
	; (g/L)	3.2	2	Hydrogen	Sulfide	5		Volatile Fatty Acids				lab specified

Comments:

Flow started @ 500 ml/min. Slowed to 320 @ 0903

					LOW	' FLOW WE	ELL SAMPL	ING RECORD				
Site Name:		Eko	onol		_	Well ID:	PMW-2D	- -	Well Diamete	r:	2	Inches
Samplers:		D.C. Burker	t/C.A. Huey		_	Moni	tored Natural At	tenuation Sample Set (Y/I	N)?	Yes		
Purging [Data							W	ATER VOLUI	ME CALCUL	ATION	
<u>argnig</u>	<u>- ulu</u>							= (Total Depth of				e per Foot
	Method:	Perista	altic	Date/Time:	9/29	/08 14:40	_		26 - 8.5 = 17.	5 x 0.16 = 2.	8 gal	
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Commente
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
14:40	*	480		5.47	0.27	NA	4.63	15.33	2.3	-322	start	
14:50	*	480	1.0	5.53	0.19	NA	4.62	15.21	2.9	-337	milky wate	r
15:00	*	480	2.5	5.65	0.00	NA	4.57	15.10	2.9	-346	milky	
15:05	*	480	3.0	5.69	0.00	NA	4.56	15.07	2.9	-346		
15:10	*	480	3.5	5.73	0.00	NA	4.57	15.00	2.9	-347	milky	
ield Param		Method:	Peri	staltic	-	Date/Time:	9/29/2008 1	5:15 PM		ume of Wate	r purged:	5
	Н	ORRIBA			HACH T	EST KITS		Parameter	Bottle		Pres.	Method
р	Н	5.72	2	Ferrous Irc	on (mg/L)	1		Select VOCs	3-40mL	-	HCI	EPA 8260
spec. Con	nd.(mS/cm)	4.5	7	Sulfa	ate	Too tur	bid	MEE RSK-175	3-40mL		HCI	SW3810 modified
Turbidit	ty (NTU)	milky > I	range	Manga	inese	NA - Turned >3.0		тос	3-40mL	-	H2SO4	SW9060
DO (I	mg/L)	0		CC) ₂	766		Bromide, Chloride, Sulfate	Chloride, Sulfate 1-250mL plastic		none	lab specified
Temp	p.(°C)	15.0)2	Alkali	inity	480		Volatile Fatty Acids				lab specified
TDS	(g/L)	2.9)	Hydrogen	n Sulfide	5						
ORP	' (mv)	-34	7	<u>* NOTE *</u> HACI analysis wells.	H test kits are	only required for	r MNA	ر ا		I		<u>.</u>
Comments:	: <u>* D</u>			_	interface r	neasurement i	nconsistent. Pu	rge water too milky for tur	bidity reading.	. Mn⁺ solutio	n turned wroi	ng color (orange not pinl
RSON	IS											

					LOW	FLOW WE	ELL SAMPL	ING RECORD				
Site Name:		Eko	nol			Well ID:	PMW-3D	_	Well Diar	neter:	2	Inches
Samplers:		С. Н	uey			Monit	tored Natural At	ttenuation Sample Set (Y/I	N)?	Yes		
Purging I	Data							W	ATER VOLU	JME CALC	ULATION	
								= (Total Depth of	Well - Depth	To Water)	x Casing Volu	me per Foot
	Method:	GeoPu	ump	Date/Time:	10/2	9/08 9:55	<u> </u>		26 - 8.5	x 0.16 = 2.8	3 gal	
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond. mS/cm	-	TDS	ORP)	Comments
24 hr. 10:15	ft. *	ml/min. 300	gal. 1.75	6.25	mg/L 0.00	NTU 400	3.16	°C 15.12	g/L 2.0	-345	cloudy	
10:10	*	300	2.2	6.25	0.00	851	3.10	15.12	2.0	-346		
10:20	*	300	2.2	6.26	0.00	760	3.12	15.10	2.0	-343		
10:25	*	300	3.0	6.25	0.00	780	3.13	15.02	2.0	-343		
10:30	*	300	3.0	6.25	0.00	720	3.13	15.02	2.0			
	*							15.03			350	
10:40	*	300	3.6	6.25	0.00	>1100	3.13		2.0	-351		DIQ
10:45		250	4.0	6.26	0.00	900	3.09	15.18	2.0	-352		
10:50	*	250	4.3	6.29	0.00	>1100	3.07	15.20	2.0	-355		
10:55	*	250	4.6	6.31	0.00	>1100	3.05	15.21	2.0	-356		
Sampling Field Paran		Method:	Geo	Pump		Date/Time:	9/30/2008	11:00	Total Vo	olume of Wa	ater purged:	5.5
	Н	ORRIBA			HACH TE	EST KITS		Parameter	Bott	le	Pres.	Method
р	н	6.32	2	Ferrous Iro	n (mg/L)	0		Select VOCs	3-40n	nL	HCI	EPA 8260
Spec. Cor	nd.(mS/cm)	3.04	4	Sulfa	ate	Could no >200 befor		MEE RSK-175	3-40n	nL	HCI	SW3810 modified
Turbidit	ty (NTU)	>110	00	Manga	rust colo			тос	3-40n	nL	H2SO4	SW9060
DO (mg/L)	0		со	2	6000 turns gi		Dissolve Metals - total iron (Field filtered, Select wells only)	1-500 mL	plastic	Nitric acid	lab specified
Tem	p.(°C)	15.2	2	Alkali	nity	480		Bromide, Chloride, Sulfate	1-250mL	plastic	none	lab specified
		1.9	1	Hydrogen	Sulfide	5		Volatile Fatty Acids				lab specified
TDS	(g/L)	1.5				only required for						

Comments: Collected duplicate sample PMW-103D (same parameters) @ 1120. * Substrate material in well - erratic water level readings.

					LOW	FLOW WI	ELL SAMPL	ING RECORD				
Site Name:	:	Eko	nol			Well ID:	PMW-4D	_	Well Dia	meter:	2	Inches
Samplers:		C. H	uey			Moni	tored Natural At	ttenuation Sample Set (Y/N	N)?	Yes		
Purging	<u>Data</u>									UME CALCU		
								= (Total Depth of)	Well - Depth	To Water) >	c Casing Volume	e per Foot
	Method:	GeoPu	ump	Date/Time:	9/30	/08 13:15	<u> </u>		30 - 8.5	x 0.16 = 3.4	gal	
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.		TDS	ORP		Comments
24 hr. 13:36	ft.	ml/min. 300	gal.	6.33	mg/L 0.00	NTU 700	mS/cm	°C	g/L	mv -374	turbid	
	*		3.50				4.58	14.61	2.9			
13:41		300	3.9	6.34	0.00	650	4.65	14.90	3.0	-375	cloudy grey	y
13:46	*	300	4.3	6.36	0.00	750	5.13	14.95	3.2	-376		
13:51	*	300	4.7	6.37	0.00	756	5.16	14.97	3.3	-378		
13:56	*	300	5.1	6.33	0.00	750	5.11	15.07	3.2	-382		
					l							
Sampling	g Data	Method:	Ge	Pump		Date/Time:	9/30/2008 1		Total V	olume of Wa	ater purged:	7.5
ield Parar	<u>meters</u>	Method.	660	runp	•	Date/Time.	9/30/2000 1	4.00 FIM	Total V			1.5
		IORRIBA		-	НАСН Т			Parameter	Bott	SAMPLE SE	T Pres.	Method
	рΗ	6.32	2	Ferrous Irc		0		Select VOCs	3-40r		HCI	EPA 8260
ŀ	חת	0.32	2	Fellous IIC	m (mg/∟)	0		Select VOCS	3-401		ПСІ	EFA 8200
Spec. Co	nd.(mS/cm)	5.11	1	Sulfa	ate	>200)	MEE RSK-175	3-40r	mL	HCI	SW3810 modified
Turbidi	ty (NTU)	751		Manga	nese	0.8		тос	3-40r	nL	H2SO4	SW9060
DO ((mg/L)	0		СС	2	1298	3	Dissolve Metals - total iron (Field filtered, Select wells only)	1-500 mL	plastic	Nitric acid	lab specified
	p.(°C)	15.0	4	Alkali	nity	650		Bromide, Chloride, Sulfate	1-250mL	plastic	none	lab specified
Tem		3.2		Hydrogen	Sulfide	5		Volatile Fatty Acids				lab specified
	6 (g/L)	3.2										

Comments: * No water level - erratic readings due to substrate material from injections.

					LOW	FLOW W	ELL SAMPL	ING RECORD				
Site Name	:	Eko	nol		_	Well ID:	PMW-5D	_	Well Dia	meter:	2	Inches
Samplers:		С. Н	uey			Moni	tored Natural At	ttenuation Sample Set (Y/I	N)?	Yes		
Purging	<u>Data</u>							W	ATER VOL	UME CALCU	JLATION	
								= (Total Depth of	Well - Depth	To Water) x	Casing Volume	e per Foot
	Method:	GeoPu	ımp	Date/Time:	9/29/	/08 14:35	_		26 - 8.5	x 0.16 = 2.8	gal	
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.		TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		
14:48		400	1.1	6.01	0.00	60	3.53	14.87	2.3	-363	slightly clo	ıdy
14:53	*	400	1.6	5.98	0.00	40	3.83	14.81	2.5	-368	clearer	
14:58	*	400	2.0	5.95	0.00	38	4.02	14.75	2.6	-369		
15:03	*	400	2.5	5.93	0.00	38	4.12	14.69	2.6	-370		
15:08	*	300	2.9	5.91	0.00	38	4.11	14.72	2.6	-371		
Sampling	<u>q Data</u>	Method:	Go	Pump		Date/Time:	9/29/2008	15.11	Total V	olume of Wa	tor purgod:	3
Field Para	meters	Method.	06	runp	-	Date/Time.	9/29/2000	13.11	TOTAL			3
	н	IORRIBA			HACH TE			Parameter	Bot	SAMPLE SET	Pres.	Method
	ъH	5.90	۰ ۲	Ferrous Irc		0		Select VOCs	3-40		HCI	EPA 8260
	Л	5.90)	Fellous IIC	m (mg/∟)	0		Select VOCS	3-40		ны	EFA 8200
Spec. Co	nd.(mS/cm)	4.11	1	Sulfa	ate	>200)	MEE RSK-175	3-40mL		HCI	SW3810 modified
	ity (NTU)	38		Manga	nese	Unreadable orange o		тос	3-40	mL	H2SO4	SW9060
Turbidi								Bromide, Chloride, Sulfate	1-250mL	plactic	none	lab specified
	(mg/L)	0		CC	9 ₂	672			. 2001112	plastic		
DO	(mg/L) up.(°C)	0	0	CC		480		Volatile Fatty Acids	. 2002	plasuc		lab specified
DO Tem					nity			Volatile Fatty Acids				

Comments: <u>* Substrate material in wells causing irratic water level readings, discontinued water levels.</u>

					LOW	FLOW WE	ELL SAMPL	ING RECORD				
Site Name:		Ekc	nol			Well ID:	PMW-8D	_	Well Dian	neter:	2	Inches
Samplers:		C. H	luey			Moni	tored Natural At	ttenuation Sample Set (Y/I	N)?	Yes		
Purging	Data							W	ATER VOLL	IME CALCU	ULATION	
								= (Total Depth of	Well - Depth	To Water) x	x Casing Volum	e per Foot
	Method:	GeoPu	ımp	Date/Time:	9/30)/08 7:50			26 - 8.5 >	0.16 = 2.8	gal	
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.		TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Commonto
8:11		360	1.00	5.65	0.00	>1100	3.30	14.64	2.1	-264	turbid	
8:22	*	360	1.60	5.70	0.00	>1100	3.39	14.67	2.2	-282		
8:27	*	290	2.0	5.75	0.00	>1100	3.69	14.91	2.3	-294		
8:32	*	290	2.3	5.79	0.00	>1100	4.01	14.93	2.5	-306		
8:37	*	290	2.6	5.81	0.00	1100	4.03	14.94	2.6	-307		
8:42	*	230 2.3 3.02				>1100	4.04	14.94	2.6	-311		
8:47	*	* 290 3.3 5.82			0.00	>1100	4.04	14.95	2.6	-315		
Sampling	a Data	Method:	Geo	Pump		Date/Time:	9/30/2008	8.50	Total Vo	lume of Wa	ater purged:	4
ield Parar	neters	motriod.	000	ump		Date, mile.	0/00/2000					· · ·
	н	ORRIBA			НАСН Т			Parameter	Bottl	SAMPLE SET	T Pres.	Method
r)H	5.8	2	Ferrous Iro		0		Select VOCs	3-40m		HCI	EPA 8260
ŀ		5.6	2	Fellous IIO	m (mg/∟)	0		Select VOCS	3-4011		HCI	EFA 0200
Spec. Cor	nd.(mS/cm)	4.0	7	Sulfa	ate	>200)	MEE RSK-175	3-40m	L	HCI	SW3810 modified
Turbidi	ty (NTU)	>11(00	Manga	nese	orange color inste couldn't r >3.0	ead	TOC	3-40m	ıL.	H2SO4	SW9060
DO (mg/L)	0		со	>3.0 CO ₂ 1272		2	Bromide, Chloride, Sulfate	1-250mL j	olastic	none	lab specified
		14.9	5	Alkali	nity	576		Volatile Fatty Acids				lab specified
Tem	p.(°C)											
	p.(°C) ; (g/L)	2.6	;	Hydrogen		5 e only required for						

Comments: <u>* Substrate material in well causing irratic water level readings - discontinued water level.</u>

					LOW	FLOW WE	ELL SAMPL					
Site Name:		Eko	nol			Well ID:	PMW-7D	-	Well Diar	neter:	2	Inches
Samplers:		С. Н	uey			Monit	tored Natural At	ttenuation Sample Set (Y/N	N)?	Yes		
Purging	Data							W	ATER VOLU	JME CALCUL	ATION	
						= (Total Depth of Well - Depth To Water) x Casing \						e per Foot
	Method:	GeoPu	ımp	Date/Time:	9/30/	/08 15:17	_		26 - 8.5	x 0.66 = 2.8 g	al	
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
15:37	*	450	2.75	5.93	0.00	>1100	4.26	14.69	2.7	-380	very turbid	
15:42	*	320	3.25	5.93	0.00	>1100	4.23	15.09	2.7	-381	cloudy grey	у
15:47	*	320	3.75	5.93	0.00	>1100	4.27	15.28	2.8	-382		
15:52	*	320	4.25	5.95	0.00	>1100	4.34	15.32	2.8	-383		
15:57	*	320	4.75	5.95	0.00	>1100	4.28	15.34	2.8	-383		
16:02	*	320	5.20	5.95	0.00	1000	4.36	15.33	2.8	-384		
16:07	*	320	5.6	5.95	0.00	800	4.38	15.22	2.8	-385		
16:12	*	320	6.0	5.95	0.00	800	4.38	15.22	2.8	-386		
16:17	*	320	6.4	5.95	0.00	800	4.38	15.18	2.8	-386		
Sampling	a Data											
ield Parar	neters	Method:	Geo	Pump		Date/Time:	9/30/2008	16:25		Diume of Wate	er purged:	8
ield Parar	neters	Method:	Geo	Pump	НАСН ТЕ		9/30/2008	16:25 Parameter	Total Vo	SAMPLE SET	er purged: Pres.	8 Method
	neters			Pump Ferrous Irc			9/30/2008			SAMPLE SET		
ŗ	neters H	ORRIBA	5		n (mg/L)			Parameter	Bott	SAMPLE SET	Pres.	Method
Spec. Cor	neters H	ORRIBA 5.95	5	Ferrous Iro	on (mg/L) ate	ST KITS		Parameter Select VOCs	Bott 3-40r	SAMPLE SET	Pres.	Method EPA 8260
۲ Spec. Coi Turbidi	meters H DH nd.(mS/cm)	ORRIBA 5.96 4.4(5	Ferrous Irc	on (mg/L) ate nese	O 200 Dk orange) color 0	Parameter Select VOCs MEE RSK-175	Bott 3-40r 3-40r	SAMPLE SET le nL nL nL nL	Pres. HCI HCI	Method EPA 8260 SW3810 modified
F Spec. Cor Turbidi DO (neters H oH nd.(mS/cm) ty (NTU)	ORRIBA 5.95 4.4(780	5	Ferrous Iro Sulfa Manga	n (mg/L) ate nese	O 2000 Dk orange 2.5-3.) color 0	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells	Bott 3-40r 3-40r 3-40r	SAMPLE SET le nL nL nL nL plastic	HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
F Spec. Coi Turbidi DO (Tem	neters H oH (mS/cm) ty (NTU) (mg/L)	ORRIBA 5.95 4.40 780 0	5 0 0	Ferrous Irc Sulfa Manga CO	n (mg/L) ate nese 2 nity	0 >200 Dk orange 2.5-3. 3462) color 0	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells only)	Bott 3-40r 3-40r 3-40r 1-500 mL	SAMPLE SET le nL nL nL nL plastic	Pres. HCI HCI H2SO4 Nitric acid	Method EPA 8260 SW3810 modified SW9060 lab specified

Comments: * No water level - substrate material in well, erratic readings

no name	:	Eko	nol			Well ID:	PMW-8D	_	Well Diar	meter:	2	Inches	
amplers:		D.C. Burker	t/C.A. Huey			Monit	tored Natural A	ttenuation Sample Set (Y/I	N)?	Yes			
Purging	Data							W	ATER VOLU	JME CALCU	ILATION		
								= (Total Depth of	Well - Depth	To Water) x	Casing Volum	e per Foot	
	Method:	GeoPump		Date/Time:	9/30/08 8:55			27 - 8.5 = 18.5 x 0.16 = 3 gal					
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	•	TDS	ORP		Comments	
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		comments	
8:05	*	360		5.87	1.81	697	4.27	15.20	2.7	-329	initial		
8:20	*	360	1.25	6.32	0.00	110	5.25	15.13	3.3	-391			
8:25	*	360	2.0	6.27	0.00	110	5.41	15.12	3.4	-388			
8:30	*	360	2.5	6.24	0.00	180	5.53	15.19	3.5	-386			
8:35	*	360	3.0	6.19	0.00	240	5.56	15.19	3.5	-384			
8:45	*	340	4.0	6.16	0.00	240	5.59	15.37	3.5	-380			
8:50	*	340	4.5	6.19	0.00	230	5.70	15.31	3.6	-377			
		Method:	Per	istaltic		Date/Time:	9/30/2008	3 8:55	Total Vo	Dlume of Wat			
	neters	Method:	Per	istaltic	HACH TE		9/30/2008	3 8:55	Total Vo	SAMPLE SET		Method	
ield Parar	neters			istaltic Ferrous Irc			9/30/2008			SAMPLE SET		Method EPA 8260	
ield Parar	<u>meters</u> H	ORRIBA	9		n (mg/L)			Parameter	Bott	SAMPLE SET le nL	Pres.		
Spec. Co	<u>meters</u> H	ORRIBA 6.1	9	Ferrous Irc	on (mg/L) ate	ST KITS 0)	Parameter Select VOCs MEE RSK-175 TOC	Bott 3-40n	SAMPLE SET	Pres. HCI	EPA 8260	
<u>ield Parar</u> F Spec. Col Turbidi	meters H DH nd.(mS/cm)	ORRIBA 6.19 5.7	9	Ferrous Iro	on (mg/L) ate nese	O ST KITS 0 >200 Couldn't read) 2.5-3.0 f pink color	Parameter Select VOCs MEE RSK-175	Bott 3-40n 3-40n	SAMPLE SET Ie nL nL nL	Pres. HCI HCI	EPA 8260 SW3810 modified	
ield Parar F Spec. Col Turbidi DO (meters H oH nd.(mS/cm) ty (NTU)	ORRIBA 6.19 5.7 ⁷ 220	9	Ferrous Iro Sulfa Manga	n (mg/L) ate nese	O >200 Couldn't read orange instead o) 2.5-3.0 f pink color	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells	Bott 3-40n 3-40n 3-40n	SAMPLE SET le nL nL plastic	Pres. HCI HCI H2SO4	EPA 8260 SW3810 modified SW9060	
ield Parar F Spec. Col Turbidi DO (Tem	neters H oH nd.(mS/cm) ty (NTU) (mg/L)	ORRIBA 6.19 5.7 ⁷ 220 0	9	Ferrous Iro Sulfa Manga CO	n (mg/L) ate nese ¹ 2 nity	Couldn't read orange instead o 900) 2.5-3.0 f pink color	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells only)	Bott 3-40n 3-40n 3-40n 1-500 mL	SAMPLE SET le nL nL plastic	Pres. HCI HCI H2SO4 Nitric acid	EPA 8260 SW3810 modified SW9060 lab specified	

Comments: MS/MSD on VOC. * DTW not possible to gauge.

ite Name:	Eko	nol			Well ID:	RMW-4D		Well Dian	neter:	2	Inches
amplers:					Monit		tenuation Sample Set (Y/N				
Purging Data									IME CALCUL		
urging Data							= (Total Depth of \				ne per Foot
Method:			Date/Time:	8/30	/08 0:00				3 gal		
Time DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr. ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
13:12 NA	300		6.86	0.015	60	8.13	16.49	2.5	-319	initial	
13:22 NA	300	0.8	6.29	0.00	29	4.00	15.59	2.6	-388		
13:27 NA	300	1.2	6.35	0.00	33	3.99	15.36	2.5	-386		
13:37 NA	300	2.0	6.16	0.00	35	3.97	15.15	2.5	-380		
13:47 NA	300	2.5	6.07	0.00	38	4.10	15.17	2.6	-376		
13:57 NA	300	3.0	6.05	0.00	90	4.17	15.12	2.7	-376		
14:00 NA	300	3.25	6.06	0.00	45	4.18	15.09	2.7	-377		
14:03 NA	300	3.5	6.06	0.00	41	4.19	15.10	2.7	-377		
14:06 NA	300	4.0	6.05	0.00	42	4.18	15.09	2.7	-378		
Sampling Data	Method:	Peri	staltic		Date/Time:	9/30/2008			lume of Wate		5
F	IORRIBA			HACH TE	ST KITS		Parameter	Bottl	e	Pres.	Method
рН	6.05	5	Ferrous Iro	n (mg/L)	0			0.40			
							Select VOCs	3-40m		HCI	EPA 8260
Spec. Cond.(mS/cm)	4.19)	Sulfa	ite	>200		Select VOCs MEE RSK-175	3-40m 3-40m		HCI	EPA 8260 SW3810 modified
Spec. Cond.(mS/cm) Turbidity (NTU)	4.19		Sulfa		>200				nL		
				nese			MEE RSK-175	3-40m	nL	HCI	SW3810 modified
Turbidity (NTU)	39		Manga	n ese 2	0.9		MEE RSK-175 TOC	3-40m 3-40m	nL	HCI H2SO4	SW3810 modified SW9060
Turbidity (NTU) DO (mg/L)	39	0	Manga	nese 2 nity	0.9 4024		MEE RSK-175 TOC Bromide, Chloride, Sulfate	3-40m 3-40m	nL	HCI H2SO4	SW3810 modified SW9060 lab specified

					<u>L011</u>			<u>ING RECORD</u>				
Site Name:		Eko	nol		-	Well ID:	MW-7D	_	Well Dia	meter:	4	Inches
Samplers:		D.C. Burker	t/C.A. Huey		-	Moni	tored Natural A	ttenuation Sample Set (Y/	N)?	Yes		
Purging	<u>Data</u>							W	ATER VOL	UME CALCU	JLATION	
								= (Total Depth of)	Nell - Depth	To Water) x	Casing Volume	e per Foot
	Method:	Perista	altic	Date/Time:	9/30	0:08 0:00			30 - 8.5 = 2	1.5 x 0.66 =	14 gal	
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.		TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU 85	mS/cm	°C	g/L	mv		Comments
15:17	NA	300		6.05	1.04	dark grey	4.34	15.57	2.8	-314	initial	
15:37	NA	300	1.5	6.10	0.00	55	5.67	15.90	3.5	-385	clearing	
15:47	NA	300	2.25	6.12	0.00	110	5.50	15.70	3.5	-392		
15:57	NA	300	3.0	6.13	0.00	140	5.41	15.79	3.4	-389		
16:07	NA	300	3.75	6.13	0.00	140	5.17	15.71	3.3	-386		
16:10	NA	300	4.5	6.14	0.00	140	5.18	15.72	3.2	-385		
16:13	NA	300	5.00	6.13	0.00	140	5.16	15.70	3.3	-386		
		1		1						1		
Sampling	<u>a Data</u>	Method:	Per	istalitc		Date/Time:	9/30/2008	16.16	Total V	olume of Wa	iter purged:	6.25
Field Parar	neters				-							
	н	ORRIBA			НАСН ТЕ			Parameter	Bott	SAMPLE SET	Pres.	Method
r	ьн	6.13	3	Ferrous Irc		0		Select VOCs	3-40		HCI	EPA 8260
ł	<i>и</i> 1	0.10	5	T enous no	n (mg/L)	0			3-40		nor	
Spec. Cor	nd.(mS/cm)	5.17	7	Sulfa	ate	>200	D	MEE RSK-175	3-40r	mL	HCI	SW3810 modified
Turbidi	ty (NTU)	140)	Manga	nese	Rust co >3.0		тос	3-40	nL	H2SO4	SW9060
DO (mg/L)	0		cc) ₂	3450)	Dissolve Metals - total iron (Field filtered, Select wells only)	1-500 mL	plastic	Nitric acid	lab specified
	p.(°C)	15.7	'1	Alkali	nity	565		Bromide, Chloride, Sulfate	1-250mL	plastic	none	lab specified
Tem				L huden en en	Sulfido	5		Volatile Fatty Acids				lab specified
	(g/L)	3.3	}	Hydrogen	Suillue	5						

Comments: DTf = 8.25, PTW not possible

Performance Monitoring Event #3

ite Marrie.	:	Eko	onol			Well ID:	INJ-01	-	Well Diame	ter:	4	Inches
amplers:		HN	/IP			Monitored Na	tural Attenuatio	n Sample Set (Y/N)?		Yes	3	
urging	Data								ATER VOL			
								= (Total Depth of	Well - Depth	To Water) x Casing Volum	e per Foot
	Method:	Geo-Pump/	Low Flow	Date/Time:	12/15	/08 12:44						
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	OR	P	Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv	r	Comments
12:44	5.85	260		6.11		95	2.530	11.59		-333	.1	
12:49	5.64	260		6.05		45	2.537	11.31		-343	.6	
12:54	5.60	260		6.04		39	2.540	11.28		-352	.5	
12:59	5.60	260		6.04		38	2.535	11.39		-353	.4	
13:04	5.60	260		6.04		38	2.525	11.50		-356	.4	
13:09	5.58	260		6.04		32	2.527	11.34		-362	.7	
13:14	5.58	260		6.04		45	2.524	11.42		-366	.2	
13:19	5.58	260		6.04		40	2.523	11.51		-365	.1	
13:24	5.56	260	4.0	6.03	0.00	32	2.523	11.35		-358	.3	
Sampling		Method:	Geo-Pur	np/Low Flow		Date/Time:	12/15/2008	3 13:29	Total Volum	e of Wate		4
	Н	ORRIBA			HACH TE	EST KITS		Parameter	Bott	le	Pres.	Method
ŗ	рΗ	6.0	4	Ferrous Irc	n (mg/L)	0.00		Select VOCs	3-40r	nL	HCI	EPA 8260
	nd.(mS/cm)	2.5	2	Manga	nese	2.20		MEE RSK-175	3-40	nL	HCI	SW3810 modified
Spec. Co	ty (NTU)	30.0	00	Sulfa	ate	>200.0	00	тос	3-40	nL	H2SO4	SW9060
			0	CC	2	5500.0	00	Dissolve Metals - total iron (Field filtered, Select wells only)	1-500 mL	plastic	Nitric acid	lab specified
Turbidi	(mg/L)	0.0	0									
Turbidi	(mg/L) p.(°C)	0.0		Hydrogen	Sulfide	0.00	1	Bromide, Chloride, Sulfate	1-250mL	plastic	none	lab specified
Turbidi DO (Tem			35	Hydrogen		0.00 800.0		Bromide, Chloride, Sulfate Volatile Fatty Acids	1-250mL	plastic	none	lab specified

		Eko	nol			Well ID:	INJ-02	_	Well Diame	er:	4	Inches
amplers:		EP	PS .			Monitored Na	tural Attenuatio	on Sample Set (Y/N)?		Yes		
Purging	Data							W	ATER VOLU	JME CALC	ULATION	
								= (Total Depth of	Well - Depth	To Water)	x Casing Volume	e per Foot
	Method:	Geo-Pump/l	_ow Flow	Date/Time:	12/15	08 12:44						
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
13:10	5.52	250		6.08			1.656	11.71		-282.6	;	
13:15	5.53	250		6.03		114	1.764	12.47		-268		
13:20	5.54	250		5.95		89	1.897	12.12		-242		
13:25	5.54	250		5.96		118	1.909	12.34		-243.9)	
13:30	5.54	20		5.94		110	2.023	12.31		-261.8	1	
13:35	5.54	300		5.95		114	2.141	12.92		-284		
13:40	5.54	300		5.97		80	2.268	12.96		-322.6	;	
13:45	5.54	300		6.01		77	2.269	12.94		-326.8	1	
13:50	5.54	300	4.0	6.03	0.00	71	2.276	13.01		-329.3	;	
amnlind	d Data											
		Method:	Geo-Pun	np/Low Flow		Date/Time:	12/15/2008		Total Volum	SAMPLE SE	T	4
		Method:	Geo-Pun	np/Low Flow	HACH TE		12/15/2008	3 13:29 Parameter	Total Volum Bott	SAMPLE SE		4 Method
ield Parar		-		np/Low Flow						SAMPLE SE	T	
ield Parar ۶	Н	ORRIBA	3		n (mg/L)			Parameter	Bott	SAMPLE SE	T Pres.	Method
ield Parar F Spec. Cor	H	ORRIBA 6.03	3	Ferrous Irc	n (mg/L) nese	ST KITS 0.00		Parameter Select VOCs MEE RSK-175 TOC	Bott 3-40r	SAMPLE SE	T Pres. HCI	Method EPA 8260
ield Parar F Spec. Cor Turbidi	H oH nd.(mS/cm)	ORRIBA 6.03 2.28	3 3 0	Ferrous Irc Manga	n (mg/L) nese ate	езт кітз 0.00 0.00)	Parameter Select VOCs MEE RSK-175	Bott 3-40r 3-40r	SAMPLE SE le nL nL nL nL	T Pres. HCI HCI	Method EPA 8260 SW3810 modified
ield Parar F Spec. Cor Turbidi DO (H nd.(mS/cm) ty (NTU)	ORRIBA 6.03 2.28 71.0	3 3 0	Ferrous Irc Manga Sulfa	n (mg/L) nese ate	0.00 0.00 0.00 70.00	0	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells	Bott 3-40r 3-40r 3-40r	SAMPLE SE le nL nL nL plastic	T Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
eld Parar F Spec. Cor Turbidi DO (Tem	H nd.(mS/cm) ty (NTU) img/L)	ORRIBA 6.03 2.28 71.0 0.00	3 3 0	Ferrous Iro Manga Sulfa	n (mg/L) nese ate 2 Sulfide	0.00 0.00 70.00 636.0	0	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells only)	Bott 3-40r 3-40r 3-40r 1-500 mL	SAMPLE SE le nL nL nL plastic	T Pres. HCI HCI H2SO4 Nitric acid	Method EPA 8260 SW3810 modified SW9060 lab specified

Comments: Turned Pump up to 300 mL/min at 13:35. Probe not reading DO. Took DO reading with HACH kit to confirm DO = 0.

		Eko	onol			Well ID:	PMW-1D	_	Well Diame	ter:	4	Inches
amplers:		EF	PS			Monitored Na	tural Attenuatio	n Sample Set (Y/N)?		Yes		
Purging I	Data							W	ATER VOL	UME CALCU	JLATION	
								= (Total Depth of	Well - Depth	To Water) x	Casing Volume	e per Foot
	Method:	Geo-Pump/	Low Flow	Date/Time:	12/12	2/08 9:40	_		D	TW = 6.2		
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.		TDS	ORP		C
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
9:40	6.40	260		7.14		180	3.736	8.54		-333.1		
9:45	6.40	260		707		100	3.769	9.24		-347.5		
9:50	6.40	260		7.04		41	3.762	9.59		-352.4		
9:55	6.40	260		7.03		16	3.782	9.90		-357.9		
10:00	6.40	260		6.98		11	3.791	10.16		-360.4		
10:05	6.40	260	-	6.96		12	3.792	10.26		-361.2		
10:10	6.40	260		6.94		8	3.795	10.24		-361.5		
10:15	6.40	260		6.93		8	3.795	10.32		-360.7		
10:20	6.40	260	3.5	6.91	0.00	9	3.794	10.53		-360.6		
	neters	Method:	Geo-Pun	np/Low Flow		Date/Time:	12/12/2008			ne of Water p	г Г	3.5
	neters	Method: ORRIBA	Geo-Pun	np/Low Flow	НАСН ТЕ		12/12/2008	3 10:20 Parameter	Total Volum Bott	SAMPLE SET	0	3.5
ïeld Paran	neters			np/Low Flow						SAMPLE SET	г Г	
Field Paran	neters H	ORRIBA	1		n (mg/L)			Parameter	Bott	SAMPLE SET	Pres.	Method
Spec. Cor	neters H	ORRIBA 6.9	1 9	Ferrous Iro	n (mg/L) nese	ST KITS 0.00		Parameter Select VOCs	Bott 3-40r	SAMPLE SET	Pres.	Method EPA 8260
Field Paran p Spec. Cor Turbidit	neters H H nd.(mS/cm)	ORRIBA 6.9 3.79	1 9 0	Ferrous Iro Manga	n (mg/L) nese ate	EST KITS 0.00 0.30	00	Parameter Select VOCs MEE RSK-175	Bott 3-40r 3-40r	SAMPLE SET	г Pres. HCI HCI	Method EPA 8260 SW3810 modified
p p Spec. Cor Turbidit DO (H H hd.(mS/cm) ty (NTU)	ORRIBA 6.9 3.79 9.00	1 9 0	Ferrous Iro Manga Sulfa	n (mg/L) nese ate	0.00 0.30 >200.0	00	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells	Bott 3-40r 3-40r 3-40r	SAMPLE SET Ie nL nL plastic	г Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
<u>ield Paran</u> p Spec. Cor Turbidit DO (Tem	H H md.(mS/cm) ty (NTU) mg/L)	ORRIBA 6.9 3.79 9.00 0.00	1 9 0 0 53	Ferrous Iro Manga Sulfa	n (mg/L) nese ate 2 Sulfide	0.00 0.30 >200.0 746.0	00	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells only)	Bott 3-40r 3-40r 3-40r 1-500 mL	SAMPLE SET Ie nL nL plastic	F Pres. HCI HCI H2SO4 Nitric acid	Method EPA 8260 SW3810 modified SW9060 lab specified

		Ekc	onol			Well ID:	PMW-2D	-	Well Diame	ter:	2	Inches
Samplers:		HM	ЛР			Monitored Na	tural Attenuatio	n Sample Set (Y/N)?		Yes		
Purging	Data								ATER VOL			
								= (Total Depth of	Well - Depth	To Water) >	Casing Volum	ne per Foot
	Method:	Geo-Pump/	Low Flow	Date/Time:	12/11	/08 15:15	_		26 - 8.5 = 1	7.5 x 0.16 =	2.8 gal	
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		comments
15:15	7.34	250		5.92		70	2.331	9.97		-286.7		
15:20	7.62	250		5.74		21	2.280	10.82		-305.4		
15:25	7.80	250		5.61		76	2.222	10.86		-298.6		
15:30	7.84	250		5.63		408	2.197	10.78		-290.9		
15:35	7.90	250		5.57		769	2.168	11.36		-320.4		
15:40	7.90	250		5.61		900	2.170	11.39		-322.9		
15:45	7.95	250		5.63		>999	2.188	11.30		-322.7		
15:50	7.95	250		5.64		>999	2.190	11.20		-322.9		
15:55	7.95	250	3.0	5.68	0.00	>999	2.200	11.30		-323.8		
	neters	Method:	Geo-Pun	np/Low Flow		Date/Time:	12/11/2008		Total Volum	SAMPLE SET	r	5
	neters	Method:	Geo-Pun	np/Low Flow	НАСН ТЕ		12/11/2008	16:00 Parameter	Total Volum	SAMPLE SET	0	5 Method
Field Paran	neters			np/Low Flow	НАСН ТЕ					SAMPLE SET	r	
Field Paran	neters H	ORRIBA	7		HACH TE n (mg/L)			Parameter	Bott	SAMPLE SET	Pres.	Method
Spec. Cor	neters H	ORRIBA 5.6	7	Ferrous Iro	HACH TE n (mg/L) nese	ST KITS 0.60		Parameter Select VOCs	Bott 3-40r	SAMPLE SET	Pres.	Method EPA 8260
Field Paran F Spec. Cor Turbidi	neters H oH nd.(mS/cm)	ORRIBA 5.6 2.2	7 0 00	Ferrous Iro Manga	HACH TE n (mg/L) nese tte	0.60 0.60	00	Parameter Select VOCs MEE RSK-175	Bott 3-40r 3-40r	SAMPLE SET	HCI	Method EPA 8260 SW3810 modified
Field Paran F Spec. Cor Turbidi DO (neters H oH nd.(mS/cm) ty (NTU)	ORRIBA 5.6 2.2 740.	7 0 00 0	Ferrous Iro Manga Sulfa	HACH TE n (mg/L) nese ite	0.60 0.60 >200.0	00	Parameter Select VOCs MEE RSK-175 TOC	Bott 3-40r 3-40r 3-40r	SAMPLE SET	Г Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
Field Paran F Spec. Cor Turbidi DO (Tem	neters H hH.(mS/cm) ty (NTU) mg/L)	ORRIBA 5.6 2.2 740. 0.0	7 0 00 0 32	Ferrous Iro Mangai Sulfa CO Hydrogen Alkalin	HACH TE n (mg/L) nese ite 2 Sulfide nity	0.60 0.60 >200.0 936.0	00	Parameter Select VOCs MEE RSK-175 TOC Bromide, Chloride, Sulfate	Bott 3-40r 3-40r 3-40r	SAMPLE SET	Г Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060 lab specified

					LOW	FLOW WE						
Site Name:		Ekc	onol			Well ID:	PMW-3D	-	Well Diamet	er:	2	Inches
Samplers:		HN	ИР			Monitored Na	tural Attenuatio	n Sample Set (Y/N)?	-	Yes		
Purging I	Data							W	ATER VOLU	IME CALC	ULATION	
								= (Total Depth of	Well - Depth	To Water)	x Casing Volum	e per Foot
	Method:	Geo-Pump/	Low Flow	Date/Time:	12/11	/08 13:45						
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
13:45	7.52	250		6.33		>999	1.392	11.56		-313.4	-	
13:51	7.64	250		6.25		>999	1.433	11.00		-319		
13:56		250		6.19		>999	1.425	11.16		-310.3	3	
14:01	7.86	250		6.21		>999	1.473	11.34		-301.9)	
14:06	7.92	250		6.30		592	1.531	11.45		-314.4	Ļ	
14:11	8.00	250		6.37		511	1.548	11.24		-336.3	6	
14:16	8.15	250		6.39		650	1.548	11.33		-346.3	3	
14:21	8.20	250		6.40		388	1.566	11.08		-353.6	;	
14:26		250		6.44		90	1.590	10.97		-356.8	;	
14:31	8.40	250		6.45		120	1.595	10.92		-357.1		
Sampling Field Paran		Method:	Geo-Pum	p/Low Flow		Date/Time:	40/44/0000			() / /	nuraed:	
							12/11/2008	14:46	Total Volum			5.5
	Н	ORRIBA		<u> </u>	НАСН ТЕ		12/11/2008	14:46 Parameter		SAMPLE SE		5.5 Method
p		ORRIBA 6.4	5	Ferrous Iro	HACH TE	ST KITS 0.00				SAMPLE SE e	T	
	H hH.(mS/cm)			Ferrous Irc Manga	n (mg/L)			Parameter	Bottl	SAMPLE SE	T Pres.	Method
Spec. Cor	Н	6.4	1		n (mg/L) nese	0.00		Parameter Select VOCs	Bottl 3-40n	SAMPLE SE	T Pres. HCI	Method EPA 8260
Spec. Cor Turbidit	H nd.(mS/cm)	6.4 1.6	1 00	Manga	n (mg/L) nese ate	0.00	0	Parameter Select VOCs MEE RSK-175	Bott 3-40n 3-40n	SAMPLE SE e	T Pres. HCI HCI	Method EPA 8260 SW3810 modified
Spec. Cor Turbidit DO (nd.(mS/cm) ty (NTU)	6.4 1.6 174.	1 00 0	Manga	n (mg/L) nese ate	0.00 0.00 >200.0	10 D	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells	Botti 3-40n 3-40n 3-40n	SAMPLE SE e	T Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
Spec. Cor Turbidit DO (Tem	H nd.(mS/cm) ry (NTU) mg/L)	6.4 1.6 174. 8.2	1 00 0 30	Manga Sulfa	n (mg/L) nese ate 2 Sulfide	0.00 0.00 >200.0 825.0	10 D	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells only)	Botti 3-40n 3-40n 3-40n 1-500 mL	SAMPLE SE e	T Pres. HCI HCI H2SO4 Nitric acid	Method EPA 8260 SW3810 modified SW9060 lab specified

Site Mamor												
site marrie.		Ekc	onol		-	Well ID:	PMW-3D (0	Cont'd)	Well Diameter	er:	2	Inches
Samplers:		HN	ЛР		_	Monitored Nat	tural Attenuatio	on Sample Set (Y/N)?	-	Yes		
Purging I	Data							И	ATER VOLU	ME CALCU	ULATION	
								= (Total Depth of	Well - Depth	To Water)	x Casing Volume	e per Foot
	Method:	Geo-Pump/	Low Flow	Date/Time:			_					
Time	DTW	Pump Rate	Vol.	pН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		
24 hr.	ft.	ml/min.	gal.	•	mg/L	NTU	mS/cm	°C	g/L	mv		Comments
14:36	8.45	250		6.45		146	1.600	10.76		-359.1		
14:41	8.50	250	3.50	6.45	0.00	180	1.605	10.77		-356.2		
Sampling	<u>d Data</u>											
		Method:	Geo-Pum	p/Low Flow	-	Date/Time:			Total Volume	e of Water p	purged:	
		Method:	Geo-Pum	p/Low Flow	-	Date/Time:				e of Water p	-	
	neters	Method:	Geo-Pum	p/Low Flow	HACH TE			Parameter		SAMPLE SE	-	Method
Field Paran	neters		Geo-Pum	p/Low Flow	НАСН ТЕ					SAMPLE SE	T	Method EPA 8260
Field Paran	neters H		Geo-Pum	Ferrous Irc	HACH TE			Parameter Select VOCs	Bottle 3-40m	SAMPLE SE	T Pres. HCI	EPA 8260
Field Paran	neters H		Geo-Purr		HACH TE			Parameter	Bottle	SAMPLE SE	T Pres.	
Field Paran p Spec. Cor	neters H		Geo-Purr	Ferrous Irc	HACH TE			Parameter Select VOCs	Bottle 3-40m	SAMPLE SE	T Pres. HCI	EPA 8260
Field Paran p Spec. Cor Turbidit	neters H oH nd.(mS/cm)		Geo-Purr	Ferrous Irc Manga	HACH TE on (mg/L) nnese ate			Parameter Select VOCs MEE RSK-175	Bottl 3-40m 3-40m	SAMPLE SE	T Pres. HCI HCI	EPA 8260 SW3810 modified
Field Paran p Spec. Cor Turbidit DO (neters H oH nd.(mS/cm) ty (NTU)		Geo-Purr	Ferrous Irc Manga Sulfa	HACH TE on (mg/L) nnese ate			Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells	Botti 3-40m 3-40m 3-40m	SAMPLE SE b L L J blastic	T Pres. HCI HCI H2SO4	EPA 8260 SW3810 modified SW9060
Field Paran p Spec. Cor Turbidit DO (Tem	neters H oH nd.(mS/cm) ty (NTU) img/L)		Geo-Purr	Ferrous Irc Manga Sulfa	HACH TE on (mg/L) inese ate D ₂			Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells only)	Bottl 3-40m 3-40m 3-40m 1-500 mL (SAMPLE SE b L L J Jastic	T Pres. HCI HCI H2SO4 Nitric acid	EPA 8260 SW3810 modified SW9060 lab specified
Spec. Cor Turbidit DO (Tem TDS	neters H oH (mS/cm) ty (NTU) img/L) p.(°C)		Geo-Pun	Ferrous Irc Manga Sulfa CC Hydrogen Alkali	HACH TE on (mg/L) inese ate D ₂ a Sulfide inity			Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells only) Bromide, Chloride, Sulfate	Bottl 3-40m 3-40m 3-40m 1-500 mL (SAMPLE SE b L L J Jastic	T Pres. HCI HCI H2SO4 Nitric acid	EPA 8260 SW3810 modified SW9060 lab specified lab specified

site Name:											0	
		Ekc	onol			Well ID:	PMW-4D	_	Well Diame	ter:	2	Inches
Samplers:		HN	ΛP			Monitored Na	tural Attenuatio	on Sample Set (Y/N)?		Yes		
Purging	<u>Data</u>									JME CALCU		
								= (Total Depth of	Well - Depth	To Water) x	Casing Volum	e per Foot
	Method:	Geo-Pump/	Low Flow	Date/Time:	12/11	/08 10:06	_					
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
10:06	11.10	240		6.89		9.0	1.622	10.36		-342.6		
10:11	11.10	240		6.84		2.8	1.628	9.62		-333.9		
10:16	11.60	240		6.81		8.0	1.622	9.66		-340.2		
10:21	11.52	240		6.78		13.1	1.603	9.98		-351.3		
10:26	11.69	240		6.73		12.0	1.608	9.18		-349		
10:31	11.65	240		6.72		11.6	1.602	8.62		-348.3		
10:36	11.65	240		6.67		2.9	1.585	9.32		-345.7		
10:41	11.55	240		6.64		4.8	1.582	9.95		-348.3		
10:46	11.55	240	3.5	6.63	0.00	8.7	1.586	10.06		-349.4		
		Method:	Geo-Pun	np/Low Flow		Date/Time:	12/11/2008	3 10:51	Total Volum	e of Water pu	urged:	3.5
	neters	Method:	Geo-Pun	np/Low Flow	HACH TE		12/11/2008	3 10:51 Parameter	Total Volum	SAMPLE SET	urged: Pres.	3.5
ield Parar	neters			np/Low Flow Ferrous Iro	HACH TE					SAMPLE SET		
Field Parar	<u>neters</u> H	ORRIBA	1	+	HACH TE)	Parameter	Bott	SAMPLE SET	Pres.	Method
Spec. Co	neters H	ORRIBA 6.6	9	Ferrous Iro	HACH TE on (mg/L) nese	ST KITS 0.40)	Parameter Select VOCs	Bott 3-40r	SAMPLE SET	Pres. HCI	Method EPA 8260
Field Parar F Spec. Cor Turbidi	neters H bH nd.(mS/cm)	ORRIBA 6.6 1.5	1 9 3	Ferrous Iro Manga	HACH TE nn (mg/L) nese ate	0.40 0.00)) 00	Parameter Select VOCs MEE RSK-175	Bott 3-40r 3-40r	SAMPLE SET le nL nL nL	Pres. HCI HCI	Method EPA 8260 SW3810 modified
Field Parar F Spec. Cor Turbidi DO (neters H oH nd.(mS/cm) ty (NTU)	ORRIBA 6.6 1.5 6.7	1 9 3 0	Ferrous Iro Manga Sulfa	HACH TE nn (mg/L) nese ate	0.40 0.00 >200.0)) 00 00	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells	Bott 3-40r 3-40r 3-40r	SAMPLE SET le nL nL plastic	Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
ield Parar F Spec. Coi Turbidi DO (Tem	neters H oH (mS/cm) ty (NTU) (mg/L)	ORRIBA 6.6 1.5 6.7 0.0	1 9 3 0 5	Ferrous Iro Manga Sulfa	HACH TE nn (mg/L) nese ate 22 Sulfide	0.40 0.00 >200.0 827.0)) 00 ;	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells only)	Bott 3-40r 3-40r 3-40r 1-500 mL	SAMPLE SET le nL nL plastic	Pres. HCI HCI H2SO4 Nitric acid	Method EPA 8260 SW3810 modified SW9060 lab specified

					LOW	FLOW WE	<u>-LL SAMPL</u>	ING RECORD				
Site Name:		Eko	onol			Well ID:	PMW-5D	_	Well Diamet	er:	2	Inches
Samplers:		HM	ЛР			Monitored Na	tural Attenuatio	on Sample Set (Y/N)?	_	Yes		
Purging	Data							W	ATER VOLU	JME CALCU	ULATION	
								= (Total Depth of	Well - Depth	To Water) :	x Casing Volum	e per Foot
	Method:	Geo-Pump/	Low Flow	Date/Time:	12/11	/08 12:03						
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		comments
12:03	12.85	240		6.61		17.0	1.586	11.17		-352.5	slightly clo	budy
12:08	13.10	240		6.68		14.0	1.638	10.14		-360.8	clearer	
12:13	14.28	240		6.63		11.8	1.623	10.64		-369.8		
12:18	14.83	240		6.57		12.3	1.623	10.85		-358.9	1	
12:23	15.28	240		6.48		11.5	1.623	11.10		-351		
12:28	15.93	240		6.31		6.5	1.611	11.39		-353.6		
12:33	15.95	240		6.27		7.8	1.607	11.37		-338.1		
12:38	15.95	240		6.23		5.9	1.593	11.33		-337.3		
12:43	16.20	240		6.20		4.4	1.579	11.34		-331.2	:	
12:48	16.43	240	4.0	6.18	0.00	2.2	1.560	11.40		-328.6	i	
Sampling		Method:	Geo-Pun	np/Low Flow		Date/Time:	12/11/2008	3 12:53	Total Volum	e of Water		
	Н	ORRIBA			HACH TE	EST KITS		Parameter	Bottl	е	Pres.	Method
þ	н	6.1	6	Ferrous Iro	n (mg/L)	0.00)	Select VOCs	3-40m	nL	HCI	EPA 8260
Spec. Cor	nd.(mS/cm)	1.5	6	Manga	nese	1.80)	MEE RSK-175	3-40m	nL	HCI	SW3810 modified
Turbidi	ty (NTU)	1.9	6	Sulfa	ate	>200.0	00	тос	3-40m	nL	H2SO4	SW9060
Turbiu		0.0	0	со	2	515.0	0	Bromide, Chloride, Sulfate	1-250mL j	plastic	none	lab specified
	mg/L)											lab specified
DO (mg/L) p.(°C)	11.3	38	Hydrogen	Sulfide	0.01		Volatile Fatty Acids				lab specified
DO (Tem				Alkali	nity	0.01 40.00	0	Volatile Fatty Acids				

		_									0	le che c
Site Name:					-	Well ID:	PMW-8D	-	Well Diamete	r:	2	Inches
Samplers:		EF	PS		-	Monitored Na	tural Attenuatio	n Sample Set (Y/N)?	_	Yes	_	
Purging	Data									ME CALCULAT		
								= (Total Depth of			sing Volum	ne per Foot
	Method:	Geo-Pump/	Low Flow	Date/Time:	12/15	6/08 10:30	<u> </u>		26 - 8.5 x	0.16 = 2.8 gal		
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	· · ·	TDS	ORP	_	Comments
24 hr.	ft.	ml/min.	gal.	0.17	mg/L	NTU	mS/cm	°C	g/L	mv		
11:45	8.42	240		6.17			1.430	13.03		-257.3		
11:50	8.44	240		6.15			4.127	13.05		-263.7		
11:55	8.45	240		6.26		45	1.416	12.77		-264.4		
12:00	8.46	240		6.83		31	1.546	12.63		-273.2		
12:05	8.47	240		7.00		16	1.672	12.61		-280		
12:10	8.48	240		6.96		14	1.785	12.74		-278.6		
12:15	8.50	240		7.10		10	1.878	12.61		-280.3		
12:20	8.51	240		7.13		11	1.888	12.40		-277.1		
12:25	8.52	240		7.00		10	1.890	11.96		-275		
12:30	8.54	240	4.0	7.03	0.00	8	1.894	11.98		-276.5		
ield Parar	neters	Method:	Geo-Pun	np/Low Flow	-	Date/Time:	12/15/2008		S	ume of Water p	-	4
	Н	ORRIBA			HACH TE	EST KITS		Parameter	Bottle		Pres.	Method
F	эΗ	7.0	4	Ferrous Irc	on (mg/L)	0.00	1	Select VOCs	3-40ml	-	HCI	EPA 8260
	nd.(mS/cm)	1.9	2	Manga	nese	0.90		MEE RSK-175	3-40ml	-	HCI	SW3810 modified
Spec. Cor	ty (NTU)	10.0	00	Sulfa	ate	>200.0	00	TOC	3-40ml	- H	H2SO4	SW9060
-			0	CC) ₂	1487.0	00	Bromide, Chloride, Sulfate	1-250mL p	astic	none	lab specified
Turbidi	(mg/L)	0.0						Volatile Fatty Acids				lab specified
Turbidi DO ((mg/L) p.(^o C)	11.9	98	Hydrogen	Sulfide	2.25		Volutio 1 atty Aoldo				
Turbidi DO (Tem				Alkali	nity	2.25 370.0	0					

					LOW	FLOW WE	ELL SAMPL					
Site Name:		Eko	onol			Well ID:	PMW-7D	_	Well Diamet	er:	2	Inches
Samplers:		EP	PS			Monitored Na	tural Attenuatio	n Sample Set (Y/N)?	-	Yes	_	
Purging I	Data							И	ATER VOLU	IME CALCULA	TION	
								= (Total Depth of	Well - Depth	To Water) x Ca	sing Volum	e per Foot
	Method:	Geo-Pump/I	Low Flow	Date/Time:	12/15	/08 13:10	_					
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		C ommonto
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
13:15	7.38	250		6.33			2.526	12.74		-357.4		
13:20	7.40	250		6.35			2.465	12.32		-352.1		
13:25	7.41	250		6.35		65	2.460	11.97		-363		
13:30	7.43	250		6.36		43	2.443	9.87		-353		
13:35	7.44	250		6.33		27	2.483	10.46		-353.5		
13:40	7.46	250		6.31		13	2.490	10.45		-356.2		
13:45	7.46	250		6.32		10	2.480	10.03		-354.6		
13:50	7.47	250		6.34		8	2.490	9.54		-358.1		
13:55	7.48	250	3.5	6.34	0.00	8	2.498	10.50		-352.5		
	_			4			•					
Sampling	i Data											
<u>, , , , , , , , , , , , , , , , , , , </u>	Dulu	Method:	Geo-Pur	n/l ow Flow		Date/Time [.]	12/15/2008	3 14·05	Total Volum	e of Water ourg	ed.	3.5
		Method:	Geo-Pun	p/Low Flow		Date/Time:	12/15/2008	14:05		e of Water purg	ed:	3.5
	neters		Geo-Pun	p/Low Flow	НАСНТ		12/15/2008			SAMPLE SET		
ïeld Paran	neters H	ORRIBA			HACH TE			Parameter	Bottl	SAMPLE SET	Pres.	Method
ield Paran	neters			P/Low Flow						SAMPLE SET		
Field Paran	neters H	ORRIBA	-0		n (mg/L)			Parameter	Bottl	SAMPLE SET	Pres.	Method
Field Paran p Spec. Cor	neters H	ORRIBA 6.34	10	Ferrous Irc	n (mg/L) nese	ST KITS 0.00		Parameter Select VOCs	Bottl 3-40n	SAMPLE SET e nL nL	Pres. HCI	Method EPA 8260
Field Paran p Spec. Cor Turbidit	H H H.	ORRIBA 6.34 2.49	0 18 10	Ferrous Irc	on (mg/L) nese ate	0.00 1.20	00	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells	Bottl 3-40n 3-40n	SAMPLE SET e nL nL nL	Pres. HCI HCI	Method EPA 8260 SW3810 modified
i <u>ield Paran</u> p Spec. Cor Turbidit DO (H H H. M.(mS/cm) y (NTU)	ORRIBA 6.34 2.49 8.00	10 18 10 10	Ferrous Irc Manga	n (mg/L) nese ate	0.00 1.20	00	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron	Bottl 3-40n 3-40n 3-40n	SAMPLE SET e nL nL nL plastic N	Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
Field Paran p Spec. Cor Turbidit DO (Tem	H H (mS/cm) y (NTU) mg/L)	ORRIBA 6.34 2.49 8.00 0.00	10 18 10 10	Ferrous Irc Manga Sulfa	n (mg/L) nese ate 2 Sulfide	0.00 1.20 >200.0 3850.0	00	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells only)	Bottl 3-40n 3-40n 3-40n 1-500 mL	SAMPLE SET e nL nL nL plastic N	Pres. HCI HCI H2SO4 itric acid	Method EPA 8260 SW3810 modified SW9060 lab specified

Comments: Probe not reading DO. Took DO reading with HACH kit to confirm DO = 0. MS, MSD, and DUP samples taken. DUP labeled as PMW-70D.

		Eko	onol			Well ID:	PMW-8D	_	Well Diame	er:	2	Inches
amplers:		Н	ΛP			Monitored Na	tural Attenuatio	n Sample Set (Y/N)?		Yes		
urging	Data							W	ATER VOLU	JME CALCUL	ATION	
<u>u giig</u>	<u>- utu</u>							= (Total Depth of				e per Foot
	Method:	Geo-Pump/	Low Flow	Date/Time:	12/15	08 11:24	_					
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		0
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		Comments
11:24	9.68	250		6.52		85	1.790	12.42		-345.8	initial	
11:29		250		6.64		75	1.882	11.81		-385		
11:34	9.60	250		6.67		75	1.892	12.04		-397.2		
11:39	9.31	250		6.67		100	1.922	12.11		-401		
11:44	9.28	250		6.63		190	1.970	12.06		-404.4		
11:49	9.28	250		6.58		140	2.050	12.12		-404.4		
11:54	9.26	250		6.53		130	2.129	12.05		-402.5		
11:59	9.26	250		6.50		130	2.220	11.84		-398.8		
12:04	9.26	250	3.5	6.51	0.00	120	2.224	11.85		-392.6		
		Method:	Geo-Pun	np/Low Flow		Date/Time:	12/15/2008	3 12:09	Total Volum	e of Water pu	rged:	3.5
	neters	Method: ORRIBA	Geo-Pun	np/Low Flow	НАСН ТЕ		12/15/2008	3 12:09 Parameter	Total Volum Bott	SAMPLE SET	rged: Pres.	3.5 Method
ield Paran	neters			np/Low Flow						SAMPLE SET		
ield Paran	neters H	ORRIBA	1		n (mg/L)			Parameter	Bott	SAMPLE SET	Pres.	Method
Spec. Cor	neters H	ORRIBA 6.5	1	Ferrous Irc	n (mg/L) nese	ST KITS 0.60		Parameter Select VOCs	Bott 3-40r	SAMPLE SET	Pres. HCI	Method EPA 8260
r <u>ield Paran</u> p Spec. Cor Turbidi	H H H.	ORRIBA 6.5 2.2	1 2 00	Ferrous Irc Manga	n (mg/L) nese ate	0.60 2.10	00	Parameter Select VOCs MEE RSK-175	Bott 3-40r 3-40r	SAMPLE SET	Pres. HCI HCI	Method EPA 8260 SW3810 modified
F Spec. Cor Turbidi DO (H H. H. M.(mS/cm) y (NTU)	ORRIBA 6.5 2.2 110.	1 2 00	Ferrous Irc Manga Sulfa	n (mg/L) nese ate	0.60 2.10	0	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells	Bott 3-40r 3-40r 3-40r	SAMPLE SET le nL nL nL plastic	Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
F Spec. Cor Turbidi DO (Tem	H H Id.(mS/cm) y (NTU) mg/L)	ORRIBA 6.5 2.2 110. 0.0	1 2 00	Ferrous Iro Manga Sulfa	n (mg/L) nese ate 2 Sulfide	0.60 2.10 >200.0 670.0	0	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells only)	Bott 3-40r 3-40r 3-40r 1-500 mL	SAMPLE SET le nL nL nL plastic	Pres. HCI HCI H2SO4 Nitric acid	Method EPA 8260 SW3810 modified SW9060 lab specified

					LOW	FLOW WI	ELL SAMPL	ING RECORD				
Site Name:		Ekc	nol		_	Well ID:	RMW-4D	_	Well Diamete	er:	2	Inches
Samplers:		EF	vs		_	Monitored Na	tural Attenuatio	n Sample Set (Y/N)?	_	Yes		
Purging	Data							И	ATER VOLU	ME CALCULA	ATION	
arging	<u> </u>							= (Total Depth of				ne per Foot
	Method:	Geo-Pump/	Low Flow	Date/Time:	12/11	/08 10:25						
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.	Temp.	TDS	ORP		a .
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	۵°	g/L	mv		Comments
10:30	9.68	200		6.34		>999	3.139	10.61		-346.6		
10:35	9.70	200		6.33		>999	3.153	10.62		-343.8		
10:40	9.72	240		6.32		>999	3.166	10.78		-342.1		
10:45	9.73	240		6.30		>999	3.172	11.15		-338.9		
10:50	9.74	240		6.30		>999	3.165	11.28		-336.2		
10:55	9.74	240		6.32		>999	3.137	11.42		-338.8		
11:00	9.76	300		6.42		960	2.956	11.63		-351.2		
11:05	9.78	300		6.45		780	2.878	11.98		-358.2		
11:10	9.80	300	3.0	6.48	0.00	740	2.880	11.96		-350.0		
Sampling Field Parar	neters	Method:	Geo-Pum	p/Low Flow	-	Date/Time:	12/11/2008		:	of Water pur	-	3
	Н	IORRIBA		-	HACH TEST KITS			Parameter	Bottle	•	Pres.	Method
ŗ	эΗ	6.4	3	Ferrous Irc	on (mg/L)	0.00		Select VOCs	3-40m	L	HCI	EPA 8260
Spec. Cor	nd.(mS/cm)	2.8	3	Manga	inese	0.00		MEE RSK-175	3-40m	L	HCI	SW3810 modified
Turbidi	ty (NTU)	740.0	00	Sulfa	ate	>200.	0	тос	3-40m	L	H2SO4	SW9060
DO (mg/L)		0.0	D	cc	CO ₂		00	Bromide, Chloride, Sulfate	1-250mL p	lastic	none	lab specified
DO (mg/L)	0.0			Hydrogen Sulfide							
	p.(°C)	11.9	6	Hydrogen	n Sulfide	2.00		Volatile Fatty Acids				lab specified
Tem			6	Alkali	inity	2.00 200.0 are only required	0	Volatile Fatty Acids				lab specified

Comments: Turned pump up to 240 mL/min at 10:45, turned up to 300 mL/min at 11:00. Probe not reading DO. Took DO reading with HACH kit to confirm DO = 0.

					LOW			ING RECORD				
ite Name:		Eko	onol		-	Well ID:	MW-7D	-	Well Diamet	er:	4	Inches
Samplers:		HN	ΛP		_	Monitored Na	tural Attenuatio	n Sample Set (Y/N)?	-	Yes		
Purging	Data							И	ATER VOLU	IME CALCU	JLATION	
								= (Total Depth of	Well - Depth	To Water) >	c Casing Volum	e per Foot
	Method:	Geo-Pump/	Low Flow	Date/Time:	12/12	2/08 9:21	. L					
Time	DTW	Pump Rate	Vol.	рН	DO	Turbidity	Spec. Cond.		TDS	ORP		Comments
24 hr.	ft.	ml/min.	gal.		mg/L	NTU	mS/cm	°C	g/L	mv		
9:21	NA	260		6.14		120	1.661	9.60		-116.3		
9:26	NA	260		5.99		100	1.661	9.39		-130.8		
9:31	NA	260		5.91		100	1.647	9.98		-137.3		
9:36	NA	260		5.73		150	1.894	10.14		-373.9		
9:40	NA	260		5.71		>999	1.687	9.73		-413.4		
9:46	NA	260		5.78		140	1.664	9.28		-379.2		
9:51	NA	260		5.88		>999	1.898	9.40		-435.8		
9:56	NA	260		6.00		25	1.900	9.36		-364.6		
10:01	NA	260		6.03		24	1.923	9.20		-344.9		
10:06	NA	260	4.0	6.03	0.00	19	1.946	9.32		-338.9		
Sampling Field Parar		Method:	Geo-Pur	p/Low Flow	_	Date/Time:	10/10/0000					
				_			12/12/2008			SAMPLE SE		4
		ORRIBA			НАСН ТЕ			Parameter	Botti	SAMPLE SE	T Pres.	Method
	H DH	ORRIBA 6.04	4	Ferrous Irc		ST KITS 0.00				SAMPLE SE	T	
p				Ferrous Irc Manga	on (mg/L)			Parameter	Botti	SAMPLE SE	T Pres.	Method
p Spec. Cor	ЭΗ	6.04	5		on (mg/L) nese	0.00		Parameter Select VOCs	Bottl 3-40n	SAMPLE SE	T Pres. HCI	Method EPA 8260
F Spec. Cor Turbidi	oH nd.(mS/cm)	6.04 1.95	5	Manga	on (mg/L) nese ate	0.00	00	Parameter Select VOCs MEE RSK-175	Bottl 3-40n 3-40n	SAMPLE SE e	T Pres. HCI HCI	Method EPA 8260 SW3810 modified
F Spec. Cor Turbidi DO (oH nd.(mS/cm) ty (NTU)	6.04 1.99 26.0	5 10 0	Manga	n (mg/L) nese ate	0.00 1.80 >200.0	0	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells	Bottl 3-40n 3-40n 3-40n	SAMPLE SE e nL nL nL plastic	T Pres. HCI HCI H2SO4	Method EPA 8260 SW3810 modified SW9060
F Spec. Cor Turbidi DO (Tem	nd.(mS/cm) ty (NTU) img/L)	6.04 1.99 26.0 0.00	5 10 0	Manga Sulfa	on (mg/L) nese ate 0 ₂ s Sulfide	0.00 1.80 >200.0 337.0	0	Parameter Select VOCs MEE RSK-175 TOC Dissolve Metals - total iron (Field filtered, Select wells only)	Bottl 3-40n 3-40n 3-40n 1-500 mL	SAMPLE SE e nL nL nL plastic	T Pres. HCI HCI H2SO4 Nitric acid	Method EPA 8260 SW3810 modified SW9060 lab specified

Comments: Probe not reading DO. Took DO reading with HACH kit to confirm DO = 0. Sheen on water - very dark at first.

Appendix D

Data Usability Summary Reports

DATA USABILITY SUMMARY REPORT

EKONOL FACILITY

Prepared For:

Group Environmental Management Company

4850 East 49th Street MBC 3-147 Cuyahoga Heights, Ohio 44125

Prepared By:

PARSONS

180 Lawrence Bell Drive, Suite 100 Williamsville, New York 14221 Phone: (716) 633-7074 Fax: (716) 633-7195

MARCH 2008

TABLE OF CONTENTS

PAGE

SECTION 1 DATA USABILITY SUMMARY	
1.1 LABORATORY DATA PACKAGES	
1.2 SAMPLING AND CHAIN-OF-CUSTODY	
1.3 LABORATORY ANALYTICAL METHODS	
1.3.1 Volatile Organic Analysis	
1.3.2 Metabolic Acid Analysis	
1.3.3 Arsenic, Manganese, and Selenium Analysis	
1.3.4 Other Parameters	
SECTION 2 DATA VALIDATION REPORT	
2.1 GROUNDWATER	
2.1.1 Volatiles Including Methane, Ethane, and Ethene	
2.1.2 Metabolic Acids	
2.1.3 Arsenic, Manganese, and Selenium	

LIST OF TABLES

Table 2.1-1	Summary of Sampl	e Analyses and Usal	bility – Groundwater	
-------------	------------------	---------------------	----------------------	--

LIST OF ATTACHMENTS

Attachment A Validated Laboratory Data

SECTION 1

DATA USABILITY SUMMARY

Groundwater samples were collected from the Ekonol site in Wheatfield, New York from January 14, 2008 through January 16, 2008. Analytical results from these samples were reviewed by Parsons for usability with respect to the following requirements:

- Work Plan,
- NYSDEC Analytical Services Protocol (ASP), and
- USEPA Region II Standard Operating Procedures (SOPs).

The analytical laboratory for this project was Columbia Analytical Services, Inc. (CAS). This laboratory is certified to conduct project analyses by the New York State Department of Health (NYDOH) Environmental Laboratory Approval Program (ELAP).

1.1 LABORATORY DATA PACKAGES

The laboratory data package turnaround time, defined as the time from sample receipt by the laboratory to receipt of the analytical data packages by Parsons, was 30 days on average for the Ekonol samples. Comments on specific quality control (QC) and other requirements are discussed in detail in the attached data validation report.

1.2 SAMPLING AND CHAIN-OF-CUSTODY

The samples were collected, properly preserved, shipped under a COC record, and received at the laboratory within one to two days of sampling. All samples were received intact and in good condition at CAS.

1.3 LABORATORY ANALYTICAL METHODS

The groundwater samples collected from the Ekonol site were analyzed for certain chlorinated volatile organic compounds (VOCs), methane, ethane, ethene, metabolic acids, arsenic, manganese, selenium, chloride, bromide, sulfate, and total organic carbon (TOC). Summaries of issues concerning these laboratory analyses are presented in Subsections 1.3.1 through 1.3.4. The data qualifications resulting from the data review and statements on the laboratory analytical precision, accuracy, representativeness, completeness, and comparability (PARCC) are discussed for each analytical method in Section 2. The laboratory data were reviewed and may be qualified with the following validation flags:

- "U" not detected at the value given,
- "UJ" estimated and not detected at the value given,
 - "J" estimated at the value given,
- "N" presumptive evidence at the value given, and
- "R" unusable value.

The validated laboratory data were tabulated and are presented in Attachment A.

1.3.1 Volatile Organic Analysis

The groundwater samples collected from the Ekonol site were analyzed for certain chlorinated VOCs using the NYSDEC ASP 8260B analytical method. In addition, the groundwater samples were analyzed for methane, ethane, and ethene using the USEPA approved RSK-175 analytical method. The reported results for these samples did not require qualification resulting from data validation. Therefore, the reported VOC and methane, ethane, and ethene analytical results were 100% complete (i.e., usable) based upon the groundwater data presented by CAS. PARCC requirements were met.

1.3.2 Metabolic Acid Analysis

The groundwater samples collected from the Ekonol site were analyzed for metabolic acids using the CAS SOP HPLC analytical method. The reported results for these samples did not require qualification resulting from data validation. Therefore, the reported metabolic acid analytical results were 100% complete (i.e., usable) based upon the groundwater data presented by CAS. PARCC requirements were met.

1.3.3 Arsenic, Manganese, and Selenium Analysis

The groundwater samples collected from the Ekonol site were analyzed for arsenic, manganese, and selenium using the NYSDEC ASP 6010B analytical method. The reported results for these samples did not require qualification resulting from data validation. Therefore, the reported metals analytical results were 100% complete (i.e., usable) based upon the groundwater data presented by CAS. PARCC requirements were met.

1.3.4 Other Parameters

The groundwater samples collected from the Ekonol site were analyzed for chloride, bromide, sulfate, and TOC using the NYSDEC ASP 300.0 and 415.1 analytical methods. Holding times, laboratory blanks, matrix spike/matrix spike duplicate, laboratory duplicate precision, laboratory control samples, and field duplicate precision were reviewed for compliance. The reported results for these parameters did not require qualification resulting from data validation. Therefore, the reported analytical results for these parameters were 100% complete (i.e., usable) based upon the groundwater data presented by CAS. PARCC requirements were met.

SECTION 2

DATA VALIDATION REPORT

2.1 GROUNDWATER

Data review has been completed for data packages generated by CAS containing groundwater samples collected from the Ekonol site. The specific samples contained in these data packages, the analyses performed, and a usability summary are presented in Table 2.1-1. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The validated laboratory data are presented in Attachment A.

Data validation was performed for all samples in accordance with the most current editions of the USEPA Region II SOPs and the NYSDEC ASP for organic and inorganic data review. This data validation and usability report is presented by analysis type.

2.1.1 Volatiles Including Methane, Ethane, and Ethene

The following items were reviewed for compliancy in the volatile analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy
- Laboratory control sample (LCS) recoveries
- Laboratory method blank and trip blank contamination
- GC/MS instrument performance
- Internal standard responses
- Initial and continuing calibrations
- Sample result identification and verification
- Field duplicate precision
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of MS/MSD precision and accuracy.

MS/MSD Precision and Accuracy

All MS/MSD precision (relative percent difference; RPD) and accuracy (percent recovery; %R) measurements were compliant and within QC acceptance limits with the exception of the low MS recoveries for trichloroethene (60%R; QC limit 70-130%R) and methane (41%R; QC

limit 50-150%R) during the spiked analyses of sample PMW-4D. Validation qualification of the unspiked sample PMW-4D was not warranted since MSD results were compliant.

<u>Usability</u>

All volatile groundwater sample results including methane, ethane, and ethene were considered usable following data review.

<u>Summary</u>

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The volatile groundwater data presented were 100% complete (i.e., usable). The validated laboratory data are tabulated and presented in Attachment A.

It was noted that samples PMW-3D, PMW-103D, PMW-4D, and PMW-8D exceeded calibration ranges for trichloroethene; and samples PMW-1D and RMW-4D exceeded instrument calibration ranges for methane. These samples were diluted and reanalyzed due to these exceedances. Therefore, associated trichloroethene and methane results from the reanalysis of these samples were reported for these samples in the validated laboratory data table in Attachment A.

2.1.2 Metabolic Acids

The following items were reviewed for compliancy in the metabolic acid analysis:

- Custody documentation
- Holding times
- MS/MSD precision and accuracy
- LCS recoveries
- Laboratory method blank contamination
- Initial and continuing calibrations
- Field duplicate precision
- Sample result identification and verification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols.

<u>Usability</u>

All metabolic acid sample results were considered usable following data review.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The metabolic acid data presented were 100% complete (i.e., usable). The validated laboratory data are tabulated and presented in Attachment A.

2.1.3 Arsenic, Manganese, and Selenium

The following items were reviewed for compliancy in the metals analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration verifications
- Initial and continuing calibration blank and laboratory preparation blank contamination
- Interference control sample
- Matrix spike recoveries
- Laboratory duplicate precision
- LCS recoveries
- ICP serial dilutions
- Field duplicate precision
- Sample result identification and verification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols.

<u>Usability</u>

All metals sample results were considered usable following data review.

<u>Summary</u>

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The metals data presented were 100% complete (i.e., usable). The validated groundwater laboratory data are tabulated and presented in Attachment A.

P:\443970 EKONOL\WP\EKONOLDUSR0308.DOC

TABLE 2.1-1

SUMMARY OF SAMPLE ANALYSES AND USABILITY EKONOL - GROUNDWATER

		SAMPLE		METHANE, ETHANE,			
SAMPLE ID	MATRIX	DATE	<u>VOCs</u>	<u>ETHENE</u>	ACIDS	METALS	<u>OTHER</u>
PMW-8D	WATER	1/14/08	OK	OK	OK		OK
PMW-6D	WATER	1/14/08	OK	OK	OK		OK
PMW-1D	WATER	1/15/08	OK	OK	OK	OK	OK
MW-7D	WATER	1/15/08	OK	OK	OK	OK	OK
TRIP BLANK	WATER	1/15/08	OK				
INJ-01	WATER	1/15/08	OK	OK	OK		OK
PMW-3D	WATER	1/15/08	OK	OK	OK	OK	OK
RMW-4D	WATER	1/15/08	OK	OK	OK		OK
PMW-103D	WATER	1/15/08	OK	OK	OK	OK	OK
PMW-5D	WATER	1/15/08	OK	OK	OK		OK
TRIP BLANK	WATER	1/15/08	OK				
PMW-4D	WATER	1/16/08	OK	OK	OK	OK	OK
PMW-7D	WATER	1/16/08	OK	OK	OK	OK	OK
PMW-2D	WATER	1/16/08	OK	ОК	OK		OK
TRIP BLANK	WATER	1/16/08	OK				
	TOTAL	SAMPLES:	15	12	12	6	12

NOTES: OK - Sample analysis considered valid and usable.

P:\443970 EKONOL\WP\EKONOLDUSR0308.DOC

ATTACHMENT A

VALIDATED LABORATORY DATA

								Dup of PMW-3D			
Ekonol Facilit	у	Sample ID:	INJ-01	MW-7D	PMW-1D	PMW-2D	PMW-3D	PMW-103D	PMW-4D	PMW-5D	PMW-6D
Validated Gro	undwater Analytical Results	Lab Sample Id:	1069551	1069177	1069176	1069573	1069560	1069561	1069571	1069568	1069175
Wheatfield, No	ew York	Source:	Columbia	Columbia	Columbia	Columbia	Columbia	Columbia	Columbia	Columbia	Columbia
January 2008	January 2008		R2841769	R2841769	R2841769	R2841769	R2841769	R2841769	R2841769	R2841769	R2841769
		Matrix:	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
		Sampled:	1/15/2008	1/15/2008	1/15/2008	1/16/2008	1/15/2008	1/15/2008	1/16/2008	1/15/2008	1/14/2008
		Validated:	3/4/2008	3/4/2008	3/4/2008	3/4/2008	3/4/2008	3/4/2008	3/4/2008	3/4/2008	3/4/2008
CAS NO.	COMPOUND	UNITS:									
	VOLATILES										
71-55-6	1,1,1-Trichloroethane	UG/L	5000 U	360 J	5000 U	5000 U	5000 U	5000 U	5000 U	750 J	500 J
75-31-3	1,1-Dichloroethane	UG/L	5000 U	5000 U	2500 U	5000 U					
75-35-4	1,1-Dichloroethene	UG/L	5000 U	5000 U	2500 U	5000 U					
75-00-3	Chloroethane	UG/L	5000 U	5000 U	2500 U	5000 U					
156-59-2	cis-1,2-Dichloroethene	UG/L	23000	26000	36000	27000	31000	31000	36000	11000	17000
127-18-4	Tetrachloroethene	UG/L	840 J	720 J	930 J	910 J	1400 J	1500 J	1100 J	1700 J	1000 J
156-60-5	trans-1,2-Dichloroethene	UG/L	5000 U	5000 U	2500 U	5000 U					
79-01-6	Trichloroethene	UG/L	100000	140000	180000	110000	240000	230000	220000	91000	100000
75-01-4	Vinyl chloride	UG/L	1600 J	690 J	2100	1600 J	640 J	630 J	690 J	420 J	820 J
	RSK-175 VOCs										
74-84-0	ETHANE	UG/L	7	12	5.1	6.9	9.6	9.3	10	5.9	6.5
74-85-1	Ethylene	UG/L	17	15	19	19	20	20	17	19	16
74-82-8	METHANE	UG/L	78	82	120	87	82	83	94	60	62
	METALS										
7440-38-2	Arsenic	UG/L		10 U	10 U		10 U	10 U	10 U		
7439-96-5	Manganese	UG/L		118	287		145	138	149		
7782-49-2	Selenium	UG/L		10 U	10 U		10 U	10 U	10 U		
	OTHER										
24959-67-9	Bromide	MG/L	1 U	1 U	1.04	1 U	1 U	1 U	1 U	1 U	1 U
16667-00-6	Chloride	MG/L	229	206	265	230	220	219	217	189	194
14806-79-8	Sulfate	MG/L	1480	1150	1460	1410	987	1110	1080	710	1030
7440-44-0	Total Organic Carbon	MG/L	6.46	7.79	11.8	7.62	11	10.3	12.2	4.8	6.68
	METABOLIC ACIDS										
64-19-7	ACETIC ACID	MG/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
107-92-6	BUTYRIC ACID	MG/L	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
50-21-5	LACTIC ACID	MG/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
79-09-4	PROPIONIC ACID	MG/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
127-17-3	PYRUVIC ACID	MG/L	0.5 U	0.5 U	0.5 U	0.5 U					

Ekonol Facili	ty	Sample ID:	PMW-7D	PMW-8D	RMW-4D	TB010908	TB011508-1	TB011508-2
Validated Gro	oundwater Analytical Results	Lab Sample Id:	1069572	1069174	1069550	1069178	1069574	1069909
Wheatfield, N	New York	Source:	Columbia	Columbia	Columbia	Columbia	Columbia	Columbia
January 2008		SDG:	R2841769	R2841769	R2841769	R2841769	R2841769	R2841769
-		Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
		Sampled:	1/16/2008	1/14/2008	1/15/2008	1/9/2008	1/15/2008	1/15/2008
			3/4/2008	3/4/2008	3/4/2008	3/4/2008	3/4/2008	3/4/2008
CAS NO.	COMPOUND	UNITS:						
	VOLATILES							
71-55-6	1,1,1-Trichloroethane	UG/L	5000 U	5000 U	5000 U	5 U	5 U	5 U
75-31-3	1,1-Dichloroethane	UG/L	5000 U	5000 U	5000 U	5 U	5 U	5 U
75-35-4	1,1-Dichloroethene	UG/L	5000 U	5000 U	5000 U	5 U	5 U	5 U
75-00-3	Chloroethane	UG/L	5000 U	5000 U	5000 U	5 U	5 U	5 U
156-59-2	cis-1,2-Dichloroethene	UG/L	27000	28000	18000	5 U	5 U	5 U
127-18-4	Tetrachloroethene	UG/L	950 J	1200 J	570 J	5 U	5 U	5 U
156-60-5	trans-1,2-Dichloroethene	UG/L	5000 U	5000 U	5000 U	5 U	5 U	5 U
79-01-6	Trichloroethene	UG/L	160000	240000	130000	5 U	5 U	5 U
75-01-4	Vinyl chloride	UG/L	860 J	1100 J	430 J	2 U	2 U	2 U
	RSK-175 VOCs							
74-84-0	ETHANE	UG/L	7.2	5.1	19			
74-85-1	Ethylene	UG/L	18	17	14			
74-82-8	METHANE	UG/L	80	78	110			
	METALS							
7440-38-2	Arsenic	UG/L	10 U					
7439-96-5	Manganese	UG/L	165					
7782-49-2	Selenium	UG/L	10 U					
	OTHER							
24959-67-9	Bromide	MG/L	1 U	1.09	1.11			
16667-00-6	Chloride	MG/L	226	222	135			
14806-79-8	Sulfate	MG/L	1170	1590	1340			
7440-44-0	Total Organic Carbon	MG/L	8.94	10.6	7.67			
	METABOLIC ACIDS							
64-19-7	ACETIC ACID	MG/L	1 U	1 U	1 U			
107-92-6	BUTYRIC ACID	MG/L	2 U	2 U	2 U			
50-21-5	LACTIC ACID	MG/L	1 U	1 U	1 U			
79-09-4	PROPIONIC ACID	MG/L	1 U	1 U	1 U			
127-17-3	PYRUVIC ACID	MG/L	0.5 U	0.5 U	0.5 U			

DATA USABILITY SUMMARY REPORT

EKONOL FACILITY

Prepared For:

Atlantic Richfield Company

4850 East 49th Street MBC 3-147 Cuyahoga Heights, Ohio 44125

Prepared By:

PARSONS

40 La Riviere Drive, Suite 350 Buffalo, New York 14202 (716) 541-0730

SEPTEMBER 2008

TABLE OF CONTENTS

SECTION 1 DATA USABILITY SUMMARY	1-1
1.1 LABORATORY DATA PACKAGES	1-1
1.2 SAMPLING AND CHAIN-OF-CUSTODY	1-1
 1.3 LABORATORY ANALYTICAL METHODS 1.3.1 Volatile Organic Analysis Including Methane, Ethane, and Ethene 1.3.2 Metals Analysis 1.3.3 Other Parameters 	1-2 1-2
SECTION 2 DATA VALIDATION REPORT	2-1
2.1 GROUNDWATER SAMPLES	2-1
2.1.1 Volatiles Including Methane, Ethane, and Ethene	2-1
2.1.2 Arsenic, Manganese, and Selenium	

LIST OF TABLES

Table 2.1-1	Summary of Sam	ple Analyses and	Usability - Groundwater.	
-------------	----------------	------------------	--------------------------	--

LIST OF ATTACHMENTS

Attachment A Validated Laboratory Data

SECTION 1

DATA USABILITY SUMMARY

Groundwater samples were collected from the Ekonol Facility site in Wheatfield, New York from July 22, 2008 through July 25, 2008. Analytical results from these samples were reviewed by Parsons for usability with respect to the following requirements:

- Work Plan,
- NYSDEC Analytical Services Protocol (ASP), and
- USEPA Region II Standard Operating Procedures (SOPs).

The analytical laboratory for this project was Columbia Analytical Services, Inc. (CAS). This laboratory is approved to conduct project analyses through the New York Department of Health (NYDOH) Environmental Laboratory Approval Program (ELAP).

1.1 LABORATORY DATA PACKAGES

The laboratory data package turnaround time, defined as the time from sample receipt by the laboratory to receipt of the analytical data packages by Parsons, was 31 days on average for the Ekonol samples. Comments on specific quality control (QC) and other requirements are discussed in detail in the attached data validation report.

1.2 SAMPLING AND CHAIN-OF-CUSTODY

The samples were collected, properly preserved, shipped under a COC record, and received at the laboratory within one day of sampling. All samples were received intact and in good condition at CAS. It was noted that samples collected on 7/24/08 and 7/25/08 were received at CAS at 13°C.

1.3 LABORATORY ANALYTICAL METHODS

The groundwater samples collected from the Ekonol site were analyzed for volatile organic compounds (VOCs) including methane, ethane, and ethane; the metals arsenic, manganese, selenium; metabolic acids; bromide; chloride; sulfate; and/or total organic carbon (TOC). Summaries of issues concerning these laboratory analyses are presented in Subsections 1.3.1 through 1.3.3. The data qualifications resulting from the data review and statements on the laboratory analytical precision, accuracy, representativeness, completeness, and comparability (PARCC) are discussed for each analytical method in Section 2. The laboratory data were reviewed and may be qualified with the following validation flags:

"U" - not detected at the value given,

- "UJ" estimated and not detected at the value given,
 - "J" estimated at the value given,

- "N" presumptive evidence at the value given, and
- "R" unusable value.

The validated laboratory data were tabulated and are presented in Attachment A.

1.3.1 Volatile Organic Analysis Including Methane, Ethane, and Ethene

The groundwater samples collected from the Ekonol site were analyzed for VOCs using the USEPA SW-846 8260B analytical method. In addition, certain groundwater samples were analyzed for methane, ethane, and ethene using the modified USEPA approved RSK-175 analytical method. Certain reported results for the VOC samples were considered estimated due to a noncompliant sample shipping container temperature upon laboratory receipt. Therefore, the reported VOC and methane, ethane, and ethene analytical results were 100% complete (i.e., usable) based upon the groundwater data presented. PARCC requirements were met.

1.3.2 Metals Analysis

Certain groundwater samples collected from the Ekonol site were analyzed for arsenic, manganese, and selenium using the USEPA SW-846 6010B analytical method. Certain reported results for the metals samples were considered estimated due to a noncompliant sample shipping container temperature upon laboratory receipt. Therefore, the reported metals analytical results were 100% complete (i.e., usable) based upon the groundwater data presented. PARCC requirements were met.

1.3.3 Other Parameters

Certain groundwater samples collected from the Ekonol site were analyzed for metabolic acids using a CAS HPLC modified analytical method; bromide, chloride, and sulfate using the USEPA 300.0 analytical method; and TOC using the USEPA SW-846 9060 analytical method. Holding times, laboratory blanks, matrix spike/matrix spike duplicate, laboratory duplicate precision, laboratory control samples, instrument calibrations, quantitation limits, sample result identification, and field duplicate precision were reviewed for compliance. Certain reported results for these samples were considered estimated due to a noncompliant sample shipping container temperature upon laboratory receipt. As a result, positive result positive results were qualified "J" and nondetected results qualified "UJ" for these samples. Therefore, the reported analytical results for the wet chemistry parameters were 100% complete (i.e., usable) based upon the groundwater data presented. PARCC requirements were met.

SECTION 2

DATA VALIDATION REPORT

2.1 GROUNDWATER SAMPLES

Data review has been completed for data packages generated by CAS containing groundwater samples collected from the Ekonol Facility site. The specific samples contained in these data packages, the analyses performed, and a usability summary are presented in Table 2.1-1. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The validated laboratory data are presented in Attachment A.

Data validation was performed for all samples in accordance with the most current editions of the USEPA Region II SOPs and the NYSDEC ASP for organic and inorganic data review. This data validation and usability report is presented by analysis type.

2.1.1 Volatiles Including Methane, Ethane, and Ethene

The following items were reviewed for compliancy in the volatile analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy
- Laboratory control sample (LCS) recoveries
- Laboratory method blank and trip blank contamination
- Instrument performance
- Initial and continuing calibrations
- Internal standard responses
- Field duplicate precision
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of MS/MSD precision and accuracy and blank contamination.

MS/MSD Precision and Accuracy

All MS/MSD precision (relative percent difference; RPD) and accuracy (percent recovery; %R) measurements were compliant and within QC acceptance limits for all spiked compounds with the exception of the high MSD recovery for 1,1-dichloroethene (132%R; QC limit 70-130%R) during the spiked analysis of sample PMW-8D. Validation qualification of the unspiked sample PMW-8D was not warranted since the associated MS recovery was compliant.

Blank Contamination

The laboratory blank METHOD BLANK (7/25/08) associated with all methane, ethane, and ethane samples contained methane at a concentration of 1.6 μ g/L. Validation qualification of the methane results was not warranted since sample concentrations were not affected by the contamination in this blank.

<u>Usability</u>

All volatile groundwater sample results including methane, ethane, and ethene were considered usable following data validation.

<u>Summary</u>

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The volatile groundwater presented were 100% (i.e., usable). The validated volatile laboratory data are tabulated and presented in Attachment A.

It was noted that samples collected on 7/24/08 and 7/25/08 were received at CAS at 13°C. Therefore, these samples were considered estimated, possibly biased low, with positive results qualified "J" and nondetected results qualified "UJ".

2.1.2 Arsenic, Manganese, and Selenium

The following items were reviewed for compliancy in the metals analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration, and preparation blank contamination
- Initial and continuing calibration verifications
- Interference check sample recoveries
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries

- Serial dilutions
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols.

Usability

All metals sample results were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The metals data presented were 100% complete (i.e., usable). The validated groundwater laboratory data are tabulated and presented in Attachment A.

It was noted that samples collected on 7/24/08 and 7/25/08 were received at CAS at 13°C. Therefore, these samples were considered estimated, possibly biased low, with positive results qualified "J" and nondetected results qualified "UJ".

TABLE 2.1-1

SUMMARY OF SAMPLE ANALYSES AND USABILITY EKONOL FACILITY – GROUNDWATER

SAMPLE ID	MATRIX	SAMPLE DATE	VOCa	METHANE, ETHANE, ETHENE	METALS	OTHER
			<u>VOCs</u>		METALS	
PMW-5D	WATER	7/22/08	OK	OK		OK
PMW-6D	WATER	7/22/08	OK	OK		OK
PMW-3D	WATER	7/22/08	OK	OK	OK	OK
PMW-4D	WATER	7/22/08	OK	OK		OK
PMW-2D	WATER	7/23/08	OK	OK		OK
PMW-8D	WATER	7/23/08	OK	OK		OK
TRIP BLANK	WATER	7/22/08	OK	OK		OK
INJ-01	WATER	7/24/08	OK	OK		OK
RMW-4D	WATER	7/24/08	OK	OK	OK	OK
PMW-7D	WATER	7/24/08	OK	OK	OK	OK
PMW-70D	WATER	7/24/08	OK	OK	OK	OK
MW-7D	WATER	7/25/08	OK	OK	OK	OK
PMW-1D	WATER	7/25/08	OK		OK	
	TOTAL	SAMPLES	13	12	6	12

NOTES: OK - Sample analysis considered valid and usable.

ATTACHMENT A

VALIDATED LABORATORY DATA

Ekonol Facili	ty	Sample ID:	INJ-01	MW-7D	PMW-1D	PMW-2D	PMW-3D	PMW-4D	PMW-5D	PMW-6D
Validated Gro	oundwater Analytical Results	Lab Sample Id:	1121095	1121099	1121100	1120235	1120233	1120234	1120231	1120232
Wheatfield, N	lew York	Source:	Columbia							
SDG: R2845	070	SDG:	R2845070							
		Matrix:	WATER							
		Sampled:	7/24/2008	7/25/2008	7/25/2008	7/23/2008	7/22/2008	7/22/2008	7/22/2008	7/22/2008
		Validated:	8/30/2008	8/30/2008	8/30/2008	8/30/2008	8/30/2008	8/30/2008	8/30/2008	8/30/2008
CAS NO.	COMPOUND	UNITS:								
	VOLATILES									
75-00-3	Chloroethane	UG/L	5000 UJ	5000 UJ	2500 UJ	5000 U	2500 U	5000 U	5000 U	5000 U
75-34-3	1,1-Dichloroethane	UG/L	5000 UJ	5000 UJ	2500 UJ	5000 U	2500 U	5000 U	5000 U	5000 U
75-35-4	1,1-Dichloroethene	UG/L	5000 UJ	5000 UJ	260 J	380 J	2500 U	350 J	5000 U	5000 U
156-59-2	cis-1,2-Dichloroethene	UG/L	150000 J	130000 J	82000 J	150000	83000	160000	100000	140000
156-60-5	trans-1,2-Dichloroethene	UG/L	380 J	360 J	200 J	580 J	210 J	510 J	430 J	380 J
127-18-4	Tetrachloroethene	UG/L	5000 UJ	5000 UJ	280 J	5000 U	2500 U	5000 U	5000 U	5000 U
71-55-6	1,1,1-Trichloroethane	UG/L	5000 UJ	5000 UJ	2500 UJ	5000 U	2500 U	5000 U	5000 U	5000 U
79-01-6	Trichloroethene	UG/L	2600 J	5000 UJ	17000 J	1100 J	540 J	3500 J	950 J	2200 J
75-01-4	Vinyl Chloride	UG/L	1600 J	900 J	3900 J	1800 J	760 J	1100 J	1800 J	1200 J
	RSK-175 VOCs									
74-84-0	Ethane	UG/L	9.2 J	16 J	3.8 J	7.6	16	12	10	11
74-85-1	Ethene	UG/L	52 J	28 J	16 J	34	24	38	72	37
74-82-8	Methane	UG/L	100 J	72 J	68 J	110	120	110	120	100
	METALS									
7440-38-2	Arsenic	UG/L		10 UJ	10 UJ		10 U	10 U		
7439-96-5	Manganese	UG/L		723 J	479 J		471	557		
7782-49-2	Selenium	UG/L		10 UJ	10 UJ		10 U	10 U		
	OTHER									
BROMIDE	Bromide	MG/L	6.64 J	25.2 J	2.04 J	21.7	11.2	9.95	8.51	27
16887-00-6	Chloride	MG/L	335 J	330 J	424 J	358	286	330	273	347
14808-79-8	Sulfate	MG/L	1150 J	1190 J	2200 J	1250	1170	1520	982	1220
TOC	Total Organic Carbon	MG/L	202 J	480 J	22.4 J	1020	1800	237	332	627
	FATTY ACIDS									
64-19-7	Acetic Acid	MG/L	160 J	280 J	33 J	210	170	180	170	210
107-92-6	Butyric Acid	MG/L	17 J	16 J	2 UJ	32	24	13	15	32
50-21-5	Lactic Acid	MG/L	1 UJ	1 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U
79-09-4	Propionic Acid	MG/L	140 J	390 J	1.6 J	260	170	190	120	240
127-17-3	Pyruvic Acid	MG/L	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U				

				Dup of]		
				PMW-7D			
Ekonol Facili	ty	Sample ID:	PMW-7D	PMW-70D	PMW-8D	RMW-4D	TRIP BLANK
Validated Gro	oundwater Analytical Results	Lab Sample Id:	1121097	1121098	1120236	1121096	1121161
Wheatfield, N	lew York	Source:	Columbia	Columbia	Columbia	Columbia	Columbia
SDG: R2845	070	SDG:	R2845070	R2845070	R2845070	R2845070	R2845070
		Matrix:	WATER	WATER	WATER	WATER	WATER
		Sampled:	7/24/2008	7/24/2008	7/23/2008	7/24/2008	7/22/2008
		Validated:	8/30/2008	8/30/2008	8/30/2008	8/30/2008	8/30/2008
CAS NO.	COMPOUND	UNITS:					
	VOLATILES						
75-00-3	Chloroethane	UG/L	5000 UJ	5000 UJ	1000 U	5000 UJ	5 U
75-34-3	1,1-Dichloroethane	UG/L	5000 UJ	5000 UJ	1000 U	5000 UJ	5 U
75-35-4	1,1-Dichloroethene	UG/L	5000 UJ	5000 UJ	240 J	5000 UJ	5 U
156-59-2	cis-1,2-Dichloroethene	UG/L	120000 J	110000 J	110000	100000 J	5 U
156-60-5	trans-1,2-Dichloroethene	UG/L	5000 UJ	5000 UJ	300 J	5000 UJ	5 U
127-18-4	Tetrachloroethene	UG/L	5000 UJ	5000 UJ	1000 U	5000 UJ	5 U
71-55-6	1,1,1-Trichloroethane	UG/L	5000 UJ	5000 UJ	1000 U	5000 UJ	5 U
79-01-6	Trichloroethene	UG/L	5000 UJ	430 J	2900 J	450 J	5 U
75-01-4	Vinyl Chloride	UG/L	940 J	1200 J	1500 J	1100 J	2 U
	RSK-175 VOCs						
74-84-0	Ethane	UG/L	7.4 J	6.6 J	7.2	15 J	
74-85-1	Ethene	UG/L	37 J	34 J	29	46 J	
74-82-8	Methane	UG/L	76 J	68 J	100	110 J	
	METALS						
7440-38-2	Arsenic	UG/L	10 UJ	10 UJ			
7439-96-5	Manganese	UG/L	497 J	476 J			
7782-49-2	Selenium	UG/L	10 UJ	10 UJ			
	OTHER						
BROMIDE	Bromide	MG/L	20.5 J	20.8 J	20.6	8.82 J	
16887-00-6	Chloride	MG/L	288 J	285 J	320	273 J	
14808-79-8	Sulfate	MG/L	984 J	977 J	1810	1060 J	
TOC	Total Organic Carbon	MG/L	417 J	382 J	551	387 J	
	FATTY ACIDS						
64-19-7	Acetic Acid	MG/L	290 J	290 J	170	210 J	
107-92-6	Butyric Acid	MG/L	17 J	18 J	14	13 J	
50-21-5	Lactic Acid	MG/L	1 UJ	1 UJ	1 U	1 UJ	
79-09-4	Propionic Acid	MG/L	300 J	300 J	160	190 J	
127-17-3	Pyruvic Acid	MG/L	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ	

DATA USABILITY SUMMARY REPORT

EKONOL FACILITY

Prepared For:

Atlantic Richfield Company

4850 East 49th Street MBC 3-147 Cuyahoga Heights, Ohio 44125

Prepared By:

PARSONS

40 La Riviere Drive, Suite 350 Buffalo, New York 14202 (716) 541-0730

NOVEMBER 2008

TABLE OF CONTENTS

SECTION 1 DATA USABILITY SUMMARY	. 1-1
1.1 LABORATORY DATA PACKAGES	. 1-1
1.2 SAMPLING AND CHAIN-OF-CUSTODY	. 1-1
 1.3 LABORATORY ANALYTICAL METHODS 1.3.1 Volatile Organic Analysis Including Methane, Ethane, and Ethene 1.3.2 Metals Analysis 1.3.3 Other Parameters 	. 1-2 . 1-2
SECTION 2 DATA VALIDATION REPORT	. 2-1
2.1 GROUNDWATER SAMPLES	. 2-1
2.1.1 Volatiles Including Methane, Ethane, and Ethene	. 2-1
2.1.2 Arsenic, Manganese, and Selenium	

LIST OF TABLES

Table 2.1-1	Summary of Sam	ole Analyses and	Usability - Groundwate	r2-4
-------------	----------------	------------------	------------------------	------

LIST OF ATTACHMENTS

Attachment A Validated Laboratory Data

DATA USABILITY SUMMARY

Groundwater samples were collected from the Ekonol Facility site in Wheatfield, New York from September 29, 2008 through October 1, 2008. Analytical results from these samples were reviewed by Parsons for usability with respect to the following requirements:

- Work Plan,
- NYSDEC Analytical Services Protocol (ASP), and
- USEPA Region II Standard Operating Procedures (SOPs).

The analytical laboratory for this project was Columbia Analytical Services, Inc. (CAS). This laboratory is approved to conduct project analyses through the New York Department of Health (NYDOH) Environmental Laboratory Approval Program (ELAP).

1.1 LABORATORY DATA PACKAGES

The laboratory data package turnaround time, defined as the time from sample receipt by the laboratory to receipt of the analytical data packages by Parsons, was 42 days on average for the Ekonol samples. Comments on specific quality control (QC) and other requirements are discussed in detail in the attached data validation report.

1.2 SAMPLING AND CHAIN-OF-CUSTODY

The samples were collected, properly preserved, shipped under a COC record, and received at the laboratory within one day of sampling. All samples were received intact and in good condition at CAS.

1.3 LABORATORY ANALYTICAL METHODS

The groundwater samples collected from the Ekonol site were analyzed for volatile organic compounds (VOCs) including methane, ethane, and ethane; the dissolved metals arsenic, manganese, selenium; metabolic acids; bromide; chloride; sulfate; and/or total organic carbon (TOC). Summaries of issues concerning these laboratory analyses are presented in Subsections 1.3.1 through 1.3.3. The data qualifications resulting from the data review and statements on the laboratory analytical precision, accuracy, representativeness, completeness, and comparability (PARCC) are discussed for each analytical method in Section 2. The laboratory data were reviewed and may be qualified with the following validation flags:

- "U" not detected at the value given,
- "UJ" estimated and not detected at the value given,
 - "J" estimated at the value given,

- "N" presumptive evidence at the value given, and
- "R" unusable value.

The validated laboratory data were tabulated and are presented in Attachment A.

1.3.1 Volatile Organic Analysis Including Methane, Ethane, and Ethene

The groundwater samples collected from the Ekonol site were analyzed for VOCs using the USEPA SW-846 8260B analytical method. In addition, certain groundwater samples were analyzed for methane, ethane, and ethene using the modified USEPA approved RSK-175 analytical method. Certain reported results for the VOC samples were considered estimated due to sample headspace prior to analysis. Therefore, the reported VOC and methane, ethane, and ethene analytical results were 100% complete (i.e., usable) based upon the groundwater data presented. PARCC requirements were met.

1.3.2 Metals Analysis

Certain groundwater samples collected from the Ekonol site were analyzed for arsenic, manganese, and selenium using the USEPA SW-846 6010B analytical method. The reported results for the metals samples did not require qualification resulting from data validation. Therefore, the reported metals analytical results were 100% complete (i.e., usable) based upon the groundwater data presented. PARCC requirements were met.

1.3.3 Other Parameters

Certain groundwater samples collected from the Ekonol site were analyzed for metabolic acids using a CAS HPLC modified analytical method; bromide, chloride, and sulfate using the USEPA 300.0 analytical method; and TOC using the USEPA SW-846 9060 analytical method. Holding times, laboratory blanks, matrix spike/matrix spike duplicate, laboratory duplicate precision, laboratory control samples, instrument calibrations, quantitation limits, sample result identification, and field duplicate precision were reviewed for compliance. The reported results for these samples did not require qualification resulting from data validation. Therefore, the reported analytical results for the wet chemistry parameters were 100% complete (i.e., usable) based upon the groundwater data presented. PARCC requirements were met.

DATA VALIDATION REPORT

2.1 GROUNDWATER SAMPLES

Data review has been completed for data packages generated by CAS containing groundwater samples collected from the Ekonol Facility site. The specific samples contained in these data packages, the analyses performed, and a usability summary are presented in Table 2.1-1. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The validated laboratory data are presented in Attachment A.

Data validation was performed for all samples in accordance with the most current editions of the USEPA Region II SOPs and the NYSDEC ASP for organic and inorganic data review. This data validation and usability report is presented by analysis type.

2.1.1 Volatiles Including Methane, Ethane, and Ethene

The following items were reviewed for compliancy in the volatile analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy
- Laboratory control sample (LCS) recoveries
- Laboratory method blank and trip blank contamination
- Instrument performance
- Initial and continuing calibrations
- Internal standard responses
- Field duplicate precision
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols.

Usability

All volatile groundwater sample results including methane, ethane, and ethene were considered usable following data validation.

<u>Summary</u>

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The volatile groundwater presented were 100% (i.e., usable). The validated volatile laboratory data are tabulated and presented in Attachment A.

It was noted that all of the VOC samples reacted with the acid preservative. As a result, significant headspace was observed in VOC sample RMW-4D. Therefore, the VOC results for this sample were considered estimated, possibly biased low, with positive results qualified "J" and nondetected results qualified "UJ".

2.1.2 Arsenic, Manganese, and Selenium

The following items were reviewed for compliancy in the metals analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration, and preparation blank contamination
- Initial and continuing calibration verifications
- Interference check sample recoveries
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- Serial dilutions
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols.

<u>Usability</u>

All metals sample results were considered usable following data validation.

<u>Summary</u>

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The metals data presented were 100% complete (i.e., usable). The validated groundwater laboratory data are tabulated and presented in Attachment A.

TABLE 2.1-1

SUMMARY OF SAMPLE ANALYSES AND USABILITY EKONOL FACILITY – GROUNDWATER

SAMPLE ID	MATRIX	SAMPLE DATE	VOCs	METHANE, ETHANE, ETHENE	METALS	OTHER
PMW-2D	WATER	9/29/08	OK	OK		OK
PMW-5D	WATER	9/29/08	OK	OK		OK
PMW-6D	WATER	9/30/08	OK	OK		OK
PMW-8D	WATER	9/30/08	OK	OK		OK
PMW-3D	WATER	9/30/08	OK	OK	OK	OK
PMW-103D	WATER	9/30/08	OK	OK	OK	OK
TS-INJ-1	WATER	9/30/08	OK	OK		OK
TRIP BLANK	WATER	9/30/08	OK			
RMW-4D	WATER	9/30/08	OK	OK		OK
PMW-1D	WATER	9/30/08	OK	OK	OK	OK
PMW-4D	WATER	9/30/08	OK	OK	OK	OK
PMW-7D	WATER	9/30/08	OK	OK	OK	OK
MW-7D	WATER	9/30/08	OK	OK	OK	OK
TRIP BLANK	WATER	10/1/08	OK			
	TOTAL SAMPLES		14	12	6	12

NOTES:

OK - Sample analysis considered valid and usable.

ATTACHMENT A

VALIDATED LABORATORY DATA

							Dup of PMW-3D				
Ekonol Facilit	у	Sample ID:	MW-7D	PMW-1D	PMW-2D	PMW-3D	PMW-103D	PMW-4D	PMW-5D	PMW-6D	PMW-7D
Validated Gro	undwater Analytical Results	Lab Sample Id:	1139922	1139917	1139516	1139520	1139521	1139921	1139517	1139518	1139923
Wheatfield, N	ew York	Source:	Columbia	Columbia	Columbia	Columbia	Columbia	Columbia	Columbia	Columbia	Columbia
SDG: R28461	80	SDG:	R2846180	R2846180	R2846180	R2846180	R2846180	R2846180	R2846180	R2846180	R2846180
		Matrix:	Water	Water	Water	Water	Water	Water	Water	Water	Water
		Sampled:	9/30/2008	10/1/2008	9/29/2008	9/29/2008	9/29/2008	9/30/2008	9/29/2008	9/29/2008	9/30/2008
		Validated:	11/19/2008	11/19/2008	11/19/2008	11/19/2008	11/19/2008	11/19/2008	11/19/2008	11/19/2008	11/19/2008
CAS NO.	COMPOUND	UNITS:									
	VOLATILES										
75-00-3	Chloroethane	ug/L	2500 U	5000 U	5000 U	250 U	250 U	1300 U	2500 U	2500 U	5000 U
75-34-3	1,1-Dichloroethane	ug/L	2500 U	5000 U	5000 U	250 U	250 U	1300 U	2500 U	2500 U	5000 U
75-35-4	1,1-Dichloroethene	ug/L	140 J	310 J	210 J	15 J	13 J	140 J	200 J	160 J	280 J
156-59-2	cis-1,2-Dichloroethene	ug/L	59000	110000	120000	9000	8800	91000	92000	92000	100000
156-60-5	trans-1,2-Dichloroethene	ug/L	740 J	1900 J	680 J	50 J	56 J	990 J	500 J	540 J	840 J
127-18-4	Tetrachloroethene	ug/L	2500 U	5000 U	5000 U	13 J	250 U	1300 U	2500 U	2500 U	5000 U
71-55-6	1,1,1-Trichloroethane	ug/L	2500 U	5000 U	5000 U	16 J	17 J	1300 U	2500 U	2500 U	5000 U
79-01-6	Trichloroethene	ug/L	1200 J	38000	3200 J	1000	1000	5900	4800	2800	2300 J
75-01-4	Vinyl Chloride	ug/L	1500	2200	2600	99 J	130	1400	2400	1900 J	1700 J
74-84-0	Ethane	ug/L	4.4	14	5.8	35	28	9.1	8.8	12	7.5
74-85-1	Ethene	ug/L	13	23	16	4.7	3.8	10	18	14	13
74-82-8	Methane	ug/L	55	230	89	160	140	77	85	71	59
	METALS										
7440-38-2	Arsenic, Dissolved	ug/L	10 U	10 U		10 U	10 U	10 U			10 U
7439-96-5	Manganese, Dissolved	ug/L	506	325		70.7	56.9	360			388
7782-49-2	Selenium, Dissolved	ug/L	10 U	10 U		10 U	10 U	10 U			10 U
	OTHER										
BROMIDE	Bromide	mg/L	3.93	1 U	8.7	5.06	5.11	3.95	4.43	5.78	4.98
16887-00-6	Chloride	mg/L	260	833	552	168	166	245	977	446	219
14808-79-8	Sulfate	mg/L	1280	1210	843	1010	1010	108	730	610	724
TOC	Total Organic Carbon	mg/L	212	33.1	748	558	514	227	383	565	531
ACETIC ACI		mg/L	320	22	370	140	140	170	370	510	660
	Butanoic Acid	mg/L	5.6	2.9	73	48	47	12	28	52	51
LACTIC ACI		mg/L	1 U	1.3	1 U	6.5	6.6	1 U	1 U	1 U	1 U
PROPIONIC	Propionic Acid	mg/L	59	6.7	240	75	74	55	130	200	190
PYRUVIC AC	Pyruvic Acid	mg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				

Ekonol Facilit	ty	Sample ID:	PMW-8D	RMW-4D	TS-INJ-1	TB092908	TB093008
Validated Gro	oundwater Analytical Results	Lab Sample Id:	1139519	1139919	1139522	1139523	1139924
Wheatfield, N	lew York	Source:	Columbia	Columbia	Columbia	Columbia	Columbia
SDG: R2846	180	SDG:	R2846180	R2846180	R2846180	R2846180	R2846180
		Matrix:	Water	Water	Water	Water	Water
		Sampled:	9/29/2008	9/30/2008	9/29/2008	9/29/2008	9/30/2008
		Validated:	11/19/2008	11/19/2008	11/19/2008	11/19/2008	11/19/2008
CAS NO.	COMPOUND	UNITS:					
	VOLATILES						
75-00-3	Chloroethane	ug/L	2500 U	1300 UJ	5000 U	5 U	5 U
75-34-3	1,1-Dichloroethane	ug/L	2500 U	1300 UJ	5000 U	5 U	5 U
75-35-4	1,1-Dichloroethene	ug/L	200 J	75 J	210 J	5 U	5 U
156-59-2	cis-1,2-Dichloroethene	ug/L	76000	38000 J	110000	5 U	5 U
156-60-5	trans-1,2-Dichloroethene	ug/L	420 J	370 J	920 J	5 U	5 U
127-18-4	Tetrachloroethene	ug/L	240 J	1300 UJ	5000 U	5 U	5 U
71-55-6	1,1,1-Trichloroethane	ug/L	2500 U	1300 UJ	5000 U	5 U	5 U
79-01-6	Trichloroethene	ug/L	34000	3700 J	3300 J	5 U	5 U
75-01-4	Vinyl Chloride	ug/L	2100	680 J	2900 J	2 U	2 U
74-84-0	Ethane	ug/L	5.9	23	6.5		
74-85-1	Ethene	ug/L	16	7.1	16		
74-82-8	Methane	ug/L	92	130	100		
	METALS	-					
7440-38-2	Arsenic, Dissolved	ug/L					
7439-96-5	Manganese, Dissolved	ug/L					
7782-49-2	Selenium, Dissolved	ug/L					
	OTHER						
BROMIDE	Bromide	mg/L	4.72	2.59	3.51		
16887-00-6	Chloride	mg/L	283	260	539		
14808-79-8	Sulfate	mg/L	2410	810	917		
TOC	Total Organic Carbon	mg/L	190	294	333		
ACETIC ACI	I Acetic Acid	mg/L	200	340	310		
	AButanoic Acid	mg/L	13	27	35		
LACTIC ACI	I Lactic Acid	mg/L	1 U	1 U	1 U		
PROPIONIC	APropionic Acid	mg/L	70	120	130		
	C Pyruvic Acid	mg/L	0.5 U	0.5 U	0.5 U		

DATA USABILITY SUMMARY REPORT

EKONOL FACILITY

Prepared For:

Atlantic Richfield Company

4850 East 49th Street MBC 3-147 Cuyahoga Heights, Ohio 44125

Prepared By:

PARSONS

40 La Riviere Drive, Suite 350 Buffalo, New York 14202 (716) 541-0730

FEBRUARY 2009

TABLE OF CONTENTS

SECTION 1 DATA USABILITY SUMMARY	
1.1 LABORATORY DATA PACKAGES	
1.2 SAMPLING AND CHAIN-OF-CUSTODY	1-1
 1.3 LABORATORY ANALYTICAL METHODS 1.3.1 Volatile Organic Analysis Including Methane, Ethane, and Ether 1.3.2 Metals Analysis 1.3.3 Other Parameters	ene 1-2
SECTION 2 DATA VALIDATION REPORT	
 2.1 GROUNDWATER SAMPLES 2.1.1 Volatiles Including Methane, Ethane, and Ethene	

LIST OF TABLES

Table 2.1-1	Summary of Sam	ole Analyses and	Usability - Groundwate	r2-4
-------------	----------------	------------------	------------------------	------

LIST OF ATTACHMENTS

Attachment A Validated Laboratory Data

DATA USABILITY SUMMARY

Groundwater samples were collected from the Ekonol Facility site in Wheatfield, New York from December 11, 2008 through December 15, 2008. Analytical results from these samples were reviewed by Parsons for usability with respect to the following requirements:

- Work Plan,
- NYSDEC Analytical Services Protocol (ASP), and
- USEPA Region II Standard Operating Procedures (SOPs).

The analytical laboratory for this project was Columbia Analytical Services, Inc. (CAS). This laboratory is approved to conduct project analyses through the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP).

1.1 LABORATORY DATA PACKAGES

The laboratory data package turnaround time, defined as the time from sample receipt by the laboratory to receipt of the analytical data packages by Parsons, was 37 days on average for the Ekonol samples. Comments on specific quality control (QC) and other requirements are discussed in detail in the attached data validation report.

1.2 SAMPLING AND CHAIN-OF-CUSTODY

The samples were collected, properly preserved, shipped under a COC record, and received at the laboratory within one day of sampling. All samples were received intact and in good condition at CAS.

1.3 LABORATORY ANALYTICAL METHODS

The groundwater samples collected from the Ekonol site were analyzed for volatile organic compounds (VOCs) including methane, ethane, and ethane; the dissolved metals arsenic, manganese, and selenium; metabolic acids; bromide; chloride; sulfate; and/or total organic carbon (TOC). Summaries of issues concerning these laboratory analyses are presented in Subsections 1.3.1 through 1.3.3. The data qualifications resulting from the data review and statements on the laboratory analytical precision, accuracy, representativeness, completeness, and comparability (PARCC) are discussed for each analytical method in Section 2. The laboratory data were reviewed and may be qualified with the following validation flags:

- "U" not detected at the value given,
- "UJ" estimated and not detected at the value given,
 - "J" estimated at the value given,

- "N" presumptive evidence at the value given, and
- "R" unusable value.

The validated laboratory data were tabulated and are presented in Attachment A.

1.3.1 Volatile Organic Analysis Including Methane, Ethane, and Ethene

The groundwater samples collected from the Ekonol site were analyzed for VOCs using the USEPA SW-846 8260B analytical method. In addition, these groundwater samples were analyzed for methane, ethane, and ethene using the modified USEPA approved RSK-175 analytical method. Certain reported results for these samples were considered estimated due to noncompliant sample holding times and field duplicate precision. Therefore, the reported VOC and methane, ethane, and ethene analytical results were 100% complete (i.e., usable) based upon the groundwater data presented. PARCC requirements were met.

1.3.2 Metals Analysis

Certain groundwater samples collected from the Ekonol site were analyzed for dissolved arsenic, manganese, and selenium using the USEPA SW-846 6010B analytical method. The reported results for the metals samples did not require qualification resulting from data validation. Therefore, the reported metals analytical results were 100% complete (i.e., usable) based upon the groundwater data presented. PARCC requirements were met.

1.3.3 Other Parameters

The groundwater samples collected from the Ekonol site were analyzed for metabolic acids using a CAS HPLC modified analytical method; bromide, chloride, and sulfate using the USEPA 300.0 analytical method; and TOC using the USEPA SW-846 9060 analytical method. Holding times, laboratory blanks, matrix spike/matrix spike duplicate, laboratory duplicate precision, laboratory control samples, instrument calibrations, quantitation limits, sample result identification, and field duplicate precision were reviewed for compliance. The reported results for these samples did not require qualification resulting from data validation with the exception of the positive butyric acid results for sample PMW-7D and its field duplicate sample PMW-70D. These results were considered estimated and qualified "J" due to a high field duplicate precision (64% RPD). Therefore, the reported analytical results for the wet chemistry parameters were 100% complete (i.e., usable) based upon the groundwater data presented. PARCC requirements were met.

DATA VALIDATION REPORT

2.1 GROUNDWATER SAMPLES

Data review has been completed for data packages generated by CAS containing groundwater samples collected from the Ekonol Facility site. The specific samples contained in these data packages, the analyses performed, and a usability summary are presented in Table 2.1-1. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The validated laboratory data are presented in Attachment A.

Data validation was performed for all samples in accordance with the most current editions of the USEPA Region II SOPs and the NYSDEC ASP for organic and inorganic data review. This data validation and usability report is presented by analysis type.

2.1.1 Volatiles Including Methane, Ethane, and Ethene

The following items were reviewed for compliancy in the volatile analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy
- Laboratory control sample (LCS) recoveries
- Laboratory method blank and trip blank contamination
- Instrument performance
- Initial and continuing calibrations
- Internal standard responses
- Field duplicate precision
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of holding times and field duplicate precision.

PARSONS

Holding Times

All holding times for volatile analysis were compliant and within the 14-day requirement for all samples with the exception of the diluted reanalysis samples INJ-01DL and PMW-1DDL which exceeded the holding time requirement by one to three days. Therefore, the results for these samples were considered estimated, possibly biased low, with positive results qualified "J" and nondetected results qualified "UJ".

Field Duplicate Precision

The precision (relative percent difference; RPD) measurements for the field duplicate pair PMW-7D and PMW-70D were considered acceptable with the exception of the precision results for methane (152%RPD), ethane (50%RPD), and ethene (83%RPD). Therefore, the results for these compounds were considered estimated and qualified "J" for PMW-7D and PMW-70D.

<u>Usability</u>

All volatile groundwater sample results including methane, ethane, and ethene were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The volatile groundwater presented were 100% (i.e., usable). The validated volatile laboratory data are tabulated and presented in Attachment A.

It was noted that the samples PMW-1D, PMW-2D, INJ-01, PMW-7D, and PMW-70D were diluted and reanalyzed due to the exceedance in instrument calibration ranges for cis-1,2-dichloroethene; sample PMW-8D was diluted and reanalyzed due to the exceedance in instrument calibration ranges for trichloroethene; and samples PMW-1D, PMW-4D, PMW-5D, PMW-7D, PMW-7D, and RMW-4D were diluted and reanalyzed due to the exceedance in instrument calibration ranges for methane. Therefore, the diluted result for these compounds was reported for these samples in the validated laboratory data table in Attachment A.

2.1.2 Dissolved Arsenic, Manganese, and Selenium

The following items were reviewed for compliancy in the metals analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration, and preparation blank contamination
- Initial and continuing calibration verifications
- Interference check sample recoveries
- Matrix spike recoveries

- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- Serial dilutions
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols.

Usability

All metals sample results were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The metals data presented were 100% complete (i.e., usable). The validated groundwater laboratory data are tabulated and presented in Attachment A.

TABLE 2.1-1

SUMMARY OF SAMPLE ANALYSES AND USABILITY EKONOL FACILITY – GROUNDWATER

SAMPLE ID	MATRIX	SAMPLE DATE	VOCs	METHANE, ETHANE, ETHENE	METALS	OTHER
					METALS	
PMW-2D	WATER	12/11/08	OK	OK		OK
PMW-3D	WATER	12/11/08	OK	OK	OK	OK
PMW-4D	WATER	12/11/08	OK	OK	OK	OK
PMW-6D	WATER	12/11/08	OK	OK		OK
RMW-4D	WATER	12/11/08	OK	OK		OK
PMW-1D	WATER	12/12/08	OK	OK	OK	OK
MW-7D	WATER	12/12/08	OK	OK	OK	OK
PMW-6D	WATER	12/15/08	OK	OK		OK
PMW-7D	WATER	12/15/08	OK	OK	OK	OK
PMW-8D	WATER	12/15/08	OK	OK		OK
PMW-70D	WATER	12/15/08	OK	OK	OK	OK
INJ-01	WATER	12/15/08	OK	OK		OK
TRIP BLANK	WATER	12/15/08	OK	OK		
	TOTAL	SAMPLES	13	13	6	12

NOTES:

OK - Sample analysis considered valid and usable.

P:\BP PROGRAM\443970-BP EKONOL\EKONOLDUSR1208.DOC February 11, 2009

ATTACHMENT A

VALIDATED LABORATORY DATA

Ekonol Facilit	у	Sample ID:	INJ-01	MW-7D	PMW-1D	PMW-2D	PMW-3D	PMW-4D	PMW-5D
Validated Gro	undwater Analytical Results	Lab Sample Id:	1163255	1162556	1162555	1162550	1162554	1162551	1162553
Wheatfield, No	ew York	Source:	Columbia						
SDG: R28477	751	SDG:	R2847751						
		Matrix:	WATER						
		Sampled:	12/15/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008
		Validated:	2/6/2009	2/6/2009	2/6/2009	2/6/2009	2/6/2009	2/6/2009	2/6/2009
CAS NO.	COMPOUND	UNITS:							
	VOLATILES								
75-00-3	Chloroethane	UG/L	1300 U	2500 U	2500 U	1000 U	250 U	1000 U	2500 U
75-34-3	1,1-Dichloroethane	UG/L	62 J	2500 U	2500 U	40 J	250 U	1000 U	100 J
75-35-4	1,1-Dichloroethene	UG/L	220 J	2500 U	280 J	88 J	250 U	1000 U	110 J
156-59-2	cis-1,2-Dichloroethene	UG/L	120000 J	53000	130000 J	76000	5600	22000	71000
156-60-5	trans-1,2-Dichloroethene	UG/L	1100 J	350 J	1500 J	260 J	26 J	140 J	540 J
127-18-4	Tetrachloroethene	UG/L	100 J	2500 U	2500 U	1000 U	250 U	1000 U	2500 U
71-55-6	1,1,1-Trichloroethane	UG/L	1300 U	2500 U	2500 U	1000 U	250 U	1000 U	2500 U
79-01-6	Trichloroethene	UG/L	14000	2600	14000	2300	550	1000	6900
75-01-4	Vinyl Chloride	UG/L	3500	1400 J	4800	1600	130 J	680 J	1300 J
	RSK-175								
74-84-0	Ethane	UG/L	6.4	5.3	18	6.6	6.4	17	15
74-85-1	Ethene	UG/L	12	15	25	9.3	8.7	14	21
74-82-8	Methane	UG/L	66	62	200	39	36	120	100
	METALS, DISSOLVED								
7440-38-2	Arsenic	UG/L		10 U	10 U		10 U	10 U	
7439-96-5	Manganese	UG/L		437	377		76.4	116	
7782-49-2	Selenium	UG/L		10 U	10 U		10 U	10 U	
	WET CHEMISTRY								
BROMIDE	Bromide	MG/L	5.2	3.67	2.11	17.4	2.43	2.48	3.48
16887-00-6	Chloride	MG/L	564	232	482	442	172	120	216
14808-79-8	Sulfate	MG/L	260	649	1530	270	750	635	352
TOC	Total Organic Carbon	MG/L	441	278	44.5	194	204	113	196
	FATTY ACIDS								
ACETIC ACI	Acetic Acid	MG/L	340	420	20	560	140	150	230
BUTYRIC	Butyric Acid	MG/L	120	10 U	2 U	210	56	2 U	24
LACTIC ACI	Lactic Acid	MG/L	2 U	5 U	1 U	5 U	1 U	1 U	2 U
PROPIONIC A	Propionic Acid	MG/L	160	45	6.3	320	42	12	54
PYRUVIC AC	Pyruvic Acid	MG/L	1 U	2.5 U	0.5 U	2.5 U	0.5 U	0.5 U	1 U

					Dup of			
			PMW-6D	PMW-7D	PMW-7D PMW-70D	PMW-8D	RMW-4D	
Ekonol Facilit	•	Sample ID:						TRIP BLANK
	undwater Analytical Results	Lab Sample Id:	1163253	1163257	1163258	1163250	1162552	1163392
Wheatfield, N		Source:	Columbia	Columbia	Columbia	Columbia	Columbia	Columbia
SDG: R28477	/51	SDG:	R2847751	R2847751	R2847751	R2847751	R2847751	R2847751
		Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
		Sampled:	12/15/2008	12/15/2008	12/15/2008	12/15/2008	12/11/2008	12/15/2008
<u> </u>		Validated:	2/6/2009	2/6/2009	2/6/2009	2/6/2009	2/6/2009	2/6/2009
CAS NO.	COMPOUND	UNITS:						
	VOLATILES							
75-00-3	Chloroethane	UG/L	500 U	1000 U	1300 U	1300 U	250 U	5 U
75-34-3	1,1-Dichloroethane	UG/L	500 U	66 J	80 J	1300 U	250 U	5 U
75-35-4	1,1-Dichloroethene	UG/L	29 J	110 J	110 J	95 J	250 U	5 U
156-59-2	cis-1,2-Dichloroethene	UG/L	17000	84000	92000	48000	5400	5 U
156-60-5	trans-1,2-Dichloroethene	UG/L	230 J	400 J	580 J	310 J	28 J	5 U
127-18-4	Tetrachloroethene	UG/L	500 U	1000 U	1300 U	600 J	250 U	5 U
71-55-6	1,1,1-Trichloroethane	UG/L	41 J	1000 U	1300 U	1300 U	250 U	5 U
79-01-6	Trichloroethene	UG/L	310 J	2400	2900	66000	660	5 U
75-01-4	Vinyl Chloride	UG/L	170 J	2600	2600	2300	79 J	2 U
	RSK-175							
74-84-0	Ethane	UG/L	3.6	7.8 J	13 J	6.2	28	1 U
74-85-1	Ethene	UG/L	12	6.3 J	15 J	2	2.1	1 U
74-82-8	Methane	UG/L	56	230 J	1700 J	4.6	130	2 U
	METALS, DISSOLVED							
7440-38-2	Arsenic	UG/L		10 U	10 U			
7439-96-5	Manganese	UG/L		337	299			
7782-49-2	Selenium	UG/L		10 U	10 U			
	WET CHEMISTRY							
BROMIDE	Bromide	MG/L	1.06	5.39	5.82	3.8	1.91	
16887-00-6	Chloride	MG/L	676	213	188	254	743	
14808-79-8	Sulfate	MG/L	4.02	72.3	54.5	1210	130	
TOC	Total Organic Carbon	MG/L	266	476	496	263	168	
	FATTY ACIDS							
ACETIC ACI	Acetic Acid	MG/L	180	560	660	230	74	
BUTYRIC	Butyric Acid	MG/L	37	18 J	35 J	37	18	
LACTIC ACI	2	MG/L	1 U	5 U	10 U	2 U	1 U	
	A Propionic Acid	MG/L	26	51	62	39	34	
PYRUVIC AC		MG/L	0.5 U	2.5 U	5 U	1 U	0.5 U	