

New York State Office of People with Developmental Disabilities

2018 PERIODIC REVIEW REPORT

FORMER GOWANDA DAY HABILITATION CENTER - SITE NO: V00463

Bergmann

Office: 280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135 www.bergmannpc.com

Issued: January 21, 2020

TABLE OF CONTENTS

GROUND	5
JNDWATER SAMPLING OVERVIEW AND METHODS4	ŀ
Maintenance Activities	1
L GROUNDWATER FLOW CHARACTERIZATION	;
RATORY ANALYSIS	;
atory Analysis of Groundwater Samples	7 }
EDIATION SYSTEM EFFICIENCY9)
t of Impacted Groundwater	1 1
	INDWATER SAMPLING OVERVIEW AND METHODS 4 Maintenance Activities 4 dwater Treatment System and Soil Vapor Extraction System Maintenance 4 dwater Field Monitoring and Sampling Activities 4 L GROUNDWATER FLOW CHARACTERIZATION 5 RATORY ANALYSIS 6 atory Analysis of Groundwater Samples 6 pring Well Groundwater Analysis Summary 7 Well Groundwater Analysis Summary 8 ery Well Groundwater Analysis Summary 8 DIATION SYSTEM EFFICIENCY 9 of Impacted Groundwater 9 dwater Analytical Results 11

Tables

Table 1: Percent Reductions in Total groundwate	er VOCs
---	---------

Figures

Figure 1: Monitoring and Recovery Well Locations

Charts

Chart 1: Contamination Reduction, Gowanda Day Habilitation Center

Appendices

- Appendix A: Quarterly Groundwater
 - April 2018 Characterization Report
 - May 2018 Characterization Report
 - August 2018 Characterization Report
 - November 2018 Characterization Report
- Appendix B: IC/EC Checklist

1.0 BACKGROUND

NYSDEC Site Number V00463, the former Gowanda Day Habilitation Center facility, is located at 4 Industrial Place, Gowanda, New York. The New York State Office of People with Developmental Disabilities (OPWDD), as the volunteer, has entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463, effective August 16, 2001.

The Gowanda Day Habilitation site (the Site) consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between 1948 and 1987 and was renovated in 1987 and 1988. New York State agencies have occupied the building since 1982 and New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001 on-site operations ceased. Bergmann investigated the nature and extent of contamination resulting from historical underground chemical storage at the Gowanda Day Habilitation Center in 2003 Site Investigation and 2004 Supplemental Site Investigation reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloromethane, (Cis-DCE) trans-1,2-Dichloroethene (Trans-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, activation of the Groundwater Treatment System (GTS) and Soil Vapor Extraction (SVE) System occurred on May 10, 2005. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to monitoring well MW-17 in November 2008. The GTS consists of seven (7) groundwater recovery wells (four dual-phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to treat recovered groundwater. The SVE System consists of a lobe blower and piping network which extract vapors and pass them through two 10,000 lb carbon filters. Once filtered, the vapors are discharged to the outdoor air. The attached Figure 1 depicts the site layout with regard to monitoring and recovery wells.

Recovered groundwater was formerly pumped to an equalization tank for settling of sediment. The groundwater was discharged to the Village of Gowanda Sewage Treatment Plant (STP) via the sanitary sewer in accordance with a Gowanda Sewer Use Permit. A Volatile Organic Compound (VOC) Groundwater Treatment Agreement between OPWDD and the Village was active until the shutdown of the system, discussed below in Section 2.2. As the system is currently shut down, water was not discharged to the sewer for the 2018 calendar year. If the system is re-activated, a new agreement will be executed between OPWDD and the Village.

In January 2008, OPWDD decommissioned the building. Bergmann winterized the GTS with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated unit heater in the treatment area for the GTS and SVE (former Machine Shop). The building remains unoccupied and in a state of disrepair for the 2018 year. Numerous roof leaks and damage relative to two (2) flooding events in 2009 and 2014 have introduced excessive mold to interior spaces. The roof leaks and mold do not appear to be impacting the remedial system at this time. OPWDD and/or their agents will perform periodic inspections of the building for potential structural deficiency issues and will perform limited building envelope repairs as necessary to address any significant site safety concerns.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the 2018 sampling events, all wells except MW-19R and MW-21 were accessible and the integrity of the wells was not compromised. MW-19R and MW-21 are paved over as first noted by Bergmann in the August 2017 Quarterly Characteristic Report. Bergmann will contact the Town of Gowanda and schedule these wells to be recovered in the second half of the 2019 calendar year. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of redevelopment activities performed on August 19, 2015 to clear sediment from wells after an in-situ chemical oxidation (ISCO) injection. All stand pipes and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stand pipes. The monitoring wells within the building are secured with flush-mount roadway covers.

Replacement to damaged flush-mount protective roadway boxes was completed on June 27, 2007. Well rehabilitation and silt removal was conducted June 25 – 26, 2007 and August 19, 2015.

2.2 GROUNDWATER TREATMENT SYSTEM AND SOIL VAPOR EXTRACTION SYSTEM MAINTENANCE

During an October 2013 site visit, a section of piping broke away from the SVE due to system pressure. The SVE system was shut down until a repair could be made. Bergmann assessed the GTS during a January 2014 site visit and determined that two of the seven well pumps were operational. The remaining pumps appeared to be damaged. Bergmann replaced the SVE pipe section and inspected the well pumps for damage. The pumps appeared to be in poor condition and were removed from the wells. DR-1, DR-2, DR-3, DR-4 were all pulled. DR-4 was coated in a black sludge-like material and had a hole in the casing. DR-2, DR-3 and G-2 were coated in orange-brown sediment and the hose and pump effluent lines were clogged with sediment. DR-1 was also coated in orange-brown sediment.

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann performed an ISCO remediation in May 2015 and a second round of injections in September 2015. The groundwater treatment was performed to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. No maintenance was conducted during the 2018 calendar year on the GTS or SVE systems.

2.3 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater for monitoring wells are determined on a quarterly basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Operation of the recovery wells was intended to establish hydraulic containment of the plume of impacted groundwater beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Although the system was shut down for the 2016 year and the pumps were pulled from recovery wells, hydraulic containment of the plume of the plume was achieved.

Groundwater samples were collected from the 19 of 21 site-related groundwater monitoring wells during the 2018 sampling events. Depth to groundwater measurements were obtained from 19 of the 21 monitoring wells

for the 2018 sampling events. Results are indicators of the performance of the treatment system and the continued contamination of the plume.

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via hand bailing. Sample parameters including turbidity, temperature, pH, oxygen, and specific conductivity were monitored using a Horiba U-53 to ensure sufficient well purging prior to sampling. Dedicated bailers were used to collect groundwater samples from recovery wells after the ISCO remediation occurred in May 2015. During past sampling events, groundwater samples were collected from the seven (7) recovery wells using dedicated bailers, as the GTS was actively pulling groundwater into the system, allowing for collection of groundwater samples similar to purging monitoring wells. As the system was shut down during the 2018 quarterly sampling events, the wells were purged and sampled using the same method as the monitoring well sampling where possible. One (1) duplicate sample and one (1) field blank sample were collected and submitted for laboratory analysis.

Groundwater samples were delivered via chain-of-custody protocol to a New York State Department of Health (NYSDOH) certified laboratory for testing using EPA Method 8260B for targeted chlorinated VOCs.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

Delineation of the local water table surface and groundwater flow pattern was determined for 2018 using elevations measured from the 19 sampled, site-related monitoring wells. The current network of monitoring wells at the facility is shown on Figure 1. Groundwater characteristics were determined using depth to water measurements obtained on:

- April 10, 2018 (Q1 Sampling Event).
- May 30, 2018 (Q2 Sampling Event).
- August 22, 2018 (Q3 Sampling Event).
- November 13, 2018 (Q4 Sampling Event).

The well gauging values and groundwater elevations are provided in Table 1 of each Quarterly Report included in Appendix A – Quarterly Groundwater Characterization Reports.

The quarterly groundwater contour maps show a local flow pattern similar to the water table observed historically since 2002. The local groundwater was flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The following is a summary of groundwater flow for each sampling event in the reporting period:

April 2018

The April 2018 depths to groundwater range from 4.90 ft below top of casing (btoc) at MW-3, to 12.90 ft btoc at MW-6 located at the northern property line. The average depth to groundwater at the wells measured was 9.18 ft btoc. The site-wide average depth to water table increased by approximately 0.2 ft when compared to the November 2017 sampling event (previous sampling event). This increase in the water table is inferred as seasonal.

<u>May 2018</u>

The May 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The May 2018 depths to groundwater range from 6.12 ft below top of casing (btoc) at MW-1, to 13.22 ft btoc at MW-17 located at the northern

property line. The average depth to groundwater at the wells measured was 9.49 ft btoc. The site-wide average depth to water table increased by approximately 0.31 ft when compared to the April 2018 sampling event. This increase in the water table is inferred as seasonal.

<u>August 2018</u>

The August 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The August 2018 depths to groundwater range from 6.00 ft below top of casing (btoc) at MW-2, to 13.45 ft btoc at MW-7. The average depth to groundwater at the wells measured was 9.84 ft btoc. The site-wide average depth to water table increased by approximately 0.35 ft when compared to the May 2018 sampling event. This increase in the water table is inferred as seasonal.

November 2018

The November 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The November 2018 depths to groundwater range from 4.90 ft below top of casing (btoc) at MW-2, to 13.00 ft btoc at MW-7. The average depth to groundwater at the wells measured was 8.83 ft btoc, which is a decrease from the average depth to water of the previous sampling event in August (9.84 ft.). The site-wide average depth to water table decreased by approximately 1.01 ft when compared to the August 2018 sampling event. This decrease in the water table is inferred as seasonal.

Groundwater Contour Maps indicating the depths to groundwater for each sampling event are presented as Figure 1 of each Groundwater Characterization Report for the report period. Copies of these reports are included in Appendix A.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS OF GROUNDWATER SAMPLES

Laboratory analysis was completed on groundwater samples from groundwater monitoring wells and recovery wells on site. Monitoring wells that were determined in 2008 by the NYSDEC and Bergmann personnel to be outside the area of impact by the GTS include MW-2, MW-3, MW-5, MW-8, MW-9, MW-10, MW-13, and MW-21. NYSDEC added MW-21 to the sampling plan for the 2015 sampling events. The remainder of these wells were not sampled. Sentry groundwater monitoring wells were established to monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the subject property. These wells include MW-19R, MW-20, and MW-4. Monitoring wells MW-19R and MW-20 have been inaccessible and paved over as first noted by Bergmann in the August 2017 Quarterly Characterization Report.

Samples were analyzed for volatile organic compounds (VOCs) via United States Environmental Protection Agency (US EPA) Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following chlorinated halogens (VOCs) were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

For quality assurance/quality control (QA/QC) purposes, a duplicate groundwater sample was collected from monitoring well MW-1 or MW-8 during the 2018 quarterly sampling events, designated sample "MW-X." Results from samples MW-X were consistent with the sample collected from MW-1 or MW-8.

A trip blank was supplied by the laboratory for QA/QC and submitted for analysis with the groundwater samples. The trip blank sample was non-detect for chlorinated halogens VOCs. A field blank was also collected for QA/QC purposes to ensure proper cleaning of the sampling equipment. The field blank was non-detect for chlorinated halogens for each sampling event in 2018.

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

Analytical results for monitoring wells during each quarterly sampling event are summarized as follows:

<u>April 2018</u>

Concentrations in three (3) of the 18 monitoring well groundwater samples increased when compared to the November sampling event while concentrations in six (6) of the 18 monitoring well groundwater samples decreased. Concentrations in nine (9) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 84.2% since activation of the GTS in May 2005.

<u>May 2018</u>

Concentrations in three (3) of the 19 monitoring well groundwater samples increased when compared to the April 2018 sampling event while concentrations in four (4) of the 19 monitoring well groundwater samples decreased. Concentrations in 12 groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 81.2% since activation of the GTS in May 2005.

August 2018

Concentrations in four (4) of the 19 monitoring well groundwater samples increased when compared to the May 2018 sampling event while concentrations in four (4) of the 19 monitoring well groundwater samples decreased. Concentrations in eleven (11) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 78.0% since activation of the GTS in May 2005.

November 2018

Concentrations in five (5) of the 19 monitoring well groundwater samples increased when compared to the August 2018 sampling event while concentrations in three (3) of the 19 monitoring well groundwater samples decreased. Concentrations in eleven (11) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 85.1% since activation of the GTS in May 2005.

Contaminant distribution maps indicating the results for each sampling event are presented as Figures 2 and 3 of each Quarterly Groundwater Characterization Report. Copies of these reports are included in Appendix A.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Analytical results for sentry wells during each sampling event in 2018 are summarized as follows:

April 2018

The eastern sentry wells sampled for this event were limited to MW-4 and MW-20. As previously stated in the August 2017 Report, the third eastern sentry well, MW-19R had been paved over. The August 2018 results indicate non-detect for both of these wells.

<u>May 2018</u>

The eastern sentry wells sampled for this event included MW-20, and MW-4. The November 2018 results indicate non-detect for these two wells.

August 2018

The eastern sentry wells sampled for this event included MW-20, and MW-4. The November 2018 results indicate non-detect for these two wells.

November 2018

The eastern sentry wells sampled for this event included MW-20, and MW-4. The November 2018 results indicate non-detect for these two wells.

The risk of migrating groundwater from the Gowanda Electronics site onto the Day Habilitation Center property was a concern that prompted the installation of sentry wells along Industrial Place. MW-19R has been impacted in the past from the Gowanda Electronics plume. The Gowanda Electronics plume of impacted groundwater does not appear to currently extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center subject property does not appear to extend off-site to the east to Industrial Place.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

Analytical results for recovery wells during each sampling event in 2018 are summarized as follows:

April 2018

The April 2018 analytical results indicate detection of five (5) chlorinated VOCs in recovery well samples: TCE, Cis-DCE, TRANS-DCE, VC, and TCA. Chlorinated VOCs were detected in samples from five (5) of the sampled recovery wells. Total VOCs at the 6 recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the sampling event is 54.6% relative to concentrations prior to GTS activation in 2002.

<u>May 2018</u>

The May 2018 analytical results indicate detection of three (3) chlorinated VOCs in recovery well samples: TCE, Cis-DCE, and TRANS-DCE. Chlorinated VOCs were detected in samples from all six (6) of the sampled recovery wells. Total VOCs at the 6 recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the current event is 37.2% relative to concentrations prior to GTS activation in 2002.

The August 2018 analytical results indicate detection of three (3) chlorinated VOCs in recovery well samples: TCE, Cis-DCE, and TRANS-DCE. Chlorinated VOCs were detected in samples from all seven (7) of the sampled recovery wells. Total VOCs at the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the sampling event is 28.9% relative to concentrations prior to GTS activation in 2002.

November 2018

The November 2018 analytical results indicate detection of two (2) chlorinated VOCs in recovery well samples: TCE and Cis-DCE. Chlorinated VOCs were detected in samples from all seven (7) of the sampled recovery wells. Total VOCs at the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the sampling event is 47.2% relative to concentrations prior to GTS activation in 2002.

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent for all four (4) of the 2018 sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery wells DR-1 and DR-2.

The contaminant plume appears to have stabilized due to the previous operation of the GTS for over fifteen (15) years. While in operation, the GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during the 2018 sampling events and overall sample results are similar to previous quarterly reports. It appears that residual VOCs in the plume have not migrated and are contained when compared to sample results with operation of the GTS during previous monitoring events.

The remedial program at the Site was modified by terminating the GTS and soil vapor extraction system, believed to have achieved the extent of its practical benefits in favor of ISCO treatment of the residual concentration of VOCs in Groundwater. The SVE and GTS equipment will remain on site in the event that reactivation is required in the future.

Analytical results for each sampling event in the reporting period are summarized as follows:

April 2018

Chlorinated VOCs were detected in groundwater from seven (7) of the eighteen (18) sampled monitoring wells. VOCs were not detected in groundwater from eleven (11) of the sampled monitoring wells. Groundwater samples from seven (7) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-11 (1,160 ppb), is located in the area of historically greatest impacted groundwater. Concentrations in three (3) of the 18 monitoring well groundwater samples increased when compared to the November 2018 sampling event while concentrations in six (6) of the 18 monitoring well groundwater samples decreased. Concentrations in nine (9) groundwater samples from monitoring wells had no change. The April 2018 sampling analytical results indicate an average site-wide decrease in total VOCs of 84.2% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of

impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of 76.6% since groundwater monitoring of these wells began in 2002.

<u>May 2018</u>

Chlorinated VOCs were detected in groundwater from seven (7) of the 19 sampled monitoring wells. VOCs were not detected in groundwater from 12 of the sampled monitoring wells. Groundwater samples from seven (7) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (1,110 ppb), is located in the area of historically greatest impacted groundwater. Concentrations in three (3) of the 19 monitoring well groundwater samples increased when compared to the April 2018 sampling event while concentrations in four (4) of the 19 monitoring wells had no change. The May 2018 sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 81.2% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of 65.3% since groundwater monitoring of these wells began in 2002.

<u>August 2018</u>

Chlorinated VOCs were detected in groundwater from eight (8) of the 19 sampled monitoring wells. VOCs were not detected in groundwater from eleven (11) of the sampled monitoring wells. Groundwater samples from eight (8) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (1,190 ppb), is located in the area of historically greatest impacted groundwater. Concentrations in four (4) of the 19 monitoring well groundwater samples increased when compared to the May 2018 sampling event while concentrations in four (4) of the 19 monitoring well groundwater samples decreased. Concentrations in eleven (11) groundwater samples from monitoring wells had no change. The August 2018 sampling analytical results indicate an average site-wide decrease in total VOCs of 78.0% since activation of the GTS in May 2005.

November 2018

Chlorinated VOCs were detected in groundwater from seven (7) of the 19 sampled monitoring wells. Analytical. VOCs were not detected in groundwater from 12 of the sampled monitoring wells. Groundwater samples from seven (7) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (1,080 ppb), is located in the area of historically greatest impacted groundwater. Concentrations in five (5) of the 19 monitoring well groundwater samples increased when compared to the August 2018 sampling event while concentrations in three (3) of the 19 monitoring well groundwater samples decreased. Concentrations in eleven (11) groundwater samples from monitoring wells had no change. The November 2018 sampling analytical results indicate an average site-wide decrease in total VOCs of 85.1% since activation of the GTS in May 2005.

5.2 GROUNDWATER ANALYTICAL RESULTS

During the reporting period, four (4) quarterly sampling events were conducted. Copies of these reports are included in Appendix A. Results for each sampling event are used to evaluate and document contamination reduction. Chart 1 shows contamination reduction since activation of the GTS and SVE Systems.

Contamination levels generally trend towards a reduction as time progresses with some fluctuations that result in slight increases and decreases in contamination levels between sample events due to rising and falling groundwater elevations and the shutdown of the GTS.

Groundwater Contour maps were also prepared for each sampling event, which allowed Bergmann to monitor the change in groundwater flow across the site. Groundwater Contour maps are included in each of the quarterly the Groundwater Characterization Reports in Appendix A.

Overall contaminant reduction is monitored at each individual sampling point and in three specific "groups" of points: site-wide, original plume area only, and recovery wells. These three (3) groups allow Bergmann to more thoroughly monitor the system's effectiveness and adjust network operation. Table 1 of this report shows the breakdown of those three (3) groups by quarter since activation of the GTS and SVE Systems.

Overall contaminant reduction at the recovery wells decreased to 47.2% (November 2018) from 60% in November 2017. Reduction at the recovery wells remained consistently between the 90-95% range since 2010 until the shutdown of the system. The GTS was turned off for the 2018 quarterly sampling events. Contaminant concentration rebound during these years may be associated with the system shutdown and associated groundwater level recovery, as well as residual contamination released in the capillary fringe to the dissolve phase in groundwater at the Site.

Overall contaminant reduction at the monitoring wells increased to 85.1% (November 2018) from 67.6% in November 2017. Reduction at the monitoring wells remained consistently between the 70% - 85% since 2010 until the shutdown of the system. The GTS was turned off for the 2018 quarterly sampling events. Contaminant concentration rebound during the year may be associated with the system shutdown and associated groundwater level recovery, as well as residual contamination released in the capillary fringe to the dissolve phase in groundwater at the Site.

The remediation system at the Gowanda Day Habilitation Center previously controlled and removed contaminants from the groundwater plume area. Contaminant levels decreased by 74.6% from May 2005 to November 2018. The ISCO groundwater treatment completed in September 2015 may have released residual contamination in the capillary fringe to the dissolve phase in groundwater at the Site. Next steps to eliminate remaining contamination at the Site have be discussed with NYSDEC. Bergmann has submitted a proposal for an additional subsurface investigation at the Site. Bergmann would like to determine if the contamination is within the groundwater or within the soils. The primary goal of this investigation is to evaluate the soil quality for VOCs in the two (2) source areas: the MW-1 area and the MW-17 area. The investigation will consist of five (5) soil borings at each location for a total of ten (10) borings. The scope of work has been agreed upon by Bergmann and DASNY but no formal contract has been received by Bergmann at the time of this PRR.

5.3 COMPLIANCE

During the 2018 reporting period, the remedial system was not in operation and therefore was not discharging water. The existing wells and monitoring well network is adequate to monitor the performance of the remediation program and to allow for the collection of groundwater quality samples.

The building is currently secure, vacant, and unoccupied. Notification is given to any individual(s) entering the building so appropriate precautions and PPE can be utilized for building access. The building is posted with

signage identifying the potential hazard and limiting access to properly trained and equipped personnel. Notification of extensive mold growth within the building is given to any individual(s) entering the building, prior to entry, so appropriate precautions can be taken. Notification of broken glass within the building is given to any individual(s) entering the building prior to entry. Notification of the dead-end corridor and affected/unusable exits is given to any individual(s) entering the building, prior to entry, so appropriate precautions can be taken. Notification of exit and emergency lighting within the building is given to any individual(s) entering the building prior to entry. Notification of the ceiling debris should is given to any individual(s) entering the building, prior to entry, so appropriate precautions can be taken. Any individual(s) entering the building is provided with keys to open doors before working within the building to ensure safe emergency exit.

Any structural issues requiring immediate attention are currently being addressed by OPWDD, as well as other building envelope maintenance/security issues. Those issues not requiring immediate attention will be addressed if the building is re-occupied in the future.

5.4 FUTURE ACTIVITIES

Activities scheduled for 2019 include:

- 3rd Quarter groundwater sampling event September 2019.
- 4th Quarter groundwater sampling event December 2019.
- Meeting with NYSDEC, DASNY, and Bergmann to discuss future events, elimination of remaining contamination, and spill closure in July of 2019.

TABLE 1

Table 1 Percent Reductions in Total Groundwater VOCs

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Groundwater Treatment System was activated in May 2005

Monitoring Well	% Reduction 2002 to Nov 2018	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
MW-1 [†]	-40.6%	-54.9%	-44.5%	51.3%	-39.90%	-57.6%	-48.0%	-9.1%	24.5%	-99.2%	-91.4%	54.4%	44.0%	60.9%		-28.9%	-28.9%	-126.6%	-8.1%	-19.5%	-87.5%	31.3%	6 -15.8%
MW-2	100%	100%	100%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled
MW-3	100%	100%	100%	100%	100%	100.0%	Not Sampled																
MW-4	100%	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	
MW-5	100%	100%	100%	100%	100%	100.0%	Not Sampled																
MW-6	100%	-83.3%	15.4%	15.4%	-84.60%	15.4%	81.3%	70.4%	75.4%	70.4%	76.4%	78.8%	80.0%	72.9%	72.9%	76.4%	76.8%	68.0%		77.1%	75.6%	78.6%	
MW-7	80.0%	79.3%	81.0%	81.3%	98.70%	93.6%	75.6%	86.2%	81.6%	89.1%	71.1%	87.1%	100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	6 93.2%
MW-8	100%	100%	100%	100%	Not Sampled		Not Sampled																
MW-9	100%	100%	100%	100%	Not Sampled		Not Sampled		Not Sampled														
MW-10	100%	100%	100%	100%	100%	100.0%	Not Sampled																
MW-11	89.5%	93.9%	89.5%	75.0%	89.20%	99.1%	86.1%		88.2%				89.2%	90.3%		90.3%		81.1%		87.7%	83.0%	89.3%	
MW-12	99.6%	99.8%	99.2%	99.1%	99.80%	75.0%	99.9%	99.9%	99.9%	99.8%	99.6%	99.2%	99.1%	99.0%		98.4%		98.6%	98.8%	98.5%	98.9%	99.3%	
MW-13	100%	100%	100%	100%	Not Sampled																		
MW-14	90.3%	92.9%	92.8%	91.1%	87.90%	2.3%	75.9%	68.3%	81.9%	74.3%	69.5%	83.5%	68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5%	85.1%	87.4%	
MW-15	100%	99.1%	100%	100%	100%	99.0%	98.5%	96.7%	98.5%	98.6%		98.9%	98.7%	95.6%		99.2%	100.0%	99.1%	99.0%		98.2%	96.4%	
MW:16*	19.9%	80.5%	19.9%	2.3%	2.80%	2.3%	72.7%	60.9%	27.7%	39.5%	74.6%	86.7%	100.0%	89.8%		59.0%	53.1%	60.9%			52.6%	88.5%	
MW-17*	78.4%	73.8%	88.9%	99.5%	78*	2.3%	62.9%	54.0%	58.0%	54.5%	59.4%	Not Sampled	66.8%	61.0%	59.4%	66.5%	83.5%	58.5%	50.6%	97.4%	46.9%	53.0%	
MW-18:*	100%	100%	100%	100%	100%	100.0%	97.4%	93.4%	98.2%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	Not Sampled	100.0%	100.0%	100.0%	89.6%	
MW-19 R*	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	
MW-20**	100%	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	
MW-21**	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	34.6%	-50.0%	66.5%	23.1%	23.1%	61.5%	Not Sampled										
* Well installed 2003																							
** Well Installed 2004																							
Site-Wide reduction:	85.1%	78.0%	81.2%	84.2%	67.60%	62.1%	74.1%	68.7%	78.6%	66.2%	69.1%	87.7%	88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	6 80.7%
Impacted Groundwater	74.00/	70.40/	05.00/	70.00/	E4 400/	44.40/	00.5%	00.00(70.00/	50.40/	50.00/	04.00/	00.00/	77.00/	75.00/	70.00/	70.00/	00.00/	70.00/	77.00/	00.5%	75.00/	
Plume Area Only:	74.6%	72.1%	65.3%	76.6%	51.40%	41.1%	66.5%	69.6%	76.0%	58.1%	58.6%	84.6%	80.8%	77.3%	75.0%	72.3%	73.9%	82.2%	73.2%	77.3%	62.5%	75.2%	6 73.19

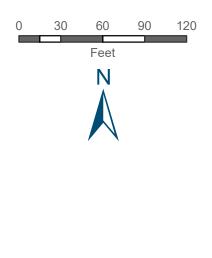
Plume Area = MW-1, MW-11, MW-12, MW-14, MW-15, MW-7, MW-17, MW-6 % reduction = percent reduction in total Volatile Organic Compounds (VOCs) since groundwater monitoring was initiated †Negative values indicate an increase in total VOCs since monitoring commenced in 2002. The percent increase in total groundwater VOCs is shown below for MW-1.

Recovery Well	% Reduction 2002 to Nov 2018	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
DR-1	-128.5%	-163.3%	-130.0%	-86.6%	-243.6%	-243.6%	-7.6%	-6.4%	-58.7%	44.4%	72.1%	Not Sampled	96.2%	89.0%	90.4%	86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8%	91.6%
DR-2	60.7%	70.5%	76.7%	76%	63.8%	63.8%	75.1%	60.3%	60.9%	63.8%	66.0%	47.0%	52.8%	70.5%	59.2%	58.0%	62.3%	45.0%	87.2%	85.4%	99.1%	88.5%	83.9%
DR-3	52.1%	43.0%	17.8%	78%	68.5%	Not Sampled	35.7%	-1.0%	59.3%	70.5%	50.2%	45.6%	63.9%	-18.7%	-37.7%	45.6%	41.6%	19.3%	95.8%	95.1%	97.2%	92.1%	
DR-4	95.7%	94.4%	96.4%	96%	93.9%	93.9%	90.8%	88.9%	92.7%	89.1%	87.2%	91.7%	82.9%	81.8%	82.8%	88.8%	92.5%	90.8%	95.5%	97.9%	94.9%		100.0%
G-1	62.8%	61.7%	80.1%	80%	74.1%	74.1%	57.7%	47.4%	92.7%	60.0%	100.0%	66.1%	27.3%	49.8%	47.7%	55.0%	61.3%	65.6%	87.3%	89.8%	90.3%	87.4%	88.0%
G-2	91.2%	76.0%	82.4%	84%	100.0%	Not Sampled	Not Sampled	100.0%	Not Sampled	Not Sampled	90.1%	Not Sampled	83.1%	88.0%	86.9%	81.7%	95.1%	71.4%	79.0%	87.0%	65.7%	80.4%	89.1%
G-3	96.3%	20.1%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	27.3%	-0.2%	-4.2%	35.0%	8.2%	Not Sampled	79.7%	NA	NA	NA	NA	NA	NA				
Overall Reduction	47.2%	28.9%	37.2%	54.6%	60.4%	40.4%	46.5%	41.3%	40.4%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%

*Sampling of recovery wells initiated in 2005

FIGURE 1

DASNY


Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY

В

BERGMANN ARCHITECTS ENGINEERS PLANNERS

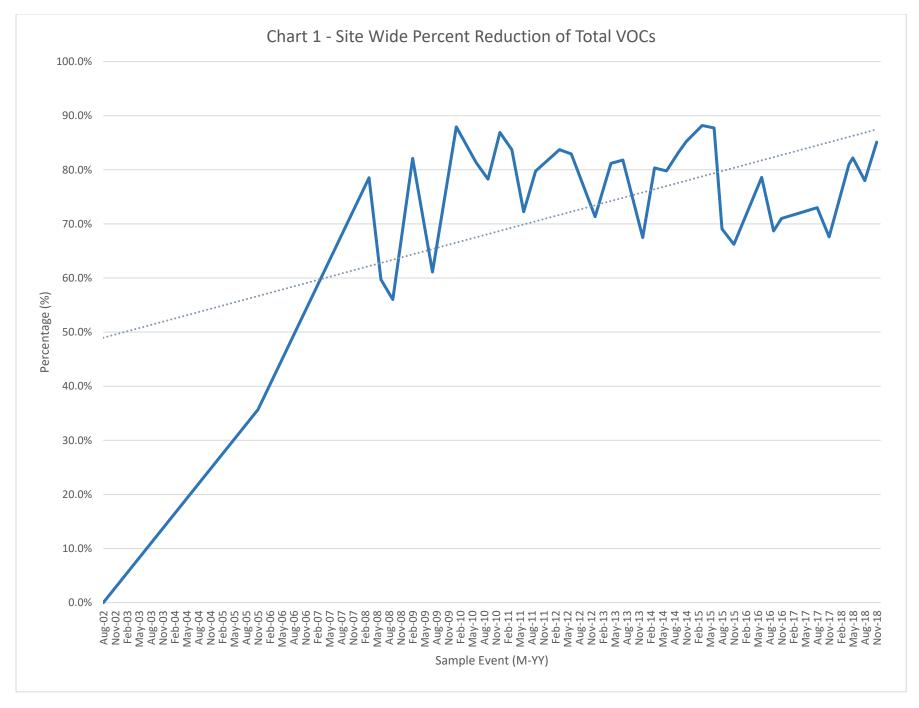

Figure 1 Monitoring and Recovery Well Locations

CHART 1

APPENDIX A:

QUARTERLY GROUNDWATER CHARACTERIZATION REPORTS

APRIL 2018 GROUNDWATER CHARACTERIZATION REPORT

New York State Office of People with Developmental Disabilities

GROUNDWATER CHARACTERIZATION REPORT – APRIL 2018

Bergmann Associates

Office: 280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135 www.bergmannpc.com

Issued: June 2018

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1 1.2	Scope of Work Site Background	
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	5
2.1 2.2	Well Maintenance Activities Groundwater Field Monitoring and Sampling Activities	
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	6
4.0	LABORATORY ANALYSIS	7
4.1 4.2 4.3 4.4 4.5	Laboratory Analysis on Groundwater Samples Monitoring Well Groundwater Analysis SummarY Sentry Well Groundwater Analysis Summary Recovery Well Groundwater Analysis Summary Quality Assurance and Quality Control Samples	
5.0	REMEDIATION SYSTEM EFFICIENCY	
5.1 5.2 5.3	Impact of the GTS Recovery Wells Extent of Impacted Groundwater Future Groundwater Monitoring and Analysis Activities	12

Tables

Table 1:	Groundwater Elevations and Field Measurements – April 2018
Table 2:	April 2018 Analytical Results Summary
Table 3:	Historic Groundwater Analytical Results Summary
Table 4:	Percent Reduction in Total Groundwater VOCs
Table 3:	Historic Groundwater Analytical Results Summary

Figures

Figure 1:	April 2018 Groundwater Contour Map
Figure 2:	April 2018 Distribution of Groundwater Analytical Results: Monitoring Wells
Figure 3:	April 2018 Distribution of Groundwater Analytical Results: Recovery Wells

Charts

Chart 1:	DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations
Chart 2:	DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations
Chart 3:	DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations
Chart 4:	DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations
Chart 5:	G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations
Chart 6:	G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations
Chart 7:	G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

Appendices

Appendix A: Laboratory Analytical Results Report - April 2018 Sampling Event

1.0 INTRODUCTION

Bergmann is submitting this groundwater characterization report for the April 2018 sampling event on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, has entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 SCOPE OF WORK

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on April 10, 2018. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from 18 of 21 site-related groundwater monitoring wells and six (6) of seven (7) groundwater recovery wells were sampled for laboratory analysis. Of the eight (8) monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), four (4) were not sampled. These monitoring wells include MW-2, MW-19, MW-19R, and MW-21. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site.

The prior groundwater sampling event was conducted in November

2017 and included analysis of groundwater samples from 18 of 21 site-related groundwater monitoring wells and six (6) of seven (7) groundwater recovery wells. Authorization to conduct 2017 quarterly sampling was not received until the third quarter of 2017. Results of the November 2017 sampling event were summarized in a report dated February 2018.

1.2 SITE BACKGROUND

The Gowanda Day Habilitation site consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies have occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of seven (7) groundwater recovery wells (four dual phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the

EVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

During January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015. An ISCO Report was prepared under separate cover.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the April 2018 site visit, all monitoring wells were accessible and the integrity of the wells was not compromised except for MW-2, MW-19, MW-19R, MW-21, and G-3. MW-19, MW-19R, and MW-21, which are all located on Torrance Place, were still paved over, as previously reported in the August 2017 summary. G-3 was not located due to extensive vegetative growth around the well cap. Bergmann personnel will use a metal detector during the May 2018 sampling event in an attempt to locate the well. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of the redevelopment activities performed on August 19, 2015. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the April 2018 sampling event.

2.2 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater in groundwater monitoring wells are measured on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the impacted groundwater plume beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from 18 of the 21 site-related groundwater monitoring wells for laboratory analysis on April 10, 2018. Depth to groundwater measurements were obtained from 24 wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via low-flow pumping using a Geo-pump electric peristaltic pump. Sample parameters including turbidity, temperature, pH, oxygen, salinity and conductivity were monitored using a YSI Quatro to ensure sufficient well purging prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater without collecting sediment from within the wells. A single duplicate sample and a field blank sample were collected and submitted for laboratory analysis. The duplicate

sample was not collected during this event but will be collected during the May 2018 sampling event because there was a limited number of bottles due to fractures and cracks in several bottles.

Groundwater samples were delivered via chain-of-custody protocol to ALS Environmental Services located in Rochester, NY, a NYSDOH certified laboratory, for testing using EPA Method 8260B for targeted chlorinated volatile organic compounds (VOCs) of concern. Analytical results for each individual monitoring well have been posted in Table 3 for comparative purposes from sampling events completed 2002 – 2018.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

The Site water table potentiometric surface pattern and groundwater flow direction was determined for April 2018 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on April 10, 2018. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements - April 2018.

The April 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The April 2018 depths to groundwater range from 4.90 ft below top of casing (btoc) at MW-3, to 12.90 ft btoc at MW-6 located at the northern property line. The average depth to groundwater at the wells measured was 9.18 ft btoc.

The site-wide average depth to water table increased by approximately 0.2 ft when compared to the November 2017 sampling event. This increase in the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented Table 1 and April 2018 Groundwater Contours are presented on Figure 1 – April 2018 Groundwater Contour Map.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS ON GROUNDWATER SAMPLES

Laboratory analysis was completed on the groundwater samples from 18 monitoring wells and six (6) recovery wells collected April 10, 2018. Samples were analyzed for VOCs via EPA Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

The April 2018 analytical results indicate three (3) chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, and Trans-DCE. Chlorinated VOCs were detected in groundwater from seven (7) of the 18 sampled monitoring wells. Analytical results are summarized in Table 2 – April 2018 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical reporting package is provided in Appendix A – Laboratory Analytical Results Report April 2018 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from eleven (11) of the sampled monitoring.

Groundwater samples from seven (7) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-11 (1,160 ppb), is located in the area of historically greatest impacted groundwater.

Concentrations in three (3) of the 18 monitoring well groundwater samples increased when compared to the November sampling event while concentrations in six (6) of the 18 monitoring well groundwater samples decreased. Concentrations in nine (9) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 84.2% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 76.6% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the April 2018 sampling event was 374 parts per billion (ppb), a decrease from the November 2017 value of 1,003 ppb. Since activation of the GTS, detected VOCs at MW-1 have decreased by about 51%.

Monitoring well MW-11 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the April 2018 sampling event is 1,160 ppb, an increase from the April 2018 value of 470 ppb. Since activation of the GTS, detected VOCs at MW-11 have decreased by 75%.

Monitoring well MW-12 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the April 2018 sampling event is 113 ppb, an increase from the November 2017 value of 31 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by about 99%.

Monitoring well MW-14 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the April 2018 sampling event is 28 ppb, a decrease from the November 2017 value of 38 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by about 91.1%.

Monitoring well MW-15 remained the same in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the April 2018 sampling event was Not Detected (ND), which was no change from the November 2017 sampling event. MW-15 is nearest to recovery well DR-4. Since activation of the GTS the detected VOCs at MW-15 have remained unchanged at non-detect levels.

Six (6) groundwater monitoring wells are located along the subject property's north perimeter, down-gradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-7, MW-16, MW-17 and MW-21. The current analytical results exhibit an increase in targeted VOCs at the sampled monitoring wells along the north perimeter.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system. The current results indicate non-detect levels for MW-18. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2015 sampling event. It was first noted that during the August 2017 sampling event, wells MW-19R and MW-21 were not sampled because they were inaccessible. It was observed that the wells were likely paved over by a recent re-sealing operation. The wells were still inaccessible during the April 2018 sampling event.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – April 2018 Distribution of Groundwater Analytical Results: Monitoring Wells.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry well sampled for this event was only MW-4. The current results indicate non-detect levels for this eastern sentry well.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R. The Gowanda Electronics impacted groundwater plume does not appear to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO injection application was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

During the April 2018 sampling event, six (6) of the seven (7) recovery wells were sampled. The G-3 well could not be located and is assumed to be overgrown with vegetation. Bergmann personnel will bring appropriate equipment to attempt to locate G-3 during the May 2018 sampling event.

The April 2018 analytical results indicate detection of five (5) chlorinated VOCs in recovery well samples: TCE, Cis-DCE, TRANS, VC, and TCA. Chlorinated VOCs were detected in samples from five (5) of the sampled recovery wells. Total VOCs at the 6 recovery wells for which past data is available have decreased overall since activation of the GTS in May 2005. The average reduction in VOCs for the current sampling event is about 55% relative to concentrations prior to GTS activation in 2005. Relative percent reductions in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the April 2018 sampling event is 1,070 ppb, a decrease from the November 2017 value of 1,540 ppb. The current sampling event indicates an increase in VOCs at DR-1 of 86.6% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in an area of historically highest concentrations.

Recovery well DR-2 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the April 2018 sampling event is 130 ppb, a decrease from the November 2017 value of 181 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of about 76% since activation of the GTS.

Recovery well DR-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the April 2018 sampling event is 34 ppb, a decrease from the November 2017 value of 48 ppb. The current sampling event indicates a decrease in VOCs at DR-3 of about 78% since activation of the GTS.

Recovery well DR-4 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the April 2018 sampling event is 31.6 ppb, a decrease from the November 2017 value of 46 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of about 96% since activation of the GTS.

Recovery well G-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the April 2018 sampling event was 22 ppb, a decrease from the November 2017 value of 70 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 80% since activation of the GTS.

Recover well G-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-2 for the April 2018 sampling event was 46 ppb, an increase from the November 2017 value of 8.5 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 84% since activation of the GTS.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – April 2018 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

For quality assurance purposes a duplicate groundwater sample is typically collected from monitoring well MW-11, designated sample "MW-X". A duplicate groundwater sample was not taken during the April 2018 sampling event because there was a limited number of bottles due to fractures and cracks in several bottles. A duplicate sample will be taken during the next sampling event (May 2018).

A trip blank was supplied by the laboratory for the April 2018 sampling event. An equipment blank was collected to ensure proper cleaning of the sampling equipment. The equipment blank, designated as EB, was non-detect for chlorinated halogens.

Laboratory analytical results are included in Appendix A.

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 IMPACT OF THE GTS RECOVERY WELLS

Groundwater control charts for the six (6) sampled recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center. Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all six (6) sampled groundwater recovery wells have demonstrated a general decrease in VOC concentration.

The current sampling event results represent a decrease of total VOCs at five (5) recovery wells (DR-1, DR-2, DR-3, DR-4 and G-1) when compared to the November 2017 sampling event.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (374 ppb) show a decrease from the November 2017 sampling event (1,003 ppb). The current total VOCs at MW-11 (1,160 ppb) shows an increase from the November 2017 sampling event (470 ppb). The current total VOCs at DR-1 (1,070 ppb) show a decrease from the November 2017 sampling event (1,540 ppb).

Chart 3 compares laboratory results between recovery well DR-2 and MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (113 ppb) show an increase from the November 2017 sampling event (31 ppb). The current total VOCs at recovery well DR-2 (130 ppb) show a decrease from the November 2017 sampling event (181 ppb).

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (28 ppb) show a decrease from the November 2017 sampling event (38 ppb). The current total VOCs at recovery well DR-3 (34 ppb) show a decrease from the November 2017 sampling event (48 ppb).

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (ND) show no change from the November 2017 sampling event. The current total VOCs at recovery well DR-4 (31.6 ppb) show a decrease from the November 2017 sampling event (46 ppb).

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. The recovery well is located in the northern portion of the building and MW-17 is located along the northern property line. The current total VOCs at recovery well MW-17 (5.1) show a decrease from the November 2017 sampling event (222). The current total VOCs at recovery well G-1 (22 ppb) show a decrease from the November 2017 sampling event (70 ppb).

Chart 7 compares laboratory results between recovery well G-2 and MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. Recovery well G-2 was not sampled during the August 2017 or November 2016 sampling events, as the well was dry during these events. During the April 2018 sampling event, G-2 was sampled and had a total VOC of 46 ppb. The April 2018 total VOCs of MW-7 (ND) showed a decrease from the November 2017 sampling event (5.8 ppb).

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western perimeter of the apparent area of impacted groundwater. The current total VOCs at monitoring well MW-17 (5.1) showed a decrease from the November 2017 sampling event (222). The current total VOCs at recovery well G-3 were not calculated due to recovery well G-3 not being sampled during the April 2018 sampling event.

Groundwater sampling results from monitoring wells along the western and eastern perimeters have consistently been non-detect.

5.2 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not sampled at MW-19R and MW-21 during the November 2017 and April 2018 sampling events due to the fact that they were both paved over and inaccessible.

The redevelopment of wells was performed in fall 2015 to remove sediment from wells at the Site after the ISCO injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred at the Site when compared to the past ten (10) years of sampling. A meeting with Bergmann, DASNY, and NYSDEC is to be scheduled in June 2018 determine next steps for further contaminant reduction and eventual spill closure.

5.3 FUTURE GROUNDWATER MONITORING AND ANALYSIS ACTIVITIES

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed upon that these systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO RAP in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future; however, system components may need repair and/or replacement. Three (3) routine quarterly monitoring events will be completed to fulfill the NYSDEC requirements for post ISCO groundwater treatment.

The next site-wide groundwater sampling and laboratory analysis event is scheduled for May 2018. This sampling event will include sampling and laboratory analysis for the limited number of wells as determined by Bergmann correspondence with the NYSDEC. Future sampling and analytical events will be conducted to track the effects of the ISCO injections on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be monitored and recorded during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements April 2018 Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	NA	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	5.60	NA	4.90	7.10	10.20	12.90	12.50	9.09	7.90	9.02
Groundwater Elevation	772.63	NA	773.48	771.33	768.41	768.20	768.44	772.24	774.71	771.00
Well Diameter	2"	NA	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	NA	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.42
Bottom of Well Elevation	762.21	NA	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.60
Thickness of Water Column	10.42	NA	11.40	8.68	3.75	9.98	9.30	8.56	13.06	10.40
Minimum Purge Volume (gal)	1.7	NA	1.9	1.4	0.6	1.6	1.5	1.4	2.1	1.7
3 Volumes	5.1	NA	5.6	4.2	1.8	4.9	4.5	4.2	6.4	5.1
Actual volume purged	5.1	NA	NS	4.2	1.4	4.9	4.5	NS	NS	NS
Comments	Flush = -0.29'	Not Located.	Flush = -0.23'	Flush = -0.34'	Flush = -0.24'	Stickup=2.17	Stickup=2.17	Stickup=2.84	Stickup=2.05'	Stickup=2.56'

	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	NA	778.04	NA
Depth to Groundwater (btoc)	5.79	6.47	6.78	10.41	10.18	12.00	12.70	8.50	NA	9.30	NA
Groundwater Elevation	772.79	772.03	771.61	768.02	768.20	768.43	767.15	767.89	NA	768.74	NA
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	NA	2"	NA
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	NA	14.75	NA
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	NA	763.29	NA
Thickness of Water Column	9.69	10.91	10.62	7.74	9.62	11.26	NA	16.50	NA	5.45	NA
Minimum Purge Volume (gal)	1.6	1.8	1.7	1.3	1.6	1.8	NS	2.7	NA	0.9	NA
3 Volumes	4.7	5.3	5.2	3.8	4.7	5.5	NS	8.1	NA	2.7	NA
Actual volume purged	4.7	5.3	NS	3.8	4.7	5.5	NS	8.1	NA	2.7	NA
Comments	Flush = -0.23'	Flush = -0.35'	Flush = -0.48'	Flush = -0.39'	Flush = -0.38	Stickup=2.26'	Stickup=1.18'	Flush =-0.26'	Paved Over	Flush=-0.43'	Paved Over.

	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	NS
Depth to Groundwater (btoc)	6.94	6.70	11.30	11.22	11.32	11.43	NS
Groundwater Elevation	772.72	773.23	768.48	768.42	768.51	NA	NS
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	NS
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	NS
Thickness of Water Column	11.12	11.36	9.15	8.47	11.66	9.17	NS
Minimum Purge Volume (gal)	7.26	7.42	5.97	5.53	7.61	5.98	NS
3 Volumes	21.78	22.25	17.92	16.59	22.84	17.94	NS
Actual volume purged	21.78	22.25	NS	16.59	22.84	17.94	NS
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03'	Stickup=0.86'	NA

NOTES

btoc = Below top of casing (inner riser) All measurements are in feet, referenced to Mean Sea Level

NS = Not Sampled

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Minimum purge volume = 3 × weil volume, 0.165 gallon per loot in a 2 diameter weil. 0.005 gallon per loot in a 4 diameter weil. Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled. The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed. Wells MW-19R, MW-20 and MW-21 were installed in October 2004, MW-19R and MW-21 have been paved over age 1 of 1

Table 2 April 2018 Analytical Results Summary

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sample Date: 04/10/2018

Sampling Events

Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	850	290	5.0
CIS	140	84	5.0
TRANS	13	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOC:	s 1,003	374	

Monitoring Well MW-2

Sample Date: NS

Sampling Events

1 0				
Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
Tot	al VOCs	NS	NS	

Monitoring Well MW-3 Sampling Events

Sample Date: 04/10/2018

Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
ТСА	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Monitoring Well MW-4

Sample Date: 04/10/2018

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
То	tal VOCs	ND	ND	

Monitoring Well MW-5

Sampling Events

Sample Date: 04/10/2018

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-6 Sampling Events

Sample Date: 04/10/2018

Sampling E	Venta			
Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		100	76	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	100	76	

Page 1 of 6

Table 2 April 2018 Analytical Results Summary

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sample Date: 04/10/2018

Sampling Events

Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	5.8	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	5.8	ND	

Monitoring Well MW-8

Sample Date: 04/10/2018

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-9 Sampling Events

Sample Date: 04/10/2018

eampning Evence			
Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 2 of 6

Monitoring Well MW-10 Sampling Events

Sample Date: 04/10/2018

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-11 Sampling Events

Sample Date: 04/10/2018

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		270	900	5.0
CIS		200	260	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	470	1,160	

Monitoring Well MW-12 Sampling Events

Sample Date: 04/10/2018

	vents			
Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		15	14	5.0
CIS		16	99	5.0
TRANS		ND	ND	5.0
VC		ND	8.9	2.0
ТСА		ND	ND	5.0
	Total VOCs	31	121.9	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sample Date: 04/10/2018

Sampling Events

Analyte ir	n ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
Total	VOCs	ND	ND	

Monitoring Well MW-14

Sample Date: 04/10/2018

Sampling Events

Campio	Dato.	~	• •	•	0,

<u>eampg = . ee</u>			
Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	27	18	5.0
CIS	11	10	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	s 38	28	

Monitoring Well MW-15 Sampling Events

Sample Date: 04/10/2018

Analyte in	ppb Nov	2017	April 2018	NYS Guidance Value
TCE	1	١D	ND	5.0
CIS	1	ND	ND	5.0
TRANS	1	ND	ND	5.0
VC	1	ND	ND	2.0
TCA	1	١D	ND	5.0
Total	VOCs N	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 3 of 6

Monitoring Well MW-16 Sampling Events

Sample Date: 04/10/2018

Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	32	43	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
ТСА	ND	ND	5.0
Total VOCs	32	43	

Monitoring Well MW-17 Sampling Events

Sample Date: 04/10/2018

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		42	5.1	5.0
CIS		180	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	222	5.1	

Monitoring Well MW-18 Sampling Events

Sample Date: 04/10/2018

	VCIII3			
Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		6.3	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	6.3	ND	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sample Date: NS

Sampling Events

Analyte	in ppb	Nov 201	April 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
Т	otal VOCs	NS	NS	

Monitoring Well MW-20

Sample Date: 04/10/2018

Sampling Events

Analyte in p	pb Nov 2017	April 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total V	OCs ND	ND	

Monitoring Well MW-21

Sample Date: NS

Sampling Ev	ents
-------------	------

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 4 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1 Sampling Events

Sample Date: 04/10/2018

Analyte in	ppb Nov 20	017 April 2018	8 NYS Guidance Value
TCE	1200) 880	5.0
CIS	190	190	5.0
TRANS	50	ND	5.0
VC	50	ND	2.0
TCA	50	ND	5.0
Total	VOCs 1540) 1070	

Recovery Well DR-2 Sampling Events

Sample Date: 04/10/2018

Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	31	31	5.0
CIS	150	99	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	181	130	

Recovery Well DR-3 Sampling Events

Sample Date: 04/10/2018

Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	30	23	5.0
CIS	18	11	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	48	34	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 5 of 6

Recovery Well DF	२-४
Sampling Events	

Sample Date: 04/10/2018

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		34	24	5.0
CIS		12	7.6	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	46	31.6	

Recovery Well G-1 Sampling Events

Sample Date: 04/10/2018

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		70	22	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	70.0	22	

Recovery Well G-2 Sampling Events

Sample Date: 04/10/2018

Analyte	in ppb	Nov 2018	April 2018	NYS Guidance Value
TCE		NS	8.0	5.0
CIS		8.5	38	5.0
TRANS		NS	ND	5.0
VC		NS	ND	2.0
ТСА		NS	ND	5.0
	Total VOCs	8.5	46.0	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3

Sample Date: NS

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
ТСА		NS	NS	5.0
	Total VOCs	NS	NS	

Duplicate Blank Sampling Events

Sample Date: NS

Analyte	in ppb	April 2018	NYS Guidance Value
TCE	iii ppo	NS	5.0
CIS		NS	5.0
TRANS		NS	5.0
VC		NS	2.0
ТСА		NS	5.0
	Total VOCs	NS	

Equipment Blank Sampling Events

Sample Date: 04/10/2018

Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Table 3 Historic Groundwater Analysis Results SummaryGowanda Day Habilitation Center4 Industrial Place, Gowanda, New York

VCA # V-00463-9

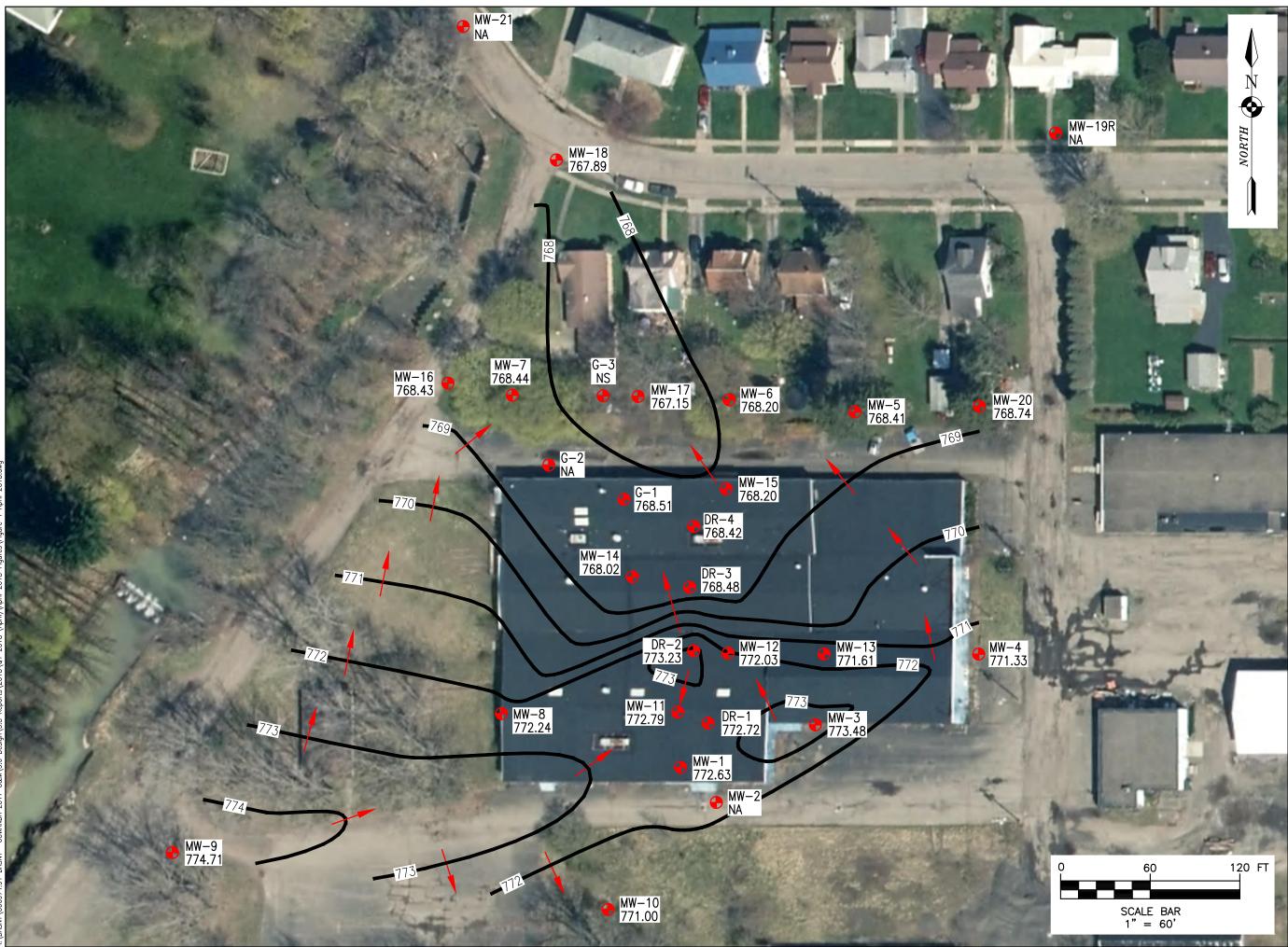
											M	ONITORING	WELLS													
Monitoring	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total	Total	Total	Total	Total
Well Number	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012	Sep 2011	VOCs	VOCs	VOCs	VOCs	VOCs
	April 2018	Nov 2017	Aug 2017	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	Jun 2011	Mar 2011	Dec 2010	Sep 2010	Jun 2010
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)			,								,	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-1	374	1013	1,210	1,467	838	580	1,530	1,470	350	430	300	420	990	990	1,740	830	910	1,440	528	889	442	1,318.1	583	564	649	778
MW-2	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-6	76	100	91	87	120	100	120	96	86	81	110	110	96	94	130	99	93	99	86.7	85.7	101	79	73.2	81.8	107	96
MW-7	ND	5.8	29	110	62	83	49	130	58	ND	180	190	29	ND	ND	18	ND	ND	151.56	30.5	209.16	70.9	22.3	58.2	160.5	114.46
MW-8	ND	ND	NS NG	NS NG	NS	NS	NS	NS	NS	NS NO	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-9	ND	ND	NS ND	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
<u>MW-10</u> MW-11	ND 1,160	ND 470	ND 525	NS 646	NS 445	NS 550	NS 1,060	NS 630	NS 444	NS 500	NS 451	NS 375	NS 450	<u>NS</u> 710	NS 880	<u>NS</u> 510	NS 570	NS 790	NS 498	NS 617	NS 508.7	NS 722	NS 623	NS 588	NS 630.7	NS 765
MW-12	113	31	40	7.1	7.8	15.8	28.8	<u>630</u> 52	97	120	126	136	200	212	880 173	149.3	186.6	142	490 86.5	148.22	508.7 92.8	162.9	90.82	588 90.4	100	159.8
MW-12 MW-13	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-14	28	38	22.1	76	100	57	81	96	52	99	68	68	54	73	94	49	71	47	39.7	76.6	77.3	104.98	31.9	24.33	38.93	65.22
MW-15	ND	ND	7.4	11	23.8	11	9.9	14	8.1	9.8	32	31	6.1	ND	6.8	7	ND	12.9	26.26	6.25	32.46	16.18	6.92	16.85	62	22.93
MW-16	43	32	36	14	20	37	31	13	6.8	ND	5.2	9.4	21	24	20	8.4	24	18	4.36	12.2	6.07	23.1	28.9	7.21	2.53	ND
MW-17	5.1	222	396	375	465	425	460	410	NS	336	394	410	339	167	420	400	21.3	430	381	260.1	449	225.2	26.7	48.1	312.3	232.1
MW-18	ND	6.3	ND	10	26	6.9	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	16.6	2.33	28.7	13.9	6.43	17.9	40.77	27.5
MW-19R	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND	ND	ND	ND	ND	2.67	ND
MW-20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-21	NS	NS	NS	17	39	8.7	20	20	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-X (DUP)	NS	490	DWS	1,705	879	550	1,720	410	360	407	300	400	870	990	1,850	540	186.8	1,450	521	913	457	1,022.2	Sample loss*	588	611	264
EB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
																	RECO	VERY WELL	S							
Recovery Well	Total	Total	Total	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total	Total	Total	Total
Number	VOCs	VOCs	VOCs	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012	Sep 2011	Jun 2011	VOCs	VOCs	VOCs	VOCs
	April 2018	Nov 2017	Aug 2017	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	Mar 2011	Dec 2010	Sep 2010	Jun 2010
	(ppb)	(ppb)	(ppb)																				(ppb)	(ppb)	(ppb)	(ppb)
DR-1	1,070	1540	1,970	617	610	910	319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38	673	166.5	154.5	250.1	355.5	442.5	60.3
DR-2	130	181	199	137	218	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3	206.1	240.93	267.75	152.3	213.52	255.2
DR-3	34	48	NS	98	154	62	45	76	83	55	181	210	83	89	123	62	73	42	116.96	24.9	74.3	67.7	25.3	30.1	38.1	79.7
DR-4	31.6	46	52	79	95	63	94	110	71	147	156	148	96	64	68	79	37	90	122.6	ND	191.03	128.4	101.4	71.7	230.58	155.04
G-1	22	70	73.5	85	105.6	59.7	80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55	65.58	67.52	55.81	67.02	48.8	30.5	108.3
G-2	46	8.5	NS	NS	ND	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9	29.8	65.6	47.2	51.8	6.02	8.37
G-3	NS	NS	NS	293	404	420	262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3	44.2	296.2	224.7	209.8	159.3	233.2	277.8

NS= This well not included in this sampling event. ND = Not Detected, results less than Method Detection Limit. Impacted north property line wells: MW-5, MW-6, MW-7, MW-16, MW-17, MW-21 All compounds are measured in parts per billion (ppb). VOC - Volatile Organic Compounds. DUP - Duplicate Sample EB - Equipment/Field Blank Sample * - Sample was broken in transit and not able to be analyzed DWS- Different Well Sampled than previosuly tested.

Table 4 Percent Reductions in Total Groundwater VOCs

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Groundwater Treatment System was activated in May 2005


onitoring Well	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012	% Reduction 2002 to Sep 2011	% Reduction 2002 to Jun 2011	% Reduction 2002 to Mar 2011
W-1 [†]	51.3%	-39.90%	-57.6%		-9.1%	24.5%	-99.2%	-91.4%	54.4%	44.0%	60.9%	45.3%	-28.9%	-28.9%	-126.6%	-8.1%	-19.5%	-87.5%	31.3%	-15.8%	42.4%	-71.6%	24.1 ⁴
N-2	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled		Not Sampled			Not Sampled	Not Sampled	Not Sampled									
/-3	100%	100%	100.0%	Not Sampled	Not Sample																		
/-4	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	100.0%	97.4%	97.4%	6 97.4
-5	100%	100%	100.0%	Not Sampled	Not Sample																		
V-6	15.4%	-84.60%	15.4%	81.3%	70.4%	75.4%	70.4%	76.4%	78.8%	80.0%	72.9%	72.9%	76.4%	76.8%	68.0%	75.6%	77.1%	75.6%	78.6%	78.9%	75.1%	80.5%	6 82.0 [°]
N-7	81.3%	98.70%	93.6%	75.6%	86.2%	81.6%	89.1%	71.1%	87.1%	100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	93.2%	53.5%	84.2%	6 95.0 [°]
N-8	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampleo
W-9	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampleo
N-10	100%	100%	100.0%	Not Sampled	Not Sample																		
N-11	75.0%	89.20%	99.1%	86.1%	90.4%	88.2%	77.2%	86.4%	90.4%	89.2%	90.3%	91.9%	90.3%	84.7%	81.1%	89.0%	87.7%	83.0%	89.3%	86.7%	89.1%	84.5%	86.6
V-12	99.1%	99.80%	75.0%	99.9%	99.9%	99.9%	99.8%	99.6%	99.2%	99.1%	99.0%	98.4%	98.4%	98.3%	98.6%	98.8%	98.5%	98.9%	99.3%	98.8%	99.3%	98.7%	6 99.3
V-13	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sample
V-14	91.1%	87.90%	2.3%	75.9%	68.3%	81.9%	74.3%	69.5%	83.5%	68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5%	85.1%	87.4%	75.7%	75.5%	66.7%	6 89.9
N-15	100%	100%	99.0%	98.5%	96.7%	98.5%	98.6%	98.1%	98.9%	98.7%	95.6%	95.8%	99.2%	100.0%	99.1%	99.0%	100.0%	98.2%	96.4%	99.1%	95.6%	97.8%	6 99.1
V:16*	2.3%	2.80%	2.3%	72.7%	60.9%	27.7%	39.5%	74.6%	86.7%	100.0%	89.8%	81.6%	59.0%	53.1%	60.9%	77.9%	36.8%	52.6%	88.5%	67.9%	84.0%	39.2%	6 23.9
N-17*	99.5%	78*	2.3%	62.9%	54.0%	58.0%	54.5%	59.4%	Not Sampled	66.8%	61.0%	59.4%	66.5%	83.5%	58.5%	50.6%	97.4%	46.9%	53.0%	67.9%	44.6%	72.2%	6 96.7
W-18:*	100%	100%	100.0%	97.4%	93.4%	98.2%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	Not Sampled	100.0%	100.0%	100.0%	89.6%	98.5%	81.9%	91.3%	
V-19 R*	Not Sampled	Not Sampled	Not Sampled	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	99.0%	99.0%	99.0%	6 99.0
V-20**	100%	1	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4
W-21**	Not Sampled	Not Sampled	Not Sampled	34.6%	-50.0%	66.5%	23.1%	23.1%	61.5%	Not Sampled	Not Sampleo												
Vell installed 2003			-							-	-		-	-		-	-				-		
Well Installed 2004																							
ite-Wide reduction:	81.0%	67.60%	62.1%	83.5%	68.7%	78.6%	66.2%	69.1%	87.7%	88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	5 71.3%	82.9%	80.7%	79.7%	72.2%	83.7%
pacted Groundwater																							
ume Area Only:		51.40%	41.1%	82.9%	69.6%	76.0%	58.1%	58.6%	84.6%	80.8%	77.3%	75.0%	72.3%	73.9%	82.2%	73.2%	77.3%	62.5%	75.2%	73.1%	71.9%	64.1%	84.19

Recovery Well	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012	% Reduction 2002 to Sep 2011	% Reduction 2002 to Jun 2011	% Reduction 2002 to Mar 2011
DR-1	-86.6%	-243.6%	-243.6%	-7.6%		-58.7%	44.4%	72.1%	Not Sampled	96.2%	89.0%	90.4%	86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8%	91.6%	97.9%	98.1%	
DR-2	76%	63.8%	63.8%	75.1%	60.3%	60.9%	63.8%	66.0%	47.0%	52.8%	70.5%	59.2%	58.0%	62.3%	45.0%	87.2%	85.4%	99.1%		83.9%	89.7%	88.0%	
DR-3	78%	68.5%	Not Sampled	35.7%	-1.0%	59.3%	70.5%	50.2%	45.6%	63.9%	-18.7%	-37.7%	45.6%	41.6%	19.3%	95.8%	95.1%	97.2%	92.1%	98.3%	95.0%	95.4%	
DR-4	96%	93.9%	93.9%	90.8%	88.9%	92.7%	89.1%	87.2%	91.7%	82.9%	81.8%	82.8%	88.8%	92.5%	90.8%	95.5%	97.9%	94.9%	93.1%	100.0%	89.2%	92.7%	
G-1	80%	74.1%	74.1%	57.7%	47.4%	92.7%	60.0%	100.0%	66.1%	27.3%	49.8%	47.7%	55.0%	61.3%	65.6%	87.3%	89.8%	90.3%	87.4%	88.0%	87.6%	89.8%	87.79
G-2	84%	100.0%	Not Sampled	Not Sampled	100.0%	Not Sampled	Not Sampled	90.1%	Not Sampled	83.1%	88.0%	86.9%	81.7%	95.1%	71.4%	79.0%	87.0%	65.7%	80.4%	89.1%	92.3%	83.0%	87.79
G-3	Not Sampled	Not Sampled	Not Sampled	27.3%	-0.2%	-4.2%	35.0%	8.2%	Not Sampled	79.7%	NA	N											
Overall Reduction	54.6%	60.4%	40.4%	46.5%	41.3%	40.4%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%	91.9%	91.1%	91.99

*Sampling of recovery wells initiated in 2005

FIGURES

DASNY Gowanda Day **Habilitation Center**

4 Industrial Place Gowanda, New York

BERGMANN ARCHITECTS ENGINEERS PLANNERS

Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C. 280 East Broad Street Suite 200 Rochester, NY 14604

office: 585.232.5135 fax: 585.232.4652

www.bergmannpc.com

REVISIONS NO. DATE

Copyright © Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C

Note:

Unauthorized alteration or addition to this drawing is a violation of the New York State Education Law Article 145, Section 7209.

Project Manage S. DEMEO Designed By Date Issued: 06/01/2018 Project Number:

Checked By: S. DEMEO Drawn By: C. WOOD Scale: 1" = 60'

6974.91

APRIL 2018 WATER LEVEL **CONTOUR MAP**

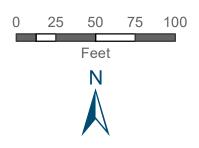
Drawing Number:

FIGURE 1

	MW-21 TCE NS CIS NS TRANS NS VC NS TCA NS TCA NS Total VOCS NS	MW-18 TCE ND CIS ND TRANS ND VC ND TCA ND Total VOCs ND	Torrance Place	MW-19R TCE NS CIS NS TRANS NS VC NS TCA NS TCA NS Total VOCS NS
	MW-16 TCE ND CIS 43 TRANS ND VC ND TCA ND TCA ND TCA ND Total VOCs 43 MWV-16	MW-17 TCE 5.1 CIS ND TRANS ND VC ND TCA ND Total VOCs 5.1	MW-6 MW-5 TCE ND CIS 76 TRANS ND VC ND TCA ND Total VOCs 76	MW-20 TCE ND CIS ND TRANS ND VC ND TOTAL VOCS ND TOTAL VOCS ND
thatthe Brook	MW-7 TCE ND CIS ND TRANS ND VC ND TCA ND Total VOCs ND MW-8 TCE ND CIS ND	MW-14 TCE 18 CIS 10 TRANS ND VC ND TCA ND TCA ND Total VOCS 28 MW-12 TCE 14	MW-15 TCE ND CIS ND TRANS ND VC ND TCA ND TCA ND TCA ND TCA ND TCA TOTAL	MW-4 ND ND
MW-9 TCE ND CIS ND TRANS ND VC ND TCA ND TCA	TRANS ND VC ND TCA ND Total VOCs ND MW-11 TCE 900 CIS 260 TRANS ND VC ND TCA ND Total VOCs 1,160	Total VOCs 113	7-11 MW-3 TRANS VC TCA Total VOC MW-2 MW-2	W-13 ND ND ND ND Cs ND ND ND ND ND ND ND ND ND ND

DASNY

Gowanda Day Habilitation Center


4 Industrial Place Gowanda, NY

BERGMANN ARCHITECTS ENGINEERS PLANNERS

Figure 2

April 2018 Distribution of Groundwater Analytical Results: Monitoring Wells

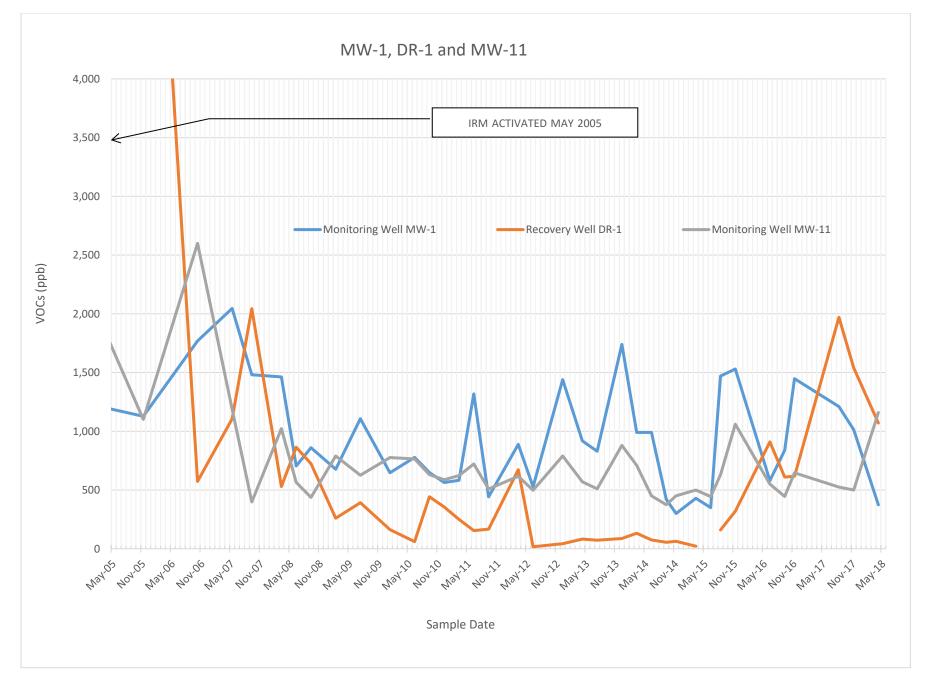
DASNY

Gowanda Day Habilitation Center

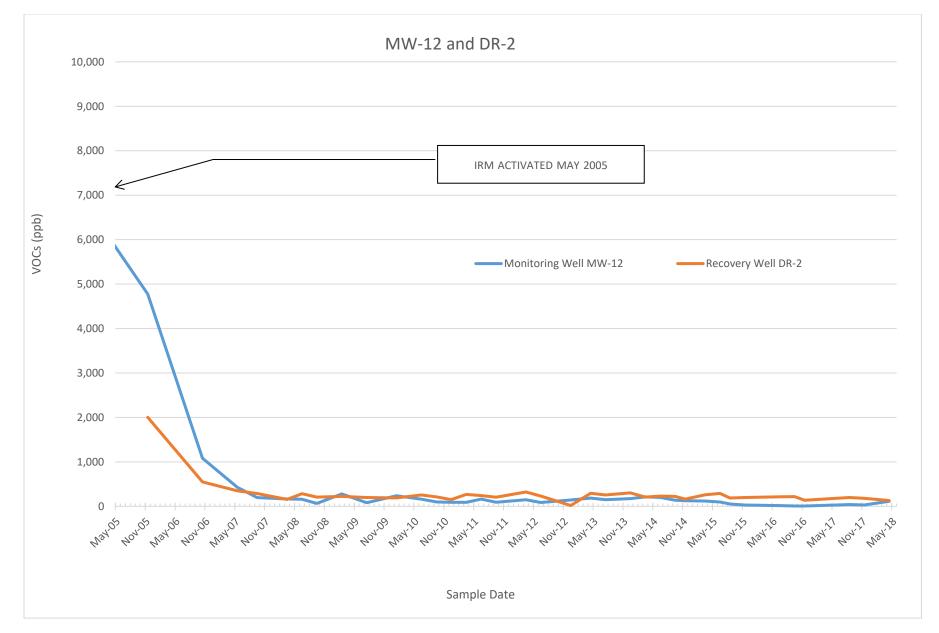
4 Industrial Place Gowanda, NY

BERGMANN ARCHITECTS ENGINEERS PLANNERS

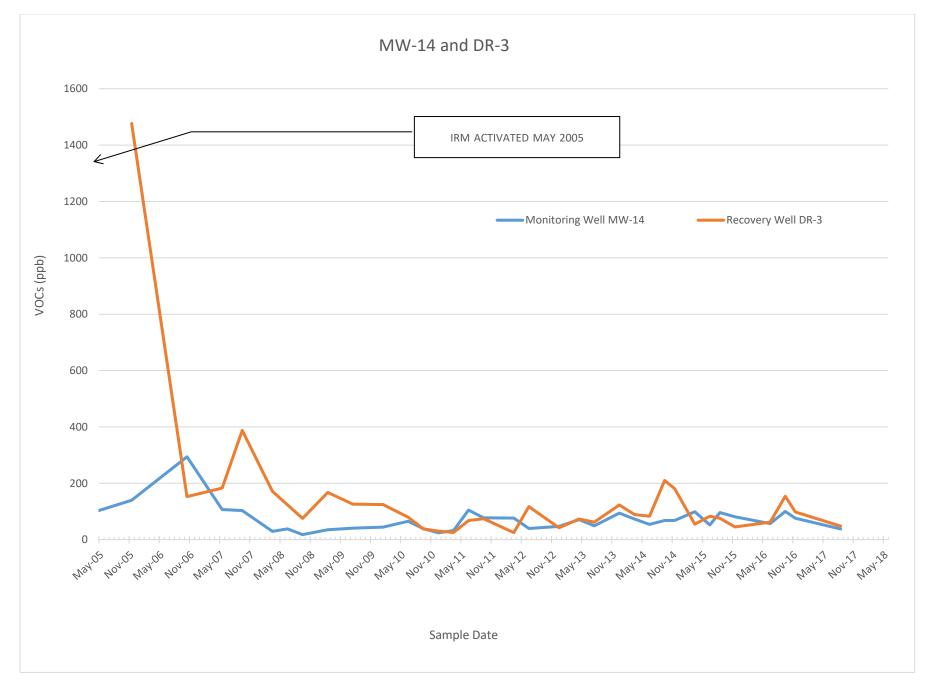
Figure 3

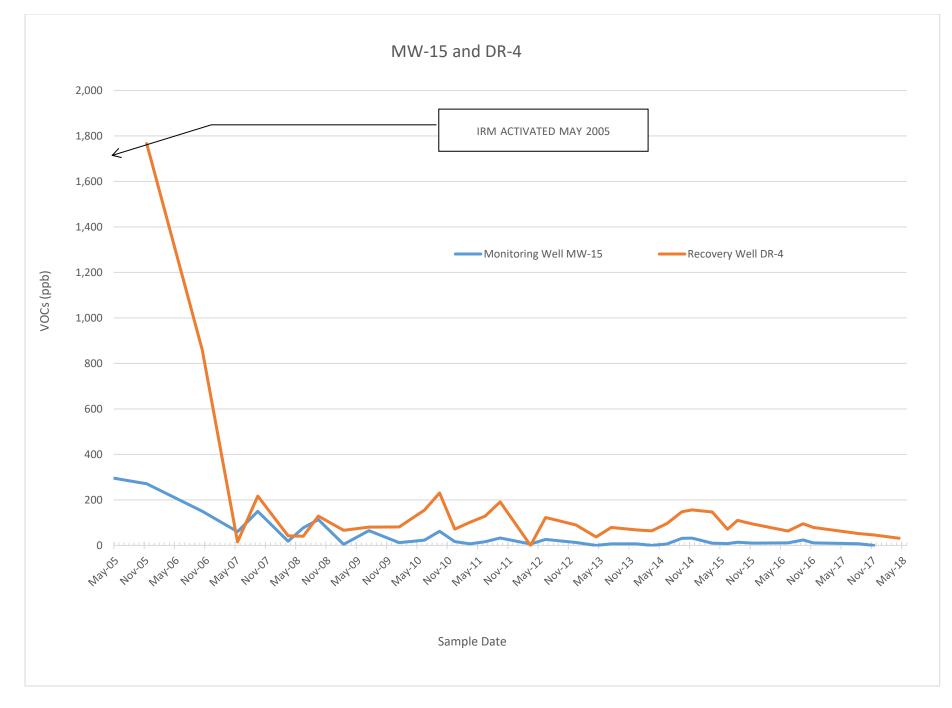

April 2018 Distribution of Groundwater Analytical Results: Recovery Wells

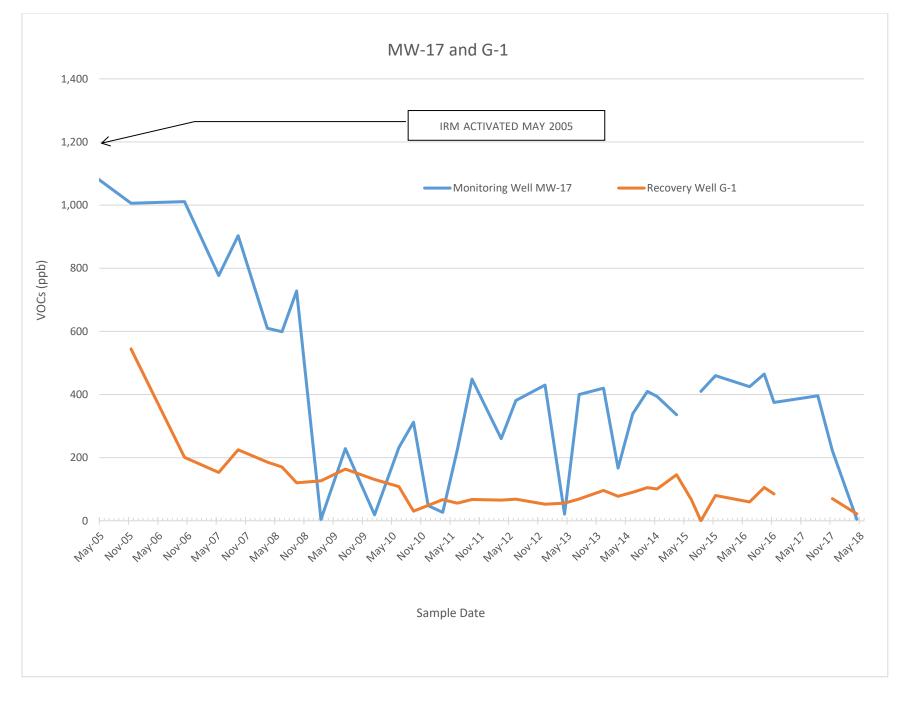
> 0 25 50 75 100 Feet

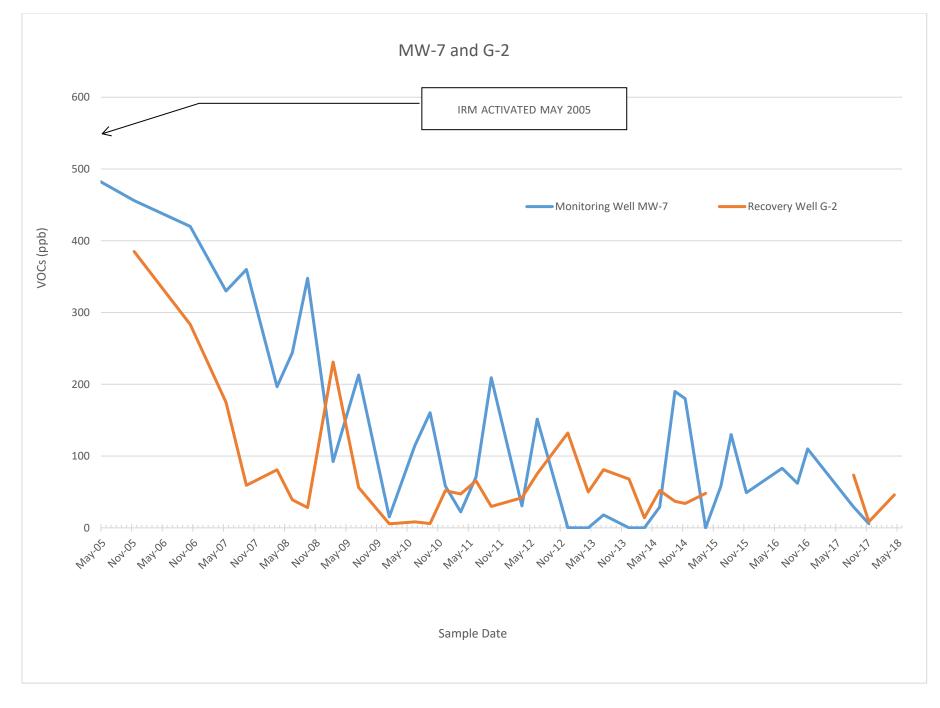


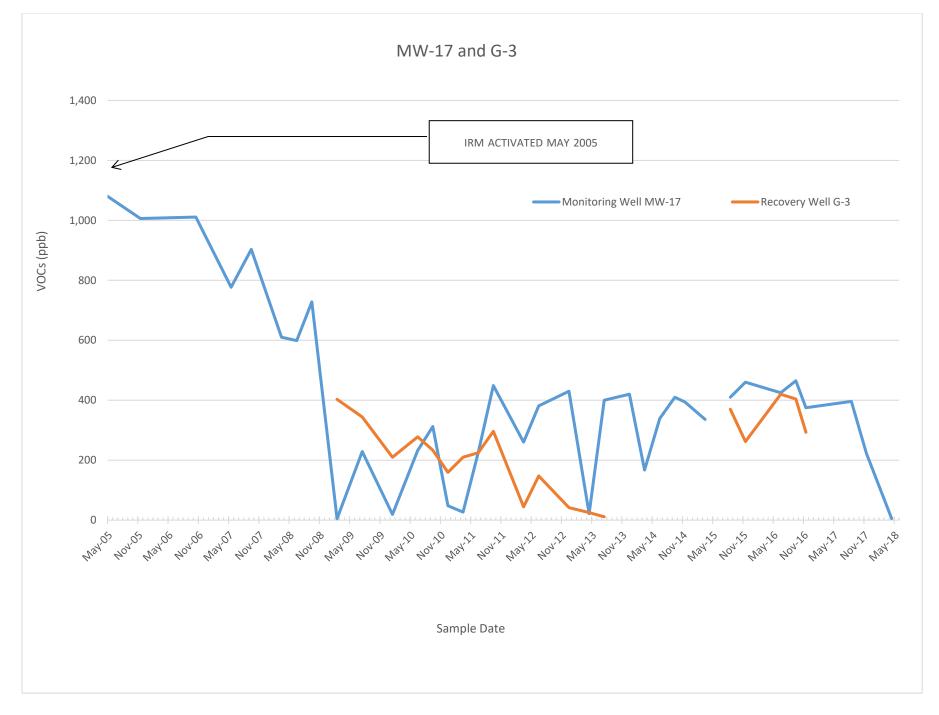
CHARTS











APPENDIX A: LABORATORY ANALYTICAL RESULTS

Mr. Cash Bleier Bergmann Associates, Incorporated 280 East Broad Street Suite 200 Rochester, NY 14604

Laboratory Results for: Gowanda

Dear Mr.Bleier,

Enclosed are the results of the sample(s) submitted to our laboratory April 11, 2018 For your reference, these analyses have been assigned our service request number **R1803166**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Bauch Kullen

Brady Kalkman Project Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:	Bergmann Associates, Incorporated
Project:	Gowanda
Sample Matrix:	Water

Service Request: R1803166 Date Received: 04/11/2018

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt:

Twenty four water samples were received for analysis at ALS Environmental on 04/11/2018. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

Bandy Kullin

Approved by

Date 04/18/2018

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-1		Lab	ID: R1803	166-001		
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	84		0.60	10	ug/L	8260C
Trichloroethene (TCE)	290		0.44	10	ug/L	8260C
CLIENT ID: MW-6		Lab	ID: R1803	166-006		
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	76		0.30	5.0	ug/L	8260C
CLIENT ID: MW-11			ID: R1803	166-010		
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	260		1.5	25	ug/L	8260C
Trichloroethene (TCE)	900		1.1	25	ug/L	8260C
CLIENT ID: MW-12		Lab	ID: R1803	166-011		
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	99		0.30	5.0	ug/L	8260C
Trichloroethene (TCE)	14		0.22	5.0	ug/L	8260C
Vinyl Chloride	8.9		0.32	5.0	ug/L	8260C
CLIENT ID: MW-14		Lab	ID: R1803	166-013		
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	10		0.30	5.0	ug/L	8260C
Trichloroethene (TCE)	18		0.22	5.0	ug/L	8260C
CLIENT ID: MW-16		Lab	ID: R1803	166-015		
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	43		0.30	5.0	ug/L	8260C
CLIENT ID: MW-17		Lab	ID: R1803	166-016		
Analyte	Results	Flag	MDL	PQL	Units	Method
Trichloroethene (TCE)	5.1		0.22	5.0	ug/L	8260C
CLIENT ID: G-1		Lab	ID: R1803	166-019		
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	22		0.30	5.0	ug/L	8260C
CLIENT ID: G-2		Lab	ID: R1803	166-020		
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	38		0.30	5.0	ug/L	8260C
Trichloroethene (TCE)	8.0		0.22	5.0	ug/L	8260C
CLIENT ID: DR-1		Lab	ID: R1803	8166-021		
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	190		3.0	50	ug/L	8260C
Trichloroethene (TCE)	880		2.2	50	ug/L	8260C

SAMPLE DETECTION SUMMARY

CLIENT ID: DR-2		Lab	ID: R1803	166-022		
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	99		0.30	5.0	ug/L	8260C
Trichloroethene (TCE)	31		0.22	5.0	ug/L	8260C
CLIENT ID: DR-3		Lab	ID: R1803	166-023		
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	11		0.30	5.0	ug/L	8260C
Trichloroethene (TCE)	23		0.22	5.0	ug/L	8260C
CLIENT ID: DR-4		Lab	ID: R1803	166-024		
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	7.6		0.30	5.0	ug/L	8260C
Trichloroethene (TCE)	24		0.22	5.0	ug/L	8260C

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 6 of 54

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
R1803166-001	MW-1	4/10/2018	1210
R1803166-002	MW-3	4/10/2018	1200
R1803166-003	MW-4	4/10/2018	1145
R1803166-004	MW-5	4/10/2018	1115
R1803166-005	MW-7	4/10/2018	1100
R1803166-006	MW-6	4/10/2018	1030
R1803166-007	MW-8	4/10/2018	1006
R1803166-008	MW-9	4/10/2018	0944
R1803166-009	MW-10	4/10/2018	1000
R1803166-010	MW-11	4/10/2018	1140
R1803166-011	MW-12	4/10/2018	1120
R1803166-012	MW-13	4/10/2018	1145
R1803166-013	MW-14	4/10/2018	1050
R1803166-014	MW-15	4/10/2018	1033
R1803166-015	MW-16	4/10/2018	1020
R1803166-016	MW-17	4/10/2018	1045
R1803166-017	MW-18	4/10/2018	1220
R1803166-018	MW-20	4/10/2018	1130
R1803166-019	G-1	4/10/2018	1100
R1803166-020	G-2	4/10/2018	1020
R1803166-021	DR-1	4/10/2018	1136
R1803166-022	DR-2	4/10/2018	1125
R1803166-023	DR-3	4/10/2018	1150
R1803166-024	DR-4	4/10/2018	1220

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE

Project Name GOWanda Project Number 6974,90								A	NALYSI	IS RE(QUESI	red (i	Include	e Meth	od Nu	mber	and C	ontain	er Pres	servativ	e)	
Project Manager C. Bleiler	Report CC				PRE	SERVA		1														
Company/Address Bengmann					VERS		7	7	\neg	7	7	7	7	/	/	./	\neg	\neg	7	\neg	/ ∩	servative Key NONE HCL
280 E Broad	St. Suite	200			NUMBER OF CONTAINERS			/		/	/	/ <u>.</u>	ق و ا		/	/	/	/	/	/ /	/ 3. 4.	HCL HNO3 H2SO4 NaOH
Phone Ruchester, NY,	14604 Email			_	OF C		, 3/	。/	PESTCOES			3 3 5 5 8	Comments Control	' /	'/	' /	' /	' /	' /	' /	5. 6.	Zn. Acetate MeOH NaHSO4
585-498-745	A1 1 1 1	e.e.eberg	Manpc.	com	MBER	Construction	3/\$ \$/¥	8/3,		8	8 8 8 8 8 8 8	8 3	8		/						8.	Other X
Sampler's Signature	Sampler's	sh Ble	*	-	N	/ଚିଁଞ୍ଚ	୵ଌୖୖୢୖୢ୶	<u> </u>	128	/ဦ နီ	E. F.	E.					\square			/ AL		ARKS/ DESCRIPTION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	DATE	TIME	MATRIX														_	_			
MW-1		04/10/18	12:10pm	1	3	x																
MW-3		4/10/18	[2:00pm		3	X																
MW-4		Hlolis	<u>11:45an</u>		3	x																
MW-5		4/10/18	11:15 am	GW.	3	X	[
MW-1		4/10/18	11:00 am	(24)	3	X																
MW-6		4/10/14	101304M		3	X																•
MW-X		4/10/18	10:0644		3	X	[
MW-9		4/10/18	9:446m	GUL	З																	
MW-10		4/10/18	(0:60um	GW	3	X			•													
Aw-11		<u>4/10/18</u>	11:40 am	1	3	X																
MW-12		4/10/18	[1:20un	1 GW	3	¥ I			¥.,													
SPECIAL INSTRUCTIONS/COMMENTS Metals							τυ		OUND I H (SURCI					_1. Resu	its Only		EMENI	S			HCE INFO	RMATION
								_ 1 day	2 	day	3 day			_		C Summ S/MSD a:	laries s require	d)	PO			
		•	·					4 CBY	· _ p	cay				_ 111. Res Summ		C and C	alibratio	n	BILL	TO:		
							REQU	JESTEC	REPOR	RT DAT	E			_ 1V. Dat	a Validat	tion Rep	ort with I	Raw Dat	a			
See QAPP													NY	SD	IEC	E	inis					
STATE WHERE SAMPLES WERE COL	LECTED N.en	Yark.												Edal	J	_Yes		No				
	RECEIVE		REL	INQUISHED	BY				RECEN	ÆD BY	1			R	ELINO	JISHEC	BY .				RECEIVE) 8Y
Signature	ignature Ral	k-	Signature				Signatu	10					Signat	ture (R	18	03	166	5		5)
Printed Name Cash Bliel	rinted Name Brid	/Kakpan	Printed Name				Printed	Name					Printe	d Name	Ber Got	gmann wanda	Associ	ites, in	corport	ited		
	im A		Firm				Firm						Flrm									1
	ate/Time ⊔[⊔	18 1820	Date/Time				Date/Ti	ime					Date/	Time 1	<u> </u>	. <u></u>						/

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE

Project Name Gowanda Project Number 6974.90								A	VALYS	IS RE	QUEST	TED (!	nclude	e Meth	od Nu	mber	and C	ontain	ier Pre	eservati	ve)	
Project Manager C. Blere	Report CC				PRE	SERVAT	TVE	ι														
Company/Address Bergmann 280 E Bro	ad st. E	ouite 2	00		NUMBER OF CONTAINERS			/	7	/	7			,/.	/	/	7	/	/	$\left \right $		Preservative Key 0. NONE 1. HCL 2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH
Rochester, NY	14604				5 5		3/,	, /	/ <u>\$</u> /	/ /		र्षे हैं। इ. ही ह	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/ /	/ /	/ /	/ /	/ /	Γ,		/	5. Zn. Acetate 6. MeOH 7. NaHSO4
Phone 585-498-79 Sampler's Signature		Printed Name Gsh Bi	mannpa	Com	NUMBER	OCMS VOIS	CAN SIO		PESTICIOE		METALS TO	METALS DICS DOOM		/	/	/	/	/	/		R	8. Other V <u> http:////</u> MEMARKS/
	FOR OFFICE USE ONLY LAB ID	SAMP	LING										<u> </u>		<u> </u>	(/	f		LIERNA	TE DESCRIPTION
CLIENT SAMPLE ID MW-13	'	DATE 4/10/15	TIME [[:450m	GW	3	X													╂			
Mw-14		4/10/15	10:50 m	(nW	3														┢			
MW-15	 		101.33 am	GW	3														<u> </u>			
MW-16	· · · · · · · · · · · · · · · · · · ·		10:20 fm	GW	3	X													<u>†</u>	1		
MW-17		4/10/18	10:45am	GW	3	X													†—			<u> </u>
NW-15		4/10/18	12:20 am		3	X			•• •													
Mur Zo		4/10/18	A1:30 4m	GW	3	x			`										1	1		
(1-)		1 : • • • 1	11:00 am	GW	3	X													1			<u>.</u>
61-2		4/10/18	10! 20 am	GW	3	X																
DR-(4/10/18	11:36 am	(gW	3	X																
PP-Z		4/0/18	11:28um		3	X																
SPECIAL INSTRUCTIONS/COMMENTS Metals		•					TUR				IREME S APPLY	•			DRT RI	EQUIRI	EMENI	rs				NFORMATION
								_ 1 day _ 4 day	~2 ~5	day day	3 day			-		C Summ S/MSD 84		ර)	PO	# L TO:		
				•										_ III. Res Summ		IC and C	alibratio	n				
							REQUE	ESTEC	REPO	RT DAT	Έ			_ IV. Dat	a Valida	tion Rep	ort with I	Raw Da	ta 🖵			
						•					•		1	ISDE	Ŷ	Equ	ز					
STATE WHERE SAMPLES WERE COL		V Yorn	,				-						- 1 (V)			_Yes		No				
RELINQUISHED BY	RECEIVE			INQUISHED	BY				RECE	VED BY	(R		UISHED					RECE	IVED BY
and y set	Signature Welly	fmh	Signature				Signature						Signat	ure		216	6		5		<u>۱</u>	
Printed Name (ash Bherr F	Tinted Name	L Kallon	Printed Name				Printed N	Name					. 6	lerami	NN A5 5'	316		orated			<u>ا</u>	
Fim Bergmann F		is .	Firm				Firm							Gowand	. (11.11)		HUÎ Î					
Date/Time 4/11/16	Date/Time	4/11/18 0830	Date/Time				Date/Tim	ne					T I								5	

.

Distribution: White - Lab Copy; Yellow - Return to Originator

50526 <u>2</u> of <u>4</u>3

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE

Project Name GALDANAU	Project Nur	6974.	90					A	NALYS	SIS RE	QUEST	TED (nclude	e Meth	od Nu	mber	and C	ontair	er Pre	servati	ve)			
Project Manager (, Bleir	Report CC	.	• ¥		PRES	SERVA	TIVE	1																
Company/Address Bergmann 280 E Broad SJ		10 700			AINERS			/					\neg	7		/	/	/				Presen 0. NO 1. HC 2. HN 3. H2	L Ön	Көу
Rochester, NY 14	604				NUMBER OF CONTAINERS			65.00 85.00 85.00		2		Tients Below	Comments Contraction	/ /		/ /	/ /	/ /	/ /		/	 4. Nat 5. Zn. 6. Met 7. Nat 	DH Aceta DH ISO4	
Sampler's Signature	C bl	ever C-begy printed National De la -	gmannpe	Lom_	NUMBE			<u>8</u> 8 8 8 8 8 8 8 8		\$ \$ }2 }	METALS 1	METALS	\& 			/	/-		/			REMARK	<u>}िता</u> s/	
	- <u> </u>		LING			/ • • •	/ • •	/ • •	<u> </u>	/~•		1-4	[]		/	ſ	ſ	(<u> </u>	<u> </u>	LTERN	ATE DES	CRIPT	
	NLY LAB ID	DATE	TIME	MATRIX	7													<u> </u>						
DP-3		4/10/18	17:30ar		33													-						
DR-4		4/10/18	12:20 pm	GW	12													 						
		1																				-		
								1			_											<u> </u>		
					<u> </u>															ļ				
I	····	·			ļ		ļ	<u> </u>	ļ									ļ	 	ļ				
					<u> </u>		Ļ				[]		Ļ			I			<u> </u>	<u>ļ </u>				
SPECIAL INSTRUCTIONS/COMMENTS Metals							Т 	URNAR			IREME				ORT R		EMEN	TS			OICE	NFORM	ATION	N
								1 da	v — 2	2 day	3 day	,				C Summ S/MSD a	narles as requin	පේ)	P0	4				
								4 da	y _ j	5 day		•		_ III. Re:	sulta + C		Celibratic	-	BIL	L TO:				
							REQ	UESTE	D REPC	DRT DA	TE			Summ		rtion Rer	port with	Raw D						
See CAPP													$\overline{\mathbf{A}}$			-								
STATE WHERE SAMPLES WERE COLLECT	ED NW	York		-			+						۳ ا	Eda	ta	L_Yes	ة 	_No						
RELINQUISHED BY	RECEIVE		REL	INQUISHED	BY		1		RECE	IVED B	Y			. F	ELINO	UISHE	D BY	-, -	1_	- \	REC	EIVED B	Ŷ	
Signature	7 1 1		Signature				Signat	tura					R	18	03	166	S	ated	5	1				
Can Marc	lame 0		Printed Name				Ť	d Name				i	Got						HI N F IN		6			
Cash (Brever	AL	Kulfnan	Firm				Firm														<u>.</u>			
DeterTime 4/11/201X DeterTim		.1.8 0830	Date/Time				Date/	Time					Date	Time	_		-		Dat	e/Time				

50527

<u>3</u> of <u>3</u>

							ſ	R180	316	6	5
								eromann ée			
Cooler	Rece	ipt a	and Pr	reservatio	n Ch	eck Fo		owanda	BOCIATOS, I BRI INIJI II	Incorporated	
		•					Į II				
REGMAN	- 13	t –	Fold	er Number_			<u> </u>				
-18	by:	\mathcal{L}		COURIER:	ALS	UPS I	FEDE	X VEL	OCITY	CLIEN	D _=
on outside of cool	er?		YN			•		•	•	1	' NCNA
perly completed (in	nk, sign	ed)?	(VN	5b Did V	'OA via	ls, Alk,or	Sulfide	e have si	g* bubl	bles?	DN NA
in good condition	(unbro	ken)?	Y N	6 Where	e did the	e bottles o	iginat	e? (ALS/I	300 (
ry Ice Gel packs	; pre:	sent?	Y N	7 Soil V	OA rec	eived as:	Βι	ılk Er	ncore	5035set	NA
Date: 4-11-	18	Time	09:00	1D:	(IR#7	D _{IR#9}		From	Temp	Blan	Sample Bottl
6,31	R (<u> </u>			<u> </u>			
+0.5				`			_				
7,1											
le centrula	U V	04 V2	(a)								
Y N		Y	N	YN	Y	N	Y	N	Y	N	Y N
ozen? Y N		Y	N	YN	Y	N	Y	N	Y	N	Y N
storage location:			ру	on				Shu I		<u></u>	
eservation Check* le labels complete labels and tags ag	(<i>i.e</i> . and ree with	e : <u>4</u> alysis,	/(//X preservat	on Time: tion, etc.)?				NO NO NO			
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no	(<i>i.e.</i> and ree with or the tea extra la	e : 4 alysis, n custo sts ind abels, 1	/11/18 preservat ody paper icated? not leakir	on Time: tion, etc.)? s?		YES		NO NO NO NO		<u>م</u>	
eservation Check* le labels complete labels and tags ag containers used for fais acceptable (no Cassettes / Tubes	(<i>i.e.</i> and ree with or the tea extra la Intact	e : 4 alysis, n custo sts ind abels, n with N	/11/18 preservatedy paper icated? not leakir AS? C	on Time: tion, etc.)? s? ng)? anisters Pressur	[FlO	YES Te	dlar®	NO NO NO NO Bags Infl		R	Ā į
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no	(<i>i.e.</i> and ree with or the tea extra la	e : 4 alysis, n custo sts ind abels, n with N	/11/18 preservat ody paper icated? not leakir	on Time: tion, etc.)? s? ng)? anisters Pressur	1810	YES Tea Sample	dlar® ID	NO NO NO NO			
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH	(<i>i.e.</i> and ree with or the tea extra la Intact Preser	e :4 alysis, n custo sts ind abels, with <u>N</u> ved?	/11/18 preservatedy paper icated? not leakir AS? C	on Time: tion, etc.)? s? ng)? anisters Pressur	[FlO	YES Te	dlar® ID	NO NO NO NO Bags Infl Vol.		R	A Final
eservation Check* le labels complete labels and tags ag containers used fo ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃	(<i>i.e.</i> and ree with or the tea extra la Intact Preser	e :4 alysis, n custo sts ind abels, with <u>N</u> ved?	/11/18 preservatedy paper icated? not leakir AS? C	on Time: tion, etc.)? s? ng)? anisters Pressur	[FlO	YES Tea Sample	dlar® ID	NO NO NO NO Bags Infl Vol.		R	A Final
eservation Check* le labels complete labels and tags ag containers used fo ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄	(<i>i.e.</i> and ree with or the tea extra la Intact Preser	e : <u>4</u> alysis, n custo sts ind abels, with <u>N</u> ved?	/11/18 preservatedy paper icated? not leakir AS? C	on Time: tion, etc.)? s? ng)? anisters Pressur	[FlO	YES Tea Sample	dlar® ID	NO NO NO NO Bags Infl Vol.		R	A Final
eservation Check* le labels complete labels and tags ag containers used fo ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃	(<i>i.e.</i> and ree with or the tea extra la Intact Preser	e : <u>4</u> alysis, n custo sts ind abels, with <u>N</u> ved?	/////¥ preservat ody paper icated? not leakir //S? C: Lot Re	on Time: tion, etc.)? s? ng)? anisters Pressur	[FlO	YES Tea Sample	dlar® ID	NO NO NO NO Bags Infl Vol.		R	A Final
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN,	(<i>i.e.</i> and ree with or the tea extra la Intact Preser	e : <u>4</u> alysis, n custo sts ind abels, with <u>N</u> ved?	/(\//¥ preservat ody paper icated? not leakir //S? C: Lot Re Lot Re //S?	on	[FlO	YES Tea Sample	dlar® ID	NO NO NO NO Bags Infl Vol.		R	A Final
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625,	(<i>i.e.</i> and ree with or the tea extra la Intact Preser	e : <u>4</u> alysis, n custo sts ind abels, with <u>N</u> ved?	/(\//¥ preservat ody paper icated? not leakir /S? C: Lot Re Lot Re No=Not If+, con Na2S203	on	[FlO	YES Tea Sample	dlar® ID	NO NO NO NO Bags Infl Vol.		R	A Final
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522	(<i>i.e.</i> and ree with or the tea extra la Intact Preser	e : <u>4</u> alysis, n custo sts ind abels, with <u>N</u> ved?	/(\//¥ preservat ody paper icated? not leakir /S? C: Lot Re Lot Re No=Not If+, con Na2S203	on	[FlO	YES Tea Sample	dlar® ID	NO NO NO NO Bags Infl Vol.		R	A Final
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625,	(<i>i.e.</i> and ree with or the tea extra la Intact Preser	e : <u>4</u> alysis, n custo sts ind abels, with <u>N</u> ved?	/(\//¥ preservat ody paper icated? not leakir /S? C: Lot Re Lot Re No=Not If+, con Na2S203	on	[FlO	Sample Adjusted	dlar®	NO NO NO Bags Infl Vol. Added	Loi tested be	t Added	Final pH
eservation Check* le labels complete labels and tags ag containers used fo ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃	(<i>i.e.</i> and ree with or the tea extra la Intact Preser	e : 4 alysis, n custo sts ind abels, with N ved? No	/(\//¥ preservat ody paper icated? not leakir /S? C: Lot Re Lot Re No=Not If+, con Na2S203	on	[FlO	Sample Adjusted	dlar® ID J	NO NO NO Bags Infl Vol. Added	Loi tested be amples v	t Added	Final pH · · · ·
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	(i.e. ana ree with or the tex- extra la Intact Preser Yes	e :4 alysis, n custo sts ind abels, with N ved? No	/(\//¥ preservat ody paper icated? not leakir AS? Ci Lot Re Lot Re No=Nol If+, con Na ₂ S ₂ O ₃ CN), asc	on	[FlO	Sample Adjusted	dlar® ID J	NO NO NO Bags Infl Vol. Added	Loi tested be amples v	t Added	Final pH
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749- co7	(i.e. ana ree with or the tex extra la Intact Yes	e :4 alysis, n custo sts ind abels, with N ved? No	/(\//¥ preservat ody paper icated? not leakir /S? C: Lot Re Lot Re No=Not No=Not Na2S203 CN), asc	on Time: tion, etc.)? s? anisters Pressur ceived tify for 3day tact PM to add a (625, 608, corbic (phenol). 7C	ized Exp	Sample Adjusted **VOAs a Otherwise are checke	dlar® ID J	NO NO NO Bags Infl Vol. Added	Loi tested be amples v	t Added	Final pH
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749- co7	(i.e. ana ree with or the tex extra la Intact Yes	e :4 alysis, n custo sts ind abels, with N ved? No	/(\//¥ preservat ody paper icated? not leakir /S? C: Lot Re Lot Re No=Not No=Not Na2S203 CN), asc	on Time: tion, etc.)? s? anisters Pressur ceived tify for 3day tact PM to add a (625, 608, corbic (phenol). 7C	ized Exp	Sample Adjusted **VOAs a Otherwise are checke	dlar® ID J	NO NO NO Bags Infl Vol. Added	Loi tested be amples v	efore analys	Final pH
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749- co7	(i.e. ana ree with or the tex extra la Intact Yes	e :4 alysis, n custo sts ind abels, with N ved? No	/(\//¥ preservat ody paper icated? not leakir /S? C: Lot Re Lot Re No=Not No=Not Na2S203 CN), asc	on Time: tion, etc.)? s? anisters Pressur ceived tify for 3day tact PM to add a (625, 608, corbic (phenol). 7C	ized Exp	Sample Adjusted **VOAs a Otherwise are checke	dlar® ID J	NO NO NO Bags Infl Vol. Added	Loi tested be amples v	t Added	Final pH
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749- co7 cies/ Other Comm 7 a 3 MW-1 Cal 5 DR-	(i.e. ana ree with ree with r the tex extra la Intact Yes Yes 	e: 4 alysis, n custo sts ind abels, n with N ved? No - - +**	/(\/18 preservat ody paper icated? not leakir AS? Ci Lot Re Lot Re No=Noi If +, con Na2S2O3 CN), asc CN), asc U1157	on Time:	1810 Exp 3 Vía 13 Vía	Sample Adjusted **VOAs a Otherwise arc checke	dlar® ID J	NO NO NO Bags Infl Vol. Added	Loi tested be amples v	efore analys vith chemic	Final pH
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749- co7 cies/ Other Comm 7 a 3 MW-1 Cal 5 DR-	(i.e. ana ree with ree with r the tex extra la Intact Yes Yes 	e: 4 alysis, n custo sts ind abels, n with N ved? No - - +**	/(\/18 preservat ody paper icated? not leakir AS? Ci Lot Re Lot Re No=Noi If +, con Na2S2O3 CN), asc CN), asc U1157	on Time:	1810 Exp 3 Vía 13 Vía	Sample Adjusted **VOAs a Otherwise arc checke	dlar® ID J	NO NO NO Bags Infl Vol. Added	Loi tested be amples v	efore analys vith chemic CLRES DO	Final pH · · · · · · · · · · · · · · · · · ·
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749-co7 cies/ Other Comm f a 13 MW-1 f a 13 DR- f a 13 DR- f a 13 MW-2	(i.e. and ree with or the tex- pextra la Intact Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	e: 4 alysis, n custo sts ind abels, n with N ved? No 1 1 1 1 1 1 1 1 1 1	/(\//8 preservat ody paper icated? not leakin AS? C: Lot Re Lot Re No=Not If +, con Na2S203 CN), asc CN), asc U1151	on Time: tion, etc.)? s? anisters Pressur ceived tify for 3day tact PM to add a (625, 608, corbic (phenol). 2_{C} MW-13: All MW-13: All MW-11: All DR-4: All G-1; All	1810 Exp 3 Víal 13 Víal 13 Víal	Sample Adjusted **VOAs a Otherwise are checke	dlar® ID J	NO NO NO Bags Infl Vol. Added	Loi tested be amples v	efore analys vith chemic CLRES DO HPROD	Final pH
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749- co7 cies/ Other Comm 7 a 3 MW-1 Cal 5 DR-	(i.e. and ree with r the tex extra la Intact Yes Yes Yes Yes Yes Yes Yes Yes	e: 4 alysis, n custo sts ind abels, n with N ved? No 1 1 1 1 1 1 1 1 1 1	/(\//8 preservat ody paper icated? not leakin AS? C: Lot Re Lot Re No=Not If +, con Na2S203 CN), asc CN), asc U1151	on Time: tion, etc.)? s? anisters Pressur ceived tify for 3day tact PM to add a (625, 608, corbic (phenol). 2c 2c Mw-13:All Mw-13:All Mw-13:All Mw-13:All Mw-13:All Mw-13:All Mw-13:All Mw-13:All Mw-13:All Mw-13:All Mw-13:All Mw-13:All Mw-13:All	1810 ized Exp 3 Víal 13 Víal 13 Víal 13 Víal	Sample Adjusted Adjusted **VOAs a Otherwise arc checke	dlar® ID J	NO NO NO Bags Infl Vol. Added	Loi tested be amples v	efore analys with chemic CLRES DO HPROD HTR	BULK FLDT HGFB LL13541
eservation Check* le labels complete labels and tags ag containers used for ials acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749-co7 cies/ Other Comm f a 13 MW-1 f a 13 DR- f a 13 DR- f a 13 MW-2	(i.e. and ree with or the tex- extra la Intact Yes Yes - ** 0:2 c 2:2 c 1:2 c	e: 4 alysis, n custo sts ind abels, n with N ved? No - + + + + + + + + + +	/(\//8 preservat ody paper icated? not leakin AS? C: Lot Re Lot Re No=Not If +, con Na2S203 CN), asc CN), asc U1151	on Time: tion, etc.)? s? anisters Pressur ceived tify for 3day tact PM to add a (625, 608, corbic (phenol). 2_{C} MW-13: All MW-13: All MW-11: All DR-4: All G-1; All	1810 ized Exp 3 Víal 13 Víal 13 Víal 13 Víal	Sample Adjusted Adjusted **VOAs a Otherwise arc checke	dlar® ID J	NO NO NO Bags Infl Vol. Added	Loi tested be amples v	CLRES DO HPROD HTR PH	Final pH
	on outside of coold perly completed (in in good condition ry Ice Gel packs Date: 4-11- 6-3 T. 40.8 7.1 le (ent-1/1/4 y N ozen? Y N re, note packing/in	$\frac{PYGMAM}{PS}$ on outside of cooler? perly completed (ink, sign in good condition (unbrok ry Ice Gel packs press Date: $\frac{Y-1}{P}$ $\frac{G-3}{P}$ $\frac{G-3}{P}$ $\frac{F}{P}$	$eYGMAM$ $eYGMAM$ $by:$ $by:$ $by:$ $by:$ on outside of cooler? perly completed (ink, signed)? in good condition (unbroken)? in good condition (unbroken)? ry Ice Gel packs present? Date: $4-14-18$ Time $6-3$ 7.8 6.9 10.8 10.5 7.1 7.4 Ie $cent 40e$ $V0a v_2$ Y N Y vozen? Y N Y N Y vozen? Y N Run Samples:	erg MAMFold $erg MAM$ by: $erg Gammaon outside of cooler?Yperly completed (ink, signed)?Nin good condition (unbroken)?Nry Ice Gel packspresent?YNDate:4-1/24-1/2Time:09:006.3T.R6.3T.R6.3T.R6.3T.R6.3T.R77.410.810.57.17.41e(entrade VOa v, p)YNY$	CYGMANFolder Number-8by:COURIER:on outside of cooler?YNperly completed (ink, signed)?N $5a$ perly completed (ink, signed)?N $5b$ Did V 6 Whenry IceGel packspresent?Ty IceGel packspresent?Date: $4-1 -1 $ Time: 0900 ID: 0000 1000 00000 1000 000000 10000 $000000000000000000000000000000000000$	CYGMANFolder NumberSon outside of cooler?YNperly completed (ink, signed)?YNin good condition (unbroken)?NSaPerchloratesSbDid VOA via6Where did thery Ice Gel packspresent?YDate: $4/1/1$ Time: $0/3$ $10:$ IR#7 $10:$ IR#7 $10:$ <t< td=""><td>EVG MANFolder Number-8by:COURIER: ALS UPS Fon outside of cooler?YNperly completed (ink, signed)?N$5a$perly completed (ink, signed)?N$5b$Did VOA vials, Alk, or 3in good condition (unbroken)?N6Where did the bottles orry Ice Gel packspresent?Date:$4-1/2$Time:0950ID:IR#7IR#9G.3T.RG.3T.RG.3T.RG.3T.RG.9SampleTime:0950ID:IR#7IR#9G.3T.RG.9SampleYN<</td><td>by: M COURIER: ALS UPS FEDE: on outside of cooler? Y N perly completed (ink, signed)? Y N in good condition (unbroken)? Y N in good conditi</td><td>Product Folder Number Image: Standing Approval Folder Number Image: Standing Approval COURIER: ALS UPS FEDEX VELO Image: Standing Approval COURIER: ALS UPS FEDEX VELO Image: Standing Approval Sa Perchlorate samples have required heat Sa Image: Standing Approval Si Perchlorate samples Sa Perchlorate samples Sa Perchlorate samples have required heat Sa Perchlorate samples Sa Image: Standing Approval COURIER: ALS UPS FEDEX VELO Sa Perchlorate samples Sa Perchlorate samples Sa Perchlorate samples Sa Image: Standing Approval Client aware at drop-off Client notif Client notif</td><td>Event Subscription Folder Number -8 by: COURIER: ALS UPS FEDEX VELOCITY on outside of cooler? Y N on outside of cooler? Y N perly completed (ink, signed)? N Sa Perchlorate samples have required headspace by: 5b Did VOA vials, Alk,or Sulfide have sig* bubble 6 Where did the bottles originate? ALS/ 7 Soil VOA received as: Bulk Encore Date: 41/19 Time: 09/00 ID: IR#7 IR#9 From Temp 6/3 7.8 6.9 Sample ID: IR#7 IR#9 From Temp 6/3 7.8 6.9 Sample ID: IR#7 IR#9 From Temp 7 7.4 7.4 ID: IR#7 IR #9 From Temp 7 7.4 7.4 ID: IR#7 IR #9 From Temp 7 7.4 7.4 ID: IR ID: IC ID: IC ID: IC IC</td><td>Generation Check For Provendation Check For Prove Check Check Check For Prove Check Che</td></t<>	EVG MANFolder Number-8by:COURIER: ALS UPS Fon outside of cooler?YNperly completed (ink, signed)?N $5a$ perly completed (ink, signed)?N $5b$ Did VOA vials, Alk, or 3in good condition (unbroken)?N6Where did the bottles orry Ice Gel packspresent?Date: $4-1/2$ Time: 0950 ID:IR#7IR#9G.3T.RG.3T.RG.3T.RG.3T.RG.9SampleTime: 0950 ID:IR#7IR#9G.3T.RG.9SampleYN<	by: M COURIER: ALS UPS FEDE: on outside of cooler? Y N perly completed (ink, signed)? Y N in good condition (unbroken)? Y N in good conditi	Product Folder Number Image: Standing Approval Folder Number Image: Standing Approval COURIER: ALS UPS FEDEX VELO Image: Standing Approval COURIER: ALS UPS FEDEX VELO Image: Standing Approval Sa Perchlorate samples have required heat Sa Image: Standing Approval Si Perchlorate samples Sa Perchlorate samples Sa Perchlorate samples have required heat Sa Perchlorate samples Sa Image: Standing Approval COURIER: ALS UPS FEDEX VELO Sa Perchlorate samples Sa Perchlorate samples Sa Perchlorate samples Sa Image: Standing Approval Client aware at drop-off Client notif Client notif	Event Subscription Folder Number -8 by: COURIER: ALS UPS FEDEX VELOCITY on outside of cooler? Y N on outside of cooler? Y N perly completed (ink, signed)? N Sa Perchlorate samples have required headspace by: 5b Did VOA vials, Alk,or Sulfide have sig* bubble 6 Where did the bottles originate? ALS/ 7 Soil VOA received as: Bulk Encore Date: 41/19 Time: 09/00 ID: IR#7 IR#9 From Temp 6/3 7.8 6.9 Sample ID: IR#7 IR#9 From Temp 6/3 7.8 6.9 Sample ID: IR#7 IR#9 From Temp 7 7.4 7.4 ID: IR#7 IR #9 From Temp 7 7.4 7.4 ID: IR#7 IR #9 From Temp 7 7.4 7.4 ID: IR ID: IC ID: IC ID: IC IC	Generation Check For Provendation Check For Prove Check Check Check For Prove Check Che

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com S Environmental

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹ ut ID # PH0556 Maine ID #NY0032 New Hamps

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Approved	New Jersey ID # NY004	294100 A/B
DoD ELAP #65817	New York ID # 10145	Pennsylvania ID# 68-786
Florida ID # E87674	North Carolina #676	Rhode Island ID # 158
		Virginia #460167

¹ Analyses were performed according to our laboratorys NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alselobal.com/locations/america/usa/new-york/rochester-environmental

RIGHT SOLUTIONS |13 lof 54 HT PARTNER

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Bergmann Associates, Incorporated

Client:

Project:	Gowanda/6974.90		Service Request. R1605100
Sample Name: Lab Code: Sample Matrix:	MW-1 R1803166-001 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-3 R1803166-002 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-4 R1803166-003 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-5 R1803166-004 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-7 R1803166-005 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Printed 4/18/2018 7:29:5	53 AM	15 of 54	Superset Reference:18-0000462156

Service Request: R1803166

ALS Group USA, Corp. dba ALS Environmental

uba ALS Environmentar

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda/6974.90		Service Request: R1803166
Sample Name: Lab Code: Sample Matrix:	MW-6 R1803166-006 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-8 R1803166-007 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-9 R1803166-008 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-10 R1803166-009 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-11 R1803166-010 Water		Date Collected: 04/10/18 Date Received: 04/11/18

Analysis Method 8260C Extracted/Digested By

Analyzed By KRUEST

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Bergmann Associates, Incorporated

Project:	Gowanda/6974.90		
Sample Name: Lab Code: Sample Matrix:	MW-12 R1803166-011 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-13 R1803166-012 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-14 R1803166-013 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-15 R1803166-014 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-16 R1803166-015 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

Client:

Service Request: R1803166

Analyst Summary report

Bergmann Associates, Incorporated

Client:

Printed 4/18/2018 7:29:54 AM

Project:	Gowanda/6974.90		Service Request. R1805100
Sample Name: Lab Code: Sample Matrix:	MW-17 R1803166-016 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-18 R1803166-017 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-20 R1803166-018 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	G-1 R1803166-019 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	G-2 R1803166-020 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

Service Request: R1803166

Analyst Summary report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	

Sample Name:	DR-1	Date Collected:	04/10/18
Lab Code:	R1803166-021	Date Received:	04/11/18
Sample Matrix:	Water		

Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	DR-2 R1803166-022 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	DR-3 R1803166-023 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	DR-4 R1803166-024 Water		Date Collected: 04/10/18 Date Received: 04/11/18
Analysis Method		Extracted/Digested By	Analyzed By

8260C

KRUEST

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

RIGHT SOLUTIONS | RIGHT PARTNER

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 21 of 54

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 12:10
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name:	MW-1	Units: ug/L
		e e
Lab Code:	R1803166-001	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	84	10	2	04/14/18 05:07	
trans-1,2-Dichloroethene	10 U	10	2	04/14/18 05:07	
Tetrachloroethene (PCE)	10 U	10	2	04/14/18 05:07	
1,1,1-Trichloroethane (TCA)	10 U	10	2	04/14/18 05:07	
Trichloroethene (TCE)	290	10	2	04/14/18 05:07	
Vinyl Chloride	10 U	10	2	04/14/18 05:07	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	04/14/18 05:07	
Dibromofluoromethane	101	89 - 119	04/14/18 05:07	
Toluene-d8	104	87 - 121	04/14/18 05:07	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1803166
Project:	Gowanda/6974.90	Date Collected:	04/10/18 12:00
Sample Matrix:	Water	Date Received:	04/11/18 08:30
Sample Name: Lab Code:	MW-3 R1803166-002	Units: Basis:	6

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 15:58	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 15:58	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 15:58	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 15:58	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 15:58	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 15:58	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	04/13/18 15:58	
Dibromofluoromethane	99	89 - 119	04/13/18 15:58	
Toluene-d8	101	87 - 121	04/13/18 15:58	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 11:45
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name:	MW-4	Units: ug/L
Lab Code:	R1803166-003	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 16:20	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 16:20	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 16:20	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 16:20	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 16:20	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 16:20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/13/18 16:20	
Dibromofluoromethane	102	89 - 119	04/13/18 16:20	
Toluene-d8	104	87 - 121	04/13/18 16:20	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 11:15
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name:	MW-5	Units: ug/L
Lab Code:	R1803166-004	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 16:42	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 16:42	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 16:42	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 16:42	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 16:42	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 16:42	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	04/13/18 16:42	
Dibromofluoromethane	103	89 - 119	04/13/18 16:42	
Toluene-d8	103	87 - 121	04/13/18 16:42	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 11:00
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name:	MW-7	Units: ug/L
Lab Code:	R1803166-005	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 17:04	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 17:04	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 17:04	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 17:04	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 17:04	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 17:04	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	04/13/18 17:04	
Dibromofluoromethane	103	89 - 119	04/13/18 17:04	
Toluene-d8	105	87 - 121	04/13/18 17:04	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 10:30
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name: Lab Code:	MW-6 R1803166-006	Units: ug/L Basis: NA
Lab Couc.	K1005100-000	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	76	5.0	1	04/13/18 22:54	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 22:54	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 22:54	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 22:54	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 22:54	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 22:54	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	04/13/18 22:54	
Dibromofluoromethane	102	89 - 119	04/13/18 22:54	
Toluene-d8	105	87 - 121	04/13/18 22:54	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 10:06
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Namule Name	MW_{-8}	Linits ug/l
Sample Name: Lab Code:	MW-8 R1803166-007	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 23:16	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 23:16	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 23:16	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 23:16	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 23:16	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 23:16	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	04/13/18 23:16	
Dibromofluoromethane	103	89 - 119	04/13/18 23:16	
Toluene-d8	104	87 - 121	04/13/18 23:16	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166	
Project:	Gowanda/6974.90	Date Collected: 04/10/18 09:44	
Sample Matrix:	Water	Date Received: 04/11/18 08:30	
Sample Name:	MW-9	Units: ug/L	
Lab Code:	R1803166-008	Basis: NA	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 23:38	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 23:38	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 23:38	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 23:38	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 23:38	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 23:38	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	04/13/18 23:38	
Dibromofluoromethane	103	89 - 119	04/13/18 23:38	
Toluene-d8	104	87 - 121	04/13/18 23:38	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1803166
Project:	Gowanda/6974.90	Date Collected:	04/10/18 10:00
Sample Matrix:	Water	Date Received:	04/11/18 08:30
Sample Name: Lab Code:	MW-10 R1803166-009	Units: Basis:	0

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 00:00	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 00:00	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 00:00	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 00:00	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 00:00	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 00:00	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 00:00	
Dibromofluoromethane	102	89 - 119	04/14/18 00:00	
Toluene-d8	105	87 - 121	04/14/18 00:00	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 11:40
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name: Lab Code:	MW-11 R1803166-010	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	260	25	5	04/14/18 05:28	
trans-1,2-Dichloroethene	25 U	25	5	04/14/18 05:28	
Tetrachloroethene (PCE)	25 U	25	5	04/14/18 05:28	
1,1,1-Trichloroethane (TCA)	25 U	25	5	04/14/18 05:28	
Trichloroethene (TCE)	900	25	5	04/14/18 05:28	
Vinyl Chloride	25 U	25	5	04/14/18 05:28	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 05:28	
Dibromofluoromethane	101	89 - 119	04/14/18 05:28	
Toluene-d8	104	87 - 121	04/14/18 05:28	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 11:20
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name: Lab Code:	MW-12 R1803166-011	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	99	5.0	1	04/14/18 00:22	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 00:22	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 00:22	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 00:22	
Trichloroethene (TCE)	14	5.0	1	04/14/18 00:22	
Vinyl Chloride	8.9	5.0	1	04/14/18 00:22	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	04/14/18 00:22	
Dibromofluoromethane	103	89 - 119	04/14/18 00:22	
Toluene-d8	105	87 - 121	04/14/18 00:22	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 11:45
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name: Lab Code:	MW-13 R1803166-012	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 00:44	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 00:44	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 00:44	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 00:44	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 00:44	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 00:44	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	04/14/18 00:44	
Dibromofluoromethane	101	89 - 119	04/14/18 00:44	
Toluene-d8	105	87 - 121	04/14/18 00:44	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1803166
Project:	Gowanda/6974.90	Date Collected:	04/10/18 10:50
Sample Matrix:	Water	Date Received:	04/11/18 08:30
Sample Name: Lab Code:	MW-14 R1803166-013	Units: Basis:	e

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	10	5.0	1	04/14/18 01:06	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 01:06	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 01:06	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 01:06	
Trichloroethene (TCE)	18	5.0	1	04/14/18 01:06	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 01:06	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 01:06	
Dibromofluoromethane	101	89 - 119	04/14/18 01:06	
Toluene-d8	105	87 - 121	04/14/18 01:06	

Analytical Report

10/18 10:33
11/18 08:30
L
1 [_

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 01:28	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 01:28	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 01:28	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 01:28	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 01:28	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 01:28	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	04/14/18 01:28	
Dibromofluoromethane	102	89 - 119	04/14/18 01:28	
Toluene-d8	104	87 - 121	04/14/18 01:28	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 10:20
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name: Lab Code:	MW-16 R1803166-015	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	43	5.0	1	04/14/18 01:50	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 01:50	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 01:50	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 01:50	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 01:50	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 01:50	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	04/14/18 01:50	
Dibromofluoromethane	101	89 - 119	04/14/18 01:50	
Toluene-d8	107	87 - 121	04/14/18 01:50	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 10:45
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name: Lab Code:	MW-17 R1803166-016	Units: ug/L Basis: NA
Lub Couc.	1003100 010	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 02:12	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 02:12	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 02:12	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 02:12	
Trichloroethene (TCE)	5.1	5.0	1	04/14/18 02:12	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 02:12	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 02:12	
Dibromofluoromethane	103	89 - 119	04/14/18 02:12	
Toluene-d8	104	87 - 121	04/14/18 02:12	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 12:20
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name: Lab Code:	MW-18 R1803166-017	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 02:33	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 02:33	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 02:33	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 02:33	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 02:33	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 02:33	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	04/14/18 02:33	
Dibromofluoromethane	104	89 - 119	04/14/18 02:33	
Toluene-d8	106	87 - 121	04/14/18 02:33	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 11:30
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name: Lab Code:	MW-20 R1803166-018	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 02:55	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 02:55	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 02:55	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 02:55	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 02:55	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 02:55	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	04/14/18 02:55	
Dibromofluoromethane	101	89 - 119	04/14/18 02:55	
Toluene-d8	102	87 - 121	04/14/18 02:55	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1803166
Project:	Gowanda/6974.90	Date Collected:	04/10/18 11:00
Sample Matrix:	Water	Date Received:	04/11/18 08:30
Sample Name: Lab Code:	G-1 R1803166-019	Units: Basis:	0

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	22	5.0	1	04/14/18 03:17	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 03:17	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 03:17	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 03:17	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 03:17	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 03:17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 03:17	
Dibromofluoromethane	104	89 - 119	04/14/18 03:17	
Toluene-d8	102	87 - 121	04/14/18 03:17	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1803166
Project:	Gowanda/6974.90	Date Collected:	04/10/18 10:20
Sample Matrix:	Water	Date Received:	04/11/18 08:30
Sample Name: Lab Code:	G-2 R1803166-020	Units: Basis:	e

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	38	5.0	1	04/14/18 03:39	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 03:39	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 03:39	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 03:39	
Trichloroethene (TCE)	8.0	5.0	1	04/14/18 03:39	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 03:39	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 03:39	
Dibromofluoromethane	103	89 - 119	04/14/18 03:39	
Toluene-d8	102	87 - 121	04/14/18 03:39	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1803166
Project:	Gowanda/6974.90	Date Collected:	04/10/18 11:36
Sample Matrix:	Water	Date Received:	04/11/18 08:30
Sample Name:	DR-1	Units:	11g/I
Lab Code:	R1803166-021	Basis:	e

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	190	50	10	04/14/18 05:50	
trans-1,2-Dichloroethene	50 U	50	10	04/14/18 05:50	
Tetrachloroethene (PCE)	50 U	50	10	04/14/18 05:50	
1,1,1-Trichloroethane (TCA)	50 U	50	10	04/14/18 05:50	
Trichloroethene (TCE)	880	50	10	04/14/18 05:50	
Vinyl Chloride	50 U	50	10	04/14/18 05:50	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	04/14/18 05:50	
Dibromofluoromethane	103	89 - 119	04/14/18 05:50	
Toluene-d8	106	87 - 121	04/14/18 05:50	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 11:25
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name: Lab Code:	DR-2 R1803166-022	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	99	5.0	1	04/14/18 04:01	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 04:01	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 04:01	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 04:01	
Trichloroethene (TCE)	31	5.0	1	04/14/18 04:01	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 04:01	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 04:01	
Dibromofluoromethane	103	89 - 119	04/14/18 04:01	
Toluene-d8	104	87 - 121	04/14/18 04:01	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: 04/10/18 11:50
Sample Matrix:	Water	Date Received: 04/11/18 08:30
Sample Name: Lab Code:	DR-3 R1803166-023	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	11	5.0	1	04/14/18 04:23	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 04:23	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 04:23	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 04:23	
Trichloroethene (TCE)	23	5.0	1	04/14/18 04:23	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 04:23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	04/14/18 04:23	
Dibromofluoromethane	103	89 - 119	04/14/18 04:23	
Toluene-d8	105	87 - 121	04/14/18 04:23	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1803166
Project:	Gowanda/6974.90	Date Collected:	04/10/18 12:20
Sample Matrix:	Water	Date Received:	04/11/18 08:30
Sample Name:	DR-4	Units:	11σ/ Ι
Lab Code:	R1803166-024	Basis:	e

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	7.6	5.0	1	04/14/18 04:45	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 04:45	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 04:45	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 04:45	
Trichloroethene (TCE)	24	5.0	1	04/14/18 04:45	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 04:45	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 04:45	
Dibromofluoromethane	100	89 - 119	04/14/18 04:45	
Toluene-d8	105	87 - 121	04/14/18 04:45	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 47 of 54

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/6974.90
Sample Matrix:	Water

Service Request: R1803166

SURROGATE RECOVERY SUMMARY

Analysis Method:	8260C
Extraction Method:	EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85 - 122	89 - 119	87 - 121
MW-1	R1803166-001	99	101	104
MW-3	R1803166-002	100	99	101
MW-4	R1803166-003	102	102	104
MW-5	R1803166-004	101	103	103
MW-7	R1803166-005	104	103	105
MW-6	R1803166-006	104	102	105
MW-8	R1803166-007	104	103	104
MW-9	R1803166-008	103	103	104
MW-10	R1803166-009	102	102	105
MW-11	R1803166-010	102	101	104
MW-12	R1803166-011	105	103	105
MW-13	R1803166-012	104	101	105
MW-14	R1803166-013	102	101	105
MW-15	R1803166-014	101	102	104
MW-16	R1803166-015	105	101	107
MW-17	R1803166-016	102	103	104
MW-18	R1803166-017	103	104	106
MW-20	R1803166-018	101	101	102
G-1	R1803166-019	102	104	102
G-2	R1803166-020	102	103	102
DR-1	R1803166-021	106	103	106
DR-2	R1803166-022	102	103	104
DR-3	R1803166-023	104	103	105
DR-4	R1803166-024	102	100	105
Lab Control Sample	RQ1803335-03	105	106	104
Method Blank	RQ1803335-04	101	103	103
Lab Control Sample	RQ1803359-03	103	105	103
Method Blank	RQ1803359-04	102	104	105
DR-1 MS	RQ1803359-05	106	104	106
DR-1 DMS	RQ1803359-06	104	106	105

QA/QC Report

Client: Project: Sample Matrix:	U	ann Associates, Incorporated da/6974.90				Date C Date R Date A	e Request: ollected: eceived: nalyzed: xtracted:	R180 04/10 04/11 04/14 NA)/18 /18		
				plicate Mat	-	-					
			Volati	le Organic (Compound	ls by GC/I	MS				
Sample Name:	DR-1							Units:	ug/L		
Lab Code:	R180316	56-021						Basis:	NA		
Analysis Method:	8260C										
Prep Method:	EPA 503	30C									
-				Matrix Spik RQ1803359-(Duj	plicate Matr RQ1803359	-			
		Sample		Spike			Spike		% Rec		RPD
Analyte Name		Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
cis-1,2-Dichloroether	ne	190	732	500	107	719	500	105	72-133	2	30
trans-1,2-Dichloroeth		50 U	545	500	109	528	500	106	77-125	3	30
Tetrachloroethene (P	CE)	50 U	461	500	92	445	500	89	67-137	4	30
1,1,1-Trichloroethane	· /	50 U	514	500	103	507	500	101	74-127	1	30
Trichloroethene (TCI	Ξ)	880	1380	500	99	1380	500	99	62-142	<1	30
Vinyl Chloride		50 U	572	500	114	541	500	108	60-157	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1803166
Project:	Gowanda/6974.90	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Units:	ug/L
Lab Code:	RQ1803335-04	Basis:	NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 11:49	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 11:49	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 11:49	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 11:49	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 11:49	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 11:49	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	04/13/18 11:49	
Dibromofluoromethane	103	89 - 119	04/13/18 11:49	
Toluene-d8	103	87 - 121	04/13/18 11:49	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1803166
Project:	Gowanda/6974.90	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RO1803359-04	Basis: NA
Lab Couc.	KQ1005557-0-	Dasis. IVA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 22:33	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 22:33	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 22:33	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 22:33	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 22:33	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 22:33	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/13/18 22:33	
Dibromofluoromethane	104	89 - 119	04/13/18 22:33	
Toluene-d8	105	87 - 121	04/13/18 22:33	

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/6974.90
Sample Matrix:	Water

Service Request: R1803166 **Date Analyzed:** 04/13/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1803335-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	19.8	20.0	99	80-121
trans-1,2-Dichloroethene	8260C	20.4	20.0	102	80-120
Tetrachloroethene (PCE)	8260C	17.2	20.0	86	78-124
1,1,1-Trichloroethane (TCA)	8260C	17.3	20.0	86	74-120
Trichloroethene (TCE)	8260C	17.7	20.0	88	78-123
Vinyl Chloride	8260C	19.8	20.0	99	69-133

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/6974.90
Sample Matrix:	Water

Service Request: R1803166 **Date Analyzed:** 04/13/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1803359-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	19.8	20.0	99	80-121
trans-1,2-Dichloroethene	8260C	18.7	20.0	94	80-120
Tetrachloroethene (PCE)	8260C	16.6	20.0	83	78-124
1,1,1-Trichloroethane (TCA)	8260C	17.7	20.0	88	74-120
Trichloroethene (TCE)	8260C	17.7	20.0	89	78-123
Vinyl Chloride	8260C	20.0	20.0	100	69-133

MAY 2018 GROUNDWATER CHARACTERIZATION REPORT

New York State Office of People with Developmental Disabilities

GROUNDWATER CHARACTERIZATION REPORT – MAY 2018

Bergmann Associates

Office: 280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135 www.bergmannpc.com

Issued: July 2018

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1 1.2	Scope of Work Site Background	
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	5
2.1 2.2	Well Maintenance Activities Groundwater Field Monitoring and Sampling Activities	
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	6
4.0	LABORATORY ANALYSIS	6
4.1 4.2 4.3 4.4 4.5	Laboratory Analysis on Groundwater Samples Monitoring Well Groundwater Analysis SummarY Sentry Well Groundwater Analysis Summary Recovery Well Groundwater Analysis Summary Quality Assurance and Quality Control Samples	
5.0	REMEDIATION SYSTEM EFFICIENCY	10
5.1 5.2 5.3	Impact of the GTS Recovery Wells Extent of Impacted Groundwater Future Groundwater Monitoring and Analysis Activities	

Tables

Table 1:	Groundwater Elevations and Field Measurements – May 2018
Table 2:	May 2018 Analytical Results Summary
Table 3:	Historic Groundwater Analytical Results Summary
Table 4:	Percent Reduction in Total Groundwater VOCs

Figures

Figure 1:	May 2018 Groundwater Contour Map
Figure 2:	May 2018 Distribution of Groundwater Analytical Results: Monitoring Wells
Figure 3:	May 2018 Distribution of Groundwater Analytical Results: Recovery Wells

Charts

Chart 1:	DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations
Chart 2:	DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations
Chart 3:	DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations
Chart 4:	DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations
Chart 5:	G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations
Chart 6:	G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations
Chart 7:	G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

Appendices

Appendix A: Laboratory Analytical Results Report - May 2018 Sampling Event

1.0 INTRODUCTION

Bergmann is submitting this groundwater characterization report for the May 2018 sampling event on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, has entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 SCOPE OF WORK

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on May 30, 2018. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from 19 of 21 site-related groundwater monitoring wells and six (6) of seven (7) groundwater recovery wells were sampled for laboratory analysis. Of the eight (8) monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), three (3) were not sampled. These monitoring wells include MW-19R, MW-21, and G-3. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site.

The prior groundwater sampling event was conducted in April 2018 and included analysis of groundwater samples from 18 of 21 site-related groundwater monitoring wells and six (6) of seven (7) groundwater recovery wells.

1.2 SITE BACKGROUND

The Gowanda Day Habilitation site consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies have occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of seven (7) groundwater recovery wells (four dual phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the EVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

During January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015. An ISCO Report was prepared under separate cover.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the May 2018 site visit, all monitoring wells were accessible and the integrity of the wells was not compromised except for MW-19R, MW-21, and G-3. MW-19R and MW-21, both located on Torrance Place, were still paved over as originally reported in the August 2017 summary report. G-3 was not located due to extensive vegetative growth around the well vault. Bergmann personnel will request the site maintenance staff to remove the excessive vegetation that is growing around the site in attempts to locate the well. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of the redevelopment activities performed on August 19, 2015. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the May 2018 sampling event.

2.2 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater in groundwater monitoring wells are measured on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the impacted groundwater plume beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from 19 of the 21 site-related groundwater monitoring wells for laboratory analysis on May 31, 2018. Depth to groundwater measurements were obtained from 25 wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via low-flow pumping using a Geo-pump electric peristaltic pump. Sample parameters including turbidity, temperature, pH, oxygen, salinity and conductivity were monitored using a YSI Quatro to ensure sufficient well purging prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater without collecting sediment from within the wells. A single duplicate sample and a field blank sample were collected and submitted for laboratory analysis.

Groundwater samples were delivered via chain-of-custody protocol to ALS Environmental Services located in Rochester, NY, a NYSDOH certified laboratory, for testing using EPA Method 8260B for targeted chlorinated

volatile organic compounds (VOCs) of concern. Analytical results for each individual monitoring well have been posted in Table 3 for comparative purposes from sampling events completed 2002 – 2018.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

The Site water table potentiometric surface pattern and groundwater flow direction was determined for May 2018 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on May 30, 2018. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements - May 2018.

The May 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The May 2018 depths to groundwater range from 6.12 ft below top of casing (btoc) at MW-1, to 13.22 ft btoc at MW-17 located at the northern property line. The average depth to groundwater at the wells measured was 9.49 ft btoc.

The site-wide average depth to water table increased by approximately 0.31 ft when compared to the April 2018 sampling event. This increase in the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented Table 1 and May 2018 Groundwater Contours are presented on Figure 1 – May 2018 Groundwater Contour Map.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS ON GROUNDWATER SAMPLES

Laboratory analysis was completed on the groundwater samples from 19 monitoring wells and six (6) recovery wells collected May 30, 2018. Samples were analyzed for VOCs via EPA Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

The May 2018 analytical results indicate three (3) chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, and Trans-DCE. Chlorinated VOCs were detected in groundwater from seven (7) of the 19 sampled monitoring wells. Analytical results are summarized in Table 2 – May 2018 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical reporting package is provided in Appendix A – Laboratory Analytical Results Report May 2018 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from 12 of the sampled monitoring wells.

Groundwater samples from seven (7) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, DR-1 (1,319 ppb), is located in the area of historically greatest impacted groundwater.

Concentrations in three (3) of the 19 monitoring well groundwater samples increased when compared to the April 2018 sampling event while concentrations in four (4) of the 19 monitoring well groundwater samples decreased. Concentrations in 12 groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 81.2% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 65.3% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the May 2018 sampling event was 1,110 parts per billion (ppb), a decrease from the April 2018 value of 374 ppb. Since activation of the GTS, detected VOCs at MW-1 have increased by about 44.5%.

Monitoring well MW-11 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the May 2018 sampling event is 489 ppb, a decrease from the April 2018 value of 1,160 ppb. Since activation of the GTS in May 2005, detected VOCs at MW-11 have decreased by 89.5%.

Monitoring well MW-12 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the April 2018 sampling event is 100 ppb, a decrease from the April 2018 value of 113 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by about 99%.

Monitoring well MW-14 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the May 2018 sampling event is 22.8 ppb, an increase from the April 2018 value of 28 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by about 93%.

Monitoring well MW-15 remained the same in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the May 2018 sampling event was Not Detected (ND), which was no change from the April 2018 sampling event. MW-15 is nearest to recovery well DR-4. Since activation of the GTS in May 2005, the detected VOCs at MW-15 have remained unchanged at non-detect levels.

Six (6) groundwater monitoring wells are located along the subject property's north perimeter, down-gradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-7, MW-16, MW-17 and MW-21. The current analytical results exhibit an increase in targeted VOCs at the sampled monitoring wells along the north perimeter.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three (3) wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system. The current results indicate non-detect levels for MW-18. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2015 sampling event. It was first noted that during the August 2017 sampling event, wells MW-19R and MW-21 were not sampled because they were inaccessible.

It was observed that the wells were likely paved over by a re-sealing operation. The wells were still inaccessible and paved over during the May 2018 sampling event.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – May 2018 Distribution of Groundwater Analytical Results: Monitoring Wells.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry well sampled for this event was only MW-4. The current results indicate non-detect levels for this eastern sentry well.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R, but MW-19R is unable to be sampled because it is paved over. The Gowanda Electronics impacted groundwater plume does not appear to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO injection application was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

During the May 2018 sampling event, six (6) of the seven (7) recovery wells were sampled. The G-3 well could not be located and is assumed to be overgrown with vegetation. Bergmann personnel will request the site maintenance crew to clear the vegetation around the area of G-3 prior to the next sampling event.

The May 2018 analytical results indicate detection of five (5) chlorinated VOCs in recovery well samples: TCE, Cis-DCE, and TRANS. Chlorinated VOCs were detected in samples from all six (6) of the sampled recovery wells. Total VOCs at the 6 recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the current sampling event is about 37% relative to concentrations prior to GTS activation in 2002. Relative percent reductions in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the May 2018 sampling event is 1,319 ppb, a decrease from the April 2018 value of 1,070 ppb. The current sampling event indicates an increase in VOCs at DR-1 of 130% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in an area of historically highest concentrations.

Recovery well DR-2 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the May 2018 sampling event is 128 ppb, a decrease from the April 2018 value of 130 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of about 76.7% since activation of the GTS.

Recovery well DR-3 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the May 2018 sampling event is 125.5 ppb, an increase from the April 2018 value of 24 ppb. The current sampling event indicates a decrease in VOCs at DR-3 of about 17.8% since activation of the GTS.

Recovery well DR-4 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the May 2018 sampling event is 31.2 ppb, a decrease from the April 2018 value of 31.6 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of about 96.4% since activation of the GTS.

Recovery well G-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the May 2018 sampling event was 40 ppb, an increase from the April value of 22 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 80% since activation of the GTS.

Recover well G-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-2 for the May 2018 sampling event was 50 ppb, an increase from the April 2018 value of 46 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 82.4% since activation of the GTS.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – May 2018 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

For quality assurance purposes a duplicate groundwater sample is typically collected from monitoring well MW-11, designated sample "MW-X". TRANS was detected in the duplicate sample but not in the original sample (MW-11). This is most likely a result of laboratory contamination.

A trip blank was supplied by the laboratory for the May 2018 sampling event. An equipment blank was collected to ensure proper cleaning of the sampling equipment. The equipment blank, designated as EB, was non-detect for chlorinated halogens.

Laboratory analytical results are included in Appendix A.

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 IMPACT OF THE GTS RECOVERY WELLS

Groundwater control charts for the six (6) sampled recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center. Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all six (6) sampled groundwater recovery wells have demonstrated a general decrease in VOC concentration.

The current sampling event results represent a decrease of total VOCs at two (2) recovery wells (DR-2 and G-2) when compared to the April 2018 sampling event.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (1,110 ppb) show an increase from the April 2018 sampling event (374 ppb). The current total VOCs at MW-11 (489 ppb) shows a decrease from the April 2018 sampling event (1,160 ppb). The current total VOCs at DR-1 (1,319 ppb) show an increase from the April 2018 sampling event (1,070 ppb).

Chart 3 compares laboratory results between recovery well DR-2 and MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (100 ppb) show a decrease from the April 2018 sampling event (113 ppb). The current total VOCs at recovery well DR-2 (128 ppb) show a decrease from the April 2018 sampling event (130 ppb).

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (22.8 ppb) show a decrease from the April 2018 sampling event (28 ppb). The current total VOCs at recovery well DR-3 (125.4 ppb) show an increase from the April 2018 sampling event (34 ppb).

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (ND) show no change from the April 2018 sampling event. The current total VOCs at recovery well DR-4 (31.2 ppb) show a decrease from the April 2018 sampling event (31.6 ppb).

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. The recovery well is located in the northern portion of the building and MW-17 is located along the northern property line. The current total VOCs at recovery well MW-17 (112.5) show an increase from the April 2018 sampling event (5.1). The current total VOCs at recovery well G-1 (40 ppb) show an increase from the April 2018 sampling event (22 ppb).

Chart 7 compares laboratory results between recovery well G-2 and MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. Recovery well G-2 had a total VOC of 50 ppb, which shows an increase from the April 2018 sampling event (46 ppb). The May 2018 total VOCs of MW-7 (ND) showed no change from the April 2018 sampling event (ND).

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western perimeter of the apparent area of impacted groundwater. The current total VOCs at monitoring well MW-17 (112.5) showed an increase from the April 2018 sampling event (5.1). The current total VOCs at recovery well G-3 were not calculated due to recovery well G-3 not being sampled during the May 2018 sampling event. Groundwater sampling results from monitoring wells along the western and eastern perimeters have consistently been non-detect.

5.2 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not sampled at MW-19R and MW-21 during the May 2018 and April 2018 sampling events due to the fact that they were both paved over and inaccessible, as first reported by Bergmann in the August 2017 Sampling Report. Additionally, G-3 was not sampled because it is inaccessible due to excessive vegetative growth around the well vault. Bergmann will ask the site maintenance crew to cut vegetation in the area of G-3 and all other exterior wells prior to the next sampling event (August 2018).

The redevelopment of wells was performed in fall 2015 to remove sediment from wells at the Site after the ISCO injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred at the Site when compared to the past ten (10) years of sampling. The following notes are a summary of the meeting held on June 22, 2018 between Bergmann, DASNY, and the NYSDEC.

- Bergmann will be implementing a subsurface investigation plan consisting of soil borings to locate the source of contamination on site.
- Soils will be sampled for the same VOCs that are consistently present in groundwater samples to determine if the contamination is residual in the soils on site.
- Details of the proposed additional investigation are outlined in the Additional Subsurface Investigation Plan dated July 2018 and submitted to DASNY on July 23, 2018.

5.3 FUTURE GROUNDWATER MONITORING AND ANALYSIS ACTIVITIES

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed upon that these systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO RAP in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future; however, system components may need repair and/or replacement. Three (3) routine quarterly monitoring events will be completed to fulfill the NYSDEC requirements for post ISCO groundwater treatment.

The next site-wide groundwater sampling and laboratory analysis event is scheduled for August 2018. This sampling event will include sampling and laboratory analysis for the limited number of wells as determined by Bergmann correspondence with the NYSDEC. Future sampling and analytical events will be conducted to track the effects of the ISCO injections on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be monitored and recorded during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements May 2018 Gowanda Day Habilitation Center

4 Industrial Place, Gowanda, New York VCA # V-00463-9

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	778.08	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	6.12	6.40	6.35	7.44	10.60	13.10	13.10	9.32	9.25	7.00
Groundwater Elevation	772.11	771.68	772.03	770.99	768.01	768.00	767.84	772.01	773.36	773.02
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	17.15	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.42
Bottom of Well Elevation	762.21	760.93	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.60
Thickness of Water Column	9.90	10.75	9.95	8.34	3.35	9.78	8.70	8.33	11.71	12.42
Minimum Purge Volume (gal)	1.6	1.75	1.6	1.4	0.5	1.6	1.4	1.4	1.9	2.0
3 Volumes	4.8	5.26	4.9	4.1	1.6	4.8	4.3	4.1	5.7	6.1
Actual volume purged	4.8	5.26	NS	4.1	1.4	4.8	4.3	NS	NS	NS
Comments	Flush = -0.29'	Flush = -0.30'	Flush = -0.23'	Flush = -0.34'	Flush = -0.24'	Stickup=2.17'	Stickup=2.17'	Stickup=2.84'	Stickup=2.05'	Stickup=2.56'

	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	NA	778.04	NA
Depth to Groundwater (btoc)	7.53	7.18	7.61	10.79	10.76	12.50	13.22	9.10	NA	9.81	NA
Groundwater Elevation	771.05	771.32	770.78	767.64	767.62	767.93	766.63	767.29	NA	768.23	NA
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	NA	2"	NA
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	NA	14.75	NA
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	NA	763.29	NA
Thickness of Water Column	7.95	10.20	9.79	7.36	9.04	10.76	NA	15.90	NA	4.94	NA
Minimum Purge Volume (gal)	1.3	1.7	1.6	1.2	1.5	1.8	NS	2.6	NA	0.8	NA
3 Volumes	3.9	5.0	4.8	3.6	4.4	5.3	NS	7.8	NA	2.4	NA
Actual volume purged	3.9	5.0	NS	3.6	4.4	5.3	NS	7.8	NA	2.4	NA
Comments	Flush = -0.23'	Flush = -0.35'	Flush = -0.48'	Flush = -0.39'	Flush = -0.38	Stickup=2.26'	Stickup=1.18'	Flush =-0.26'	Paved Over	Flush=-0.43'	Paved Over.

	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	NS
Depth to Groundwater (btoc)	7.70	7.41	10.92	10.41	11.90	11.81	NS
Groundwater Elevation	771.96	772.52	768.86	769.23	767.93	NA	NS
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	NS
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	NS
Thickness of Water Column	10.36	10.65	9.53	9.28	11.08	9.17	NS
Minimum Purge Volume (gal)	6.77	6.95	6.22	6.06	7.24	5.98	NS
3 Volumes	20.30	20.86	18.67	18.18	21.71	17.94	NS
Actual volume purged	20.30	20.86	NS	18.18	21.71	17.94	NS
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03'	Stickup=0.86'	NA

NOTES

btoc = Below top of casing (inner riser) All measurements are in feet, referenced to Mean Sea Level

NS = Not Sampled

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Minimum purge volume = 3 × weil volume, 0.165 gallon per loot in a 2 diameter weil. 0.005 gallon per loot in a 4 diameter weil. Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled. The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed. Wells MW-19R, MW-20 and MW-21 were installed in October 2004, MW-19R and MW-21 have been paved over age 1 of 1

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sample Date: 05/30/2018

Sampling Events

Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	290	920	5.0
CIS	84	190	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	374	1,110	

Monitoring Well MW-2

Sample Date: 05/30/2018

Sampling Events

Analyte in	ppb April 201	8 May 2018	NYS Guidance Value
TCE	NS	ND	5.0
CIS	NS	ND	5.0
TRANS	NS	ND	5.0
VC	NS	ND	2.0
TCA	NS	ND	5.0
Total \	/OCs NS	ND	

Monitoring Well MW-3 Sampling Events

Sample Date: 05/30/2018

• • • • • • • • • • • • • • • • • • •			
Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 1 of 6

Monitoring Well MW-4

Sample Date: 05/30/2018

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-5

Sampling Events

Sample Date: 05/30/2018

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-6 Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		76	77	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	76	77	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sample Date: 05/30/2018

Sampling Events

Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

Monitoring Well MW-8

Sample Date: 05/30/2018

Sampling Events

Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

Monitoring Well MW-9 Sampling Events

Sample Date: 05/30/2018

Camping Erente			
Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 2 of 6

Monitoring Well MW-10 Sampling Events

Sample Date: 05/30/2018

Analyte	in ppb	April 2018	May 21018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-11 Sampling Events

Sample Date: 05/30/2018

Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	900	430	5.0
CIS	260	59	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VO	Cs 1,160	489	

Monitoring Well MW-12 Sampling Events

	venta			
Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		14	27	5.0
CIS		99	73	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	113	100	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sample Date: 05/30/2018

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
Tota	al VOCs	ND	ND	

Monitoring Well MW-14

Sample Date: 05/30/2018

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		18	17	5.0
CIS		10	5.8	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
Tot	al VOCs	28	22.8	

Monitoring Well MW-15 Sampling Events

Sample Date: 05/30/2018

Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 3 of 6

Monitoring Well MW-16 Sampling Events

Sample Date: 05/30/2018

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		43	41	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	43	41	

Monitoring Well MW-17 Sampling Events

Sample Date: 05/30/2018

Analyte	in ppb	Nov 2017	May 2018	NYS Guidance Value
TCE		5	20	5.0
CIS		ND	85	5.0
TRANS		ND	7.5	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	5.1	112.5	

Monitoring Well MW-18 Sampling Events

	veniis			
Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	ND	ND	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sample Date: NS

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE CIS		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
Tota	al VOCs	NS	NS	

Monitoring Well MW-20

Sample Date: 05/30/2018

Sampling Events

Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

Monitoring Well MW-21

Sample Date: NS

Sampling E	Events
------------	--------

Analyte in	opb April 2018	8 May 2018	NYS Guidance Value
TCE	NS	NS	5.0
CIS	NS	NS	5.0
TRANS	NS	NS	5.0
VC	NS	NS	2.0
TCA	NS	NS	5.0
Total V	/OCs NS	NS	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 4 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1

Sample Date: 05/30/2018

Sam	pling	Events

NYS Guidance Value Analyte April 2018 May 2018 in ppb TCE 880 1100 5.0 CIS 190 219 5.0 TRANS 5.0 ND ND VC ND ND 2.0 ТСА ND ND 5.0 Total VOCs 1070 1319

Recovery Well DR-2 Sampling Events

Sample Date: 05/30/2018

1 0			
Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	31	31	5.0
CIS	99	97	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	130	128	

Recovery Well DR-3 Sampling Events

Sample Date: 05/30/2018

Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	23	30	5.0
CIS	11	86	5.0
TRANS	ND	9.4	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	s 34	125.4	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 5 of 6

Recovery Well DF	२-४
Sampling Events	

Sample Date: 05/30/2018

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		24	24	5.0
CIS		7.6	7.2	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	31.6	31.2	

Recovery Well G-1

Sample Date: 05/30/2018

Sampling Events			
Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	ND	6.3	5.0
CIS	22	34	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
ТСА	ND	ND	5.0
Total VOCs	22	40	

Recovery Well G-2 Sampling Events

	Veniis			
Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		8	ND	5.0
CIS		38	50	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	46	50	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3

Sample Date: NS

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Duplicate Blank Sampling Events

Sample Date: 05/30/2018

			NYS
			Guidance
Analyte i	n ppb	May 2018	Value
TCE		370	5.0
CIS		54	5.0
TRANS		10	5.0
VC		NS	2.0
TCA		NS	5.0
Tota	I VOCs	434	

Equipment Blank Sampling Events

Sample Date: 05/30/2018

1 0			
Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Table 3 Historic Groundwater Analysis Results Summary Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York

VCA # V-00463-9

												MONITOR	ING WELLS								
Monitoring Well Number	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Total VOCs Apr 2013	Dec 2012	Jun 2012	Mar 2012
	May 2018 (ppb)	April 2018 (ppb)	Nov 2017 (ppb)	Aug 2017 (ppb)	Nov 2016 (ppb)	Sep 2016 (ppb)	Jun 2016 (ppb)	Nov 2015 (ppb)	Aug 2015 (ppb)	Jun 2015 (ppb)	Mar 2015 (ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-1	1,110	374	1013	1,210	1,467	838	580	1,530	1,470	350	430	300	420	990	990	1,740	830	910	1,440	528	889
MW-2	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS						
MW-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS						
MW-6	77	76	100	91	87	120	100	120	96	86	81	110	110	96	94	130	99	93	99	86.7	85.7
MW-7	ND	ND	5.8	29	110	62	83	49	130	58	ND	180	190	29	ND	ND	18	ND	ND	151.56	30.5
MW-8	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
MW-9	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
MW-10	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS						
MW-11	489	1,160	470	525	646	445	550	1,060	630	444	500	451	375	450	710	880	510	570	790	498	617
MW-12	100	113	31	40	7.1	7.8	15.8	28.8	52	97	120	126	136	200	212	173	149.3	186.6	142	86.5	148.22
MW-13	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
MW-14	22.8	28	38	22.1	76	100	57	81	96	52	99	68	68	54	73	94	49	71	47	39.7	76.6
MW-15	ND	ND	ND	7.4	11	23.8	11	9.9	14	8.1	9.8	32	31	6.1	ND	6.8	7	ND	12.9	26.26	6.25
MW-16	41	43	32	36	14	20	37	31	13	6.8	ND	5.2	9.4	21	24	20	8.4	24	18	4.36	12.2
MW-17	112.5	5.1	222	396	375	465	425	460	410	NS	336	394	410	339	167	420	400	21.3	430	381	260.1
MW-18	ND	ND	6.3	ND	10	26	6.9	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	16.6	2.33
MW-19R	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND						
MW-20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-21	NS	NS	NS	NS	17	39	8.7	20	20	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-X (DUP)	434	NS	490	DWS	1,705	879	550	1,720	410	360	407	300	400	870	990	1,850	540	186.8	1,450	521	913
EB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
																	R		/ELLS		

Recovery Well Number	Total VOCs May 2018 (ppb)	Total VOCs April 2018 (ppb)	Total VOCs Nov 2017 (ppb)	Total VOCs Aug 2017 (ppb)	Total VOCs Nov 2016 (ppb)	Total VOCs Sep 2016 (ppb)	Total VOCs Jun 2016 (ppb)	Total VOCs Nov 2015 (ppb)	Total VOCs Aug 2015 (ppb)	Total VOCs Jun 2015 (ppb)	Total VOCs Mar 2015 (ppb)	Total VOCs Nov 2014 (ppb)	Total VOCs Sep 2014 (ppb)			Total VOCs Dec 2013 (ppb)	Total VOCs Jul 2013 (ppb)	Total VOCs Apr 2013 (ppb)	Total VOCs Dec 2012 (ppb)		Total VOCs Mar 2012 (ppb)
DR-1	1,319	1,070	1540	1,970	617	610	910	319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38	673
DR-2	128	130	181	199	137	218	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3
DR-3	125.4	34	48	NS	98	154	62	45	76	83	55	181	210	83	89	123	62	73	42	116.96	24.9
DR-4	31.2	31.6	46	52	79	95	63	94	110	71	147	156	148	96	64	68	79	37	90	122.6	ND
G-1	40	22	70	73.5	85	105.6	59.7	80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55	65.58
G-2	50	46	8.5	NS	NS	ND	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9
G-3	NS	NS	NS	NS	293	404	420	262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3	44.2

NS= This well not included in this sampling event.

ND = Not Detected, results less than Method Detection Limit.

Impacted north property line wells: MW-5, MW-6, MW-7, MW-16, MW-17, MW-21

All compounds are measured in parts per billion (ppb).

VOC - Volatile Organic Compounds.

DUP - Duplicate Sample EB - Equipment/Field Blank Sample * - Sample was broken in transit and not able to be analyzed DWS- Different Well Sampled than previosuly tested.

RECOVERY WELLS

Table 4 Percent Reductions in Total Groundwater VOCs

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Oregonal water Treatment	Curata na una		
The Groundwater Treatment	System was	activated in Ivia	y 2005

Monitoring Well	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
MW-1 [†]	-44.5%	51.3%	-39.90%	-57.6%		-9.1%	24.5%	-99.2%	-91.4%	54.4%	44.0%	60.9%	45.3%	-28.9%	-28.9%	-126.6%	-8.1%	-19.5%	-87.5%	31.3%	-15.8%
MW-2	100%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled
MW-3	100%	100%	100%	100.0%	Not Sampled																
MW-4	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	100.0%
MW-5	100%	100%	100%	100.0%	Not Sampled																
MW-6	15.4%	15.4%	-84.60%	15.4%	81.3%	70.4%	75.4%	70.4%	76.4%	78.8%	80.0%	72.9%	72.9%	76.4%	76.8%	68.0%	75.6%	77.1%	75.6%	78.6%	78.9%
MW-7	81.0%	81.3%	98.70%	93.6%	75.6%	86.2%	81.6%	89.1%	71.1%	87.1%	100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	93.2%
MW-8	100%	100%	Not Sampled																		
MW-9	100%	100%	Not Sampled																		
MW-10	100%	100%	100%	100.0%	Not Sampled																
MW-11	89.5%	75.0%	89.20%	99.1%	86.1%	90.4%	88.2%	77.2%	86.4%	90.4%	89.2%	90.3%	91.9%	90.3%	84.7%	81.1%	89.0%	87.7%	83.0%	89.3%	
MW-12	99.2%	99.1%	99.80%	75.0%	99.9%	99.9%	99.9%	99.8%	99.6%	99.2%	99.1%	99.0%	98.4%	98.4%	98.3%	98.6%	98.8%	98.5%	98.9%	99.3%	98.8%
MW-13	100%	100%	Not Sampled																		
MW-14	92.8%	91.1%	87.90%	2.3%	75.9%	68.3%	81.9%	74.3%	69.5%	83.5%	68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5%	85.1%	87.4%	75.7%
MW-15	100%	100%	100%	99.0%	98.5%	96.7%	98.5%	98.6%	98.1%	98.9%	98.7%	95.6%	95.8%	99.2%	100.0%	99.1%	99.0%	100.0%	98.2%	96.4%	
MW:16*	19.9%	2.3%	2.80%	2.3%	72.7%	60.9%	27.7%	39.5%	74.6%	86.7%	100.0%	89.8%	81.6%	59.0%	53.1%	60.9%	77.9%	36.8%	52.6%	88.5%	
MW-17*	88.9%	99.5%	78*	2.3%	62.9%	54.0%	58.0%	54.5%	59.4%	Not Sampled	66.8%	61.0%	59.4%	66.5%	83.5%	58.5%	50.6%	97.4%	46.9%	53.0%	67.9%
MW-18:*	100%	100%	100%	100.0%	97.4%	93.4%	98.2%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	Not Sampled	100.0%	100.0%	100.0%	89.6%	
MW-19 R*	Not Sampled	Not Sampled	Not Sampled		100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	
MW-20**	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	99.4%
MW-21**	Not Sampled	Not Sampled	Not Sampled	Not Sampled	34.6%	-50.0%	66.5%	23.1%	23.1%	61.5%	Not Sampled										
* Well installed 2003																					
** Well Installed 2004																					
Site-Wide reduction:	81.2%	84.2%	67.60%	62.1%	83.5%	68.7%	78.6%	66.2%	69.1%	87.7%	88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	80.7%
Impacted Groundwater																					
Plume Area Only:	65.3%	76.6%	51.40%	41.1%	82.9%	69.6%	76.0%	58.1%	58.6%	84.6%	80.8%	77.3%	75.0%	72.3%	73.9%	82.2%	73.2%	77.3%	62.5%	75.2%	73.1%

Plume Area = MW-1, MW-11, MW-12, MW-14, MW-15, MW-7, MW-17, MW-6 % reduction = percent reduction in total Volatile Organic Compounds (VOCs) since groundwater monitoring was initiated †Negative values indicate an increase in total VOCs since monitoring commenced in 2002. The percent increase in total groundwater VOCs is shown below for MW-1.

Recovery Well	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
DR-1	-130.0%	-86.6%	-243.6%	-243.6%	-7.6%	-6.4%	-58.7%	44.4%	72.1%	Not Sampled	96.2%	89.0%	90.4%	86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8%	91.6%
DR-2	76.7%	76%	63.8%	63.8%	75.1%	60.3%	60.9%	63.8%	66.0%	47.0%	52.8%	70.5%	59.2%	58.0%	62.3%	45.0%	87.2%	85.4%	99.1%	88.5%	83.9%
DR-3	17.8%	78%	68.5%	Not Sampled	35.7%	-1.0%	59.3%	70.5%	50.2%	45.6%	63.9%	-18.7%	-37.7%	45.6%	41.6%	19.3%	95.8%	95.1%	97.2%	92.1%	98.3%
DR-4	96.4%	96%	93.9%	93.9%	90.8%	88.9%	92.7%	89.1%	87.2%	91.7%	82.9%	81.8%	82.8%	88.8%	92.5%	90.8%	95.5%	97.9%	94.9%	93.1%	100.0%
G-1	80.1%	80%	74.1%	74.1%	57.7%	47.4%	92.7%	60.0%	100.0%	66.1%	27.3%	49.8%	47.7%	55.0%	61.3%	65.6%	87.3%	89.8%	90.3%	87.4%	88.0%
G-2	82.4%	84%	100.0%	Not Sampled	Not Sampled	100.0%	Not Sampled	Not Sampled	90.1%	Not Sampled	83.1%	88.0%	86.9%	81.7%	95.1%	71.4%	79.0%	87.0%	65.7%	80.4%	89.1%
G-3	Not Sampled	Not Sampled	Not Sampled	Not Sampled	27.3%	-0.2%	-4.2%	35.0%	8.2%	Not Sampled	79.7%	NA	NA	NA	NA	NA	NA NA				
Overall Reduction	37.2%	54.6%	60.4%	40.4%	46.5%	41.3%	40.4%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%

*Sampling of recovery wells initiated in 2005

FIGURES

DASNY Gowanda Day **Habilitation Center**

4 Industrial Place Gowanda, New York

BERGMANN ARCHITECTS ENGINEERS PLANNERS

Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C. 280 East Broad Street Suite 200 Rochester, NY 14604

office: 585.232.5135 fax: 585.232.4652

www.bergmannpc.com

REVISIONS NO. DATE

Copyright © Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C

Note:

Unauthorized alteration or addition to this drawing is a violation of the New York State Education Law Article 145, Section 7209.

Project Manag S. DEMEO Designed By Date Issued: 06/21/2018 Project Number: Checked By: S. DEMEO

6974.91

Drawn By: C. WOOD Scale: 1" = 60'

MAY 2018 WATER LEVEL **CONTOUR MAP**

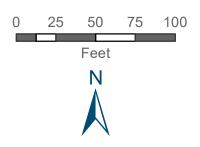
Drawing Number:

FIGURE 1

		MW-21 TCE NS CIS NS TRANS NS VC NS TCA NS TCA NS Total VOCS NS	MW-18 TCE ND CIS ND TRANS ND VC ND TCA ND Total VOCs ND	TorrancePlace	MW-19R TCE NS CIS NS TRANS NS VC NS TCA NS TCA NS Total VOCS NS MWV-19
		MW-16 TCE ND CIS 41 TRANS ND VC ND TCA ND TCA ND TCA ND Total VOCS 41 MW-16	TCE 20 CIS 85 TRANS 7.5 VC ND TCA ND Total VOCs 112.5	MW-6 MW-5 TCE ND CIS 77 TRANS ND VC ND TCA ND Total VOCs 77 MW-6 MW-5	MW-20 TCE ND CIS ND TRANS ND VC ND TCA ND Total VOCS ND
	that the Brook	MW-7 TCE NE CIS NE TRANS NE VC NE TCA NE TCA NE Total VOCS NE	MW-14 TCE 17 CIS 5.8 TRANS ND VC ND TCA ND Total VOCs 22.8 MW-14	MW-15	ND ND
CIS TRANS VC TCA	ND ND ND ND ND	CIS ND TRANS ND VC ND TCA ND Total VOCS ND MW-11 TCE 430 CIS 59 TRANS ND VC ND TCA ND TCA ND Total VOCS 489	MW-1	1 MW-3 TCE CIS TRANS VC TCA TCA TCA Total VOCS MW-2 MW-2	V-13 ND ND ND ND ND ND ND ND ND ND
	MW-9	MW-10TCENDCISNDTRANSNDVCNDTCANDTotal VOCsND	TRANS ND VC ND TCA ND Total VOCs 1,110	MW-2VCTCENDCISNDTRANSNDVCNDTCANDTotal VOCsND	ND ND

DASNY

Gowanda Day Habilitation Center


4 Industrial Place Gowanda, NY

BERGMANN ARCHITECTS ENGINEERS PLANNERS

Figure 2

May 2018 Distribution of Groundwater Analytical Results: Monitoring Wells

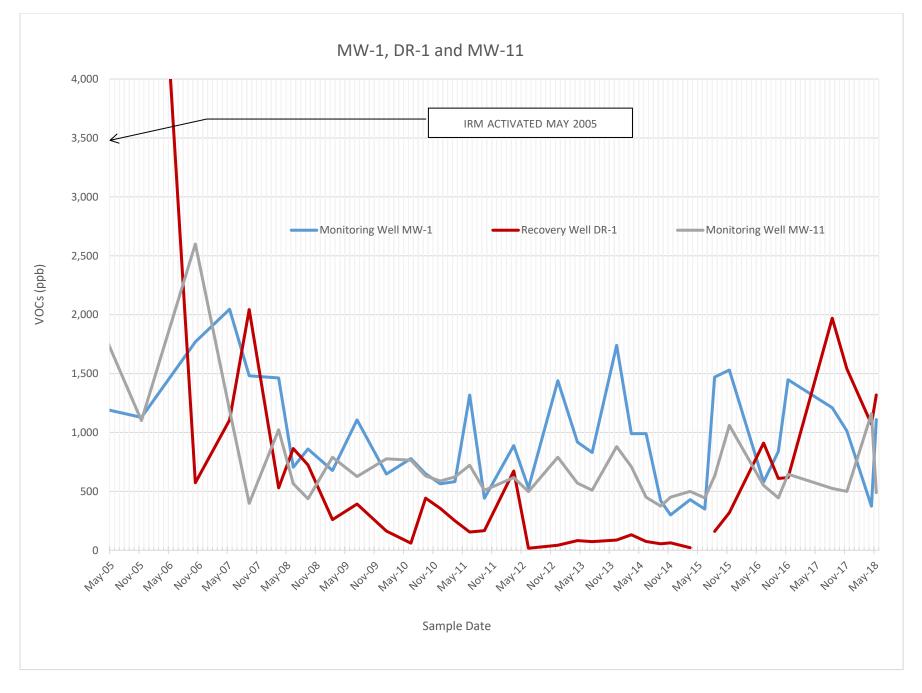
DASNY

Gowanda Day Habilitation Center

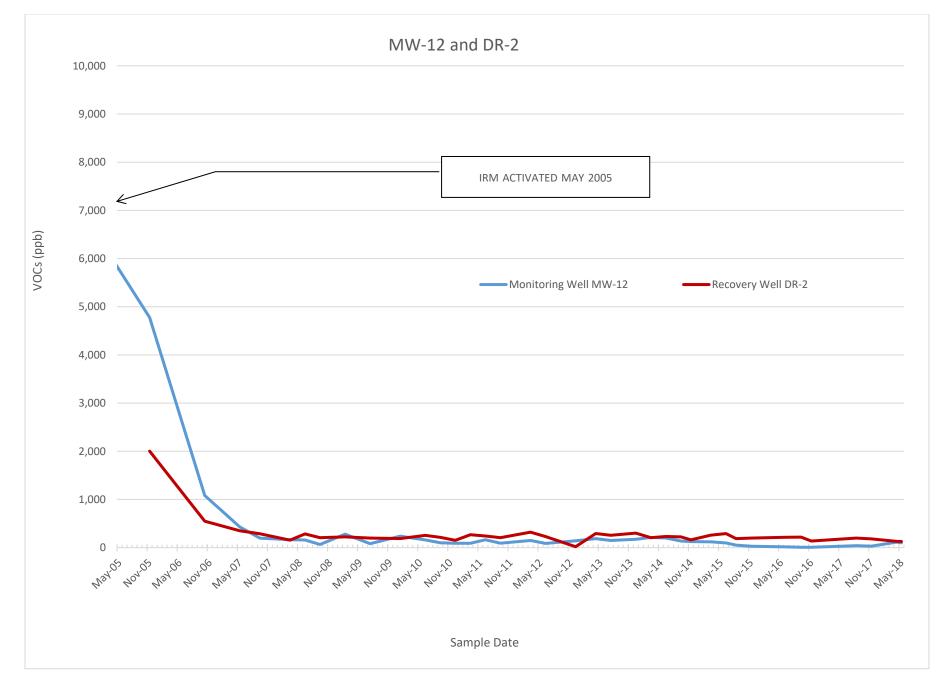
4 Industrial Place Gowanda, NY

BERGMANN ARCHITECTS ENGINEERS PLANNERS

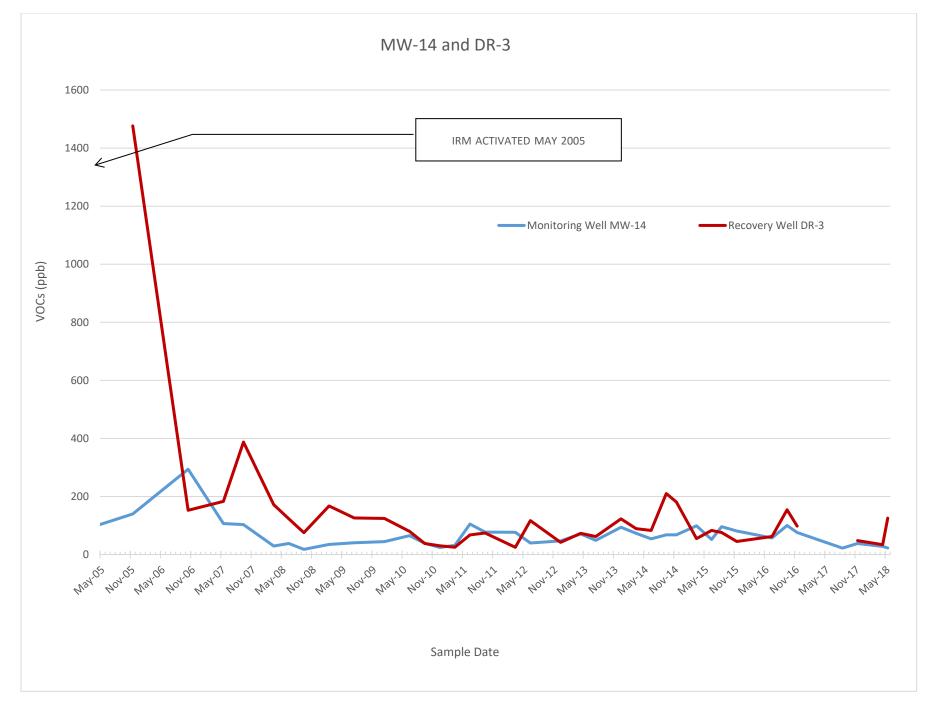
Figure 3

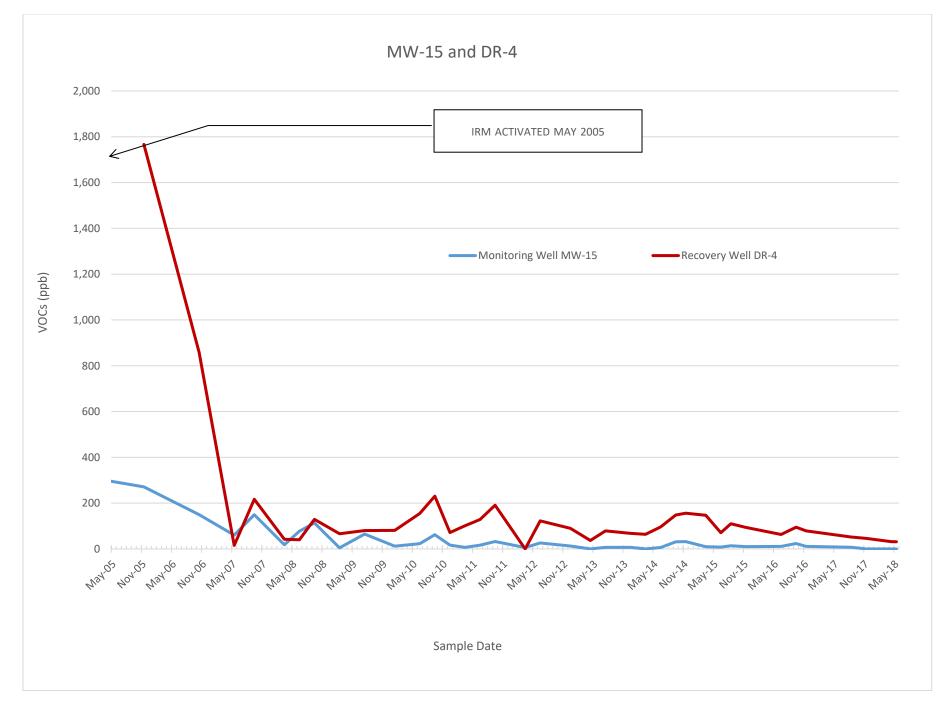

May 2018 Distribution of Groundwater Analytical Results: Recovery Wells

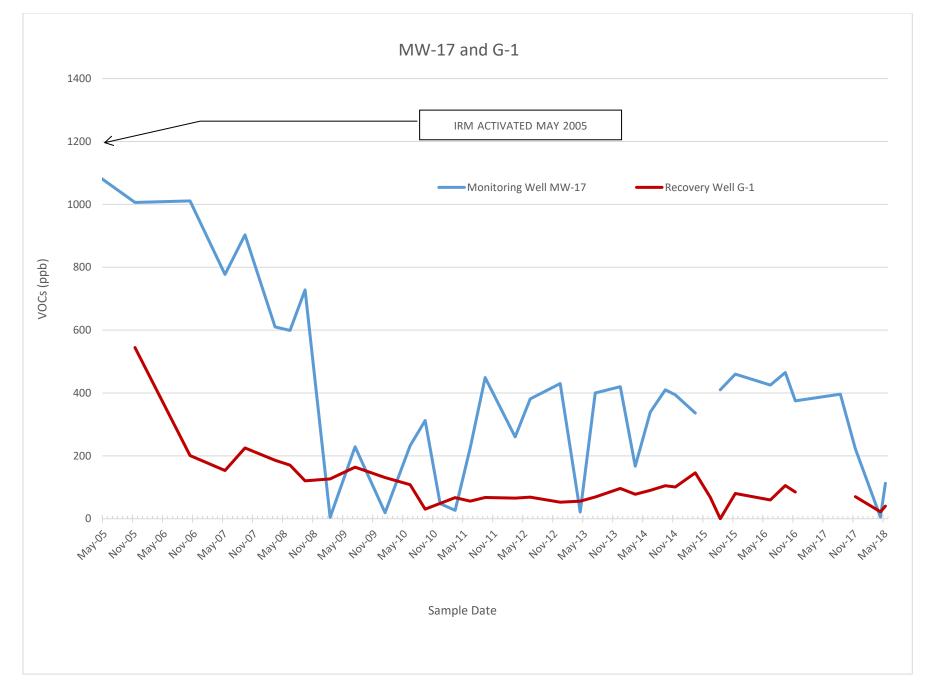
> 0 25 50 75 100 Feet

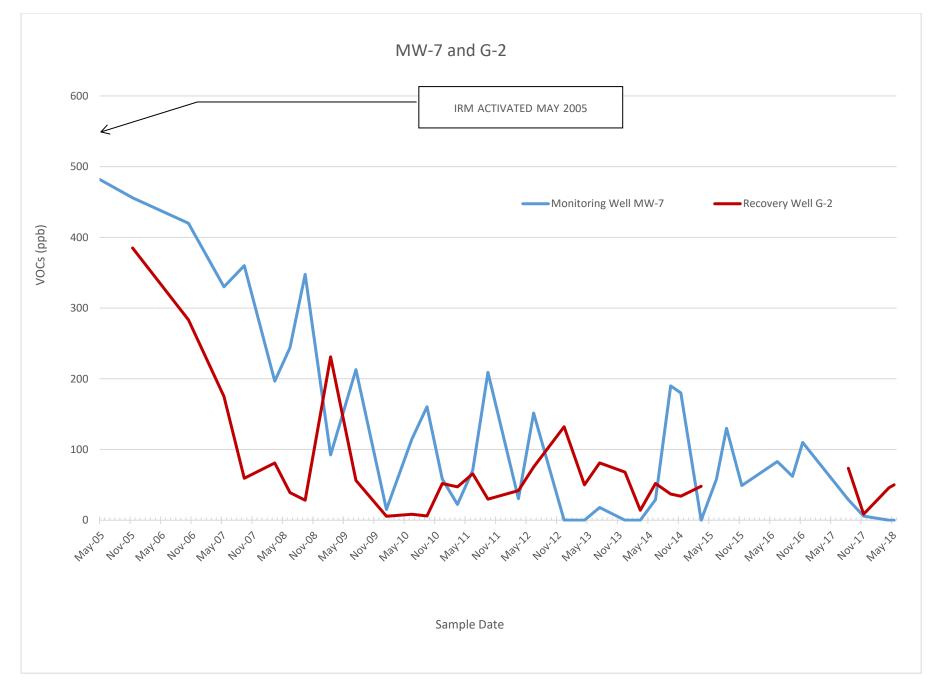


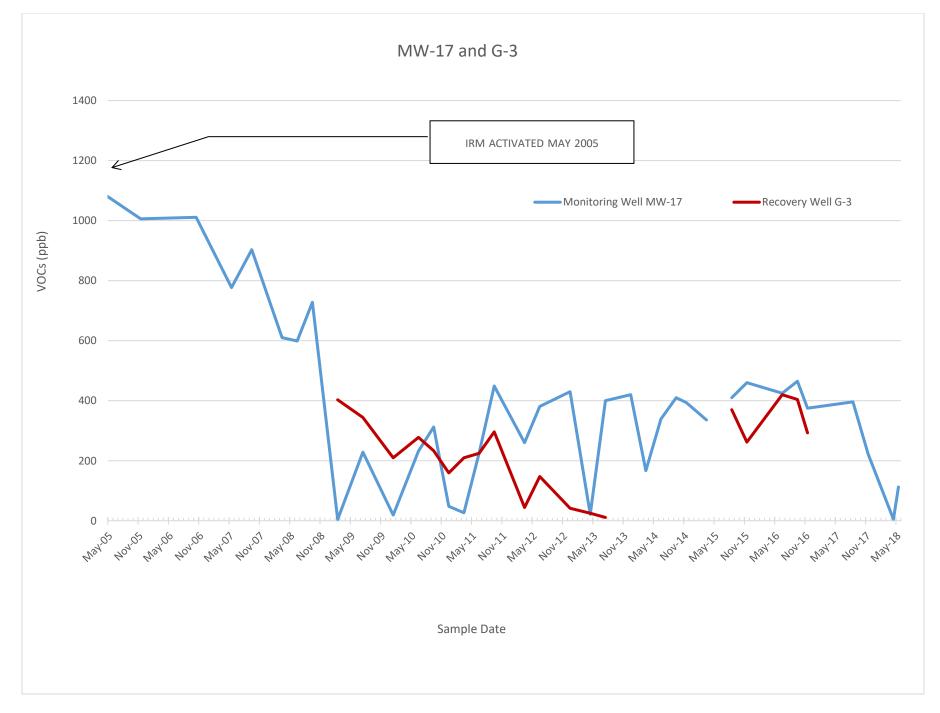
CHARTS











APPENDIX A: LABORATORY ANALYTICAL RESULTS

Mr. Cash Bleier Bergmann Associates, Incorporated 280 East Broad Street Suite 200 Rochester, NY 14604

Laboratory Results for: Gowanda

Dear Mr.Bleier,

Enclosed are the results of the sample(s) submitted to our laboratory May 31, 2018 For your reference, these analyses have been assigned our service request number **R1805029**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Bauch Knutten

Brady Kalkman Project Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:	Bergmann Associates, Incorporated
Project:	Gowanda
Sample Matrix:	Water

Service Request: R1805029 Date Received: 05/31/2018

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt:

Twenty eight water samples were received for analysis at ALS Environmental on 05/31/2018. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

Bauly Kullen

Approved by

06/06/2018

Date

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-01		Lab	ID: R1805	029-001	Lab ID: R1805029-001										
Analyte	Results	Flag	MDL	MRL	Units	Method									
cis-1,2-Dichloroethene	190		0.52	10	ug/L	8260C									
Trichloroethene (TCE)	920	D	2.0	50	ug/L	8260C									
CLIENT ID: MW-06		Lab	ID: R1805	6029-006											
Analyte	Results	Flag	MDL	MRL	Units	Method									
cis-1,2-Dichloroethene	77		0.26	5.0	ug/L	8260C									
CLIENT ID: MW-11		Lab	ID: R1805	6029-011											
Analyte	Results	Flag	MDL	MRL	Units	Method									
cis-1,2-Dichloroethene	59		1.3	25	ug/L	8260C									
Trichloroethene (TCE)	430		1.0	25	ug/L	8260C									
CLIENT ID: MW-12		Lab	ID: R1805	029-012											
Analyte	Results	Flag	MDL	MRL	Units	Method									
cis-1,2-Dichloroethene	73		0.26	5.0	ug/L	8260C									
Trichloroethene (TCE)	27		0.20	5.0	ug/L	8260C									
CLIENT ID: MW-14		Lab	ID: R1805	6029-014											
Analyte	Results	Flag	MDL	MRL	Units	Method									
cis-1,2-Dichloroethene	5.8		0.26	5.0	ug/L	8260C									
Trichloroethene (TCE)	17		0.20	5.0	ug/L	8260C									
CLIENT ID: MW-16		Lab	ID: R1805	029-016											
Analyte	Results	Flag	MDL	MRL	Units	Method									
cis-1,2-Dichloroethene	41		0.26	5.0	ug/L	8260C									
LIENT ID: MW-17		Lab	ID: R1805	029-017											
Analyte	Results	Flag	MDL	MRL	Units	Method									
cis-1,2-Dichloroethene	85		0.26	5.0	ug/L	8260C									
trans-1,2-Dichloroethene	7.5		0.26	5.0	ug/L	8260C									
Trichloroethene (TCE)	20		0.20	5.0	ug/L	8260C									
CLIENT ID: G-1		Lab	ID: R1805	029-020											
Analyte	Results	Flag	MDL	MRL	Units	Method									
cis-1,2-Dichloroethene	34		0.26	5.0	ug/L	8260C									
Trichloroethene (TCE)	6.3		0.20	5.0	ug/L	8260C									
CLIENT ID: G-2		Lab	ID: R1805	029-021											
Analyte	Results	Flag	MDL	MRL	Units	Method									
cis-1,2-Dichloroethene	50		0.26	5.0	ug/L	8260C									
CLIENT ID: DR-1			ID: R1805												
Analyte	Results	Flag	MDL	MRL	Units	Method									
cis-1,2-Dichloroethene	210		2.6	50	ug/L	8260C									
Trichloroethene (TCE)	1100		2.0	50	ug/L	8260C									

SAMPLE DETECTION SUMMARY

CLIENT ID: DR-2		Lab	ID: R1805	029-023		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	97		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	31		0.20	5.0	ug/L	8260C
CLIENT ID: DR-3		Lab	ID: R1805	6029-024		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	86		0.26	5.0	ug/L	8260C
trans-1,2-Dichloroethene	9.4		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	30		0.20	5.0	ug/L	8260C
CLIENT ID: DR-4		Lab	ID: R1805	029-025		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	7.2		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	24		0.20	5.0	ug/L	8260C
CLIENT ID: MW-X		Lab	ID: R1805	029-026		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	54		0.26	5.0	ug/L	8260C
trans-1,2-Dichloroethene	10		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	370	D	0.50	13	ug/L	8260C

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 6 of 63

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
R1805029-001	MW-01	5/30/2018	1130
R1805029-002	MW-02	5/30/2018	1130
R1805029-003	MW-03	5/30/2018	1115
R1805029-004	MW-04	5/30/2018	1100
R1805029-005	MW-05	5/30/2018	1030
R1805029-006	MW-06	5/30/2018	1015
R1805029-007	MW-07	5/30/2018	0945
R1805029-008	MW-08	5/30/2018	1201
R1805029-009	MW-09	5/30/2018	1155
R1805029-010	MW-10	5/30/2018	1145
R1805029-011	MW-11	5/30/2018	1115
R1805029-012	MW-12	5/30/2018	1020
R1805029-013	MW-13	5/30/2018	1030
R1805029-014	MW-14	5/30/2018	0952
R1805029-015	MW-15	5/30/2018	0935
R1805029-016	MW-16	5/30/2018	0920
R1805029-017	MW-17	5/30/2018	1000
R1805029-018	MW-18	5/30/2018	1230
R1805029-019	MW-20	5/30/2018	1045
R1805029-020	G-1	5/30/2018	0924
R1805029-021	G-2	5/30/2018	0913
R1805029-022	DR-1	5/30/2018	1100
R1805029-023	DR-2	5/30/2018	1015
R1805029-024	DR-3	5/30/2018	1000
R1805029-025	DR-4	5/30/2018	0942
R1805029-026	MW-X	5/30/2018	1100
R1805029-027	Equ Blank	5/30/2018	1230
R1805029-028	Trip Blank	5/30/2018	1230

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 5 51502

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____OF ____

Project Name Gawanda Project Number 06974-91						-		A	NALYS	SIS RE	QUEST	red (1	nclude	e Meth	od Nu	mber	and C	ontain	er Pre	eservative	ə)		
Project Manager C. Bleier	Report CC		<u> </u>		PRE	SERVA	TIVE		<u> </u>														
Compeny/Address Bergmann					Ω Ω		/	-/	/	-7		7	7	./	7	7	\neg	/	/	}}-	Pres	ervative Key IONE	
	St. Swite	200			ITAINEF			/	/		/ '	·/ ,			/	/				/ ,	2.	ervative Key IONE ICL INO3 I2SO4 IaOH I2 Acctate	
	1604	•			NUMBER OF CONTAINERS	Control 100	/ ₃ /		 _&	/ /		 इ. हू ह			/ /	/ /	/ /	/ /	/ /		5. 1 6. 1	In. Acetate MeOH NaHSO4	
585-498-7950	Cbe	ere bergn	unnpc.c	iom	MBER				1.0 801 TICLOF				S all s								8. (ther X	-
Sempler's Signeture	Sempler's	L Bleier			Z	\§	<u> </u>	<u>}</u>		\$\J°\$	Line in the second	Le ve		[4		\square		REMA	RKS/ ESCRIPTION	
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMPL DATE	TIME	MATRIX																ļ			
MW-01		05/30/18 1		GW	3	X											· ·				<u>ials</u>		
MW-02		130/181	1:30 am	GW	3	X															als		
Mw-03			1:1Sam	GW	3	X													L		141		
Mw-04		05/30/18	1.00 am	<u>GW</u>	3	X															<u>iials</u>		
MW-05		05/30/18 1	0:30am	Gw	3	X			L											21	Whis .		
MW-06		05/30/1× 1	0:15am	GW	3	X														ļ			
MW-07		05/30/18	1:45 am	GW	3	X										_					ials	<u>.</u>	
MW-08		05/30/18	12:01pm	GW	3	X															ints		
Mw-09		05/30/18	1.55 and	GW	3	X			1	[<u></u> 3v	ials		
Mw-10		US/30/18 1	1:45am	GW	3	X			<u> </u>														
MW-11		05/30/18 1	1.15am	GW	3															30	ints		
SPECIAL INSTRUCTIONS/COMMENTS Metals						-	π								DRT RI		EMENI	rs		INVO	ICE INFOI	RMATION	
																C Summ	naries		PO	ë			
										2 day 5 day business				-			is require Califoratio		8111	L TO:			
							REQ			ORT DA	-			Summ	aries							<u>_</u>	
														_ IV. Dat			ort with		8				
See QAPP										•			_ N	150	νEÇ	, ki	4vis —	•				<u> </u>	. <u> </u>
STATE WHERE SAMPLES WERE CO	LLECTED NIEW	York		-			Ι							Edat	<u>a</u> X	Yes		No					
		DBY	REL	INQUISHED	BY				RECE	IVED B	Y			R	ELINO	UISHEI	D BY				RECEIVED	BY	
Signature	Signature	al	Signeture				Signat	ture					Signa	ture			-	4.0	Sion			5	
Printed Name Cash Build	Printed Name Queic	Will	Printed Name				Printed	d Name						d Name			- K			029	porated	J	
Firm Bergmann	Firm ALS		Firm				Firm.						Firm				_ []]	wanda Sililili					_
	Date/Time 5131/18	/ 1607-	Date/Time				Date/T	lime					Date/	Time								010 1011 1001	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 51502

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 2 OF 3

Project Name Gawanda Project Number OG974-91 Project Manager						ANALYSIS REQUESTED (Include Method Number and Container Preservative)																
Project Manager C. Bleier	Report CC	· · ·			PRE	SERV	ATIVE	1		Γ												
Compeny/Address Bergmann	I				8		7		/_/	7	-7	7	7	-7	7	7	7	/	\neg		Preservation	ve Key
280 E Broad S	L. Swite	200			OF CONTAINERS		/	/	/	/	/ '	·/ ,			/	/	/	/	/		1. HCL 2. HNO3 3. H2SO4 4. N8OH	i i
	604	•	-		Р. В		3		 &	/ /		1 2 2 2	III COMMON AND AND AND AND AND AND AND AND AND AN		/ /	/ /	/ /	/ /	/ /	/ /	5. Zn. Ac 6. MeOH 7. NaHSC	etate D⊿
Phone 585-498-7950	Cble	iere bergn	nannpc.l	om	NUMBER	CANS W			1000 L	8	METALS, TOT		S all s							/	8. Other	X
Sampler's Signature	- Sampler's	L Bleier	•		R	/S 🖁	<i>็/ร</i> ู้จู้	<u> </u>		<u>}</u>		L'ar			<u> </u>	\square	\square				REMARKS/	PTION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMPI DATE	LING TIME	MATRIX																		
MW-12		05/30/18	10:20 am	Gin	3	X														IVi		
MW-13		05/30/18	10:30 am	GW	3	X														31	als	
Mw-14		05/30/18	4:52 am	GW	3	X														3559	13	
MW-15]	05/30/18	2:35qm	GW	3	X														500	als	
Mw-16		05/30/18	9:20 am	GW	3	X														Zuia	.(
MW-17			10:00 am		3	X																
MW-18			12:30 pm		3	X			[3vin	2	
MW-20		195/30/18	10:45am	Gu)	3	X														Svial		
G-1		05/30/18	9:24 am	GW	3	X											-	_		Z1/1	ls	
G1-Z		05/30/18	9:13 am	GW	3	X														いく	داه	
172-1		05/30/18	11:00 gm	GW	3	X												·		SVI	uls -	
SPECIAL INSTRUCTIONS/COMMENTS	· · · · · · · · · · · · · · · · · · ·			·			l n			REQU	IREME	NTS	T	REPO	ORT RI	EQUIR	EMENT	rs	<u> </u>	INVOICE		ON
Motals											S APPLY				its Only							
											<u> </u>		1	ll. Res	ufts + Q	C Summ	naries		PO #			
								1 dag 4 dag	\mathbf{Y}	iday iday	3 day	r		LCS.	DUP, MS	MSD a	is require	d)	-			<u> </u>
											daya-No i		*			C and C	alibratio	n	BILL	10:		
							REQ	UESTEI	D REPC	DRT DAT	TE			Summ		tion Rec	iort with i	Row Det				
See QAPP													$\overline{\lambda}$									
STATE WHERE SAMPLES WERE COL	LECTED Allen	York	<u> </u>				+						*`	Edat	ų آ	_Yes	quis —	No				
RELINQUISHED BY	RECEIVE		REL	INQUISHED	BY				RECE	IVED BY	Y	 .	+			UISHED			+	RÉ	CEIVED BY	
Signature							Signati	tura					Signa	ture					Signe	tura	·	
Caux VRIA			·				<u> </u>						Ľ	d Name								
Cash WHIME	UNIC C	(Wird	Printed Name					d Name				. —		- NØND		- F	R18	05			5	
	Im ALS		Firm				Firm						Firm	_		60	orgmanr owande	Assoc	lates, in	corporated	-	
Date/Time 5/31/2018 16070	Date/Time 5-131/18	/ 1007	Date/Time				Date/T	lime	<u></u>				Date/	11me		_						
Distribution: White - Leb Comr. Vellow - Return t	to Ortologia					9 of	63									- 10						

Distribution: White - Lab Copy; Yellow - Return to Originator

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 5 51502

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 3 OF 3

Project Name Gawanda	74.91	ANALYSIS REQUESTED (Include Method Number and Container Preservative)																		
Project Managor C. Bleier	Report CC	· · · ·	PRE	SERVA		1									Γ					
Company/Address Bergmann			LI SH		7	/	\neg	7	\neg	-7	\neg	.7	7	/	/	/	//		Preserv 0. NOI 1. HCI	ative Key · NE
	St. Suite 200		CONTAINERS			/	/	/	/ '	5		./	/			/		/ /	1. HCl 2. HNG 3. H2S 4. NaC	D3 60₄ DH
Rochester, NY 14	1604				6010 8104.	, /	8	. /		2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 3 2 3	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		/ /	/ /	/ /	/ /	/ /	/ /	5. Zn. 6. Me 7. Nal	Acetate
1000 585-498-7950	C bleiene ber	gmannpc.com	NUMBER OF	8	5 3 / 5 0 6 / 8 0	8/4 2		8 8/20	24 CS 4			/	/						8. Oth	nill
Sempler's Signature	Cash Ble	er	ž	\ <u>ઙ</u> ૢ૾૾	<u> </u>	/ຮໍ		/2°°	E E	E E	/	/	/	4	4	<u> </u>			REMARK	
CLIENT SAMPLE ID	ONLY LAB ID DATE																			
DR.2		10:15am GW	3	X														300		
DQ-3	05/30/1	x 10:00 am GW	3	X														31		. <u></u>
DR-4	05/30/1	89:42 am GW	3	X														3v	<u>ais</u>	
Mw-X	0 5/ 30/14	s woram GW	3	X										<u> </u>			L	⁵ 5Vii		
Ecu. Blank	05/30/1	512:30 on GW	3	X									_			ļ		⁵ vi	<u>als</u>	
1	65/30/1		3	 *													L			
	05/30/19	- 616-	3	+*	ß	n di	K													
	05/3ch		3	1	517	V														
	05/50/14	- SMILL GH	3	X																
	5/30,11		3	×													1			
	0 5/30/11	∫ G₩-	3		ł t															
SPECIAL INSTRUCTIONS/COMMENTS			1-					REQU	BEME	NTS		REPO		EQUIR	EMEN	TS				
Metals							H (SURCI						Its Only			-		-		
						-						_ II. Res	ults + Q	IC Sumn			PO	I		
							dard (10 b				.,	•			as requin Celibratio		віц	. TO:		
					REQU		D REPO			•		Summ	aries							<u></u>
											<u> </u>	_			port with		ite			
See OAPP											ואך	12 1	12() R	4vis	•				<u></u>
STATE WHERE SAMPLES WERE CO	LLECTED NEW YORK											Eda	<u>a</u> _ X	Yes		No				
RELINQUISHED BY		RELINQUISHED	BY				RECEN	VED B1	Y			R	EUNQ	UISHE	DBY			ł	ECEIVED BY	,
Signature All PLA	Signature in which	Signature			Signatur	n o					Signat	tur e					Sign	ature		
Printed Name Cash BRING	Printed Name Quilit Ward	Printed Name			Printed	Namo					. Printer	d Name					Prin	ed Name		
Fim Bergmann	Firm ALS	Firm			Film				<u>.</u>		Firm	· · ·		-	401	זאר	120		5	
Date/Time SP31 201 V 11/17	Date/Time 5731/18/ 1407	Date/Time			Date/Tir	ne					Date/1	lime		Barc	mann)29	orporated	-	
Distribution: White - Lab Copy; Yellow - Return	I		10 o	f 63															ір	
														- 111		100011		I Affit Both		

(ALS)

Cooler Receipt and Preservation Check Form

Project/Clie	ent [Scromann	Assc.			Fold	er Nu	mber_									
Cooler receiv	red on 5	131/18		by: D	k	-	τοι	JRIER:	ALS	UPS	FEDE	X VEI	LOCIT	Y CLA	ENT		
1 Were Cu	istody sea	als on outs	ide of coole	r?	1	YØ	5a	Perch	lorate	samples	have re	quired he	eadspac	e?	Y	N	¶a.
2 Custody	papers p	properly co	mpleted (in	k, sign	ed)?	IN S	5b	Did y	OA via	ıls, Alk,o	or Sulfic	le have s	ig* bul	bles?	\mathfrak{B}	N	NA •
3 Did all b	ottles arri	ve in good	condition (unbrol	ken)?	& N	6	Wher	e did th	e bottles	origina	te?	ALS	ROC	CL	IEN	Т
4 Circle:	WerDe	Dry Ice	Gel packs	pres	sent?	& N	7	Soil V	/OA rea	ceived as	s: B	ulk E	Encore	503:	Sset	N Z	2
8. Temperatu	re Readin	igs E	Date: 5731/	18	_Time:	1676		ID:	R# 7	IR#9		From:	Temp	Blank	Sar	ple	Boule
Observed Te			Size														
Correction F	Factor (°C)	10.5														
Corrected To	emp (°C)		517														
Temp from:	Type of t	ottle	40me vial														
Within 0-6°	C?		N N		Y	N	Y	N	Y	Ν	Y	N	Y	Ν	<u> </u>	Y	Ν
lf<0°C, wer	re sample	s frozen?			Y	N	Y	Ν	Y	Ν	Y	N	Y	N		Ϋ́	N
		-	packing/ic					Ice mel		-	-	described			Same	Day	y Rule
&Client A	Approva	l to Run S	amples:					Clien	t aware	at drop-	off C	lient not	ified by	/:			
All samples	held in s	storage loc	ation:	R-0	v7 t	oy ofw	0	n _{'5} 73//	Y at	u.							
					ł	у			at								
5035 samples placed in storage location: by on at																	
	•	· · · · · · · · · · · · · · · · · · ·	·		-		.]						
			on Check**				Y	Time:	/	1234	by						
9. V	Were all t	ottle label	s complete (<i>i.e.</i> ana	alysis,	preserva				1234 S	by		date	tin	il		
9. V 10. I	Were all t Did all bo	ottle label ttle labels	s complete (and tags agr	(<i>i.e.</i> and ee with	alysis, 1 custo	preserva dy paper				1234 S	by		date	/tin	il		
9. V 10. I 11. V	Were all t Did all bo Were corr	oottle label ttle labels ect contair	s complete (and tags agr ters used for	<i>i.e.</i> and ee with the te	alysis, n custo sts ind	preserva dy paper icated?	·s?		/	1234 1234 X	by Barbar ES ES		date	/tin	ii NTE	 	
9. V 10. I 11. V 12. V	Were all t Did all bo Were corr Were 503	oottle label ttle labels ect contair 5 vials acc	s complete (and tags agr ners used for eptable (no	<i>i.e.</i> and ee with the ten extra la	alysis, 1 custo sts ind abels, 1	preserva ody paper icated? not leakin	rs? ng)?			N RAMA A	ES ES	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		tin		>	
9. V 10. I 11. V 12. V	Were all t Did all bo Were corr Were 503	oottle label ttle labels ect contain 5 vials acc les: Casset	s complete (and tags agr ters used for	<i>i.e.</i> and ee with the ten extra la	alysis, n custo sts ind abels, n with N	preserva ody paper icated? not leakin	rs? ng)? Panisters	c.)? s Pressu		N RAMA A	ES ES Fedlar®	NO NO Bags In Vol.	flated	ot Add			Final
9. V 10. I 11. V 12. V 13. A	Were all t Did all bo Were corr Were 503 <u>Air Samp</u>	oottle label ttle labels ect contain 5 vials acc les: Casset	s complete (and tags agr ners used for eptable (no ttes / Tubes]	<i>i.e.</i> and ee with the te extra la Intact	alysis, n custo sts ind abels, n with N	preserva dy paper icated? not leakin AS? C	rs? ng)? Panisters	c.)? s Pressu	rized	A Row a	ES Fedlar® le ID	NO NO Bags In	flated				Final
9. V 10. I 11. V 12. V 13. A pH ≥12	Were all t Did all bo Were corr Were 503 <u>Air Samp</u> Lot of t	oottle labels ttle labels ect contain 5 vials acc les: Cassed test Rea	s complete (and tags agr ners used for eptable (no ttes / Tubes] agent OH	<i>i.e.</i> and ee with the test extra la Intact Preser	alysis, n custo sts ind abels, n with N rved?	preserva dy paper icated? not leakin AS? C	rs? ng)? Panisters	c.)? s Pressu	rized	Y Samp	ES Fedlar® le ID	NO NO Bags In Vol.	flated				
9. V 10. I 11. V 12. V 13. A pH ≥12 ≤2	Were all t Did all bo Were corr Were 503 <u>Air Samp</u> Lot of t	bottle labels ttle labels rect contain 5 vials acc les: Cassed test Rea Na Na	s complete (and tags agr ners used for eptable (no ttes / Tubes) agent OH	<i>i.e.</i> and ee with the test extra la Intact Preser	alysis, n custo sts ind abels, n with N rved?	preserva dy paper icated? not leakin AS? C	rs? ng)? Panisters	c.)? s Pressu	rized	Y Samp	ES Fedlar® le ID	NO NO Bags In Vol.	flated				
9. V_{10} II. V_{12} 11. V_{12} 13. P PH ≥ 12 ≤ 2 ≤ 2	Were all t Did all bo Were corr Were 503 <u>Air Samp</u> Lot of t	oottle labels ttle labels eect contain 5 vials acc les: Cassed test Rea Na Na HN H2	s complete (and tags agr hers used for eptable (no ttes / Tubes) agent OH IO ₃ SO ₄	<i>i.e.</i> and ee with the test extra la Intact Preser	alysis, n custo sts ind abels, n with N rved?	preserva dy paper icated? not leakin AS? C	rs? ng)? Panisters	c.)? s Pressu	rized	Y Samp	ES Fedlar® le ID	NO NO Bags In Vol.	flated				
9. $10.$ I 11. $11.$ $12.$ $13.$ 2 pH ≥ 12 ≤ 2 ≤ 2 ≤ 4	Were all t Did all bo Were corr Were 503 <u>Air Samp</u> Lot of t	oottle labels ttle labels rect contain 5 vials acc les: Cassed test Rea Na HN H2 Na	s complete (and tags agr hers used for eptable (no ttes / Tubes) agent OH IO ₃ SO ₄ HSO ₄	<i>i.e.</i> and ee with the test extra la Intact Preser	alysis, n custo sts ind abels, n with N rved?	preserva ody paper icated? not leakin AS? C Lot Re	rs? hg)? cceived	c.)?	rized	Y Samp	ES Fedlar® le ID	NO NO Bags In Vol.	flated				
9. $10.$ I 11. $11.$ $12.$ $13.$ 4 pH ≥ 12 ≤ 2 ≤ 2 ≤ 4 5-9	Were all t Did all bo Were corr Were 503 <u>Air Samp</u> Lot of t	oottle labels ttle labels rect contain 5 vials acc les: Cassed test Rea Na HN H2 Na For	s complete (and tags agr hers used for eptable (no ttes / Tubes] agent OH IO ₃ SO ₄ HSO ₄ 608pest	<i>i.e.</i> and ee with the test extra la Intact Preser	alysis, n custo sts ind abels, n with N rved?	preserva ody paper icated? not leakin AS? C Lot Re Lot Re	rs? ng)? canisters cceived tify for	c.)? s Pressu 3day	rized	Y Samp	ES Fedlar® le ID	NO NO Bags In Vol.	flated				
9. $10.$ 1 11. $11.$ $12.$ $13.$ 4 pH ≥ 12 ≤ 2 ≤ 2 ≤ 2 ≤ 4 5-9 Residual	Were all t Did all bo Were corr Were 503 <u>Air Samp</u> Lot of t	oottle labels ttle labels eect contain 5 vials acc les: Cassed test Rea Na HN H2 Na For For	s complete (and tags agr hers used for eptable (no ttes / Tubes] agent OH IO ₃ SO ₄ HSO ₄ 608pest CN,	<i>i.e.</i> and ee with the test extra la Intact Preser	alysis, n custo sts ind abels, n with N rved?	preserva ody paper icated? not leakin AS? C Lot Re No=No If+, cor	rs? ng)? canisters cceived tify for ntact PM	c.)? s Pressu 3day 1 to add	rized	Y Samp	ES Fedlar® le ID	NO NO Bags In Vol.	flated				
9. $10.$ 1 11. $11.$ $12.$ $13.$ 4 pH ≥ 12 ≤ 2 ≤ 2 ≤ 2 ≤ 4 5-9 Residual Chlorine	Were all t Did all bo Were corr Were 503 <u>Air Samp</u> Lot of t	oottle labels tect contain 5 vials acc les: Cassed test Rea Na HN H2 Na For For	s complete (and tags agr hers used for eptable (no ttes / Tubes] agent OH IO_3 SO_4 HSO_4 608pest \cdot CN, enol, 625,	<i>i.e.</i> and ee with the test extra la Intact Preser	alysis, n custo sts ind abels, n with N rved?	preserva ody paper icated? not leakin AS? C Lot Re No=No If+, con Na ₂ S ₂ O	rs? ng)? canisters cceived tify for ntact PM 3 (625, 6	c.)? s Pressu 3day 1 to add 508,	rized	Y Samp	ES Fedlar® le ID	NO NO Bags In Vol.	flated				
9. $10.$ 1 11. $11.$ $12.$ $13.$ 4 pH ≥ 12 ≤ 2 ≤ 2 ≤ 2 ≤ 4 5-9 Residual	Were all t Did all bo Were corr Were 503 <u>Air Samp</u> Lot of t	oottle labels tect contain 5 vials acc les: Cassed test Rea Na HN H2 Na For For Pho 608	s complete (and tags agr hers used for eptable (no ttes / Tubes agent OH IO3 SO4 HSO4 608pest CN, enol, 625, Spest, 522	<i>i.e.</i> and ee with the test extra la Intact Preser	alysis, n custo sts ind abels, n with N rved?	preserva ody paper icated? not leakin AS? C Lot Re No=No If+, con Na ₂ S ₂ O	rs? ng)? canisters cceived tify for ntact PM	c.)? s Pressu 3day 1 to add 508,	rized	Y Samp	ES Fedlar® le ID	NO NO Bags In Vol.	flated				
9. $10.$ 1 11. $11.$ $12.$ $13.$ 4 pH ≥ 12 ≤ 2 ≤ 2 ≤ 2 ≤ 4 5-9 Residual Chlorine	Were all t Did all bo Were corr Were 503 <u>Air Samp</u> Lot of t	oottle label ttle labels rect contain 5 vials acc les: Cassed test Rea Na HN H2 Na For Pho 608 Na	s complete (and tags agr hers used for eptable (no tes / Tubes) agent OH OH OA BO4 HSO4 608pest CN, enol, 625, 3pest, 522 2\$203	i.e. and ee with the te: extra la Intact Preser Yes	alysis, n custo sts ind abels, n with N rved?	preserva ody paper icated? not leakin AS? C Lot Re No=No If+, con Na ₂ S ₂ O	rs? ng)? canisters cceived tify for ntact PM 3 (625, 6	c.)? s Pressu 3day 1 to add 508,	rized	Samp Adjus	ES ES Fedlar® le ID ted	NO NO Bags In Vol. Addec	flated L 1	ot Add			
9. $10.$ 1 11. $11.$ $12.$ $13.$ 4 pH ≥ 12 ≤ 2 ≤ 2 ≤ 2 ≤ 4 5-9 Residual Chlorine	Were all t Did all bo Were corr Were 503 <u>Air Samp</u> Lot of t	oottle labels ttle labels rect contain 5 vials acc les: Cassed test Rea Na HN H2 Na For Pho 608 Na Zn	s complete (and tags agr hers used for eptable (no tes / Tubes) agent OH OH OA HSO4 608pest CN, enol, 625, Bpest, 522 2S2O3 Acetate	i.e. and ee with the te: extra la Intact Preser Yes	alysis, n custo sts ind abels, n with N rved? No	not leakin AS? C Lot Re No=No If +, con Na2S2O CN), as	rs? ng)? canisters cceived tify for ntact PM 3 (625, 6 corbic (p	c.)? s Pressu 3day 1 to add 608, ohenol).	rized	Samp Adjus	ES ES Fedlar® ted	NO NO Bags In Vol. Addec	flated L 1	ot Add	nalysis.		рН
9. $10.$ 1 11. $11.$ $12.$ $13.$ 4 pH ≥ 12 ≤ 2 ≤ 2 ≤ 2 ≤ 4 5-9 Residual Chlorine	Were all t Did all bo Were corr Were 503 <u>Air Samp</u> Lot of t	oottle label ttle labels rect contain 5 vials acc les: Cassed test Rea Na HN H2 Na For Pho 608 Na	s complete (and tags agr hers used for eptable (no tes / Tubes) agent OH OH OA HSO4 608pest CN, enol, 625, Bpest, 522 2S2O3 Acetate	i.e. and ee with the te: extra la Intact Preser Yes	alysis, n custo sts ind abels, n with N rved?	not leakin AS? C Lot Re No=No If +, con Na2S2O CN), as	rs? ng)? canisters cceived tify for ntact PM 3 (625, 6	c.)? s Pressu 3day 1 to add 608, ohenol).	rized	Samp Adjus	ES ES Fedlar® le ID ted ss and 160 ise, all bo	NO NO Bags In Vol. Addec	flated L J	ot Add	nalysis.		рН
9. $V_{10.}$ I 11. $V_{12.}$ $V_{13.}$ A pH ≥ 12 ≤ 2 ≤ 2 ≤ 2 ≤ 4 5-9 Residual Chlorine (-)	Were all t Did all bo Were corr Were 503 Air Samp Lot of t paper	oottle labels rect contain 5 vials acc les: Cassed rest Res Na HN H2 Na For Pho 608 Na Zn HC	s complete (and tags agr hers used for eptable (no tes / Tubes) agent OH IO ₃ SO ₄ HSO ₄ 608pest CN, enol, 625, 8pest, 522 2S ₂ O ₃ Acetate	i.e. and ee with the te: extra la Intact Preser Yes	alysis, n custo sts ind abels, n with N ved? No - - **	preserva dy paper icated? not leakin AS? C Lot Re No=No If +, con Na ₂ S ₂ O CN), as	rs? ng)? canisters cceived tify for ntact PM 3 (625, 6 corbic (p	c.)? s Pressu 3day 1 to add 608, ohenol).	rized	Samp Adjus	ES ES Fedlar® le ID ted ss and 160 ise, all bo	NO NO Bags In Vol. Addec	flated L J	ot Add	nalysis.		рН
9. $10.$ I 11. $11.$ $12.$ $13.$ 4 pH ≥ 12 ≤ 2 ≤ 2 ≤ 4 5-9 Residual Chlorine (-) Bottle lot	Were all b Did all bo Were corr Were 503 Air Samp Lot of t paper	bottle labels rect contain 5 vials acc les: Cassed test Rea Na HN H2 Na For For Pho 608 Na Zn. HC : 4-0	s complete (and tags agr hers used for eptable (no tes / Tubes) agent OH OH OA HSO4 608pest CN, enol, 625, Bpest, 522 2S2O3 Acetate	i.e. and ee with the te: extra la Intact Preser Yes Yes	alysis, n custo sts ind abels, n with N ved? No - - **	preserva dy paper icated? not leakin AS? C Lot Re No=No If +, con Na ₂ S ₂ O CN), as	rs? ng)? canisters cceived tify for ntact PM 3 (625, 6 corbic (p	c.)? s Pressu 3day 1 to add 608, ohenol).	rized	Samp Adjus	ES ES Fedlar® le ID ted ss and 160 ise, all bo	NO NO Bags In Vol. Addec	flated L J	ot Add	nalysis.		рН

See Comments on C.C.C

Labels secondary reviewed by: Ø PC Secondary Review:

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r16.doc -

.

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

Reid Trip Black not on COC.

DO

HTR

РН

SO3

ALS

HPROD

FLDT

HGFB

LL3541

MARRS

SUB

REV

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 12 of 63

S Environmental

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹ at ID # PH0556 Maine ID #NY0032 New Hamps

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Approved	New Jersey ID # NY004	294100 A/B
DoD ELAP #65817	New York ID # 10145	Pennsylvania ID# 68-786
Florida ID # E87674	North Carolina #676	Rhode Island ID # 158
		Virginia #460167

¹ Analyses were performed according to our laboratorys NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alselobal.com/locations/america/usa/new-york/rochester-environmental

RIGHT SOLUTIONS |13 PARTNER

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

Analyst Summary report

Bergmann Associates, Incorporated

Project:	Gowanda/06974-91		Service Request: R1805029
Sample Name: Lab Code: Sample Matrix:	MW-01 R1805029-001 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-02 R1805029-002 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-03 R1805029-003 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-04 R1805029-004 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-05 R1805029-005 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

Client:

Analyst Summary report

Bergmann Associates, Incorporated

Project:	Gowanda/06974-91		Service Request. R1005027
Sample Name: Lab Code: Sample Matrix:	MW-06 R1805029-006 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-07 R1805029-007 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-08 R1805029-008 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-09 R1805029-009 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-10 R1805029-010 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

Client:

Analyst Summary report

Bergmann Associates, Incorporated

Project:	Gowanda/06974-91		Service Request. R1803029
Sample Name: Lab Code: Sample Matrix:	MW-11 R1805029-011 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-12 R1805029-012 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-13 R1805029-013 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-14 R1805029-014 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-15 R1805029-015 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

Client:

Analyst Summary report

Bergmann Associates, Incorporated

Chent: Project:	Gowanda/06974-91		Service Kequest: K1805029
Sample Name: Lab Code: Sample Matrix:	MW-16 R1805029-016 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-17 R1805029-017 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-18 R1805029-018 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-20 R1805029-019 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	G-1 R1805029-020 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method		Extracted/Digested By	Analyzed By

Client:

KRUEST

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda/06974-91		Service Request: R1805029
Sample Name: Lab Code: Sample Matrix:	G-2 R1805029-021 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	DR-1 R1805029-022 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	DR-2 R1805029-023 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	DR-3 R1805029-024 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	DR-4 R1805029-025 Water		Date Collected: 05/30/18 Date Received: 05/31/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

Printed 6/7/2018 11:46:24 AM

Analyst Summary report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	
a i N		

Sample Name:	MW-X	Date Collected: 05/30/18
Lab Code:	R1805029-026	Date Received: 05/31/18
Sample Matrix:	Water	

Analysis MethodExtracted/Digested By8260C		Extracted/Digested By	By Analyzed By KRUEST	
Sample Name: Lab Code: Sample Matrix:	Equ Blank R1805029-027 Water		te Collected: 05/30/18 te Received: 05/31/18	
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST	
Sample Name: Lab Code: Sample Matrix:	Trip Blank R1805029-028 Water		te Collected: 05/30/18 te Received: 05/31/18	
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST	

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

RIGHT SOLUTIONS | RIGHT PARTNER

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 22 of 63

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 11:30
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	MW-01 R1805029-001	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	190	10	2	06/05/18 04:04	
trans-1,2-Dichloroethene	10 U	10	2	06/05/18 04:04	
Tetrachloroethene (PCE)	10 U	10	2	06/05/18 04:04	
1,1,1-Trichloroethane (TCA)	10 U	10	2	06/05/18 04:04	
Trichloroethene (TCE)	920 D	50	10	06/05/18 16:45	
Vinyl Chloride	10 U	10	2	06/05/18 04:04	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	06/05/18 04:04	
Dibromofluoromethane	98	89 - 119	06/05/18 04:04	
Toluene-d8	99	87 - 121	06/05/18 04:04	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1805029
Project:	Gowanda/06974-91	Date Collected:	05/30/18 11:30
Sample Matrix:	Water	Date Received:	05/31/18 16:07
Sample Name: Lab Code:	MW-02 R1805029-002	Units: Basis:	0

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 16:24	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 16:24	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 16:24	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 16:24	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 16:24	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 16:24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	06/04/18 16:24	
Dibromofluoromethane	98	89 - 119	06/04/18 16:24	
Toluene-d8	101	87 - 121	06/04/18 16:24	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1805029
Project:	Gowanda/06974-91	Date Collected:	05/30/18 11:15
Sample Matrix:	Water	Date Received:	05/31/18 16:07
Sample Name: Lab Code:	MW-03 R1805029-003	Units: Basis:	e

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 17:08	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 17:08	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 17:08	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 17:08	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 17:08	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 17:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	06/04/18 17:08	
Dibromofluoromethane	96	89 - 119	06/04/18 17:08	
Toluene-d8	99	87 - 121	06/04/18 17:08	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 11:00
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	MW-04 R1805029-004	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 17:30	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 17:30	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 17:30	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 17:30	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 17:30	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 17:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 17:30	
Dibromofluoromethane	98	89 - 119	06/04/18 17:30	
Toluene-d8	100	87 - 121	06/04/18 17:30	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1805029
Project:	Gowanda/06974-91	Date Collected:	05/30/18 10:30
Sample Matrix:	Water	Date Received:	05/31/18 16:07
Sample Name: Lab Code:	MW-05 R1805029-005	Units: Basis:	e

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 17:52	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 17:52	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 17:52	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 17:52	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 17:52	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 17:52	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	06/04/18 17:52	
Dibromofluoromethane	96	89 - 119	06/04/18 17:52	
Toluene-d8	99	87 - 121	06/04/18 17:52	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 10:15
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	MW-06 R1805029-006	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	77	5.0	1	06/04/18 18:14	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 18:14	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 18:14	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 18:14	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 18:14	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 18:14	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 18:14	
Dibromofluoromethane	100	89 - 119	06/04/18 18:14	
Toluene-d8	100	87 - 121	06/04/18 18:14	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 09:45
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	MW-07 R1805029-007	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 18:35	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 18:35	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 18:35	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 18:35	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 18:35	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 18:35	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	06/04/18 18:35	
Dibromofluoromethane	99	89 - 119	06/04/18 18:35	
Toluene-d8	100	87 - 121	06/04/18 18:35	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 12:01
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	MW-08 R1805029-008	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 18:57	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 18:57	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 18:57	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 18:57	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 18:57	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 18:57	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	06/04/18 18:57	
Dibromofluoromethane	100	89 - 119	06/04/18 18:57	
Toluene-d8	102	87 - 121	06/04/18 18:57	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 11:55
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	MW-09 R1805029-009	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 19:19	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 19:19	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 19:19	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 19:19	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 19:19	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 19:19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	06/04/18 19:19	
Dibromofluoromethane	100	89 - 119	06/04/18 19:19	
Toluene-d8	102	87 - 121	06/04/18 19:19	

Analytical Report

05/30/18 11:45
05/31/18 16:07
ug/L NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 19:41	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 19:41	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 19:41	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 19:41	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 19:41	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 19:41	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 19:41	
Dibromofluoromethane	99	89 - 119	06/04/18 19:41	
Toluene-d8	101	87 - 121	06/04/18 19:41	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 11:15
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	MW-11 R1805029-011	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	59	25	5	06/05/18 04:26	
trans-1,2-Dichloroethene	25 U	25	5	06/05/18 04:26	
Tetrachloroethene (PCE)	25 U	25	5	06/05/18 04:26	
1,1,1-Trichloroethane (TCA)	25 U	25	5	06/05/18 04:26	
Trichloroethene (TCE)	430	25	5	06/05/18 04:26	
Vinyl Chloride	25 U	25	5	06/05/18 04:26	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	06/05/18 04:26	
Dibromofluoromethane	97	89 - 119	06/05/18 04:26	
Toluene-d8	100	87 - 121	06/05/18 04:26	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1805029
Project:	Gowanda/06974-91	Date Collected:	05/30/18 10:20
Sample Matrix:	Water	Date Received:	05/31/18 16:07
Sample Name: Lab Code:	MW-12 R1805029-012	Units: Basis:	0

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	73	5.0	1	06/04/18 20:03	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 20:03	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 20:03	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 20:03	
Trichloroethene (TCE)	27	5.0	1	06/04/18 20:03	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 20:03	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 20:03	
Dibromofluoromethane	95	89 - 119	06/04/18 20:03	
Toluene-d8	99	87 - 121	06/04/18 20:03	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1805029
Project:	Gowanda/06974-91	Date Collected:	05/30/18 10:30
Sample Matrix:	Water	Date Received:	05/31/18 16:07
Sample Name: Lab Code:	MW-13 R1805029-013	Units: Basis:	0

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 23:42	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 23:42	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 23:42	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 23:42	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 23:42	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 23:42	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	06/04/18 23:42	
Dibromofluoromethane	99	89 - 119	06/04/18 23:42	
Toluene-d8	101	87 - 121	06/04/18 23:42	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 09:52
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	MW-14 R1805029-014	Units: ug/L Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.8	5.0	1	06/05/18 00:04	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 00:04	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 00:04	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 00:04	
Trichloroethene (TCE)	17	5.0	1	06/05/18 00:04	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 00:04	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	06/05/18 00:04	
Dibromofluoromethane	99	89 - 119	06/05/18 00:04	
Toluene-d8	102	87 - 121	06/05/18 00:04	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 09:35
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name:	MW-15	Units: ug/L Basis: NA
Lab Code:	R1805029-015	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 00:26	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 00:26	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 00:26	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 00:26	
Trichloroethene (TCE)	5.0 U	5.0	1	06/05/18 00:26	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 00:26	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	06/05/18 00:26	
Dibromofluoromethane	98	89 - 119	06/05/18 00:26	
Toluene-d8	100	87 - 121	06/05/18 00:26	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 09:20
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	MW-16 R1805029-016	Units: ug/L Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	41	5.0	1	06/05/18 00:47	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 00:47	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 00:47	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 00:47	
Trichloroethene (TCE)	5.0 U	5.0	1	06/05/18 00:47	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 00:47	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	06/05/18 00:47	
Dibromofluoromethane	97	89 - 119	06/05/18 00:47	
Toluene-d8	99	87 - 121	06/05/18 00:47	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1805029
Project:	Gowanda/06974-91	Date Collected:	05/30/18 10:00
Sample Matrix:	Water	Date Received:	05/31/18 16:07
Sample Name: Lab Code:	MW-17 R1805029-017	Units: Basis:	•

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	85	5.0	1	06/05/18 01:09	
trans-1,2-Dichloroethene	7.5	5.0	1	06/05/18 01:09	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 01:09	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 01:09	
Trichloroethene (TCE)	20	5.0	1	06/05/18 01:09	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 01:09	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	06/05/18 01:09	
Dibromofluoromethane	96	89 - 119	06/05/18 01:09	
Toluene-d8	100	87 - 121	06/05/18 01:09	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 12:30
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name:	MW-18	Units: ug/L
Lab Code:	R1805029-018	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 01:31	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 01:31	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 01:31	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 01:31	
Trichloroethene (TCE)	5.0 U	5.0	1	06/05/18 01:31	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 01:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/05/18 01:31	
Dibromofluoromethane	98	89 - 119	06/05/18 01:31	
Toluene-d8	101	87 - 121	06/05/18 01:31	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1805029
Project:	Gowanda/06974-91	Date Collected:	05/30/18 10:45
Sample Matrix:	Water	Date Received:	05/31/18 16:07
Sample Name: Lab Code:	MW-20 R1805029-019	Units: Basis:	e

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 01:53	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 01:53	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 01:53	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 01:53	
Trichloroethene (TCE)	5.0 U	5.0	1	06/05/18 01:53	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 01:53	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	06/05/18 01:53	
Dibromofluoromethane	98	89 - 119	06/05/18 01:53	
Toluene-d8	100	87 - 121	06/05/18 01:53	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1805029
Project:	Gowanda/06974-91	Date Collected:	05/30/18 09:24
Sample Matrix:	Water	Date Received:	05/31/18 16:07
Sample Name: Lab Code:	G-1 R1805029-020	Units: Basis:	e

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	34	5.0	1	06/05/18 02:15	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 02:15	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 02:15	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 02:15	
Trichloroethene (TCE)	6.3	5.0	1	06/05/18 02:15	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 02:15	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/05/18 02:15	
Dibromofluoromethane	97	89 - 119	06/05/18 02:15	
Toluene-d8	100	87 - 121	06/05/18 02:15	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 09:13
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	G-2 R1805029-021	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	50	5.0	1	06/05/18 02:37	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 02:37	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 02:37	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 02:37	
Trichloroethene (TCE)	5.0 U	5.0	1	06/05/18 02:37	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 02:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	06/05/18 02:37	
Dibromofluoromethane	97	89 - 119	06/05/18 02:37	
Toluene-d8	100	87 - 121	06/05/18 02:37	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1805029
Project:	Gowanda/06974-91	Date Collected:	05/30/18 11:00
Sample Matrix:	Water	Date Received:	05/31/18 16:07
Sample Name: Lab Code:	DR-1 R1805029-022	Units: Basis:	0

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	210	50	10	06/05/18 04:48	
trans-1,2-Dichloroethene	50 U	50	10	06/05/18 04:48	
Tetrachloroethene (PCE)	50 U	50	10	06/05/18 04:48	
1,1,1-Trichloroethane (TCA)	50 U	50	10	06/05/18 04:48	
Trichloroethene (TCE)	1100	50	10	06/05/18 04:48	
Vinyl Chloride	50 U	50	10	06/05/18 04:48	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	06/05/18 04:48	
Dibromofluoromethane	95	89 - 119	06/05/18 04:48	
Toluene-d8	99	87 - 121	06/05/18 04:48	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 10:15
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	DR-2 R1805029-023	Units: ug/L Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	97	5.0	1	06/05/18 02:59	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 02:59	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 02:59	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 02:59	
Trichloroethene (TCE)	31	5.0	1	06/05/18 02:59	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 02:59	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	06/05/18 02:59	
Dibromofluoromethane	98	89 - 119	06/05/18 02:59	
Toluene-d8	100	87 - 121	06/05/18 02:59	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 10:00
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	DR-3 R1805029-024	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	86	5.0	1	06/05/18 03:21	
trans-1,2-Dichloroethene	9.4	5.0	1	06/05/18 03:21	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 03:21	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 03:21	
Trichloroethene (TCE)	30	5.0	1	06/05/18 03:21	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 03:21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	06/05/18 03:21	
Dibromofluoromethane	97	89 - 119	06/05/18 03:21	
Toluene-d8	99	87 - 121	06/05/18 03:21	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 09:42
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	DR-4 R1805029-025	Units: ug/L Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	7.2	5.0	1	06/05/18 03:42	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 03:42	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 03:42	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 03:42	
Trichloroethene (TCE)	24	5.0	1	06/05/18 03:42	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 03:42	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	06/05/18 03:42	
Dibromofluoromethane	97	89 - 119	06/05/18 03:42	
Toluene-d8	101	87 - 121	06/05/18 03:42	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 11:00
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	MW-X R1805029-026	Units: ug/L Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	54	5.0	1	06/04/18 16:46	
trans-1,2-Dichloroethene	10	5.0	1	06/04/18 16:46	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 16:46	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 16:46	
Trichloroethene (TCE)	370 D	13	2.5	06/04/18 20:25	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 16:46	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 16:46	
Dibromofluoromethane	96	89 - 119	06/04/18 16:46	
Toluene-d8	101	87 - 121	06/04/18 16:46	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 12:30
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	Equ Blank R1805029-027	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 16:02	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 16:02	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 16:02	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 16:02	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 16:02	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 16:02	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 16:02	
Dibromofluoromethane	95	89 - 119	06/04/18 16:02	
Toluene-d8	100	87 - 121	06/04/18 16:02	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: 05/30/18 12:30
Sample Matrix:	Water	Date Received: 05/31/18 16:07
Sample Name: Lab Code:	Trip Blank R1805029-028	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 15:41	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 15:41	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 15:41	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 15:41	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 15:41	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 15:41	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	06/04/18 15:41	
Dibromofluoromethane	96	89 - 119	06/04/18 15:41	
Toluene-d8	99	87 - 121	06/04/18 15:41	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/06974-91
Sample Matrix:	Water

Service Request: R1805029

SURROGATE RECOVERY SUMMARY

Analysis Method:	8260C
Extraction Method:	EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85-122	89-119	87-121
MW-01	W-01 R1805029-001		98	99
MW-02	R1805029-002	96	98	101
MW-03	R1805029-003	93	96	99
MW-04	R1805029-004	97	98	100
MW-05	R1805029-005	95	96	99
MW-06	R1805029-006	97	100	100
MW-07	R1805029-007	99	99	100
MW-08	R1805029-008	99	100	102
MW-09	R1805029-009	98	100	102
MW-10	R1805029-010	97	99	101
MW-11	R1805029-011	98	97	100
MW-12	R1805029-012	97	95	99
MW-13	R1805029-013	96	99	101
MW-14	R1805029-014	99	99	102
MW-15	R1805029-015	95	98	100
MW-16	R1805029-016	95	97	99
MW-17	R1805029-017	96	96	100
MW-18	R1805029-018	97	98	101
MW-20	R1805029-019	96	98	100
G-1	R1805029-020	97	97	100
3-2	R1805029-021	98	97	100
DR-1	R1805029-022	94	95	99
DR-2	R1805029-023	98	98	100
DR-3	R1805029-024	96	97	99
DR-4	R1805029-025	98	97	101
MW-X	R1805029-026	97	96	101
Equ Blank	R1805029-027	97	95	100
Frip Blank	R1805029-028	95	96	99
Method Blank	RQ1805466-04	96	100	101
Method Blank	RQ1805467-04	97	98	99
Method Blank	RQ1805500-04	95	96	98
Lab Control Sample	RQ1805466-03	97	100	99
Lab Control Sample	RQ1805467-03	99	103	100
Lab Control Sample	RQ1805500-03	98	101	100
MW-03 MS	RQ1805466-05	100	101	101
MW-03 DMS	RQ1805466-06	101	102	102
DR-1 MS	RQ1805467-05	98	102	100

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/06974-91
Sample Matrix:	Water

Service Request: R1805029

SURROGATE RECOVERY SUMMARY

Analysis Method:	8260C
Extraction Method:	EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85-122	89-119	87-121
DR-1 DMS	RQ1805467-06	97	98	99

QA/QC Report

Client: Project: Sample Matrix:	U	n Associates, /06974-91	Da Da Da				Date Co Date Re Date Ar	Request: ollected: eceived: nalyzed: ctracted:	R180 05/30 05/31 06/4/ NA	/18 /18	
			Duj	plicate Matr	ix Spike S	ummary					
			Volatil	e Organic C	ompound	s by GC/N	1S				
Sample Name:	MW-03							Units:	ug/L		
Lab Code:	R1805029	9-003						Basis:	NA		
Analysis Method:	8260C										
Prep Method:	EPA 5030)C									
				Aatrix Spike Q1805466-0:		-	licate Matri RQ1805466	-			
		Sample		Spike			Spike		% Rec		RPD
Analyte Name		Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
cis-1,2-Dichloroether		5.0 U	51.3	50.0	103	52.6	50.0	105	77-127	3	30
trans-1,2-Dichloroeth		5.0 U	50.8	50.0	102	52.9	50.0	106	73-118	4	30
Tetrachloroethene (P	,	5.0 U	50.7	50.0	101	50.9	50.0	102	72-125	<1	30
1,1,1-Trichloroethane	. ,	5.0 U	52.3	50.0	105	55.1	50.0	110	74-127	5	30
Trichloroethene (TCI	E)	5.0 U	49.9	50.0	100	52.7	50.0	105	74-122	6	30
Vinyl Chloride		5.0 U	50.1	50.0	100	51.4	50.0	103	74-159	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Sample Matrix:	Bergmann Gowanda/ Water		Incorporated Service Request: Date Collected: Date Received: Date Analyzed: Date Extracted:					R180 05/30 05/31 06/5/ NA	/18 /18		
			Duj	plicate Matr	ix Spike S	ummary					
			Volatil	e Organic C	ompound	s by GC/N	IS				
Sample Name:	DR-1							Units:	ug/L		
Lab Code:	R1805029	-022						Basis:	NA		
Analysis Method:	8260C										
Prep Method:	EPA 5030	C									
				Aatrix Spike Q1805467-0		_	licate Matri RQ1805467-	-			
		Sample		Spike			Spike		% Rec		RPD
Analyte Name		Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
cis-1,2-Dichloroether		210	723	500	103	689	500	96	77-127	5	30
trans-1,2-Dichloroeth	ene	50 U	522	500	104	505	500	101	73-118	3	30
Tetrachloroethene (P	,	50 U	503	500	101	487	500	97	72-125	3	30
1,1,1-Trichloroethane	· /	50 U	533	500	107	509	500	102	74-127	5	30
Trichloroethene (TCH	E)	1100	1650	500	101	1590	500	87	74-122	4	30
Vinyl Chloride		50 U	497	500	99	482	500	96	74-159	3	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1805466-04	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 12:47	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 12:47	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 12:47	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 12:47	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 12:47	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 12:47	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	06/04/18 12:47	
Dibromofluoromethane	100	89 - 119	06/04/18 12:47	
Toluene-d8	101	87 - 121	06/04/18 12:47	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1805029
Project:	Gowanda/06974-91	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1805467-04	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 23:20	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 23:20	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 23:20	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 23:20	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 23:20	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 23:20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 23:20	
Dibromofluoromethane	98	89 - 119	06/04/18 23:20	
Toluene-d8	99	87 - 121	06/04/18 23:20	

Analytical Report

Bergmann Associates, Incorporated	Service Request:	R1805029
Gowanda/06974-91	Date Collected:	NA
Water	Date Received:	NA
Method Blank	Units:	ug/L
RQ1805500-04	Basis:	NA
	Gowanda/06974-91 Water Method Blank	Gowanda/06974-91Date Collected:WaterDate Received:Method BlankUnits:

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 11:51	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 11:51	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 11:51	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 11:51	
Trichloroethene (TCE)	5.0 U	5.0	1	06/05/18 11:51	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 11:51	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	06/05/18 11:51	
Dibromofluoromethane	96	89 - 119	06/05/18 11:51	
Toluene-d8	98	87 - 121	06/05/18 11:51	

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/06974-91
Sample Matrix:	Water

Service Request: R1805029 **Date Analyzed:** 06/04/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1805466-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	18.0	20.0	90	80-121
trans-1,2-Dichloroethene	8260C	17.7	20.0	89	73-118
Tetrachloroethene (PCE)	8260C	17.6	20.0	88	72-125
1,1,1-Trichloroethane (TCA)	8260C	17.5	20.0	88	75-125
Trichloroethene (TCE)	8260C	17.2	20.0	86	74-122
Vinyl Chloride	8260C	17.0	20.0	85	74-159

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/06974-91
Sample Matrix:	Water

Service Request: R1805029 **Date Analyzed:** 06/04/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1805467-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	20.4	20.0	102	80-121
trans-1,2-Dichloroethene	8260C	20.1	20.0	101	73-118
Tetrachloroethene (PCE)	8260C	19.2	20.0	96	72-125
1,1,1-Trichloroethane (TCA)	8260C	20.3	20.0	102	75-125
Trichloroethene (TCE)	8260C	19.5	20.0	98	74-122
Vinyl Chloride	8260C	20.1	20.0	100	74-159

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/06974-91
Sample Matrix:	Water

Service Request: R1805029 **Date Analyzed:** 06/05/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1805500-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	18.0	20.0	90	80-121
trans-1,2-Dichloroethene	8260C	18.3	20.0	91	73-118
Tetrachloroethene (PCE)	8260C	17.3	20.0	87	72-125
1,1,1-Trichloroethane (TCA)	8260C	17.8	20.0	89	75-125
Trichloroethene (TCE)	8260C	17.9	20.0	89	74-122
Vinyl Chloride	8260C	17.6	20.0	88	74-159

AUGUST 2018 GROUNDWATER CHARACTERIZATION REPORT

New York State Office of People with Developmental Disabilities – Gowanda Site

GROUNDWATER CHARACTERIZATION REPORT – AUGUST 2018

Bergmann

Office: 280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135

www.bergmannpc.com

Issued: October 10, 2018

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1 1.2	Scope of Work Site Background	
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	5
2.1 2.2	Well Maintenance Activities Groundwater Field Monitoring and Sampling Activities	
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	6
4.0	LABORATORY ANALYSIS	6
4.1 4.2 4.3 4.4 4.5	Laboratory Analysis on Groundwater Samples Monitoring Well Groundwater Analysis SummarY Sentry Well Groundwater Analysis Summary Recovery Well Groundwater Analysis Summary Quality Assurance and Quality Control Samples	
5.0	REMEDIATION SYSTEM EFFICIENCY	10
5.1 5.2 5.3	Impact of the GTS Recovery Wells Extent of Impacted Groundwater Future Groundwater Monitoring and Analysis Activities	

Tables

Table 1:	Groundwater Elevations and Field Measurements – August 2018
Table 2:	August 2018 Analytical Results Summary
Table 3:	Historic Groundwater Analytical Results Summary
Table 4:	Percent Reduction in Total Groundwater VOCs

Figures

Figure 1:	August 2018 Groundwater Contour Map
Figure 2:	August 2018 Distribution of Groundwater Analytical Results: Monitoring Wells
Figure 3:	August 2018 Distribution of Groundwater Analytical Results: Recovery Wells

Charts

Chart 1:	DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations
Chart 2:	DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations
Chart 3:	DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations
Chart 4:	DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations
Chart 5:	G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations
Chart 6:	G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations
Chart 7:	G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

Appendices

Appendix A: Laboratory Analytical Results Report - August 2018 Sampling Event

1.0 INTRODUCTION

Bergmann is submitting this groundwater characterization report for the August 2018 sampling event on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 SCOPE OF WORK

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on August 22, 2018. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from 19 of 21 site-related groundwater monitoring wells and all seven (7) groundwater recovery wells were sampled for laboratory analysis. Of the eight (8) monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), two (2) were not sampled. These monitoring wells are MW-19R and MW-21. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site. Monitoring Wells MW-19R and MW-20 have not been sampled due to the fact that they have been paved over as first reported by Bergmann in the August 2017 sampling report.

The prior groundwater sampling event was conducted in May 2018 and included analysis of groundwater samples from 19 of 21 site-related groundwater monitoring wells and six (6) of seven (7) groundwater recovery wells.

1.2 SITE BACKGROUND

The Gowanda Day Habilitation site consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of seven (7) groundwater recovery wells (four dual phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the

EVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

During January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015. An ISCO Report was prepared under separate cover.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the August 2018 site visit, all monitoring wells were accessible and the integrity of the wells was not compromised except for MW-19R and MW-21. MW-19R and MW-21, both located on Torrance Place, were still paved over as originally reported in the August 2017 summary report. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of the redevelopment activities performed on August 19, 2015. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the August 2018 sampling event.

2.2 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater in groundwater monitoring wells are measured on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the impacted groundwater plume beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from 19 of the 21 site-related groundwater monitoring wells for laboratory analysis on August 23, 2018. Depth to groundwater measurements were obtained from 26 wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via bailing with dedicated bailers for each individual well. Sample parameters including turbidity, temperature, pH, oxygen, salinity and conductivity were monitored using a YSI Quatro to ensure sufficient well purging prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater without collecting sediment from within the wells. A single duplicate sample was not taken this quarter but a duplicate sample will be taken during the next sampling event (November 2018).

Groundwater samples were delivered via chain-of-custody protocol to ALS Environmental Services located in Rochester, NY, a NYSDOH certified laboratory, for testing using EPA Method 8260B for targeted chlorinated volatile organic compounds (VOCs) of concern. Analytical results for each individual monitoring well have been posted in Table 3 for comparative purposes from sampling events completed 2002 – 2018.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

The Site water table potentiometric surface pattern and groundwater flow direction was determined for August 2018 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on August 22, 2018. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements - August 2018.

The August 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The August 2018 depths to groundwater range from 6.00 ft below top of casing (btoc) at MW-2, to 13.45 ft btoc at MW-7. The average depth to groundwater at the wells measured was 9.84 ft btoc.

The site-wide average depth to water table increased by approximately 0.35 ft when compared to the May 2018 sampling event. This increase in the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented Table 1 and August 2018 Groundwater Contours are presented on Figure 1 – August 2018 Groundwater Contour Map.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS ON GROUNDWATER SAMPLES

Laboratory analysis was completed on the groundwater samples from 19 monitoring wells and seven (7) recovery wells collected August 22, 2018. Samples were analyzed for VOCs via EPA Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

The August 2018 analytical results indicate three (3) chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, and Trans-DCE. Chlorinated VOCs were detected in groundwater from eight (8) of the 19 sampled monitoring wells. Analytical results are summarized in Table 2 – August 2018 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical reporting package is provided in Appendix A – Laboratory Analytical Results Report August 2018 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from eleven (11) of the sampled monitoring wells.

Groundwater samples from eight (8) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (1,190 ppb), is located in the area of historically greatest impacted groundwater.

Concentrations in four (4) of the 19 monitoring well groundwater samples increased when compared to the May 2018 sampling event while concentrations in four (4) of the 19 monitoring well groundwater samples decreased. Concentrations in eleven (11) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 78.0% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 72.1% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the August 2018 sampling event was 1,190 parts per billion (ppb), an increase from the May 2018 value of 1,110 ppb. Since activation of the GTS, detected VOCs at MW-1 have increased by about 54.9%.

Monitoring well MW-11 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the August 2018 sampling event is 282 ppb, a decrease from the May 2018 value of 489 ppb. Since activation of the GTS in May 2005, detected VOCs at MW-11 have decreased by 93.9%.

Monitoring well MW-12 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the August 2018 sampling event is 25 ppb, a decrease from the May 2018 value of 100 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by about 99.8%.

Monitoring well MW-14 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the August 2018 sampling event is 22.3 ppb, a decrease from the May 2018 value of 22.8 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by about 92.9%.

Monitoring well MW-15 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the August 2018 sampling event was 6.5 ppb, which was an increase from the August 2018 sampling event, which was Non-detect (ND). MW-15 is nearest to recovery well DR-4. Since activation of the GTS in May 2005, the detected VOCs at MW-15 have decreased by 99.1%.

Six (6) groundwater monitoring wells are located along the subject property's north perimeter, down-gradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-7, MW-16, MW-17 and MW-21. The current analytical results exhibit an increase in targeted VOCs at the sampled monitoring wells along the north perimeter.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three (3) wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system. The current results indicate non-detect levels for MW-18. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2015 sampling event. It was first noted that during the August 2017 sampling event, wells MW-19R and MW-21 were not sampled because they were inaccessible.

It was observed that the wells were likely paved over by a re-sealing operation. The wells were still inaccessible and paved over during the August 2018 sampling event.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – August 2018 Distribution of Groundwater Analytical Results: Monitoring Wells.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry well sampled for this event was only MW-4. The current results indicate non-detect levels for this eastern sentry well.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R, but MW-19R is unable to be sampled because it is paved over. The Gowanda Electronics impacted groundwater plume does not appear to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO injection application was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

During the April 2018 sampling event, all of the seven (7) recovery wells were sampled.

The April 2018 analytical results indicate detection of three (3) chlorinated VOCs in recovery well samples: TCE, Cis-DCE, and TRANS. Chlorinated VOCs were detected in samples from all seven (7) of the sampled recovery wells. Total VOCs at the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the current sampling event is about 28.9% relative to concentrations prior to GTS activation in 2002. Relative percent reductions in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the August 2018 sampling event is 1,510 ppb, an increase from the May 2018 value of 1,319 ppb. The current sampling event indicates an increase in VOCs at DR-1 of 163.3% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in an area of historically highest concentrations.

Recovery well DR-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the August 2018 sampling event is 162 ppb, an increase from the May 2018 value of 128 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of about 70.5% since activation of the GTS.

Recovery well DR-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-3 for the August 2018 sampling event is 87 ppb, a decrease from the May 2018 value of 125.4 ppb. The current sampling event indicates a decrease in VOCs at DR-3 of about 43% since activation of the GTS.

Recovery well DR-4 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the August 2018 sampling event is 48 ppb, an increase from the May 2018 value of

31.2 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of about 94.4% since activation of the GTS.

Recovery well G-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the August 2018 sampling event was 77 ppb, an increase from the May value of 40.3 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 61.7% since activation of the GTS.

Recovery well G-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-2 for the August 2018 sampling event was 68 ppb, an increase from the May 2018 value of 50 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 76.0% since activation of the GTS.

Recovery well G-3 increased in targeted chlorinated VOCs relative to the last time it was sampled, which was November 2016. The total VOC concentration at G-3 for the August 2018 sampling event was 322 ppb, an increase from the November 2016 value of 293 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 20.1% since activation of the GTS.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – August 2018 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

An equipment blank was collected to ensure proper cleaning of the sampling equipment. The equipment blank, designated as EB, was non-detect for chlorinated halogens.

Laboratory analytical results are included in Appendix A.

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 IMPACT OF THE GTS RECOVERY WELLS

Groundwater control charts for the seven (7) sampled recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center. Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all seven (7) sampled groundwater recovery wells have demonstrated a general decrease in VOC concentration.

The current sampling event results represent a decrease of total VOCs at DR-3 when compared to the April 2018 sampling event.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (1,190 ppb) show an increase from the May 2018 sampling event (1,110 ppb). The current total VOCs at MW-11 (282 ppb) shows a decrease from the May 2018 sampling event (489 ppb). The current total VOCs at DR-1 (1,510 ppb) show an increase from the May 2018 sampling event (1,319 ppb).

Chart 3 compares laboratory results between recovery well DR-2 and MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (25 ppb) show a decrease from the May 2018 sampling event (100 ppb). The current total VOCs at recovery well DR-2 (162 ppb) show an increase from the May 2018 sampling event (128 ppb).

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (22.3 ppb) show a decrease from the May 2018 sampling event (22.8 ppb). The current total VOCs at recovery well DR-3 (87 ppb) show a decrease from the May 2018 sampling event (125.4 ppb).

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (6.5) show an increase from the May 2018 sampling event (non-detect). The current total VOCs at recovery well DR-4 (48 ppb) show an increase from the May 2018 sampling event (31.2 ppb).

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. The recovery well is located in the northern portion of the building and MW-17 is located along the northern property line. The current total VOCs at recovery well MW-17 (265) show an increase from the May 2018 sampling event (112.5). The current total VOCs at recovery well G-1 (77 ppb) show an increase from the May 2018 sampling event (40.3 ppb).

Chart 7 compares laboratory results between recovery well G-2 and MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. Recovery well G-2 had a total VOC of 68 ppb, which shows an increase from the May 2018 sampling event (50 ppb). The May 2018 total VOCs of MW-7 (ND) showed no change from the April 2018 sampling event (5.8 ppb).

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western perimeter of the apparent area of impacted groundwater. The current total VOCs at monitoring well MW-17 (265) showed an increase from the May 2018 sampling event (112.5). The current total VOCs at recovery well G-3 was 322. Well G-3 was not sampled during the May 2018 sampling event.

5.2 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not sampled at MW-19R and MW-21 during the May 2018 and August 2018 sampling events due to the fact that they were both paved over and inaccessible, as first reported by Bergmann in the August 2017 Sampling Report.

The redevelopment of wells was performed in fall 2015 to remove sediment from wells at the Site after the ISCO injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred at the Site when compared to the past ten (10) years of sampling. The following notes are a summary of the meeting held on June 22, 2018 between Bergmann, DASNY, and the NYSDEC.

- Bergmann submitted an Additional Subsurface Investigation Plan (ASIP) consisting of additional soil borings to locate the source of contamination on site.
- As part of the ASIP, soils will be sampled for the same VOCs that are consistently present in groundwater samples to determine if the contamination is residual in the soils on site.
- Details of the proposed additional investigation are outlined in the Additional Subsurface Investigation Plan dated July 2018 and submitted to DASNY on July 23, 2018.

5.3 FUTURE GROUNDWATER MONITORING AND ANALYSIS ACTIVITIES

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed upon that these systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO RAP in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future; however, system components may need repair and/or replacement. Three (3) routine quarterly monitoring events will be completed to fulfill the NYSDEC requirements for post ISCO groundwater treatment.

The next site-wide groundwater sampling and laboratory analysis event is scheduled for November 2018. Future sampling and analytical events will be conducted to track the effects of the ISCO injections on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be monitored and recorded during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements August 2018

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	778.08	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	6.20	6.00	6.40	7.05	12.60	13.40	13.45	10.41	7.20	6.80
Groundwater Elevation	772.03	772.08	771.98	771.38	766.01	767.70	767.49	770.92	775.41	773.22
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	17.15	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.42
Bottom of Well Elevation	762.21	760.93	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.60
Thickness of Water Column	9.82	11.15	9.90	8.73	1.35	9.48	8.35	7.24	13.76	12.62
Minimum Purge Volume (gal)	1.6	1.82	1.6	1.4	0.2	1.5	1.4	1.2	2.2	2.1
3 Volumes	4.8	5.45	4.8	4.3	0.7	4.6	4.1	3.5	6.7	6.2
Actual volume purged	4.8	5.45	NS	4.3	1.4	4.6	4.1	NS	NS	NS
Comments	Flush = -0.29'	Flush = -0.30'	Flush = -0.23'	Flush = -0.34'	Flush = -0.24'	Stickup=2.17	Stickup=2.17'	Stickup=2.84'	Stickup=2.05'	Stickup=2.56'

	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	NA	778.04	NA
Depth to Groundwater (btoc)	7.30	7.41	7.48	12.02	10.83	13.10	13.25	9.02	NA	9.70	NA
Groundwater Elevation	771.28	771.09	770.91	766.41	767.55	767.33	766.60	767.37	NA	768.34	NA
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	NA	2"	NA
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	NA	14.75	NA
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	NA	763.29	NA
Thickness of Water Column	8.18	9.97	9.92	6.13	8.97	10.16	NA	15.98	NA	5.05	NA
Minimum Purge Volume (gal)	1.3	1.6	1.6	1.0	1.5	1.7	NS	2.6	NA	0.8	NA
3 Volumes	4.0	4.9	4.9	3.0	4.4	5.0	NS	7.8	NA	2.5	NA
Actual volume purged	4.0	4.9	NS	3.0	4.4	5.0	NS	7.8	NA	2.5	NA
Comments	Flush = -0.23'	Flush = -0.35'	Flush = -0.48'	Flush = -0.39'	Flush = -0.38	Stickup=2.26'	Stickup=1.18'	Flush =-0.26'	Paved Over	Flush=-0.43'	Paved Over.

	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	779.42
Depth to Groundwater (btoc)	8.14	10.56	11.82	11.74	11.87	11.81	10.25
Groundwater Elevation	771.52	769.37	767.96	767.90	767.96	767.91	769.17
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	18.15
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	761.27
Thickness of Water Column	9.92	7.50	8.63	7.95	11.11	9.17	7.90
Minimum Purge Volume (gal)	6.48	4.90	5.64	5.19	7.25	5.98	5.16
3 Volumes	19.43	14.69	16.91	15.57	21.76	17.94	15.48
Actual volume purged	19.43	14.69	16.91	15.57	21.76	17.94	15.48
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03'	Stickup=0.86'	Vaulted well

NOTES

btoc = Below top of casing (inner riser) All measurements are in feet, referenced to Mean Sea Level

NS = Not Sampled

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Minimum purge volume = 3 × weil volume, 0.165 gallon per loot in a 2 diameter weil. 0.005 gallon per loot in a 4 diameter weil. Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled. The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed. Wells MW-19R, MW-20 and MW-21 were installed in October 2004, MW-19R and MW-21 have been paved over age 1 of 1

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sample Date: 08/22/2018

Sampling Events

Analyte in pp	b May 2018	Aug 2018	NYS Guidance Value
TCE	920	930	5.0
CIS	190	260	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VC	Cs 1,110	1,190	

Monitoring Well MW-2

Sample Date: 08/22/2018

Sampling Events

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-3 Sampling Events

Sample Date: 08/22/2018

Bamping Eronic			
Analyte in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
ТСА	ND	ND	5.0
Total VOC	s ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Monitoring Well MW-4

Sample Date: 08/22/2018

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-5

Sampling Events

Sample Date: 08/22/2018

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-6 Sampling Events

Sample Date: 08/22/2018

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		77	84	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	77	84	

Page 1 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sample Date: 08/22/2018

Sampling Events

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-8

Sample Date: 08/22/2018

Sampling Events

Analyte in p	pb 🛛 May 2018	Aug 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total V	DCs ND	ND	

Monitoring Well MW-9 Sampling Events

Sample Date: 08/22/2018

<u></u>			
Analyte in ppt	May 2018	Aug 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOC	Cs ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 2 of 6

Monitoring Well MW-10 Sampling Events

Sample Date: 08/22/2018

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-11 Sampling Events

Sample Date: 08/22/2018

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE	11 -	430	160	5.0
CIS		59	120	5.0
TRANS		ND	2.1	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	489	282	

Monitoring Well MW-12 Sampling Events

Sample Date: 08/22/2018

	- VCIII3			
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		27	5.0	5.0
CIS		73	20	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	100	25	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sample Date: 08/22/2018

Sampling Events

Analyte in p	ob May 2018	Aug 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
ТСА	ND	ND	5.0
Total VC	DCs ND	ND	

Monitoring Well MW-14

Sample Date: 08/22/2018

Sampling Events

eamping = reine			
Analyte in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE	17	15	5.0
CIS	5.8	7.3	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	22.8	22.3	

Monitoring Well MW-15 Sampling Events

Sample Date: 08/22/2018

<u>• • • • • • • • • • • • • • • • • • • </u>			
Analyte in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE	ND	6.5	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	6.5	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 3 of 6

Monitoring Well MW-16 Sampling Events

Sample Date: 08/22/2018

Analyte in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	41	10	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
ТСА	ND	ND	5.0
Total VOCs	41	10	

Monitoring Well MW-17 Sampling Events

Sample Date: 08/22/2018

Sampling E				
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		20	45	5.0
CIS		85	220	5.0
TRANS		7.5	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	112.5	265	

Monitoring Well MW-18 Sampling Events

Sample Date: 08/22/2018

	- 001113			
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	ND	ND	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sample Date: NS

Sampling Events

Analyte	in ppb	April 2018	Aug 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-20

Sample Date: 08/22/2018

Sampling Events

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value			
TCE		ND	ND	5.0			
CIS		ND	ND	5.0			
TRANS		ND	ND	5.0			
VC		ND	ND	2.0			
TCA		ND	ND	5.0			
	Total VOCs	ND	ND				

Monitoring Well MW-21

Sample Date: NS

Sampling Events

Analyte in ppb	April 2018	Aug 2018	NYS Guidance Value
TCE	NS	NS	5.0
CIS	NS	NS	5.0
TRANS	NS	NS	5.0
VC	NS	NS	2.0
TCA	NS	NS	5.0
Total VOCs	NS	NS	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 4 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1

Sample Date: 08/22/2018

Sam	pling	Events

NYS Guidance Value Analyte May 2018 Aug 2018 in ppb TCE 1100 1300 5.0 CIS 219 210 5.0 TRANS 5.0 ND ND VC ND ND 2.0 TCA ND ND 5.0 Total VOCs 1319 1,510

Recovery Well DR-2 Sampling Events

Sample Date: 08/22/2018

1 0			
Analyte in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE	31	32	5.0
CIS	97	130	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	128	162	

Recovery Well DR-3 Sampling Events

Sample Date: 08/22/2018

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		30	24	5.0
CIS		86	63	5.0
TRANS		9.4	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
Т	otal VOCs	125.4	87	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 5 of 6

Recovery	Well DR-4
----------	-----------

Sampling Events

Sample	Date:	08/22/2018
--------	-------	------------

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		24	29	5.0
CIS		7.2	19	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	31.2	48	

Recovery Well G-1 Sampling Events

Sample Date: 08/22/2018

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		6.3	ND	5.0
CIS		34	77	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	40.3	77	

Recovery Well G-2 Sampling Events

Sample Date: 08/22/2018

	veniis			
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		50	68	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	50	68	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3

Sample Date: NS

Sampling Events

Analyte	in ppb	Nov 2016	Aug 2018	NYS Guidance Value
TCE		53	52	5.0
CIS		240	270	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	293	322	

Duplicate Blank Sampling Events

Sample Date: 08/22/2018

1 8		
		NYS
		Guidance
Analyte in ppb	Aug 2018	Value
TCE	NS	5.0
CIS	NS	5.0
TRANS	NS	5.0
VC	NS	2.0
TCA	NS	5.0
Total VOCs	s NS	

Equipment Blank Sampling Events

Sample Date: 08/22/2018

Analyte in p	pb May 2018	Aug 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
ТСА	ND	ND	5.0
Total V	OCs ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Table 3 Historic Groundwater Analysis Results Summary Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

												MON	ITORING WE	ELLS								
Monitoring Well Number	Total VOCs August 2018 (ppb)	Total VOCs May 2018 (ppb)	Total VOCs April 2018 (ppb)	Total VOCs Nov 2017 (ppb)	Total VOCs Aug 2017 (ppb)	Total VOCs Nov 2016 (ppb)	Total VOCs Sep 2016 (ppb)	Total VOCs Jun 2016 (ppb)	Total VOCs Nov 2015 (ppb)	Total VOCs Aug 2015 (ppb)	Total VOCs Jun 2015 (ppb)	Total VOCs Mar 2015 (ppb)	Total VOCs Nov 2014 (ppb)		Total VOCs Jun 2014 (ppb)	Total VOCs Mar 2014 (ppb)	Total VOCs Dec 2013 (ppb)	Total VOCs Jul 2013 (ppb)	Total VOCs Apr 2013 (ppb)	Total VOCs Dec 2012 (ppb)	Total VOCs Jun 2012 (ppb)	Total VOC: Mar 2012 (ppb)
MW-1	1,190	1,110	374	1013	1,210	1,467	838	580	1,530	1,470	350	430	300	420	990	990	1,740	830	910	1,440	528	889
MW-2	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS						
MW-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS						
MW-6	84	77	76	100	91	87	120	100	120	96	86	81	110	110	96	94	130	99	93	99	86.7	85.7
MW-7	ND	ND	ND	5.8	29	110	62	83	49	130	58	ND	180	190	29	ND	ND	18	ND	ND	151.56	30.5
MW-8	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
MW-9	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
MW-10	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS						
MW-11	282	489	1,160	470	525	646	445	550	1,060	630	444	500	451	375	450	710	880	510	570	790	498	617
MW-12	25	100	113	31	40	7.1	7.8	15.8	28.8	52	97	120	126	136	200	212	173	149.3	186.6	142	86.5	148.22
MW-13	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
MW-14	22.3	22.8	28	38	22.1	76	100	57	81	96	52	99	68	68	54	73	94	49	71	47	39.7	76.6
MW-15	6.5	ND	ND	ND	7.4	11	23.8	11	9.9	14	8.1	9.8	32	31	6.1	ND	6.8	7	ND	12.9	26.26	6.25
MW-16	10	41	43	32	36	14	20	37	31	13	6.8	ND	5.2	9.4	21	24	20	8.4	24	18	4.36	12.2
MW-17	265	112.5	5.1	222	396	375	465	425	460	410	NS	336	394	410	339	167	420	400	21.3	430	381	260.1
MW-18	ND	ND	ND	6.3	ND	10	26	6.9	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	16.6	2.33
MW-19R	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND						
MW-20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-21	NS	NS	NS	NS	NS	17	39	8.7	20	20	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-X (DUP)	ND	434	NS	490	DWS	1,705	879	550	1,720	410	360	407	300	400	870	990	1,850	540	186.8	1,450	521	913
EB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
																		RECOVE	RY WELLS			
Recovery Well	Total	Total	Total	Total	Total	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOC						
	Voca		NOC-	NOC-	Voca	Nov 2010		1	New OO4E													

Recovery Well	Total	Total	Total	Total	Total	Total VOCs	Total VOCs	Total VOCs	Total VOC:													
Number	VOCs	VOCs	VOCs	VOCs	VOCs	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012
	August 2018	May 2018	April 2018	Nov 2017	Aug 2017	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)									
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)																	
DR-1	1,510	1,319	1,070	1540	1,970	617	610	910	319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38	673
DR-2	162	128	130	181	199	137	218	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3
DR-3	87	125.4	34	48	NS	98	154	62	45	76	83	55	181	210	83	89	123	62	73	42	116.96	24.9
DR-4	48	31.2	31.6	46	52	79	95	63	94	110	71	147	156	148	96	64	68	79	37	90	122.6	ND
G-1	77	40	22	70	73.5	85	105.6	59.7	80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55	65.58
G-2	68	50	46	8.5	NS	NS	ND	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9
G-3	322	NS	NS	NS	NS	293	404	420	262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3	44.2

NS= This well not included in this sampling event. ND = Not Detected, results less than Method Detection Limit.

Impacted north property line wells: MW-5, MW-6, MW-7, MW-16, MW-17, MW-21

All compounds are measured in parts per billion (ppb).

VOC - Volatile Organic Compounds.

DUP - Duplicate Sample EB - Equipment/Field Blank Sample * - Sample was broken in transit and not able to be analyzed DWS- Different Well Sampled than previosuly tested.

/OCs
012
b)
~)
-
9
S
6
)
3
7
5
3
<u>,</u>
<u></u>
5 7
/
22
5
6
5
2
.1
3
)
)
> 2
3
)
/OCs
00CS
b)
3
2

Table 4 Percent Reductions in Total Groundwater VOCs

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Groundwater Treatment System was activated in May 2005

Monitoring Well	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
MW-1 [†]	-54.9%	-44.5%	51.3%	-39.90%	-57.6%		-9.1%	24.5%	-99.2%	-91.4%	54.4%	44.0%		45.3%	-28.9%	-28.9%	-126.6%			-87.5%	31.3%	
MW-2	100%	100%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	
MW-3	100%	100%	100%	100%	100.0%	Not Sampled																
MW-4	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%		100.0%	100.0%	100.0%	100.0%	100.0%		100.00%	100.0%	6 100.0%
MW-5	100%	100%	100%	100%	100.0%	Not Sampled				Not Sampled		Not Sampled	Not Sampled									
MW-6	-83.3%	15.4%	15.4%	-84.60%	15.4%	81.3%	70.4%	75.4%	70.4%	76.4%	78.8%	80.0%		72.9%	76.4%	76.8%	68.0%	75.6%		75.6%	78.6%	
MW-7	79.3%	81.0%	81.3%	98.70%	93.6%	75.6%	86.2%	81.6%	89.1%	71.1%	87.1%	100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	
MW-8	100%	100%	100%	Not Sampled																		
MW-9	100%	100%	100%	Not Sampled	Not Sampled	Not Sampled	Not Sampled		Not Sampled		Not Sampled	Not Sampled		Not Sampled								
MW-10	100%	100%	100%	100%	100.0%	Not Sampled																
MW-11	93.9%	89.5%	75.0%	89.20%	99.1%	86.1%	90.4%	88.2%	77.2%	86.4%	90.4%	89.2%	90.3%	91.9%	90.3%	84.7%	81.1%	89.0%	87.7%	83.0%	89.3%	
MW-12	99.8%	99.2%	99.1%	99.80%	75.0%	99.9%	99.9%	99.9%	99.8%	99.6%	99.2%	99.1%	99.0%	98.4%	98.4%	98.3%	98.6%	98.8%	98.5%	98.9%	99.3%	6 98.8%
MW-13	100%	100%	100%	Not Sampled		Not Sampled																
MW-14	92.9%	92.8%	91.1%	87.90%	2.3%	75.9%	68.3%	81.9%	74.3%	69.5%	83.5%	68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5%	85.1%	87.4%	
MW-15	99.1%	100%	100%	100%	99.0%	98.5%	96.7%	98.5%	98.6%	98.1%	98.9%	98.7%		95.8%	99.2%	100.0%	99.1%	99.0%	100.0%	98.2%	96.4%	
MW:16*	80.5%	19.9%	2.3%	2.80%	2.3%	72.7%	60.9%	27.7%	39.5%	74.6%	86.7%	100.0%	89.8%	81.6%	59.0%	53.1%	60.9%	77.9%	36.8%	52.6%	88.5%	
MW-17*	73.8%	88.9%	99.5%	78*	2.3%	62.9%	54.0%	58.0%	54.5%	59.4%	Not Sampled	66.8%		59.4%	66.5%	83.5%	58.5%	50.6%	97.4%	46.9%	53.0%	
MW-18:*	100%	100%	100%	100%	100.0%	97.4%	93.4%	98.2%	100.0%	100.0%	100.0%	100.0%		100.0%	100.0%	100.0%	Not Sampled	100.0%		100.0%	89.6%	
MW-19 R*	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%		100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	
MW-20**	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	% 99.4%
MW-21**	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	34.6%	-50.0%	66.5%	23.1%	23.1%	61.5%	Not Sampled										
* Well installed 2003																						
** Well Installed 2004																						
Site-Wide reduction:	78.0%	81.2%	84.2%	67.60%	62.1%	83.5%	68.7%	78.6%	66.2%	69.1%	87.7%	88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	% 80.7%
Impacted Groundwater Plume Area Only:	72.1%	65.3%	76.6%	51.40%	41.1%	82.9%	69.6%	76.0%	58.1%	58.6%	84.6%	80.8%	77.3%	75.0%	72.3%	73.9%	82.2%	73.2%	77.3%	62.5%	75.2%	% 73.1%

Plume Area = MW-1, MW-11, MW-12, MW-14, MW-15, MW-7, MW-17, MW-6 % reduction = percent reduction in total Volatile Organic Compounds (VOCs) since groundwater monitoring was initiated †Negative values indicate an increase in total VOCs since monitoring commenced in 2002. The percent increase in total groundwater VOCs is shown below for MW-1.

Recovery Well	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
DR-1	-163.3%	-130.0%	-86.6%	-243.6%	-243.6%	-7.6%	-6.4%	-58.7%	44.4%	72.1%	Not Sampled	96.2%	89.0%	90.4%	86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8%	91.6%
DR-2	70.5%	76.7%	76%	63.8%	63.8%	75.1%	60.3%	60.9%	63.8%	66.0%	47.0%	52.8%	70.5%	59.2%	58.0%	62.3%	45.0%	87.2%	85.4%	99.1%	88.5%	83.9%
DR-3	43.0%	17.8%	78%	68.5%	Not Sampled	35.7%	-1.0%	59.3%	70.5%	50.2%	45.6%	63.9%	-18.7%	-37.7%	45.6%	41.6%	19.3%	95.8%	95.1%	97.2%	92.1%	98.3%
DR-4	94.4%	96.4%	96%	93.9%	93.9%	90.8%	88.9%	92.7%	89.1%	87.2%	91.7%	82.9%	81.8%	82.8%	88.8%	92.5%	90.8%	95.5%	97.9%	94.9%	93.1%	100.0%
G-1	61.7%	80.1%	80%	74.1%	74.1%	57.7%	47.4%	92.7%	60.0%	100.0%	66.1%	27.3%	49.8%	47.7%	55.0%	61.3%	65.6%	87.3%	89.8%	90.3%	87.4%	88.0%
G-2	76.0%	82.4%	84%	100.0%	Not Sampled	Not Sampled	100.0%	Not Sampled	Not Sampled	90.1%	Not Sampled	83.1%	88.0%	86.9%	81.7%	95.1%	71.4%	79.0%	87.0%	65.7%	80.4%	89.1%
G-3	20.1%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	27.3%	-0.2%	-4.2%	35.0%	8.2%	Not Sampled	79.7%	NA	NA	NA	NA	NA	NA				
Overall Reduction	28.9%	37.2%	54.6%	60.4%	40.4%	46.5%	41.3%	40.4%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%

*Sampling of recovery wells initiated in 2005

FIGURES

DASNY Gowanda Day Habilitation Center

4 Industrial Place Gowanda, New York

BERGMANN

Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C. 280 East Broad Street Suite 200 Rochester, NY 14604

office: 585.232.5135 fax: 585.232.4652

www.bergmannpc.com

REVISIONS NO. DATE DESCRIPTION REV. CK'D

Copyright © Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C

Note:

Unauthorized alteration or addition to this drawing is a violation of the New York State Education Law Article 145, Section 7209.

Project Manager:	Checked By:
S. DEMEO	S. DEMEO
Designed By:	Drawn By:
	C. WOOD
Date Issued:	Scale:
Date Issued: 09/26/2018	Scale: 1" = 60'
09/26/2018	

AUGUST 2018 WATER LEVEL CONTOUR MAP

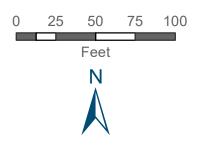
Drawing Number:

FIGURE 1

	MW-21 TCE NS CIS NS TRANS NS VC NS TCA NS TCA NS Total VOCS NS	Total VOCs 6.3		MW- TCE CIS TRANS VC TCA Total VOCS	19R NS NS NS NS NS MW-1
	MW- TCE CIS TRANS VC TCA Total VOCs	ND 10 ND ND ND 10 MW-16 ND TCA Total VOCs	45 CIS 84 220 TRANS ND ND VC ND ND TCA ND ND Total VOCs 84	TCA ND VC Total VOCs ND TCA Tota	ND NNS ND ND A ND al VOCs ND
	Actes arout	MW-7TCENDCIS5.8TRANSNDVCNDTCANDTotal VOCs5.8TCATCATotal VOCs5.8	4 MW-15 7.3 MD ND 22.3 MW-14 MW-15 MW-1	15 ND ND ND ND ND ND ND	W-20
MW-9 TCE ND CIS ND	MW-11 TCE CIS TRANS VC TCA Total VOO MW-11 TCE 160 CIS 120 TRANS 2	MW-8	5 20 ND ND 25 MW-11 MW-11	MW-13 MW-13 MW-3 MW-13 TCE ND CIS ND TCA ND TCA ND TCA ND TCA ND TCA ND TCA ND TCA ND TCA ND	
TRANS ND VC ND TCA ND Total VOCs ND	N-9 MW-10 TCA ND Total VOCs 282 MW-10 TCE ND CIS ND TRANS ND VC ND TCA ND TCA ND Total VOCS ND	MW-1 TCE 930 CIS 260 TRANS ND VC ND TCA ND TCA ND Total VOCs 1,19	MW-2 TCE NE CIS NE		

DASNY

Gowanda Day Habilitation Center


4 Industrial Place Gowanda, NY

BERGMANN ARCHITECTS ENGINEERS PLANNERS

Figure 2

August 2018 Distribution of Groundwater Analytical Results: Monitoring Wells

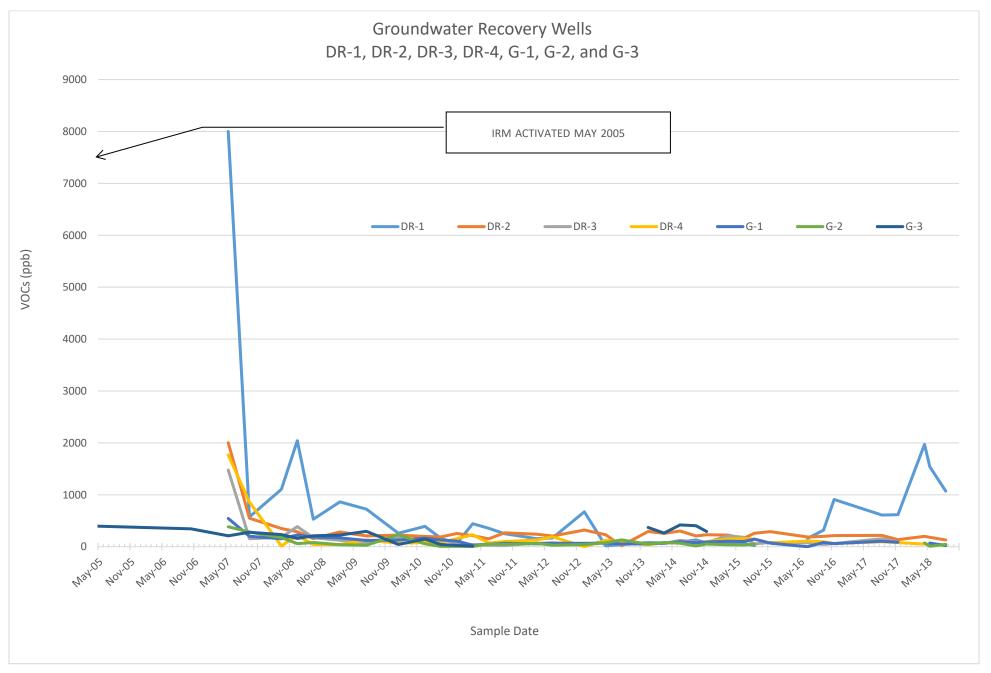
DASNY

Gowanda Day Habilitation Center

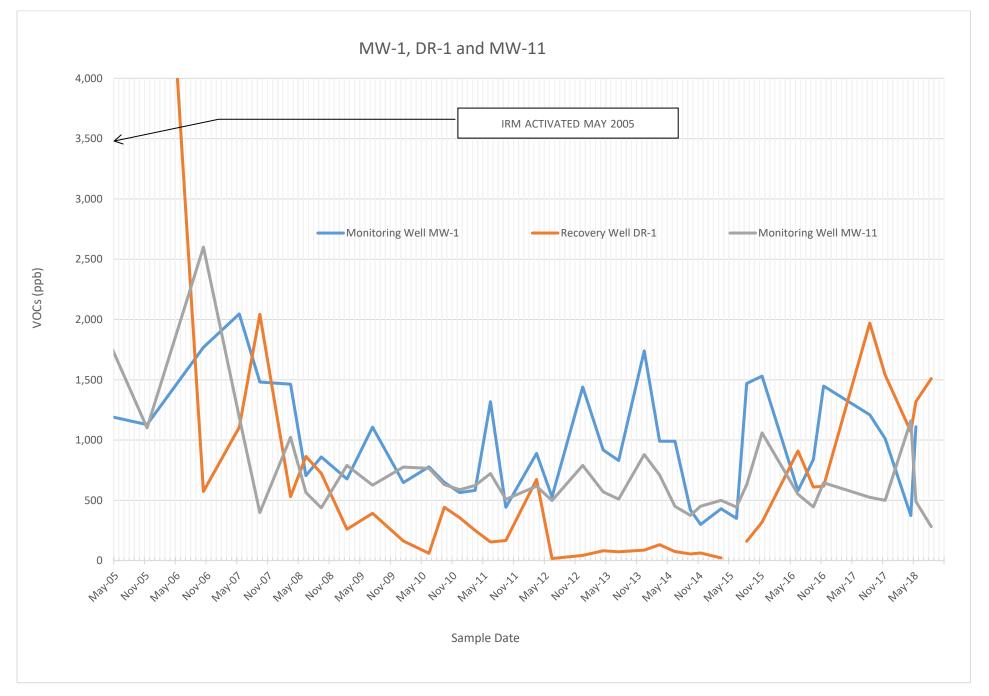
4 Industrial Place Gowanda, NY

BERGMANN ARCHITECTS ENGINEERS PLANNERS

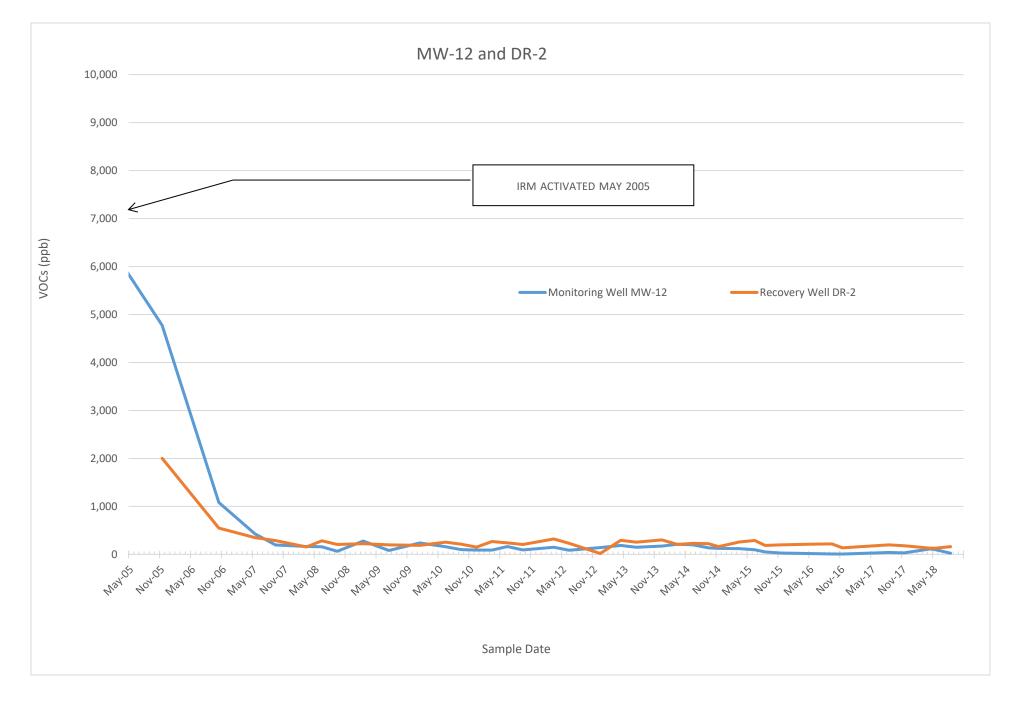
Figure 3

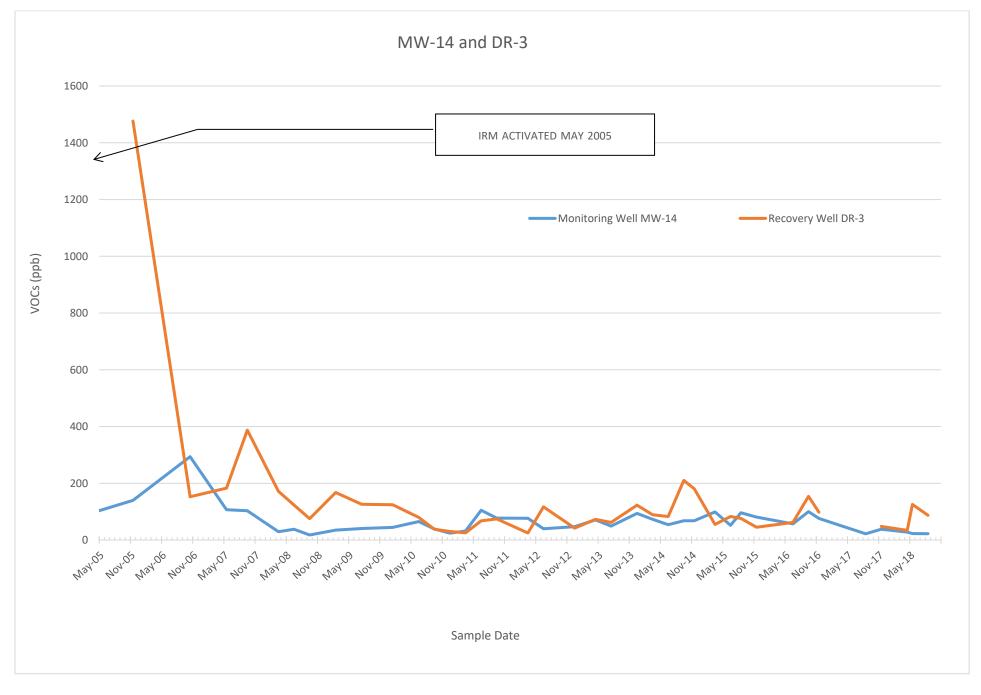

August 2018 Distribution of Groundwater Analytical Results: Recovery Wells

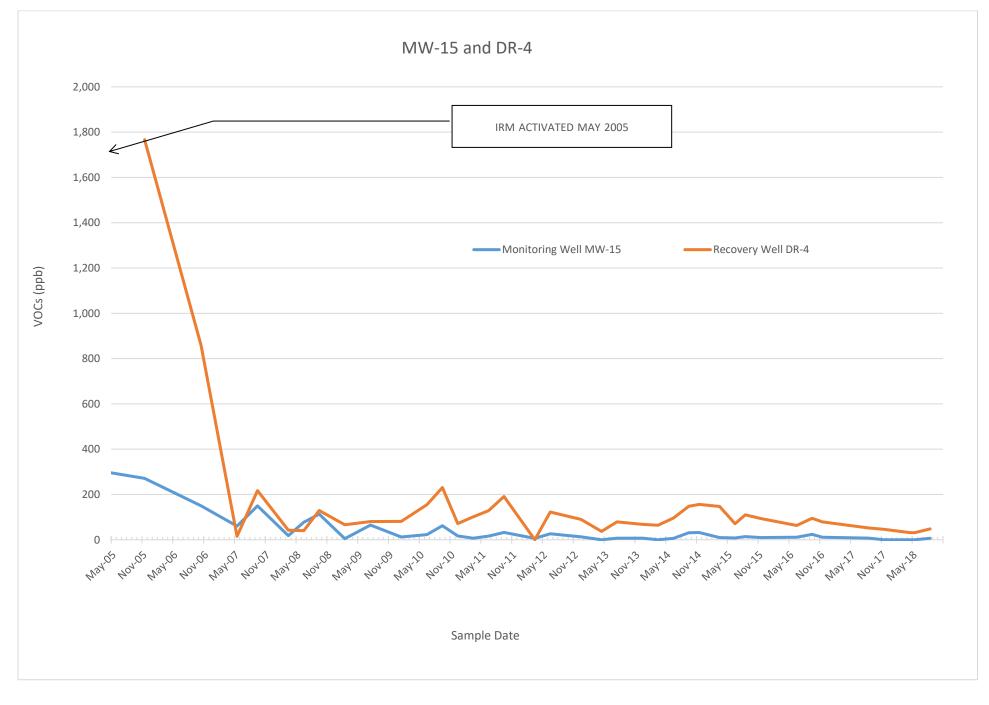
> 0 25 50 75 100 Feet

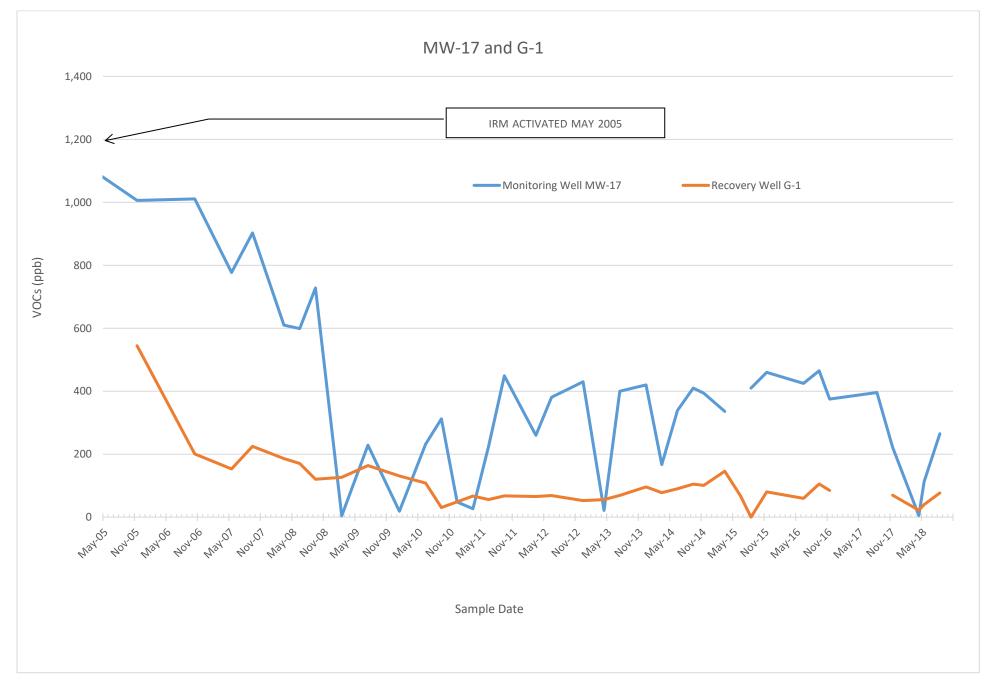


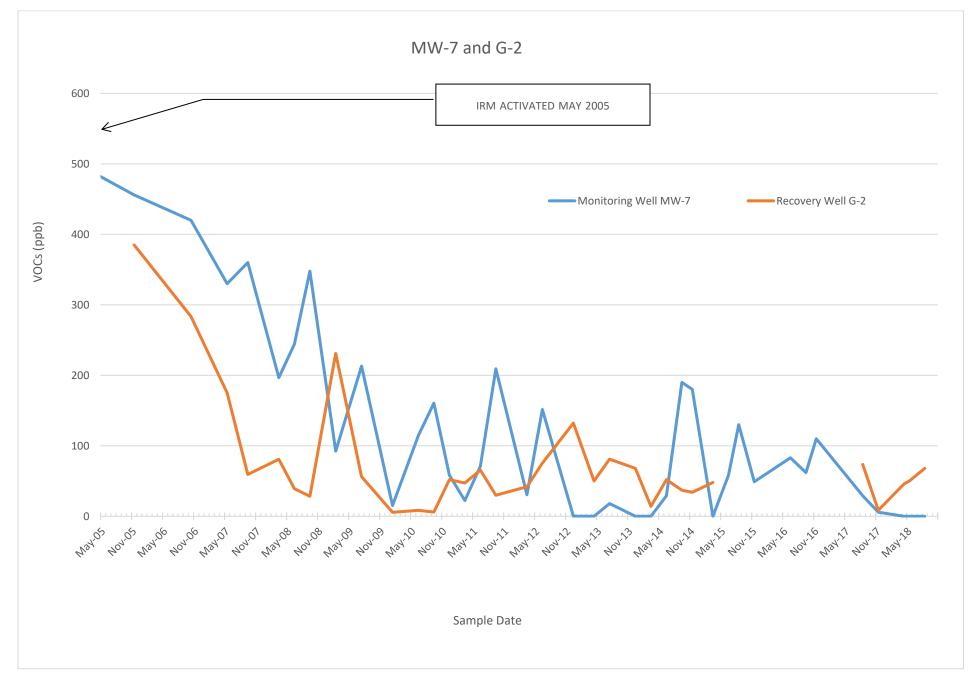
CHARTS

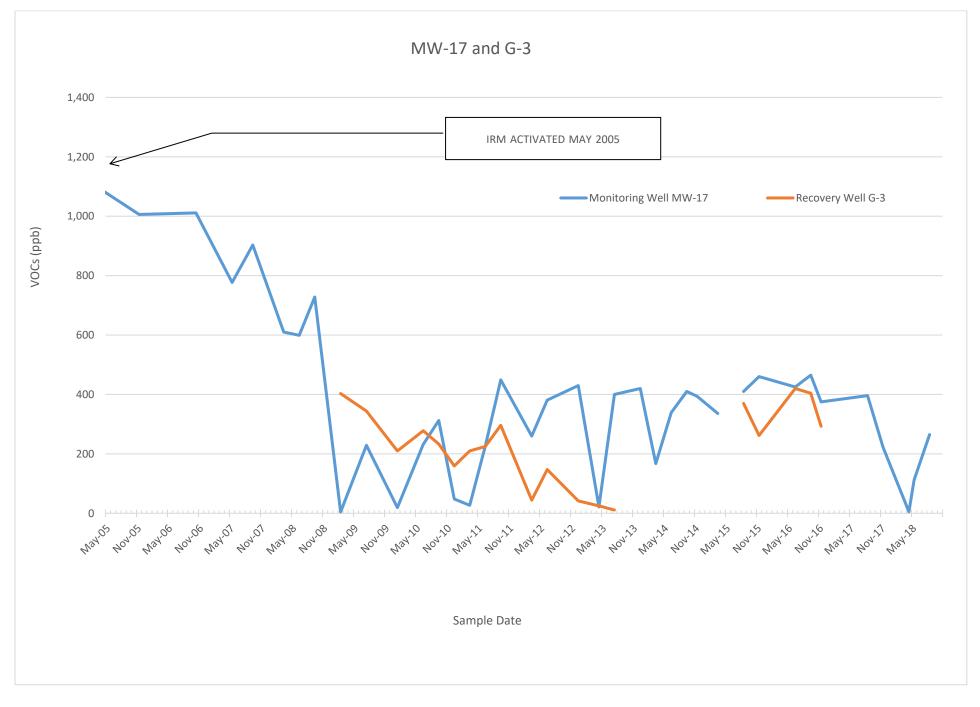












APPENDIX A: LABORATORY ANALYTICAL RESULTS

Service Request No:R1808107

Mr. Cash Bleier Bergmann Associates, Incorporated 280 East Broad Street Suite 200 Rochester, NY 14604

Laboratory Results for: Gowanda Q3 2018

Dear Mr.Bleier,

Enclosed are the results of the sample(s) submitted to our laboratory August 23, 2018 For your reference, these analyses have been assigned our service request number **R1808107**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Bauch Knutten

Brady Kalkman Project Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:	Bergmann Associates, Incorporated
Project [.]	Gowanda O3 2018

Service Request: R1808107 Date Received: 08/23/2018

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt:

Twenty seven water samples were received for analysis at ALS Environmental on 08/23/2018. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

Bauly Kullin

Approved by

08/31/2018

Date

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-1		Lab	ID: R1808	107-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	260		1.3	25	ug/L	8260C
Trichloroethene (TCE)	930		1.0	25	ug/L	8260C
CLIENT ID: MW-6		Lab	D: R1808	107-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	84		0.26	5.0	ug/L	8260C
CLIENT ID: MW-11		Lab	D: R1808	3107-011		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	120		0.26	5.0	ug/L	8260C
trans-1,2-Dichloroethene	5.1		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	160		0.20	5.0	ug/L	8260C
CLIENT ID: MW-12		Lab	D: R1808	3107-012		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	20		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	5.2		0.20	5.0	ug/L	8260C
CLIENT ID: MW-14		Lab	D: R1808	3107-014		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	7.3		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	15		0.20	5.0	ug/L	8260C
CLIENT ID: MW-15		Lab	ID: R1808	107-015		
Analyte	Results	Flag	MDL	MRL	Units	Method
Trichloroethene (TCE)	6.5		0.20	5.0	ug/L	8260C
CLIENT ID: MW-16		Lab	ID: R1808	107-016		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	10		0.26	5.0	ug/L	8260C
CLIENT ID: MW-17		Lab	ID: R1808	107-017		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	220	D	0.52	10	ug/L	8260C
Trichloroethene (TCE)	45		0.20	5.0	ug/L	8260C
CLIENT ID: G-1		Lab	ID: R1808	107-020		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	77		0.26	5.0	ug/L	8260C
CLIENT ID: G-2		Lab	DID: R1808	3107-021		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	68		0.26	5.0	ug/L	8260C

SAMPLE DETECTION SUMMARY

CLIENT ID: G-3		Lab	ID: R1808	8107-022		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	270		0.52	10	ug/L	8260C
Trichloroethene (TCE)	52		0.40	10	ug/L	8260C
CLIENT ID: DR-1		Lab	ID: R1808	8107-023		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	210		2.6	50	ug/L	8260C
Trichloroethene (TCE)	1300		2.0	50	ug/L	8260C
CLIENT ID: DR-2		Lab	ID: R1808	3107-024		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	130		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	32		0.20	5.0	ug/L	8260C
CLIENT ID: DR-3		Lab	ID: R1808	3107-025		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	63		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	24		0.20	5.0	ug/L	8260C
CLIENT ID: DR-4		Lab	ID: R1808	3107-026		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	19		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	29		0.20	5.0	ug/L	8260C

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 6 of 60

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
R1808107-001	MW-1	8/22/2018	1130
R1808107-002	MW-2	8/22/2018	1140
R1808107-003	MW-3	8/22/2018	1120
R1808107-004	MW-4	8/22/2018	1110
R1808107-005	MW-5	8/22/2018	1040
R1808107-006	MW-6	8/22/2018	1025
R1808107-007	MW-7	8/22/2018	0950
R1808107-008	MW-8	8/22/2018	1110
R1808107-009	MW-9	8/22/2018	1200
R1808107-010	MW-10	8/22/2018	1150
R1808107-011	MW-11	8/22/2018	1140
R1808107-012	MW-12	8/22/2018	1015
R1808107-013	MW-13	8/22/2018	1040
R1808107-014	MW-14	8/22/2018	1000
R1808107-015	MW-15	8/22/2018	0955
R1808107-016	MW-16	8/22/2018	0935
R1808107-017	MW-17	8/22/2018	1015
R1808107-018	MW-18	8/22/2018	1230
R1808107-019	MW-20	8/22/2018	1100
R1808107-020	G-1	8/22/2018	0935
R1808107-021	G-2	8/22/2018	0930
R1808107-022	G-3	8/22/2018	1010
R1808107-023	DR-1	8/22/2018	1100
R1808107-024	DR-2	8/22/2018	1020
R1808107-025	DR-3	8/22/2018	1005
R1808107-026	DR-4	8/22/2018	0945
R1808107-027	Equipment Blank	8/22/2018	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 52912

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE OF 3

Project Name Gowarda Q3	COWANDA Q.3 2018 G9/4.96 Peport CC Press Bergmann E Bradd St, Suite 200 ochester, NY 14604 85-498-7950 Energinann Sampler Britister Colleic Clockywann warve Bergmann Sampler Britister Colleic Clockywann warve Berginann Sampler Britister Breizer MW-1 Sampler Britister Mw-1 S/28/18 Mw-2 S/28/18 Mw-3 G/28/18 Mw-3 G/28/18 Mw-4 S/28/18 Mw-5 S/28/18 Mw-6 T/20/18 Mw-7 S/28/18 Mw-8 S/28/18 Mw-9 S/28/18 Mw-9 S/28/18 Mw-10 S/28/18 Mw-11 S/28/18 Structions/comments Signature Percence Percence Percence Signature		.96		l	ANALYSIS REQUESTED (Include Method Number and Container Prese							ervati	ve)									
					PRE	SERVAT		1					-										-
Company/Address Bergmann	\I				OF CONTAINERS		7	7	7	7	7	7	7	7	7	7	7	7	\neg	7		Preserval 0NONI 1. HCL	
							/ /	/	/	/	/	/ 3		./	/	/	/	/			/	2. HNO 3. H2SO 4. NaOH	4
Rochester, NY 14604							3/2	, /	' &/	' /		र है।		' /	' /	' /	/ /	/ /	/ /	' /		5. Zn. A 6. MeOl 7. NaHS	cetate
Phone # 585 498 7650 Emethodes and have						CANS HOL	10, 10, 10, 10, 10, 10, 10, 10, 10, 10,			ACR. See	METALS TOTAL		Comments Over									8. Other	
Sampler's Signature Curl Blille Sampler's Priptod Name Cush Brief					NUMBER (/ઙ૿ <i>૾</i>	/§\$/	ပ္ပြန္စိ	5200		E F	Le la								/ _{AI}		EMARKS/	
CLIENT SAMPLE ID	FOR OFFICE US	e j sampi	TIME	MATRIX																			
Mw-1		8/28/18	11:30	GW	3	X																	
MW-2		8/2P/18	11:40	GW	3	X																	
MW-3		5/8RH8	11:20	GW	3	X																	
Mw-4	-	8/22/18	11:10_	GW	3	X																	
Mw-S	1	4/22/18		GW	3	X																	
Mw-6		0/22/18	10.25	GW	3	X														A.			
Mw-7		8/28/18	9:50	GW	3	X									1								
MW-8		8/24/18	11:10	GW	3	X														X			
MW-9		8/20/18	12:00	GW	3	X														KA			
		8/22/18	11:50	GW	3	X														T.	7		
					3	X														₹¢	1		
SPECIAL INSTRUCTIONS/COMMENTS Metais							TUR			REQUI					ORT RE	EQUIRI	EMENT	rs		INV	01CE (NFORMAT	NON
							I. Results + OC Summaries 4 day2 day3 day (LCS, DUP, MS/MSD as required)																
							Gay to day Surchargel III. Results + OC and Calibration Surchargel III. Results + OC and Calibration							то:									
						REQUESTED REPORT DATE N. Data Validation Report with Raw Data																	
See QAPP						MYS DEC Equis Edeta X_Yes No																	
												Edata _X_YesNo											
						RECEIVED BY RELINQUISHED BY 5						۱.	RECEIVED BY										
Signature	AWY WY	\mathcal{I}	Signature				Signatur	e					175		cister, I	ncorpo	rated			re			
Printed Name Cash Bleier	Printed Name	TWAC	Printed Name			Signature R1800 Constrained Bergmann Associates, Incorporated Gowands C3 2018									Name								
From Bergmann	Firm ALS		Firm				Firm					<u> </u>			11111			_		./			
Date/Time 4/23/208 1550 Date/Time 8/23/18/1550 Date/Time						Date/Time									Date/	Time							

52913 CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 2 OF 3

Project Name Gawandy Q3 2018 Project Number 6974.96					ANALYSIS REQUESTED (Include Method Number and Container Preservative)																	
Project Manager C. BI-Ei er	Report CC			PRE	SERVATI	VE				\neg		T		:	Τ							
Company/Address Benginging		1 7 420)		OF CONTAINERS		$\overline{//}$	\uparrow	\neg	7	7	7	7	7		7	7	7	7		CL NO3		
		te voo		- VII	/	./	/	/ /	/ /	/ mo	Comments below	/ /	' /	' /	' /	/ /	/ ,		5. Z	NO3 I2SO4 IaOH n. Acetate		
Kochester, NY 14604							/ <u>s</u> /,	, /	METALS TOTAL								/		6. M 7. N	leOH laHSO₄		
Phone # 585-498-7950 Email Cheiere bergmanpe ca Sempler's Signature Dave Ball Sampler's Printed Name					OCINS VOIO	60,45 % 01		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$ 95	100	<i>\[</i>	/	/	/ /	/	/	/	/	8. O	<u>Chill</u>		
Sempler's Signature Valle Black Sampler's Printed Name					8	<u>ବ</u> ିଛି/ବି	\$\{ ² }%	<u>'/ၓ</u> ိနီ		Ser 1			/			_/	/{		REMAP	RSV SCRIPTION		
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMPLING DATE TI																k	¢			
		8/22/18 10:	IS GW	3	X									\square								
MW-13		4122/1× 10:	40 GW	3	1 1	_		\square	\rightarrow		\square				\square	-+		X				
MW-14			00 GW	3			1	┞──┤	-+			\square	_		\rightarrow			-£Š_₩		-		
MW-15 8/22/18 9:55 GW					<u> X </u>	\square			\square			\square		\rightarrow	-+			<u> </u>				
MW-16. 8/22/18 9:35 GW				3	X			┞↓				\square			\square			¥.				
		8122/18 101	15 GW	3	X										\square	\square						
MW-18		8/22/18/12!	30 (xW	3	X			1							\square							
		8/22/18 11:0	10 GW/	3	X													¥.,				
		4/22/18 9:2	55 GW.	3	X													-¥				
		8/22/18 9: 4	30 GW	3	X													•	,			
	,	8/22/1/10:	10 GW	3	X								\Box									
						TURNA	ROUND	REQUI	REMEN	ITS		REPOR	IT REC	QUIREN	VENTS	s		INVO	ICE INFOR	MATION		
Metals							SH (SURC					I. Result										
									<u>.</u>					Summari	ies		PO #					
			-		ŀ		ay2 ay5		3 day		1	-		MSD as n)		**	-			
					. .		andard (10		taya-No Si	urcharge	»			and Cali	ibration		81LL	10:				
						REQUESTE	ED REPO	RT DAT	E			Summar		- 7	<i></i> -							
												IV. Data Validation Report with Raw Data NYSDE(EquiS Edata <u>Y</u> Yes <u>No</u>					*					
See QAPP						<u> </u>					$\frac{1}{N}$	100	۳C 1/	-4	<u>ب</u> ه ۲۰۰۰	/						
STATE WHERE SAMPLES WERE COLLECTED ALEN YOrk											–						+	<u> </u>		RV.		
							RECE	IVED BY	r			RE	UNOU	ISHED 6	01			RECEIVED BY				
Signature	ignature and with	Signatu	Jrð			Signature				-	Signate			<u></u>			Sign	ature				
Printed Name Coch Blace P			Name		ħ	Printed N	R18	B 08	10	7	reted	5					Print	ed Name				
Bergmann 280 F. Broud St, Suite Z Bochester, NY 14604 horne 585-498-7950 Email Chieler Sampler's Signature Will Oliver Sampler's Signature Will Oliver Sampler's Signature Will Oliver Sampler's Signature Will Oliver MW-12 MW-12 MW-13 MW-14 MW-15 MW-15 MW-16 MW-17 MW-18 MW-18 MW-18 MW-18 SIZZI MW-18 SIZZI MW-18 SIZZI MW-18 SIZZI MW-18 SIZZI MW-18 SIZZI MW-20 SIZZI G-2 G-3 SPECIAL INSTRUCTIONS/COMMENTS Betals Signature Will Structure Multice Signature Will Structure Multice Signature Will Structure Multice Signature Will Structure Multice Signature Will Structure <		Firm		<u> </u>	—h		Bergman				11 (16)) (1)		111	1			Firm	Firm				
		/1550 Date/T	ime	<u> </u>	— <u></u>	Date/Time							111				Date	/Time		<u> </u>		
XIU21101 X IS GROUP SICSION							L IN CITAL	1013191 				··· 		<u> </u>			-	6	א 2012 hv	115 Crown		

Distribution: White - Lab Copy; Yellow - Return to Originator

© 2012 by ALS Group

-

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 52914

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE ______OF _____

Project Narrie GOWONDO Q3 2018 Project Number 6974.96				ANALYSIS REQUESTED (Include Method Number and Container Preservative)																				
Project Manager C. Bleiec	Report C		•		PRE	SERVA	άπνε	1																
Compequ/Address Derg Mann					SE SE		7	7	\neg	7	7	7	/	7	7	7	\neg	/	/	/		Preserv 0 NOI 1. HCI	ative Key NE)	1
250 E Broad	St. Suite	. 200			NTAINE		/	/	/	/		/ 3			/	/	/			/		1. HCI 8. HM 3. H2S 4. NaC	04	
	4604				NUMBER OF CONTAINERS	/	2	 *	\$	/ /			II COMMON CONTROL	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/	5. Zn. 6. MeC 7. Nat	Acetate	
585-498-7950) Cole	Printed Nergel	mannfc	. com	MBER	CCANS NO.	\$ 8 8 8 8		70.00	? \$ \$ 	METALS, TOX	8 3	8									8. Oth		
Sampler's Spinature Black	C48	in Ober	≪		ž	\S	"/ ୫ୁଁ ଛ 	<u>)</u> (5.8	<u>}</u>	<u>}</u>	E F	E W	!/	4				\square	\square	/ AI		REMARKS		_
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB (D	SAMP DATE		MATRIX																	a —			_
DR-1	,	4/22/18	11:00	GW	5	X														4	¥			
<u>07-2</u>		8122118	10:20	600	3															×		•		
QR-3	<u> </u>	<u> 4/22/18</u>	10:05	GW	3	X														SQ [*]	,			
DR-4		8/22/18	9:45	GW	3	X														\$				
		ļ																						_
	<u> </u>	ļ																						
				ļ														ļ						
	{																							
SPECIAL INSTRUCTIONS/COMMENTS		<u>.</u>					└ <u>─</u> ─┤	l					\square				<u> </u>	<u> </u>						
Metals						TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORM					NFORM	TION												
							1	1 day 4 day		day	3 day		-			C Summ S/MSD a	arles s require	əd)	POI	•				
											day a No S		o)			IC and C	alibratio	m	BILL	. 10:		-		
						REQL	UESTEI	D REPO	RT DAT	Έ			Summ		tion Ron	ort with	Rew De							
												$\overline{\lambda}$	VS ()5(É	iuit	5							
See QAPP				· · ·					•			-1	/ Edat	a 🖌	Yes		No						_	
RELINQUISHED BY	RECEIV	ED BY	REL	INQUISHED	BY				RECE	VED BY	<u>, </u>		+			UISHE					REC	EIVED BY		_
Aur Dalta	<u>،</u> ۸	Ω					1																	
Signature	Signature	m/	Signature				Signatu	ure					Signa	F F	218	80	10	7		5				
Printed Name Cash Blenc	Printed Name OUM		Printed Name				Printed	d Name					Printe	Go	Wanda	03 2010	iitea, iri	corpor		-				
	Firm ALS		Firm				Firm						Firm	·						RABA				
Dete/Time 6 1291201 X 15 Date/Time 8/25/18/ 1550 Dete/Time			Date/Time			Firm I MAN AND AND AND AND AND AND AND AND AND A			_															

and the second s

											R 18	308 [.]	107	_	5
AL	s)	Cooler I	Rece	ipt a	nd Pr	eserv	atior	n Che	ck F	orm	Bergman Gowands	n Associ Q3 2016	ates, Incorpoi	rated 	
Project/Clie	ent 🥂	1		1	Folde	er Num	ber								
Cooler receiv	-Chr	3114	by:	N	_	COUR	UER:	ALS	UPS	FEDEX	VEL	OCIT	Y OFF	₽ ₽	-
	t	outside of cooler	?		Y W	5a	Perch	lorate s	amples	have req	uired he	adspac	xe?	Y N	NA
2 Custody	papers proper	ly completed (in	k, signe	zd)? (Y N	5b	Did V	OA vial	s, Alk,	or Sulfide	e have si	g* bul	bbles?	YN	NA
3 Did all b	ottles arrive in	good condition (unbrol	(en)?	N V	6	Where	did the	bottles	originat	e?	ALS	/ROO	CLIE	TV
4 Circle: (Wet Ice Dry	Ice Gel packs	pres	ent?	ŶN	7	Soil V	OA rec	eived as	s: Bu	ilk E	ncore	5035se	t (N	A
8. Temperatu	re Readings	Date 23	ly	Time:	14:00	λ	ID:	1R#7)	IR#9		- From:	Temp	Blank	Samp	le Bottle
Observed To		10	~-0		_			\sim							
Correction I		11.0													
Corrected T	emp (°C)	20													
Temp from:	Type of bottle	Cert for													
Within 0-6°		Y N		Y	N		N .	Y	N	Y	N	Y	N	Y	N
If <0°C, we	re samples froz	en? Y N	_	Y	N	Y I	N	Y	Ν	Y	<u>N</u>	Y	N	Y	N
If out of	_ Femperature,	note packing/ic	e cond	ition:		lc	æ melt	ed P	oorly P	acked (d	escribed	l below	/) Sa	ame D	ay Rule
&Client	Approval to R	un Samples:	10	_ Stan	iding App	oroval	Client	aware	at drop-	off Cl	ient noti	ified by	y:		
All samples	held in storag	e location:	1297	ł	y y	on'	5/23	at	6:15						
•		orage location:		ł	- <u> </u>	on	$\mathcal{O}_{\mathcal{V}}$	at							
	-										17				`
Cooler Br	eakdown/Prese	rvation Check**	: Date	: S	173/18		Time:	1741		by:	In				
9. '	Were all bottle	labels complete (<i>i.e</i> . ana	alysis,	preservat	tion, etc.)?			ĒS	NO		•		
		bels and tags agr				s?				ES	NO NO				
		ontainers used for s acceptable (no				ng)?			Ç	ES ES	NO		\$	IZA	
		assettes / Tubes				anisters]	Pressur	ized	•	Tedlar®	Bags In	flated	Ć	VA	
pН	Lot of test	Reagent	Preser		Lot Re	ceived		Exp	Samp		Vol.		ot Added		Final
	paper		Yes	No				L	Adjus	ted	Addec	<u> </u>			рН
≥12		NaOH						<u> </u>							
<u>≤</u> 2 ≤2		HNO3 H2SO4													
<4		NaHSO4		<u> </u>							t				
5-9		For 608pest			No=Not	tify for 3	day								
Residual		For CN,				tact PM t									1
Chlorine		Phenol, 625,				s (625, 60 corbic (ph	-								1
(-)		608pest, 522													
	<u>ا</u>	Na ₂ S ₂ O ₃ ZnAcetate						+	**V0A	s and 166	I 4 Not to b	e tested	before analy	sis.	,
		HCI	**	**	4117	LAB				ise, all bot ck ed (not j			s with chemi	cal pres	ervatives
			I	,	[11]	0.0		I	are che	cked (not)	just repres	entative	-5).		
Bottle lot	numbers:	5-039-004 es/ Other Comm	, Clive	<u>at</u>											
~	•												CLRES	BU	LK
	n. /	í r		ha. A	CARA	,							DO	FLI	
50/5	rel (IAMINAS AT	\mathbb{N}	Nead	' HUU								HPROD	_	
/ 0	,	······)	~ <	i	· \	111.0)						HTR		3541
Fait	men. Black	hains for not on C	Ù	ha	8 " bu	oblV)						РН	SU	в
rymy		Int at O		•		··· /							SO3	MA	RRS

Labels secondary reviewed by: _____ PC Secondary Review: _____

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

* P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r16.doc

3/12/18

REV

ALS

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 12 of 60

S Environmental

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹ at ID # PH0556 Maine ID #NY0032 New Hamps

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Approved	New Jersey ID # NY004	294100 A/B
DoD ELAP #65817	New York ID # 10145	Pennsylvania ID# 68-786
Florida ID # E87674	North Carolina #676	Rhode Island ID # 158
		Virginia #460167

¹ Analyses were performed according to our laboratorys NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alselobal.com/locations/america/usa/new-york/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

Client: Project:	Bergmann Associates, Incorporated Gowanda Q3 2018/6974.96		Service Request: R1808107
Sample Name: Lab Code: Sample Matrix:	MW-1 R1808107-001 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-2 R1808107-002 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-3 R1808107-003 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-4 R1808107-004 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-5 R1808107-005 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER

Client: Project:	Bergmann Associates, Incorporated Gowanda Q3 2018/6974.96		Service Request: R1808107
Sample Name: Lab Code: Sample Matrix:	MW-6 R1808107-006 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-7 R1808107-007 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-8 R1808107-008 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-9 R1808107-009 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-10 R1808107-010 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER

Client: Project:	Bergmann Associates, Incorporated Gowanda Q3 2018/6974.96		Service Request: R1808107
Sample Name: Lab Code: Sample Matrix:	MW-11 R1808107-011 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-12 R1808107-012 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-13 R1808107-013 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-14 R1808107-014 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-15 R1808107-015 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER

Client: Project:	Bergmann Associates, Incorporated Gowanda Q3 2018/6974.96		Service Request: R1808107
Sample Name: Lab Code: Sample Matrix:	MW-16 R1808107-016 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-17 R1808107-017 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-18 R1808107-018 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-20 R1808107-019 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	G-1 R1808107-020 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER

Client: Project:	Bergmann Associates, Incorporated Gowanda Q3 2018/6974.96		Service Request: R1808107
Sample Name: Lab Code: Sample Matrix:	G-2 R1808107-021 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	G-3 R1808107-022 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	DR-1 R1808107-023 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	DR-2 R1808107-024 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	DR-3 R1808107-025 Water		Date Collected: 08/22/18 Date Received: 08/23/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER

Analyst Summary report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	

Sample Name:	DR-4	Date Collected:	08/22/18
Lab Code:	R1808107-026	Date Received:	08/23/18
Sample Matrix:	Water		

Analysis Method		Extracted/Digested By	Analyzed By
8260C			FNAEGLER
Sample Name:	Equipment Blank		Date Collected: 08/22/18
Lab Code:	R1808107-027		Date Received: 08/23/18
Sample Matrix:	Water		
Analysis Method		Extracted/Digested By	Analyzed By

8260C

FNAEGLER

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

RIGHT SOLUTIONS | RIGHT PARTNER

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 22 of 60

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 11:30
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name	MW-1	Units. ug/I
Sample Name: Lab Code:	MW-1 R1808107-001	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	260	25	5	08/28/18 17:00	
trans-1,2-Dichloroethene	25 U	25	5	08/28/18 17:00	
Tetrachloroethene (PCE)	25 U	25	5	08/28/18 17:00	
1,1,1-Trichloroethane (TCA)	25 U	25	5	08/28/18 17:00	
Trichloroethene (TCE)	930	25	5	08/28/18 17:00	
Vinyl Chloride	25 U	25	5	08/28/18 17:00	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/28/18 17:00	
Dibromofluoromethane	98	89 - 119	08/28/18 17:00	
Toluene-d8	100	87 - 121	08/28/18 17:00	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107	
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 11:40	0
Sample Matrix:	Water	Date Received: 08/23/18 15:50	0
Sample Name: Lab Code:	MW-2 R1808107-002	Units: ug/L Basis: NA	
1		C C	

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 17:23	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 17:23	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 17:23	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 17:23	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 17:23	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 17:23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/28/18 17:23	
Dibromofluoromethane	97	89 - 119	08/28/18 17:23	
Toluene-d8	100	87 - 121	08/28/18 17:23	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 11:20
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	MW-3 R1808107-003	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 17:45	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 17:45	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 17:45	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 17:45	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 17:45	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 17:45	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/28/18 17:45	
Dibromofluoromethane	96	89 - 119	08/28/18 17:45	
Toluene-d8	99	87 - 121	08/28/18 17:45	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 11:10
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	MW-4 R1808107-004	Units: ug/L Basis: NA
Lad Code:	K1808107-004	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 18:08	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 18:08	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 18:08	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 18:08	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 18:08	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 18:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/28/18 18:08	
Dibromofluoromethane	96	89 - 119	08/28/18 18:08	
Toluene-d8	99	87 - 121	08/28/18 18:08	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107	
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 10:40)
Sample Matrix:	Water	Date Received: 08/23/18 15:50)
Sample Name:	MW-5	Units: ug/L	
Lab Code:	R1808107-005	Basis: NA	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 18:30	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 18:30	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 18:30	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 18:30	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 18:30	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 18:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/28/18 18:30	
Dibromofluoromethane	97	89 - 119	08/28/18 18:30	
Toluene-d8	98	87 - 121	08/28/18 18:30	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected:	08/22/18 10:25
Sample Matrix:	Water	Date Received:	08/23/18 15:50
Sample Name:	MW-6	Units:	ug/L
Lab Code:	R1808107-006	Basis:	NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	84	5.0	1	08/28/18 18:53	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 18:53	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 18:53	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 18:53	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 18:53	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 18:53	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/28/18 18:53	
Dibromofluoromethane	96	89 - 119	08/28/18 18:53	
Toluene-d8	98	87 - 121	08/28/18 18:53	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 09:50
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name:	MW-7	Units: ug/L
Lab Code:	R1808107-007	Basis: NA
Lab Code:	R1808107-007	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 19:15	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 19:15	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 19:15	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 19:15	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 19:15	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 19:15	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	08/28/18 19:15	
Dibromofluoromethane	98	89 - 119	08/28/18 19:15	
Toluene-d8	102	87 - 121	08/28/18 19:15	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: F	R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 0	08/22/18 11:10
Sample Matrix:	Water	Date Received: 0	08/23/18 15:50
Sample Name:	MW-8	Units: u	ıg/L
Lab Code:	R1808107-008	Basis: N	NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 22:15	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 22:15	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 22:15	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 22:15	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 22:15	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 22:15	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	08/28/18 22:15	
Dibromofluoromethane	97	89 - 119	08/28/18 22:15	
Toluene-d8	101	87 - 121	08/28/18 22:15	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 12:00
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name:	MW-9	Units: ug/L
Lab Code:	R1808107-009	Basis: NA
Lus cout	111000107 007	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 22:38	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 22:38	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 22:38	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 22:38	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 22:38	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 22:38	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/28/18 22:38	
Dibromofluoromethane	97	89 - 119	08/28/18 22:38	
Toluene-d8	100	87 - 121	08/28/18 22:38	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 11:50
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	MW-10 R1808107-010	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 23:00	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 23:00	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 23:00	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 23:00	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 23:00	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 23:00	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/28/18 23:00	
Dibromofluoromethane	96	89 - 119	08/28/18 23:00	
Toluene-d8	99	87 - 121	08/28/18 23:00	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 11:40
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	MW-11 R1808107-011	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	120	5.0	1	08/29/18 17:09	
trans-1,2-Dichloroethene	5.1	5.0	1	08/29/18 17:09	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 17:09	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 17:09	
Trichloroethene (TCE)	160	5.0	1	08/29/18 17:09	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 17:09	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	85 - 122	08/29/18 17:09	
Dibromofluoromethane	96	89 - 119	08/29/18 17:09	
Toluene-d8	98	87 - 121	08/29/18 17:09	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 10:15
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	MW-12 R1808107-012	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	20	5.0	1	08/28/18 23:45	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 23:45	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 23:45	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 23:45	
Trichloroethene (TCE)	5.2	5.0	1	08/28/18 23:45	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 23:45	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/28/18 23:45	
Dibromofluoromethane	99	89 - 119	08/28/18 23:45	
Toluene-d8	101	87 - 121	08/28/18 23:45	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 10:40
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name:	MW-13	Uniter ug/I
1	WIW-15	Units: ug/L
Lab Code:	R1808107-013	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 00:07	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 00:07	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 00:07	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 00:07	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 00:07	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 00:07	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	08/29/18 00:07	
Dibromofluoromethane	100	89 - 119	08/29/18 00:07	
Toluene-d8	102	87 - 121	08/29/18 00:07	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 10:00
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	MW-14 R1808107-014	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	7.3	5.0	1	08/29/18 00:29	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 00:29	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 00:29	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 00:29	
Trichloroethene (TCE)	15	5.0	1	08/29/18 00:29	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 00:29	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/29/18 00:29	
Dibromofluoromethane	97	89 - 119	08/29/18 00:29	
Toluene-d8	99	87 - 121	08/29/18 00:29	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 09:55
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name:	MW-15	Units: ug/L
Lab Code:	R1808107-015	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 00:52	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 00:52	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 00:52	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 00:52	
Trichloroethene (TCE)	6.5	5.0	1	08/29/18 00:52	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 00:52	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	08/29/18 00:52	
Dibromofluoromethane	99	89 - 119	08/29/18 00:52	
Toluene-d8	102	87 - 121	08/29/18 00:52	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107	
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 09:35	
Sample Matrix:	Water	Date Received: 08/23/18 15:50	
Sample Name: Lab Code:	MW-16 R1808107-016	Units: ug/L Basis: NA	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	10	5.0	1	08/29/18 01:14	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 01:14	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 01:14	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 01:14	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 01:14	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 01:14	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	08/29/18 01:14	
Dibromofluoromethane	98	89 - 119	08/29/18 01:14	
Toluene-d8	101	87 - 121	08/29/18 01:14	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 10:15
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	MW-17 R1808107-017	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	220 D	10	2	08/29/18 17:32	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 01:37	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 01:37	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 01:37	
Trichloroethene (TCE)	45	5.0	1	08/29/18 01:37	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 01:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/29/18 01:37	
Dibromofluoromethane	99	89 - 119	08/29/18 01:37	
Toluene-d8	101	87 - 121	08/29/18 01:37	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 12:30
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	MW-18 R1808107-018	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 01:59	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 01:59	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 01:59	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 01:59	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 01:59	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 01:59	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	08/29/18 01:59	
Dibromofluoromethane	98	89 - 119	08/29/18 01:59	
Toluene-d8	102	87 - 121	08/29/18 01:59	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 11:00
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	MW-20 R1808107-019	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 02:21	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 02:21	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 02:21	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 02:21	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 02:21	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 02:21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/29/18 02:21	
Dibromofluoromethane	97	89 - 119	08/29/18 02:21	
Toluene-d8	101	87 - 121	08/29/18 02:21	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 09:35
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	G-1 R1808107-020	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	77	5.0	1	08/29/18 02:44	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 02:44	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 02:44	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 02:44	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 02:44	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 02:44	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/29/18 02:44	
Dibromofluoromethane	98	89 - 119	08/29/18 02:44	
Toluene-d8	99	87 - 121	08/29/18 02:44	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 09:30
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	G-2 R1808107-021	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	68	5.0	1	08/29/18 03:06	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 03:06	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 03:06	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 03:06	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 03:06	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 03:06	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/29/18 03:06	
Dibromofluoromethane	97	89 - 119	08/29/18 03:06	
Toluene-d8	100	87 - 121	08/29/18 03:06	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 10:10
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	G-3 R1808107-022	Units: ug/L Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	270	10	2	08/29/18 03:29	
trans-1,2-Dichloroethene	10 U	10	2	08/29/18 03:29	
Tetrachloroethene (PCE)	10 U	10	2	08/29/18 03:29	
1,1,1-Trichloroethane (TCA)	10 U	10	2	08/29/18 03:29	
Trichloroethene (TCE)	52	10	2	08/29/18 03:29	
Vinyl Chloride	10 U	10	2	08/29/18 03:29	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	08/29/18 03:29	
Dibromofluoromethane	98	89 - 119	08/29/18 03:29	
Toluene-d8	101	87 - 121	08/29/18 03:29	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected:	08/22/18 11:00
Sample Matrix:	Water	Date Received:	08/23/18 15:50
Sample Name: Lab Code:	DR-1 R1808107-023	Units: Basis:	0

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	210	50	10	08/29/18 03:51	
trans-1,2-Dichloroethene	50 U	50	10	08/29/18 03:51	
Tetrachloroethene (PCE)	50 U	50	10	08/29/18 03:51	
1,1,1-Trichloroethane (TCA)	50 U	50	10	08/29/18 03:51	
Trichloroethene (TCE)	1300	50	10	08/29/18 03:51	
Vinyl Chloride	50 U	50	10	08/29/18 03:51	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	08/29/18 03:51	
Dibromofluoromethane	99	89 - 119	08/29/18 03:51	
Toluene-d8	103	87 - 121	08/29/18 03:51	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 10:20
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	DR-2 R1808107-024	Units: ug/L Basis: NA
Lub Couc.		

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	130	5.0	1	08/29/18 04:13	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 04:13	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 04:13	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 04:13	
Trichloroethene (TCE)	32	5.0	1	08/29/18 04:13	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 04:13	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/29/18 04:13	
Dibromofluoromethane	101	89 - 119	08/29/18 04:13	
Toluene-d8	101	87 - 121	08/29/18 04:13	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 10:05
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name:	DR-3	Units: ug/L
Lab Code:	R1808107-025	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	63	5.0	1	08/29/18 04:36	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 04:36	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 04:36	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 04:36	
Trichloroethene (TCE)	24	5.0	1	08/29/18 04:36	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 04:36	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	08/29/18 04:36	
Dibromofluoromethane	103	89 - 119	08/29/18 04:36	
Toluene-d8	105	87 - 121	08/29/18 04:36	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18 09:45
Sample Matrix:	Water	Date Received: 08/23/18 15:50
C		T
Sample Name:	DR-4	Units: ug/L
Lab Code:	R1808107-026	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	19	5.0	1	08/29/18 04:58	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 04:58	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 04:58	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 04:58	
Trichloroethene (TCE)	29	5.0	1	08/29/18 04:58	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 04:58	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	08/29/18 04:58	
Dibromofluoromethane	102	89 - 119	08/29/18 04:58	
Toluene-d8	103	87 - 121	08/29/18 04:58	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: 08/22/18
Sample Matrix:	Water	Date Received: 08/23/18 15:50
Sample Name: Lab Code:	Equipment Blank R1808107-027	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 21:53	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 21:53	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 21:53	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 21:53	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 21:53	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 21:53	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	08/28/18 21:53	
Dibromofluoromethane	112	89 - 119	08/28/18 21:53	
Toluene-d8	116	87 - 121	08/28/18 21:53	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 52 of 60

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda Q3 2018/6974.96
Sample Matrix:	Water

Service Request: R1808107

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS

Analysis Method:8260CExtraction Method:EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85-122	89-119	87-121
MW-1	R1808107-001	90	98	100
MW-2	R1808107-002	91	97	100
MW-3	R1808107-003	90	96	99
MW-4	R1808107-004	91	96	99
MW-5	R1808107-005	91	97	98
MW-6	R1808107-006	90	96	98
MW-7	R1808107-007	93	98	102
MW-8	R1808107-008	93	97	101
MW-9	R1808107-009	90	97	100
MW-10	R1808107-010	91	96	99
MW-11	R1808107-011	89	96	98
MW-12	R1808107-012	91	99	101
MW-13	R1808107-013	92	100	102
MW-14	R1808107-014	90	97	99
MW-15	R1808107-015	93	99	102
MW-16	R1808107-016	93	98	101
MW-17	R1808107-017	91	99	101
MW-18	R1808107-018	92	98	102
MW-20	R1808107-019	91	97	101
G-1	R1808107-020	90	98	99
G-2	R1808107-021	91	97	100
G-3	R1808107-022	92	98	101
DR-1	R1808107-023	94	99	103
DR-2	R1808107-024	90	101	101
DR-3	R1808107-025	95	103	105
DR-4	R1808107-026	96	102	103
Equipment Blank	R1808107-027	107	112	116
Method Blank	RQ1809064-05	90	98	99
Method Blank	RQ1809076-04	97	101	105
Method Blank	RQ1809124-04	105	113	117
Lab Control Sample	RQ1809064-03	95	102	101
Duplicate Lab Control Sample	RQ1809064-04	93	101	99
Lab Control Sample	RQ1809076-03	98	106	105
Lab Control Sample	RQ1809124-03	117	118	118
DR-1 MS	RQ1809076-05	105	110	110
DR-1 DMS	RQ1809076-06	106	113	111

QA/QC Report

Client: Project: Sample Matrix:	Bergmann Associates, Incorporated Gowanda Q3 2018/6974.96 Water						Date C Date R Date A	e Request: ollected: eceived: nalyzed: xtracted:	R180 08/22 08/23 08/29 NA	2/18 3/18	
				plicate Mat	-	-					
			Volat	ile Organic (Compound	ls by GC/I	MS				
Sample Name:	DR-1							Units:	ug/L		
Lab Code:	R180810	07-023						Basis:	NA		
Analysis Method:	8260C										
Prep Method:	EPA 503	30C									
				Matrix Spik RQ1809076-(Duj	plicate Matr RQ1809076	-			
		Sample		Spike			Spike		% Rec		RPD
Analyte Name		Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
cis-1,2-Dichloroether	ne	210	623	500	83	677	500	94	77-127	8	30
trans-1,2-Dichloroeth	ene	50 U	442	500	88	508	500	102	73-118	14	30
Tetrachloroethene (PCE) 50 U		478	500	96	513	500	103	72-125	7	30	
1,1,1-Trichloroethane (TCA) 50 U		400	500	80	455	500	91	74-127	13	30	
Trichloroethene (TCI	E)	1300	1640	500	73 *	1700	500	85	74-122	4	30
Vinyl Chloride		50 U	431	500	86	491	500	98	74-159	13	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name: Lab Code:	Method Blank RO1809064-05	Units: ug/L Basis: NA
Lub Cout.		

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 11:31	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 11:31	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 11:31	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 11:31	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 11:31	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 11:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/28/18 11:31	
Dibromofluoromethane	98	89 - 119	08/28/18 11:31	
Toluene-d8	99	87 - 121	08/28/18 11:31	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name: Lab Code:	Method Blank RQ1809076-04	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 21:30	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 21:30	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 21:30	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 21:30	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 21:30	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 21:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	08/28/18 21:30	
Dibromofluoromethane	101	89 - 119	08/28/18 21:30	
Toluene-d8	105	87 - 121	08/28/18 21:30	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1808107
Project:	Gowanda Q3 2018/6974.96	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name: Lab Code:	Method Blank RQ1809124-04	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 13:17	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 13:17	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 13:17	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 13:17	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 13:17	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 13:17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	08/29/18 13:17	
Dibromofluoromethane	113	89 - 119	08/29/18 13:17	
Toluene-d8	117	87 - 121	08/29/18 13:17	

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda Q3 2018/6974.96
Sample Matrix:	Water

Service Request: R1808107 **Date Analyzed:** 08/28/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1809076-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	17.3	20.0	86	80-121
trans-1,2-Dichloroethene	8260C	17.3	20.0	87	73-118
Tetrachloroethene (PCE)	8260C	17.7	20.0	88	72-125
1,1,1-Trichloroethane (TCA)	8260C	16.0	20.0	80	75-125
Trichloroethene (TCE)	8260C	17.3	20.0	86	74-122
Vinyl Chloride	8260C	17.1	20.0	86	74-159

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda Q3 2018/6974.96
Sample Matrix:	Water

Service Request: R1808107 **Date Analyzed:** 08/29/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1809124-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	18.8	20.0	94	80-121
trans-1,2-Dichloroethene	8260C	19.1	20.0	95	73-118
Tetrachloroethene (PCE)	8260C	21.1	20.0	106	72-125
1,1,1-Trichloroethane (TCA)	8260C	17.4	20.0	87	75-125
Trichloroethene (TCE)	8260C	19.0	20.0	95	74-122
Vinyl Chloride	8260C	19.9	20.0	99	74-159

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda Q3 2018/6974.96
Sample Matrix:	Water

Service Request: R1808107 **Date Analyzed:** 08/28/18

Duplicate Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

			Lab Control SampleIRQ1809064-03			Duplicate Lab Control Sample RQ1809064-04				
Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
cis-1,2-Dichloroethene	8260C	18.6	20.0	93	18.6	20.0	93	80-121	<1	30
trans-1,2-Dichloroethene	8260C	19.5	20.0	98	18.5	20.0	93	73-118	5	30
Tetrachloroethene (PCE)	8260C	22.1	20.0	110	21.4	20.0	107	72-125	3	30
1,1,1-Trichloroethane (TCA)	8260C	17.9	20.0	90	17.6	20.0	88	75-125	2	30
Trichloroethene (TCE)	8260C	19.8	20.0	99	19.3	20.0	97	74-122	3	30
Vinyl Chloride	8260C	20.1	20.0	101	19.1	20.0	95	74-159	5	30

NOVEMBER 2018 GROUNDWATER CHARACTERIZATION REPORT

New York State Office of People with Developmental Disabilities – Gowanda Site

GROUNDWATER CHARACTERIZATION REPORT – NOVEMBER 2018

Bergmann

Office: 280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135 www.bergmannpc.com

Issued: January 2019

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1 1.2	Scope of Work Site Background	4
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	5
2.1 2.2	Well Maintenance Activities Groundwater Field Monitoring and Sampling Activities	
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	6
4.0	LABORATORY ANALYSIS	6
4.1 4.2 4.3 4.4 4.5	Laboratory Analysis on Groundwater Samples Monitoring Well Groundwater Analysis SummarY Sentry Well Groundwater Analysis Summary Recovery Well Groundwater Analysis Summary Quality Assurance and Quality Control Samples	
5.0	REMEDIATION SYSTEM EFFICIENCY	10
5.1 5.2 5.3	Impact of the GTS Recovery Wells Extent of Impacted Groundwater Future Groundwater Monitoring and Analysis Activities	

Tables

Table 1:	Groundwater Elevations and Field Measurements – November 2018
Table 2:	November 2018 Analytical Results Summary
Table 3:	Historic Groundwater Analytical Results Summary
Table 4:	Percent Reduction in Total Groundwater VOCs

Figures

Figure 1:	November 2018 Groundwater Contour Map
Figure 2:	November 2018 Distribution of Groundwater Analytical Results: Monitoring Wells
Figure 3:	November 2018 Distribution of Groundwater Analytical Results: Recovery Wells

Charts

Chart 1:	DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations
Chart 2:	DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations
Chart 3:	DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations
Chart 4:	DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations
Chart 5:	G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations
Chart 6:	G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations
Chart 7:	G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

Appendices

Appendix A: Laboratory Analytical Results Report - November 2018 Sampling Event

1.0 INTRODUCTION

Bergmann is submitting this groundwater characterization report for the November 2018 sampling event on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 SCOPE OF WORK

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on November 13, 2018. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from 19 of 21 site-related groundwater monitoring wells and all seven (7) groundwater recovery wells were sampled for laboratory analysis. Of the eight (8) monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), two (2) were not sampled. These monitoring wells are MW-19R and MW-21. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site. Monitoring Wells MW-19R and MW-21 have not been sampled due to the fact that they have been paved over as first reported by Bergmann in the August 2017 sampling report.

The prior groundwater sampling event was conducted in August 2018 and included analysis of groundwater samples from 19 of 21 site-related groundwater monitoring wells and all seven (7) groundwater recovery wells.

1.2 SITE BACKGROUND

The Gowanda Day Habilitation site consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of seven (7) groundwater recovery wells (four dual phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the

SVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

During January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015. An ISCO Report was prepared under a separate cover.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the November 2018 site visit, all monitoring wells were accessible and the integrity of the wells was not compromised except for MW-19R and MW-21. MW-19R and MW-21, both located on Torrance Place, were still paved over as originally reported in the August 2017 summary report. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of the redevelopment activities performed on August 19, 2015. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the November 2018 sampling event.

2.2 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater in groundwater monitoring wells are measured on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the impacted groundwater plume beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from 19 of the 21 site-related groundwater monitoring wells for laboratory analysis on November 13, 2018. Depth to groundwater measurements were obtained from 26 wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via bailing with dedicated bailers for each individual well. Sample parameters including turbidity, temperature, pH, oxygen, salinity and conductivity were monitored using a YSI Quatro to ensure sufficient well purging prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater without collecting sediment from within the wells. A single duplicate sample and a field blank sample were collected and submitted for laboratory analysis.

Groundwater samples were delivered via chain-of-custody protocol to ALS Environmental Services located in Rochester, NY, a NYSELAP certified laboratory, for testing using EPA Method 8260B for targeted chlorinated volatile organic compounds (VOCs) of concern. Analytical results for each individual monitoring well have been posted in Table 3 for comparative purposes from sampling events completed 2012 – 2018.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

The Site water table potentiometric surface pattern and groundwater flow direction was determined for November 2018 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on November 13, 2018. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements – November 2018.

The November 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The November 2018 depths to groundwater range from 4.90 ft below top of casing (btoc) at MW-2, to 13.00 ft btoc at MW-7. The average depth to groundwater at the wells measured was 8.83 ft btoc, which is a decrease from the average depth to water of the previous sampling event in August (9.84 ft.).

The site-wide average depth to water table decreased by approximately 1.01 ft when compared to the August 2018 sampling event. This decrease in the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented Table 1 and November 2018 Groundwater Contours are presented on Figure 1 – November 2018 Groundwater Contour Map.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS ON GROUNDWATER SAMPLES

Laboratory analysis was completed on the groundwater samples from 19 monitoring wells and seven (7) recovery wells collected November 13, 2018. Samples were analyzed for VOCs via EPA Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

The November 2018 analytical results indicate three (3) chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, and Trans-DCE. Chlorinated VOCs were detected in groundwater from seven (7) of the 19 sampled monitoring wells. Analytical results are summarized in Table 2 – November 2018 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical reporting package is provided in Appendix A – Laboratory Analytical Results Report

November 2018 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from 12 of the sampled monitoring wells.

Groundwater samples from seven (7) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (1,080 ppb), is located in the area of historically greatest impacted groundwater.

Concentrations in five (5) of the 19 monitoring well groundwater samples increased when compared to the August 2018 sampling event while concentrations in three (3) of the 19 monitoring well groundwater samples decreased. Concentrations in eleven (11) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 85.1% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 74.6% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the November 2018 sampling event was 1,080 parts per billion (ppb), a decrease from the August 2018 value of 1,190 ppb. Since activation of the GTS, detected VOCs at MW-1 have increased by about 40.6%.

Monitoring well MW-11 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the November 2018 sampling event is 489.3 ppb, an increase from the August 2018 value of 282 ppb. Since activation of the GTS in May 2005, detected VOCs at MW-11 have decreased by 89.5%.

Monitoring well MW-12 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the November 2018 sampling event is 53 ppb, an increase from the August 2018 value of 25 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by about 99.9%.

Monitoring well MW-14 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the November 2018 sampling event is 30.7 ppb, an increase from the August 2018 value of 22.3 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by about 90.3%.

Monitoring well MW-15 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the November 2018 sampling event was non-detect (ND), which was a decrease from the August 2018 sampling event, which was 6.5 ppb. MW-15 is nearest to recovery well DR-4. Since activation of the GTS in May 2005, the detected VOCs at MW-15 have decreased almost 100%.

Six (6) groundwater monitoring wells are located along the subject property's north perimeter, down-gradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-7, MW-16, MW-17 and MW-21. The current analytical results exhibit an increase in targeted VOCs at the sampled monitoring wells along the north perimeter.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three (3) wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system.

The current results indicate non-detect levels for MW-18. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2015 sampling event. It was first noted that during the August 2017 sampling event, wells MW-19R and MW-21 were not sampled because they were inaccessible. It was observed that the wells were likely paved over by a re-sealing operation. The wells were still inaccessible and paved over during the November 2018 sampling event.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – November 2018 Distribution of Groundwater Analytical Results: Monitoring Wells.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry well sampled for this event was only MW-4. The current results indicate non-detect levels for this eastern sentry well.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R, but MW-19R is unable to be sampled because it is paved over. The Gowanda Electronics impacted groundwater plume does not appear to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO injection application was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

During the November 2018 sampling event, all of the seven (7) recovery wells were sampled.

The November 2018 analytical results indicate detection of two (2) chlorinated VOCs in recovery well samples: TCE and Cis-DCE. Chlorinated VOCs were detected in samples from all seven (7) of the sampled recovery wells. Total VOCs at the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the current sampling event is about 47.2% relative to concentrations prior to GTS activation in 2002. Relative percent reductions in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the November 2018 sampling event is 1,310 ppb, a decrease from the August 2018 value of 1,510 ppb. The current sampling event indicates an increase in VOCs at DR-1 of 128.5% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in an area of historically highest concentrations.

Recovery well DR-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the November 2018 sampling event is 216 ppb, an increase from the August 2018 value of 162 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of about 60.7% since activation of the GTS.

Recovery well DR-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-3 for the November 2018 sampling event is 73 ppb, a decrease from the August 2018 value of 87 ppb. The current sampling event indicates a decrease in VOCs at DR-3 of about 52.1% since activation of the GTS.

Recovery well DR-4 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the November 2018 sampling event is 37.2 ppb, a decrease from the August 2018 value of 48 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of about 95.7% since activation of the GTS.

Recovery well G-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the November 2018 sampling event was 74.6 ppb, a decrease from the August 2018 value of 77 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 62.8% since activation of the GTS.

Recovery well G-2 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-2 for the November 2018 sampling event was 25 ppb, a decrease from the August 2018 value of 68 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 91.2% since activation of the GTS.

Recovery well G-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-3 for the November 2018 sampling event was 15 ppb, a decrease from the August 2018 value of 322 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 96.3% since activation of the GTS.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – November 2018 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

An equipment blank was collected to ensure proper cleaning of the sampling equipment. The equipment blank, designated as EB, was non-detect for chlorinated halogens. In addition, a duplicate blank (labeled as MW-X) was taken from MW-8.

Laboratory analytical results are included in Appendix A.

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 IMPACT OF THE GTS RECOVERY WELLS

Groundwater control charts for the seven (7) sampled recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center.

Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all seven (7) sampled groundwater recovery wells have demonstrated a general decrease in VOC concentration.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (1,080 ppb) show a decrease from the August 2018 sampling event (1,190 ppb). The current total VOCs at MW-11 (489.3 ppb) shows an increase from the August 2018 sampling event (282 ppb). The current total VOCs at DR-1 (1,310 ppb) show a decrease from the August 2018 sampling event (1,510 ppb).

Chart 3 compares laboratory results between recovery well DR-2 and MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (53 ppb) shows an increase from the August 2018 sampling event (25 ppb). The current total VOCs at recovery well DR-2 (216 ppb) show an increase from the August 2018 sampling event (162 ppb).

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (30.7 ppb) show an increase from the August 2018 sampling event (22.3 ppb). The current total VOCs at recovery well DR-3 (73 ppb) show a decrease from the August 2018 sampling event (87 ppb).

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (ND) show a decrease from the August 2018 sampling event (6.5 ppb). The current total VOCs at recovery well DR-4 (37.2 ppb) show a decrease from the August 2018 sampling event (48 ppb).

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. The recovery well is located in the northern portion of the building and MW-17 is located along the northern property line. The current total VOCs at recovery well MW-17 (218 ppb) show a decrease from the August 2018 sampling event (265 ppb). The current total VOCs at recovery well G-1 (74.6 ppb) show a decrease from the August 2018 sampling event (77 ppb).

Chart 7 compares laboratory results between recovery well G-2 and MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. Recovery well G-2 had a total VOC concentration of 25 ppb, which shows a decrease from the August 2018 sampling event (68 ppb). The November 2018 total VOCs of MW-7 (ND) showed no change from the August 2018 sampling event (ND).

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western perimeter of the apparent area of impacted groundwater. The current total VOCs at monitoring well MW-17 (218 ppb) showed a decrease from the August 2018 sampling event (265 ppb). The current total VOCs at recovery well G-3 was 15 ppb, a decrease from the August 2018 sampling event (322).

5.2 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not sampled at MW-19R and MW-21 during the November 2018 and August 2018 sampling events due to the fact that they were both paved over and inaccessible, as first reported by Bergmann in the August 2017 Sampling Report.

The redevelopment of wells was performed in fall 2015 to remove sediment from wells at the Site after the ISCO injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred at the Site when compared to the past ten (10) years of sampling. The following notes are a summary of the meeting held on June 22, 2018 between Bergmann, DASNY, and the NYSDEC.

- Bergmann submitted an Additional Subsurface Investigation Plan (ASIP) consisting of additional soil borings to further delineate the contamination on site and proposed a method of remediation.
- As part of the ASIP, soils will be sampled for the same VOCs that are consistently present in groundwater samples to determine if the contamination is residual in the soils on site.
- Details of the proposed additional investigation are outlined in the Additional Subsurface Investigation Plan dated July 2018 and submitted to DASNY on July 23, 2018.

5.3 FUTURE GROUNDWATER MONITORING AND ANALYSIS ACTIVITIES

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed upon that these systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO RAP in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future; however, system components may need repair and/or replacement. Prior to restart, three (3) routine quarterly monitoring events will be completed to fulfill the NYSDEC requirements for post ISCO groundwater treatment.

The next site-wide groundwater sampling and laboratory analysis event is scheduled for February 2019. Future sampling and analytical events will be conducted to track the effects of the ISCO injections on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be monitored and recorded during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements November 2018

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	778.08	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	5.05	4.90	5.40	6.35	10.75	12.65	13.00	8.61	7.90	5.80
Groundwater Elevation	773.18	773.18	772.98	772.08	767.86	768.45	767.94	772.72	774.71	774.22
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	17.15	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.42
Bottom of Well Elevation	762.21	760.93	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.60
Thickness of Water Column	10.97	12.25	10.90	9.43	3.20	10.23	8.80	9.04	13.06	13.62
Minimum Purge Volume (gal)	1.8	2.00	1.8	1.5	0.5	1.7	1.4	1.5	2.1	2.2
3 Volumes	5.4	5.99	5.3	4.6	1.6	5.0	4.3	4.4	6.4	6.7
Actual volume purged	5.4	5.99	NS	4.6	1.4	5.0	4.3	NS	NS	NS
Comments	Flush = -0.29'	Flush = -0.30'	Flush = -0.23'	Flush = -0.34'	Flush = -0.24'	Stickup=2.17	Stickup=2.17	Stickup=2.84	Stickup=2.05'	Stickup=2.56'

	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	NA	778.04	NA
Depth to Groundwater (btoc)	5.70	6.32	6.67	10.36	10.24	12.60	12.65	8.60	NA	5.95	NA
Groundwater Elevation	772.88	772.18	771.72	768.07	768.14	767.83	767.20	767.79	NA	772.09	NA
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	NA	2"	NA
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	NA	14.75	NA
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	NA	763.29	NA
Thickness of Water Column	9.78	11.06	10.73	7.79	9.56	10.66	NA	16.40	NA	8.80	NA
Minimum Purge Volume (gal)	1.6	1.8	1.7	1.3	1.6	1.7	NS	2.7	NA	1.4	NA
3 Volumes	4.8	5.4	5.2	3.8	4.7	5.2	NS	8.0	NA	4.3	NA
Actual volume purged	4.8	5.4	NS	3.8	4.7	5.2	NS	8.0	NA	4.3	NA
Comments	Flush = -0.23'	Flush = -0.35'	Flush = -0.48'	Flush = -0.39'	Flush = -0.38	Stickup=2.26'	Stickup=1.18'	Flush =-0.26'	Paved Over	Flush=-0.43'	Paved Over.

	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	779.42
Depth to Groundwater (btoc)	6.75	6.51	11.25	11.22	11.43	11.39	9.75
Groundwater Elevation	772.91	773.42	768.53	768.42	768.40	768.33	769.67
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	18.15
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	761.27
Thickness of Water Column	11.31	11.55	9.20	8.47	11.55	9.17	8.40
Minimum Purge Volume (gal)	7.39	7.54	6.01	5.53	7.54	5.98	5.49
3 Volumes	22.16	22.63	18.02	16.59	22.63	17.94	16.46
Actual volume purged	22.16	22.63	18.02	16.59	22.63	17.94	16.46
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03'	Stickup=0.86'	Vaulted well

NOTES

btoc = Below top of casing (inner riser) All measurements are in feet, referenced to Mean Sea Level

NS = Not Sampled

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Minimum purge volume = 3 × weil volume, 0.165 gallon per loot in a 2 diameter weil. 0.005 gallon per loot in a 4 diameter weil. Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled. The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed. Wells MW-19R, MW-20 and MW-21 were installed in October 2004, MW-19R and MW-21 have been paved over age 1 of 1

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sample Date: 11/13/2018

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		930	900	5.0
CIS		260	180	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	1,190	1,080	

Monitoring Well MW-2 Sampling Events

Sample Date: 11/13/2018

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-3 Sampling Events

Sample Date: 11/13/2018

eampning Ere				
Analyte	in ppb	Ag 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 1 of 6

Monitoring Well MW-	4
Sampling Events	

Sample Date: 11/13/2018

Analyte in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
ТСА	ND	ND	5.0
Total VOCs	ND	ND	

Monitoring Well MW-5 Sampling Events

Sample Date: 11/13/2018

	Ventes			
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-6 Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		77	81	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	77	81	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sample Date: 11/13/2018

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-8

Sample Date: 11/13/2018

Sam	pling	Events
-----	-------	--------

00	inpic	Date.	• /	10/20	10

Analyte in pr	ob Aug 2018	Nov 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total V	OCs ND	ND	

Monitoring Well MW-9 Sampling Events

Sample Date: 11/13/2018

Camping Er				
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 2 of 6

Monitoring Well MW-10

Sampling Events

Sample Date: 11/13/2018			
Nov 2019	NVC Cuidanaa Valua		

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-11 Sampling Events

Sample Date: 11/13/2018

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		160	290	5.0
CIS		120	190	5.0
TRANS		2.1	9.3	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	282	489.3	

Monitoring Well MW-12 Sampling Events

Sampling E	Veniis			
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		5.0	18	5.0
CIS		20	35	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	25	53	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sample Date: 11/13/2018

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-14 Sampling Events

Sample Date: 11/13/2018

	51113			
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		15	21	5.0
CIS		7.3	9.7	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	22.3	30.7	

Monitoring Well MW-15 Sampling Events

Sample Date: 11/13/2018

Camping En				
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		6.5	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	6.5	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 3 of 6

Monitoring Well MW-16

Sampling Events

Sample Date: 1	11/13/2018
----------------	------------

eampning Evente			
Analyte in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	10	41	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	10	41	

Monitoring Well MW-17 Sampling Events

Sample Date: 11/13/2018

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		45	38	5.0
CIS		220	180	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	265	218	

Monitoring Well MW-18 Sampling Events

	vents			
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sample Date: NS

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-20

Sample Date: 11/13/2018

Sampling	Events
----------	--------

	CIII			
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-21 Sampling Events

Sample Date: NS

	0			
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
ТСА		NS	NS	5.0
	Total VOCs	NS	NS	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1

Sample Date: 11/13/2018

Sampling Ever	nts			•
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		1300	1100	5.0
CIS		210	210	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	1,510	1,310	

Recovery Well DR-2 Sampling Events

Sample Date: 11/13/2018

eampning Evente				
Analyte i	n ppb 🛛 Aug 2	2018 Nov 20	18 NYS Guidanc	e Value
TCE	32	2 46	5.0	
CIS	13	0 170	5.0	
TRANS	N	D ND	5.0	
VC	N	D ND	2.0	
TCA	N	D ND	5.0	
Tot	al VOCs 16	2 216		

Recovery Well DR-3 Sampling Events

Sample Date: 11/13/2018

1 0				
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		24	31	5.0
CIS		63	42	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	87	73	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 5 of 6

Recovery	Well	DR-4
----------	------	------

Sampling Events

Sample Date: 11/13/2018

	.0			
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		29	28	5.0
CIS		19	9.2	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
То	tal VOCs	48	37.2	

Recovery Well G-1 Sampling Events

Sample Date: 11/13/2018

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	6.6	5.0
CIS		77	68	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	77	74.6	

Recovery Well G-2 Sampling Events

	.venta			
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		68	25	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	68	25	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3

Sample Date: NS

Sampling Events

eample zater

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		52	8.8	5.0
CIS		270	6.2	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	322	15	

Duplicate Blank (MW-8)

Sample Date: 11/13/2018

Sampling Events

			NYS
			Guidance
Analyte	in ppb	Nov 2018	Value
TCE		ND	5.0
CIS		ND	5.0
TRANS		ND	5.0
VC		ND	2.0
TCA		ND	5.0
	Total VOCs	ND	

Equipment Blank Sampling Events

Sample Date: 11/13/2018

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Table 3 Historic Groundwater Analysis Results Summary Gowanda Day Habilitation Center

4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Total Total Total Total Total Total Total Total Total VOCs VOCs VOCs VOCs VOCs VOCs VOCs Well Number VOCs VOCs August 2018 May 2018 Aug 2017 Nov 2018 April 2018 Nov 2017 Nov 2016 Sep 2016 Jun 2016 (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) MW-1 1,080 1,190 1,110 374 1013 1,210 1,467 838 580 MW-2 ND ND NS NS NS NS NS NS ND MW-3 ND ND ND ND ND ND NS NS NS MW-4 ND ND ND ND ND ND ND ND ND NS MW-5 ND ND ND ND ND ND NS NS MW-6 81 84 77 76 100 91 87 120 100 MW-7 ND ND ND ND 5.8 29 110 62 83 MW-8 ND ND ND ND ND NS NS NS NS MW-9 ND ND ND NS NS NS ND ND NS ND ND ND ND NS MW-10 ND ND NS NS 282 489 445 550 MW-11 489.3 1,160 470 525 646 MW-12 100 40 7.1 7.8 53 25 113 31 15.8 ND ND NS NS NS MW-13 ND ND ND NS 30.7 MW-14 22.3 22.8 28 22.1 100 57 38 76 MW-15 ND 6.5 ND ND ND 7.4 11 23.8 11 37 MW-16 41 10 41 43 32 36 14 20 218 265 112.5 5.1 222 396 375 465 425 MW-17 ND ND 6.9 MW-18 ND ND ND 6.3 10 26 MW-19R NS NS NS NS NS ND ND ND NS ND MW-20 ND ND ND ND ND ND ND ND NS NS NS 8.7 MW-21 NS NS NS 17 39 434 NS MW-X (DUP) ND ND 490 DWS 1,705 879 550 ND ND EB ND ND ND ND ND ND ND

Recovery Well	Total	Total	Total	Total	Total	Total	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VO د							
Number	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 201
	Nov 2018	August 2018	May 2018	April 2018	Nov 2017	Aug 2017	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)								
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)																
DR-1	1,310	1,510	1,319	1,070	1540	1,970	617	610	910	319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38
DR-2	216	162	128	130	181	199	137	218	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9
DR-3	73	87	125.4	34	48	NS	98	154	62	45	76	83	55	181	210	83	89	123	62	73	42	116.96
DR-4	37.2	48	31.2	31.6	46	52	79	95	63	94	110	71	147	156	148	96	64	68	79	37	90	122.6
G-1	74.6	77	40	22	70	73.5	85	105.6	59.7	80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55
G-2	25	68	50	46	8.5	NS	NS	ND	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3
G-3	15	322	NS	NS	NS	NS	293	404	420	262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3

NS= This well not included in this sampling event.

ND = Not Detected, results less than Method Detection Limit.

Impacted north property line wells: MW-5, MW-6, MW-7, MW-16, MW-17, MW-21

All compounds are measured in parts per billion (ppb).

VOC - Volatile Organic Compounds.

DUP - Duplicate Sample

EB - Equipment/Field Blank Sample

* - Sample was broken in transit and not able to be analyzed

DWS- Different Well Sampled than previosuly tested.

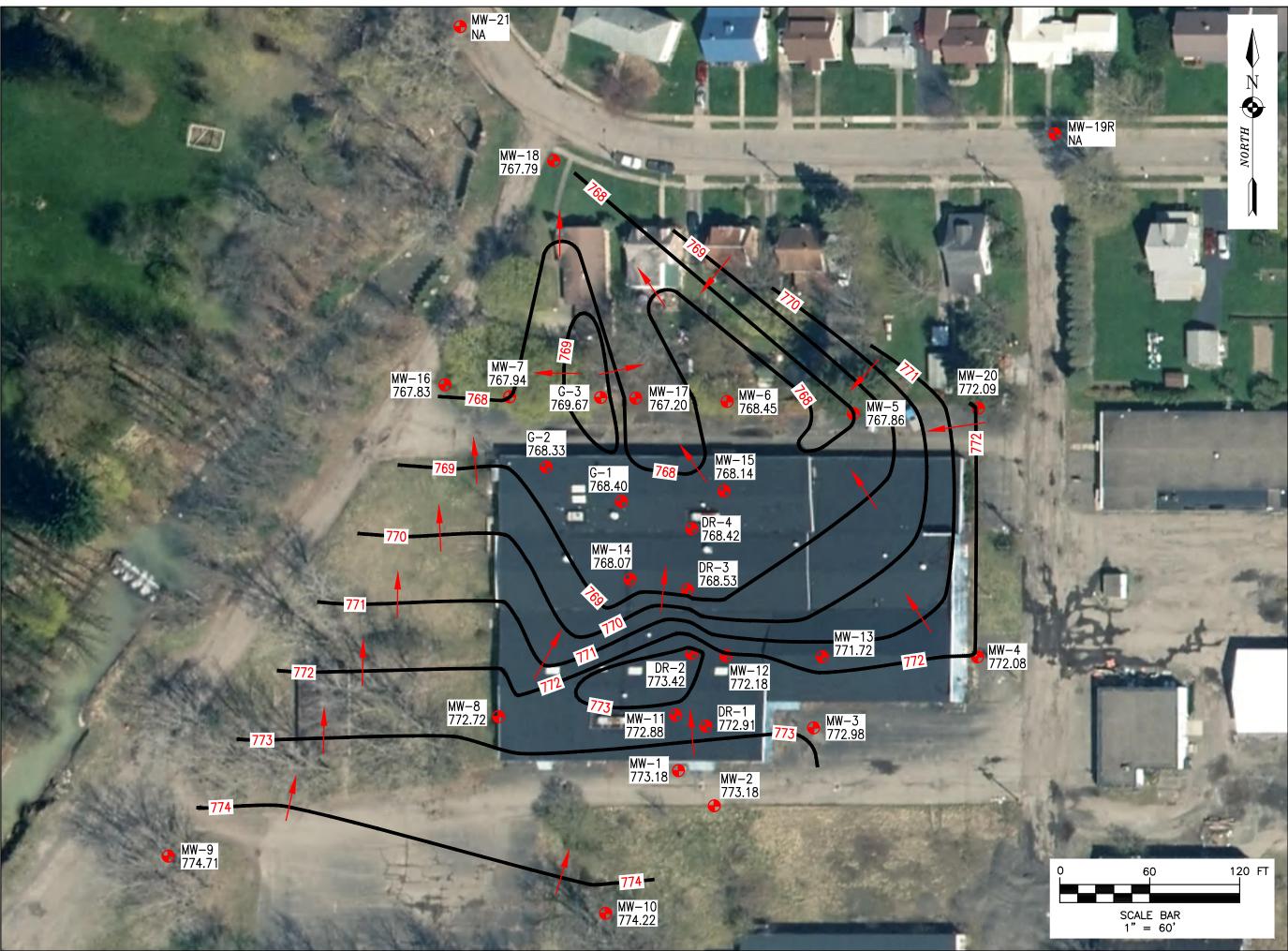
MONITORI	NG WELLS												
Total	Total	Total	Total	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs				
VOCs	VOCs	VOCs	VOCs	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012
Nov 2015	Aug 2015	Jun 2015	Mar 2015	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
(ppb)	(ppb)	(ppb)	(ppb)										
1,530	1,470	350	430	300	420	990	990	1,740	830	910	1,440	528	889
NS	NS	NS	NS	NS									
NS	NS	NS	NS	NS									
ND	ND	ND	ND	ND									
NS	NS	NS	NS	NS									
120	96	86	81	110	110	96	94	130	99	93	99	86.7	85.7
49	130	58	ND	180	190	29	ND	ND	18	ND	ND	151.56	30.5
NS	NS	NS	NS	NS									
NS	NS	NS	NS	NS									
NS	NS	NS	NS	NS									
1,060	630	444	500	451	375	450	710	880	510	570	790	498	617
28.8	52	97	120	126	136	200	212	173	149.3	186.6	142	86.5	148.22
NS	NS	NS	NS	NS									
81	96	52	99	68	68	54	73	94	49	71	47	39.7	76.6
9.9	14	8.1	9.8	32	31	6.1	ND	6.8	7	ND	12.9	26.26	6.25
31	13	6.8	ND	5.2	9.4	21	24	20	8.4	24	18	4.36	12.2
460	410	NS	336	394	410	339	167	420	400	21.3	430	381	260.1
ND	NS	ND	ND	ND	16.6	2.33							
ND	ND	2.5	ND	ND									
ND	ND	ND	ND	ND									
20	20	10	NS	NS	NS	NS	NS						
1,720	410	360	407	300	400	870	990	1,850	540	186.8	1,450	521	913
ND	ND	ND	ND	ND									
RECOVER	RY WELLS												
Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs								
Nov 2015	Aug 2015	Jun 2015	Mar 2015	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012
(ppb)	(ppb)	(ppb)	(ppb)	(ppb)									
319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38	673
199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3
45	76	83	55	181	210	83	89	123	62	73	42	116.96	24.9
94	110	71	147	156	148	96	64	68	79	37	90	122.6	ND
80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55	65.58
NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9
262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3	44.2

Table 4 Percent Reductions in Total Groundwater VOCs

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Groundwater Treatment System was activated in May 2005

Monitoring Well	% Reduction 2002 to Nov 2018	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
MW-1 [†]	-40.6%	-54.9%	-44.5%	51.3%	-39.90%	-57.6%	-48.0%	-9.1%	24.5%	-99.2%	-91.4%	54.4%	44.0%	60.9%		-28.9%	-28.9%	-126.6%	-8.1%	-19.5%	-87.5%	31.3%	6 -15.8%
MW-2	100%	100%	100%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled
MW-3	100%	100%	100%	100%	100%	100.0%	Not Sampled																
MW-4	100%	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	
MW-5	100%	100%	100%	100%	100%	100.0%	Not Sampled																
MW-6	100%	-83.3%	15.4%	15.4%	-84.60%	15.4%	81.3%	70.4%	75.4%	70.4%	76.4%	78.8%	80.0%	72.9%	72.9%	76.4%	76.8%	68.0%		77.1%	75.6%	78.6%	
MW-7	80.0%	79.3%	81.0%	81.3%	98.70%	93.6%	75.6%	86.2%	81.6%	89.1%	71.1%	87.1%	100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	6 93.2%
MW-8	100%	100%	100%	100%	Not Sampled		Not Sampled																
MW-9	100%	100%	100%	100%	Not Sampled		Not Sampled		Not Sampled														
MW-10	100%	100%	100%	100%	100%	100.0%	Not Sampled																
MW-11	89.5%	93.9%	89.5%	75.0%	89.20%	99.1%	86.1%		88.2%				89.2%	90.3%		90.3%		81.1%		87.7%	83.0%	89.3%	
MW-12	99.6%	99.8%	99.2%	99.1%	99.80%	75.0%	99.9%	99.9%	99.9%	99.8%	99.6%	99.2%	99.1%	99.0%		98.4%		98.6%	98.8%	98.5%	98.9%	99.3%	
MW-13	100%	100%	100%	100%	Not Sampled																		
MW-14	90.3%	92.9%	92.8%	91.1%	87.90%	2.3%	75.9%	68.3%	81.9%	74.3%	69.5%	83.5%	68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5%	85.1%	87.4%	
MW-15	100%	99.1%	100%	100%	100%	99.0%	98.5%	96.7%	98.5%	98.6%		98.9%	98.7%	95.6%		99.2%	100.0%	99.1%	99.0%		98.2%	96.4%	
MW:16*	19.9%	80.5%	19.9%	2.3%	2.80%	2.3%	72.7%	60.9%	27.7%	39.5%	74.6%	86.7%	100.0%	89.8%		59.0%	53.1%	60.9%			52.6%	88.5%	
MW-17*	78.4%	73.8%	88.9%	99.5%	78*	2.3%	62.9%	54.0%	58.0%	54.5%	59.4%	Not Sampled	66.8%	61.0%	59.4%	66.5%	83.5%	58.5%	50.6%	97.4%	46.9%	53.0%	
MW-18:*	100%	100%	100%	100%	100%	100.0%	97.4%	93.4%	98.2%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	Not Sampled	100.0%	100.0%	100.0%	89.6%	
MW-19 R*	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	
MW-20**	100%	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	
MW-21**	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	34.6%	-50.0%	66.5%	23.1%	23.1%	61.5%	Not Sampled										
* Well installed 2003																							
** Well Installed 2004																							
Site-Wide reduction:	85.1%	78.0%	81.2%	84.2%	67.60%	62.1%	74.1%	68.7%	78.6%	66.2%	69.1%	87.7%	88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	6 80.7%
Impacted Groundwater	74.00/	70.40/	05.00/	70.00/	E4 400/	44.40/	00.5%	00.00(70.00/	50.40/	50.00/	04.00/	00.00/	77.00/	75.00/	70.00/	70.00/	00.00/	70.00/	77.00/	00.5%	75.00/	
Plume Area Only:	74.6%	72.1%	65.3%	76.6%	51.40%	41.1%	66.5%	69.6%	76.0%	58.1%	58.6%	84.6%	80.8%	77.3%	75.0%	72.3%	73.9%	82.2%	73.2%	77.3%	62.5%	75.2%	6 73.19


Plume Area = MW-1, MW-11, MW-12, MW-14, MW-15, MW-7, MW-17, MW-6 % reduction = percent reduction in total Volatile Organic Compounds (VOCs) since groundwater monitoring was initiated †Negative values indicate an increase in total VOCs since monitoring commenced in 2002. The percent increase in total groundwater VOCs is shown below for MW-1.

Recovery Well	% Reduction 2002 to Nov 2018	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
DR-1	-128.5%	-163.3%	-130.0%	-86.6%	-243.6%	-243.6%	-7.6%	-6.4%	-58.7%	44.4%	72.1%	Not Sampled	96.2%	89.0%	90.4%	86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8%	91.6%
DR-2	60.7%	70.5%	76.7%	76%	63.8%	63.8%	75.1%	60.3%	60.9%	63.8%	66.0%	47.0%	52.8%	70.5%	59.2%	58.0%	62.3%	45.0%	87.2%	85.4%	99.1%	88.5%	83.9%
DR-3	52.1%	43.0%	17.8%	78%	68.5%	Not Sampled	35.7%	-1.0%	59.3%	70.5%	50.2%	45.6%	63.9%	-18.7%	-37.7%	45.6%	41.6%	19.3%	95.8%	95.1%	97.2%	92.1%	98.3%
DR-4	95.7%	94.4%	96.4%	96%	93.9%	93.9%	90.8%	88.9%	92.7%	89.1%	87.2%	91.7%	82.9%	81.8%	82.8%	88.8%	92.5%	90.8%	95.5%	97.9%	94.9%	93.1%	100.0%
G-1	62.8%	61.7%	80.1%	80%	74.1%	74.1%	57.7%	47.4%	92.7%	60.0%	100.0%	66.1%	27.3%	49.8%	47.7%	55.0%	61.3%	65.6%	87.3%	89.8%	90.3%	87.4%	88.0%
G-2	91.2%	76.0%	82.4%	84%	100.0%	Not Sampled	Not Sampled	100.0%	Not Sampled	Not Sampled	90.1%	Not Sampled	83.1%	88.0%	86.9%	81.7%	95.1%	71.4%	79.0%	87.0%	65.7%	80.4%	89.1%
G-3	96.3%	20.1%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	27.3%	-0.2%	-4.2%	35.0%	8.2%	Not Sampled	79.7%	NA	NA	NA	NA	NA	NA				
Overall Reduction	47.2%	28.9%	37.2%	54.6%	60.4%	40.4%	46.5%	41.3%	40.4%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%

*Sampling of recovery wells initiated in 2005

FIGURES

DASNY Gowanda Day Habilitation Center

4 Industrial Place Gowanda, New York

BERGMANN

Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C. 280 East Broad Street Suite 200 Rochester, NY 14604

office: 585.232.5135 fax: 585.232.4652

www.bergmannpc.com

REVISIONS NO. DATE DESCRIPTION REV. CK'D

Copyright © Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C

Note:

Unauthorized alteration or addition to this drawing is a violation of the New York State Education Law Article 145, Section 7209.

Project Manager:	Checked By:
S. DEMEO	S. DEMEO
Designed By:	Drawn By:
	C. WOOD
Date Issued:	Scale:
Date Issued: 12/27/2018	Scale: 1" = 60'
12/27/2018	

NOVEMBER 2018 WATER LEVEL CONTOUR MAP

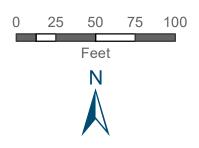
Drawing Number:

FIGURE 1

	MW-21 TCE NS CIS NS TRANS NS VC NS TCA NS TCA NS Total VOCS NS	MW-18 TCE ND CIS 6.3 TRANS ND VC ND TCA ND Total VOCs 6.3	Torrance Place	MW-19R TCE NS CIS NS TRANS NS VC NS TCA NS Total VOCs NS MW-19
	MW-16 TCE ND CIS 41 TRANS ND VC ND TCA ND Total VOCs 41 MW-16 MW-16	MW-17 TCETCE38 CISCIS180 TRANSTRANSND TCAND TCAND TCATCAND Total VOCs218MW-7	MW-6 MW-5 TCE ND CIS 81 TRANS ND VC ND TCA ND Total VOCs 81 MW-6 MW-5	MW-20TCENDCISNDTRANSNDVCNDTCANDTotal VOCsND
theter Brook	MW-7 TCE CIS TRANS VC TCA TCA Total VOCs MW-8 TCE ND	ND 5.8 ND ND 5.8 MWV-14 TCE 21 CIS 9.7 TRANS ND VC ND TCA ND TCA ND Total VOCS 30.7 MVV-14	MW-15 MW-15 TCE ND CIS ND TRANS ND VC ND TCA ND TCA ND Total VOCS ND TCA Total VOC	ND R
MW-9 TCE ND CIS ND TRANS ND VC ND TCA ND Total VOCs ND	MW-11TCE290CIS190TRANS9.3VCNDTCANDTotal VOCs489.3	Total VOCs 53 MW-8 MW-1 TCE 900 CIS 180	MW-3 TRANS VC TCA Total VOCs MW-2 TCE CIS TRANS VC TCE CIS TRANS VC	-13 ND ND ND ND ND
MW-9	MW-10TCENDCISNDTRANSNDVCNDTCANDTotal VOCsND	TRANS ND VC ND TCA ND Total VOCs 1,080	MW-2VCTCENDCISNDTRANSNDVCNDTCANDTCANDTotal VOCsND	ND ND

DASNY

Gowanda Day Habilitation Center


4 Industrial Place Gowanda, NY

BERGMANN ARCHITECTS ENGINEERS PLANNERS

Figure 2

November 2018 Distribution of Groundwater Analytical Results: Monitoring Wells

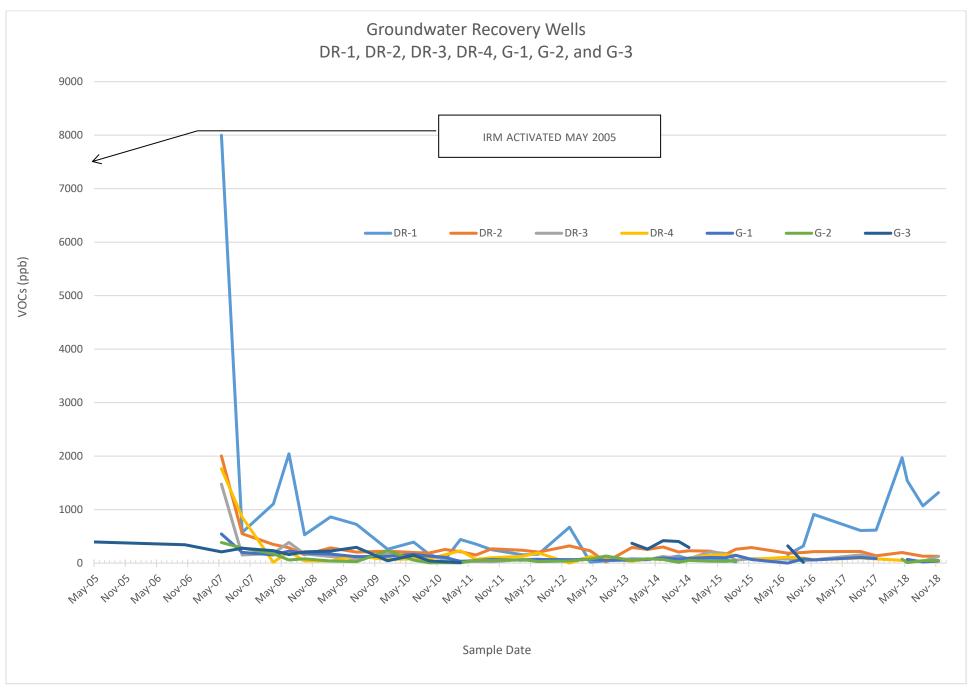
DASNY

Gowanda Day Habilitation Center

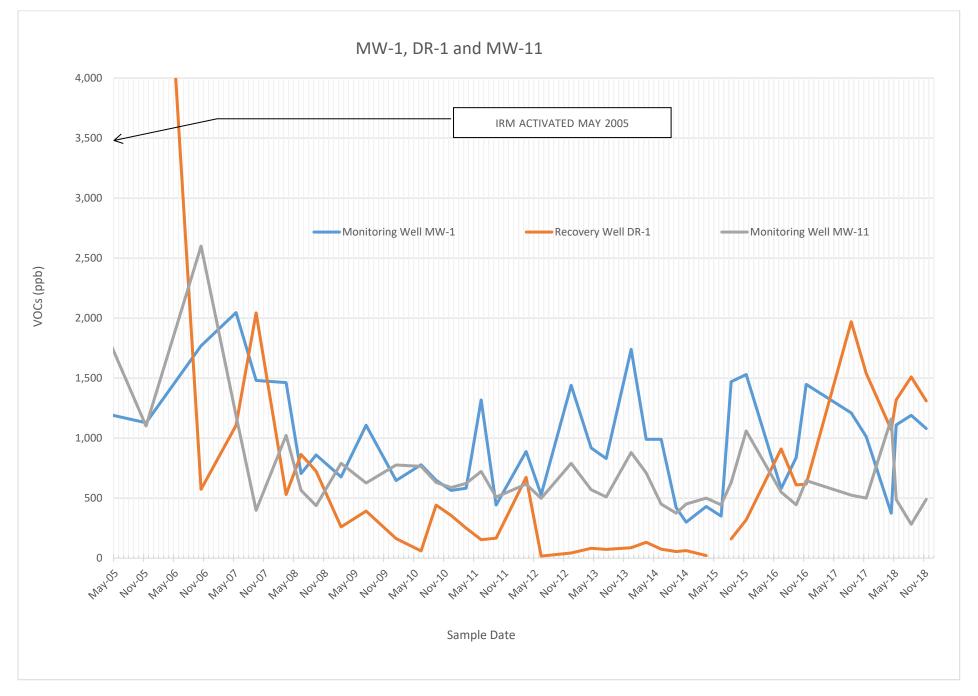
4 Industrial Place Gowanda, NY

BERGMANN ARCHITECTS ENGINEERS PLANNERS

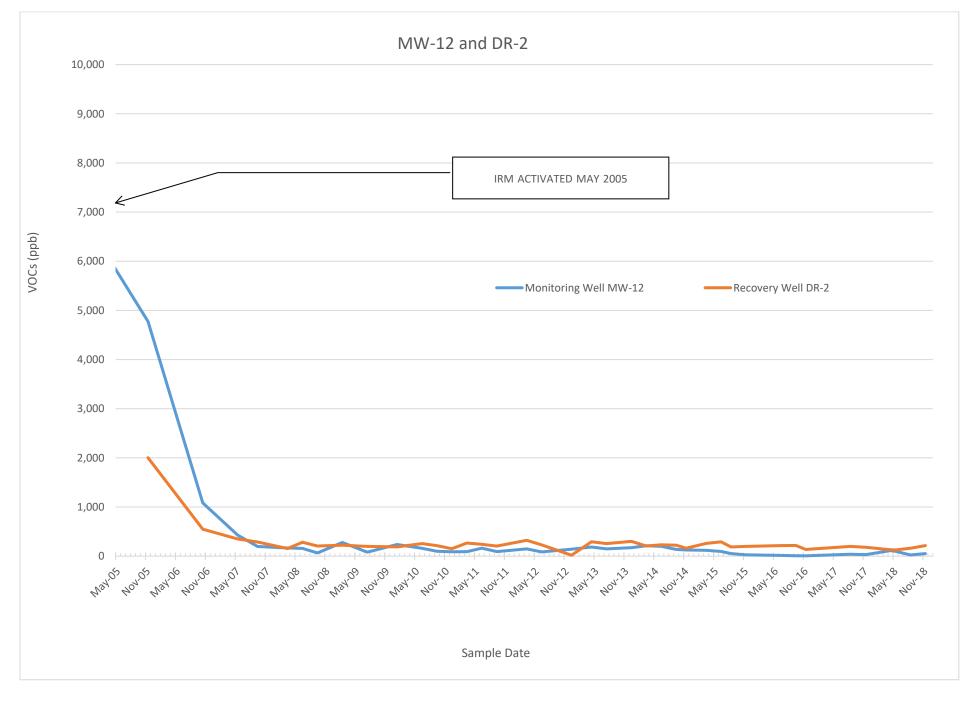
Figure 3

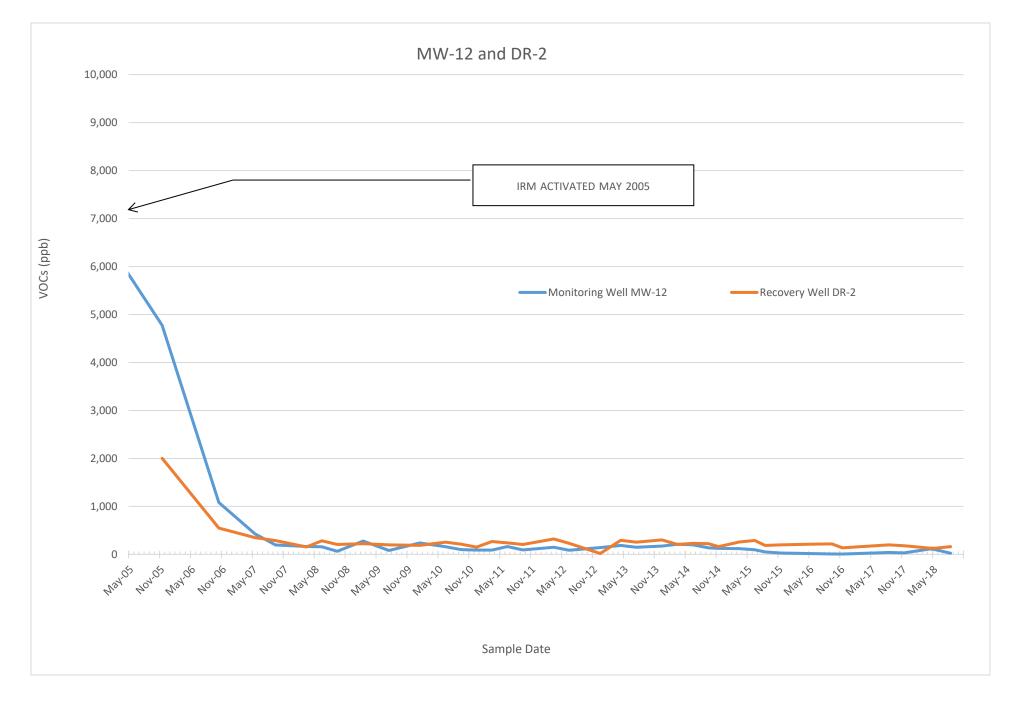

November 2018 Distribution of Groundwater Analytical Results: Recovery Wells

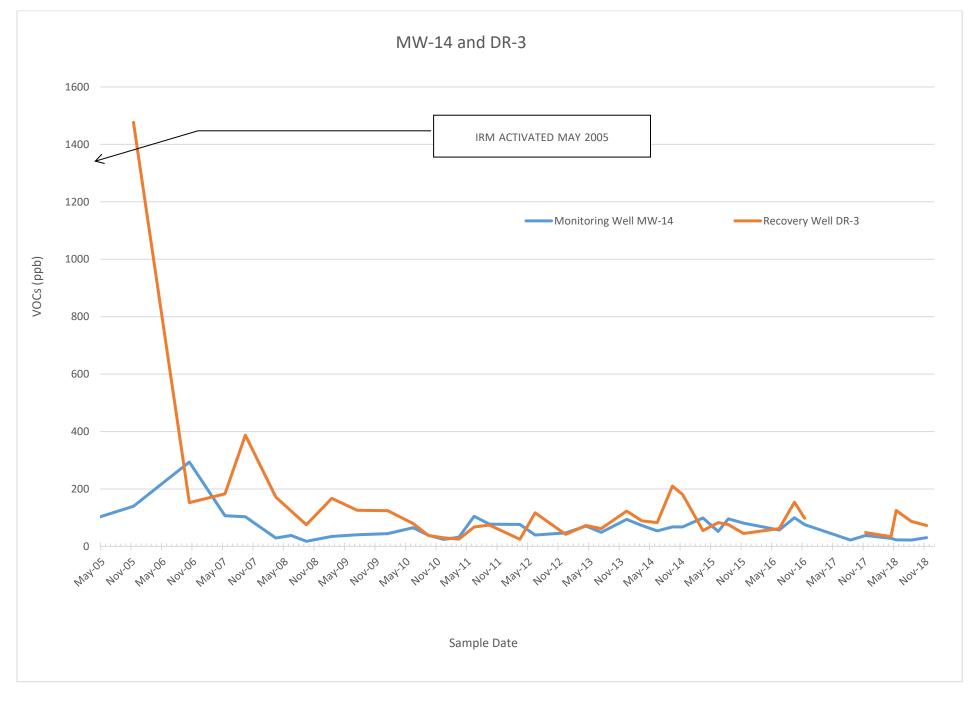
0 25 50 75 100 Feet

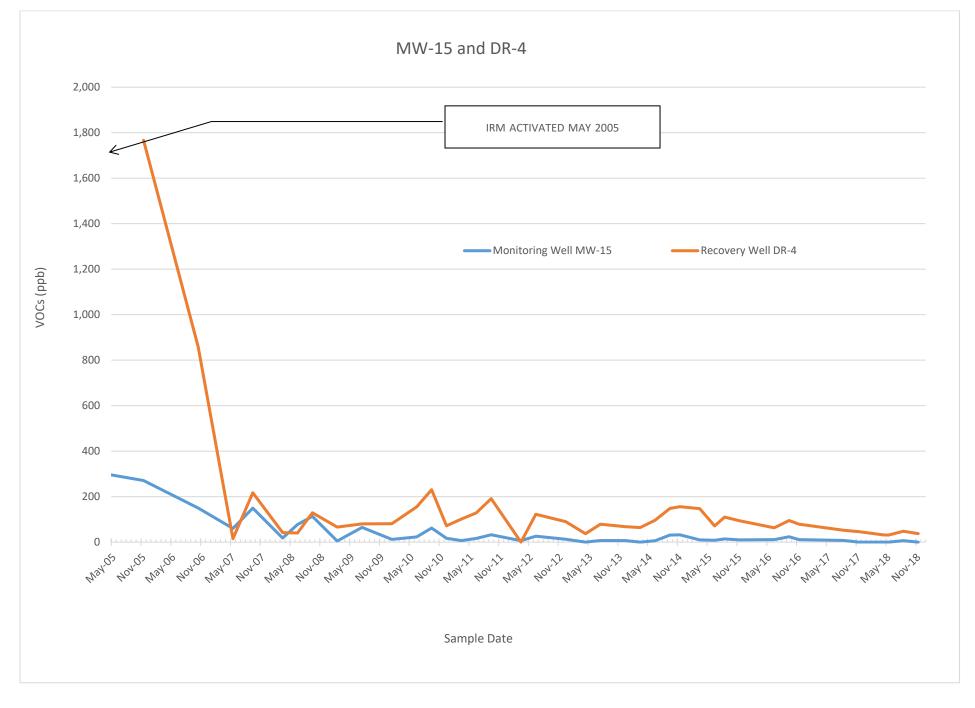


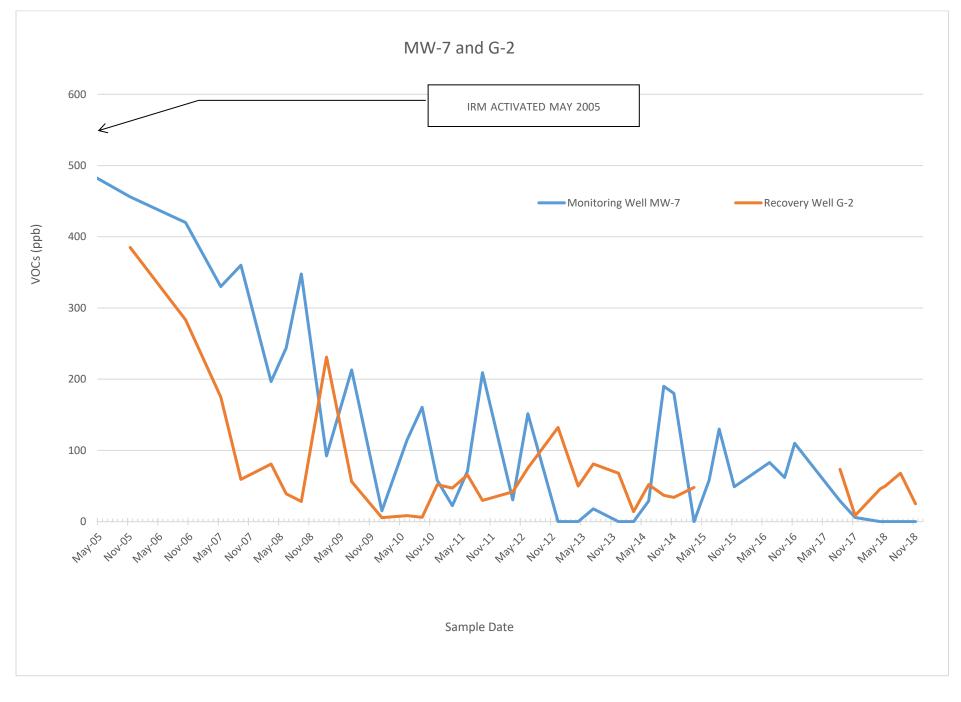
CHARTS

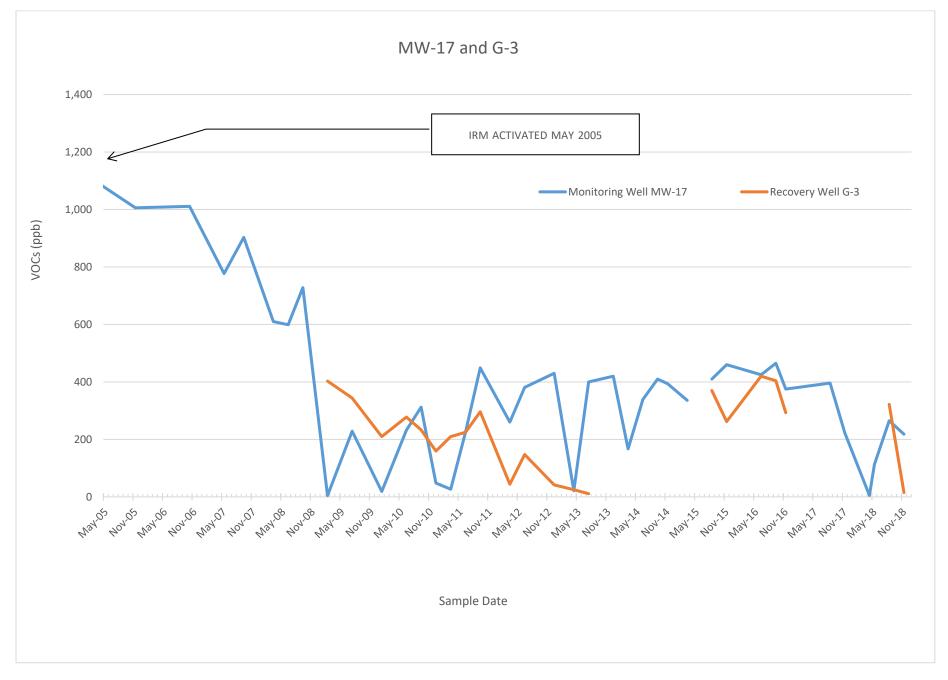












APPENDIX A: LABORATORY ANALYTICAL RESULTS

Service Request No:R1811036

Mr. Cash Bleier Bergmann Associates, Incorporated 280 East Broad Street Suite 200 Rochester, NY 14604

Laboratory Results for: Gowanda

Dear Mr.Bleier,

Enclosed are the results of the sample(s) submitted to our laboratory November 14, 2018 For your reference, these analyses have been assigned our service request number **R1811036**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7471. You may also contact me via email at Brady.Kalkman@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Bandy Kullen

Brady Kalkman Project Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 2 of 61

Client:	Bergmann Associates, Incorporated
Project:	Gowanda
Sample Matrix:	

Service Request: R1811036 Date Received: 11/14/2018

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt:

Twenty nine water samples were received for analysis at ALS Environmental on 11/14/2018. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 0 to 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature. If any samples were received for the analysis of pH, chlorine residual, sulfite, dissolved oxygen, or ferrous iron, the samples were analyzed past their holding time expiration since these analyses are required to be analyzed within 15 minutes of sampling.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

Bauly Kullen

Approved by

Date 11/26/2018

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-1		Lab	ID: R1811	036-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	180		1.3	25	ug/L	8260C
Trichloroethene (TCE)	900		1.0	25	ug/L	8260C
CLIENT ID: MW-6		Lab	ID: R1811	036-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	81		0.26	5.0	ug/L	8260C
LIENT ID: MW-11		Lab	ID: R1811	036-011		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	190		0.26	5.0	ug/L	8260C
trans-1,2-Dichloroethene	9.3		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	290	D	1.0	25	ug/L	8260C
LIENT ID: MW-12		Lab	ID: R1811	036-012		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	35		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	18		0.20	5.0	ug/L	8260C
LIENT ID: MW-14		Lab	ID: R1811	036-014		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	9.7		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	21		0.20	5.0	ug/L	8260C
LIENT ID: MW-16		Lab	ID: R1811	036-016		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	41		0.26	5.0	ug/L	8260C
LIENT ID: MW-17		Lab	ID: R1811	036-017		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	180	D	0.52	10	ug/L	8260C
Trichloroethene (TCE)	38		0.20	5.0	ug/L	8260C
CLIENT ID: G-1		Lab	ID: R1811	036-020		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	68		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	6.6		0.20	5.0	ug/L	8260C
CLIENT ID: G-2			ID: R1811	036-021		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	25		0.26	5.0	ug/L	8260C
CLIENT ID: G-3			ID: R1811			
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	6.2		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	6.8		0.20	5.0	ug/L	8260C

SAMPLE DETECTION SUMMARY

CLIENT ID: DR-1		Lab	ID: R1811	036-023		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	210		2.6	50	ug/L	8260C
Trichloroethene (TCE)	1100		2.0	50	ug/L	8260C
CLIENT ID: DR-2		Lab	ID: R1811	036-024		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	170		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	46		0.20	5.0	ug/L	8260C
Vinyl Chloride	5.6		0.22	5.0	ug/L	8260C
CLIENT ID: DR-3		Lab	ID: R1811	036-025		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	42		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	31		0.20	5.0	ug/L	8260C
CLIENT ID: DR-4		Lab	ID: R1811	036-026		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	9.2		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	28		0.20	5.0	ug/L	8260C

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 6 of 61

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	<u>TIME</u>
R1811036-001	MW-1	11/13/2018	1210
R1811036-002	MW-2	11/13/2018	1220
R1811036-003	MW-3	11/13/2018	1200
R1811036-004	MW-4	11/13/2018	1150
R1811036-005	MW-5	11/13/2018	1115
R1811036-006	MW-6	11/13/2018	1100
R1811036-007	MW-7	11/13/2018	1030
R1811036-008	MW-8	11/13/2018	1300
R1811036-009	MW-9	11/13/2018	1240
R1811036-010	MW-10	11/13/2018	1230
R1811036-011	MW-11	11/13/2018	1245
R1811036-012	MW-12	11/13/2018	1215
R1811036-013	MW-13	11/13/2018	1200
R1811036-014	MW-14	11/13/2018	1015
R1811036-015	MW-15	11/13/2018	1030
R1811036-016	MW-16	11/13/2018	1015
R1811036-017	MW-17	11/13/2018	1040
R1811036-018	MW-18	11/13/2018	1315
R1811036-019	MW-20	11/13/2018	1130
R1811036-020	G-1	11/13/2018	1015
R1811036-021	G-2	11/13/2018	1000
R1811036-022	G-3	11/13/2018	1300
R1811036-023	DR-1	11/13/2018	1230
R1811036-024	DR-2	11/13/2018	1138
R1811036-025	DR-3	11/13/2018	1100
R1811036-026	DR-4	11/13/2018	1045
R1811036-027	MW-X	11/13/2018	2359
R1811036-028	Equip Blank	11/13/2018	2359
R1811036-029	Trip Blank	11/13/2018	2359

- N - 1

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 54368

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____OF _____

Project Name Gawanda	Glwanga 0974.10 Managar C. Bleve Ndddress Bergmann SO E Softester NY 14604 Stranders Stamplers Blever Collester NY 14604 Stamplers Blever Collester NY 11/13/18 12:10p Mw-1 11/13/18 12:00p Mw-2 11/13/18 12:00p Mw-3 11/13/18 12:00p Mw-4 11/13/18 12:00p Mw-5 11/13/18 11:00p Mw-6 11/13/18 11:00p Mw-7 11/13/18 12:40p Mw-8 11/13/18 12:40p Mw-10 11/13/18 12:40p Mw-10 11/13/18 12:40p								NALYS	IS REC	QUEST	red (i	nclude	e Meth	od Nu	mber	and C	ontain	er Pre:	servativ	ve)		
Design t tigeneer					PRE	SERVA	TIVE	1															_
Company/Address					Ś		\neg	-7	-7		\neg	7	-7	7	7	\neg	7	7	\neg	7	7	Preservative Key D	
	Suite	e 200			NUMBER OF CONTAINERS		/	/	/			/,			/				/	/	/<	1. HCD 2. H NO ₃ 3. H ₂ SO ₄ 4. NaOH	
Rochester, NY 14	CLIENT SAMPLE ID MW-1 MW-Z Chester, NY 14604 Emal Cheier@begmannec.i Sampler's Printed Name Cheier@begmannec.i Sampler's Printed Name GSh. Bleier SAMPLING DATE UI/13/18 12:200 0								 \$	/ /	METALS TOT		Caning and	/ /	/ /	/ /	/ /	/ /	/ /			4. NaOH 5. Zn. Acetate 6. MeOH 7. NaHSO4	
Phone 585-498-795	0	Colleier@ber	ymanne	x. čom	MBER	CANS NO.	Ches sho		CIDE0	8	8 8 2 2	8 3										8. Other Y	
Sampler's Signature	Bochester NY 14604 "545-498-7950 Email Cheier@becgmannec.to bers Signature NM Bland Sampler's Printed Name Blerer CLIENT SAMPLE ID FOR OFFICE USE SAMPLING DATE TIME MA MW-1 III/13/18 IZ: 10p GI MA MW-2 III/13/18 IZ: 20p Cr MW-3 III/13/18 IZ: 00p G MW-4 II/13/18 IZ: 00p G MW-5 II/13/18 II: 50u G MW-6 II/13/18 II: 100 G G									2 4 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	Les P	Net N								/ _{Al}		EMARKS/	
CLIENT SAMPLE ID				MATRIX																		· · · · · · · · · · · · · · · · · · ·	
MW-1		$\left[\frac{1}{3} \right] $	12:100	I GW	3	X																	
		11/13/18	12:200	CiW	3	X																	٦
		11/13/18	12:000	GW	3	X																	٦
MW-4		113/15	11:504	GW	3	X																	
MWS		11/13/18	11:156	GW	3	X																	
		11/13/18	11:000	GW	3	X								Ì									٦
MW-7		11/13/1X	10:304	GW	3	X								l									
MW-S		11/13/18	1:00 pm	GW	3	X																	
Mw-9		11/13/18	12:400	GW	3	X																	Γ
Mw-10		1(/13/18	12:300	GW	3	X																	
Mw-11		[11/13/18]	12:450	Gh	3	X																	
SPECIAL INSTRUCTIONS/COMMENTS		•					τυ	RNAR	OUND	REQUI	REME	NTS		REPO	ORT RE	QUIR	EMENT	rs		INVO		FORMATION	
Metals									I (SURC	HARGES	APPLY)		_ I. Resu	its Only								
								1		day	1 dau			N. Rest	ults + Q(C Summ	aries		PO #			·	۲
									14	day day				(LCS, 1	oup, MS	MSD a:	s require	d)	BILL	TO:			-
							-X	Stand	lard (10 t	buelnees o	taya-No S	Surcharge	» —	_ KI. Res Summ		C and C	alibratio	n					_
				REQU	JESTEC	REPO	RT DAT	E															
														_1V. Data hV/S	a vawaa K	lion Rep	E De		a				
See OAPP										_ //	75	V	212	μ. Ψ.						-			
STATE WHERE SAMPLES WERE COLL	ECTED	New York											<u> </u>	Edat		Yes		No					_
RELINQUISHED BY	Nulpha line								RECEN	VED BY				R	ELINQI	UISHED) BY				RECE	IVED BY	
								ure					Signat					81	103	6		5	
Printed Name Cash Bleren Pri								Name						d Name			Bergmi	inn Ass	ociates,	tncorpo)		
Firm Bergman Fin	<u> </u>	IS	Fim				Firm						Firm			_		i na					
Deto/Time 1/14/18 09:50 Da	ite/Time//_///	18 09:50	Date/Time			0.06	Dete/Ti	kné					Date/	lime					11) 15(1)		- 10 41 (4)		

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 54369

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____OF ____

Project Name Gadanda	Proje	^{ct Number} 6974	1.96					AN	IALYS	IS REC	QUEST	red (i	nclude	e Meth	od Nu	mber	and C	ontain	er Pre	servativ	/e)		
Project Manager C. BIENCE	Repo	ri CC			PRE	SERVAT	ΠVE	1															
Compeny/Address Bergmany	A	C. No. Q	A A		NNERS		/	/	/	7	7	7	7	7	/	7	7		7	/		Preserval D. NONE 1. HCD 2. HNO: 3. H2SC 4. NaOH	ive Key
290 E Brown Pochester, UY	14604	Shite 2			NUMBER OF CONTAINERS		3	/ ? /	 \$			anis below	SOLVED	/ /	/ /	/ /	/ /	/ /	/ /	/ /	i	 H2SO NaOH Zn. A MeOH NaHS 	
Phone 585-498- 795 Sampler's Signature		C bleiereber	ymannf	<u>Ci com</u>	NUMBER	CCMS VOA	6CMS 5102	200 200 200 200 200 200 200 200 200 200	PESTICIOEC	600 600 600 600 600 600 600 600 600 600	METALS TOT	METALS. DI	Comments Decent					/			(Ri	B. Other	× ×
CLIENT SAMPLE ID	FOR OFFICE US ONLY LAB ID			MATRIX				Í							Í			<u> </u>					
MW-12		11/13/14	12150	GW	3	\mathbf{X}													- ; -				
MW-13		11/316	2:00R	GW	3	X																	
MW-14		11/13/18	01159	Ġ₩	3	Х																	
MW-15		11/0/181	0:304	GW	3	X																	
Mw-16.		11/(3(18))	10: 15a	<u>Gw</u>	3	X																	
MW-17		1/13/18	10:40a	GW	3	X																	
MW-18		1/13/18	<u>1:15pm</u>	GW	3	X																	
MW-20		11/13/18	11:309	<u>GW</u>	3	X																	
<u>G1-1</u>		-11/13/18	10: 1Su	GW	3	X																	
(91-7		11/13/18/1	0:001	<u>GW</u>	3	X																	
67-3		11/13/1811	1000	(Alw	3	الحا							Ļ										
SPECIAL INSTRUCTIONS/COMMENTS Metals		·					TU1			REQUI				REPÓ 1. Resu		OUIRI	EMENT	rs		INVC	DICE IN	FORMAT	ION
									2 5	day	3 day			-		C Summ VMSD at		d)	PO #				
							_X			businosa (day a -No S	Sucharge	» —	_ III. Res Summa		C and C	alibratio	n	811.1	TO:			
							REQU	ESTED	REPO	RT DAT	E			_ IV. Datu	n Validat	ion Rep	ort with i	Raw Dat	a				
See QAPP														NY	SE	ÿи	i۲				•	- · · · · ·	
STATE WHERE SAMPLES WERE COL		New York												Edat	<u>*</u>	Yes	_	No					
RELINQUISHED BY	REC	EIVED BY	REL	NOUISHED	BY			I	RECE	VED BY	,			RI	ELINQU	JISHED	BY				RECEI	VED BY	
Signature Mar S								re					Signat				12	11	036		Ę	5	~
Printed Native CGSh BICIL	too Name CGSh Black Printed Name							Name					Printe	d Name		- Ber	gmann.	ASSOCI	ates, iru	or por er	ed		
Benghann		AIS	Firm				Firm						Firm										1
	ATE WHERE SAMPLES WERE COLLECTED NEW YORK RELINQUISHED BY RECEIVED BY RELINO ature May Signature od Name CGSL BICLY Printed Name BECS Mann Firm Als Firm												Date/1	lime		<u> </u>						1 0111 1005 	/

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 54370

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____OF ____

Project Name Gawarda	Project Number 6974	1.46				A	NALYS	IS RE	QUEST	ED (include	e Meth	od Nu	ımber	and C	ontair	ner Pre	servat	live)		
Project Manager C. Bleice	Report CC		PRE	SERVA	TIVE	[
Company/Address BECGMann	t. Suide Z	2 00 0	ANERS		7	7	7	7	7	7	7	7	7	7	7	/	7		/	Preserva 0. NON 1. HCL 2. HNO 3. HoS	5
Rochester NY 146	-00	NUMBER OF CONTAINERS			3		/		The second se	Comments Contract	/		/ /	/ /	/ /		/ /	/	6. MeO 7. NaHS	cetate	
Sampler's Signature	<u>Gmannpc.com</u> ? CC	NUMBER	Constant Constant	Cons Sund	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	EST CO		METALS, TOT	METALS. 0	in the second second							[]	ALTERI		<u>II</u>	
DR-1	CLIENT SAMPLE ID FOR OFFICE USE ONLY LAB ID SAMPLING DATE DP-1 11/13/15 12:30 m DP-2 11/13/15 11:35 G DP-3 11/13/15 11:00 G																				
	CLIENT SAMPLE ID ONLY LAB ID DATE TIME M DQ-1 11/13/15 12:36m 1 12:36m 1 DQ-2 11/13/15 11:38 G 1 1 38 G 1 DQ-3 11/13/15 11:38 G 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																				
	11/13/18	11:00 4 COW	3	X																	
DR-4	u/13/8	10:45a GW	3	X													ļ				
			ļ														<u> </u>	_			
																	 				
		·= .		<u> </u>									<u> </u>			ļ					
			 															_			
<u></u>																	+				
SPECIAL INSTRUCTIONS/COMMENTS	l		<u>I</u> .	i							l					L	L				
Metals					τυ 	IRNAR 			IREME S APPLY		. 		DRT RI Illis Only	EQUIR /	EMEN	TS		(N)	VOICE	INFORMA	TION
						_ 1 day	?	dav	3 day		<u> </u>			C Summ			PO (•			
						4 day	/5	day	daya-No		e)	-		S/MSD a XC and C	-	-	81.1.	TO:			
								AT DAT				Summ									
								-			_ IV, Dat	a Valida	tion Rep	ort with	Raw Da	rta					
See QAPP]							N	۲۶'	FU	٦'n)					· ·	
STATE WHERE SAMPLES WERE COLLECTED	·····											Eda	<u>m</u>	Yes		No					
	RELINQUISHED	BY				RECE	VED BY	r			F	ELINO	UISHE	D BY				REC	EIVED BY		
Signature	AM. Julia	Signature			Signatu	ure					Signa	ture					Sign	ature			
											Printe	d Name					Print	ed Nam	ė		
Firm Bergmann Firm	AVS	Firm			Firm						Firm						Firm				
Date/Time 11/14/2018 09150 Date/Time	14/18 09,50	Date/Time	<u> </u>	40-	Dete/T	ìme					Date/	Time					Date	/Time	-		

	A.			•							R1 Bergma Gowand	81103	6 ncorporated	5	
(ALS	í Rov	Cooler I Gmann	kece	ipt a				1 Che	eck Fe	orm					
Project/Clien	1111	11	1	5	Folder		nber RIER:	AT 6	UPS	FEDE	 V VELO				
Cooler received		outside of cooler	by: <u> </u> -2		Y (N)	5a					uired hea			NA	>
	-	ly completed (inl		ed)?		5b			•		•	x* bubbles?	(Y) N		k
-		good condition (_	- 1 I		6			bottles			ALS/ROC		NT	η·
	·	Ice Gel packs	-	sent? (Y N	7			eived as	-			>	NA	
8. Temperature	Readings	Date: 11-14	18	Time	10:00		ID:	IR#7	(IR#10	$\overline{)}$	From:	(Temp Blar	ik) Sam	ple Bottle	
Observed Ten	ıp (°C)	0,1			·····										
Correction Fa		10.4													•
Corrected Ten		0,5								••••			<u></u>		
Temp from:T		<u>centitub</u>	e			*7				V	NT I	V N	- Y	N	
Within 0-6°C If <0°C, were		en? Y N			N N		N N	Y Y	N N		N N	Y N Y N			
		· ·			IN	-					lescribed			Day Rule	
	-	note packing/ic un Samples:			Iding Appr		lce melt		-	•	lient notif	-	Jaine L	Juy Kulo	
				_							none noen				
All samples h 5035 samples		e location: orage location:	12-00		ру <u>М</u> Е ру	or	1 <u> - </u> 4	$\frac{10^{\text{at}}}{2^{\text{at}}}$	0103						
	La de la della		88) Mar C. S. C.	100 50 5 2 5			14.03NS-1121-15	A 181 - 17 - 1	19 Print and a						
		rvation Check**			<u> 14 18</u>		Time:	15.	28	by:		1/2 hitt	. In t	land	
		labels complete (bels and tags agr					.)?		₽¶ ₽		(NO	12 bettl dal	to time	neo	
		intainers used for				•			e B	Ĕ\$	NO	cruc			\mathbf{i}
		s acceptable (no					D			ES	NO Daga Inf	atad)
	Lot of test	assettes / Tubes Reagent	Preser	-	Lot Rec		Pressur	Exp	Sampl		Bags Infl Vol.		ded	Final	1
· · ·	paper		Yes	No					Adjust		Added			рН /	
≥12		NaOH		ļ										-/	-
<u>\$2</u> \$2		HNO3 H2SO4									<u> -</u>		. <u></u>		-{
<4		NaHSO4									-				
5-9		For 608pest			No=Noti										_
Residual		For CN,			If +, cont Na ₂ S ₂ O ₃ (
Chlorine (-)		Phenol, 625, 608pest, 522		.	CN), asco										1
		$Na_2S_2O_3$			· · · · ·										_
L		ZnAcetate	-	-					**VOA	s and 166	4 Not to be	tested before amples with c	analysis. hemical pr	eservatives	
		HCI	**	**	4117	1090					just represe				
Dettle let u	E E	74/ 00/													
Bottle lot n Explain all	umbers: <u></u> Discrepancie	- 206 - 007 es/ Other Comm	ents:		•										
V C-1: 20	3 Vials	MW-16:	lof	3 V	íals N	IW-X	10	F3 1	Vial3			CL	RES B	ULK	
*	2-02 110	14 DR-3:	dof	3 V.	al3 N	1W-}1	0: lo	f3 V	1a13		·V	DC) FI	.DT	
MWIJS	2 5 1	- MW-11	1 201	-3 V	1a131 M	wH3	: 20	43 V	1,613		1. 11	HF		GFB	
DR-4 :	dot 3 vi 4	5 5-11	Jat	3110						1	peid	- HT		L3541	
MW-S :	lof 3 via	13 1013-13		2 10					aut on	r (7	MENT	PH		JB	
			1001-					4	101		•		12 1.14	ARRS	
MW-12	: 10f3 vi	al3 (G-2:	: 107 All3	3 V V(al:	5				Ca	E	qui Bl	ne sc Al		ARRS EV	
MW-12 Labels se	· 10f3 Vil condary re	es/ Other Comm MW-1C: MW-2: G-2: Miender by:	All3	3 V V(al:	5			/	Coc	(E) Ta	<u>Rec'd</u> Mbs - I guj Bla j Bla 6 mm : V	k K K C >1 in. d	.S R		

_7

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r16.doc

3/12/18

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 12 of 61

S Environmental

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester I	Lab ID	# for	State	Certifica	ations ¹
					1

Connecticut ID # PH0556	Maine ID #NY0032	Pennsylvania ID# 68-786
Delaware Approved	New Hampshire ID # 2941	Rhode Island ID # 158
DoD ELAP #65817	New York ID # 10145	Virginia #460167
Florida ID # E87674	North Carolina #676	

¹ Analyses were performed according to our laboratory NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

Analyst Summary report

Bergmann Associates, Incorporated

Client:

Project:	Gowanda/6974.96		Service Request: R1811036
Sample Name: Lab Code: Sample Matrix:	MW-1 R1811036-001 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-2 R1811036-002 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-3 R1811036-003 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-4 R1811036-004 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-5 R1811036-005 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Printed 11/26/2018 11:2	1:07 AM	15 of 61	Superset Reference:18-0000488955 r

Analyst Summary report

Bergmann Associates, Incorporated

Client:

Project:	Gowanda/6974.96		Service Request: R1811030
Sample Name: Lab Code: Sample Matrix:	MW-6 R1811036-006 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-7 R1811036-007 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-8 R1811036-008 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-9 R1811036-009 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-10 R1811036-010 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Printed 11/26/2018 11:2	1:07 AM	16 of 61	Superset Reference:18-0000488955 1

Analyst Summary report

Bergmann Associates, Incorporated

Project:	Gowanda/6974.96		Service Request. Riorioso
Sample Name: Lab Code: Sample Matrix:	MW-11 R1811036-011 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-12 R1811036-012 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-13 R1811036-013 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-14 R1811036-014 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-15 R1811036-015 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER

Client:

Analyst Summary report

Bergmann Associates, Incorporated

Project:	Gowanda/6974.96		Service Request. Riorioso
Sample Name: Lab Code: Sample Matrix:	MW-16 R1811036-016 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-17 R1811036-017 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-18 R1811036-018 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-20 R1811036-019 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	G-1 R1811036-020 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER

Client:

Analyst Summary report

Bergmann Associates, Incorporated

Client:

Project:	Gowanda/6974.96		Service Request: R1811036
Sample Name: Lab Code: Sample Matrix:	G-2 R1811036-021 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	G-3 R1811036-022 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	DR-1 R1811036-023 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	DR-2 R1811036-024 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	DR-3 R1811036-025 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Printed 11/26/2018 11:2	1:07 AM	19 of 61	Superset Reference:18-0000488955 r

uba ALS Environmentai

Analyst Summary report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	

Sample Name:	DR-4	Date Collected:	11/13/18
Lab Code:	R1811036-026	Date Received:	11/14/18
Sample Matrix:	Water		

Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-X R1811036-027 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	Equip Blank R1811036-028 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	Trip Blank R1811036-029 Water		Date Collected: 11/13/18 Date Received: 11/14/18
Analysis Method		Extracted/Digested By	Analyzed By

8260C

FNAEGLER

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

RIGHT SOLUTIONS | RIGHT PARTNER

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 22 of 61

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 23 of 61

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036	
Project:	Gowanda/6974.96	Date Collected: 11/13/18 12:10	
Sample Matrix:	Water	Date Received: 11/14/18 09:50	
Sample Name:	MW-1	Units: ug/L	
Lab Code:	R1811036-001	Basis: NA	
Lus couci			

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	180	25	5	11/19/18 01:08	
trans-1,2-Dichloroethene	25 U	25	5	11/19/18 01:08	
Tetrachloroethene (PCE)	25 U	25	5	11/19/18 01:08	
1,1,1-Trichloroethane (TCA)	25 U	25	5	11/19/18 01:08	
Trichloroethene (TCE)	900	25	5	11/19/18 01:08	
Vinyl Chloride	25 U	25	5	11/19/18 01:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 01:08	
Dibromofluoromethane	97	89 - 119	11/19/18 01:08	
Toluene-d8	100	87 - 121	11/19/18 01:08	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: 11/13/18 12:20
Sample Matrix:	Water	Date Received: 11/14/18 09:50
Sample Name:	MW-2	Units: ug/L
Lab Code:	R1811036-002	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 01:30	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 01:30	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 01:30	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 01:30	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 01:30	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 01:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 01:30	
Dibromofluoromethane	97	89 - 119	11/19/18 01:30	
Toluene-d8	98	87 - 121	11/19/18 01:30	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: 11/13/18 12:00
Sample Matrix:	Water	Date Received: 11/14/18 09:50
Sample Name: Lab Code:	MW-3 R1811036-003	Units: ug/L Basis: NA
-		6

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 01:52	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 01:52	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 01:52	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 01:52	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 01:52	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 01:52	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 01:52	
Dibromofluoromethane	96	89 - 119	11/19/18 01:52	
Toluene-d8	99	87 - 121	11/19/18 01:52	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	11/13/18 11:50
Sample Matrix:	Water	Date Received:	11/14/18 09:50
Sample Name: Lab Code:	MW-4 R1811036-004	Units: Basis:	0

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 02:15	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 02:15	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 02:15	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 02:15	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 02:15	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 02:15	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 02:15	
Dibromofluoromethane	98	89 - 119	11/19/18 02:15	
Toluene-d8	100	87 - 121	11/19/18 02:15	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: 11/13/18 11:15
Sample Matrix:	Water	Date Received: 11/14/18 09:50
~		
Sample Name	MW-5	Linits ug/I
Sample Name: Lab Code:	MW-5 R1811036-005	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 02:37	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 02:37	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 02:37	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 02:37	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 02:37	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 02:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 02:37	
Dibromofluoromethane	98	89 - 119	11/19/18 02:37	
Toluene-d8	101	87 - 121	11/19/18 02:37	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: 11/13/18 11:00
Sample Matrix:	Water	Date Received: 11/14/18 09:50
Sample Name: Lab Code:	MW-6 R1811036-006	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	81	5.0	1	11/19/18 02:59	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 02:59	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 02:59	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 02:59	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 02:59	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 02:59	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 02:59	
Dibromofluoromethane	99	89 - 119	11/19/18 02:59	
Toluene-d8	101	87 - 121	11/19/18 02:59	

Analytical Report

ollected: 11/13/18 10:30
eceived: 11/14/18 09:50
Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 03:21	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 03:21	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 03:21	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 03:21	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 03:21	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 03:21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 03:21	
Dibromofluoromethane	97	89 - 119	11/19/18 03:21	
Toluene-d8	99	87 - 121	11/19/18 03:21	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	11/13/18 13:00
Sample Matrix:	Water	Date Received:	11/14/18 09:50
Sample Name: Lab Code:	MW-8 R1811036-008	Units: Basis:	e

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 03:43	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 03:43	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 03:43	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 03:43	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 03:43	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 03:43	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 03:43	
Dibromofluoromethane	97	89 - 119	11/19/18 03:43	
Toluene-d8	99	87 - 121	11/19/18 03:43	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	11/13/18 12:40
Sample Matrix:	Water	Date Received:	11/14/18 09:50
Sample Name: Lab Code:	MW-9 R1811036-009	Units: Basis:	e
Lub Couc.			1111

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 04:05	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 04:05	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 04:05	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 04:05	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 04:05	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 04:05	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 04:05	
Dibromofluoromethane	98	89 - 119	11/19/18 04:05	
Toluene-d8	101	87 - 121	11/19/18 04:05	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	11/13/18 12:30
Sample Matrix:	Water	Date Received:	11/14/18 09:50
Sample Name: Lab Code:	MW-10 R1811036-010	Units: Basis:	e
Lab Coue.	K1011050-010	Da315.	INA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 04:27	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 04:27	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 04:27	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 04:27	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 04:27	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 04:27	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 04:27	
Dibromofluoromethane	98	89 - 119	11/19/18 04:27	
Toluene-d8	100	87 - 121	11/19/18 04:27	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: 11/13/18 12:45
Sample Matrix:	Water	Date Received: 11/14/18 09:50
Sample Name:	MW-11	Units: ug/L
Lab Code:	R1811036-011	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Result	MRL	Dil.	Date Analyzed	Q
190	5.0	1	11/19/18 04:49	
9.3	5.0	1	11/19/18 04:49	
5.0 U	5.0	1	11/19/18 04:49	
5.0 U	5.0	1	11/19/18 04:49	
290 D	25	5	11/20/18 02:08	
5.0 U	5.0	1	11/19/18 04:49	
	190 9.3 5.0 U 5.0 U 290 D	190 5.0 9.3 5.0 5.0 U 5.0 5.0 U 5.0 290 D 25	190 5.0 1 9.3 5.0 1 5.0 U 5.0 1 5.0 U 5.0 1 5.0 U 5.0 1 5.0 U 5.0 1 290 D 25 5	190 5.0 1 11/19/18 04:49 9.3 5.0 1 11/19/18 04:49 5.0 U 5.0 1 11/19/18 04:49 290 D 25 5 11/20/18 02:08

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	11/19/18 04:49	
Dibromofluoromethane	97	89 - 119	11/19/18 04:49	
Toluene-d8	98	87 - 121	11/19/18 04:49	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: 11/13/18 12:15
Sample Matrix:	Water	Date Received: 11/14/18 09:50
Sample Name: Lab Code:	MW-12 R1811036-012	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	35	5.0	1	11/19/18 05:11	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 05:11	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 05:11	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 05:11	
Trichloroethene (TCE)	18	5.0	1	11/19/18 05:11	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 05:11	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 05:11	
Dibromofluoromethane	98	89 - 119	11/19/18 05:11	
Toluene-d8	100	87 - 121	11/19/18 05:11	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	11/13/18 12:00
Sample Matrix:	Water	Date Received:	11/14/18 09:50
Sample Name: Lab Code:	MW-13 R1811036-013	Units: Basis:	0

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 05:33	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 05:33	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 05:33	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 05:33	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 05:33	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 05:33	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 05:33	
Dibromofluoromethane	97	89 - 119	11/19/18 05:33	
Toluene-d8	99	87 - 121	11/19/18 05:33	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	11/13/18 10:15
Sample Matrix:	Water	Date Received:	11/14/18 09:50
Sample Name:	MW-14	Units:	e
Lab Code:	R1811036-014	Basis:	NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	9.7	5.0	1	11/19/18 05:56	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 05:56	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 05:56	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 05:56	
Trichloroethene (TCE)	21	5.0	1	11/19/18 05:56	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 05:56	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 05:56	
Dibromofluoromethane	96	89 - 119	11/19/18 05:56	
Toluene-d8	98	87 - 121	11/19/18 05:56	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	11/13/18 10:30
Sample Matrix:	Water	Date Received:	11/14/18 09:50
Sample Name: Lab Code:	MW-15 R1811036-015	Units: Basis:	e

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 06:18	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 06:18	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 06:18	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 06:18	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 06:18	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 06:18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 06:18	
Dibromofluoromethane	97	89 - 119	11/19/18 06:18	
Toluene-d8	99	87 - 121	11/19/18 06:18	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	11/13/18 10:15
Sample Matrix:	Water	Date Received:	11/14/18 09:50
Sample Name: Lab Code:	MW-16 R1811036-016	Units: Basis:	0

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	41	5.0	1	11/19/18 06:40	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 06:40	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 06:40	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 06:40	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 06:40	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 06:40	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 06:40	
Dibromofluoromethane	98	89 - 119	11/19/18 06:40	
Toluene-d8	99	87 - 121	11/19/18 06:40	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036	
Project:	Gowanda/6974.96	Date Collected: 11/13/18 10:4	-0
Sample Matrix:	Water	Date Received: 11/14/18 09:5	0
Sample Name: Lab Code:	MW-17 R1811036-017	Units: ug/L Basis: NA	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	180 D	10	2	11/20/18 09:54	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 02:31	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 02:31	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 02:31	
Trichloroethene (TCE)	38	5.0	1	11/20/18 02:31	
Vinyl Chloride	5.0 U	5.0	1	11/20/18 02:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/20/18 02:31	
Dibromofluoromethane	96	89 - 119	11/20/18 02:31	
Toluene-d8	99	87 - 121	11/20/18 02:31	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: 11/13/18 13:15
Sample Matrix:	Water	Date Received: 11/14/18 09:50
Sample Name: Lab Code:	MW-18 R1811036-018	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 07:24	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 07:24	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 07:24	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 07:24	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 07:24	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 07:24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	11/19/18 07:24	
Dibromofluoromethane	96	89 - 119	11/19/18 07:24	
Toluene-d8	98	87 - 121	11/19/18 07:24	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: 11/13/18 11:30
Sample Matrix:	Water	Date Received: 11/14/18 09:50
Sample Name: Lab Code:	MW-20 R1811036-019	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 07:46	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 07:46	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 07:46	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 07:46	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 07:46	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 07:46	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 07:46	
Dibromofluoromethane	95	89 - 119	11/19/18 07:46	
Toluene-d8	98	87 - 121	11/19/18 07:46	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: 11/13/18 10:15
Sample Matrix:	Water	Date Received: 11/14/18 09:50
Sample Name:	G-1	Units: ug/L
Dampic rame.		
Lab Code:	R1811036-020	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	68	5.0	1	11/19/18 08:08	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 08:08	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 08:08	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 08:08	
Trichloroethene (TCE)	6.6	5.0	1	11/19/18 08:08	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 08:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	11/19/18 08:08	
Dibromofluoromethane	98	89 - 119	11/19/18 08:08	
Toluene-d8	101	87 - 121	11/19/18 08:08	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	11/13/18 10:00
Sample Matrix:	Water	Date Received:	11/14/18 09:50
Sample Name: Lab Code:	G-2 R1811036-021	Units: Basis:	e

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	25	5.0	1	11/20/18 02:53	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 02:53	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 02:53	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 02:53	
Trichloroethene (TCE)	5.0 U	5.0	1	11/20/18 02:53	
Vinyl Chloride	5.0 U	5.0	1	11/20/18 02:53	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	11/20/18 02:53	
Dibromofluoromethane	97	89 - 119	11/20/18 02:53	
Toluene-d8	101	87 - 121	11/20/18 02:53	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	11/13/18 13:00
Sample Matrix:	Water	Date Received:	11/14/18 09:50
Sample Name: Lab Code:	G-3 R1811036-022	Units: Basis:	e
240 0040			

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	6.2	5.0	1	11/20/18 10:16	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 10:16	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 10:16	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 10:16	
Trichloroethene (TCE)	6.8	5.0	1	11/20/18 10:16	
Vinyl Chloride	5.0 U	5.0	1	11/20/18 10:16	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	11/20/18 10:16	
Dibromofluoromethane	95	89 - 119	11/20/18 10:16	
Toluene-d8	100	87 - 121	11/20/18 10:16	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	11/13/18 12:30
Sample Matrix:	Water	Date Received:	11/14/18 09:50
Sample Name: Lab Code:	DR-1 R1811036-023	Units: Basis:	6

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	210	50	10	11/20/18 03:37	
trans-1,2-Dichloroethene	50 U	50	10	11/20/18 03:37	
Tetrachloroethene (PCE)	50 U	50	10	11/20/18 03:37	
1,1,1-Trichloroethane (TCA)	50 U	50	10	11/20/18 03:37	
Trichloroethene (TCE)	1100	50	10	11/20/18 03:37	
Vinyl Chloride	50 U	50	10	11/20/18 03:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	11/20/18 03:37	
Dibromofluoromethane	100	89 - 119	11/20/18 03:37	
Toluene-d8	104	87 - 121	11/20/18 03:37	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: 11/13/18 11:38
Sample Matrix:	Water	Date Received: 11/14/18 09:50
Sample Name: Lab Code:	DR-2 R1811036-024	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	170	5.0	1	11/20/18 03:59	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 03:59	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 03:59	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 03:59	
Trichloroethene (TCE)	46	5.0	1	11/20/18 03:59	
Vinyl Chloride	5.6	5.0	1	11/20/18 03:59	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	11/20/18 03:59	
Dibromofluoromethane	100	89 - 119	11/20/18 03:59	
Toluene-d8	101	87 - 121	11/20/18 03:59	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	11/13/18 11:00
Sample Matrix:	Water	Date Received:	11/14/18 09:50
Sample Name:	DR-3	Units:	ug/L
Lab Code:	R1811036-025	Basis:	NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	42	5.0	1	11/20/18 04:21	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 04:21	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 04:21	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 04:21	
Trichloroethene (TCE)	31	5.0	1	11/20/18 04:21	
Vinyl Chloride	5.0 U	5.0	1	11/20/18 04:21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	11/20/18 04:21	
Dibromofluoromethane	99	89 - 119	11/20/18 04:21	
Toluene-d8	102	87 - 121	11/20/18 04:21	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: 11/13/18 10:45
Sample Matrix:	Water	Date Received: 11/14/18 09:50
Sample Name: Lab Code:	DR-4 R1811036-026	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	9.2	5.0	1	11/20/18 04:43	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 04:43	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 04:43	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 04:43	
Trichloroethene (TCE)	28	5.0	1	11/20/18 04:43	
Vinyl Chloride	5.0 U	5.0	1	11/20/18 04:43	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/20/18 04:43	
Dibromofluoromethane	95	89 - 119	11/20/18 04:43	
Toluene-d8	98	87 - 121	11/20/18 04:43	

Analytical Report

Service Request:	R1811036
Date Collected:	11/13/18 23:59
Date Received:	11/14/18 09:50
	0
	-

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 05:05	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 05:05	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 05:05	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 05:05	
Trichloroethene (TCE)	5.0 U	5.0	1	11/20/18 05:05	
Vinyl Chloride	5.0 U	5.0	1	11/20/18 05:05	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	11/20/18 05:05	
Dibromofluoromethane	98	89 - 119	11/20/18 05:05	
Toluene-d8	102	87 - 121	11/20/18 05:05	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: 11/13/18 23:59
Sample Matrix:	Water	Date Received: 11/14/18 09:50
Sample Name: Lab Code:	Equip Blank R1811036-028	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 01:46	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 01:46	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 01:46	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 01:46	
Trichloroethene (TCE)	5.0 U	5.0	1	11/20/18 01:46	
Vinyl Chloride	5.0 U	5.0	1	11/20/18 01:46	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/20/18 01:46	
Dibromofluoromethane	97	89 - 119	11/20/18 01:46	
Toluene-d8	99	87 - 121	11/20/18 01:46	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: 11/13/18 23:59
Sample Matrix:	Water	Date Received: 11/14/18 09:50
Sample Name: Lab Code:	Trip Blank R1811036-029	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 01:24	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 01:24	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 01:24	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 01:24	
Trichloroethene (TCE)	5.0 U	5.0	1	11/20/18 01:24	
Vinyl Chloride	5.0 U	5.0	1	11/20/18 01:24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/20/18 01:24	
Dibromofluoromethane	93	89 - 119	11/20/18 01:24	
Toluene-d8	98	87 - 121	11/20/18 01:24	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 54 of 61

iba ALS Environmenta

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/6974.96
Sample Matrix:	Water

Service Request: R1811036

SURROGATE RECOVERY SUMMARY

Analysis Method:	8260C
Extraction Method:	EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8 87-121 100	
Sample Name	Lab Code	85-122	89-119		
MW-1	R1811036-001	93	97		
MW-2	R1811036-002	93	97	98	
MW-3	R1811036-003	93	96	99	
MW-4	R1811036-004	93	98	100	
MW-5	R1811036-005	94	98	101	
MW-6	R1811036-006	94	99	101	
MW-7	R1811036-007	93	97	99	
MW-8	R1811036-008	94	97	99	
MW-9	R1811036-009	94	98	101	
MW-10	R1811036-010	94	98	100	
MW-11	R1811036-011	92	97	98	
MW-12	R1811036-012	94	98	100	
MW-13	R1811036-013	93	97	99	
MW-14	R1811036-014	94	96	98	
MW-15	R1811036-015	93	97	99	
MW-16	R1811036-016	93	98	99	
MW-17	R1811036-017	94	96	99	
MW-18	R1811036-018	92	96	98	
MW-20	R1811036-019	93	95	98	
G-1	R1811036-020	95	98	101	
G-2	R1811036-021	95	97	101	
G-3	R1811036-022	95	95	100	
DR-1	R1811036-023	100	100	104	
DR-2	R1811036-024	96	100	101	
DR-3	R1811036-025	98	99	102	
DR-4	R1811036-026	93	95	98	
MW-X	R1811036-027	96	98	102	
Equip Blank	R1811036-028	93	97	99	
Trip Blank	R1811036-029	94	93	98	
Method Blank	RQ1812914-04	93	97	100	
Lab Control Sample	RQ1812914-03	97	101	99	
MW-1 MS	RQ1812914-05	101	100	101	
MW-1 DMS	RQ1812914-06	100	100	100	
Method Blank	RQ1812915-04	93	96	100	
Lab Control Sample	RQ1812915-03	96	97	98	
DR-1 MS	RQ1812915-05	102	102	101	
DR-1 DMS	RQ1812915-06	99	101	100	

QA/QC Report

Client: Project: Sample Matrix:	-	Bergmann Associates, Incorporated Gowanda/6974.96 Water					Date C Date R Date A	Service Request: R1811036 Date Collected: 11/13/18 Date Received: 11/14/18 Date Analyzed: 11/19/18 Date Extracted: NA					
Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS													
Sample Name: Lab Code: Analysis Method: Prep Method:	MW-1 R181103 8260C EPA 503		voiau	ie Organic (Compound	is by GC/F	VI3	Units: Basis:	ug/L NA				
			Matrix Spike RQ1812914-05		Duplicate Matrix Spike RQ1812914-06								
Analyte Name		Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit		
cis-1,2-Dichloroether trans-1,2-Dichloroeth Tetrachloroethene (Pe 1,1,1-Trichloroethane Trichloroethene (TCH	ene CE) e (TCA)	180 25 U 25 U 25 U 900	431 265 216 246 1120 E	250 250 250 250 250 250	102 106 86 99 88	421 259 217 248 1110 E	250 250 250 250 250 250	98 104 87 99 82	77-127 73-118 72-125 74-127 74-122	2 2 <1 <1 1	30 30 30 30 30 30		
Vinyl Chloride	,	25 U	245	250	98	237	250	95	74-159	4	30		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	11/13/18
Sample Matrix:	Water	Date Received:	11/14/18
		Date Analyzed:	11/20/18
	Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS		
Sample Name:	DR-1	Units:	ug/L
Lab Code:	R1811036-023	Basis:	NA
Analysis Method:	8260C		

			Matrix Spik RQ1812915-(Du	plicate Matr RQ1812915	-			
Analyte Name	Sample Result	Result	Spike	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
*/			Amount							
cis-1,2-Dichloroethene	210	751	500	109	737	500	106	77-127	2	30
trans-1,2-Dichloroethene	50 U	571	500	114	579	500	116	73-118	1	30
Tetrachloroethene (PCE)	50 U	504	500	101	497	500	99	72-125	1	30
1,1,1-Trichloroethane (TCA)	50 U	564	500	113	569	500	114	74-127	<1	30
Trichloroethene (TCE)	1100	1610	500	102	1520	500	83	74-122	6	30
Vinyl Chloride	50 U	559	500	112	553	500	111	74-159	1	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1811036
Project:	Gowanda/6974.96	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1812914-04	Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 00:46	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 00:46	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 00:46	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 00:46	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 00:46	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 00:46	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 00:46	
Dibromofluoromethane	97	89 - 119	11/19/18 00:46	
Toluene-d8	100	87 - 121	11/19/18 00:46	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1811036
Project:	Gowanda/6974.96	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank RQ1812915-04	Units: Basis:	U

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 01:02	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 01:02	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 01:02	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 01:02	
Trichloroethene (TCE)	5.0 U	5.0	1	11/20/18 01:02	
Vinyl Chloride	5.0 U	5.0	1	11/20/18 01:02	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/20/18 01:02	
Dibromofluoromethane	96	89 - 119	11/20/18 01:02	
Toluene-d8	100	87 - 121	11/20/18 01:02	

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/6974.96
Sample Matrix:	Water

Service Request: R1811036 **Date Analyzed:** 11/19/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1812914-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	20.7	20.0	104	80-121
trans-1,2-Dichloroethene	8260C	21.6	20.0	108	73-118
Tetrachloroethene (PCE)	8260C	20.3	20.0	101	72-125
1,1,1-Trichloroethane (TCA)	8260C	22.3	20.0	112	75-125
Trichloroethene (TCE)	8260C	19.0	20.0	95	74-122
Vinyl Chloride	8260C	21.4	20.0	107	74-159

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/6974.96
Sample Matrix:	Water

Service Request: R1811036 **Date Analyzed:** 11/20/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1812915-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	20.6	20.0	103	80-121
trans-1,2-Dichloroethene	8260C	20.7	20.0	104	73-118
Tetrachloroethene (PCE)	8260C	18.8	20.0	94	72-125
1,1,1-Trichloroethane (TCA)	8260C	20.7	20.0	104	75-125
Trichloroethene (TCE)	8260C	17.9	20.0	90	74-122
Vinyl Chloride	8260C	20.8	20.0	104	74-159

APPENDIX B: IC/EC CHECKLIST

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

6/11/2019

Joe Whitney Director Of Capital Services NYS OPWDD 44 Holland Ave. Albany, NY 12229

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal Site Name: Gowanda Day Habilitation Center Site No.: V00463 Site Address: 4 Industrial Place Gowanda, NY 14070

Dear Joe Whitney:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **May 06, 2019**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Professional Engineer (PE). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact David Szymanski, the Project Manager, at 716-851-7220 or david.szymanski@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation 270 Michigan Ave Buffalo, NY 14203-2915

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

cc: w/ enclosures

NYS OPWDD Ny State Opwdd

ec: w/ enclosures

David Szymanski, Project Manager

Chad Staniszewski, Hazardous Waste Remediation Supervisor, Region 9

Bergmann Associates - Stephen DeMeo - sdemeo@BERGMANNPC.com

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.

2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.

3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

	_								
	Site	e No.	V0046	63	Site Details			Box 1	
	Site	e Name	Gowa	nda Day Habilita	tion Center				
	City Cou	e Addres //Town: unty: Cate Acreag	Gowa ttaraugi	us	Zip Code: 14070				
	Rep	porting P	Period:	October 23, 201	8 to April 06, 2019				
								YES	NO
	1.	Is the ir	nformat	ion above correct	?			×	
		lf NO, ii	nclude	handwritten abov	e or on a separate she	et.		1.	
	2.				erty been sold, subdivio Reporting Period?	ded, merged, or und	dergone a		
	3.			n any change of u 375-1.11(d))?	ise at the site during th	is Reporting Perioc	1		X
	4.		•		ocal permits (e.g., buil Reporting Period?	ding, discharge) be	en issued	- 🗙	
		lf you a that do	answer ocumen	ed YES to quest Itation has been	ions 2 thru 4, include previously submitted	documentation o with this certifica	r evidence ation form.		`
	5.	Is the s	ite curr	ently undergoing	development?				R
								Box 2	
								YES	NO
	6.			site use consisten nd Industrial	t with the use(s) listed	below?		×	
	7.	Are all	ICs/EC	s in place and fun	ctioning as designed?			X	
		IF	THE AN DO N	NSWER TO EITHE	R QUESTION 6 OR 7 I THE REST OF THIS FO	S NO, sign and dat RM. Otherwise co	e below and ontinue.		
C	orre	ctive Me	easures	Work Plan must	be submitted along wi	th this form to add	ress these is	ssues.	
	Sigi	Au nature of	f Owner,	Remedial Party o	Dergmann r Designated Represent	ative	<u>6/13/2</u> Date	2019	

SITE NO. V00463						
Description of Institutional Controls						
<u>Parcel</u> 16.027-2-11	<u>Owner</u> NY State OPWDD	Institutional Control Ground Water Use Restriction Soil Management Plan Building Use Restriction				
		restriction for industrial and commercial, excluding, -slab vapor mitigation system is required before				
Description of Engineering Controls						
	ently air stripping with carbon trea					

I

Periodic Review Report (PRR) Certification Statements						
1. I certify by checking "YES" below that:						
 a) the Periodic Review report and all attachments were prepared under the dir reviewed by, the party making the certification; 	ection of, and	d				
b) to the best of my knowledge and belief, the work and conclusions described are in accordance with the requirements of the site remedial program, and gene						
	\varkappa					
 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below the following statements are true: 	for each Inst that all of the	itutional				
(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchasince the date that the Control was put in-place, or was last approved by the Department						
(b) nothing has occurred that would impair the ability of such Control, to protect public l the environment;	health and					
(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;						
(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and						
(e) if a financial assurance mechanism is required by the oversight document for the si and sufficient for its intended purpose established in the document.	te, the mech	anism remains valid				
	YES	NO				
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below ar DO NOT COMPLETE THE REST OF THIS FORM. Otherwise contin						
A Corrective Measures Work Plan must be submitted along with this form to address these issues.						
	-					
Signature of Owner, Remedial Party or Designated Representative Da	ate					

IC CERTIFICATIONS	
SITE NO. V00463	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210	
Law. Bersmann	
I Cash Bleier at 280 F Browd St, #200 Roches print name print business address	iler, NY, 14604
am certifying as <u>Remedial Party Representative</u> (Owner or Re	medial Party)
for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative Date Date	2019

1	C/EC CERT	TFICATIONS	
Pro	ofessional E	Engineer Signature	
certify that all information in Boxes 4 and punishable as a Class "A" misdemeanor,	1 5 are true. pursuant to	I understand that a false statement made herein is Section 210.45 of the Penal Law.	
POBERT SWITALA	Bergmanr at	n: 280 E. Broad Street, Suite 200, Rochester, NY 14604 print business address	
am certifying as a Professional Engineer	for the	Bergmann	
Cartan Varature of Professional Engineer for th	e Ωwner or	AUL SWIMP AUL SWIMP	- * =
Signature of Professional Engineer, for th Remedial Party, Rendering Certification	e Owner or	Stamp Date (Required for PE)	

•

.