Hillside Maintenance Complex 93-59 183 Street Hollis, NY 11423 James J. Dermody President



March 3, 2006

Tara Diaz, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 11th Floor Albany, NY 12233-7015

Re: Voluntary Cleanup Agreement, Long Island Rail Road Manhasset, Massapequa and Island Park Substations Draft Delineation Phase 2 Site Assessment Investigation Report

Dear Ms. Diaz:

Enclosed for your review and comment please find three (3) copies of the following final report:

"Delineation Phase 2 Site Assessment for Manhasset, Massapequa and Island Park Substations Investigation Report April 2005"

The enclosed final report has been revised in accordance with the New York State Department of Environmental Conservation (NYSDEC) comment report dated December 14, 2005, and our discussions during the February 10, 2006 conference call. Please note that in accordance with our discussions on February 10, 2006, the information requested to be added to Figure 1-2 for the Manhasset Substation site has been included on Drawing 1 due to the fact that Figure 1-2 is at a scale that would not allow the addition of this information.

If you have any questions or comments, please contact me at (718) 558-3620.

Very truly yours,

Andrew M. Wilson, P.E. Project Manager

AMW/SET/tp Enclosure cc/encl.: N. Walz, NYSDOH (1 copy) D. D'Ambrosio, NYSDEC (1 copy) C. Channer, Esq., MTA (1 copy) cc: L. Wunderlich (LIRR) T. Fox (D&B) • 2015WISC06LTR-02

## METROPOLITAN TRANSPORTATION AUTHORITY LONG ISLAND RAIL ROAD

# DELINEATION PHASE 2 SITE ASSESSMENT for MANHASSET, MASSAPEQUA AND ISLAND PARK SUBSTATIONS

#### **INVESTIGATION REPORT**

Prepared for:

## METROPOLITAN TRANSPORTATION AUTHORITY LONG ISLAND RAIL ROAD

Prepared by:

## DVIRKA AND BARTILUCCI CONSULTING ENGINEERS WOODBURY, NEW YORK 11797

FEBRUARY 2006

#### LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT FOR MANHASSET, MASSAPEQUA AND ISLAND PARK SUBSTATIONS INVESTIGATION REPORT

#### TABLE OF CONTENTS

Title

Page

|         | -            |                                                               |      |  |  |  |  |  |  |  |  |
|---------|--------------|---------------------------------------------------------------|------|--|--|--|--|--|--|--|--|
| Title P | age          |                                                               |      |  |  |  |  |  |  |  |  |
| 1.0     | INTRODUCTION |                                                               |      |  |  |  |  |  |  |  |  |
|         | 1.1          | Project Background                                            | 1-2  |  |  |  |  |  |  |  |  |
|         | 1.2          | Site Description                                              | 1-4  |  |  |  |  |  |  |  |  |
|         |              | 1.2.1 Manhasset Substation                                    | 1-4  |  |  |  |  |  |  |  |  |
|         |              | 1.2.2 Massapequa Substation                                   |      |  |  |  |  |  |  |  |  |
|         |              | 1.2.3 Island Park Substation                                  | 1-11 |  |  |  |  |  |  |  |  |
|         | 1.3          | Summary of Prior Investigations                               |      |  |  |  |  |  |  |  |  |
|         |              | 1.3.1 Manhasset Substation                                    |      |  |  |  |  |  |  |  |  |
|         |              | 1.3.2 Massapequa Substation                                   |      |  |  |  |  |  |  |  |  |
|         |              | 1.3.3 Island Park Substation                                  | 1-19 |  |  |  |  |  |  |  |  |
| 2.0     | INVI         | ESTIGATION METHODS                                            | 2-1  |  |  |  |  |  |  |  |  |
|         | 2.1          | Introduction                                                  | 2-1  |  |  |  |  |  |  |  |  |
|         | 2.2          | Surface Soil Sampling                                         | 2-1  |  |  |  |  |  |  |  |  |
|         | 2.3          | Sediment Sampling                                             | 2-11 |  |  |  |  |  |  |  |  |
|         | 2.4          | Subsurface Soil Sampling                                      | 2-11 |  |  |  |  |  |  |  |  |
|         | 2.5          | Test Pit Excavation and Sampling                              |      |  |  |  |  |  |  |  |  |
|         | 2.6          | Groundwater Monitoring Well Installation and Sampling         |      |  |  |  |  |  |  |  |  |
|         | 2.7          | Groundwater Probe Installation and Sampling                   |      |  |  |  |  |  |  |  |  |
|         | 2.8          | Air Sampling                                                  | 2-14 |  |  |  |  |  |  |  |  |
| 3.0     | FINE         | DINGS                                                         | 3-1  |  |  |  |  |  |  |  |  |
|         | 3.1          | Manhasset Substation - Delineation Phase 2 Site Assessment    | 3-2  |  |  |  |  |  |  |  |  |
|         |              | 3.1.1 Exterior Railroad Ties                                  | 3-2  |  |  |  |  |  |  |  |  |
|         |              | 3.1.2 Drainage Swale                                          | 3-3  |  |  |  |  |  |  |  |  |
|         |              | 3.1.3 Slop Sink                                               | 3-5  |  |  |  |  |  |  |  |  |
|         |              | 3.1.4 Outfall to Manhasset Bay                                |      |  |  |  |  |  |  |  |  |
|         |              | 3.1.5 Underground Injection Control (UIC) Drainage Structures |      |  |  |  |  |  |  |  |  |
|         |              | 3.1.6 Potential Miscellaneous Releases                        | 3-9  |  |  |  |  |  |  |  |  |
|         |              | 3.1.7 Groundwater                                             |      |  |  |  |  |  |  |  |  |
|         | 3.2          | Manhasset Substation - Construction Excavation Investigation  | 3-11 |  |  |  |  |  |  |  |  |
|         |              |                                                               |      |  |  |  |  |  |  |  |  |

Section

## Section

## <u>Title</u>

|     | 3.3 | Massapequa Substation - Delincation Phase 2 Site Assessment              |
|-----|-----|--------------------------------------------------------------------------|
|     |     | 3.3.1 Substation Interior                                                |
|     |     | 3.3.2 East Side of Substation                                            |
|     |     | 3.3.3 West Side of Substation                                            |
|     |     | 3.3.4 Underground Injection Control (UIC) Drainage Structures            |
|     |     | 3.3.5 Potential Miscellaneous Releases                                   |
|     |     | 3.3.6 Groundwater                                                        |
|     | 3.4 | Massapequa Substation - Construction Excavation Investigation            |
|     | 3.5 | Island Park Substation - Delineation Phase 2 Site Assessment             |
|     |     | 3.5.1 Substation Interior                                                |
|     |     | 3.5.2 South Side of Substation                                           |
|     |     | 3.5.3 Northwest Corner of Substation                                     |
|     |     | 3.5.4 Western Drainage Line                                              |
|     |     | 3.5.5 Water Meter Pit                                                    |
|     |     | 3.5.6 West Side of Substation                                            |
|     |     | 3.5.7 Transformers                                                       |
|     |     | 3.5.8 Underground Injection Control (UIC) Drainage Structures            |
|     |     | 3.5.9 Potential Miscellaneous Releases                                   |
|     |     | 3.5.10 Groundwater                                                       |
|     | 3.6 | Island Park Substation - Construction Excavation Investigation           |
|     | 3.7 | Data Usability Summary Report (DUSR)                                     |
|     |     | 3.7.1 Manhasset Substation                                               |
|     |     | 3.7.2 Massapequa Substation                                              |
|     |     | 3.7.3 Island Park Substation                                             |
|     |     |                                                                          |
| 4.0 | MAN | HASSET SUBSTATION - FISH AND WILDLIFE                                    |
|     | RES | OURCES IMPACT ANALYSIS4-1                                                |
|     |     |                                                                          |
|     | 4.1 | Ecology                                                                  |
|     |     | 4.1.1 Major Habitat Types4-1                                             |
|     |     | 4.1.2 Wetlands                                                           |
|     |     | 4.1.3 Mammals                                                            |
|     |     | 4.1.4 Birds                                                              |
|     |     | 4.1.5 Fish                                                               |
|     |     | 4.1.6 Reptiles and Amphibians4-5                                         |
|     |     | 4.1.7 Rare Species and Critical Habitats4-5                              |
|     |     | 4.1.8 Biological Associations Found in the Project Vicinity4-9           |
|     |     | 4.1.9 Observations of Stress Potentially Related to Site Contaminants4-9 |
|     |     | 4.1.10 Habitat Values of Vegetative Zones Within the Project Site4-14    |
|     |     |                                                                          |

| Section |                                 | Title                                     | <u>Page</u> |  |  |  |  |
|---------|---------------------------------|-------------------------------------------|-------------|--|--|--|--|
| 5.0     | QUALITATIVE EXPOSURE ASSESSMENT |                                           |             |  |  |  |  |
|         | 5.1                             | Introduction                              | .5-1        |  |  |  |  |
|         | 5.2                             | Properties, Fate and Transport of Mercury | .5-1        |  |  |  |  |
|         | 5.3                             | General Findings and Conditions           | .5-3        |  |  |  |  |
|         | 5.4                             | Manhasset Substation                      |             |  |  |  |  |
|         | 5.5                             | Massapequa Substation                     |             |  |  |  |  |
|         | 5.6                             | Island Park Substation                    |             |  |  |  |  |
| 6.0     | CON                             | CLUSIONS AND RECOMMENDATIONS              | 6-1         |  |  |  |  |
|         | 6.1                             | Manhasset Substation                      | 6-1         |  |  |  |  |
|         | 6.2                             | Massapequa Substation                     |             |  |  |  |  |
|         | 6.3                             | Island Park Substation                    |             |  |  |  |  |

## List of Appendices

| Analytical Data From Initial Site Assessment of the Three SubstationsA                                                 |
|------------------------------------------------------------------------------------------------------------------------|
| Boring LogsB                                                                                                           |
| Test Pit LogsC                                                                                                         |
| Well Construction LogD                                                                                                 |
| Analytical DataE                                                                                                       |
| October 4, 2004 Letter Report Entitled, "Removal of Staged Soil<br>at the Long Island Rail Road Manhasset Substation"F |
| Long Island Rail Road Procedure/Instruction EE03-001,<br>Excavating Soils at Railroad LocationsG                       |
| Mercury Vapor Results for Surface Soil Samples                                                                         |
| Data Validator ResumeI                                                                                                 |
| Revised/Qualified Data Summary SheetsJ                                                                                 |

# List of Drawings

| Sample Location Map, Manhasset Substation1  |   |
|---------------------------------------------|---|
| Sample Location Map, Massapequa Substation2 |   |
| Sample Location Map, Island Park Substation | , |

## List of Figures

| 1-1 | Site Location Map - Manhasset Substation   | 1-5  |
|-----|--------------------------------------------|------|
| 1-2 | Site Plan - Manhasset Substation           | 1-6  |
| 1-3 | Site Location Map - Massapequa Substation  |      |
| 1-4 | Site Plan - Massapequa Substation          | 1-10 |
| 1-5 | Site Location Map - Island Park Substation | 1-12 |
| 1-6 | Site Plan - Island Park Substation         | 1-13 |

## List of Tables

| 2-1 | Delineation Phase 2 Site Assessment Sampling and             |      |
|-----|--------------------------------------------------------------|------|
|     | Analysis Summary - Manhasset Substation                      | 2-2  |
| 2-2 | Construction Excavation Sampling Program Sampling            |      |
|     | and Analysis Summary - Manhasset Substation                  | 2-4  |
| 2-3 | Delineation Phase 2 Site Assessment Sampling and             |      |
|     | Analysis Summary - Massapequa Substation                     | 2-5  |
| 2-4 | Construction Excavation Sampling Program Sampling            |      |
|     | and Analysis Summary - Massapequa Substation                 | 2-7  |
| 2-5 | Delineation Phase 2 Site Assessment Sampling and             |      |
|     | Analysis Summary - Island Park Substation                    | 2-8  |
| 2-6 | Construction Excavation Sampling Program Sampling            |      |
|     | and Analysis Summary - Island Park Substation                | 2-10 |
| 4-1 | Vegetative Species Observed on the Manhasset Substation Site | 4-3  |
| 4-2 | Mammals Likely to Inhabit the Manhasset Substation Site      |      |
| 4-3 | Avifauna Likely to Inhabit the Manhasset Substation/         |      |
|     | Manhasset Bay Area                                           | 4-6  |
| 4-4 | Finfish Likely to Seasonally Inhabit Manhasset Bay           |      |
| 4-5 | Reptiles and Amphibians Likely to Inhabit                    |      |
|     | the Manhasset Substation Site                                | 4-8  |

| Federally Listed or Proposed Threatened or Endangered    |                                                                                                                                                                        |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species in New York State                                | 4-10                                                                                                                                                                   |
| Floral and Faunal Associations Observed Within 2.5 Miles |                                                                                                                                                                        |
| of the Manhasset Substation Site                         |                                                                                                                                                                        |
| Qualitative Habitat Value Analysis Within                |                                                                                                                                                                        |
| the Manhasset Substation Site                            | 4-17                                                                                                                                                                   |
|                                                          | Species in New York State<br>Floral and Faunal Associations Observed Within 2.5 Miles<br>of the Manhasset Substation Site<br>Qualitative Habitat Value Analysis Within |

Section 1

#### 1.0 INTRODUCTION

This Investigation Report presents the results of the Delineation Phase 2 Site Assessments, which were conducted at the Long Island Rail Road (LIRR) Manhasset, Massapequa, and Island Park substations and were completed in accordance with fully executed Voluntary Cleanup Agreement Nos. V-00396-1, V-00397-1 and V-00392-1, respectively. The New York State Department of Environmental Conservation (NYSDEC) index numbers for these substations are WI-0908-02-02, WI-0909-02-02 and W1-0910-02-02, respectively.

The objectives of the Delineation Phase 2 Site Assessments included the following:

- Define the nature and extent of impacts to surface and subsurface soil;
- Determine if site-related contaminants have impacted groundwater quality;
- Identify potential impacts to human health and/or the environment associated with site-related contaminants; and
- Obtain sufficient data to determine the need for Interim Remedial Measures (IRMs) and to evaluate remedial alternatives that may be implemented as a final long-term remedy for the sites.

Field activities and sampling procedures associated with the Delineation Phase 2 Site Assessments at each of the three substations were completed in accordance with the NYSDECapproved "Investigation Work Plan," dated September 2002. It should be noted that as part of the Delineation Phase 2 Site Assessments, drainage structures that were identified as requiring closure pursuant to the United States Environmental Protection Agency (USEPA) Underground Injection Control (UIC) program were also investigated at each of the three substation sites. Analytical results associated with the investigation of these structures are, therefore, also discussed in this report. However, remediation and post-remediation endpoint sampling activities conducted subsequent to this investigation are documented in a separate report entitled, "Underground Injection Control Closure Report for Manhasset, Massapequa and Island Park Substations," dated September 2004. All field activities and sampling procedures utilized for the investigation of UIC structures were performed in accordance with the USEPA-approved "Underground Injection Control Closure Plan," dated November 2002.

The LIRR has undertaken a long-term capital improvement project in which it is upgrading several electric substations to accommodate the new "M-7" electric train cars. In support of this project, the LIRR has been renovating the Manhasset and Massapequa substations and plans to reconstruct an entirely new substation to the east of the existing Island Park substation. As a result, the LIRR has undertaken additional environmental investigations at each of the three substations to identify any potentially impacted soil at locations where construction excavation activities are planned. These activities are collectively referred to as the Construction Excavation Investigations. Therefore, this report also documents the findings of these additional investigations conducted at the three substations. All associated field activities and sampling procedures conducted as part of the Construction Excavation Investigations were performed in accordance with the NYSDEC-approved "Construction Excavation Work Plan", dated September 2002. Excavation activities, which were subsequently conducted at the three sites, in support of substation renovation/construction, are documented in a separate report entitled, "Construction Excavation Completion Report for Manhasset, Massapequa and Island Park Substations."

The following subsections provide relevant project background information, including detailed descriptions of each of the three substation sites, as well as a summary of the findings of prior investigations.

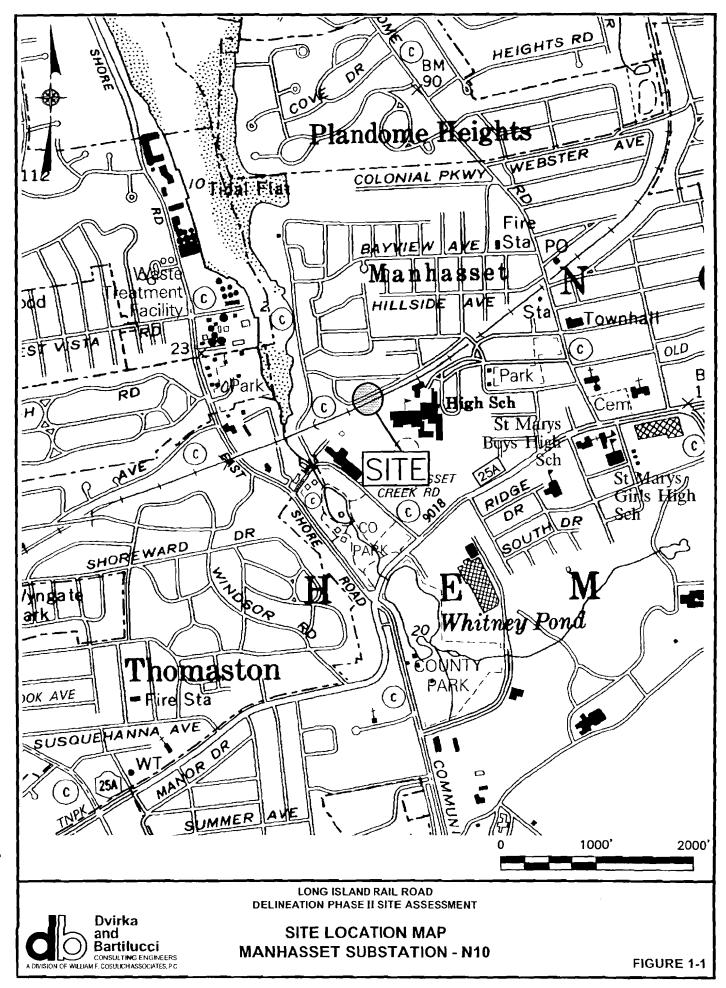
#### 1.1 **Project Background**

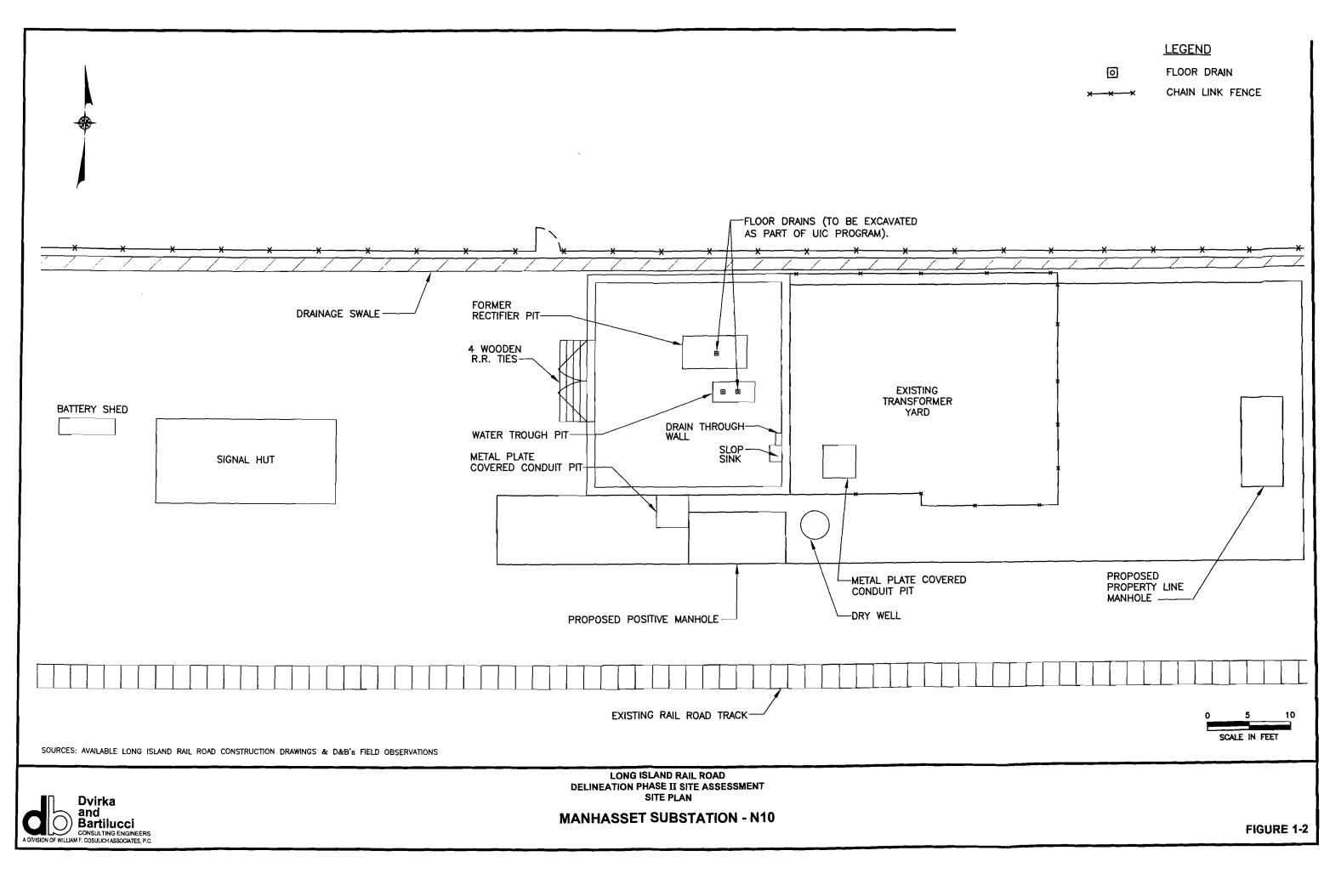
The LIRR built and operated substations from the early 1930s through 1951 that utilized mercury rectifiers. These rectifiers allowed the LIRR to receive 60-cycle, alternating current (AC) from local utilities and convert it to direct current (DC) for use as a source of electric power for its locomotives and electric passenger car fleet. The LIRR identified 20 substations located throughout Queens, Nassau and Suffolk Counties that once utilized mercury containing rectifiers.

It is believed that during the early 1980s, the mercury rectifiers were taken out of service and physically removed from these LIRR substations and replaced with non-mercury containing solid state equipment. However, due to uncertainties surrounding the work practices that may have been employed when managing the operation and maintenance of these mercury rectifiers, the LIRR believed it necessary to conduct environmental assessments at these 20 electric substations to determine the potential effects that may have occurred to the surrounding environment.

In 1999, the LIRR conducted environmental assessments at 20 of their electric substations, which previously utilized mercury-containing rectifiers. The results of these assessments were documented in a report prepared by Dvirka and Bartilucci Consulting Engineers (D&B), entitled, "Site Assessment of 20 Substations for Mercury Contamination," dated December 2000. Based on the findings of that report, mercury was identified in soil at all 20 substations at concentrations above NYSDEC recommended cleanup objectives. In order to further delineate and remediate impacted soil at the 20 substations, the LIRR has agreed to undertake and complete Delineation Phase 2 Site Assessments under the New York State Department of Environmental Conservation's (NYSDEC) Voluntary Cleanup Program (VCP).

Based on the findings of the 1999 site assessments, several substations were found to contain elevated levels of mercury in soil that had the potential to pose a human exposure pathway. As a result, an Interim Remedial Measures (IRM) program was conducted to eliminate the potential human exposure pathway by excavating mercury-impacted soil for proper off-site transportation and disposal. IRM activities were performed in the Spring of 2000 at 11 substations including Valley Stream, Lindenhurst, Far Rockaway, Floral Park, Shea, Bayside, Port Washington, Massapequa, Hempstead, Kew Gardens, and Island Park. The IRM program is documented in the report entitled, "Site Assessment of 20 Substations for Mercury Contamination - Interim Remedial Measures Oversight Report," dated January 2001, which was prepared by D&B. It should be noted that elevated levels of mercury still exist in subsurface soil at these 11 substations.


In support of a long-term capital improvement project in which it is upgrading several electric substations, the LIRR elected to initially conduct Delineation Phase 2 Site Assessments at 3 of the 20 substations, including the Manhasset, Massapequa and Island Park Substations. The field investigation for this work was completed in the Winter of 2003. However, based on the sample results, it was determined that additional data was needed to fully characterize the extent of mercury in soil at the Manhasset and Massapequa substations. Therefore, the LIRR developed a Supplemental Investigation Work Plan for this additional investigation that was approved by the NYSDEC in April 2004. The supplemental sampling activities were completed at the Manhasset and Massapequa substations in August 2004. The LIRR intends to further investigate the remaining 17 substations in the near future.


#### **1.2** Site Description

Provided below is a brief description of each substation.

#### 1.2.1 Manhasset Substation

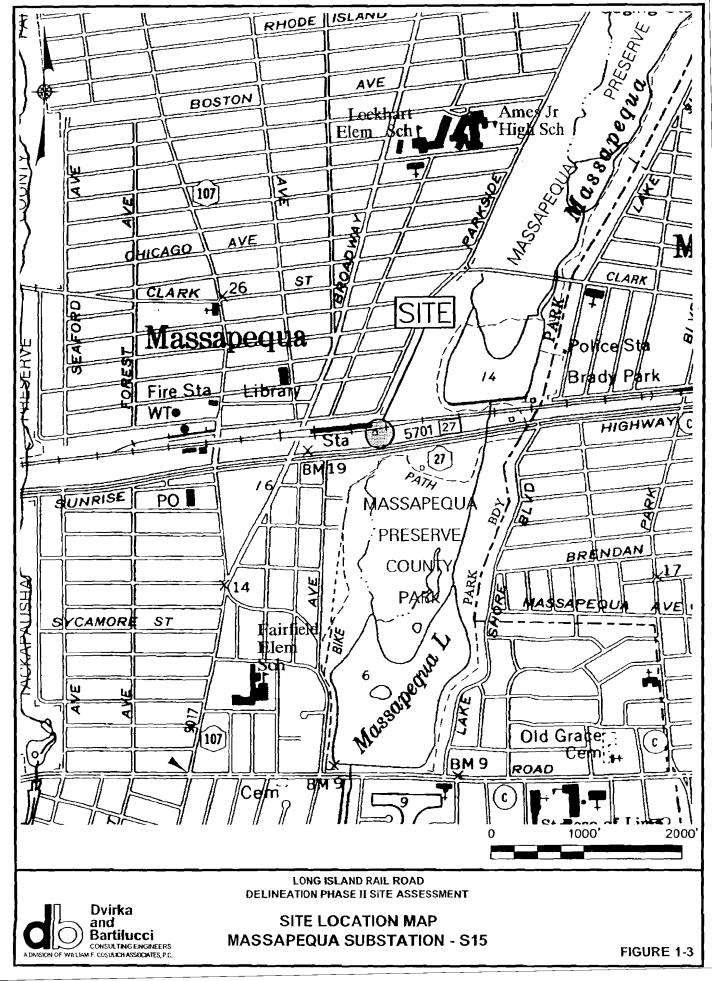
The Manhasset substation site is located in Manhasset, Nassau County, New York (see Figure 1-1). The site consists of a 25-foot by 30-foot one-story brick building located within the LIRR right-of-way, 12 feet north of the train tracks as shown on Figure 1-2. A 30-foot by 30-foot transformer yard is located immediately east of the substation building. It should be noted that all transformers and associated equipment had been removed prior to the Delineation Phase 2 Site Assessment Program in support of above-mentioned Capital Improvement Project. The remaining portion of the site is a rectangular-shaped, partially developed, parcel of land. The Manhasset substation does not have a basement or a utility trench system. It should also be noted that the Manhasset substation formerly contained a bank of active lead-acid batteries located in the northwest corner of the substation to provide back-up electricity for the substation switch equipment in the event of a power failure. However, these batteries were also removed prior to the Delineation Phase 2 Site Assessment Program. The Manhasset substation does not house any sanitary or office facilities but is served by public water.



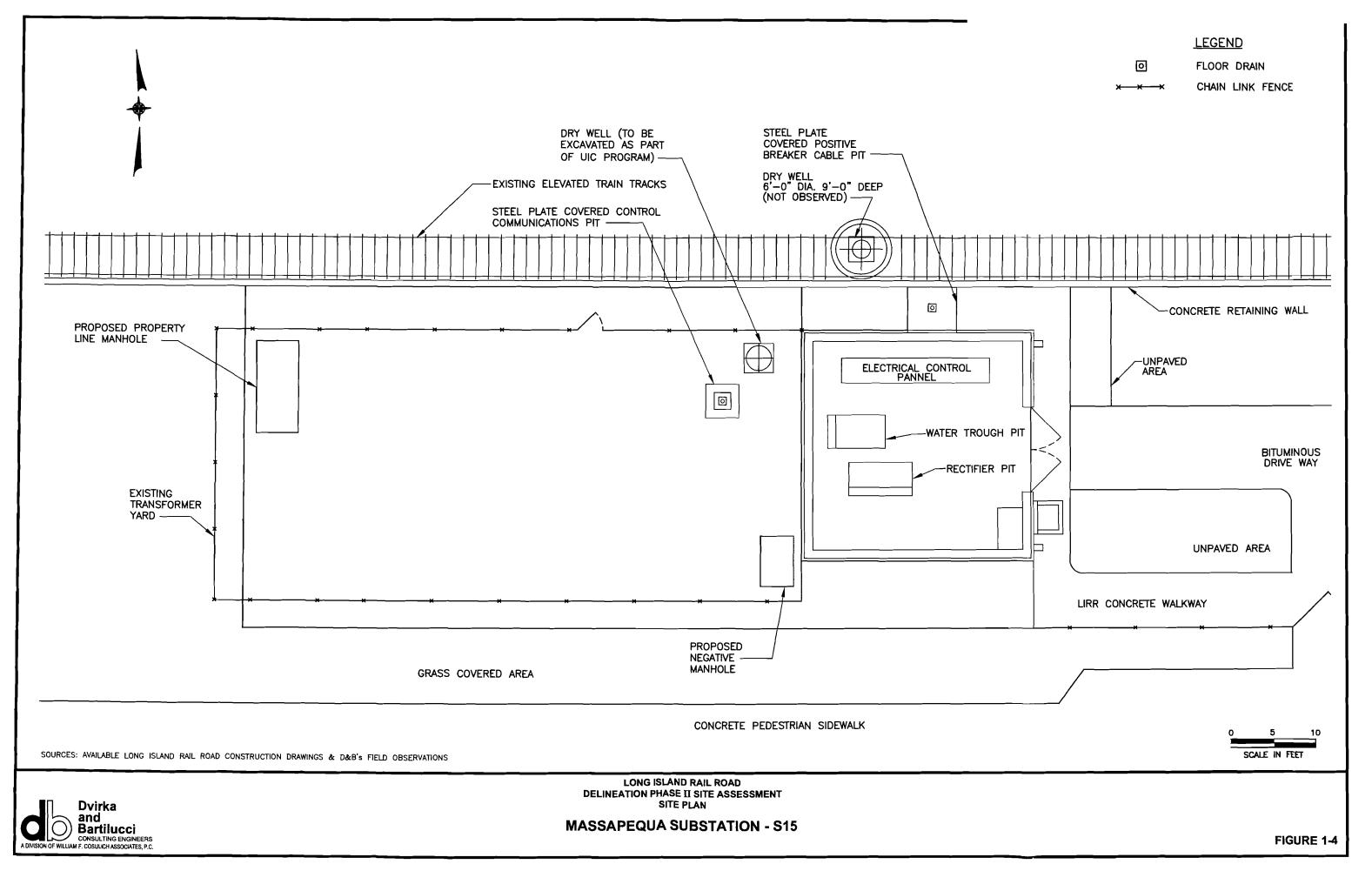


The substation complex is utilized to convert alternating current to direct current for the LIRR-Port Washington line. However, at the time of the Phase 2 Site Assessment, the complex was de-energized for renovations. The areas surrounding the substation and the former transformer yard are used for storage of equipment and supplies by the LIRR.

During the initial site assessment in 1999, the interior of the substation consisted of an active solid-state rectifier located over a pit that once supported a mercury-containing rectifier. However, as of a site inspection conducted by D&B on February 13, 2002, the solid-state rectifier had been removed in support of the ongoing overall capital improvement project for the Manhasset substation. The substation is also equipped with a second pit, referred to as a water trough on LIRR construction drawings, which is covered by a metal utility plate. During the initial site investigation conducted in 1999, D&B observed that the rectifier pit contained one floor drain and the water trough contained two floor drains. Also noted during the initial 1999 site investigation, the Manhasset substation was equipped with a slop sink along the eastern substation wall that discharged to the transformer yard located to the east of the substation. However, this slop sink was subsequently removed and was not present during the Delineation Phase 2 Site Assessment Program. Based on available information, the approximate groundwater flow direction is to the northwest and the approximate depth to groundwater is 75 feet below grade.


D&B observed that storm water drainage from the substation property is conveyed to an existing storm water drainage system. The storm water drainage system originates from an elevated area to the south of the substation and the LIRR right-of-way and is conveyed via a concrete pipe, which extends to the north running under the tracks. The concrete pipe discharges to a corrugated pipe, approximately 80 feet to the east of the substation. The corrugated pipe conveys storm water in a westerly direction and discharges to a drainage swale located immediately to the west of the substation. Storm water continues to flow west along the northern boundary of the substation approximately 800 feet, down an embankment to the headwaters of Manhasset Bay.

#### 1.2.2 Massapequa Substation


The Massapequa substation site is located in Massapequa, Nassau County, New York (see Figure 1-3). The site consists of an approximately 625 square foot one-story brick building as shown in Figure 1-4. An approximately 2,500 square foot transformer yard is located adjacent to the substation to the west and is secured by a perimeter chain-linked fence. The substation complex is utilized to convert alternating current to direct current for the LIRR-Montauk line. The areas surrounding the substation and the transformer yard are currently utilized as vehicular parking and pedestrian traffic areas.

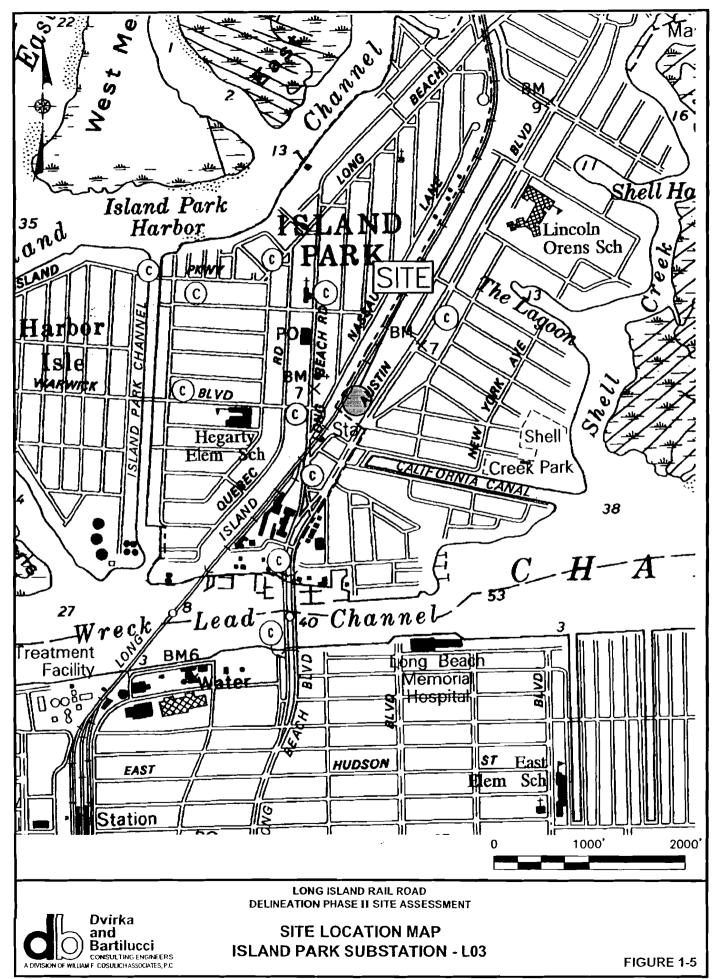
The Massapequa substation is not equipped with a basement or any sanitary or office facilities. During the Delineation Phase 2 field program, the interior of the substation consisted of an active solid-state rectifier located over a pit that once supported a mercury-containing rectifier. The substation is also equipped with a second pit, referred to as a water trough on LIRR construction drawings. In addition, the substation contains a water pipe trench with a concrete bottom located in the southeast corner of the substation.

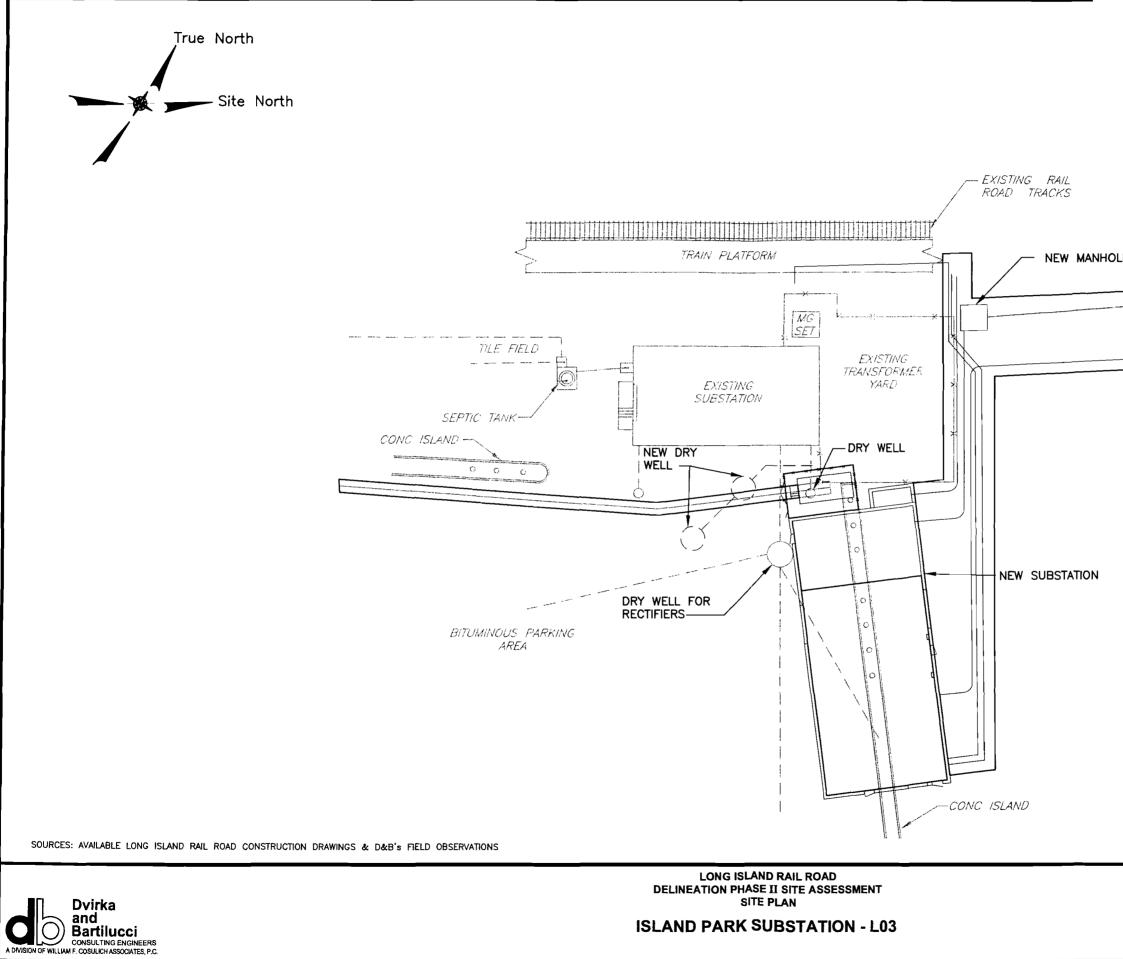
A water service pit with an earthen bottom is located along the outside of the eastern wall of the substation. In addition, a dry well with a solid cover exists off the northwest corner of the substation located within the transformer yard. Based on flush tests conducted during the initial site assessment, it was determined that the drain in the rectifier pit discharges to the dry well located in the transformer yard. A steel plate covered control communications pit, containing a floor drain, is located within the transformer yard, and a steel plate covered positive breaker cable pit containing a floor drain exists along the north side of the substation. Available LIRR construction drawings indicate that a dry well is located approximately 10 feet north of the substation. However, this dry well, if present, would currently be located beneath the existing railroad tracks. Based on available information, the approximate groundwater flow direction is to the south and the approximate depth to groundwater is 15 feet below grade.



F:\2015\PHASEII\2015-12.cwg, 03/05/03 03:23:03 PM, LGlubiak




#### 1.2.3 Island Park Substation


The Island Park substation site is located in Island Park, Nassau County, New York (see Figure 1-5). The site consists of an approximately 1,800 square foot one-story brick building as shown on Figure 1-6. An approximately 3,000 square foot transformer yard is located adjacent to the substation to the northeast and is secured by a perimeter chain-linked fence. The substation complex is presently utilized to convert alternating current to direct current for the LIRR-Long Beach line. The areas surrounding the substation and the transformer yard are currently utilized for vehicular parking.

The Island Park substation contains a basement, sanitary facilities, water service and a utility trench system. The sanitary facilities are active and discharge to a septic tank located to the south of the substation. A tile field, which extends further to the south, is connected to the septic tank. The interior of the substation consists of two active solid-state rectifiers located over two separate pits leading to the basement. These pits once supported the mercury-containing rectifiers. In addition, there is a water meter pit with an earthen bottom that is covered with a steel plate located off the northwest corner of the substation as shown in Figure 1-6. Based on available information, the approximate groundwater flow direction is to the southwest and the approximate depth to groundwater is 10 feet below grade.

#### **1.3 Summary of Prior Investigations**

As discussed in Section 1.1, the LIRR completed initial environmental assessments at each of the three substations in 1999 as documented in the report entitled, "Site Assessment of 20 Substations for Mercury Contamination," dated December 2000. Investigation methods utilized at the sites during the initial site assessments included site inspections, mercury vapor measurements, drainage determinations and geophysical surveys. In addition, samples of various environmental media were collected at each of the sites for laboratory analysis. These media included surface soil, subsurface soil, surface water sediment, groundwater and concrete. Analytical data from the initial assessment of the three substations is presented in Appendix A. Through these assessments, several areas of concern (AOC) were identified at each substation,





|                 | LEGEND                                              |
|-----------------|-----------------------------------------------------|
|                 | PIPE CONNECTION BASED ON LIRR CONSTRUCTION DRAWINGS |
| <del>x x </del> | CHAIN LINK FENCE                                    |

| • |
|---|
| _ |
|   |

| <br> | <br>  |
|------|-------|
| <br> | <br>- |
|      |       |
|      | 1     |
| <br> | <br>] |
|      |       |

30 15 SCALE IN FEET

FIGURE 1-6

which were found to warrant additional investigation. As discussed above, the LIRR elected to further investigate the Manhasset, Massapequa and Island Park substations first, in support of a long-term Capital Improvement Project. Below is a summary of the findings and recommendations that are based on the initial assessment of the three substations. Note that the recommendations presented below were used as the basis for developing the investigation scope of work for the Delineation Phase 2 Site Assessment of the three substations. This summary has been organized by each AOC identified at the three substations.

#### 1.3.1 Manhasset Substation

#### Exterior Railroad Ties

Surface and subsurface soil samples were collected from the west side of the substation within the location of the Exterior Railroad Ties. Analytical sampling results identified mercury-impacted soil to a depth of 6 feet below grade at this location. As a result, additional soil sampling and analysis was recommended to delineate the horizontal and vertical extent of mercury-impacted soil in the vicinity of soil borings MHSBB-06 and MHSBB-07.

#### Drainage Swale

A drainage swale was identified just inside the northern border of the site. The swale traversed the site from the east to the west and terminated off-site at an outfall along the east shore of Manhasset Bay. A significant portion of the drainage swale extending to the west of the substation was identified to have been impacted by mercury to a depth of approximately 1-foot below grade with mercury concentrations ranging from nondetect to 9,880 mg/kg in this area.

It was also recommended to further investigate the drainage swale "upgradient" to the substation (to the east) to identify any potential off-site sources.

#### Outfall to Manhasset Bay

As discussed above, the on-site drainage swale was identified to discharge off-site at an outfall located on the eastern shore of Manhasset Bay. Mercury was detected in sediment sample MHSS-08 at the mouth of the outfall at a concentration of 1.3 mg/kg. The NYSDEC guidance values for mercury in surface water sediments ranges from 0.15 mg/kg to 1.3 mg/kg. In order to determine if the mercury identified in the sediment sample was associated with the discharge of storm water from the drainage swale, it was recommended that additional samples be collected from the drainage swale west of the substation, and that additional sediment samples be collected beyond the mouth of the outfall.

#### <u>Slop Sink</u>

A slop sink was identified inside the substation along the eastern wall. The sink was found to discharge to the ground on the west side of the transformer yard, and was therefore found to be in violation of the State Pollutant Discharge Elimination System (SPDES). A surface soil sample (MHSS-01) collected at the discharge point identified the soil to be impacted by mercury. As a result, it was recommended that the slop sink be removed and additional sampling be conducted adjacent to MHSS-01 to determine the horizontal and vertical extent of impacted soil within the vicinity of the slop sink discharge point.

#### Underground Injection Control

A dry well located off the southeast corner of the substation was found to receive drainage from an interior floor drain. As a result, its closure was noted to be regulated by the United States Environmental Protection Agency (USEPA) Underground Injection Control (UIC) program. Based on the initial site assessment field activities, soil within the dry well from at least 12.5 to 16.5 feet below grade was found to be impacted. Based on these results, additional sampling and analysis for UIC constituents was recommended to determine the vertical extent of impacted soil within the dry well.

A floor drain was discovered in both the rectifier and water trough pits that discharge directly to the subsurface soil immediately beneath the substation floor. As a result, the closure of these units was also noted to be regulated by the USEPA UIC program. Further investigation activities, including sampling and analysis, were recommended to determine the vertical extent of the impacted soil at both locations.

Lastly, it was recommended that all closure activities at the dry well, rectifier pit and water trough pit be conducted in accordance with the USEPA UIC program.

#### Potential Miscellaneous Releases

Due to the unknown historic use of the mercury containing rectifiers, it was determined that inadvertent, non-specific releases may have occurred in the areas immediately surrounding the substation. Analytical results indicated that, exterior areas not necessarily associated with known areas of concern (i.e., loading docks, entrance ways, dry wells, trenches, etc.) may have been impacted. Therefore, it was recommended that two soil borings be advanced along the south side of the substation to address potential releases not previously investigated.

#### Groundwater

Groundwater sampling results presented in the initial site assessment indicated that groundwater had not been impacted by mercury at the Manhasset substation. As a result, further investigation and/or remediation activities with respect to groundwater were not recommended.

#### 1.3.2 Massapequa Substation

#### Substation Interior

Mercury was detected above NYSDEC soil cleanup objectives in soil at borings and concrete corings advanced within the former rectifier and water trough pits and water pipe trench located within the substation building. However, further sampling and/or remediation was not recommended at that time. LIRR representatives had indicated that the Massapequa substation was scheduled for renovation, whereby the rectifier and water trough pits would be permanently backfilled to grade with concrete. It was anticipated that the structurally sound concrete cap will minimize, if not eliminate, any mercury migration through the subsurface soil immediately beneath these structures. It was noted that if the LIRR plans to remove the concrete cap or demolish this substation in the future, that would represent the best opportunity to delineate and remediate any mercury contaminated soil as necessary.

The initial site assessment report also noted that during a mercury vapor survey, elevated levels of mercury vapor were detected inside the conduit pipes located within the water trough pit. As a result, it was also recommended that these conduit pipes be permanently sealed with concrete.

#### East Side of Substation

Based on the analytical results from the initial site assessment, as well as the endpoint sample results from the IRM program, surface and subsurface soil was found to have been impacted by mercury in the area to the east of the substation. Additional sampling and analysis was therefore recommended to determine the horizontal and vertical extent of mercury contamination in this area; specifically, in the vicinity of soil boring MSSB-06 and surface soil samples MSSS-02 through MSSS-04.

#### West Side of Substation

The initial site assessment also identified mercury impacted surface soil along the western side of the substation within the transformer yard. Additional sampling and analysis was recommended to determine the horizontal and vertical extent of mercury contamination in this area; specifically, in the vicinity of surface soil sample MSSS-06 and MSSS-07.

#### Former Dry Well

LIRR construction drawings indicated the presence of a dry well located approximately 10 feet to the north of the substation. However, this dry well was not visible from grade during the initial site assessment since we believe that the unit may be located directly beneath the existing railroad tracks. Since this former dry well was inaccessible, further investigation activities were determined not to be feasible.

#### <u>Miscellaneous Pits</u>

A communications pit was identified to the west of the substation within the transformer yard that contained a floor drain that discharges directly to subsurface soil. Soil boring MSSB-05 was advanced through this structure and soil samples were collected. Mercury-impacted soil was identified to a depth of 11 feet below grade, but the vertical extent of contamination was not determined. Therefore, it was recommended that a soil boring be advanced through the floor drain (immediately adjacent to MSSB-05) to collect and analyze samples from a depth of 11 to 15 feet below grade.

A water service pit with an earthen bottom was identified adjacent to the east side of the substation. Soil boring MSSB-07 was advanced at this location and samples were collected. Mercury-impacted soil was identified to a depth of 7.5 feet below grade; however, the vertical extent of contamination was not determined. Therefore, it was recommended that a soil boring be advanced through the floor drain (immediately adjacent to MSSB-07) and samples be collected for analysis from a depth of 7.5 to 11.5 feet below grade.

Lastly, a positive breaker cable pit with an earthen bottom was discovered adjacent to the north side of the substation. Analytical results indicated that soil at a depth of 7 feet below grade had been impacted by mercury. A sample collected from 9 to 11 feet below grade did not exhibit any mercury exceedance. Therefore, no additional investigation was recommended at this structure. Instead, it was recommended that the mercury-impacted soil be excavated to a depth of 9 feet below grade for proper off-site transportation and disposal.

#### Underground Injection Control

A dry well was identified approximately 5 feet to the west of the substation, which receives drainage from an interior pit drain. As a result, the closure of this unit was determined to be regulated by the USEPA UIC program. Soil boring MSSB-04 was advanced to a depth of 12 feet below grade within this structure. The vertical extent of mercury contamination, however, was not determined during the initial site assessment program. Therefore, it was recommended that a soil boring be advanced immediately adjacent to soil boring MSSB-04 from a depth of 17 to 22 feet below grade. In addition, it was recommended that the interior drain pipe located in the rectifier pit that discharges to the dry well be permanently capped with concrete as part of the UIC closure program.

#### Potential Miscellaneous Releases

Due to the unknown historic use of the mercury containing rectifiers, it was determined that inadvertent, non-specific releases may have occurred in the areas immediately surrounding the substation, and that exterior areas not necessarily associated with known areas of concern (i.e., loading docks, entrance ways, dry wells, trenches, etc.) may have been impacted. Therefore, it was recommended that two soil borings be advanced along the south side and northeast corner of the substation to address potential releases not previously investigated.

#### 1.3.3 Island Park Substation

#### Substation Interior

Mercury-impacted soil was identified beneath a sump pump pit located within the substation building. As a result, further investigation activities were recommended to determine the horizontal and vertical extent of the impacted soil. However, at the time of the initial site assessment, LIRR representatives indicated that the Island Park substation was scheduled to be

demolished. Consequently, it was recommended that delineation activities be performed in coordination with the demolition of the building, planned for the year 2005.

#### South Side of Substation

Mercury-impacted soil was identified to a depth of 6 feet below grade along the south side of the substation. As a result, it was recommended that additional subsurface soil sampling be conducted in the vicinity of IPSB-04 and IPSB-05 to delineate the horizontal and vertical extent of impacted soil.

#### Northwest Corner of Substation

Based on the results of endpoint samples that were collected and analyzed during the IRM program, mercury-impacted surface soil was noted to exist along the northwest corner of the substation. As a result, it was recommended that surface and subsurface soil sampling be conducted in the vicinity of surface soil samples IPSS-01 and IPSS-04 to further delineate the horizontal and vertical extent of impacted soil.

#### Western Drainage Line

D&B traced a drain pipe originating from within the substation basement and determined that it terminated approximately 21 feet from the west wall of the building beneath an unpaved area between the substation and the train tracks. However, this area could not be excavated to determine if a discharge feature existed due to the presence of numerous electric utilities. Consequently, it was recommended by D&B that this area be excavated at the time of building demolition (planned for the year 2005) when electric utilities in the area would normally be de-energized.

#### Rectifier Dry Well

D&B traced a drain pipe originating from within the substation basement that lead from the eastern wall of the substation and appeared to terminate under the parking lot approximately 30 feet east of the eastern wall of the building. This location roughly corresponded to the "dry well for rectifiers" identified on LIRR construction drawings. D&B subsequently conducted a geophysical survey to further investigate this area. This survey identified a magnetic anomaly in the vicinity of the rectifier dry well suggesting that a metal manhole cover was still present. Therefore, D&B advanced soil boring IPSB-08 to determine if this dry well area has been impacted. The soil sample results indicate that the rectifier dry well has not been impacted by mercury. It should be noted that D&B elected to advance soil boring IPSB-08 immediately down-gradient (from a groundwater perspective) of the rectifier dry well in order to minimize damage to the asphalt parking lot and to ensure that the soil boring would not meet refusal. Because soil boring IPSB-08 was not advanced through the rectifier dry well for the reasons described above, it was recommended that excavation activities be conducted in an attempt to locate this dry well. Once located, it was further recommended that a soil boring be advanced to a depth of at least 10 feet below the bottom of the dry well. It was also noted that if, upon excavation, the rectifier dry well is determined to be active, it would require proper closure pursuant to the USEPA UIC program.

#### <u>Water Meter Pit</u>

A water meter pit, located along the south side of the substation, was found to contain mercury-impacted soil from the bottom of the pit (2.5 feet below grade) to a depth of 6.5 feet below grade. Successful delineation of impacted soil was accomplished at this pit. As a result, no additional investigation activities were recommended. Instead, it was recommended that soil be excavated to a depth of 6.5 feet below grade from within the water meter pit for proper off-site transportation and disposal.

#### Underground Injection Control

Due to the fact that the Island Park substation had been scheduled for demolition, the active septic tank was recommended for closure pursuant to the USEPA UIC program. In addition, the rectifier dry well and tile field were recommended for UIC closure pending future successful identification of these features.

#### Potential Miscellaneous Releases

Due to the unknown historic use of the mercury containing rectifiers, it was determined that inadvertent, non-specific releases may have occurred in the areas immediately surrounding the substation. It appeared that exterior areas, not necessarily associated with known areas of concern (i.e., loading docks, entrance ways, dry wells, trenches, etc.), may have been impacted. As a result, it was recommended that two soil borings be advanced along the east and west sides of the substation to address potential releases not previously investigated.

Section 2

#### 2.0 INVESTIGATION METHODS

#### 2.1 Introduction

This section provides a description of the field activities conducted at the three substation sites. As discussed in Section 1.0, this investigation report summarizes the results of a number of related investigation phases, including:

- Field work performed during January and February of 2003, as part of the Delineation Phase 2 Site Assessment, that was conducted in accordance with the NYSDEC-approved "Investigation Work Plan," dated September 2002.
- Field sampling performed during January and February 2003 as part of the UIC Investigation. This work was conducted in accordance with the USEPA-approved Underground Injection Control Closure Plan, dated November 2002.
- Field activities conducted as part of the Construction Excavation Investigation that was completed by D&B during January and February 2003 in accordance with the NYSDEC-approved Construction Excavation Work Plan, dated October 2002.
- Field work performed during August of 2004, as part of the Supplemental Sampling Program, that was conducted in accordance with the NYSDEC-approved Supplemental Delineation Phase 2 Sampling Program, Final Sampling Plan, dated April 2004.

Sample locations associated with this investigation are shown on Drawing 1 (Manhasset), Drawing 2 (Massapequa) and Drawing 3 (Island Park), provided in map pockets at the end of this section. In addition, sampling and analysis summaries for the above listed investigation phases (which include AOC designation, number of borings, and samples collected at each AOC) are provided in Tables 2-1 through 2-6.

#### 2.2 Surface Soil Sampling

In general, surface soil samples were collected from a depth of 0 to 2 inches below ground surface (bgs). However, in some locations at the Manhasset Substation, the NYSDEC specified that additional samples be collected from 2 to 12 inches bgs. All samples were

#### TABLE 2-1 Long Island Rail Road DELINEATION PHASE 2 SITE ASSESSMENT Sampling and Analysis Summary Manhasset Substation - N10

|                                             |                                                                                                    |                  | SOIL PR             | OBES.                                                     |                | MON W  | ITORING<br>BLLS  |         | <b>***</b> *** | generation<br>State | Analyse | 2     | 2   |      | <b>6</b> 0 (1) |                                                                                    |                                                                                               |  |  |  |   |
|---------------------------------------------|----------------------------------------------------------------------------------------------------|------------------|---------------------|-----------------------------------------------------------|----------------|--------|------------------|---------|----------------|---------------------|---------|-------|-----|------|----------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|---|
| Location                                    | Sample Point ID.                                                                                   | No. of<br>Probes | Geoprobe<br>Samples | Soli Sampling                                             | No. of Sampler | Ne. of | Approx.<br>Depth | Mercury | TAL            | RCRA<br>Metals      | VOCI    | SVOCI | PCB | TPHI | TOC            | Purpose for Sampling                                                               | Comments                                                                                      |  |  |  |   |
|                                             | MHSB-13(0-2")<br>Through MHSB-<br>16(0-2")                                                         |                  |                     | 0-2" bgs                                                  |                |        |                  | 4       |                |                     |         |       |     |      | •              |                                                                                    | _                                                                                             |  |  |  |   |
|                                             | MHSB-06A                                                                                           | ł                | 2                   | 6'-10' bgs Cont.                                          |                |        |                  | 2       |                |                     |         |       |     |      |                |                                                                                    | -                                                                                             |  |  |  |   |
| Exterior Railroad Ties                      | MHSB-13 & 14                                                                                       | 2                | 8                   | 2-10' bgs Cont.                                           |                |        |                  | 8       |                |                     |         |       |     |      |                | Delineate extent of Hg                                                             | -                                                                                             |  |  |  |   |
|                                             | MHSB-15 & 16                                                                                       | 2                | 6                   | 2-8' bgs Cont.                                            |                |        |                  | 6       |                |                     |         |       |     |      |                |                                                                                    |                                                                                               |  |  |  | - |
| Exterior Railroad Ties<br>Supplemental      | MHSS-32 through<br>43                                                                              |                  |                     | 0-2" bgs                                                  |                |        |                  | 12      |                |                     |         |       |     |      |                |                                                                                    |                                                                                               |  |  |  |   |
| Sampüng*                                    | MHSB-24 Through<br>35                                                                              | 12               | 47                  | 0-8' bgs Cont. except<br>for MHSB-29 at 0-6'<br>bgs Cont. |                |        |                  | 47      |                |                     |         |       |     |      |                |                                                                                    | A hand-auger was utilized to aquire samples<br>from MHSB-29 due to overhead utility<br>lines. |  |  |  |   |
|                                             | MHSS-14 Through<br>16 & MHSS-27<br>Through MHSS-31<br>& MHSB-17(0-2")<br>Through MHSB-<br>19(0-2") |                  |                     | 0-2" bgs                                                  |                |        |                  | 11      |                |                     |         |       |     |      |                | Delineate the extent of Hg<br>contamination associated with the<br>Drainage Swale. |                                                                                               |  |  |  |   |
| Drainage Swale                              | MHSS-17 Through<br>26                                                                              |                  |                     | 0-2" bsb                                                  |                |        |                  | 10      |                |                     |         |       |     |      |                |                                                                                    | -                                                                                             |  |  |  |   |
|                                             | MHSB-17, 18 & 19                                                                                   | 3                | 9                   | 2-8' bgs Cont.                                            |                |        |                  | 9       |                |                     |         |       |     |      |                |                                                                                    |                                                                                               |  |  |  |   |
| Drainage Swaie                              | MHSS-44 Through<br>74                                                                              |                  |                     | 0-2" and 2-12" bgs                                        |                |        |                  | 62      |                |                     |         |       |     |      |                |                                                                                    | -                                                                                             |  |  |  |   |
| Drainage Swaie<br>Supplemental<br>Sampling* | MHSS-75 Through<br>80                                                                              |                  |                     | 0-2" bsb                                                  |                |        |                  | 6       |                |                     |         |       |     |      |                |                                                                                    | -                                                                                             |  |  |  |   |

#### TABLE 2-1 Long Island Rail Road DELINEATION PHASE 2 SITE ASSESSMENT Sampling and Analysis Summary Manhasset Substation - N10

| Location                         | Sample Point ID                    |               | SOIL PR          | OBES 12                     | SURFACE<br>WATER<br>SEDIMENT | MONI              | TORING           |         |        |        | Analyse |      |      |      |     |                                                                                                   |                                                                                                                                        |
|----------------------------------|------------------------------------|---------------|------------------|-----------------------------|------------------------------|-------------------|------------------|---------|--------|--------|---------|------|------|------|-----|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                                  | i e Tri                            | No. of Probes | Geoprobe Samples | Soli Sampling &<br>Interval | No. of Samples               | No. of y<br>Wells | Approx.<br>Depth | Mercury | Metals | Metals | VOC     | SVOC | PCBs | TPHY | TOC | ···· Purpose for Sampling                                                                         | Comments                                                                                                                               |
| Underground Injection<br>Control | MHSB-20                            |               |                  |                             |                              |                   | [                |         |        |        |         |      |      |      |     | Determine vertical extent of                                                                      | Dry well appeared to have a solid bottom.<br>Probe could not pentrate bottom.                                                          |
|                                  | MHSB-21                            | 1             | 4                | 0-12' bgs Cont.             |                              |                   |                  |         |        | 4      | 4       | 4    |      | 4    |     | Determine vertical extent of impacted soil in rectifier pit (UIC).                                | Probe initially supposed to be advanced to<br>10' bgs. However high MVA readings at<br>depth warranted additional, deeper<br>sampling. |
|                                  | MHSB-22                            | 1             | 3                | 6-30' Cont.                 |                              |                   |                  |         |        | 3      | 3       | 3    |      | 3    |     | Determine vertical extent of<br>impacted soil in water trough pit<br>(UIC).                       | Probe initially supposed to be advanced to<br>10' bgs. However high MVA readings at<br>depth warranted additional, deeper<br>sampling. |
| Outfail to Manhasset<br>Bay      | MHSD-01A, 01,<br>02A, and 03A      |               |                  | 0-2" bgs                    | 4                            |                   |                  | 4       |        |        |         |      |      |      |     | 4 sediment samples located at 5'<br>intervals extending to the north<br>from soil sample MHSS-08. | -                                                                                                                                      |
| Groundwater                      | MHMW-01,<br>MHMW-02 and<br>MHMW-03 |               |                  |                             |                              | 1                 | 90               |         | 6**    |        | 3       | 3    | 3    |      |     | Install one additional monitoring<br>well. Collected and analyzed<br>samples from three wells.    |                                                                                                                                        |

NOTES;

bgs: below ground surface,

bsb: below swale bottom

Cont.: Continuous 2-foot soil sampling

\* Sample(s) collected during the Supplemental Sampling Program conducted in August of 2004.

\*\* Filtered and unfiltered samples collected.

# TABLE 2-2Long Island Rail RoadCONSTRUCTION EXCAVATION SAMPLING PROGRAMSampling and Analysis SummaryManhasset Substation - N10

|                                 |                 | SOIL | PROBES                        |                   |      | Analyses |                       |                                                                                               |  |
|---------------------------------|-----------------|------|-------------------------------|-------------------|------|----------|-----------------------|-----------------------------------------------------------------------------------------------|--|
|                                 | Sample Point ID |      | No. of<br>Geoprobe<br>Samples | Soll Sampling     | RCRA | PCB      | A STATE OF A STATE OF | Comments:                                                                                     |  |
|                                 | MHSBX-01        | 1    | 8                             | 4'-20' bgs Cont.  | 6    | 6        | 6                     | No recovery from 6-8' and 10-12' bgs.                                                         |  |
|                                 | MHSBX-02        | 1    | 8                             | 4'-20' bgs Cont.  | 8    | 8        | 8                     |                                                                                               |  |
| Existing Transformer            | MHSBX-03        | 1    | 8                             | 4'-20' bgs Cont.  | 8    | 8        | 8                     |                                                                                               |  |
| Yard                            | MHSBX-04        | 1    | 8                             | 4'-20' bgs Cont.  | 6    | 6        | 6                     | No recovery from 16-20' bgs.                                                                  |  |
|                                 | MHSBX-05        | 1    | 8                             | 4'-20' bgs Cont.  | 8    | 8        | 8                     |                                                                                               |  |
|                                 | MHSBX-06        | 1    | 3                             | 4'-10' bgs Cont.  | 3    | 3        | 3                     |                                                                                               |  |
| Property Line Manhole           | MHSBX-07        | 1    | 5                             | 10'-20' bgs Cont. | 5    | 5        | 5                     |                                                                                               |  |
| South of Existing<br>Substation | MHSBX-08        | 1    | 8                             | 4'-20' bgs Cont.  | 8    | 8        | 8                     |                                                                                               |  |
| Positive Manhole                | MHSBX-09        | 1    | 7                             | 6'-20' bgs Cont.  | 7    | 7        | 7                     |                                                                                               |  |
| Future Light Pole               | MHSB-23         | 1    | 2                             | 0'-8' bgs         | 2*   |          |                       | Soil samples collected from 0-4' and 4-<br>8' bgs for mercury analysis at request of<br>LIRR. |  |

#### NOTES:

bgs: below ground surface.

Cont.: Continuous 2-foot soil sampling

\*: Mercury analysis only

eng:\2015 (LIRR 3 Subs Del Phase II)\Report Tables Section 2.0\Manhasset.Exc Scope.xis

#### TABLE 2-3 Long Island Rail Road DELINEATION PHASE 2 SITE ASSESSMENT Sempling and Analysis Summary Massapequa Substation - S15

| Location Con                                         | Grant Princip                                                | -SOIL | PROBES<br>No. of Since rates<br>Samples | Configuration                                             | CROUNDY | VATER PROBES |    | RCRA<br>Métale |    | INVIA<br>ILCOX | VOC: | BVOC1- | and a second | a marcifors staplare                                                                                                   | Conuntation                                                                                                            |
|------------------------------------------------------|--------------------------------------------------------------|-------|-----------------------------------------|-----------------------------------------------------------|---------|--------------|----|----------------|----|----------------|------|--------|--------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                                      | MSSB-06A(0-2") and<br>MSSB-09(0-2") Through<br>MSSB-34(0-2") |       |                                         | 0-2" bgs                                                  |         |              | 27 |                |    |                |      |        |              |                                                                                                                        | -                                                                                                                      |
|                                                      | MSSB-06A, 09, 10, 11,<br>12, 13, 14, & 15                    | 8     | 15                                      | 2-6' bgs. Cont.                                           |         |              | 15 |                |    |                |      | 1      |              |                                                                                                                        | There was no recovery of soil from 2-4' bgs<br>at MSSB-15.                                                             |
| East Side of Substation                              | MSSB-16 Through 29                                           | 14    | <b>[4</b>                               | 2-4' bgs Cont.                                            |         |              | 14 |                |    |                |      |        |              |                                                                                                                        | Several samples collected utilizing a hand<br>auger.                                                                   |
|                                                      | MSSB-30 & 31                                                 | 2     | 2                                       | 2-4' bgz Cont.                                            |         |              | 2  |                |    |                |      |        |              | Delineate extent of Hg contamination<br>associated with MSSS-01 through MSSS-05<br>and MSSB-06 and MSSB-08             | MSSB-31 was advanced using a hand auger.                                                                               |
|                                                      | MSSB-32, 33 & 34                                             | 3     | 12                                      | 2-10' bgs Cont.                                           |         |              | 12 |                |    |                |      |        |              |                                                                                                                        | -                                                                                                                      |
|                                                      | MSSS-07 <b>A and MS</b> SS-08<br>through 20                  |       |                                         | 0-2" bgs                                                  |         |              | 14 |                |    |                |      |        |              |                                                                                                                        |                                                                                                                        |
| East Side of Substation<br>Supplemental<br>Sampling* | MSSB-40 Through 52 &<br>54 Through 58                        | 18    | 55                                      | 0-6' bgs Cont. except<br>for MSSB-55 at 0-8'<br>bgs Cont. |         |              | 55 |                | •  |                |      |        |              |                                                                                                                        | A hand-auger was utilized to acquire samples<br>at soil borings MSSB-45 and MSSB-47 due<br>to sloping topography.      |
|                                                      | MS\$8-53                                                     | 1     | 3                                       | 0-2', 2-4', and 6-8' bgs                                  |         |              | 3  |                |    |                |      |        |              |                                                                                                                        |                                                                                                                        |
|                                                      | MSSB-35                                                      |       |                                         |                                                           |         |              |    |                |    |                |      |        |              | Boring in floor drain of communications pit.<br>Determine vertical extent of contamination<br>associated with MSSB-05. | This probe could not be advanced due to<br>access constraints associated with the pit, and<br>a solid concrete bottom. |
| Underground Injection<br>Control                     | MSSB-36                                                      | 1     | 2                                       | 7.5-11.5' bgs Cont.                                       |         |              |    | 2              |    |                | 2    | 2      | 2            | Determine vertical extent of impacted soil<br>associated with MSSB-07 advanced withing<br>the water service pit (UIC). | This probe was added to UIC program after<br>field inspection by NCDH.                                                 |
|                                                      | MSSB-37                                                      | 1     | 4                                       | 12-22' bgs Cont.                                          |         |              |    | 4              |    |                | 4    | 4      | 4            | Determine vertical extent of impacted soil in<br>dry well (UIC).                                                       | No recovery from 20-22' bgs.                                                                                           |
| Groundwater                                          | MSGP-01, 02, & 03                                            |       |                                         |                                                           | j       | 15           |    |                | 6* | 3              | 3    | 3      |              | Determine if groundwater has been impacted<br>at the site.                                                             | -                                                                                                                      |

#### TABLE 2-3 Long Island Rail Road DELINEATION PHASE 2 SITE ASSESSMENT Sampling and Analysis Summary Massapequa Substation - S15

| En | single Point II                    | SOIU<br>Ne de<br>Prober | PROBES<br>No. of<br>Generation<br>Samples |          | GROUND<br>Ne. action | WATER PROBES | Netale | Métais | International International | VOCI | SVOCI | стная | Se surpote for a simpling energy                           | Churrent                                                 |
|-------------------------------------------|------------------------------------|-------------------------|-------------------------------------------|----------|----------------------|--------------|--------|--------|-----------------------------|------|-------|-------|------------------------------------------------------------|----------------------------------------------------------|
|                                           | MSSB-38(0-2") and<br>MSSB-39(0-2") |                         |                                           | 0-2*     |                      |              | 2      |        | 2                           |      | 2     |       |                                                            |                                                          |
| Potential Releases                        | MSSB-38 & 39                       | 2                       | 2                                         | 2-4' bgr |                      | ·            | 2      |        | 2                           |      | 2     |       | Address potential releases not previously<br>investigated. | MSSB-38 and MSSB-39 were advanced<br>using a hand auger. |

#### NOTES:

bgs: below ground surface.

bpb: below pit bottom.

Cont.: Continuous 2-foot soil sampling.

\* Sample(s) collected during the Supplemental Sampling Program conducted in August of 2004.

\*\* Unfiltered and filtered samples collected.

# TABLE 2-4Long Island Rail RoadCONSTRUCTION EXCAVATION SAMPLING PROGRAMSampling and Analysis SummaryMassapequa Substation - S15

|                                 |                 | SOIL          | PROBES              |                  |      | Analyses |       |                                                                                                                                                            |
|---------------------------------|-----------------|---------------|---------------------|------------------|------|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Discation Parts                 | Sample Point ID | Not of Probes | Geoprobe<br>Samples | Soft Sampling    | NGRA | POB      | SWORT | Comments                                                                                                                                                   |
|                                 | MSSBX-01        | 1             | 8                   | 4'-20' bgs Cont. | 5    | 5        |       | No recovery from 14'-20' bgs.                                                                                                                              |
|                                 | MSSBX-02        | 1             | 8                   | 4'-20' bgs Cont. | 6    | 6        | 6     | No recovery from 16'-20' bgs.                                                                                                                              |
|                                 | MSSBX-03        | 1             | 8                   | 4'-20' bgs Cont. | 8    | 8        | 8     |                                                                                                                                                            |
| Existing Transformer<br>Yard    | MSSBX-04        | 1             | 8                   | 4'-20' bgs Cont. | 8    | 8        | 8     |                                                                                                                                                            |
|                                 | MSSBX-05        | 1             | 8                   | 4'-20' bgs Cont. | 8    | 8        | 8     |                                                                                                                                                            |
|                                 | MSSBX-06        | 1             | 2                   | 4'-8' bgs Cont.  | 2    | 2        |       | Due to physical access constraints<br>these samples were collected using a<br>hand auger. As a result, soil could<br>only be sampled to a depth of 8' bgs. |
| Property Line Manhole           | MSSBX-07        | 1             | 8                   | 4'-20' bgs Cont. | 5    | 5        | 5     | No recovery from 14'-20' bgs.                                                                                                                              |
| North of Existing<br>Substation | MSSBX-08        |               |                     |                  |      |          |       | This soil probe was removed from the<br>program due to physical access<br>constraints associated with the<br>Transformer Area.                             |
| Negative Manhole                | MSSBX-09        | 1             | 8                   | 4'-20' bgs Cont. | 5    | 5        |       | No recovery from 12'-16' bgs and 18'-<br>20' bgs.                                                                                                          |
| South of Existing<br>Substation | MSSBX-10        | 1             | 8                   | 4'-20' bgs Cont. | 7    | 7        | 7     | No recovery from 14'-16' bgs.                                                                                                                              |

#### NOTES:

bgs: below ground surface.

Cont.: Continuous 2-foot soil sampling

eng:\2015 (LIRR 3 Subs Del Phase II)\Report Tables Section 2.0\Massapequa.Exc Scope.xis

#### TABLE 2-5 Long Island Rail Road DELINEATION PHASE 2 SITE ASSESSMENT Sampling and Analysis Summary Island Park Substation - L03

| and the second          | 1. Same                                    |                    | PROBES                          |                   | GROUNDWATER PROBES |                                     |         |                |               | Analyses |     |       | -<br>1. je | etter all des                                                                                                                                                                              | a Minister and Antonio and                                                                                                                                         |
|-------------------------|--------------------------------------------|--------------------|---------------------------------|-------------------|--------------------|-------------------------------------|---------|----------------|---------------|----------|-----|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location                | Sample Point ID                            | - Na. of<br>Probes | No. of .<br>Geoprobe<br>Samples | Sell Sampling     | Np. of<br>Probes   | * Depth of<br>Groupdwater<br>Probes | Mercury | RCRA<br>Metals | TAL<br>Metals | РСВя     | VOC | SVDC1 | ТРН        | Purpose for Sampling                                                                                                                                                                       | Comment                                                                                                                                                            |
| Substation Interior     | ₽SB-01A                                    |                    |                                 |                   |                    |                                     |         |                |               |          |     |       |            | Delineate extent of Hg<br>contamination associated with IPSE<br>01. Probe to be located adjacent to<br>IPSB-01. Soil Samples will be<br>collected after building demolition.               | Soil boring postponed until after building demolition.                                                                                                             |
|                         | IPSB-10 & 11                               |                    |                                 |                   |                    |                                     |         |                |               |          |     |       |            | Delineate extent of Hg<br>contamination associated with IPSE<br>01. Probes to be located 10' east<br>and routh of IPSB-01. Soil samples<br>will be collected after building<br>demolition. | Sail boring notmoned until after building demolition                                                                                                               |
| West Side of Substation | IPSS-05 & 06                               |                    |                                 | 0-2" bgs          |                    |                                     | 2       |                |               |          |     |       |            | Surface soil samples to delineate<br>extent of Hg contamination in the<br>vicinity of the IRM work.                                                                                        |                                                                                                                                                                    |
|                         | IPSB-12(0-2")<br>Through IPSB-15(0-<br>2") |                    |                                 | 0-2-              |                    |                                     | 4       |                |               |          |     |       |            |                                                                                                                                                                                            |                                                                                                                                                                    |
| South Side of           | IPSB-04A                                   | 1                  | 2                               | 6'-10' bgs. Cont. |                    |                                     | I       | 1              |               | 1        | 1   | 1     |            | Delineate extent of Hg<br>contamination associated with IPSE<br>04. Probe located adjacent to IPSB<br>04.                                                                                  | The 8-10' interval was analyzed for RCRA metals, PCBs,<br>VOCs and SVOCs due to observed PID readings, odors<br>and other characteristics.                         |
| Substation              | IPSB-12 & 13                               | 2                  | 7                               | 2-10' bga. Com.   |                    |                                     | 5       | 2              |               | 2        | 2   | 2     |            | Delineate extent of Hg<br>contamination associated with IPSE<br>04. Probes located 10' south and<br>west of IPSB-04.                                                                       | At IPSB-13, the 6-8', and 8-10' intervals were analyzed<br>for RCRA metals, PCBs, VOCs and SVOCs due to<br>observed PID readings, odors and other characteristics. |
|                         | IPSB-14 & 15                               | 2                  | 8                               | 2-10' bgs. Cont.  |                    |                                     | 8       |                |               |          |     |       |            | Delineate extent of Hg<br>contamination associated with IPSE<br>05. Probes located 10' south and<br>east of IPSB-05.                                                                       |                                                                                                                                                                    |
|                         | ₽\$B-18(0-2")                              |                    | I                               | 0-2*              |                    |                                     |         |                |               |          |     |       |            |                                                                                                                                                                                            |                                                                                                                                                                    |
| Northwest Corner of     | IPSB-16 & 17                               | 2                  | 4                               | 0-4' bgs. Cont.   |                    |                                     | 4       |                |               |          |     |       |            | Delinente extent of Hg<br>contamination associated with IPSS<br>04. Probes located adjacent to IPSS<br>04 and 10' north, east and west of<br>IPSS-04.                                      |                                                                                                                                                                    |
| Substation              | IPSB-18                                    | 1                  | I                               | 2-4' bgs. Cont.   |                    |                                     | I       |                |               |          | ,   |       |            | Delineate extent of Hg<br>contamination associated with IPSS<br>04. Probes located adjacent to IPSS<br>04 and 10' north, east and west of<br>IPSS-04.                                      |                                                                                                                                                                    |
|                         | IPSB-20                                    | 1                  | 2                               | 0-4' bgs. Cont.   |                    |                                     | 1       | 1              |               |          |     |       |            | Delineate extent of Hg<br>contamination associated with IPSS<br>01. Probes located adjacent to IPSS<br>01                                                                                  |                                                                                                                                                                    |
| Rectifier Dry Well      | IPSB-21                                    | 1                  | 5                               | 10-20' bgs Cont.  |                    |                                     |         | 5              |               |          | 5   | 5     | 5          | Probe advanced after test pit<br>excavated (UIC).                                                                                                                                          |                                                                                                                                                                    |
| The Field               | IPSB-22(0-2")<br>Through IPSB-25(0-<br>2") |                    |                                 | 0-2"              |                    |                                     |         | 4              |               |          | 4   | 4     | 4          | Investigate Tile Field (UIC).                                                                                                                                                              |                                                                                                                                                                    |
|                         | IPSB-22, 23, 24, 25                        | 4                  | 4                               | 2-4° bga Cont.    |                    |                                     |         | 4              |               |          | 4   | 4     | 4          |                                                                                                                                                                                            |                                                                                                                                                                    |
| Groundwater             | IPGP-01, 02 & 03<br>and IPTP-03            |                    |                                 |                   | 3                  | 10                                  |         | 2*             | 6•            | 4        | 4   | 4     |            | Determine if groundwater has been impacted at the site.                                                                                                                                    | PCB and SVOC analyses added to program.                                                                                                                            |

#### TAISLE 2-3 Long Island Rall Road DELINEATION PHASE 2 SITE ASSESSMENT Sampling and Analysis Summary Island Park Substation - L03

| The second states and | Sample Point ID                                     | SOIL<br>Na. af | PROBES<br>No. of<br>Geoprobe<br>Samples | Soli Samplian<br>Interval | GROUNDY<br>Na. of<br>Probes | SE BESS | RCRA | TAL | Analysee<br>PCBs | Sur and | Acres | Purpers for Sampling                                                                        | Соплеми |
|-----------------------|-----------------------------------------------------|----------------|-----------------------------------------|---------------------------|-----------------------------|---------|------|-----|------------------|---------|-------|---------------------------------------------------------------------------------------------|---------|
|                       | PSB-19 (0-2"), PSB<br>26(0-2") and PSB-<br>27(0-2") |                |                                         | 0-2"                      |                             | <br>1   | 2    |     | 2                | 2       |       | c                                                                                           |         |
| Transformers          | IPSB-19                                             | 1              | 1                                       | 2-4' bgs. Cont.           |                             | 1       |      |     |                  |         |       | Investigate stained areas in the vicinity of transformers.                                  |         |
|                       | IPSB-26 & 27                                        | 2              | 4                                       | 0-4' bgs. Cont.           |                             |         | 4    |     | 4                | <br>4   |       |                                                                                             |         |
|                       | IPSB-28(0-2") and<br>IPSB-29(0-2")                  |                |                                         | 0-2-                      |                             |         | 2    |     | 2                | 2       |       | Address potential releases not                                                              |         |
| Polenilaj Refeases    | IPSB-28 & 29                                        | 2              | 2                                       | 2-4' bgs. Cont.           |                             |         | 2    |     | 2                | 2       |       | previously investigated. Probes<br>located on the east and west sides of<br>the substation. | -       |

NOTES: bgs: below ground surface. Cont.: Continuous 2-foot soil sampling

\* Unfiltered and filtered samples collected.

# TABLE 2-6Long Island Rail RoadCONSTRUCTION EXCAVATION SAMPLING PROGRAMSampling and Analysis SummaryIsland Park Substation - L03

| and the second se |                 | SOIL:   | PROBES                        | ****************                                                                                                |      | Analyses | an an Sha | STEP In the Series           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|------|----------|-----------|------------------------------|
| Jocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Point ID | iNo. of | No. of<br>Geoprobe<br>Samples | A CONTRACT OF | RORA | PCB      |           | Comman(r                     |
| South Trench                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IPSBX-01        | l       | 8                             | 4'-20' bgs Cont.                                                                                                | 8    | 8        | 8         |                              |
| South Dry Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IPSBX-02        | 1       | 7                             | 6'-20' bgs Cont.                                                                                                | 7    | 7        | 7         |                              |
| North Dry Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IPSBX-03        | 1       | 7                             | 6'-20' bgs Cont.                                                                                                | 7    | 7        | 7         |                              |
| New Substation - Cable<br>Vault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IPSBX-04        | 1       | 8                             | 4'-20' bgs Cont.                                                                                                | 8    | 8        | 8         | -                            |
| New Substation - Cable<br>Vault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IPSBX-05        | 1       | 5                             | 10'-20' bgs Cont.                                                                                               | 5    | 5        | 5         |                              |
| New Substation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IPSBX-06        | 1       | 8                             | 4'-20' bgs Cont.                                                                                                | 7    | 7        | 7         | No recovery from 10-12' bgs. |
| New Substation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IPSBX-07        | 1       | 8                             | 4'-20' bgs Cont.                                                                                                | 8    | 8        | 8         |                              |
| East Trench                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IPSBX-08        | 1       | 8                             | 4'-20' bgs Cont.                                                                                                | 8    | 8        | 8         |                              |
| East Trench                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IPSBX-09        | 1       | 8                             | 4'-20' bgs Cont.                                                                                                | 8    | 8        | 8         |                              |
| New Manhole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IPSBX-10        | 1       | 6                             | 8'-20' bgs Cont.                                                                                                | 5    | 5        | 5         | No recovery from 18-20' bgs. |
| North Trench                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IPSBX-11        | 1       | 8                             | 4'-20' bgs Cont.                                                                                                | 8    | 8        | 8         |                              |
| North Trench                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IPSBX-12        | 1       | 8                             | 4'-20' bgs Cont.                                                                                                | 8    | 8        | 8         |                              |

## NOTES:

bgs: below ground surface. Cont.: Continuous 2-foot soil sampling collected utilizing a dedicated polyethylene scoop and placed into laboratory-supplied glass bottles. All samples were screened utilizing a mercury vapor analyzer (MVA) for the presence of mercury vapor and a photoionization detector (PID) for the presence of volatile organic compounds (VOCs). In areas of the substations where the ground surface was covered with crushed stone or railroad ballast, this material was removed prior to collecting the surface soil sample.

# 2.3 Sediment Sampling

Sediment samples were only collected during the investigation of the Manhasset substation. Sediment samples were collected at the discharge point of the drainage swale outfall (to Manhasset Bay) (off-site). Each sample was collected from 0 to 2 inches below the surface of the sediment utilizing a long-handle polyethylene scoop.

# 2.4 Subsurface Soil Sampling

Subsurface soil samples were collected using a direct push (Geoprobe<sup>®</sup>) sampling technique with a decontaminated probe sampler. The samples were screened for mercury, utilizing an MVA, and for VOCs, utilizing a PID; inspected for staining, discoloration; checked for odors; and logged by a geologist in a dedicated field book. Boring logs are included in Appendix B.

Before commencement of soil probing, all "down-hole" probing equipment (i.e., macrocore samplers, probe rods, etc.) was decontaminated using a steam cleaner/pressure washer and/or Alconox and water daily at the decontamination pad. Soil probe samplers were also decontaminated between each use by thoroughly washing with Alconox and water, using a brush to remove particulate matter or surface film, followed by a thorough rinsing with tap water.

During soil probe installation, an MVA and a PID was used to monitor mercury vapor and VOCs, respectively, in the breathing zone and at the probe holes and boreholes. The PID was calibrated on at least a daily basis, using isobutylene gas at a concentration of 100 parts per million (ppm) in air.

Upon completion of soil probes, recovered sample material that was not retained for laboratory analysis was returned to the borehole from which it came. The remainder of the borehole was filled with clean sand and/or bentonite pellets. All probe holes were restored at grade with the same material that was originally in place. For example, asphalt areas were replaced with asphalt, concrete areas were replaced with concrete and grass and soil areas were restored with grass and soil.

# 2.5 Test Pit Excavation and Sampling

Two test pits were excavated to a depth of 5 feet below ground surface at the Island Park Site in order to locate suspected drywells. The locations of these test pits are depicted on Drawing 3. At each location, asphalt was removed over a 10-foot by 10-foot area with a jackhammer and soil was excavated utilizing a mini-excavator. During excavation, an MVA and a PID was used to monitor mercury vapor and VOCs, respectively, in the breathing zone and in the excavation. Groundwater was observed at a depth of approximately 4 feet below ground surface at both locations. Any evidence of odors, sheens or the presence of free product was noted. All observations and results were logged in the project field books. A groundwater sample was collected from test pit IPTP-03 for laboratory analysis. Test pit logs are included in Appendix C.

#### 2.6 Groundwater Monitoring Well Installation and Sampling

One groundwater monitoring well (MHMW-03) was installed at the Manhasset substation to assess the potential impact to groundwater downgradient of the site. The approximate location of the groundwater monitoring well is shown on Drawing 1. No other monitoring wells were installed as part of the Delineation Phase 2 Site Assessment.

MHMW-03 was installed to a depth of 86 feet utilizing a CME-55 rotary drill rig equipped with 4 1/4-inch hollow stem augers. All equipment, including the 4 1/4-inch hollow stem augers, was decontaminated utilizing a high-pressure steam cleaner. All decontamination water was contained in 55-gallon DOT drums for proper disposal. Fifteen feet of 2-inch diameter 0.010 slot schedule 40 flush joint threaded PVC screen and 70-feet of 2-inch diameter Schedule 40 flush joint thread PVC riser pipe was utilized for the well construction. A well construction log for MHMW-03 is presented in Appendix D.

All drill cuttings and well development water were contained in 55-gallon DOT drums for proper off-site transportation and disposal by LIRR. Number 1 Morie well gravel was utilized for the well screen annulus. The remainder of the annular void was filled with hydrated bentonite pellets and a cement and bentonite grout mix was installed as a seal. Subsequent well development activities reduced the turbidity of the well water to less than 50 NTU's. Nevertheless, the laboratory conducted filtered and unfiltered metals analyses for groundwater samples collected from this monitoring well.

One week subsequent to well development, groundwater samples were collected utilizing dedicated plastic bailers. Samples were not taken until pH, temperature and conductivity measurements were stabilized, and not before at least three well volumes were purged and well recovery was completed. Purge water was containerized in 55-gallon DOT drums for proper off-site disposal.

#### 2.7 Groundwater Probe Installation and Sampling

Groundwater probe samples were collected only at the Massapequa and Island Park substations. These samples were collected by driving probe rods to the designated sample depth and retracting 4 feet to expose a decontaminated stainless steel screen. Dedicated polyethylene tubing and a decontaminated stainless steel check valve were inserted into the rod assembly and manually oscillated to purge approximately three casing volumes of groundwater from the screen and rod assembly. The check valve was decontaminated and new tubing was used between each interval. Any evidence of odors, sheens or the presence of free product was noted. All observations and results were logged in the project field books. Groundwater samples were then collected from the tubing/check valve assembly into laboratory-supplied glass bottles.

Upon completion, each probe hole was backfilled with clean sand and/or bentonite pellets. All probe holes were restored at grade with the same material that was originally in place, as described previously.

# 2.8 Air Sampling

As discussed above, a Jerome Mercury Vapor analyzer was used to scan all surface and subsurface soil samples for the presence of mercury vapor. The mercury vapor results for subsurface soil are summarized on the boring logs provided in Appendix B. In addition, summary tables have been provided in Appendix H for all mercury vapor results measured at each surface soil sample location.

Section 3

# 3.0 FINDINGS

This section presents a discussion of the analytical data associated with the investigation phases conducted at the Manhasset, Massapequa and Island Park Substations, including:

- Field work performed during January and February of 2003, as part of the Delineation Phase 2 Site Assessment, that was conducted in accordance with the NYSDEC-approved "Investigation Work Plan," dated September 2002.
- Field sampling performed during January and February 2003 as part of the UIC Investigation. This work was conducted in accordance with the USEPA-approved Underground Injection Control Closure Plan, dated November 2002.
- Field activities conducted as part of the Construction Excavation Investigation that were completed by D&B during January and February 2003 in accordance with the NYSDEC-approved Construction Excavation Work Plan, dated October 2002.
- Field work performed during August of 2004, as part of the Supplemental Sampling Program, that was conducted in accordance with the NYSDEC-approved Supplemental Delineation Phase 2 Sampling Program, Final Sampling Plan, dated April 2004.

Soil sample results are compared to the criteria included in Appendix A of the New York State Department of Environmental Conservation (NYSDEC) Technical and Administrative Guidance Memorandum (TAGM) 4046 (referred to in this document as "NYSDEC TAGM Criteria"). Groundwater sampling results are compared to the Class GA Groundwater Standards/ Guidance Values listed in NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1. Analytical results are summarized on Tables 1 through 49 located in Appendix E.

The analytical results are organized by each of the three substations with the discussion further organized by each area of concern (AOC) identified at each substation during the initial 1999 Site Assessment.

#### 3.1 Manhasset Substation – Investigation Report

Surface soil, subsurface soil, groundwater and sediment samples were collected in support of the Delineation Phase 2 Site Assessment at the Manhasset Substation. The following presents a summary of the analytical results by AOC. All sample locations are shown on Drawing 1.

# 3.1.1 Exterior Railroad Ties

Sixteen surface soil samples (MHSB-13 [0 to 2 inches] through MHSB-16 [0 to 2 inches]) and MHSS-32 (0 to 2 inches) through MHSS-43 (0 to 2 inches) were collected below 6 to 8 inches of crushed stone in the location of the Exterior Railroad Ties. Table 1 summarizes the mercury data for the surface soil samples. In addition, 17 soil probes (MHSB-06A, MHSB-13 through MHSB-16, and MHSB-24 through MHSB-35) were advanced to varying depths of up to 10 feet bgs at this AOC. A total of 63 subsurface soil samples were collected from the 17 soil probes. All subsurface soil samples were analyzed for mercury, the results of which are summarized on Table 2.

#### Surface Soil

All 16 surface soil samples collected below 6 to 8 inches of crushed stone exhibited detectable levels of mercury, ranging from 0.34 mg/kg to a maximum of 332 mg/kg at MHSS-38, located in the central portion of this AOC. The second highest mercury concentration was 193 mg/kg, detected at MHSB-14 (0 to 2 inches). In addition, all 16 samples exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. In general, the highest mercury concentrations in this AOC were observed immediately south of the drainage swale hot spot (see Section 3.1.2) and east of the signal hut.

#### Subsurface Soil

Detectable levels of mercury were exhibited by 60 out of the 63 subsurface soil samples with concentrations ranging from 0.015 mg/kg to a maximum of 1,700 mg/kg at MHSB-30 (2 to 4 feet). A total of 36 samples exhibited concentrations of mercury exceeding the NYSDEC TAGM criterion of 0.1 mg/kg. Note that the highest mercury concentrations in subsurface soil were detected at MHSB-29 through MHSB-34 within the central portion of this AOC and directly south of the drainage swale hot spot (see Section 3.1.2). In general, the highest concentrations of mercury were detected in subsurface soil shallower than 4 feet bgs with concentrations greater closer to the surface.

# 3.1.2 Drainage Swale

A total of 89 surface soil samples were collected within and in the vicinity of the drainage swale as part of the Delineation Phase 2 Site Assessment and the associated Supplemental Investigation conducted in August of 2004, and analyzed for mercury, including:

- MHSB-17 (0 to 2 inches) through MHSB-19 (0 to 2 inches);
- MHSS-14 (0 to 2 inches) through MHSS-31 (0 to 2 inches);
- MHSS-44 (0 to 2 inches) through MHSS-80 (0 to 2 inches); and
- MHSS-44 (2 to 12 inches) through MHSS-74 (2 to 12 inches).

As shown on Drawing 1, samples were collected from within and in the vicinity of the drainage swale, a total distance of approximately 105 feet east of the northwest corner of the substation to approximately 870 feet west (downstream) of this point. The samples collected from within the drainage swale were collected below the stone blocks that line the swale. In addition, a number of surface soil samples were collected immediately to the north of the drainage swale and on adjacent off-site properties. The analytical data for the surface soil samples collected from the drainage swale is presented on Table 1.

In addition, three soil probes (MHSB-17, MHSB-18 and MHSB-19) were advanced in the vicinity of this AOC to a depth of 8 feet bgs. A total of nine subsurface soil samples were collected from these soil probes. All samples were analyzed for mercury. The analytical data for the subsurface soil samples is presented on Table 2.

#### Surface Soil

Surface soil samples collected from the drainage swale in 1999, as part of the initial Site Assessment, identified elevated levels of mercury within a portion of the swale from approximately 10 to 30 feet west of the northwest corner of the substation. Surface soil samples MHSS-11 (0 to 2 inches) and MHSS-13 (0 to 2 inches) collected within this hot spot area exhibited the highest detected mercury concentrations within the Manhasset Substation site at 9,800 mg/kg and 1,890 mg/kg, respectively. However, additional sampling performed as part of the Delineation Phase 2 Site Assessment indicate mercury concentrations are significantly lower to the west (downstream) and east (upstream) of this hot spot area. Surface soil samples to the west of the hot spot area exhibited mercury concentrations from a minimum of 0.093 mg/kg detected at MHSS-76 (0 to 2 inches) located approximately 820 feet west of this area to a maximum of 15.5 mg/kg detected at MHSS-19 (0 to 2 inches) located approximately 190 feet west of this area. Surface soil samples collected from within the drainage swale and east of the hot spot were also found to exhibit mercury concentrations at relatively low concentrations, but above the NYSDEC TAGM criterion of 0.1 mg/kg, with concentrations ranging from 0.05 mg/kg detected at MHSB-18 (0 to 2 inches) to a maximum of 6.4 mg/kg detected at MHSS-29 (0 to 2 inches). As discussed previously, all surface soil samples collected from the drainage swale were actually collected from below or underneath the stone blocks that line the swale.

Surface soil samples collected off-site immediately to the north of the drainage swale were found to exhibit relatively low mercury concentrations, but generally above the NYSDEC TAGM criterion of 0.1 mg/kg, with the majority of concentrations ranging from 0.1 mg/kg to less than 6.0 mg/kg. One exception to this general trend was the detection of mercury at 35.8 mg/kg at MHSS-54 (0 to 2 inches) located immediately in front of the substation fence gate.

While not completed as part of the Delineation Phase 2 Investigation, a total of 48 surface soil samples were collected immediately south of the drainage swale as part of the Post-Removal of Staged Soil Investigation conducted at the Manhasset Substation in June of 2004. All samples were analyzed for mercury. The October 4, 2004 letter report entitled, "Removal of Staged Soil at the Long Island Rail Road Manhasset Substation" is provided in Appendix F and includes the results of the analyses. The location of each of the post-soil removal surface soil samples is shown on Drawing 1. The review of the mercury data for the 48 surface soil samples indicates that the vast majority of the samples (45 of 48) exhibited mercury concentrations of less than 2.0 mg/kg. The exceptions include: SRSS-08 (0 to 2 inches) at 3.9 mg/kg, SRSS-31 (0 to 2 inches) at 3.3 mg/kg, and SRSS-32 (0 to 2 inches) at 7.5 mg/kg.

# Subsurface Soil

Mercury was detected in only 2 out of the 9 subsurface soil samples collected from the drainage swale with concentrations of 0.018 mg/kg at MHSB-19 (2 to 4 feet) and 0.023 mg/kg at MHSB-17 (2 to 4 feet), both well below the NYSDEC TAGM criterion for mercury of 0.1 mg/kg.

#### 3.1.3 <u>Slop Sink</u>

As discussed in Section 1.3, a Slop Sink was formerly located inside the substation, along the east wall. The sink discharged to grade outside the east wall of the substation, within the Existing Transformer Yard. One boring (MHSBX-06) was advanced from a depth of 4 to 10 feet below grade at this location as part of the Construction Excavation Investigation. Three subsurface soil samples were collected from this boring and analyzed for semivolatile organic compounds (SVOCs), Resource Conservation and Recovery Act (RCRA) metals and polychlorinated biphenyls (PCBs). Results of this analysis are presented on Table 12 for RCRA metals, Table 13 for SVOCs and Table 14 for PCBs.

Mercury was not detected in any of the three samples collected from MHSBX-06. MHSBX-06 (6 to 8 feet) exhibited a chromium concentration of 144 mg/kg, exceeding the NYSDEC TAGM criterion for chromium of 50 mg/kg. However, a deeper sample collected from 8 to 10 feet at this boring exhibited a chromium concentration of only 7.6 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

All SVOCs were found to be nondetectable in all three soil samples with the exception of di-n-butylphthalate detected at an estimated concentration of 48 ug/kg in MHSBX-06 (8 to 10 feet). The NYSDEC TAGM criterion for this compound is 8,100 ug/kg.

PCBs were not detected in any of the three subsurface soil samples.

# 3.1.4 Outfall to Manhasset Bay

Four surface water sediment samples (MHSD-01, MHSD-01A, MHSD-02A and MHSD-03A) were collected off-site at 5-foot intervals in front of the drainage swale outfall in Manhasset Bay at low tide. The outfall, which is located approximately 1,000 feet west of the substation, discharges storm water to Manhasset Bay conveyed by the on-site drainage swale. Samples were collected from 0 to 3 inches from the tidal flat portion of the bay directly downstream of the outfall. The samples were analyzed for mercury and total organic carbon (TOC).

The analytical data for the four sediment samples are presented on Table 3. All four sediment samples exhibited detectable levels of mercury, ranging from 0.077 mg/kg to a maximum of 0.19 mg/kg at MHSD-02A. Only MHSD-02A exceeded the "lowest effect level" of 0.15 mg/kg established for mercury for surface water sediment by the NYSDEC pursuant to the NYSDEC Technical Guidance for Screening Contaminated Sediment, dated November 22, 1993. All mercury concentrations were found to be well below the "severe effect level" of 1.3 mg/kg which is also included in the above-referenced NYSDEC guidance document.

#### 3.1.5 <u>Underground Injection Control (UIC) Drainage Structures</u>

A total of three drainage structures were identified within the Manhasset substation that were considered UIC structures including the Rectifier Pit, the Water Trough Pit and a dry well located south of the substation building. With the exception of the dry well, soil samples were collected from each structure and analyzed for volatile organic compounds (VOCs), SVOCs, RCRA metals and total petroleum hydrocarbons (TPHs). Results of this analysis are presented on Table 4 for RCRA metals, Table 5 for volatile organic compounds (VOCs), Table 6 for semivolatile organic compounds (SVOCs), and Table 7 for TPHs.

#### Dry Well

During the field investigation, the sampling of a drywell located to the south of the substation was attempted with the advancement of MHSB-20; however, debris at the bottom of the drywell prevented the successful recovery of soil below the bottom. However, in June of 2003, this dry well was closed in accordance with USEPA and NCDH requirements by backfilling the structure with clean soil and capping the structure with the placement of a 1-foot thick concrete slab on top of the backfilled soil.

# Rectifier Pit

Soil probe MHSB-21 was advanced within this structure to a depth of 12 feet bgs. Four subsurface soil samples were collected for analysis.

Two of the four subsurface soil samples analyzed for RCRA metals exhibited detectable levels of mercury, with concentrations of 9.1 mg/kg at MHSB-21 (2 to 4 feet) and 473 mg/kg at MHSB-21 (4 to 6 feet), exceeding the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. MHSB-21 (4 to 6 feet) exhibited a lead concentration of 1,010 mg/kg, exceeding the NYSDEC TAGM criterion for lead of 500 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

VOCs were not detected in the four subsurface soil samples.

Two of the four subsurface soil samples exhibited detectable concentrations of SVOCs, with total SVOC concentrations of 34,678 ug/kg at MHSB-21 (4 to 6 feet) and 55,988 ug/kg at MHSB-21 (2 to 4 feet), both below the NYSDEC TAGM criterion for total SVOCs of 500,000 ug/kg. However, polycyclic aromatic hydrocarbons (PAHs) were the most prevalent SVOCs detected, and both samples exceeded the NYSDEC TAGM criterion for total carcinogenic PAHs (CaPAHs) of 10,000 ug/kg. In addition, soil sample MHSB-21 (4 to 6 feet) exhibited a phenol concentration of 81 ug/kg, which exceeds the NYSDEC TAGM criterion for phenol of 30 ug/kg.

Total petroleum hydrocarbons were detected in two of the four subsurface soil samples, with TPH concentrations of 450 mg/kg at MHSB-21 (2 to 4 feet) and 1,500 mg/kg at MHSB-21 (4 to 6 feet). A NYSDEC TAGM 4046 criteria for TPHs does not exist.

Based on these findings, the rectifier pit was remediated in June of 2003 in accordance with the USEPA-approved Underground Injection Control (UIC) Closure Plan, dated November 2002.

## Water Trough Pit

Soil probe MHSB-22 was advanced within this structure to a depth of 26 feet bgs. Three subsurface soil samples were collected from this probe for chemical analysis.

All three subsurface soil samples analyzed for RCRA metals exhibited detectable levels of mercury, ranging from 0.045 mg/kg to a maximum of 553 mg/kg at MHSB-22 (18 to 20 feet). Two of the three samples that exhibited detectable concentrations of mercury also exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

One out of the three subsurface soil samples exhibited detectable concentrations of VOCs, with a total VOC concentration of 16 ug/kg at MHSB-22 (18 to 20 feet). None of the VOC compounds detected exceeded NYSDEC TAGM criteria.

One out of the three subsurface soil samples exhibited detectable concentrations of SVOCs, with a total SVOC concentration of 42,732 ug/kg at MHSB-22 (18 to 20 feet). The sample did not exceed the NYSDEC TAGM criterion for total SVOCs of 500,000 ug/kg. However, the sample did exceed the NYSDEC TAGM criterion for CaPAHs of 10,000 ug/kg, with a total CaPAH concentration of 21,390 ug/kg.

Total petroleum hydrocarbons were detected in one of the three subsurface soil samples, with a TPH concentration of 480 mg/kg at MHSB-22 (18 to 20 feet).

Based on these findings, UIC closure activities were completed in accordance with the USEPA-approved UIC Closure Plan, dated November 2002. Approximately 6 feet of soil was excavated from the bottom of the Water Trough Pit in June of 2003 and then backfilled with clean soil. A 6-inch concrete slab was then placed on top of the clean soil completing the remediation and closure of this UIC structure.

# 3.1.6 Potential Miscellaneous Releases

Two soil probes (MHSBX-08 and MHSBX-09) were advanced during the Construction Excavation Investigation to investigate potential releases along the south side of the existing substation. Each probe was advanced to a depth of 20 feet bgs. A total of 15 subsurface soil samples were collected from the two soil probes and analyzed for SVOCs, RCRA metals and PCBs. Results of this analysis are presented on Table 12 for RCRA metals, Table 13 for SVOCs, and Table 14 for PCBs.

Two of the 15 subsurface soil samples analyzed for RCRA metals exhibited detectable levels of mercury, with concentrations of 0.081 mg/kg at MHSBX-08 (8 to 10 feet) and 0.33 mg/kg at MHSBX-09 (14 to 16 feet). Of these two samples, only MHSBX-09 (14 to

16 feet) exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

SVOCs were not detected in the 15 subsurface soil samples.

PCBs were not detected in any of the 15 subsurface soil samples.

# 3.1.7 Groundwater

Groundwater samples were collected from existing monitoring wells MHMW-01 and MHMW-02 as well as from monitoring well MHMW-03 installed as part of the Delineation Phase 2 Investigation. As shown on Drawing 1, MHMW-01 is located in the vicinity of the Exterior Railroad Ties and MHMW-02 is located in the Existing Transformer Yard. MHMW-03 is located off-site, on the north side of Virginia Drive. Each sample was analyzed for target analyte list (TAL) metals (see Table 8), VOCs (see Table 9), SVOCs (see Table 10), and PCBs (see Table 11).

Mercury was detected in the unfiltered samples from MHMW-01 and MHMW-02 at concentrations of 0.59 ug/l and 0.17 ug/l, respectively. The NYSDEC Class GA Groundwater standard for mercury is 0.7 ug/l. All three wells exceeded the NYSDEC Class GA Groundwater standard for iron in the unfiltered samples and for sodium in both the filtered and unfiltered samples. MHMW-01 and MHMW-03 exceeded the standard for manganese in both the filtered and unfiltered and unfiltered samples. In addition, the unfiltered sample from MHMW-01 exhibited an arsenic concentration of 25.4 ug/l, above the 25 ug/l standard. Arsenic was not detected in the filtered sample.

Two out of the three groundwater samples exhibited detectable concentrations of VOCs. MHMW-01 exhibited methyl tertiary-butyl ether (MTBE) at a concentration of 4 ug/l. MHMW-03 exhibited MTBE at a concentration of 2 ug/l and chloroform at 1 ug/l. There were no exceedances of NYSDEC Class GA Groundwater criteria.

One out of the three groundwater samples exhibited detectable concentrations of SVOCs, with a total SVOC concentration of only 9 ug/l at MHMW-01. There were no exceedances of NYSDEC Class GA Groundwater criteria.

PCBs were not detected in any of the groundwater samples.

# 3.2 Manhasset Substation – Construction Excavation Investigation

As a result of ongoing and/or future substation renovation/construction projects, a Construction Excavation Investigation was conducted at the Manhasset substation to identify any potentially impacted soil within locations to be utilized for construction. Nine soil probes (MHSBX-01 through MHSBX-09) were advanced as part of the Construction Excavation Investigation to varying depths up to 20 feet bgs to the south and east of the existing substation. However, soil probe MHSBX-06 was advanced to investigate the former Slop Sink and is discussed in Section 3.1.5. Soil probes MHSBX-08 and MHSBX-09 were advanced to investigate potential releases along the south side of the existing substation and are discussed in Section 3.1.7. A total of 41 samples were collected from the six remaining soil probes (MHSBX-01 through MHSBX-05 and MHSBX-07). All samples were analyzed for RCRA metals (see Table 12), SVOCs (see Table 13), and PCBs (see Table 14).

In addition, soil probe MHSB-23 was advanced within the Existing Transformer Yard and is considered a part of the Construction Excavation Investigation. Two samples were collected from this soil probe and were sampled only for mercury (see Table 12).

Nine of the 41 subsurface soil samples analyzed for RCRA metals exhibited detectable levels of mercury, ranging from 0.035 mg/kg to a maximum of 1.4 mg/kg at MHSBX-02 (12 to 14 feet). The nine samples exhibiting detectable levels of mercury were collected from soil probes located in the western portion of the Existing Transformer Yard at depths ranging from 8 to 18 feet bgs. Six of the nine samples also exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected. Of the two samples collected from MHSB-23, only MHSB-23 (0 to 4 feet) exhibited a

detectable concentration of mercury at 0.027 mg/kg. The sample did not exceed the NYSDEC TAGM criterion for mercury of 0.1 mg/kg

Three of the 41 subsurface soil samples exhibited detectable concentrations of SVOCs, with total SVOC concentrations ranging from 290 ug/kg to a maximum of 1,931 ug/kg at MHSBX-01 (8 to 10 feet). None of the three samples exceeded the NYSDEC TAGM criterion for total SVOCs of 500,000 ug/kg. PAHs were the most prevalent SVOCs detected in the three samples. Soil sample MHSBX-01 (8 to 10 feet) exhibited benzo(a)pyrene at a concentration of 80 ug/kg, which exceeds the NYSDEC TAGM criterion of 61 ug/kg. All three samples where SVOCs were detected were collected from soil probes located in the western portion of the Existing Transformer Yard.

PCBs were not detected in any of the 41 subsurface soil samples.

### 3.3 Massapequa Substation – Investigation Report

Surface soil, subsurface soil and groundwater samples were collected in support of the Delineation Phase 2 Site Assessment at the Massapequa Substation. The following presents a summary of the analytical results by AOC. All sample locations are shown on Drawing 2.

## 3.3.1 Substation Interior

During the Site Assessment of 20 Substations conducted in 1999, elevated levels of mercury were detected in soil borings and concrete corings advanced within the former Rectifier, water trough pits and water pipe trench located within the substation building. LIRR representatives indicated that the Rectifier and water trough pits would be permanently backfilled to grade with concrete during a future renovation. It was recommended that delineation and remediation of this AOC be conducted at a time when the concrete caps are removed or the substation demolished. Therefore, no work was completed at this AOC during the Delineation Phase 2 Site Assessment.

## 3.3.2 East Side of Substation

Forty-one surface soil samples (MSSB-06A [0 to 2 inches] and MSSB-09 [0 to 2 inches] through MSSB-34 [0 to 2 inches], MSSS-07A [0 to 2 inches] and MSSS-08 [0 to 2 inches] through MSSS-20 [0 to 2 inches]) were collected to the east of the existing substation and analyzed for mercury (see Table 15). The majority of the surface soil samples were collected below the asphalt pavement and below the crushed stone area, both located immediately east of the substation. However, a number of surface soil samples were also collected from grass-covered areas immediately outside the substation fenced area. In addition, 46 soil probes (MSSB-06A, MSSB-09 through MSSB-34, and MSSB-40 through MSSB-58) were advanced within this AOC. A total of 101 subsurface soil samples were collected from these locations. All subsurface soil samples were analyzed for mercury (see Table 18).

#### Surface Soil

All 41 surface soil samples exhibited detectable levels of mercury, ranging from 0.12 mg/kg to a maximum of 58.8 mg/kg at MSSB-12 (0 to 2 inches). In general, the highest mercury concentrations were detected in surface soil samples collected beneath the asphalt-paved driveway and the adjacent crushed stone area located immediately east of the substation , as indicated by the following sample results:

- MSSB- 09 (0 to 2 inches), 57.6 mg/kg
- MSSB-10 (0 to 2 inches), 54.6 mg/kg
- MSSB-12 (0 to 2 inches), 58.8 mg/kg
- MSSB-30 (0 to 2 inches), 30.5 mg/kg

The surface soil samples collected to the north and east of the asphalt driveway within the grass-covered area and inside the substation fence exhibited mercury concentrations ranging from a minimum of 0.23 mg/kg at MSSS-10 (0 to 2 inches) to a maximum of 6.7 mg/kg, detected at MSSS-07A (0 to 2 inches). The surface soil samples collected outside the substation

fence within grass-covered areas exhibited mercury concentrations ranging from a minimum of 0.40 mg/kg detected at MSSS-08 (0 to 2 inches) to a maximum of 13.6 mg/kg detected at MSSS-12 (0 to 2 inches).

#### Subsurface Soil

Ninety-five out of the 101 subsurface soil samples exhibited detectable levels of mercury, ranging from 0.015 mg/kg to a maximum of 154 mg/kg at MSSB-44 (4 to 6 feet). In addition, 68 of the 101 samples that exhibited detectable levels of mercury exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. However, the majority of subsurface samples (87 out of 101 samples) exhibited mercury at less than 5.0 mg/kg. Furthermore, the soil samples exhibiting mercury at concentrations above 5.0 mg/kg are randomly distributed within this AOC and do not indicate a defined area of significantly elevated mercury concentrations or hot spots within a specific subsurface soil horizon.

# 3.3.3 West Side of Substation

Three soil probes (MSSBX-04, MSSBX-06 and MHSBX-09) were advanced during the Construction Excavation Investigation to determine the horizontal and vertical extent of mercury contamination identified along the western side of the substation during the initial site assessment. MSSBX-04 was advanced to 20 feet, MSSBX-06 to 8 feet and MSSBX-09 to 20 feet. A total of 15 subsurface soil samples were collected from the three soil probes and analyzed for RCRA metals (see Table 29), SVOCs (see Table 30), and PCBs (see Table 31).

Two of the 15 subsurface soil samples analyzed for RCRA metals exhibited detectable levels of mercury, with concentrations of 0.025 mg/kg at MSSBX-04 (4 to 6 feet) and 0.13 mg/kg at MSSBX-06 (6 to 8 feet). Soil sample MSSBX-06 (6 to 8 feet) exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

All SVOCs were found to be nondetectable in all three soil borings with the exception of di-n-butylphthalate detected at an estimated concentration of 54 ug/kg in MSSBX-06 (6 to 8 feet). The NYSDEC TAGM criterion for this compound is 8,100 ug/kg.

PCBs were not detected in any of the 15 subsurface soil samples.

# 3.3.4 <u>Underground Injection Control (UIC) Drainage Structures</u>

A total of three drainage structures were identified within the Massapequa substation that were considered UIC structures including the dry well, Communications Pit and the Water Service Pit. With the exception of the Communications Pit, soil samples were collected from each structure and analyzed for VOCs, SVOCs, RCRA metals and total petroleum hydrocarbons (TPHs). Results of this analysis are presented on Table 21 for RCRA metals, Table 22 for VOCs, Table 23 for SVOCs, and Table 24 for TPHs.

Note that the Positive Breaker Cable Pit and the north and south Roof Drains have previously been investigated and remediated. Details are provided in the September 2004 Underground Injection Control Closure Report.

## Communications Pit

The sampling of the Communications Pit located within the transformer yard was attempted, however, physical constraints associated with adjacent transformers prevented successful recovery of soil beneath this structure. However, in July of 2003, this UIC structure was remediated by the excavation of soil up to 10 feet below grade and then backfilled with clean soil to grade with an asphalt cap placed on top of the clean soil.

# Water Service Pit

It should be noted that the Water Service Pit was not considered a UIC structure during preparation of the Investigation Work Plan but rather was added to the program at the request of

the Nassau County Department of Health (NCDH). Soil probe MSSB-36 was advanced beneath this structure to a depth of 11.5 feet bgs. Two samples were collected from the soil probe for chemical analysis.

Both subsurface soil samples were analyzed for RCRA metals and exhibited detectable levels of mercury, with concentrations of 0.74 mg/kg at MSSB-36 (7.5 to 9.5 feet) and 0.074 mg/kg at MSSB-36 (9.5 to 11.5 feet). Soil sample MSSB-36 (7.5 to 9.5 feet) exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

Both subsurface soil samples exhibited detectable concentrations of VOCs. MSSB-36 (7.5 to 9.5 feet) exhibited acetone at a concentration of 4 ug/kg. MSSB-36 (9.5 to 11.5 feet) exhibited acetone at a concentration of 10 ug/kg and naphthalene at 4 ug/kg. However, none of the constituents exceeded their respective NYSDEC TAGM criteria.

The two subsurface soil samples did not exhibit detectable concentrations of SVOCs.

TPHs were not detected in the two subsurface soil samples.

Based on these findings, this UIC structure was remediated in August of 2003, in accordance with USEPA and NCDH requirements, by the excavation of soil to a depth of approximately 6 feet below grade. This structure was then backfilled with clean soil and capped with asphalt.

#### Dry Well

Soil probe MSSB-37 was advanced beneath this structure to a depth of 20 feet bgs and four samples selected for analysis.

The four subsurface soil samples analyzed for RCRA metals exhibited detectable levels of all targeted metals with the exception of mercury and selenium. However, all metals were detected at concentrations below respective NYSDEC TAGM criteria. All four subsurface soil samples exhibited detectable concentrations of VOCs, with total VOC concentrations ranging from 4 ug/kg to a maximum of 41 ug/kg at MSSB-37 (18 to 20 feet). Acetone and methylene chloride were present in all four samples; however, none of the detected VOCs exceeded their respective NYSDEC TAGM criteria.

The four subsurface soil samples did not exhibit detectable concentrations of SVOCs.

TPHs were not detected in the four subsurface soil samples.

Based on these findings, this UIC was remediated in August of 2003, in accordance with the requirements of the USEPA and NCDH, by the excavation of soil up to 9 feet below grade. The structure was then backfilled with clean soil and an asphalt cap placed over the backfilled soil.

# 3.3.5 Potential Miscellaneous Releases

Two surface soil samples (MSSB-38 [0 to 2 inches] and MSSB-39 [0 to 2 inches]) were collected to investigate potential historic releases to the northeast and east of the existing substation. The surface soil samples were analyzed for RCRA metals (Table 15), SVOCs (Table 16) and PCBs (Table 17). In addition, two soil probes (MSSB-38 and MSSB-39) were advanced in this area and subsurface samples were collected from 2 to 4 feet bgs. All subsurface soil samples were analyzed for RCRA metals (see Table 18), SVOCs (see Table 19), and PCBs (see Table 20).

# Surface Soil

Both surface soil samples analyzed for RCRA metals exhibited detectable levels of mercury, with concentrations of 3.3 mg/kg at MSSB-38 (0 to 2 inches) and 178 mg/kg at MSSB-39 (0 to 2 inches). Both samples exceeded the NYSDEC TAGM criterion for mercury of

0.1 mg/kg. No other metals were detected at concentrations exceeding respective NYSDEC TAGM criteria.

One of the two surface soil samples exhibited detectable concentrations of SVOCs, with a total SVOC concentration of 4,374 ug/kg at MSSB-38 (0 to 2 inches). The sample did not exceed the NYSDEC TAGM criterion for total SVOCs of 500,000 ug/kg. However, PAHs were the predominant SVOCs detected in the sample with the individual NYSDEC TAGM criterion for benzo(a)anthracene, chrysene, benzo(a)pyrene and dibenzo(a,h)anthracene being exceeded.

PCBs were not detected in the two surface soil samples.

# Subsurface Soil

Both subsurface soil samples analyzed for RCRA metals exhibited detectable levels of mercury, with concentrations of 1.1 mg/kg at MSSB-38 (2 to 4 feet) and 5.6 mg/kg at MSSB-39 (2 to 4 feet). Both samples exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. In addition, soil sample MSSB-38 (2 to 4 feet) exhibited an arsenic concentration of 15.9 mg/kg, greater than the NYSDEC TAGM criterion for arsenic of 7.5 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

One of the two subsurface soil samples exhibited detectable concentrations of SVOCs, with a total SVOC concentration of 330 ug/kg at MSSB-38 (2 to 4 feet). The sample did not exceed the NYSDEC TAGM criterion for total SVOCs of 500,000 ug/kg. PAHs were the predominant SVOCs detected in this sample; however, all PAH concentrations were below their respective NYSDEC TAGM criteria.

PCBs were not detected in the two subsurface soil samples.

#### 3.3.6 Groundwater

Three groundwater samples (MSGP-01 through MSGP-03) were collected as part of the Delineation Phase 2 Site Assessment and analyzed for TAL metals (see Table 25), VOCs (see Table 26), SVOCs (see Table 27), and PCBs (see Table 28). As shown on Drawing 2, MSGP-01 was located northeast of the substation, upgradient of the site with respect to groundwater flow. MSGP-02 and MSGP-03 were located to the south of the substation, downgradient of the site with respect to groundwater flow.

Mercury was not detected in any of the groundwater samples. All three samples exceeded the NYSDEC Class GA Groundwater standard for iron and sodium in both the filtered and unfiltered samples and for manganese in the unfiltered samples. MSGP-02 also exceeded the manganese standard in the filtered sample. In addition, MSGP-01 exhibited antimony at a concentration of 3.7 ug/l in the unfiltered sample, above the standard of 3 ug/l. Antimony was not detected in the filtered sample.

Two of the three groundwater samples exhibited detectable concentrations of VOCs. MSGP-01 exhibited methylene chloride at a concentration of 1 ug/l and naphthalene at 3 ug/l. MSGP-02 exhibited methylene chloride at a concentration of 2 ug/l and tetrachloroethene at 1 ug/l. There were no exceedances of NYSDEC Class GA Groundwater criteria.

None of the three groundwater samples exhibited detectable concentrations of SVOCs.

PCBs were not detected in any of the groundwater samples.

# **3.4** Massapequa Substation – Construction Excavation Investigation

As a result of ongoing and/or future substation renovation/construction projects, a Construction Excavation Investigation has been conducted at the Massapequa substation to identify any potentially impacted soil within locations to be utilized for construction. Nine soil probes (MSSBX-01 through MSSBX-07, MSSBX-09 and MSSBX-10) were advanced as part of

the Construction Excavation Investigation. However, three soil probes (MSSBX-04, MSSBX-06 and MHSBX-09) were advanced to determine the horizontal and vertical extent of mercury contamination identified along the western side of the substation during the initial site assessment and are discussed in Section 3.3.3.

The six remaining probes were advanced within the Existing Transformer Yard to the west of the substation with the exception of MSSBX-10, which was advanced immediately to the south of the substation. All probes were advanced from 4 to 20 feet bgs. A total of 39 subsurface soil samples were collected from the six soil probes and were analyzed for RCRA metals (see Table 29), SVOCs (see Table 30), and PCBs (see Table 31).

One of the 39 subsurface soil samples analyzed for RCRA metals exhibited detectable levels of mercury, with a concentration of 0.3 mg/kg at MSSBX-10 (8 to 10 feet), exceeding the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

Three of the 39 subsurface soil samples exhibited detectable concentrations of SVOCs, ranging from 38 ug/kg to a maximum of 55 ug/kg at MSSBX-05 (8 to 10 feet). None of the three samples exceeded the NYSDEC TAGM criterion for total SVOCs of 500,000 ug/kg. In all three samples where SVOCs were detected, the total SVOCs were composed entirely of bis(2-ethylhexyl)phthalate. The NYSDEC TAGM criterion for bis(2-ethylhexyl)phthalate is 50,000 ug/kg.

PCBs were not detected in any of the 39 subsurface soil samples.

#### 3.5 Island Park Substation - Investigation Report

Surface soil, subsurface soil and groundwater samples were collected in support of the Delineation Phase 2 Site Assessment at the Island Park Substation. The following presents a summary of the analytical results by AOC. All sample locations are provided on Drawing 3.

# 3.5.1 Substation Interior

Mercury-impacted soil was previously identified beneath a sump pump pit located within the substation building. Delineation activities were recommended to determine the horizontal and vertical extent of the impacted soil in coordination with the scheduled demolition of the building. The building has not yet been demolished but is scheduled for demolition in 2005. Therefore, no investigation activities were performed in this AOC during the Delineation Phase 2 Site Assessment.

#### 3.5.2 South Side of Substation

Four surface soil samples (IPSB-12 [0 to 2 inches] through IPSB-15 [0 to 2 inches]) were collected below the asphalt pavement on the south side of the substation and analyzed for mercury (see Table 32). Five soil probes (IPSB-04A and IPSB-12 through IPSB-15) were also advanced in this area. A total of 17 subsurface soil samples were collected from the five soil probes. All samples were analyzed for mercury (see Table 35) except for IPSB-04A (8 to 10 feet), IPSB-13 (6 to 8 feet) and IPSB-13 (8 to 10 feet), which also were analyzed for RCRA metals (see Table 35), VOCs (see Table 36), SVOCs (see Table 37), and PCBs (see Table 38).

# Surface Soil

All four surface soil samples exhibited detectable concentrations of mercury, ranging from 0.21 mg/kg to a maximum of 12.9 mg/kg at IPSB-13 (0 to 2 inches). All four samples exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg.

#### Subsurface Soil

Twelve of the 17 subsurface soil samples exhibited detectable levels of mercury, ranging from 0.028 mg/kg to a maximum of 11.3 mg/kg at IPSB-04A (6 to 8 feet). Eight of the 12 samples that exhibited detectable concentrations of mercury also exceeded the NYSDEC TAGM

criterion for mercury of 0.1 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

The three samples analyzed for VOCs exhibited detectable concentrations of methylene chloride and naphthalene, with total VOCs ranging from 1,860 ug/kg to a maximum of 50,260 ug/kg at IPSB-13 (6 to 8 feet). All three samples exceeded the NYSDEC TAGM criterion for methylene chloride of 100 ug/kg. In addition IPSB-13 (6 to 8 feet) and IPSB-13 (8 to 10 feet) exceeded the NYSDEC TAGM criterion for naphthalene of 13,000 ug/kg.

The three samples analyzed for SVOCs exhibited detectable concentrations of a number of PAHs, with total SVOCs ranging from 4,864 ug/kg to a maximum of 91,690 ug/kg at IPSB-13 (6 to 8 feet). The samples did not exceed the NYSDEC TAGM criterion for total SVOCs of 500,000 ug/kg. However, a number of PAHs were found to exceed their respective NYSDEC TAGM criteria. including: naphthalene, benzo(a)anthracene, chrysene and benzo(a)pyrene.

PCBs were not detected in any of the subsurface soil samples.

# 3.5.3 Northwest Corner of Substation

One surface soil sample (IPSB-18 [0 to 2 inches]) was collected off the northwest corner of the substation and analyzed for mercury (see Table 32). In addition, four soil probes (IPSB-16 through IPSB-18 and IPSB-20) were advanced to 4 feet bgs. A total of seven subsurface soil samples were collected from the four soil probes. All samples were analyzed for mercury (see Table 35) except for IPSB-20 (2 to 4 feet), which was analyzed for RCRA metals (see Table 35).

# Surface Soil

Mercury was detected at IPSB-18 (0 to 2 inches) at a concentration of 0.12 mg/kg, slightly exceeding the NYSDEC TAGM criterion for mercury of 0.1 mg/kg.

#### Subsurface Soil

Mercury was detected in all seven subsurface soil samples, ranging from 0.038 mg/kg to a maximum of 0.34 mg/kg at IPSB-20 (2 to 4 feet). Three of the seven samples also exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. Only IPSB-20 (2 to 4 feet) was analyzed for the full set of RCRA metals and no other exceedances of NYSDEC TAGM criteria were detected in the sample.

#### 3.5.4 Western Drainage Line

During the Site Assessment of 20 Substations conducted in 1999, D&B traced a drain pipe originating from within the substation basement, which was found to terminate beneath an unpaved area between the substation and the train tracks, approximately 21 feet from the west wall of the building. It was recommended the area be excavated in an attempt to locate a possible drainage feature and that the excavation be coordinated with the demolition of the building so that electric utilities in that area can be de-energized. The building has not yet been demolished, but is scheduled for demolition in 2005. Therefore, no investigation activities were performed in this AOC during the Delineation Phase 2 Site Assessment.

## 3.5.5 <u>Water Meter Pit</u>

During the Site Assessment of 20 Substations conducted in 1999, a water meter pit, located along the south side of the substation, was found to contain mercury-impacted soil from the bottom of the pit (2.5 feet below grade) to a depth of 6.5 feet below grade. Successful delineation of impacted soil was accomplished at the pit. The recommended excavation and remediation will be performed after the rest of the substation is delineated. It should be noted that the Water Meter Pit was not considered a UIC structure upon NCDH inspection.

# 3.5.6 West Side of Substation

Two surface soil samples (IPSS-05 [0 to 2 inches] and IPSS-06 [0 to 2 inches]) were collected on the west side of the substation and were analyzed for mercury (see Table 32). Both surface soil samples exhibited detectable concentrations of mercury, with IPSS-05 (0 to 2 inches) at 0.52 mg/kg and IPSS-06 (0 to 2 inches) at 0.49 mg/kg. Both samples exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg

# 3.5.7 Transformers

Surface and subsurface soil samples were collected within the Transformer Yard to investigate staining found in the soil during the Site Assessment of 20 Substations conducted in 1999. Three surface soil samples (IPSB-19 [0 to 2 inches], IPSB-26 [0 to 2 inches] and IPSB-27 [0 to 2 inches]) were collected. IPSB-26 (0 to 2 inches) and IPSB-27 (0 to 2 inches) were analyzed for RCRA metals (see Table 32), SVOCs (see Table 33), and PCBs (see Table 34). IPSB-19 (0 to 2 inches) was analyzed only for mercury (see Table 32). In addition, three soil probes were advanced in these locations to 4 feet bgs, including IPSB-19, IPSB-26 and IPSB-27. A total of five subsurface soil samples were collected from the three soil probes. All samples were analyzed for RCRA metals (see Table 35), SVOCs (see Table 37), and PCBs (see Table 38) except for the subsurface soil sample collected from IPSB-19, which was analyzed only for mercury.

# Surface Soil

Mercury was detected in 2 out of the 3 surface soil samples, with concentrations of 0.031 mg/kg at IPSB-27 (0 to 2 inches) and 1.3 mg/kg at IPSB-19 (0 to 2 inches). IPSB-19 (0 to 2 inches) exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

One of the two surface soil samples analyzed for SVOCs exhibited detectable concentrations, with a total SVOC concentration of 42,567 ug/kg at IPSB-27 (0 to 2 inches).

The sample did not exceed the NYSDEC TAGM criterion for total SVOCs of 500,000 ug/kg. PAHs were the most prevalent SVOCs detected in the sample and the total CaPAH concentration of 23,150 ug/kg exceeded the NYSDEC TAGM criterion for total CaPAHs of 10,000 ug/kg. A number of PAHs also exceeded their respective NYSDEC TAGM criteria, including: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene and dibenzo(a,h)anthracene.

PCBs were not detected in any of the surface soil samples.

# Subsurface Soil

Mercury was detected in two out of the five subsurface soil samples, with concentrations of 0.051 mg/kg at IPSB-26 (0 to 2 feet) and 0.05 mg/kg at IPSB-27 (0 to 2 feet). Neither sample exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

Three out of the four samples that were analyzed for SVOCs exhibited detectable concentrations, with total SVOCs ranging from 1,597 ug/kg to a maximum of 9,590 ug/kg at IPSB-27 (0 to 2 feet). The samples did not exceed the NYSDEC TAGM criterion for total SVOCs of 500,000 ug/kg. PAHs were the most prevalent SVOCs detected in the samples and a number of PAHs exceeded their respective NYSDEC TAGM criteria, including: benzo(a)anthracene, chrysene, benzo(a)pyrene and dibenzo(a,h)anthracene.

PCBs were not detected in any of the subsurface soil samples.

# 3.5.8 Underground Injection Control (UIC) Drainage Structures

Two drainage structures were identified within the Island Park substation that were considered UIC structures including the dry well and the septic tank/tile field. Soil samples were collected from each structure and analyzed for VOCs, SVOCs, RCRA metals and TPHs. Results

of the analysis are presented on Table 39 for RCRA metals, Table 40 for VOCs, Table 41 for SVOCs, and Table 42 for TPHs.

#### Rectifier Dry Well

Soil probe IPSB-21 was advanced below the Rectifier Dry Well to a depth of 20 feet bgs (10 feet below the bottom). Five subsurface soil samples were collected for analysis.

Three out of the five subsurface soil samples analyzed for RCRA metals exhibited detectable levels of mercury, with concentrations ranging from 0.058 mg/kg to a maximum of 5.4 mg/kg at IPSB-21 (10 to 12 feet). Two of the three subsurface soil samples that exhibited detectable levels of mercury exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. Mercury concentrations were greater in the shallower soil samples. In fact, the two subsurface soil samples that did not exhibit detectable concentrations of mercury were the two deepest subsurface soil samples collected from 16 to 20 feet bgs. In addition, IPSB-21 (10 to 12 feet), IPSB-21 (12 to 14 feet) and IPSB-21 (14 to 16 feet) exceeded the NYSDEC TAGM criteria for RCRA metals were detected.

All five subsurface soil samples exhibited detectable concentrations of VOCs, with total VOC concentrations ranging from 44 ug/kg to a maximum of 446 ug/kg at IPSB-21 (14 to 16 feet). The most prevalent compounds were acetone, carbon disulfide and methylene chloride. IPSB-21 (12 to 14 feet) and IPSB-21 (14 to 16 feet) exceeded the NYSDEC TAGM criteria for acetone and methylene chloride.

Three out of the five subsurface soil samples exhibited detectable concentrations of SVOCs, with total SVOC concentrations ranging from 174 ug/kg to a maximum of 104,950 ug/kg at IPSB-21 (10 to 12 feet). PAHs were the most prevalent SVOCs detected in the three samples. IPSB-21 (10 to 12 feet) exceeded the NYSDEC TAGM criteria for total PAHs and CaPAHs. Soil samples IPSB-21 (10 to 12 feet) and IPSB-21 (12 to 14 feet) exhibited a number of PAHs exceeding their respective NYSDEC TAGM criteria including: benzo(a)anthracene,

chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene. However, the samples collected from the Rectifier Dry Well indicate that the PAH contamination does not extend below 18 feet bgs at this location.

TPHs were detected in three of the five subsurface soil samples ranging from 23 mg/kg to a maximum concentration of 330 mg/kg at IPSB-21 (10 to 12 feet). The shallower soil samples exhibited significantly greater concentrations of TPHs than the deeper soil samples.

In June of 2003, this UIC structure was remediated in accordance with the requirements of the USEPA and NCDH, by the excavation of soil to a depth of 10.5 feet below grade. In addition, the dry well leaching rings were removed. The excavation was then backfilled with clean soil and capped with asphalt.

# Septic Tank/Tile Field

Soil probes IPSB-22 through IPSB-25 were each advanced to a depth of 4 feet bgs at the location of the Septic Tank/Tile Field. Four surface soil samples were collected, one from each of IPSB-22 through IPSB-25. One subsurface soil sample was collected from each of the four soil probes from a depth of 2 to 4 feet bgs for chemical analysis.

## Surface Soil

All four surface soil samples analyzed for RCRA metals exhibited detectable levels of mercury, with concentrations ranging from 0.028 mg/kg to a maximum of 0.99 mg/kg at IPSB-23 (0 to 2 inches). Soil samples IPSB-23 (0 to 2 inches) and IPSB-25 (0 to 2 inches) exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. In addition, arsenic was detected at a concentration of 8.5 mg/kg in surface soil sample IPSB-23 (0 to 2 inches), slightly above the NYSDEC TAGM criterion on 7.5 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

All four surface soil samples exhibited detectable concentrations of VOCs, with total VOC concentrations ranging from 67 ug/kg to a maximum of 118 ug/kg at IPSB-23 (0 to 2 inches). The most prevalent VOCs included acetone, methylene chloride, toluene and naphthalene. None of the VOC compounds detected exceeded their respective NYSDEC TAGM criteria.

All four surface soil samples exhibited detectable concentrations of SVOCs, with total SVOC concentrations ranging from 775 ug/kg to a maximum of 10,337 ug/kg at IPSB-23 (0 to 2 inches). The PAHs were the most prevalent SVOCs detected. All four samples exceeded the NYSDEC TAGM criterion for benzo(a)pyrene. In addition, soil sample IPSB-23 (0 to 2 inches) exceeded the NYSDEC TAGM criterion for benzo(a)anthracene, chrysene and dibenzo(a,h) anthracene.

TPHs were detected in all four surface soil samples ranging from 69 mg/kg to a maximum concentration of 810 mg/kg at IPSB-24 (0 to 2 inches).

#### Subsurface Soil

All four subsurface soil samples analyzed for RCRA metals exhibited detectable levels of mercury, with concentrations ranging from 0.047 mg/kg to a maximum of 0.79 mg/kg at IPSB-24 (2 to 4 feet). Three of the four subsurface soil samples that exhibited detectable levels of mercury exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. In addition, IPSB-25 (2 to 4 feet) exceeded the NYSDEC TAGM criterion for arsenic of 7.5 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

All four subsurface soil samples exhibited detectable concentrations of VOCs, with total VOC concentrations ranging from 35 ug/kg to a maximum of 268 ug/kg at IPSB-23 (2 to 4 feet). The most prevalent VOCs were acetone, carbon disulfide and methylene chloride. IPSB-23 (2 to 4 feet) exceeded the NYSDEC TAGM criteria for methylene chloride.

All four subsurface soil samples exhibited detectable concentrations of SVOCs, with total SVOC concentrations ranging from 5,260 ug/kg to a maximum of 310,540 ug/kg at IPSB-24 (2 to 4 feet). The most prevalent SVOCs were PAHs. IPSB-24 (2 to 4 feet) exceeded the NYSDEC TAGM criteria for total PAHs and CaPAHs. In addition, a number of PAHs exceeded their respective NYSDEC TAGM criteria at IPSB-24 (2 to 4 feet) including pyrene.

TPHs were detected in all four subsurface soil samples ranging from 40 mg/kg to a maximum concentration of 1,600 mg/kg at IPSB-24 (2 to 4 feet).

As part of the UIC closure program conducted in June of 2003, the LIRR attempted to locate the tile field which was reportedly located south of the associated septic tank. However, after completing two separate exploratory trenches in this area, no evidence of the tile field could be found. Currently, the septic tank is actively being used for the discharge of sanitary wastes from the substation building. The LIRR intends to close the septic tank upon demolition of the substation building in 2005.

## 3.5.9 Potential Miscellaneous Releases

Two surface soil samples (IPSB-28 [0 to 2 inches] and IPSB-29 [0 to 2 inches]) were collected along the east and west sides of the substation to address potential releases at the Island Park Substation that previously have not be investigated. The surface soil samples were analyzed for RCRA metals (see Table 32), SVOCs (see Table 33), and PCBs (see Table 34). In addition, two soil probes (IPSB-28 and IPSB-29) were advanced to a depth of 4 feet bgs at each of these locations. One sample was collected at each boring at a depth of 2 to 4 feet bgs. All samples were analyzed for RCRA metals (see Table 35), SVOCs (see Table 37), and PCBs (see Table 38).

## Surface Soil

Both surface soil samples exhibited detectable levels of mercury, with concentrations of 0.16 mg/kg at IPSB-29 (0 to 2 inches) and 0.087 mg/kg at IPSB-28 (0 to 2 inches). Soil sample

IPSB-29 (0 to 2 inches) exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

Both surface soil samples exhibited detectable concentrations of SVOCs, with total SVOC concentrations of 1,726 ug/kg at IPSB-29 (0 to 2 inches) and 177 ug/kg at IPSB-28 (0 to 2 inches). Neither sample exceeded the NYSDEC TAGM criterion for total SVOCs of 500,000 ug/kg. PAHs were the most prevalent SVOCs detected in both samples and soil sample IPSB-29 (0 to 2 inches) exceeded the NYSDEC TAGM criterion for benzo(a)pyrene.

PCBs were not detected in the two surface soil samples.

## Subsurface Soil

Both subsurface soil samples analyzed for RCRA metals exhibited detectable levels of mercury, with concentrations of 0.11 mg/kg at IPSB-29 (2 to 4 feet) and 0.14 mg/kg at IPSB-28 (2 to 4 feet). Both samples exceeded the NYSDEC TAGM criterion for mercury of 0.1 mg/kg. No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

Both subsurface soil samples exhibited detectable concentrations of SVOCs, with total SVOC concentrations of 10,063 ug/kg at IPSB-29 (2 to 4 feet) and 2,979 ug/kg at IPSB-28 (2 to 4 feet). Neither sample exceeded the NYSDEC TAGM criterion for total SVOCs of 500,000 ug/kg. PAHs were the most predominant SVOCs detected and both samples exceeded the NYSDEC TAGM criterion for benzo(a)anthracene and benzo(a)pyrene. In addition, IPSB-29 (2 to 4 feet) exceeded the NYSDEC TAGM criterion for chrysene and dibenzo(a,h)anthracene.

PCBs were not detected in the two subsurface soil samples.

# 3.5.10 Groundwater

Three groundwater probes, IPGP-01 through IPGP-03, were advanced as part of the Delineation Phase II Site Assessment. As shown in Drawing 3, IPGP-01 was advanced north of

the Transformer Yard, upgradient of the site with respect to groundwater flow. IPGP-02 and IPGP-03 were advanced south of the substation, downgradient of the site with respect to groundwater flow. A groundwater sample was also collected from test pit IPTP-03, located at the Rectifier Dry Well east of the substation. All samples were analyzed for TAL metals (see Table 43), VOCs (see Table 44), SVOCs (see Table 45), and PCBs (see Table 46). However, IPTP-03 was analyzed for RCRA metals instead of TAL metals (see Table 43).

Mercury was detected in the unfiltered samples from all four locations, ranging from 0.16 ug/l to a maximum concentration of 0.64 ug/l at IPGP-03. The NYSDEC Class GA Groundwater standard for mercury is 0.7 ug/l. A number of metals were found at concentrations above their respective NYSDEC Class GA Groundwater Standard including antimony, arsenic, beryllium, cadmium, chromium, copper, iron, lead, manganese, nickel, sodium, thallium and zinc. However, the majority of these exceedances were detected in the unfiltered samples and, therefore, likely are biased high due to the turbidity of the samples.

Three of the four groundwater samples exhibited detectable concentrations of VOCs. MTBE was detected in the three samples with a maximum concentration of 6 ug/l in IPGP-03. The NYSDEC Class GA Groundwater standard for MTBE is 10 ug/l. IPGP-02 exhibited a naphthalene concentration of 18 ug/l, above the NYSDEC standard of 10 ug/l. There were no other exceedances of NYSDEC Class GA Groundwater criteria.

Two of the four groundwater samples, IPGP-02 and IPGP-03, exhibited detectable concentrations of SVOCs. PAHs were the most common SVOCs detected. There were no exceedances of NYSDEC Class GA Groundwater criteria in IPGP-03; however, IPGP-02 exceeded the NYSDEC standards for naphthalene, acenaphthene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene.

PCBs were not detected in any of the groundwater samples.

#### **3.6** Island Park Substation – Construction Excavation Investigation

As a result of ongoing and/or future substation renovation/construction projects, a Construction Excavation Investigation has been conducted at the Island Park substation to identify any potentially impacted soil within locations to be utilized for construction. Twelve soil probes (IPSBX-01 through IPSBX-12) were advanced as part of the Construction Excavation Investigation. IPSBX-01 was located to the southeast of the substation. IPSBX-02 through IPSBX-09 were located on the east side of the substation while IPSBX-10 through IPSBX-12 were located north of the Transformer Yard. All probes were advanced no greater than 20 feet bgs. A total of 87 subsurface soil samples were collected from the twelve soil probes. All samples were analyzed for RCRA metals (see Table 47), SVOCs (see Table 48), and PCBs (see Table 49).

Twelve of the 87 subsurface soil samples analyzed for RCRA metals exhibited detectable levels of mercury, ranging from 0.019 mg/kg to a maximum of 0.25 mg/kg at IPSBX-03 (16 to 18 feet). Of the 12 samples that exhibited detectable concentrations of mercury, three exceeded the NYSDEC TAGM criterion of 0.1 mg/kg. In addition, 15 of the 87 subsurface soil samples exceeded the NYSDEC TAGM criterion for arsenic of 7.5 mg/kg, with a maximum concentration of 25.7 mg/kg at IPSBX-12 (4 to 6 feet). No other exceedances of NYSDEC TAGM criteria for RCRA metals were detected.

Sixty of the 87 subsurface soil samples exhibited detectable concentrations of SVOCs, ranging from 44 ug/kg to a maximum of 56,300 ug/kg at IPSBX-01 (12 to 14 feet). However, none of the samples exceeded the NYSDEC TAGM criterion for total SVOCs of 500,000 ug/kg. PAHs and to a lesser extent phenols were the most prevalent SVOCs detected in the samples. The PAHs most commonly found to exceed their respective NYSDEC TAGM criteria included: naphthalene, benzo(a)anthracene, chrysene, and benzo(a)pyrene. In addition, 18 of the 87 subsurface soil samples exceeded the NYSDEC TAGM criteria for phenol or 2-methyl phenol. Based on the extensive nature of fill material identified throughout subsurface soil within the vicinity of the substation, it is suspected that the source of the PAHs and phenols detected in subsurface is the

fill material and these contaminants are not directly related to past or present substation activities.

PCBs were not detected in any of the subsurface soil samples collected as part of the Construction Excavation Investigation.

# 3.7 Data Usability Summary Report (DUSR)

Investigations were conducted at three substations: Manhasset, Massapequa and Island Park.

Mitkem Corporation, a subcontractor to Dvirka and Bartilucci Consulting Engineers, analyzed all samples in accordance with the USEPA SW-846 methods as stipulated in the work plan. The data packages submitted by Mitkem have been reviewed by Ms. Robbin Petrella, D&B's Quality Assurance/Quality Control Officer. Ms. Petrella meets the NYSDEC requirements of a data validator as listed in the Draft DER-10 Technical Guidance for Site Investigation and Remediation, and her resume is included in Appendix I.

The data packages have been reviewed for completeness and compliance with NYSDEC QA/QC requirements, as well as the requirements for development of Data Usability Summary Reports as listed in Appendix 2B of the Draft DER-10 Technical Guidance for Site Investigations and Remediation dated December 2002. Each data package was reviewed for the following:

- Was a NYSDEC Category B deliverable data package submitted?
- Have all holding times been met?
- Does all QA/QC data fall within QA/QC limits and specifications?
- Were appropriate methods followed?
- Does the raw data conform to that reported on the data summary sheets?
- Have the correct data qualifiers been utilized?

The findings of the data review process are summarized below by site.

#### 3.7.1 Manhasset Substation

NYSDEC ASP Category B deliverable data packages have been submitted for all sample delivery groups (SDG).

#### Manhasset\_Delineation\_Program

Subsurface soil, surface soil, sediment and groundwater samples were collected as part of the January 2003 delineation investigation of the LIRR Manhasset Substation. The soil and sediment samples were analyzed for mercury, with the sediment samples also being analyzed for total organic carbon (TOC). Seven of the subsurface soil samples were analyzed for VOCs, SVOCs, RCRA metals and TPHs. The groundwater samples were analyzed for VOCs, SVOCs, PCBs and RCRA metals. In August 2004, additional soil samples were collected as part of the delineation program and analyzed for mercury only.

All samples were analyzed within the method-specified holding times, with the exception of the mercury analysis for sample MHSS-72 (2 to 12 inches), that was run two days out of hold. Qualification of this sample result is not required.

All surrogate recoveries, internal standard area counts and spike recoveries were within QC limits. Initial and continuing calibrations were analyzed at the method specified frequency.

Methylene chloride has been qualified as nondetect in all of the subsurface soil samples due to laboratory contamination. That is, the method blank associated with the samples also contained methylene chloride, and the sample concentrations were less than ten times the concentration found in the blank. Qualified data summary sheets are contained in Appendix J. Three samples, MHSB-21 (2 to 4 feet), MHSB-21 (4 to 6 feet) and MHSB-22 (18 to 20 feet), required reanalysis of the semivolatile fraction due to compound concentrations exceeding the instrument calibration range in the initial undiluted analysis. The results for the affected compounds were taken from the diluted analysis and have been flagged 'D' on the data summary tables. Corrected data summary sheets are contained in Appendix J.

Sample MHSS-72 had percent solids of 43%; therefore; the mercury result of 4.6 mg/kg is deemed estimated possibly biased high.

# Manhasset Construction Excavation Investigation

Subsurface soil samples were collected during the January 2003 field program for the construction excavation investigation at the LIRR Manhasset Substation. The samples were analyzed for SVOCs, PCBs and RCRA metals.

All samples were analyzed within the method specified holding times.

All surrogate recoveries, internal standard area counts and spike recoveries were within QC limits. Initial and continuing calibrations were analyzed at the method specified frequency.

## 3.7.2. Massapequa Substation

NYSDEC ASP Category B deliverable data packages have been submitted for all SDGs.

## Massapequa Delineation Program

Subsurface soil, surface soil and groundwater samples were collected as part of the February 2003 delineation investigation of the LIRR Massapequa Substation. The soil samples were primarily analyzed for SVOCs, PCBs and mercury. Several of the soil samples were also analyzed for VOCs and RCRA metals. The groundwater samples were analyzed for VOCs,

SVOCs, PCBs and RCRA metals. In August 2004, additional soil samples were collected as part of the delineation program and analyzed for mercury only.

All samples were analyzed within the method specified holding times.

All surrogate recoveries, internal standard area counts and spike recoveries were within QC limits. Initial and continuing calibrations were analyzed at the method specified frequency.

# Massapequa Construction Excavation Investigation

Subsurface soil samples were collected during the February 2003 field program for the construction excavation investigation at the LIRR Massapequa Substation. The samples were analyzed for SVOCs, PCBs and RCRA metals.

All samples were analyzed within the method specified holding times.

All surrogate recoveries, internal standard area counts and spike recoveries were within QC limits. Initial and continuing calibrations were analyzed at the method specified frequency.

Three samples; MSSBX-01 (12 to 14 feet), MSSBX-06 (6 to 8 feet) and MSSBX-02 (6 to 8 feet) were re-extracted outside of holding time due to surrogate recoveries being outside QC limits in the initial extract. The data from the re-extract is considered the most compliant and has been included on the data summary tables. Copies of the data summary sheets have been included in Appendix J.

## 3.7.3 Island Park Substation

NYSDEC ASP Category B deliverable data packages have been submitted for all SDGs.

#### Island Park Delineation Program

Subsurface soil, surface soil, and groundwater samples were collected as part of the January 2003 delineation investigation of the LIRR Manhasset Substation. The soil samples were primarily analyzed for mercury, with several of the samples also being analyzed for VOCs, SVOCs, RCRA metals and TPHs. The groundwater samples were analyzed for VOCs, SVOCs, PCBs and RCRA metals.

All samples were analyzed within the method specified holding times.

All surrogate recoveries, internal standard area counts and spike recoveries were within QC limits. Initial and continuing calibrations were analyzed at the method specified frequency.

# Island Park Construction Excavation Investigation

Subsurface soil samples were collected during the January 2003 field program for the construction excavation investigation at the LIRR Island Park Substation. The samples were analyzed for SVOCs, PCBs and RCRA metals.

All samples were analyzed within the method specified holding times.

All surrogate recoveries, internal standard area counts and spike recoveries were within QC limits. Initial and continuing calibrations were analyzed at the method specified frequency.

Several samples required re-extraction of the semivolatile fraction due to surrogate recoveries being outside QC limits, and the re-extraction was performed outside of the method specified holding times. The data from both the initial analysis and analysis of the re-extracts

were comparable; therefore, the data from the initial runs are considered the 'best set' and has been summarized on the analytical data tables.

No other problems were found with the sample results for all three sites. All of the results have been deemed valid and usable, as qualified above, for environmental assessment purposes.

Section 4

# 4.0 MANHASSET SUBSTATION - FISH AND WILDLIFE RESOURCES IMPACT ANALYSIS

## 4.1 Ecology

This section provides an overall habitat-based assessment of the LIRR Manhasset Substation. This assessment conforms to the guidelines contained in Step IIA of the NYSDEC Technical and Administrative Guidance Memorandum entitled, "A Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (October, 1994)." The purpose of this section is to provide a description of the existing ecology of the site, including a site specific description of major habitat types with associated wildlife populations, the identification of other significant on-site wildlife resources and evaluate potential impacts to these resources. The information contained in this section was obtained during the Phase I remedial investigation field investigation and supplemented with data from outside sources, including the NYSDEC, U.S. Fish and Wildlife Service, and New York State Historic Preservation Officer. The field survey for this assessment was conducted during March and June of 2003.

#### 4.1.1 Major Habitat Types

The Manhasset Substation is an upland area located near the high point of a geologic moraine above Manhasset Bay. The site is bordered on the north by residential housing and to the south by paved parking for the rail station. A drainage swale exists on the north side of the property which collects overland storm water runoff and conveys it to a culvert which discharges into the extreme southern end of Manhasset Bay. The upland portion of the site is largely disturbed and consists of the railway, an electric substation and the associated railway right-of-way. The railway right-of-way area consists of low growth vegetation to facilitate rail operations, which extends approximately 40 feet north of the tracks to a cyclone fence that serves to protect against unauthorized access to the railway. Overland storm water flow enters the drainage swale at the northern edge of the property adjacent to the fence that feeds into a closed pipe. This underground pipe conveys flow from the railroad right-of-way area down an embankment with the ultimate discharge to Manhasset Bay. This embankment is approximately 50 feet above the Bay with a slope of approximately 60 degrees. The on-site major habitat types

associated with the site are limited to developed land (building, railway) and disturbed low grasslands along the track right-of-way. Beyond the site is residential and commercial development immediately north, south and east, with the headwaters of Manhasset Bay to the west. This area of Manhasset Bay is largely disturbed along the banks by encroachment of businesses and maintained lawn. This area has undergone extensive historic filling and many of the wetland values in this area have been lost.

A list of vegetative species observed on the Manhasset Substation Site is provided in Table 4-1.

# 4.1.2 Wetlands

There are no wetlands located on the Manhasset Substation property. Storm water discharges from the property are conveyed to Manhasset Bay. The area near the discharge point is an unvegetated tidal flat that rapidly transitions into a small stand of common reed (Phragmites communis) along the east and west banks. This growth band is typically less than 10 feet wide leading to upland areas, which are maintained as lawn area. The base of the railway bridge supports freshwater wetland vegetation such as skunk cabbage which is supported by apparent freshwater seeps emanating from beneath the adjacent roadway, which is likely related to the drainage of the moraine. These wetlands, associated with Manhasset Bay, are mapped and regulated by both New York State and the federal government. Further to the south, additional wetlands are present which are associated with Whitney Pond, but are outside the potential zone of influence of the Manhasset Substation.

# 4.1.3 <u>Mammals</u>

The isolated nature of the Manhasset Substation site relative to Manhasset Bay to the west, residential development to the north and east, and paved parking to the south limit the mammals that would inhabit the site to those that are tolerant of human presence and with limited home ranges. It is likely that only small mammals inhabit the area because of the numerous manmade barriers as well as topographic changes, which would act as deterrent

# VEGETATIVE SPECIES OBSERVED ON THE MANHASSET SUBSTATION SITE

#### Common Name

Scientific Name

#### Herbaceous Plants

Common ragweed Common lambsquarters Daisy Chickory Crown vetch Crabgrass Butter and eggs Yellow woodsorrel Fall panicum Common reed grass Ground cherry Pokeweed Broadleaf plantain Smartweed, Knotweed Nightshade Common goldenrod Early flowering goldenrod Stiff goldenrod Common mullein Vetch

Shrubs and Vines

Forsythia Japanese honeysuckle Virginia creeper Poison ivy Multiflora rose Catbrier

#### Trees

Red maple Flowering dogwood White pine Black cherry White oak Black oak Black locust

Ambrosia artemisiifolia Chenopodium album Chrysanthemum sp. Cichorium intybus Coronilla varia Digitaria sp. Linaria vulgaris Oxalis stricta Panicum dichotomiflorum Phragmites communis Physalis heterophylla Phytolacca americana Plantago major Polygonum sp. Solanum dulcamara Solidago juncea Solidago nemoralis Solidago rigida Verbascum thapsus Vicia sp.

Forsythia sp. Lonicera japonica Parthenocissus quinquefolia Rhus radicans Rosa multiflora Smilax rotundifolia

Acer rubrum Cornus florida Pinus strobus

Quercus alba Quercus velutina Robinia pseudoacacia barriers and likely prohibit movement. The only mammal observed during the site walkover was the Norway rat (<u>Rattus norvegicus</u>). In addition, runways and scats were observed that would indicate the presence of white footed mice (<u>Peromyscus leucopus</u>), house mouse (<u>Mus musculus</u>), cottontail rabbits (<u>Sylvilagus floridanus</u>), and raccoons (<u>Procyon lotor</u>). Probable mammal inhabitants are listed in Table 4-2.

#### Table 4-2

#### MAMMALS LIKELY TO INHABIT THE MANHASSET SUBSTATION SITE

| Common Name        | Scientific Name       |
|--------------------|-----------------------|
| Eastern chipmunk   | Tamias striatus       |
| Gray Squirrel      | Sciurus carolinensis  |
| Cottontail rabbit  | Sylvilagus floridanus |
| White-footed mouse | Peromyscus leucopus   |
| House mouse        | Mus musculus          |
| Norway rat         | Rattus norvegicus     |
| Raccoon            | Procyon lotor         |

#### 4.1.4 <u>Birds</u>

Birds were present and actively feeding in the railway right-of-way and a number of small trees outside the cyclone fence. Mourning doves (Zenaida macroura) were especially prominent and frequently moved along the railway area, as well as other ground foraging birds, including finches (Carpodacus sp.), mockingbirds (Mimus polyglottus), starlings (Sturnus vulgaris) and American robins (Turdus migratorius). Although no hawk species were observed, the opportunities for several species to rest and feed at this location along the Atlantic Flyway were present.

Waterfowl were observed within the open water areas of Manhasset Bay near the substation discharge area. Mallards and Canadian geese were common to the area. No breeding was observed, although breeding indications would be limited at the time of the site field survey. Although no concentrated vegetation stands were present that would afford feeding opportunities to wintering waterfowl, it is likely that the vegetative screening and high embankments provide

shielding for wintering waterfowl in this area. A subset of the New York State Bird Atlas listing for Suffolk County, New York is presented in Table 4-3, providing species observed or expected to utilize this area of Manhasset Bay.

# 4.1.5 <u>Fish</u>

There is no standing water at the Manhasset Substation site; therefore, the site is not suitable to support any fish species. The area where storm water is discharged to Manhasset Bay likely provides a protective feeding and nursery area to a variety of saltwater finfish and crustaceans. Common species present include the Atlantic silverside (Menidia menidia) and mummichog (Fundulus heteroclitus). Seasonal species of commercial/recreational importance that routinely inhabit this habitat include striped bass (Morone saxatilis), bluefish (Pomatomus saltatrix), and winter flounder (Pseudopleuronectes americana). A list of finfish species, which likely frequent this area on a seasonal basis, are provided in Table 4-4.

## 4.1.6 Reptiles and Amphibians

Reptiles or amphibians were not observed on the Manhasset Substation site. The property includes discarded construction materials that would offer cover to snakes common to the area. Low vegetation likely provides habitat for common toad species. Table 4-5 contains a list of reptiles and amphibians common to the area that could likely inhabit the site and/or surrounding areas.

## 4.1.7 Rare Species and Critical Habitats

Based on a review of the New York Natural Heritage files maintained at the NYSDEC Wildlife Resources Center, there are no rare species or critical habitats known to occur on or adjacent to the Manhasset Substation site. In addition, except for occasional transient individuals, no federally listed or proposed endangered, or threatened species exist within a 2-mile radius of the site according to the U.S. Department of the Interior, Fish and Wildlife

### AVIFAUNA LIKELY TO INHABIT THE MANHASSET SUBSTATION/MANHASSET BAY AREA

#### Common Name

Canada goose Mallard Black duck Red-tailed hawk Kestrel Killdeer Herring gull Great black-backed gull Mourning dove Eastern kingbird American crow Blue jay Black-capped chickadee Tufted titmouse White-breasted nuthatch Red-breasted nuthatch Brown creeper House wren Winter wren Carolina wren Gray catbird Northern mockingbird Eastern bluebird American robin Wood thrush Cedar waxwing Solitary vireo Yellow warbler Ovenbird Common yellowthroat Common grackle European starling House sparrow Northern cardinal Brown-headed cowbird House finch Purple finch American goldfinch Chipping sparrow Field sparrow Song sparrow White-throated sparrow

#### Scientific Name

Branta canadensis Anas platyrhynchos Anas rubripes Buteo jamaicensis Falco sparverius Charadrius vociferus Larus argentatus Larus marinus Zenaida macroura Tyrannus tyrannus Corvus brachyrhynchos Cyanocitta cristata Parus atricapillus Parus bicolor Sitta carolinensis Sitta canadensis Certhia americana Troglodytes aedon Troglodytes troglodytes Thryothorus ludovicianus Dumetella carolinensis Mimus polyglottos Stalia sialis Turdus migratorius Hyocichla mustelina Bonbycilla cedrorum Vireo solitarius Dendroica petechia Seirus aurocapillus Geothlypis trichas Ouiscalus quiscula Sturnus vulgaris Passer domesticus Cardinalis cardinalis Molothrus ater Carpodacus mexicanus Carpodacus purpureus Carduelis tristis Spizella passerina Spizella pusilla Melospiza melodia Zonotrichia albicollis

## FINFISH LIKELY TO SEASONALLY INHABIT MANHASSET BAY

#### Common Name

American eel Blueback herring Atlantic menhaden Bay anchovy Oyster toadfish Mummichog Striped killifish Atlantic silverside Tidewater silverside Northern pipefish Striped bass Bluefish Scup Weakfish Northern kingfish Northern searobin Striped searobin Sea raven Winter flounder Summer flounder Windowpane Northern puffer

#### Scientific Name

Anguilla rostrata Alosa aestivalis Brevoortia tyrannus Anchoa mitchilli Opsanus tao Fundulus heteroclitus Fundulus majalis Menidia menidia Menidia beryllina Syngnathus fuscus Morone saxatilis Pomatomus saltatrix Stenotomus chrysops Cynoscion regalis Menticirrhus saxatilis Prionotus carolinus Prionotus evolans Hemitripterus americanus Pseudopleronectes americanus Paralichthys oblongus Lophopsetta maculata Sphoeroides maculatus

# **REPTILES AND AMPHIBIANS LIKELY TO INHABIT THE MANHASSET SUBSTATION SITE**

Common Name

Scientific Name

Box turtle Eastern garter snake Eastern ribbon snake Fowler's toad Terrapene carolina Thamnophis sirtalis Thamnophis sauritis Bufo woodhousei fowleri Service. Table 4-6 provides a list of all federally listed and proposed threatened or endangered species in New York State.

## 4.1.8 Biological Associations Found in the Project Vicinity

The areas within a 2.5-mile radius surrounding the Manhasset Substation vary greatly. Manhasset Bay lies to the west of the site and exerts a major influence on the aquatic species of the area. South of the site beyond the parking field is Whitney Pond Park, which is a suburban park with fresh water ponds, forested edge area and open recreational areas. Residential development is present north and east of the area. Small commercial establishments line the west bank of Manhasset Bay and intersperse with open areas along the east bank. An association of cover types with common dominant species is presented in Table 4-7. The biological associations observed are common for this general area.

## 4.1.9 Observations of Stress Potentially Related to Site Contaminants

Other than physically disturbed areas, there were no indications of visibly stressed vegetation that could be attributed to contaminants. Past disturbance and multiple contamination sources, including overland storm water runoff from commercial development and storm water runoff discharges from roadways, has impacted water quality in lower Manhasset Bay. As discussed under Section 3.1.4, four surface water sediment samples were collected at low tide adjacent to the drainage swale outfall in Manhasset Bay. All four sediment samples exhibited detectable levels of mercury, ranging from 0.077 mg/kg to a maximum of 0.19 mg/kg at MHSD-02A. Only MHSD-02A exceeded the "lowest effect level" of 0.15 mg/kg established for mercury for surface water sediment by the NYSDEC pursuant to the NYSDEC Technical Guidance for Screening Contaminated Sediment, dated November 22, 1993. All mercury concentrations were found to be well below the "severe effect level" of 1.3 mg/kg, which is also included in the above-referenced NYSDEC guidance document.

# FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED SPECIES IN NEW YORK STATE

| Common Name             | Scientific Name            | <u>Status</u> | Distribution                                                                                                             |  |
|-------------------------|----------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Fishes                  |                            |               |                                                                                                                          |  |
| Sturgeon, shortnose     | Asipenser brevirostrum     | Е             | Hudson River and other<br>Atlantic coastal rivers                                                                        |  |
| Reptiles                |                            |               |                                                                                                                          |  |
| Turtle, bog             | Clemmys muhlenbergii       | РТ            | Albany, Columbia,<br>Dutchess, Genesee,<br>Orange, Oswego, Putnam,<br>Seneca, Ulster, Wayne, and<br>Westchester Counties |  |
| Turtle, green           | Chelonia mydas             | Т             | Oceanic summer visitor coastal waters                                                                                    |  |
| Turtle, hawksbill       | Eretmochelys imbricata     | E             | Oceanic summer visitor coastal waters                                                                                    |  |
| Turtle, leatherback     | Dermochelys coriacea       | E             | Oceanic summer visitor coastal waters                                                                                    |  |
| Turtle, loggerhead      | Caretta caretta            | Т             | Oceanic summer visitor coastal waters                                                                                    |  |
| Turtle, Atlantic ridley | Lepidochelys kempii        | E             | Oceanic summer visitor coastal waters                                                                                    |  |
| Birds                   |                            |               |                                                                                                                          |  |
| Eagle, bald             | Haliaeetus lcucocephalus   | Т             | Entire state                                                                                                             |  |
| Falcon, peregrine       | Falco peregrinus           | Е             | Entire state - re-<br>establishment to former<br>breeding range in progress                                              |  |
| Plover, piping          | Charadrius melodus         | Е             | Great Lakes Watershed                                                                                                    |  |
|                         |                            | Т             | Remainder of coastal New<br>York                                                                                         |  |
| Tern, roseate           | Sterna dougallii dougallii | E             | Southeastern coastal portions of state                                                                                   |  |

# Table 4-6 (continued)

# FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED SPECIES IN NEW YORK STATE

| Common Name                       | Scientific Name                           | <u>Status</u> | <b>Distribution</b>                                |
|-----------------------------------|-------------------------------------------|---------------|----------------------------------------------------|
| Mammals                           |                                           |               |                                                    |
| Bat, Indiana<br>Cougar, eastern   | Myotis sodalis<br>Felis concolor cougar   | E<br>E        | Entire State<br>Entire State - probably<br>extinct |
| Whale, blue                       | Balaenoptera musculus                     | Е             | Oceanic                                            |
| Whale, finback                    | Balaenoptera physalus                     | Е             | Oceanic                                            |
| Whale, humpback                   | Megaptera novaeangliae                    | Е             | Oceanic                                            |
| Whale, right                      | Eubalaena glacialis                       | Е             | Oceanic                                            |
| Whale, sei                        | Balaenoptera borealis                     | Oceanic       |                                                    |
| Whale, sperm                      | Physeter catodon                          | Е             | Oceanic                                            |
| Mollusks                          |                                           |               |                                                    |
| Snail, Chittenango<br>ovate amber | Succinea chittenangoensis                 | Т             | Madison County                                     |
| Mussel, dwarf wedge               | Alasmidonta heterodon                     | Е             | Orange County - lower<br>Neversink River           |
| Butterflies                       |                                           |               |                                                    |
| Butterfly, Karner blue            | Lycaeides melissa samuelis                | Е             | Albany, Saratoga, Warren, and Schenectady Counties |
| Plants                            |                                           |               |                                                    |
| Monkshood, northern wild          | Aconitum noveboracense                    | Т             | Ulster, Sullivan, and<br>Delaware Counties         |
| Pogonia, small<br>whorled         | Isotria medeoloides                       | Т             | Entire State                                       |
| Swamp pink                        | Helonias bullata                          | Т             | Staten Island - presumed extirpated                |
| Gerardia, sandplain               | Agalinis acuta                            | E             | Nassau and Suffolk<br>Counties                     |
| Fern, American<br>hart's-tongue   | Asplenium scolopendrium<br>var. Americana | Т             | Onondaga and Madison<br>Counties                   |
| Orchid, estern prairie<br>fringed | Platanthera leucophea                     | Т             | Not relocated in New York                          |
| Bulrush, northeastern             | Scirpus ancistrochaetus                   | E             | Not relocated in New York                          |
| ◆2015\GG0924405.DOC(R02)          | 4-11                                      |               |                                                    |

# Table 4-6 (continued)

# FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED SPECIES IN NEW YORK STATE

| Common Name              | Scientific Name                    | <u>Status</u> | Distribution                      |
|--------------------------|------------------------------------|---------------|-----------------------------------|
| Roseroot, Leedy's        | Sedum integrifolium ssp.<br>Leedyi | Т             | West shore of Seneca Lake         |
| Amaranth, seabeach       | Amaranthus pumilus                 | Т             | Atlantic coastal plain<br>beaches |
| Goldenrod,<br>Houghton's | Solidago houghtonii                | Т             | Genesee County                    |

# FLORAL AND FAUNAL ASSOCIATIONS OBSERVED WITHIN 2.5 MILES OF THE MANHASSET SUBSTATION SITE

|                        | Creasland/                 | Forested/                  |          | Freshwater<br>Wetlands/   | Estre vin e                  | Culturated                |
|------------------------|----------------------------|----------------------------|----------|---------------------------|------------------------------|---------------------------|
| <u>Species</u>         | Grassland/<br><u>Field</u> | Grassland/<br><u>Field</u> | Forested | Wetlands/<br><u>Ponds</u> | Estuarine<br><u>Wetlands</u> | Cultivated<br><u>Lawn</u> |
| Plants                 |                            |                            |          |                           |                              |                           |
| Common ragweed         | Х                          | Х                          |          |                           |                              |                           |
| Daisy                  | Х                          | Х                          |          |                           |                              |                           |
| Crown vetch            | Х                          | Х                          |          | Х                         |                              |                           |
| Fescue                 |                            |                            |          |                           |                              | Х                         |
| Goldenrod              | Х                          | Х                          |          | Х                         |                              |                           |
| Virginia creeper       |                            | Х                          | Х        |                           |                              | Х                         |
| Multiflora rose        | Х                          | Х                          |          | Х                         |                              |                           |
| Red maple              |                            |                            | Х        |                           |                              | Х                         |
| Flowering Dogwood      |                            | Х                          | Х        |                           |                              | Х                         |
| Black locust           |                            | Х                          | Х        |                           |                              | Х                         |
| Animals                |                            |                            |          |                           |                              |                           |
| Striped bass           |                            |                            |          |                           | Х                            |                           |
| Gray Squirrel          |                            | Х                          | Х        |                           |                              | Х                         |
| Mice/voles/shrews      | Х                          | Х                          | Х        | Х                         |                              | Х                         |
| Black Duck             |                            |                            |          |                           | Х                            |                           |
| Hawks                  | Х                          | Х                          | Х        | Х                         |                              |                           |
| Finches                |                            | Х                          | Х        |                           |                              | Х                         |
| Sparrows               | Х                          | Х                          | Х        |                           |                              | Х                         |
| Northern spring peeper |                            |                            |          | Х                         |                              |                           |
| Eastern garter snake   | Х                          | Х                          |          | Х                         |                              |                           |

# 4.1.10 Habitat Values of Vegetative Zones Within the Project Site

The assessment of habitat value provides for assessments of primary functions, such as food chain production, specialized habitat and hydrologic interactions. As part of the analysis, cultural values concerning recreation, aesthetics or other special features must be taken into consideration.

The information gathered during the initial site assessment conducted in 1999 can provide for a hierarchy of habitat values for the cover types found at the Manhasset Substation. It should be noted that this approach is highly subjective. Those functions assumed to be valuable in relative efficiency or importance are ranked as 3 (high), 2 (moderate), 1 (low) or 0 (non-existent). Specific factors and brief descriptions, which were utilized in the habitat value analysis of the site's qualitative evaluation, are as follows:

- <u>Nutrient Transport Function</u> Transport of nutrients in detrital-based food chains is strongly dependent on the hydrologic characteristics of the particular ecosystem. For example, wetlands located in lower lying areas export more detrital material than do the higher marsh areas infrequently affected by creek/river overflow. Similarly, detrital transport in the riverine systems is dependent on the river flow regime, especially during periods of peak discharge. In contrast, very little detrital material is exported from isolated ponds and marshes, except during periods of episodic overflow resulting from exceptionally high precipitation.
- <u>Food Chain Support</u> This function refers to the secondary productivity values of consumer species that a particular ecosystem can support. Secondary productivity is an overall measure of the efficiency of the habitat in terms of nutrient to transfer higher trophic levels.
- <u>Hydroperiod</u> This factor refers to the frequency of inundation either by river flow runoff or direct precipitation. Areas of good hydrologic linkage help maintain a regular interchange of nutrients and other materials necessary to support diverse flora and fauna.
- <u>Elevational\_Location</u> From the above, it is apparent that hydrologic relationships will progressively deteriorate as the depth of flooding decreases. The weakest hydrologic linkages exist in those areas physically isolated from other areas in the system.

- <u>Cultural Evaluation</u> This particular factor is difficult to assess in detail because of the number of socio-economic considerations, which may be involved. Hence, the evaluation in relation to local residential, commercial, or industrial development is largely left to the professional judgement of the project personnel on a specific case-by-case basis.
- <u>Recreation</u> Recreation is a vital personal and social need, which provides opportunity for self-expression, physical exercise, and a change of pace from normal or routine activities. Outdoor recreation is a major leisure activity and is growing in national importance with a trend towards a higher standard of living. A significant portion of the total recreational output is water based or water related. As such, greater weight is given to those types of habitats.
- <u>Socio-Economic</u> This factor pertains to benefits, which can be attributed directly to renewable resources, recreational enjoyment, or other features associated with a particular habitat.
- <u>Aesthetics</u> Selected types of habitats are distinctive landscape features which can please the aesthetic sense through the intrinsic appreciation of natural beauty. Wetlands, or any other type of natural landscape, can also be offensive if their features have been adversely modified by incompatible human activities. Aesthetic value can be largely determined by the degree of visual diversity and contrast between the physical elements, such as landforms, water bodies, vegetation types and land use types.
- <u>Food Chain Production</u> This factor determines the growth of vegetation in a habitat and influences the populations and secondary productivity of animals that feed on the plants, or that feed at high trophic levels in the community.
- <u>Primary Productivity</u> Primary productivity is a measure of the stored food potential of the vegetation in excess of that used by the plants in metabolism. This determination provides an overall measure of the energy input directly available to the consumer species. It should be noted that the possible range of productivity values, both within and between particular environments, is extremely variable and dependent on a number of local conditions. For the present analysis, literature values for primary productivity as a function of biomass were utilized.
- <u>Water Purification Factor</u> Through a variety of physical, biological, and chemical processes, some habitats function to naturally purify water by removing organic and mineral particulate matter from runoff and/or rivers and streams. For example, wetlands may be significant in minimizing some of the harmful effects of pollutants introduced into natural ecological systems by the activities of man. Thus, wetlands, especially when part of riverine or estuarine systems, can be an integral part of water quality and pollution control objectives.

Based upon the above factors, a qualitative analysis of the habitat value of the vegetative and aquatic communities at the Manhasset Substation are presented in Table 4-8. Based upon these results, the wetlands habitats associated with Manhasset Bay are moderately high value habitats. These wetlands function as a typical estuarine in primary productivity, nutrient transport and food chain support, while also providing aesthetic and recreational opportunities to the local community that would not likely otherwise be available in this location. The Manhasset Substation is a man-maintained corridor that has an important socio-economic function as a mass transportation corridor. As such the property is not managed for and does not present opportunities for ecological diversity or development. Control of contaminants on location is important to minimize impacts to Manhasset Bay. Due to the high tidal amplitude and flushing abilities of Manhasset Bay coupled with the affinity of contaminants under investigation to closely adhere to local sediments, it is unlikely that significant ecological disturbance has resulted from past practices of the Manhasset Substation.

# QUALITATIVE HABITAT VALUE ANALYSIS WITHIN THE MANHASSET SUBSTATION SITE

| <b>Evaluation Factor</b>  | <u>Disturbed Upland</u> | Manhasset Bay<br><u>Discharge Site</u> |
|---------------------------|-------------------------|----------------------------------------|
| Food Chain Production     | 1                       | 2                                      |
| Primary Productivity      | 1                       | 2                                      |
| Nutrient Transport        | 1                       | 2                                      |
| Food Chain Support        | 1                       | 2                                      |
| Hydroperiod               | 1                       | 2                                      |
| Elevational Location      | 1                       | 2                                      |
| Cultural Location         | 3                       | 2                                      |
| Recreation                | 0                       | 2                                      |
| Socio-Economic            | 3                       | 1                                      |
| Aesthetics                | 1                       | 2                                      |
| Water Purification Factor | 1                       | 2                                      |
| Totals                    | 14                      | 21                                     |

Section 5

# 5.0 QUALITATIVE EXPOSURE ASSESSMENT

#### 5.1 Introduction

The purpose of this exposure assessment is to determine how and when an individual might be exposed to contaminants of potential concern associated with the LIRR Manhasset, Massapequa and Island Park substations. A contaminant of potential concern (COPC) is any chemical detected above the NYSDEC cleanup guidelines in a medium, which could produce adverse health effects under the right conditions of dose and exposure. For exposure to occur, there must be a complete "pathway of exposure" where a person can come into contact with contaminants of potential concern. For a pathway to be complete, there must be: 1) a source or medium containing the COPC; 2) a location where human contact could take place (i.e., an exposure point); and 3) a feasible means for the COPC to enter into the person's body. The person who could come into contact with the COPC at an exposure point is called a "receptor." The ways in which the COPC can enter the body are called "routes of exposure." Ingestion (by mouth), dermal (contact with skin) and inhalation (breathing into the lungs) are the routes of exposure considered in this and other human health risk assessments. Consistent with the New York State Department of Health (NYSDOH) and other regulatory agencies, this assessment considers both current and potential future exposures.

As with any exposure assessment, it is not intended to predict disease outcome, but rather, is meant to be used as a tool to make decisions regarding the need for remediation or the institution of precautionary measures, such as limiting the affected area to nonresidential land uses. Given the available information for each site, and keeping the purpose of the assessment in mind, the following evaluation for the three LIRR substations and surrounding off-site areas is qualitative in nature.

#### 5.2 **Properties, Fate and Transport of Mercury**

The following is a summary of the properties, fate and transport of mercury (Hg) in surface and shallow subsurface soil. The mercury found at Long Island Rail Road substations is assumed to have entered in the soil in the form of liquid elemental mercury that was utilized in mercury-containing rectifiers. Elemental mercury  $(Hg^0)$  is a heavy, silver-white metal with a specific gravity approximately 13.5 times that of water and is the only metal to exist in the liquid phase at room temperature.  $Hg^0$  has a relatively high vapor pressure and is the most volatile of all metals. Overall, however, it is considered only slightly volatile when compared to most liquids.  $Hg^0$  volatilizes into a colorless, odorless and tasteless gas.

Mercury is a naturally occurring element that has been distributed throughout the environment by natural processes. Mercury exists in three possible oxidation states: elemental mercury (Hg<sup>0</sup>), mercurous (Hg<sup>1+</sup>), and mercuric (Hg<sup>2+</sup> or Hg[II]). Atmospheric deposition to the surface from anthropogenic and natural air emissions is considered a major source of mercury in the environment and is primarily in the form of Hg(II), either during precipitation events or adsorbed onto airborne particulates. The mercurous and mercuric forms of mercury will complex and form numerous organic and inorganic compounds. Hg(II) is commonly found as mercuric sulfide (HgS), a stable inorganic species that is essentially insoluble in water and is therefore considered a major long term sink for mercury in soils. Moderately soluble forms of Hg(II), such as mercuric forms of mercury will adsorb to clay minerals, oxides and organic matter and tend not to leach. Methylmercury (MeHg) is the most widespread organic form of mercury in the environment and is formed from the methylation of inorganic mercury by bacteria in aquatic environments. Methylation is generally negligible in terrestrial soils.

Liquid elemental mercury has a tendency to form globules or beads and therefore is generally not uniformly distributed among soil particles. It will sink under the force of gravity and split up into available pore spaces. Despite this fact,  $Hg^0$  is only slightly soluble in water and, therefore, is unlikely to leach into groundwater via infiltrating precipitation. In fact, spills of liquid mercury to shallow subsurface soil have been found to be persistent in this environment. Elemental mercury is assumed to be removed from unsaturated soil primarily through its potential to volatilize to the soil vapor and the outside air. Although liquid mercury is volatile, the process is not rapid and globules of  $Hg^0$  may persist for a long time before completely volatilizing. In addition, mercury globules can become coated with a stable layer of insoluble

HgS, especially in anaerobic conditions, and can remain inert for a long time. Mercury vapor released to the outdoor air will dissipate rapidly into the atmosphere.

#### 5.3 General Findings and Conditions

As indicated by the chemical data presented in Section 3.0, mercury is the primary COPC detected in surface and subsurface soil associated with the three substation sites. However, groundwater at each substation does not appear to be impacted by mercury. In addition, a number of PAH compounds have been detected in surface and subsurface soil. Relatively low concentrations of several VOCs have been detected in several UIC structures; however, these structures have been remediated as part of the UIC closure program. Several VOCs were detected in groundwater, including MTBE in groundwater samples collected from the three substations at trace to low concentrations not exceeding 18 ug/l. However, these groundwater contaminants appear to be from upgradient, off-site sources and are not associated with activities conducted at the three substations.

All three substations are actively used by the LIRR to convert alternating current (AC) obtained from the local electrical provider, the Long Island Power Authority (LIPA), to direct current (DC) for use in powering the LIRR's electric train fleet. As discussed in Section 1.1, the substations have been used for this purpose since the early 1930's and the LIRR intends to continue to use these facilities for this purpose in the foreseeable future.

The substations are only accessible by authorized LIRR personnel and their subcontractors. In addition, the substations are not occupied by LIRR personnel on a continuous or full-time basis. Under normal operating conditions, access to the substation properties only occurs when equipment requires monitoring, maintenance or repair. Each substation building is locked at all times and all associated outside electrical equipment (i.e., transformers) are secured by a locked fence. In addition, the property surrounding the Manhasset and Massapequa substations is fenced, preventing public access to these properties.

5-3

All three substations are serviced by public water and on-site groundwater is not used for any purpose.

While soil contamination has been documented within certain areas of each substation, the LIRR maintains strict control over conducting soil excavation activities within LIRR properties known to contain contaminants in order to avoid the excavation and handling of contaminated soil without undertaking appropriate health and safety measures. Provided as Appendix G is the LIRR Procedure/Instruction EE03-001 which defines the procedures that must be undertaken prior to conducting excavation activities at LIRR properties.

The following sections discuss the exposure assessment for each of the three substations.

#### 5.4 Manhasset Substation

## Surface and Subsurface Soil

Elevated concentrations of mercury were detected within surface soil and subsurface soil within the Manhasset substation. The highest mercury concentrations were detected in surface soil within the drainage swale, and in surface soil and shallow subsurface soil within the Exterior Railroad Tie AOC located south of the drainage swale and west of the substation building. However, surface soil within the drainage swale is covered by stone blocks that line the swale and the Exterior Railroad Tie AOC, as well as the surrounding area, is covered with 6 to 8 inches of crushed stone. Therefore, direct exposure to mercury contamination of LIRR workers (on-site receptors) who are required to periodically enter the site for equipment maintenance and repair is highly unlikely. LIRR workers and subcontractors could be potentially exposed to this contaminant source during excavation activities as the result of dermal contact and inhalation of windblown dust. However, as discussed above, the LIRR has in place procedures to avoid the excavation and handling of contaminated soil without undertaking appropriate health and safety measures. In addition, the Manhasset substation is secured with a fence eliminating the potential of trespassers entering the site.

Surface soil samples collected from off-site locations immediately north of the drainage swale exhibited relatively low concentrations of mercury with the majority of surface soil samples exhibiting mercury concentrations ranging from 0.1 mg/kg to less than 6.0 mg/kg. While the majority of these concentrations were found to be low, they are located in an area that has unrestricted access by the public. Therefore, exposure of off-site receptors to this contaminant source could occur through dermal contact, ingestion and inhalation of windblown dust. However, due to the low volatility of mercury and the relatively low concentrations, inhalation of mercury vapor is not expected. This is supported by the fact that all mercury vapor readings were nondetectable for all surface soil samples collected from this area.

#### Groundwater

As discussed in Section 1.3.7, groundwater has not been adversely impacted by the presence of mercury in on-site soil. In addition, on-site groundwater is not used as a potable water source or for any other uses. Therefore, groundwater is not considered a potential exposure pathway.

#### <u>Air</u>

VOCs were only detected at trace concentrations of less than 10 ug/kg within a former UIC structure that was remediated in 2003. As a result, inhalation of contaminants released to the air through volatilization of contaminants from surface soil and subsurface soil does not represent a potential exposure pathway for on-site or off-site receptors. However, as discussed above, inhalation of windblown dust of surface soil does represent a potential for exposure to off-site receptors. While the volatilization of mercury present in the subsurface can occur, this process occurs at a very slow rate and inhalation of mercury vapor from on-site sources is not expected to be a significant exposure pathway.

#### Future Use of Manhasset Substation

The Manhasset substation is an integral component of the LIRR rail system and will remain as an electric substation for the foreseeable future.

#### 5.5 Massapequa Substation

Elevated levels of mercury were detected in surface and subsurface soil within the Massapequa substation. The highest mercury concentrations were detected in surface soil located immediately east of the substation building, and below an asphalt driveway as well as an area covered by 6 to 8 inches of crushed stone. Therefore, direct exposure of LIRR workers (on-site receptors) to this contaminant source who need to periodically enter the site for equipment monitoring, maintenance and repair is highly unlikely. LIRR workers and subcontractors could be potentially exposed to this contaminant source during excavation activities as the result of dermal contact and inhalation of windblown dust. However, as discussed above, the LIRR has in place procedures to avoid the excavation and handling of contaminated soil without undertaking appropriate health and safety measures. In addition, the Massapequa substation is secured with a fence eliminating the potential of trespassers entering the site.

Surface soil samples collected outside the substation fence within nearby grass-covered areas also exhibited mercury at concentrations ranging from 0.40 mg/kg to a maximum of 13.6 mg/kg. These grass-covered areas are accessible to the public, therefore, exposure of off-site receptors to this contaminant source could occur through dermal contact, ingestion and inhalation of windblown dust. Therefore, the LIRR has erected temporary fencing to restrict the public from access to these areas.

#### Groundwater

As discussed in Section 3.3.6, groundwater has not been adversely impacted by the presence of mercury in on-site soil. Furthermore, on-site groundwater is not used as a potable

water source or for any other uses. Therefore, groundwater is not considered a potential exposure pathway.

### 5.6 Island Park Substation

#### Surface and Subsurface Soil

The highest mercury concentrations detected in surface and subsurface soil within the Island Park substation were observed in samples collected from an area adjacent to the south side of the substation building. However, mercury concentrations did not exceed 13 mg/kg in this area and it is currently covered by asphalt pavement. Therefore, direct exposure of LIRR workers (on-site receptors) to this contaminant source who need to periodically enter the site for equipment maintenance and repair is highly unlikely. LIRR workers and subcontractors could be potentially exposed to this contamination during excavation activities as the result of dermal contact and inhalation of windblown dust. However, as discussed above, the LIRR has in place procedures to avoid the excavation and handling of contaminated soil without undertaking appropriate health and safety measures.

Subsurface soil samples collected throughout the Island Park substation site exhibited elevated concentrations of a number of PAHs and, to a lesser extent, arsenic and phenols. However, based on soil conditions observed during the advancement of borings, much of the site soil appears to be comprised of non-native fill. In addition, while undertaking excavation activities in accordance with the construction excavation program, subsurface soil was found to be comprised of fill material and debris, including automobile parts, mattresses, bottles, tools and related material. Based on these findings, it is apparent that the PAHs, arsenic and phenols identified in subsurface soil is associated with this fill material and is not associated with LIRR operations, past or present. Regardless of their origin, the areas where these contaminants have been observed are covered with asphalt pavement and, therefore, exposure of LIRR workers who periodically access the site is highly unlikely. LIRR workers and subcontractors could be potentially exposed to this contamination during excavation activities as the result of dermal contact and inhalation of windblown dust. However, as discussed above, the LIRR has instituted

procedures to prevent the excavation of contaminated soil without undertaking appropriate health and safety measures.

### Groundwater

As discussed in Section 3.5.10, mercury was not detected above NYSDEC Class GA groundwater standards in groundwater samples collected from the site. A number of metals were detected above their respective NYSDEC Class GA groundwater standard; however, the majority of these exceedances was detected in unfiltered groundwater samples and, therefore, does not represent true dissolved-phase concentrations. In addition, groundwater samples exhibited low concentrations of several VOCs including MTBE, a common gasoline additive. Finally, groundwater samples exhibited a number of PAHs exceeding NYSDEC standards which would be expected given the concentrations observed in subsurface soil as the result of the fill material. Furthermore, on-site groundwater is not used as a potable water source or for any other uses. Therefore, groundwater is not considered a potential exposure pathway.

Section 6

#### 6.0 CONCLUSIONS AND RECOMMENDATIONS

This section presents a discussion of the conclusions and recommendations associated with the investigation of the presence of any chemical constituents of concern at the Manhasset, Massapequa and Island Park substations and surrounding off-site properties. It is important to note that the conclusions and recommendations presented take into consideration the completed Fish and Wildlife Resources Impact Analysis presented in Section 4.0, the findings of the Qualitative Human Health Exposure Assessment presented in Section 5.0, as well as the intended future use of the substation sites.

Note that, upon approval of this investigation report by the NYSDEC, the LIRR intends to proceed with development of a Remedial Action Selection report that will identify the selected remedial technologies that will be used to successfully remediate each substation site in accordance with the recommendations presented below.

### 6.1 Manhasset Substation

Mercury was detected in surface and shallow subsurface soil at the Manhasset Substation. The most significant mercury contamination has been identified in soil collected immediately beneath the stone blocks lining the drainage swale at concentrations of up to 9,800 mg/kg. Soil samples collected from the drainage swale indicate a mercury "hot spot" located between 10 and 30 feet west of the northwest corner of the existing substation building. However, mercury concentrations within the drainage swale decrease rapidly to the west (downstream) and east (upstream) of this hot spot area. The drainage swale conveys storm water runoff from the substation property, as well as properties located "upstream" and to the east and south of the substation. The storm water is ultimately discharged to Manhasset Bay via an outfall located approximately 1,000 feet west of the substation. However, surface water sediment samples collected from Manhasset Bay immediately downstream of the outfall indicate that mercury concentrations are only marginally above the "lowest effect level" standard of 0.15 mg/kg and well below the "severe effect level" of 1.3 mg/kg, which has been established by the NYSDEC for mercury in surface water sediments.

Mercury has been identified in surface soil and shallow subsurface soil immediately to the south of the drainage swale hot spot discussed above and immediately west of the substation building at concentrations of up to 1,700 mg/kg.

In addition, surface soil samples collected from the soil median and from off-site properties immediately north of the drainage swale exhibited concentrations of mercury above the NYSDEC TAGM criteria of 0.1 mg/kg with the majority of these samples exhibiting relatively low mercury concentrations ranging from 0.1 mg/kg to less than 6.0 mg/kg.

Groundwater has not been impacted by the presence of mercury in on-site soil.

All UIC structures identified within the Manhasset Substation have been remediated and closed in accordance with USEPA and NCDH requirements.

Exposure of on-site workers to mercury-contaminated soil is not expected due to the fact that the soil comprising the drainage swale is "lined" by stone blocks and soil south of the swale is covered with 6 to 8 inches of crushed stone. Furthermore, the LIRR has instituted procedures to prevent the excavation of contaminated soil at LIRR properties without undertaking appropriate health and safety measures. Off-site receptors could be potentially exposed to surface soil exhibiting mercury above the NYSDEC TAGM criteria of 0.1 mg/kg located off-site and north of the drainage swale.

Based on the above findings, we recommend the following:

#### Drainage Swale

In order to remediate the mercury concentrations in surface soil within the drainage swale, excavate all soil and stone blocks from the drainage swale to a total depth of 3 feet below grade in an area beginning approximately 2 feet west of the northwest corner of the substation and extending to a point approximately 50 feet west. Subsequent to completing this remedial action, the swale should be replaced with a concrete culvert and backfilled with clean fill.

#### Exterior Railroad Ties AOC

Soil south of the drainage swale, north of the signal hut and west of the substation containing elevated levels of mercury should be remediated to a depth of between 2 and 4 feet below grade, depending on the results of the completed surface soil sampling. This area is approximately 1,400 square feet in area and would require the excavation of approximately 130 cubic yards of soil. After removal of the contaminated soil, this area should be backfilled with clean soil and a layer of crushed stone placed on top of the area.

#### Off-site Soil

Due to the potential for exposure to off-site receptors, shallow soil up to 1 foot in depth should be remediated within the soil median located immediately to the north of the drainage swale. This would include the narrow strip of exposed soil located between the drainage swale and the curb of Virginia Drive. The area requiring excavation includes a distance of approximately 440 feet, starting approximately 80 feet east of the substation building and continuing west along Virginia Drive. In addition, a narrow strip of soil approximately 550 feet in length located on the two private properties west of Virginia Drive and adjacent to the drainage swale should be remediated to a depth of up to 1 foot below grade. Assuming a strip 3 feet in width, the area to be remediated consists of approximately 110 cubic yards of soil. After remediation, the excavated area should be backfilled with clean soil and the surface restored to pre-remediation conditions including the restoration of lawns and other landscaped areas.

### 6.2 Massapequa Substation

Mercury has been detected in surface soil and shallow subsurface soil at the Massapequa Substation. The highest mercury concentrations have been identified in surface soil and shallow subsurface soil located immediately east of the eastern side of the substation building with mercury concentrations of up to 178 mg/kg. This portion of the site is covered by asphalt pavement and crushed stone. Exposure of on-site workers to mercury contamination is not expected due to the fact that it is covered by asphalt pavement or crushed stone. Furthermore, the LIRR has instituted procedures to prevent the excavation of contaminated soil at its properties without undertaking appropriate health and safety measures.

In addition, surface soil samples collected outside the substation fence within grass covered areas to the south and east exhibited mercury concentrations ranging from 0.4 to 13.6 mg/kg. In addition, subsurface soil sample MSSB-53 (2 to 4 feet) collected within a grass covered area immediately south of the substation fence exhibited a mercury concentration of 103 mg/kg. These grass-covered areas are accessible to the public and, therefore, exposure of off-site receptors to this contaminant source could occur through dermal contact, ingestion and/or inhalation of windblown dust. Note that, based on these findings, the LIRR has placed temporary fencing around these grass areas in order to prevent access while a permanent remedy is selected to mitigate this potential exposure pathway.

Groundwater has not been impacted by the presence of mercury in on-site soil.

All UIC structures identified within the Massapequa Substation have been remediated and closed in accordance with USEPA and NCDH requirements.

Based on these findings, we recommend the following:

#### **On-site** Locations

Replace the area of crushed stone located immediately east of the substation building with asphalt pavement in order to further isolate any residual mercury-impacted soil from on-site workers and to reduce the degree to which groundwater can infiltrate through this soil.

#### Off-site Locations

Excavate the mercury-impacted soil in grass covered areas to the south and east of the substation fence to a depth of 2 feet below grade. Replace the excavated soil with clean soil and cover with asphalt pavement or concrete to prevent future access by the public.

#### 6.3 Island Park Substation

Mercury was detected in surface and shallow subsurface soil within the Island Park Substation. The highest mercury concentrations were detected in samples collected from an area adjacent to the south side of the substation building. However, mercury concentrations did not exceed 13 mg/kg in this area and is currently covered by asphalt pavement. Therefore, direct exposure of LIRR workers to this area who need to periodically enter the site for equipment maintenance and repair is highly unlikely. LIRR workers and subcontractors could be potentially exposed to this contamination during excavation activities as a result of dermal contact and/or inhalation of windblown dust. However, as discussed above, the LIRR has procedures in place to prevent the excavation of contaminated soil at its properties without undertaking appropriate health and safety measures.

Subsurface soil samples collected throughout the Island Park substation site exhibited elevated concentrations of a number of PAHs and, to a lesser extent, arsenic and phenols. However, during the advancement of borings, much of the site soil appears to be comprised of nonnative fill. In addition, while undertaking excavation activities in accordance with the construction excavation program, subsurface soil was found to be comprised of fill material and debris, including automobile parts, mattresses, bottles, tools and related material. Based on these findings, it is apparent that the PAHs, arsenic and phenols identified in subsurface soil is associated with this fill material and is not associated with LIRR operations, past or present. Regardless of the origin, the areas where these contaminants have been observed are covered with asphalt pavement and, therefore, exposure of LIRR workers who periodically access the site is highly unlikely. LIRR workers and subcontractors could be potentially exposed to this contamination during excavation activities as the result of dermal contact and/or inhalation of

windblown dust. However, as discussed above, the LIRR has instituted procedures to prevent the excavation of contaminated soil at its properties without undertaking appropriate health and safety measures.

Mercury was not detected above NYSDEC Class GA groundwater standards in groundwater samples collected from the site. A number of metals were detected above their respective NYSDEC Class GA groundwater standard; however, the majority of these exceedances were detected in unfiltered groundwater samples that exhibited turbidity values well in excess of 50 NTUs and, therefore, do not represent true dissolved-phase concentrations. Groundwater samples exhibited relatively low concentrations of several VOCs (not exceeding 18 ug/l) including MTBE, a common gasoline additive. In addition, groundwater samples exhibited a number of PAHs exceeding NYSDEC standards which would be expected given the concentrations of PAHs observed in subsurface soil as the result of the fill material.

The rectifier dry well was remediated and closed as part of the Island Park UIC closure program in accordance with the requirements of the USEPA and NCDH.

The existing Island Park electric substation building is scheduled to be demolished in 2005. After demolition is completed, we recommend the following:

#### Sump Pump Pit

During the initial site assessment conducted in 1999, mercury-impacted soil was detected beneath a sump pump pit located within the substation building. Therefore, delineation activities are recommended to determine the horizontal and vertical extent of the impacted soil after demolition of the building.

#### Basement Drain Pipe

During the initial site assessment conducted in 1999, a drain pipe originating from within the substation basement was found to terminate beneath an area between the substation and the train tracks, approximately 21 feet from the west wall of the building. Investigation of this area could not be completed due to the presence of active utilities. Therefore, it is recommended that additional investigations be completed in this area to locate the discharge point associated with the basement drain after the demolition of the building so that electric utilities in that area can be de-energized.

### Septic Tank

After building demolition, the LIRR recommends closing the active septic tank associated with the building by pumping out all material present in the tank and backfilling the tank with clean soil.

Appendix A

# APPENDIX A

# ANALYTICAL DATA FROM INITIAL SITE ASSESSMENT OF THE THREE SUBSTATIONS

2

÷.

÷.

### TABLE D-1A

#### LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SOIL BORING SAMPLING RESULTS - MANHASSET-N10 MERCURY

| LOCATION                                                                | Recti                            | iier Pit                         | Water Ti                         | ough Pit                         | Southeast Exte                   | utheast Exterior Conduit Pit      |                                   |                                                    |
|-------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (ft.)<br>DATE OF COLLECTION<br>PERCENT SOLIDS | MHSBB-01<br>0-2<br>6/24/99<br>88 | MHSBB-01<br>2-3<br>6/24/99<br>91 | MHSBB-02<br>2-4<br>6/22/99<br>92 | MHSBB-02<br>4-6<br>6/22/99<br>94 | MHSBB-03<br>7-9<br>6/21/99<br>92 | MHSBB-03<br>9-11<br>6/21/99<br>97 | Instrument<br>Detection<br>Limits | Eastern USA<br>Background<br>Levels <sup>(1)</sup> |
| UNITS                                                                   | (mg/kg)                          | (mg/kg)                          | (mg/kg)                          | (mg/kg)                          | (mg/kg)                          | (mg/kg)                           | (ug/L)                            | (mg/kg)                                            |
| Mercury                                                                 | 171                              | 392                              | 514                              | 247                              | 0.054 U                          | 0.043 U                           | 0.1                               | <u>0.001</u> - 0.2                                 |

### NOTES:

()) Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

### QUALIFIERS:

U: Constituent analyzed for but not detected.

G \APostyn\LIRR\ Substation Investigation\Final Report\Data Tables\Manhasset (Soil) xls

### TABLE D-1A (continued)

#### LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SOIL BORING SAMPLING RESULTS - MANHASSET-N10 MERCURY

1

| LOCATION                                              | West of Substation         |                            |  |  |                                   |                                                    |
|-------------------------------------------------------|----------------------------|----------------------------|--|--|-----------------------------------|----------------------------------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (ft.)<br>DATE OF COLLECTION | MHSBB-12<br>0-2<br>6/22/99 | MHSBB-12<br>4-6<br>6/22/99 |  |  | Instrument<br>Detection<br>Limits | Eastern USA<br>Background<br>Levels <sup>(1)</sup> |
| PERCENT SOLIDS<br>UNITS                               | 92<br>(mg/kg)              | 87<br>(mg/kg)              |  |  | (ug/L)                            | (mg/kg)                                            |
| Mercury                                               | 0.057 B                    | 0.063 B                    |  |  | 0.1                               | 0.001 - 0.2                                        |

### NOTES:

<sup>(1)</sup> Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

### QUALIFIERS:

B: Constituent concentration is less than the CRDL, but greater than the IDL.

### TABLE D-1A (continued)

### LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SOIL BORING SAMPLING RESULTS - MANHASSET-N10 MERCURY

| LOCATION                             | South of West<br>Rail Road Ties |                 | End Rail Road<br>es |                 | Drainage Swale  |                 |                         |                           |
|--------------------------------------|---------------------------------|-----------------|---------------------|-----------------|-----------------|-----------------|-------------------------|---------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (ft.)      | MHSBB-06<br>4-6                 | MHSBB-07<br>2-4 | MHSBB-07<br>4-6     | MHSBB-08<br>0-2 | MHSBB-08<br>4-6 | MHSBB-09<br>0-2 | Instrument<br>Detection | Eastern USA<br>Background |
| DATE OF COLLECTION<br>PERCENT SOLIDS | 6/22/99<br>93                   | 6/22/99<br>94   | 6/22/99<br>91       | 6/22/99<br>94   | 6/22/99<br>89   | 6/21/99<br>60   | Limits                  | Levels <sup>(1)</sup>     |
| UNITS                                | (mg/kg)                         | (mg/kg)         | (mg/kg)             | (mg/kg)         | (mg/kg)         | (mg/kg)         | (ug/L)                  | (mg/kg)                   |
| Mercury                              | 1.1                             | 38.2            | 0.050 U             | 0.046 U         | 0.066 <b>B</b>  | 1.3             | 0.1                     | 0.001 - 0.2               |

NOTES:

<sup>(1)</sup> Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

### QUALIFIERS:

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

. . . 1

#### TABLE D-1B

-

and the second second

.

and address of

1

#### LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SURFACE SOIL SAMPLING RESULTS - MANHASSET-N10 MERCURY

| LOCATION                                                                | Slop Sink<br>Discharge<br>Point |                                 | Drainag                         | je Swale                        | North of West-<br>End Rail Road<br>Ties |                                 |                                   |                                                    |
|-------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------------|---------------------------------|-----------------------------------|----------------------------------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (in.)<br>DATE OF COLLECTION<br>PERCENT SOLIDS | MHSS-01<br>0-6<br>6/21/99<br>86 | MHSS-02<br>0-6<br>6/21/99<br>85 | MHSS-03<br>0-6<br>6/21/99<br>94 | MHSS-04<br>0-6<br>6/21/99<br>85 | <b>0-6 0-6</b><br>6/21/99 6/21/9        | MHSS-06<br>0-6<br>6/21/99<br>86 | Instrument<br>Detection<br>Limits | Eastern USA<br>Background<br>Levels <sup>(1)</sup> |
| UNITS                                                                   | (mg/kg)                         | (mg/kg)                         | (mg/kg)                         | (mg/kg)                         | (mg/kg)                                 | (mg/kg)                         | (ug/L)                            | (mg/kg)                                            |
| Mercury                                                                 | 25.1                            | 2.1                             | 0.75                            | 3.6                             | 7.4                                     | 143                             | 0.1                               | 0.001 - 0.2                                        |

### NOTES:

<sup>(1)</sup> Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

#### TABLE D-7A

#### LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SOIL BORING SAMPLING RESULTS - ISLAND PARK-L03 MERCURY

| LOCATION                             | Sump Pump Pit         |    | West C         | orner        | Utility Tre | nch          | Exterior Wa | ter Meter          | er Meter Pit   |     |                         |                           |
|--------------------------------------|-----------------------|----|----------------|--------------|-------------|--------------|-------------|--------------------|----------------|-----|-------------------------|---------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (ft.)      | IPSB-<br>0-2          |    | IPSB-01<br>2-4 | IPSB-<br>0-2 |             | IPSB-<br>4-6 |             | IPSB-03<br>2.5-4.5 | IPSB-<br>6.5-8 |     | Instrument<br>Detection | Eastern USA<br>Background |
| DATE OF COLLECTION<br>PERCENT SOLIDS | 1 <b>0/4/</b> 9<br>80 | 99 | 10/4/99<br>78  | 10/4/        | 99          | 10/4/9<br>85 | 9           | 8/10/99<br>82      | 8/10/95        | 99  | Limits                  | Levels <sup>(1)</sup>     |
| UNITS                                | (mg/k                 | g) | (mg/kg)        | (mg/k        | g)          | (mg/k        | g)          | (mg/kg)            | (mg/k          | (g) | (ug/L)                  | (mg/kg)                   |
| Mercury                              | 0.10                  | В  | 0.24           | 0.056        | U           | 0.074        | в           | 0.44               | 0.047          | U   | 0.1                     | 0.001-0.2                 |

### NOTES:

<sup>(1)</sup> Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

### QUALIFIERS:

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

---

we we do a start of the start o

#### LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SOIL BORING SAMPLING RESULTS - ISLAND PARK-L03 MERCURY

| LOCATION                             | South I        | Dry Well        |                | ry Well For<br>ifiers | East of We     | st Dry Well     |                         |                           |
|--------------------------------------|----------------|-----------------|----------------|-----------------------|----------------|-----------------|-------------------------|---------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (ft.)      | IPSB-07<br>5-7 | IPSB-07<br>9-11 | IPSB-08<br>5-7 | IPSB-08<br>9-11       | IPSB-09<br>5-7 | IPSB-09<br>9-11 | Instrument<br>Detection | Eastern USA<br>Background |
| DATE OF COLLECTION<br>PERCENT SOLIDS | 10/5/99<br>82  | 10/5/99<br>68   | 10/5/99<br>83  | 10/5/99<br>36         | 10/5/99<br>80  | 10/5/99<br>51   | Limits                  | Levels <sup>(1)</sup>     |
| UNITS                                | (mg/kg)        | (mg/kg)         | (mg/kg)        | (mg/kg)               | (mg/kg)        | (mg/kg)         | (ug/L)                  | (mg/kg)                   |
| Mercury                              | 0.049 U        | 0.070 U         | 0.060 U        | 0.14 U                | 0.060 U        | 0.085 U         | 0.1                     | 0.001 - 0.2               |

### NOTES:

(1) Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

### QUALIFIERS:

U: Constituent analyzed for but not detected.

### TABLE D-7B

#### LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SURFACE SOIL SAMPLING RESULTS - ISLAND PARK-L03 MERCURY

| LOCATION                             | South of Rear<br>Concrete<br>Platform | West of Rear<br>Concrete<br>Steps\Pad | North of Rear<br>Concrete<br>Steps\Pad | East of Rear<br>Concrete<br>Steps\Pad |                                       |                         |                           |
|--------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|-------------------------|---------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (ft.)      | IPSS-01<br>0-6                        | IPSS-02<br>0-6                        | IPSS-03<br>0-6                         | IPSS-04<br>0-6                        |                                       | Instrument<br>Detection | Eastern USA<br>Background |
| DATE OF COLLECTION<br>PERCENT SOLIDS | 8/10/99<br>88                         | 8/10/99<br>84                         | 8/10/99<br>87                          | 8/10/99<br>85                         |                                       | Limits                  | Levels <sup>(1)</sup>     |
| UNITS                                | (mg/kg)                               | (mg/kg)                               | (mg/kg)                                | (mg/kg)                               | · · · · · · · · · · · · · · · · · · · | (ug/L)                  | (mg/kg)                   |
| Mercury                              | 12.2                                  | 35.4                                  | 10.8                                   | 27                                    |                                       | 0.1                     | 0.001-0.2                 |

NOTES:

<sup>(1)</sup> Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

### TABLE D-12A

### LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SOIL BORING SAMPLING RESULTS - MASSAPEQUA-S15 MERCURY

| LOCATION                             | Interior Water<br>Trough Pit | Rectifier Pit  |                | sitive Breaker<br>le Pit | Northwes       | t Dry Weil       |                         |                           |
|--------------------------------------|------------------------------|----------------|----------------|--------------------------|----------------|------------------|-------------------------|---------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (ft.)      | MSSB-01<br>0-2               | MSSB-02<br>0-2 | MSSB-03<br>5-7 | MSSB-03<br>9-11          | MSSB-04<br>6-8 | MSSB-04<br>10-12 | Instrument<br>Detection | Eastern USA<br>Background |
| DATE OF COLLECTION<br>PERCENT SOLIDS | 11/23/99<br>90               | 11/23/99<br>99 | 11/23/99<br>94 | 11/23/99<br>97           | 11/23/99<br>87 | 11/23/99<br>85   | Limits                  | Levels <sup>(1)</sup>     |
| UNITS                                | (mg/kg)                      | (mg/kg)        | (mg/kg)        | (mg/kg)                  | (mg/kg)        | (mg/kg)          | (ug/L)                  | (mg/kg)                   |
| Mercury                              | 4.4                          | 10             | 1.8            | 0.072 B                  | 42.3           | 0.20             | 0.1                     | 0.001-0.2                 |

#### NOTES:

<sup>(1)</sup> Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

### QUALIFIERS:

B: Constituent concentration is less than the CRDL, but greater than the IDL.

,

;

### TABLE D-12A (continued)

#### LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SOIL BORING SAMPLING RESULTS - MASSAPEQUA-S15 MERCURY

| LOCATION                             |                | East-Side<br>s Entrance |              |                         |                           |
|--------------------------------------|----------------|-------------------------|--------------|-------------------------|---------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (ft.)      | MSSB-08<br>0-2 | MSSB-08<br>4-6          | MSFB-01      | Instrument<br>Detection | Eastern USA<br>Background |
| DATE OF COLLECTION<br>PERCENT SOLIDS | 11/23/99<br>96 | 11/23/99<br>91          | 11/23/99<br> | Limits                  | Levels <sup>(1)</sup>     |
| UNITS                                | (mg/kg)        | (mg/kg)                 | _(ug/L)      | <br>(ug/L)              | (mg/kg)                   |
| Mercury                              | 11.3           | 0.072 B                 | 0.17 U       | 0.1                     | 0.001-0.2                 |

### NOTES:

<sup>(1)</sup> Background level for mercury provided in NYSDEC TAGM 4046 Appendix A. ----: Not applicable.

#### **QUALIFIERS:**

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

-----

----

المماه مناجع

### TABLE D-12B

#### LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SURFACE SOIL SAMPLING RESULTS - MASSAPEQUA-S15 MERCURY

| LOCATION                                      | Northeast of<br>Exterior<br>Water Service<br>Pit | Far East of<br>Southeast<br>Substation<br>Corner | East-Side<br>Wood Plank   | East of<br>Southeast<br>Chain Link<br>Double Swing<br>Doors | South off<br>Southeast<br>Exterior<br>Substation<br>Corner | Northwest<br>Exterior<br>Corner of<br>Substation |                         |                                  |
|-----------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------|-------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|-------------------------|----------------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (in.)               | MSSS-01<br>0-6                                   | MSSS-02<br>0-6                                   | MSSS-03<br>0-6            | MSSS-04<br>0-6                                              | MSSS-05<br>0-6                                             | MSSS-06<br>0-6                                   | Instrument<br>Detection | Eastern USA<br>Background        |
| DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | 11/23/99<br>92<br>(mg/kg)                        | 11/23/99<br>93<br>(mg/kg)                        | 11/23/99<br>93<br>(mg/kg) | 11/23/99<br>93<br>(mg/kg)                                   | 11/23/99<br>90<br>(mg/kg)                                  | 11/23/99<br>92<br>(mg/kg)                        | Limits<br>(ug/L)        | Levels <sup>(1)</sup><br>(mg/kg) |
| Mercury                                       | 25.3                                             | 8                                                | 0.86                      | 1.1                                                         | 169                                                        | 13.5                                             | 0.1                     | 0.001 - 0.2                      |

### NOTES:

<sup>(1)</sup> Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

### TABLE D-12C

### LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION CONCRETE CORE SAMPLING RESULTS - MASSAPEQUA-S15 MERCURY

| LOCATION                                                   | Interior Water<br>Trough Pit         | Rectifier Pit                        | Interior Water<br>Pipe Trench        |                                   |                                             |
|------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------------|
| SAMPLE ID<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSCC-01<br>11/23/99<br>94<br>(mg/kg) | MSCC-02<br>11/23/99<br>97<br>(mg/kg) | MSCC-03<br>11/23/99<br>93<br>(mg/kg) | MSFB-02<br>11/23/99<br><br>(ug/L) | Instrument<br>Detection<br>Limits<br>(ug/L) |
| Mercury                                                    | 68                                   | 682                                  | 12.5                                 | 0.16 U                            | 0.1                                         |

.

### NOTES:

----: Not applicable.

### **QUALIFIERS:**

U: Constituent analyzed for but not detected.

Υ.

Appendix B

# **APPENDIX B**

-

## **BORING LOGS**

•2015\AA1103406.doc(R01)

4

•

- ---

|                                   | ]                                                                                                                                                                    |            | virka            |                      | Project No        | .: 2015<br>me: Long Island RailRoad    | Boring No.: MHSB-06A<br>Sheet <u>1</u> of <u>1</u> . |          |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|----------------------|-------------------|----------------------------------------|------------------------------------------------------|----------|
| C                                 | Ć                                                                                                                                                                    | ) an<br>Ba | rtiluco          | ;i                   | riojectiva        | Manhasset Substation<br>Virginia Drive | By: Albert Albano                                    |          |
| Drilling                          | Contu                                                                                                                                                                |            | ULTING ENG       | NEERS                | Geologist:        | Albert Albano                          | Boring Completion Depth: 1                           | 0'       |
| Driller:                          |                                                                                                                                                                      |            |                  |                      | -                 | thod: Direct Push                      | Ground Surface Elevation:                            |          |
| Drill Rig                         |                                                                                                                                                                      |            |                  |                      | -                 | mer Weight: NA                         | Boring Diameter: 1"                                  |          |
| Date Sta                          | rted:                                                                                                                                                                | 01/15/     | 03               |                      | Date Comp         | leted: 01/15/03                        | Samples were collected in 2' in                      | tervals. |
| [                                 |                                                                                                                                                                      | Soil Sa    | ample            | Mercury              | Photo-            |                                        |                                                      |          |
|                                   |                                                                                                                                                                      |            |                  | Vapor                | ionization        | 0                                      |                                                      |          |
| Depth<br>(ft.)                    | No                                                                                                                                                                   | Туре       | Rec.<br>(inches) | (mg/m <sup>3</sup> ) | Detector<br>(ppm) | Sample                                 | Description                                          | USCS     |
| 6' - 8'                           | 1                                                                                                                                                                    | GP         | 24               | .000                 | 0.0               | Tan very fine silty sand, mo           | pist to wet (not saturated)                          |          |
| 8' - 10'                          | 2                                                                                                                                                                    | GP         | 24               | .006                 | 0.0               | Tan fine to medium sand w              | vith some orange (oxidation),                        |          |
| SS = Spli<br>HA = Har<br>GP = Geo | Sample Types:NOTES:SS = Split SpoonBoth sampled intervals collected for analysis of mercury.HA = Hand AugerGP = Geoprobe SamplerCC = Concrete CoreCC = Concrete Core |            |                  |                      |                   |                                        |                                                      |          |

۱

.

ļ,

|                                    |                                                                                                     |         |          |                      |            | me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive | Boring No.: MHSB-13<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |          |
|------------------------------------|-----------------------------------------------------------------------------------------------------|---------|----------|----------------------|------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|----------|
| Driller: J                         |                                                                                                     |         | LAVVES   |                      | -          | Albert Albano<br>thod: Direct Push                                 | Boring Completion Depth: 1<br>Ground Surface Elevation: -                |          |
| Drill Rig:                         |                                                                                                     |         |          |                      | -          | mer Weight: NA                                                     | Boring Diameter: 1"                                                      | -        |
| Date Sta                           |                                                                                                     | -       | 03       |                      |            | bleted: 01/15/03                                                   | Samples were collected in 2' in                                          | tervals. |
|                                    |                                                                                                     | Soil Sa |          | Mercury              |            |                                                                    |                                                                          |          |
|                                    |                                                                                                     |         |          | Vapor                | ionization |                                                                    |                                                                          |          |
| Depth                              |                                                                                                     | _       | Rec.     |                      | Detector   | Sample                                                             | Description                                                              | USCS     |
| (ft.)                              | No.                                                                                                 |         | (inches) | (mg/m <sup>3</sup> ) | (ppm)      | <b>T B 11 11</b>                                                   |                                                                          |          |
| 0' - 2'                            | 1                                                                                                   | GP      | 24       | .01 <b>0</b>         | 0.0        | l an/brown medium silty sa<br>1' bgs.                              | and with some black staining at                                          |          |
| 2' - 4'                            | 2                                                                                                   | GP      | 24       | .017                 | 0.0        | Gray/tan very fine silty san                                       | d, moist                                                                 |          |
| 4' - 6'                            | 3                                                                                                   | GP      | 24       | .000                 | 0.0        | Tan very fine silty sand                                           |                                                                          |          |
| 6' - 8'                            | 4                                                                                                   | GP      | 24       | .000                 | 0.0        | Tan very fine silty sand, we condition)                            | et (perched water table                                                  |          |
| 8' - 10'                           | 5                                                                                                   | GP      | 24       | .000                 | 0.0        | Tan medium sand, less sill                                         | t, loos <b>e, m</b> oist                                                 |          |
|                                    |                                                                                                     |         |          |                      |            |                                                                    |                                                                          |          |
|                                    |                                                                                                     |         |          |                      |            |                                                                    |                                                                          |          |
|                                    |                                                                                                     |         |          |                      |            |                                                                    |                                                                          |          |
|                                    |                                                                                                     |         |          |                      |            |                                                                    |                                                                          |          |
|                                    |                                                                                                     |         |          |                      |            |                                                                    |                                                                          |          |
|                                    |                                                                                                     |         |          |                      |            |                                                                    |                                                                          |          |
| SS = Split<br>HA = Han<br>GP = Geo | Sample Types:<br>SS = Split Spoon<br>HA = Hand Auger<br>GP = Geoprobe Sampler<br>CC = Concrete Core |         |          |                      |            |                                                                    | s collected for analysis of merce<br>-2" section collected from the 0-   |          |

ŗ

, :

1. Sec. 1. Sec

-----

i

5 5 5

فديقسن النا

alan a

| d                                         |                                                                                                     | an      | virka<br>d<br>Irtilucc | NEERS                | Project No.: 2015<br>Project Name: Long Island RailRoa<br>Manhasset Substatio<br>Virginia Drive |                                                      | By: Albert Albano                                                                                                  |         |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------|---------|------------------------|----------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------|
| <b>3</b> .                                |                                                                                                     |         |                        |                      | Drilling Me<br>Drive Ham                                                                        | Albert Albano<br>thod: Direct Push<br>mer Weight: NA | Boring Completion Depth: 10<br>Ground Surface Elevation:<br>Boring Diameter: 1"<br>Samples were collected in 2' in |         |
| Date Sta<br>Depth                         |                                                                                                     | Soil Sa |                        | Mercury<br>Vapor     | Photo-<br>ionization<br>Detector                                                                | leted: 01/15/03<br>Sample                            | Description                                                                                                        | USCS    |
| (ft.)                                     | No.                                                                                                 | Туре    | (inches)               | (mg/m <sup>3</sup> ) | (ppm)                                                                                           |                                                      |                                                                                                                    |         |
| 0' - 2'                                   | 1                                                                                                   | GP      | 24                     | .000                 | 0.0                                                                                             | Brown medium sand with a rocky                       | a 3" layer of black-stained sand,                                                                                  |         |
| 2' - 4'                                   | 2                                                                                                   | GP      | 24                     | .004                 | 0.0                                                                                             | Brown/tan medium sand b                              | ecoming more silty with depth                                                                                      |         |
| 4' - 6'                                   | 3                                                                                                   | GP      | 18                     | .000                 | 0.0                                                                                             | Tan medium silty sand, mo                            | pist to wet                                                                                                        |         |
| 6' - 8'                                   | 4                                                                                                   | GP      | 18                     | .000                 | 0.0                                                                                             | Same, but less moist                                 |                                                                                                                    |         |
| 8' - 10'                                  | 5                                                                                                   | GP      | 24                     | .000                 | 0.0                                                                                             | Same, wet from 8-9'                                  |                                                                                                                    |         |
|                                           |                                                                                                     |         |                        | -                    |                                                                                                 |                                                      |                                                                                                                    |         |
|                                           |                                                                                                     |         |                        |                      |                                                                                                 |                                                      |                                                                                                                    |         |
|                                           |                                                                                                     |         |                        |                      |                                                                                                 |                                                      |                                                                                                                    |         |
|                                           |                                                                                                     |         |                        |                      |                                                                                                 |                                                      |                                                                                                                    |         |
|                                           |                                                                                                     |         |                        |                      |                                                                                                 |                                                      |                                                                                                                    |         |
| Sample                                    |                                                                                                     |         |                        |                      |                                                                                                 | NOTES:                                               |                                                                                                                    |         |
| S <b>S =</b> Spli<br>HA = Har<br>GP = Geo | Sample Types:<br>SS = Split Spoon<br>HA = Hand Auger<br>GP = Geoprobe Sampler<br>CC = Concrete Core |         |                        |                      |                                                                                                 | All sample intervals                                 | were analyzed for mercury. In sample was collected and analyzed                                                    | zed for |

| Drilling C<br>Driller: J<br>Drill Rig:                    | .w.                     | an<br>Ba<br>cons<br>actor:<br>Palmer | I <b>rtiluco</b><br>Sulting Engi<br>LAWES | NEERS            | Geologist:<br>Drilling Me             | : 2015<br>me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive<br>Albert Albano<br>thod: Direct Push<br>mer Weight: NA | Boring No.: MHSB-15<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano<br>Boring Completion Depth: 8'<br>Ground Surface Elevation: —<br>Boring Diameter: 1" |          |
|-----------------------------------------------------------|-------------------------|--------------------------------------|-------------------------------------------|------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Date Sta                                                  |                         |                                      |                                           |                  | · · · · · · · · · · · · · · · · · · · | leted: 01/15/03                                                                                                                      | Samples were collected in 2' in                                                                                                                               | tervals. |
| Death                                                     |                         | Soil Sa                              | ample<br>Rec.                             | Mercury<br>Vapor | Photo-<br>ionization<br>Detector      |                                                                                                                                      |                                                                                                                                                               |          |
| Depth<br>(ft.)                                            | No.                     | Туре                                 | (inches)                                  | (mg/m³)          | (ppm)                                 | Sample                                                                                                                               | Description                                                                                                                                                   | USCS     |
| 0' - 2'                                                   | 1                       | GP                                   | 24                                        | .000             | 0.0                                   | 0-6" – Black/brown coarse<br>diameter)<br>6"-2' – Brown medium san                                                                   | •                                                                                                                                                             |          |
| 2'-4'                                                     | 2                       | GP                                   | 24                                        | .000             | 0.0                                   | 2-3' – Reddish brown medi<br>pebbles<br>3-4' – Tan/white very fine s                                                                 |                                                                                                                                                               |          |
| 4' - 6'                                                   | 3                       | GP                                   | 24                                        | .000             | 0.0                                   | Light tan very fine sand, m                                                                                                          | edium stiffness                                                                                                                                               |          |
| 6' - 8'                                                   | 4                       | GP                                   | 24                                        | .000             | 0.0                                   | Same, but moist                                                                                                                      |                                                                                                                                                               |          |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samj                  | ble <b>r</b>                              |                  |                                       |                                                                                                                                      | were analyzed for mercury. In sample was collected and analy                                                                                                  | zed for  |

| and<br>Bartilucci<br>CONSULTING ENGINEERS                                                           |                            |         |          |                      |                      |                                                                      |                                                              |          |
|-----------------------------------------------------------------------------------------------------|----------------------------|---------|----------|----------------------|----------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------|
|                                                                                                     | Drilling Contractor: LAWES |         |          |                      |                      | Albert Albano                                                        | Boring Completion Depth: 8                                   |          |
| Driller: J                                                                                          | .W. F                      | Palmer  |          |                      | -                    | thod: Direct Push                                                    | Ground Surface Elevation:                                    | -        |
| Drill Rig:                                                                                          | Geo                        | probe   |          |                      | )                    | mer Weight: NA                                                       | Boring Diameter: 1"                                          |          |
| Date Sta                                                                                            | rted:                      | 01/15/  | 03       |                      |                      | leted: 01/15/03                                                      | Samples were collected in 2' in                              | tervals. |
|                                                                                                     |                            | Soil Sa | ample    | Mercury<br>Vapor     | Photo-<br>ionization |                                                                      |                                                              |          |
| Depth                                                                                               |                            |         | Rec.     |                      | Detector             | Sample                                                               | Description                                                  | USCS     |
| (ft.)                                                                                               | No.                        | Туре    | (inches) | (mg/m <sup>3</sup> ) |                      |                                                                      |                                                              |          |
| 0' - 2'                                                                                             | 1                          | GP      | 24       | .000                 | 0.0                  | Brown/gray fine to coarse                                            | sand with quartz pebbles                                     |          |
| 2' - 4'                                                                                             | 2                          | GP      | 24       | .000                 | 0.0                  | 2-2.5' – Black stained med<br>2.5-4' – Tan fine to mediur<br>pebbles |                                                              |          |
| 4' - 6'                                                                                             | 3                          | GP      | 24       | .000                 | 0.0                  | Tan fine to medium slity sa                                          | and rather stiff from 5-6' bgs                               |          |
| 6' - 8'                                                                                             | 4                          | GP      | 24       | .000                 | 0.0                  | 6-7' Reddish brown med<br>7-8' Tan/white fine sand,                  |                                                              |          |
| Sample Types:<br>SS = Split Spoon<br>HA = Hand Auger<br>GP = Geoprobe Sampler<br>CC = Concrete Core |                            |         |          |                      |                      |                                                                      | were analyzed for mercury. In sample was collected and analy | zed for  |

Ţ

د

. /

.

| d                        |       | ) an<br>Ba | ITTILUCC | i<br>Neers           |                        | me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive | Boring No.: MHSB-17<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |          |
|--------------------------|-------|------------|----------|----------------------|------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|----------|
| Drilling (<br>Driller: ( |       |            |          |                      | -                      | Albert Albano<br>thod: Direct Push                                 | Boring Completion Depth: 8<br>Ground Surface Elevation: -                |          |
| Drill Rig:               |       | -          |          |                      | -                      | mer Weight: NA                                                     | Boring Diameter: 1"                                                      |          |
| Date Sta                 | rted: | 01/17/     | 03       |                      |                        | oleted: 01/17/03                                                   | Samples were collected in 2' in                                          | tervals. |
|                          |       | Soil Sa    | ample    | Mercury              |                        |                                                                    |                                                                          |          |
| Depth                    |       |            | Rec.     | Vapor                | ionization<br>Detector | Sampla                                                             | Description                                                              | uscs     |
| (ft.)                    | No.   | Туре       | (inches) | (mg/m <sup>3</sup> ) |                        | Jampie                                                             | Description                                                              | 0303     |
| 0' - 2'                  | 1     | GP         | 24       | .006                 | 0.0                    | 0-1' - Brown/black medium                                          | n sand, loose                                                            |          |
|                          |       |            |          |                      |                        | 1-2' - Brown/black medium                                          | n sand, a little stiff                                                   |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
| 2' - 4'                  | 2     | GP         | 24       | .005                 | <b>0</b> .0            | Tan fine to medium sand, r                                         | noist, a little stiff                                                    |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
| 4' - 6'                  | 3     | GP         | 24       | .006                 | 0.0                    | Tan fine to medium sand, s                                         | stiff, moist                                                             |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
| 1                        |       |            |          |                      |                        |                                                                    |                                                                          |          |
| 6' - 8'                  | 4     | GP         | 24       | .005                 | 0.0                    | Same (slightly lighter color                                       | ed tan)                                                                  | r I      |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            | 1        |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
| {                        |       | {          |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
|                          |       |            |          |                      |                        |                                                                    |                                                                          |          |
| Sample T                 |       |            |          |                      | L                      | NOTES:                                                             |                                                                          | L        |
| SS = Split               |       |            |          |                      |                        |                                                                    | were analyzed for mercury. In                                            |          |
| HA = Han<br>GP = Geo     |       |            | ler      |                      |                        | addition, a surface s<br>mercury from 0"-2".                       | ample was collected and analy                                            | zea ior  |
| CC = Con                 |       |            |          |                      |                        |                                                                    |                                                                          |          |

| d                                                                                          |                          | an                                                                                                             | irka<br>d<br>rtilucc | i<br>NEERS       | Project No.: 2015<br>Project Name: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive |                                                                                    | Boring No.: MHSB-18<br>Sheet _1_ of _1<br>By: Albert Albano                     |         |
|--------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------|
| Drilling Contractor: LAWES<br>Driller: Carl Pederson<br>Drill Rig: Geoprobe                |                          |                                                                                                                |                      |                  | Drilling Me<br>Drive Hami                                                                         | Albert Albano<br>thod: Direct Push<br>mer Weight: NA                               | Boring Completion Depth: 8'<br>Ground Surface Elevation:<br>Boring Diameter: 1" | -       |
| Date Sta                                                                                   | _                        | Soil Sa                                                                                                        |                      | Mercury<br>Vapor |                                                                                                   |                                                                                    |                                                                                 |         |
| Depth<br>(ft.)                                                                             | No.                      | the second s | Rec.<br>(inches)     | (mg/m³)          | Detector<br>(ppm)                                                                                 | ·                                                                                  | Description                                                                     | USCS    |
| 0' - 2'                                                                                    | 1                        | GP                                                                                                             | 24                   | .004             | 0.0                                                                                               | 0-2" – Black "topsoil"<br>2"-2' – Brown medium san<br>gravel, sand getting finer a | d with sporadic quartz pea<br>nd stiffer with depth                             |         |
| 2' - 4'                                                                                    | 2                        | GP                                                                                                             | 24                   | .009             | 0.0                                                                                               | Brown fine sand, medium                                                            | stiffness and packed                                                            |         |
| 4' - 6'                                                                                    | 3                        | GP                                                                                                             | 18                   | .007             | 0.0                                                                                               | Tan/brown fine to medium<br>moist to wet                                           | sand with some pea gravel,                                                      |         |
| 6' - 8'                                                                                    | 4                        | GP                                                                                                             | 18                   | .007             | 0.0                                                                                               | Same, with a slight orange                                                         | coloring                                                                        |         |
|                                                                                            |                          |                                                                                                                |                      |                  |                                                                                                   |                                                                                    |                                                                                 |         |
| <b>Sample</b><br><b>SS</b> = Spli<br><b>HA</b> = Har<br><b>GP</b> = Ger<br><b>CC</b> = Cor | it Spo<br>nd Au<br>oprot | ion<br>Iger<br>De Sam                                                                                          | pler                 |                  |                                                                                                   |                                                                                    | s were analyzed for mercury. In sample was collected and analy .                | zed for |

١

~

ĩ

• !

| Drilling C<br>Driller:                                                     |                         | ) an<br>Ba          | TTILLCC | NEERS                | Geologist:                       | : 2015<br>me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive<br>Albert Albano<br>thod: Direct Push | Boring No.: MHSB-19<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano<br>Boring Completion Depth: 8'<br>Ground Surface Elevation: |          |
|----------------------------------------------------------------------------|-------------------------|---------------------|---------|----------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|
| Drill Rig:<br>Date Sta                                                     |                         | -                   | 03      |                      |                                  | mer Weight: NA<br>Jeted: 01/17/03                                                                                  | Boring Diameter: 1"<br>Samples were collected in 2' in                                                                               | tervals. |
| Depth                                                                      |                         | Soil Sa             |         | Mercury<br>Vapor     | Photo-<br>ionization<br>Detector | Photo-<br>onization                                                                                                |                                                                                                                                      |          |
| (ft.)                                                                      | No.                     | Туре                |         | (mg/m <sup>3</sup> ) | (ppm)                            |                                                                                                                    |                                                                                                                                      | USCS     |
| 0' - 2'                                                                    | 1                       | GP                  | 24      | .009                 | 0.0                              | 0-6" – Brown/black "topsoil<br>6"-2' – Brown medium sand<br>bgs                                                    | d getting fine and moist at 2'                                                                                                       |          |
| 2' - 4'                                                                    | 2                       | GP                  | 24      | .006                 | 0. <b>0</b>                      | Tan fine sand, moist                                                                                               |                                                                                                                                      |          |
| 4' - 6'                                                                    | 3                       | GP                  | 24      | .006                 | 0.0                              | Same                                                                                                               |                                                                                                                                      |          |
| 6' - 8'                                                                    | 4                       | GP                  | 24      | .006                 | 0.0                              | Same, but getting stiffer an                                                                                       | nd more packed with depth                                                                                                            |          |
| Sample 1                                                                   |                         |                     |         |                      |                                  | NOTES:                                                                                                             | ·                                                                                                                                    |          |
| <b>SS =</b> Split<br><b>HA =</b> Han<br><b>GP =</b> Geo<br><b>CC =</b> Con | i Spo<br>Id Aug<br>prob | on<br>ger<br>e Samp | bler    |                      |                                  |                                                                                                                    | were analyzed for mercury. In sample was collected and analyzed                                                                      | zed for  |

1

~~

| d                                                         |                         |                        | ITTILLCO         |                      | Project No.: 2015<br>Project Name: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive |                                                                                           | Boring No.: MHSB-21<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                                                                                                                                       |                            |  |
|-----------------------------------------------------------|-------------------------|------------------------|------------------|----------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| Driller: J.W. Palmer<br>Drill Rig: Geoprobe               |                         |                        |                  |                      | Drilling Me<br>Drive Hami                                                                         | Albert Albano<br>thod: Direct Push<br>mer Weight: NA                                      | Boring Completion Depth: 12<br>Ground Surface Elevation:<br>Boring Diameter: 1"                                                                                                                                                | Elevation:<br>: 1"         |  |
| Date Sta                                                  | _                       | 01/15/<br>Soil Sa      | ample            | Mercury<br>Vapor     | Photo-<br>ionization                                                                              | nization                                                                                  |                                                                                                                                                                                                                                |                            |  |
| Depth<br>(ft.)                                            | No.                     | Туре                   | Rec.<br>(inches) | (mg/m <sup>3</sup> ) | Detector<br>(ppm)                                                                                 | Sample                                                                                    | Description                                                                                                                                                                                                                    | USCS                       |  |
| 0' - 2'                                                   | 1                       | GP                     | 24               | .473                 | 1.2                                                                                               | Black stained medium san<br>gravel                                                        | d, small to medium sized pea                                                                                                                                                                                                   |                            |  |
| 2' - 4'                                                   | 2                       | GP                     | 24               | .131                 | 1.0                                                                                               | Tan/Brown fine to medium                                                                  | silty sand                                                                                                                                                                                                                     |                            |  |
| 4' - 6'                                                   | 3                       | GP                     | 18               | .003                 | 0.2                                                                                               | Tan fine to medium silty sa                                                               | and                                                                                                                                                                                                                            |                            |  |
| 6' - 8'                                                   | 4                       | GP                     | 18               | .000                 | 0.2                                                                                               | Tan fine to medium silty sa                                                               | and, some "clayey" rock                                                                                                                                                                                                        |                            |  |
| 8' - 10'                                                  | 5                       | GP                     | 18               | .000                 | 0.0                                                                                               | Tan medium silty sand                                                                     |                                                                                                                                                                                                                                |                            |  |
| 10' - 12'                                                 | 6                       | GP                     | 18               | .000                 | 0.0                                                                                               | Same                                                                                      |                                                                                                                                                                                                                                |                            |  |
|                                                           |                         |                        |                  |                      |                                                                                                   |                                                                                           |                                                                                                                                                                                                                                |                            |  |
|                                                           |                         |                        |                  |                      |                                                                                                   |                                                                                           |                                                                                                                                                                                                                                |                            |  |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprot | iger<br>iger<br>be Sam | pler             |                      |                                                                                                   | substation (since th<br>was a 6" gap betwee<br>Samples were colle<br>below the top of soi | ated at 1.5' below the floor of the<br>te pit was about 1 foot deep, and<br>een the top of the drain and actua<br>ected from 2-4', 4-6', 6-8', and 10<br>il (1.5' below substation floor) for<br>istituents (VOCs, SVOCs, RCRA | there<br>al soil).<br>-12' |  |

......

ł. .-k ł. ł ł ł Ł Ł ł 1 ł Ł

| d                                      |                                                                                                                                                                                                              | ) an<br>Ba        | TTILLCC  | i<br>NEERS           | Project No.: 2015<br>Project Name: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive |                                                    | Boring No.: MHSB-22<br>Sheet <u>1</u> of <u>2</u> .<br>By: Albert Albano         |      |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|----------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------|------|--|--|
| Drilling (<br>Driller: J<br>Drill Rig: | J.W.<br>Geo                                                                                                                                                                                                  | Palmer<br>oprobē  |          |                      | Geologist: Albert Albano<br>Drilling Method: Direct Push<br>Drive Hammer Weight: NA               |                                                    | Boring Completion Depth: 3<br>Ground Surface Elevation: -<br>Boring Diameter: 1" | -    |  |  |
| Date Sta<br>Depth                      | _                                                                                                                                                                                                            | 01/14/<br>Soil Sa |          | Mercury<br>Vapor     | Photo-<br>ionization<br>Detector                                                                  | leted: 01/14/03                                    | Samples were collected in 2' ir Description                                      | USCS |  |  |
| (ft.)                                  | No.                                                                                                                                                                                                          | Туре              | (inches) | (mg/m <sup>3</sup> ) | (ppm)                                                                                             | Oumpic                                             | Description                                                                      |      |  |  |
| 6'-8'                                  | 1                                                                                                                                                                                                            |                   | 24       |                      | 0.0                                                                                               | Tan medium silty sand, so                          | me quartz rock                                                                   | 1    |  |  |
| 8' 10'                                 |                                                                                                                                                                                                              |                   |          |                      |                                                                                                   | Same                                               |                                                                                  |      |  |  |
| 10' 12'                                | 3                                                                                                                                                                                                            | GP                | 24       | .400                 | 0.0                                                                                               | Brown and black rocky me<br>diameter)              | dium sand (rocks 1" in                                                           |      |  |  |
| 12'-14'<br>14'-16'                     | 4<br>5                                                                                                                                                                                                       | GP<br>GP          | 24<br>18 | .450<br>.300         | 0.0<br>0.0                                                                                        | Tan medium silty sand<br>Tan medium silty packed s | sand                                                                             |      |  |  |
| 16'-18'                                | 6                                                                                                                                                                                                            | GP                | 18       | .358                 | 0.0                                                                                               | Tan medium loose granula                           | ar sand                                                                          |      |  |  |
| 18'-20'                                | 7                                                                                                                                                                                                            | GP                | 12       | .700                 | 0.0                                                                                               | Brown and tan medium sa                            | nd, some quartz rock, moist                                                      |      |  |  |
| 20'-22'                                | 8                                                                                                                                                                                                            | GP                | 18       | .700                 | 0.0                                                                                               | Same                                               |                                                                                  |      |  |  |
| 22'-24'                                | 9                                                                                                                                                                                                            | GP                | 18       | .532                 | 0.0                                                                                               | Tan medium loose sand o                            | range (oxidation) sections                                                       |      |  |  |
| 24'-26'                                | 10                                                                                                                                                                                                           | GP                | 24       | .500                 | 0.0                                                                                               | Same                                               |                                                                                  |      |  |  |
| SS = Spli<br>HA = Har<br>GP = Geo      | Sample Types:     NOTES:       SS = Split Spoon     Notes summarized at the bottom of the following page.       HA = Hand Auger     SP = Geoprobe Sampler       CC = Concrete Core     SP = Geoprobe Sampler |                   |          |                      |                                                                                                   |                                                    |                                                                                  |      |  |  |

| d                                                         | DVirka<br>and<br>Bartilucci<br>consulting Engineers<br>rilling Contractor: LAWES |                     |               |                             |                                                          | .: 2015<br>me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive                                                                                                                                            | Boring No.: MHSB-22<br>Sheet <u>2</u> of <u>2</u> .<br>By: Albert Albano                                                                                                      |                                                            |
|-----------------------------------------------------------|----------------------------------------------------------------------------------|---------------------|---------------|-----------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Drilling (<br>Driller:                                    |                                                                                  | actor:              |               |                             | Geologist: Albert Albano<br>Drilling Method: Direct Push |                                                                                                                                                                                                                          | Boring Completion Depth: 3<br>Ground Surface Elevation: -                                                                                                                     |                                                            |
| Drill Rig                                                 |                                                                                  | •                   |               |                             |                                                          | mer Weight: NA                                                                                                                                                                                                           | Boring Diameter: 1"                                                                                                                                                           |                                                            |
| Date Sta                                                  | _                                                                                | -                   |               |                             |                                                          | oleted: 01/14/03                                                                                                                                                                                                         | Samples were collected in 2' in                                                                                                                                               | tervals.                                                   |
|                                                           | Soil Sample Mercury<br>Vapor                                                     |                     | ionization    |                             |                                                          |                                                                                                                                                                                                                          |                                                                                                                                                                               |                                                            |
| Depth                                                     | No                                                                               | Turne               | Rec.          | (m m/m <sup>3</sup> )       | Detector                                                 | Sample                                                                                                                                                                                                                   | Description                                                                                                                                                                   | USCS                                                       |
| (ft.)<br>26'-28'                                          | No.<br>11                                                                        | <b>Type</b><br>GP   | (inches)<br>0 | (mg/m <sup>3</sup> )<br>N/A | (ppm)<br>N/A                                             | No recovery                                                                                                                                                                                                              |                                                                                                                                                                               |                                                            |
| 28' - 30'                                                 | 12                                                                               | GP                  | 0             | N/A                         | N/A                                                      |                                                                                                                                                                                                                          | roke, could not sample deeper.                                                                                                                                                |                                                            |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Aug<br>oprob                                                         | on<br>ger<br>e Samj | pler          | <u> </u>                    |                                                          | where breathing zou<br>.011. Respirators w<br>In addition, levels of<br>higher when soil wa<br>exposed to ambient<br>Sampling was initial<br>substation. The pit<br>was a 2' void from t<br>soil.<br>Samples collected t | ted at 3' below the floor of the<br>was approximately 1' deep, and<br>he top of the pits drain to the un<br>from 8-10', 18-20', and 24-26' fo<br>stituents (VOCs, SVOCs, RCR4 | ted at<br>f time.<br>h<br>eing<br>I there<br>derlying<br>r |

\*\*

| d                                                         |                                                                                                                                                                               | <u>an</u>             | rirka<br>d<br>Irtilucc |                      | Project No.<br>Project Nai | : 2015<br>me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive | Boring No.: MHSB-23<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                                                                             |             |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|----------------------|----------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Drilling (                                                | Contr                                                                                                                                                                         |                       |                        |                      | Geologist:                 | Albert Albano                                                                | Boring Completion Depth: 8                                                                                                                                           |             |
| Driller: E                                                | Brian                                                                                                                                                                         |                       |                        |                      |                            | Drilling Method: Direct Push Ground Surface Elevation:                       |                                                                                                                                                                      |             |
| Drill Rig:                                                |                                                                                                                                                                               | -                     |                        |                      |                            | mer Weight: NA                                                               | Boring Diameter: 1"                                                                                                                                                  |             |
| Date Sta                                                  |                                                                                                                                                                               |                       |                        |                      |                            | leted: 01/17/03                                                              | l                                                                                                                                                                    | <del></del> |
|                                                           | Vapor                                                                                                                                                                         |                       |                        | Mercury<br>Vapor     | Photo-<br>ionization       |                                                                              |                                                                                                                                                                      |             |
| Depth<br>(ft.)                                            | No.                                                                                                                                                                           | Туре                  | Rec.<br>(feet)         | (mg/m <sup>3</sup> ) | Detector<br>(ppm)          | Sample                                                                       | Description                                                                                                                                                          | USCS        |
| 0' - 4'                                                   | 1 GP 4 0.0                                                                                                                                                                    |                       |                        | .003                 | Reddish brown coarse to v  | ery coarse loose sand                                                        |                                                                                                                                                                      |             |
| 4' - 8'                                                   | 1       GP       4       0.0       .003       Reddish brown coarse to very coarse loose sand         2       GP       4       0.0       .003       Tan fine silty sand, moist |                       |                        |                      |                            |                                                                              |                                                                                                                                                                      |             |
|                                                           |                                                                                                                                                                               |                       |                        |                      |                            |                                                                              |                                                                                                                                                                      |             |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob                                                                                                                                                       | ion<br>ger<br>ie Samj | oler                   |                      |                            | 2 composite soil sa                                                          | NOTES:<br>Probe added to program at LIRR request.<br>2 composite soil samples collected for analysis of mercury<br>1 composite from 0-4', and another from 4-8' bgs. |             |

| d                                                       |                                              | an                    | rirka<br>d<br>Irtilucc | NEERS                | Project No.<br>Project Na       | me: Long Island RailRoad                                      | Boring No.: MHSB-24<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                  |          |
|---------------------------------------------------------|----------------------------------------------|-----------------------|------------------------|----------------------|---------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|
| Drilling (<br>Driller: L<br>Drill Rig:                  | ₋uke <sup>:</sup><br>: Geo                   | Tibbets<br>probe      | i                      |                      | Drilling <b>Me</b><br>Drive Ham | Albert Albano<br>thod: Direct Push<br>mer Weight: NA          | Boring Completion Depth: 8<br>Ground Surface Elevation: -<br>Boring Diameter: 1"                          |          |
| Date Sta                                                |                                              | 08/12/<br>Soil Sa     |                        | Mercury              | Date Comp<br>Photo-             | bleted: 08/12/04                                              | Samples were collected in 2' in                                                                           | tervals. |
|                                                         | Vapor                                        |                       |                        |                      | ionization                      |                                                               |                                                                                                           |          |
| Depth                                                   |                                              | <b>T</b>              | Rec.                   | (                    | Detector                        | Sample                                                        | Description                                                                                               | USCS     |
| (ft.)<br>0'-2'                                          |                                              | Туре                  | (inches)               | (mg/m <sup>3</sup> ) | (ppm)                           | 0' 1' Prown oilty toppoil                                     |                                                                                                           |          |
|                                                         | 1                                            | GP                    | 12                     | .000                 |                                 | 0'-1' – Brown silty topsoil.<br>1'-2' – Reddish tan fine to r |                                                                                                           | -        |
| 2' - 4'<br>4' - 6'                                      | 2' - 4' 2 GP 12 .000<br>4' - 6' 3 GP 24 .000 |                       |                        |                      |                                 | Light tan medium silty sand<br>Same as above.                 | d, moist.                                                                                                 |          |
|                                                         | 3                                            |                       |                        |                      |                                 |                                                               |                                                                                                           |          |
| 6'-8'                                                   | 4                                            | GP                    | 24                     | .000                 |                                 | Same as above.                                                |                                                                                                           |          |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | it Spo<br>nd Au<br>oprob                     | ion<br>Iger<br>ie Sam | pler                   |                      |                                 | for mercury.<br>: Instrument not                              | from 0'-2', 2'-4' and 4'-6' were ar<br>used to screen sample. Supplei<br>on delineation of mercury-impact | mental   |

£

ţ

\$

| d                                                         |                                      | ) an<br>Ba         | TTILLCC | NEERS   |            | me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive                                                                                                                                                                                                                | Boring No.: MHSB-25<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |                 |  |
|-----------------------------------------------------------|--------------------------------------|--------------------|---------|---------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------|--|
| Drilling (                                                |                                      |                    |         |         | -          | Albert Albano                                                                                                                                                                                                                                                                     | Boring Completion Depth: 8                                               |                 |  |
| Driller: L                                                |                                      |                    |         |         | -          | thod: Direct Push                                                                                                                                                                                                                                                                 | Ground Surface Elevation:                                                | ~~              |  |
| Drill Rig:                                                |                                      | -                  |         |         |            | mer Weight: NA                                                                                                                                                                                                                                                                    | Boring Diameter: 1"                                                      |                 |  |
| Date Sta                                                  |                                      |                    |         |         |            | leted: 08/12/04                                                                                                                                                                                                                                                                   | Samples were collected in 2' in                                          | tervals.        |  |
|                                                           |                                      | Soil Sa            | ample   | Mercury | Photo-     |                                                                                                                                                                                                                                                                                   |                                                                          |                 |  |
|                                                           |                                      |                    |         | Vapor   | ionization | Comula                                                                                                                                                                                                                                                                            | Description                                                              | uscs            |  |
| Depth                                                     | No. Type (inches) (mg/m <sup>3</sup> |                    |         |         | Detector   | Sample                                                                                                                                                                                                                                                                            | Description                                                              | 0363            |  |
| (ft.)<br>0'-2'                                            | 1 GP 18 N/A                          |                    |         |         | (ppm)      | Light brown modium cither                                                                                                                                                                                                                                                         | and                                                                      |                 |  |
| 0-2<br>2'-4'                                              | 2                                    | GP                 | 18      | N/A     |            | Light brown medium silty sand.<br>Reddish brown/ fine silty sand, very light rock.                                                                                                                                                                                                |                                                                          |                 |  |
| 4' – 6'                                                   | 3                                    | GP                 | 24      | N/A     |            | Light tan medium silty sand                                                                                                                                                                                                                                                       | Light tan medium silty sand.                                             |                 |  |
| 6' - 8'                                                   | 5' - 8' 4 GP 24 N/A                  |                    |         |         |            | Light tan medium silty sand                                                                                                                                                                                                                                                       | d, moist.                                                                |                 |  |
|                                                           |                                      |                    |         |         |            |                                                                                                                                                                                                                                                                                   |                                                                          |                 |  |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob              | on<br>ger<br>e Sam | bler    |         |            | NOTES:<br>Samples collected from 0'-2', 2'-4' and 4'-6' were analyzed<br>for mercury.<br>N/A: Not available. Mercury Vapor Analyzer not working<br>properly.<br>: Instrument not used to screen sample. Supplemental<br>sampling focused on delineation of mercury-impacted soil. |                                                                          | rking<br>nental |  |

.

| d                                                      |                         | \ an                   | irka<br>d<br>rtilucc | NEERS            | Project No<br>Project Na                                                                                        | .: 2015<br>me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive | Boring No.: MHSB-26<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                                 |        |
|--------------------------------------------------------|-------------------------|------------------------|----------------------|------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------|
| Drilling (<br>Driller: 1<br>Drill Rig:<br>Date Sta     | uke<br>Geo              | Tibbets<br>pprobe      |                      |                  | Geologist: Albert Albano<br>Drilling Method: Direct Push<br>Drive Hammer Weight: NA<br>Date Completed: 08/13/04 |                                                                               | Boring Completion Depth: 8'<br>Ground Surface Elevation:<br>Boring Diameter: 1"<br>Samples were collected in 2' interval |        |
| Depth                                                  |                         | Soil Sa                | Rec.                 | Mercury<br>Vapor | Photo-<br>ionization<br>Detector                                                                                |                                                                               | Description                                                                                                              | USCS   |
| (ft.)<br>0'-2'                                         | <u>No.</u><br>1         | <b>Type</b><br>GP      | (inches)<br>24       | (mg/m³)<br>.000  | (ppm)                                                                                                           | Brown medium silty sand r<br>topsoil, medium to heavy r                       |                                                                                                                          |        |
| 2' – 4'                                                | 2                       | GP                     | 24                   | .000             | -                                                                                                               | Tan fine silty sand, light roo                                                | ck.                                                                                                                      |        |
| 4' - 6'                                                | 3                       | GP                     | 24                   | .000             |                                                                                                                 | Tan silty fine sand, moist.                                                   |                                                                                                                          |        |
| 6' - 8'                                                | 4                       | GP                     | 24                   | .000             |                                                                                                                 | Same as above.                                                                |                                                                                                                          |        |
| Sample<br>SS = Spl<br>HA = Har<br>GP = Ger<br>CC = Cor | t Spo<br>nd Au<br>oprob | ion<br>iger<br>ie Samj | pler                 | <u> </u>         |                                                                                                                 | analyzed for mercur<br>: Instrument not                                       | from 0'-2', 2'-4', 4'-6', and 6'-8' w<br>ry.<br>used to screen sample. Suppler<br>in delineation of mercury-impacte      | nental |

r

2

| <b>D</b> rilling                                                                                                                                   |        |          | ITTILLCC | NEERS                | Geologist:  | me: Long Island Rail Road<br>Manhasset Substation<br>Virginia Drive<br>Albert Albano | Boring No.: MHSB-27<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano<br>Boring Completion Depth: 8' |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------|----------------------|-------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|
| Driller: 1                                                                                                                                         | Luke   | Tibbets  | ,        |                      | Drilling Me | thod: Direct Push                                                                    | Ground Surface Elevation:                                                                               |          |
| Drill Rig:                                                                                                                                         | : Geo  | probe    |          |                      | Drive Ham   | mer Weight: NA                                                                       | Boring Diameter: 1"                                                                                     |          |
| Date Sta                                                                                                                                           | rted:  | 08/13/   | 04       |                      | Date Comp   | oleted: 08/13/04                                                                     | Samples were collected in 2' in                                                                         | tervals. |
|                                                                                                                                                    |        | Soil Sa  | ample    | Mercury<br>Vapor     | ionization  |                                                                                      |                                                                                                         |          |
| Depth                                                                                                                                              | {      |          | Rec.     |                      | Detector    | Sample                                                                               | Description                                                                                             | USCS     |
| (ft.)                                                                                                                                              | No.    |          | (inches) | (mg/m <sup>3</sup> ) | (ppm)       |                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                   |          |
| 0'-2'<br>2'-4'                                                                                                                                     | 1<br>2 | GP<br>GP | 18<br>18 | .000<br>.000         |             | Tan medium silty sand.<br>Tan medium silty sand, mo                                  | pist.                                                                                                   |          |
| 4'-6'                                                                                                                                              | 3      | GP       | 12       | .000                 |             | Tan medium silty sand, wet.                                                          |                                                                                                         |          |
| 6' <b>-8</b> '                                                                                                                                     | 4      | GP       | 12       | .000                 |             | Same as above.                                                                       |                                                                                                         |          |
| Sample<br>SS = Spli<br>HA = Har                                                                                                                    | it Spo | on       |          |                      |             | analyzed for mercur                                                                  |                                                                                                         |          |
| GP = Geoprobe Sampler<br>CC = Concrete Core : Instrument not used to screen sample. Suppler<br>sampling focused on delineation of mercury-impacted |        |          |          |                      |             |                                                                                      |                                                                                                         |          |

| d                                             |                                      | an           | rtiluco | NEERS   | Project No.<br>Project Na | .: 2015<br>me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive                                                                                                                           | Boring No.: MHSB-28<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |          |
|-----------------------------------------------|--------------------------------------|--------------|---------|---------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------|
| Drilling (                                    | Contr                                | actor:       | Zebra   |         | Geologist:                | Albert Albano                                                                                                                                                                                           | Boring Completion Depth: 8'                                              |          |
| Driller: l                                    | _uke <sup>·</sup>                    | Tibbets      |         |         | -                         | thod: Direct Push                                                                                                                                                                                       | Ground Surface Elevation: -                                              |          |
| Drill Rig:                                    |                                      |              |         |         |                           | mer Weight: NA                                                                                                                                                                                          | Boring Diameter: 1"                                                      |          |
| Date Sta                                      |                                      |              |         |         |                           | oleted: 08/13/04                                                                                                                                                                                        | Samples were collected in 2' in                                          | tervals. |
|                                               |                                      | Soil Sa      | ample   | Mercury |                           |                                                                                                                                                                                                         |                                                                          |          |
| Depth                                         |                                      |              | Rec.    | Vapor   | ionization<br>Detector    | Samplo                                                                                                                                                                                                  | Description                                                              | uscs     |
| (ft.)                                         | No. Type (inches) (mg/m <sup>3</sup> |              |         |         |                           | Sample                                                                                                                                                                                                  | Description                                                              | 0303     |
| 0'-2'                                         | 1                                    | GP           | 18      | .024    |                           | 0'-1.5' Dark brown mediu                                                                                                                                                                                | im silty sand, medium rock                                               |          |
|                                               |                                      |              |         |         |                           | 1.5'-2' - White crushed sh                                                                                                                                                                              | ell-like material.                                                       |          |
| 2'-4'                                         | 2                                    | GP           | 18      | .016    |                           | Reddish tan fine to mediun                                                                                                                                                                              | n sand.                                                                  |          |
| 4' – 6'                                       | 3                                    | GP           | 18      | .018    |                           | Same as above.                                                                                                                                                                                          |                                                                          |          |
| 6' - 8'<br>Sample                             |                                      |              | 18      | .000    |                           | Light tan fine clayey sand,                                                                                                                                                                             |                                                                          |          |
| SS = Spli<br>HA = Hai<br>GP = Geo<br>CC = Cor | nd Au<br>oprob                       | ger<br>e Sam | pler    |         |                           | Samples collected from 0'-2', 2'-4', 4'-6' and 6'-8' were<br>analyzed for mercury.<br>: Instrument not used to screen sample. Supplemental<br>sampling focused on delineation of mercury-impacted soil. |                                                                          | mental   |

| d                                                   |                              | an                    | rtiluco          | NEERS                            |                                                      | me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive | Boring No.: MHSB-29<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                                |        |
|-----------------------------------------------------|------------------------------|-----------------------|------------------|----------------------------------|------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------|
| Drilling<br>Driller:  <br>Drill Rig<br>Date Sta     | Luke<br>: Not                | Tibbets<br>Applica    | able             |                                  | Drilling Method:Hand AugerGiDrive Hammer Weight:NABo |                                                                    | Boring Completion Depth: 6'<br>Ground Surface Elevation:<br>Boring Diameter: 1"<br>Samples were collected in 2' interva |        |
| Depth                                               | Vapor                        |                       | Mercury<br>Vapor | Photo-<br>ionization<br>Detector | Sample                                               | Description                                                        | USCS                                                                                                                    |        |
| (ft.)                                               | ft.) No. Type (inches) (mg/m |                       |                  | (mg/m <sup>3</sup> )             | (ppm)                                                | ·                                                                  |                                                                                                                         |        |
| 0'-2'<br>2' - 4'                                    | 1 2                          | HA<br>HA              | 24<br>24         | .039<br>.000                     |                                                      | Brown/black stained mediu<br>Tan/light brown medium sa             |                                                                                                                         |        |
| 4' - 6'                                             | 3                            | HA                    | 24               | .000                             |                                                      | Same as above.                                                     |                                                                                                                         |        |
|                                                     |                              |                       |                  |                                  |                                                      |                                                                    |                                                                                                                         |        |
|                                                     |                              |                       |                  |                                  |                                                      |                                                                    |                                                                                                                         |        |
|                                                     |                              |                       |                  |                                  |                                                      |                                                                    |                                                                                                                         |        |
|                                                     |                              |                       |                  |                                  |                                                      |                                                                    |                                                                                                                         |        |
|                                                     |                              |                       | -                |                                  |                                                      |                                                                    |                                                                                                                         |        |
|                                                     |                              |                       |                  |                                  |                                                      |                                                                    |                                                                                                                         |        |
| Sample<br>SS = Spl<br>HA = Ha<br>GP = Ge<br>CC = Co | it Spo<br>nd Au<br>oprob     | on<br>Iger<br>De Samj | bler             |                                  |                                                      | for mercury.<br>: Instrument not ι                                 | rom 0'-2', 2'-4', and 4'-6' were an<br>used to screen sample. Supplen<br>n delineation of mercury-impacte               | nental |

| Drilling                                                  |                         |                    | ITTILUCO | i<br>Neers           |                        | : 2015<br>me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive<br>Albert Albano | Boring No.: MHSB-30<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano<br>Boring Completion Depth: 8                   |          |
|-----------------------------------------------------------|-------------------------|--------------------|----------|----------------------|------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------|
| Driller: L                                                | .uke <sup>-</sup>       | Tibbets            |          |                      | Drilling Me            | thod: Direct Push                                                                             | Ground Surface Elevation: -                                                                                              |          |
| Drill Rig:                                                |                         | -                  |          |                      |                        | me <b>r Wei</b> ght: NA                                                                       | Boring Diameter: 1"                                                                                                      |          |
| Date Sta                                                  | _                       |                    |          |                      |                        | leted: 08/13/04                                                                               | Samples were collected in 2' in                                                                                          | tervals. |
|                                                           |                         | Soil Sa            | mple     | Mercury              | Photo-                 |                                                                                               |                                                                                                                          |          |
| Depth                                                     | Rec.                    |                    |          |                      | ionization<br>Detector | Sampla                                                                                        | Description                                                                                                              | uscs     |
| (ft.)                                                     |                         |                    |          | (mg/m <sup>3</sup> ) | (ppm)                  | Sample                                                                                        | Description                                                                                                              | 0303     |
| 0'-2'                                                     |                         |                    |          |                      | <u>(ppin)</u>          | Brown medium sitly sand,                                                                      | coal fragments                                                                                                           |          |
| 2'-4'                                                     |                         |                    |          |                      |                        | Tan/brown fine to medium                                                                      |                                                                                                                          |          |
| 4' - 6'                                                   | 4'-6' 3 GP 12 .000      |                    |          |                      |                        | Light tan silty, clayey sand.                                                                 |                                                                                                                          |          |
| 6' - 8'                                                   | 4                       | GP                 | 12       | .075                 |                        | Same as above.                                                                                |                                                                                                                          |          |
|                                                           |                         |                    |          |                      |                        |                                                                                               |                                                                                                                          |          |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | pler     |                      |                        | analyzed for mercur<br>: Instrument not u                                                     | from 0'-2', 2'-4', 4'-6' and 6'-8' w<br>ry.<br>used to screen sample. Supple<br>n delineation of mercu <b>ry</b> -impact | mental   |

|                | d                                                               |                          | ) an<br>Ba           | TTILLCO | NEERS   |                      | me: Long Island Rail Road<br>Manhasset Substation<br>Virginia Drive | Boring No.: MHSB-31<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                         |          |
|----------------|-----------------------------------------------------------------|--------------------------|----------------------|---------|---------|----------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------|
| D              | riller: t                                                       | _uke <sup>·</sup>        | actor: 2<br>Tibbets  |         |         | Drilling Me          | Albert Albano<br>thod: Direct Push                                  | Boring Completion Depth: 8<br>Ground Surface Elevation:                                                          |          |
|                |                                                                 |                          | oprobe<br>08/13/     |         |         |                      | mer Weight: NA<br>bleted: 08/13/04                                  | Boring Diameter: 1"<br>Samples were collected in 2' in                                                           | tervals. |
|                |                                                                 |                          | Soil Sa              |         | Mercury | Photo-<br>ionization |                                                                     | ·                                                                                                                |          |
|                | Depth                                                           |                          |                      |         |         | Detector             | Sample                                                              | Description                                                                                                      | uscs     |
|                | (ft.)                                                           |                          |                      |         |         | 1                    |                                                                     |                                                                                                                  |          |
|                | 0'-2' 1 GP 12 .009                                              |                          |                      |         |         |                      | Brown medium silty sand n<br>topsoil.                               |                                                                                                                  |          |
| 2              | 2' – 4'                                                         | 2                        | GP                   | 12      | .000    |                      | Reddish brown fine to med                                           | lium sand.                                                                                                       |          |
| 4              | 4'-6' 3 GP 12 .000                                              |                          |                      |         |         |                      | Reddish tan fine sand.                                              |                                                                                                                  |          |
| E              | 6' 8' 4 GP 12 .000                                              |                          |                      |         | .000    |                      | Tan fine sand.                                                      |                                                                                                                  |          |
|                |                                                                 |                          |                      |         |         |                      |                                                                     |                                                                                                                  |          |
|                |                                                                 |                          |                      |         |         |                      |                                                                     |                                                                                                                  |          |
|                |                                                                 |                          |                      |         |         |                      |                                                                     |                                                                                                                  |          |
| SS<br>H/<br>GI | ample <sup>-</sup><br>5 = Spli<br>A = Har<br>P = Ger<br>C = Cor | it Spo<br>nd Au<br>oprob | on<br>Iger<br>Ie Sam | pler    | 1       | 1                    | analyzed for mercur                                                 | rom 0'-2', 2'-4', 4'-6', and 6'-8' w<br>y.<br>used to screen sample. Suppler<br>n delineation of mercury-impacte | nental   |

,

ł

| d                                                         |                         | ∖ an                | rirka<br>d<br>rtiluco | NEERS                | Project No<br>Project Na |                                        |                                                                                                                 |          |
|-----------------------------------------------------------|-------------------------|---------------------|-----------------------|----------------------|--------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|
| Drilling C                                                |                         |                     |                       |                      | -                        | Albert Albano                          | Boring Completion Depth: 8                                                                                      |          |
| Driller: L                                                |                         |                     | -                     |                      |                          | thod: Direct Push                      | Ground Surface Elevation: -                                                                                     |          |
| Drill Rig:                                                |                         | -                   |                       |                      |                          | mer Weight: NA                         | Boring Diameter: 1"                                                                                             |          |
| Date Star                                                 | _                       | 08/13/<br>Soil Sa   |                       | Mercury              | Photo-                   | leted: 08/13/04                        | Samples were collected in 2' in                                                                                 | tervals. |
| {                                                         |                         | 3011 36             | unhie                 | Vapor                | ionization               |                                        |                                                                                                                 |          |
| Depth                                                     |                         |                     | Rec.                  |                      | Detector                 | Sample                                 | Description                                                                                                     | USCS     |
| (ft.)                                                     | No.                     | Туре                | (inches)              | (mg/m <sup>3</sup> ) | (ppm)                    | ·                                      | · · · · · · · · · · · · · · · · · · ·                                                                           |          |
| 0'-2'                                                     |                         |                     |                       |                      |                          | Black stained medium san<br>fragments. | d, heavy rock, asphalt                                                                                          |          |
| 2'4'                                                      | 2                       | GP                  | 12                    | .000                 |                          | Same as above.                         |                                                                                                                 |          |
| 4'6'                                                      | 3                       | GP                  | 12                    | .000                 |                          | Light brown/Reddish mediu              | um sand.                                                                                                        |          |
| 6'8'                                                      | 4                       | GP                  | 12                    | .000                 |                          | Tan medium sand, moist.                |                                                                                                                 |          |
| Sample                                                    |                         |                     |                       |                      |                          | NOTES                                  |                                                                                                                 |          |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samj | pler                  |                      |                          | analyzed for mercur                    | rom 0'-2', 2'-4', 4'-6', and 6'-8' w<br>y.<br>used to screen sample. Suppler<br>n delineation of mercury-impact | nental   |

ŝ

:

| d                                                         |                         | an                     | rirka<br>d<br>Irtilucc | NEERS                | Project No<br>Project Na | ame: Long Island Rail Road       Sheet 1 of 1 .         Manhasset Substation       By: Albert Albano         Virginia Drive |                                                                                                                   |          |  |
|-----------------------------------------------------------|-------------------------|------------------------|------------------------|----------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------|--|
| Drilling (<br>Driller: L<br>Drill Rig:                    | uke .                   | Tibbets                |                        |                      | Drilling Me              | Albert Albano<br>thod: Direct Push<br>mer Weight: NA                                                                        | Boring Completion Depth: 8<br>Ground Surface Elevation: -<br>Boring Diameter: 1"                                  |          |  |
| Date Sta                                                  |                         | -                      |                        |                      |                          | oleted: 08/13/04                                                                                                            | Samples were collected in 2' in                                                                                   | tervals. |  |
|                                                           |                         | Soil Sa                | ample                  | Mercury              |                          |                                                                                                                             |                                                                                                                   |          |  |
| Depth                                                     |                         |                        | Rec.                   | Vapor                | ionization<br>Detector   | Sample                                                                                                                      | Description                                                                                                       | USCS     |  |
| (ft.)                                                     | No.                     | Туре                   | (inches)               | (mg/m <sup>3</sup> ) | (ppm)                    |                                                                                                                             | Description                                                                                                       |          |  |
| 0'-2'                                                     | 1                       | GP                     | 12                     | .000                 |                          | Tan/brown medium silty sa                                                                                                   | and, some black staining.                                                                                         |          |  |
| 2'-4'                                                     | 2                       | GP                     | 12                     | .000                 |                          | Same as above.                                                                                                              |                                                                                                                   |          |  |
| 4'6'                                                      | 3                       | GP                     | 24                     | .000                 |                          | Brown fine silty sand.                                                                                                      |                                                                                                                   |          |  |
| 6'8'                                                      | 4                       | GP                     | 24                     | .000                 |                          | Light tan silty sand.                                                                                                       |                                                                                                                   |          |  |
|                                                           |                         |                        |                        |                      |                          |                                                                                                                             |                                                                                                                   |          |  |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | oon<br>Iger<br>De Samj | pier                   | <u> </u>             | I                        | analyzed for mercur<br>: Instrument not u                                                                                   | from 0'-2', 2'-4', 4'-6', and 6'-8' w<br>ry.<br>used to screen sample. Suppler<br>n delineation of mercury-impact | nental   |  |

| Drilling C<br>Driller: L<br>Drill Rig:<br>Date Sta      | uke<br>Geo<br>rted:      | and<br>Ba<br>cons<br>actor:<br>Tibbets<br>probe<br>08/13/ | rtiluco<br>ULTING ENGI<br>Zebra |                                          | Project No.:2015Boring No.:MHSB-34Project Name: Long Island Rail Road<br>Manhasset Substation<br>Virginia DriveSheet 1 of 1<br>By: Albert AlbanoGeologist: Albert AlbanoBoring Completion Depth: 8°Drilling Method: Direct Push<br>Drive Hammer Weight: NABoring Diameter: 1"<br>Samples were collected in 2' in |                                                       |                                                                                                                     |        |
|---------------------------------------------------------|--------------------------|-----------------------------------------------------------|---------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------|
| Depth                                                   | No.                      | Soil Sa                                                   | Rec.                            | Mercury<br>Vapor<br>(mg/m <sup>3</sup> ) | Photo-<br>ionization<br>Detector                                                                                                                                                                                                                                                                                 | Sample                                                | Description                                                                                                         | USCS   |
| (ft.)                                                   | _                        | Type                                                      | (inches)                        |                                          | (ppm)                                                                                                                                                                                                                                                                                                            | Tan/aroun modium eilhuas                              | and some black staining                                                                                             |        |
| 0'-2'<br>2'4'                                           | 1<br>2                   | GP<br>GP                                                  | 12<br>12                        | .012                                     |                                                                                                                                                                                                                                                                                                                  | Tan/brown medium silty sa<br>Black medium sand, mediu |                                                                                                                     |        |
| 4'6'                                                    | 3                        | GP                                                        | 12                              | .000                                     |                                                                                                                                                                                                                                                                                                                  | Tan fine silty sand.                                  |                                                                                                                     | ;<br>, |
| 6'-8'                                                   | 4                        | GP                                                        | 12                              | .000                                     |                                                                                                                                                                                                                                                                                                                  | Light tan moist silty sand.                           |                                                                                                                     |        |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Ger<br>CC = Cor | it Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam                                        | bler                            |                                          |                                                                                                                                                                                                                                                                                                                  | analyzed for mercur                                   | from 0'-2', 2'-4', 4'-6', and 6'-8' w<br>ry.<br>used to screen sample. Suppler<br>in delineation of mercury-impacte | nental |

ŗ.

|                                                                   |                          | ) an<br>Ba            | ITTILLCO | NEERS                |            | 2015       Boring No.: MHSB-35         ne: Long Island Rail Road       Sheet 1 of 1         Manhasset Substation       By: Albert Albano         Virginia Drive       Boring Completion Depth: 8' |                                                                                                                   |         |
|-------------------------------------------------------------------|--------------------------|-----------------------|----------|----------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------|
| Driller:                                                          |                          |                       |          |                      | -          | thod: Direct Push                                                                                                                                                                                 | Ground Surface Elevation:                                                                                         |         |
|                                                                   |                          |                       |          |                      | -          | mer Weight: NA                                                                                                                                                                                    | Boring Diameter: 1"                                                                                               | ~       |
| Drill Rig:<br>Date Sta                                            |                          |                       |          |                      |            | bleted: 08/13/04                                                                                                                                                                                  | Samples were collected in 2' in                                                                                   | torvale |
| Date Sta                                                          | -                        | Soil Sa               |          | Mercury              |            |                                                                                                                                                                                                   | Samples were collected in 2 in                                                                                    |         |
|                                                                   |                          | 5011 52               | ampie    | Vapor                | ionization |                                                                                                                                                                                                   |                                                                                                                   |         |
| Depth                                                             |                          |                       | Rec.     | Tupor                | Detector   | Sample                                                                                                                                                                                            | Description                                                                                                       | uscs    |
| (ft.)                                                             | No.                      | Туре                  | (inches) | (mg/m <sup>3</sup> ) | (ppm)      |                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                             |         |
| 0'-2'                                                             | 1                        | GP                    | 12       | .000                 |            | 0'-1' Brown medium sand                                                                                                                                                                           |                                                                                                                   |         |
|                                                                   |                          |                       |          |                      |            | 1'-2' – Light tan fine silty sa                                                                                                                                                                   |                                                                                                                   |         |
| 2'–4'                                                             | 2                        | GP                    | 12       | .000                 |            | Same as above.                                                                                                                                                                                    |                                                                                                                   |         |
| 4'6'                                                              | 3                        | GP                    | 24       | .000                 |            | Same as above.                                                                                                                                                                                    |                                                                                                                   |         |
| 6'-8'                                                             | 4                        | GP                    | 24       | .000                 |            | Same as above.                                                                                                                                                                                    |                                                                                                                   |         |
| Sample <sup>-</sup><br>SS = Spl<br>HA = Hai<br>GP = Ge<br>CC = Co | it Spo<br>nd Au<br>oprot | ion<br>Iger<br>De Sam | pler     |                      |            | analyzed for mercur<br>: Instrument not u                                                                                                                                                         | rom 0'-2', 2'-4', 4'-6', and 6'-8' w<br>ry.<br>used to screen sample. Suppler<br>n delineation of mercury-impacte | nental  |

| d                                                          |                     | an                  | rirka<br>d<br>Intilucc | CI<br>NEERS      | -                    | roject No.:       2015       Boring No.:       MHSBX-01         roject Name:       Long Island RailRoad       Sheet 1 of 1       Sheet 1 of 1         Manhasset       Substation       By:       Albert       Albert         Virginia       Drive       Drive       Drive |                                                                                                         |         |  |
|------------------------------------------------------------|---------------------|---------------------|------------------------|------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------|--|
| Drilling C                                                 | Contr               | actor:              | LAWES                  |                  | Geologist:           | eologist: Albert Albano Boring Completion Depth: 20'                                                                                                                                                                                                                      |                                                                                                         |         |  |
| Driller: E                                                 | Brian               | -                   |                        |                  | <b>Drilling Me</b>   | thod: Direct Push                                                                                                                                                                                                                                                         | Ground Surface Elevation: -                                                                             |         |  |
| Drill Rig:                                                 | Geo                 | probe               |                        |                  | Drive Ham            | mmer Weight: NA Boring Diameter: 1"                                                                                                                                                                                                                                       |                                                                                                         |         |  |
| Date Sta                                                   | rted:               | 01/13/              | 03                     |                  | Date Comp            | eted: 01/13/03 Samples were collected in 2' intervals                                                                                                                                                                                                                     |                                                                                                         |         |  |
|                                                            |                     | Soil Sa             |                        | Mercury<br>Vapor | Photo-<br>Ionization |                                                                                                                                                                                                                                                                           |                                                                                                         |         |  |
| Depth                                                      |                     | -                   | Rec.                   | 3                | Detector             | Sample                                                                                                                                                                                                                                                                    | Description                                                                                             | USCS    |  |
| (ft.)                                                      | _                   | Туре                |                        | $(mg/m^3)$       | (ppm)                |                                                                                                                                                                                                                                                                           |                                                                                                         |         |  |
| 4' - 6'                                                    | 1                   | GP                  | 24                     | .000             | 0.0                  | Brown/Lan tine to medium<br>rocks, loose<br>Some red (oxidation) stain                                                                                                                                                                                                    | a sand, sporadic "golf ball-sized"<br>ing                                                               |         |  |
| 6' - 8'                                                    | 2                   | GP                  | 0                      | N/A              | N/A                  | No Recovery                                                                                                                                                                                                                                                               |                                                                                                         |         |  |
| 8' - 10'                                                   | 3                   | GP                  | 24                     | .000             | 0.0                  |                                                                                                                                                                                                                                                                           | <b>dium sand</b> with red (oxidation)<br>k clay with angular rocks, slight<br>tan very fine sand, moist |         |  |
| 10' - 12'                                                  | 4                   | GP                  | 0                      | N/A              | N/A                  | No Recovery                                                                                                                                                                                                                                                               |                                                                                                         |         |  |
| 12' - 14'                                                  | 5                   | GP                  | 24                     | .000             | 0.0                  | 12-12.5 - Tan very fine sa<br>wet<br>12.5-14 – Reddish brown                                                                                                                                                                                                              | nd, slight petroleum oil odor,<br>medium loose sand                                                     |         |  |
| 14' - 16'                                                  | 6                   | GP                  | 24                     | .000             | 0.0                  | Tan medium loose sand                                                                                                                                                                                                                                                     |                                                                                                         |         |  |
| 16' - 18'                                                  | 7                   | GP                  | 24                     | .000             | 0.0                  | Brown medium sand, som<br>16.5 and 17'.                                                                                                                                                                                                                                   | e brown angular rocks between                                                                           |         |  |
| 18' - 20' 8 GP 24 .000 0.0 Tar                             |                     |                     |                        |                  |                      | Tan coarse loose sand wi                                                                                                                                                                                                                                                  | th small pea gravel throughout.                                                                         |         |  |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Con | Spo<br>d Au<br>prob | on<br>ger<br>e Samr | bler                   |                  | L                    |                                                                                                                                                                                                                                                                           | rielded recovery were sampled for<br>, PCBs, and RCRA metals.<br>e.                                     | )<br>Dr |  |

|             |                                                          |                         | <u>an</u>              |          | _                            | Project No<br>Project Na | : 2015     Boring No.: MHSBX-02       me: Long Island RailRoad     Sheet 1 of 1.       Manhasset Substation     By: Albert Albano |       |  |
|-------------|----------------------------------------------------------|-------------------------|------------------------|----------|------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------|--|
|             |                                                          | $\bigcup$               | リBa                    | ITTILUCO |                              |                          | Virginia Drive                                                                                                                    |       |  |
|             | Drilling (<br>Driller:                                   |                         |                        |          | INEEKS                       | -                        | Geologist: Albert AlbanoBoring Completion Depth: 20'Drilling Method: Direct PushGround Surface Elevation:                         |       |  |
| C           | Drill Rig                                                | Ge                      | oprobe                 |          |                              |                          | mer Weight: NA Boring Diameter: 1"                                                                                                |       |  |
| C           | Date Sta                                                 | e Started: 01/17/03     |                        |          |                              |                          | leted: 01/17/03 Samples were collected in 2' in                                                                                   | terva |  |
|             |                                                          |                         | Soil Sa                | ·        | Mercury<br>Vapor             | Photo-<br>ionization     |                                                                                                                                   |       |  |
|             | Depth                                                    |                         | -                      | Rec.     | 3                            | Detector                 | Sample Description                                                                                                                | USC   |  |
|             | (ft.)<br>4' - 6'                                         | <u>No.</u><br>1         | Type<br>GP             |          | (mg/m <sup>3</sup> )<br>.004 |                          | Brown fine silty sand with layers of orange-stained                                                                               |       |  |
|             | 4 - 0                                                    | )                       | GP                     | 24       | .004                         | 0.0                      | (oxidation) medium grained, loose sand, moist                                                                                     |       |  |
|             | 6' - 8'                                                  | 2                       | GP                     | 24       | .008                         | 0.0                      | Brown fine silty sand, moist                                                                                                      |       |  |
| ł           | 8' - 10'                                                 | 3                       | GP                     | 18       | .007                         | 0.0                      | Same                                                                                                                              |       |  |
| 1           | 10' - 12'                                                | 4                       | GP                     | 18       | .006                         | 0.0                      | Same, with some quartz rock                                                                                                       |       |  |
| 1           | 12' - 14'                                                | 5                       | GP                     | 18       | .005                         | 0.0                      | 12-13' — Gray fine clayey sand<br>13-14' — Tan medium sand with some quartz pea gravel                                            | -     |  |
| 1           | 14' - 16'                                                | 6                       | GP                     | 18       | .009                         | 0.0                      | Same                                                                                                                              |       |  |
| 1           | 16' - 18'                                                | 7                       | GP                     | 18       | .003                         | 0.0                      | Same                                                                                                                              |       |  |
| 1           | 18' - 20'                                                | 8                       | GP                     | 18       | .006                         | 0.0                      | Same                                                                                                                              |       |  |
| S<br>H<br>G | Sample S<br>S = Spli<br>IA = Har<br>SP = Ger<br>CC = Cor | t Spo<br>nd Au<br>oprob | ion<br>Iger<br>Ie Samp | bler     |                              |                          | NOTES:<br>All sampled intervals collected for analysis of SVOC<br>PCBs, and RCRA metals.                                          | s,    |  |

|                      | }                | Dv      | <b>rirka</b>     |                              | Project No   |                                                 | Boring No.: MHSBX-03             |          |
|----------------------|------------------|---------|------------------|------------------------------|--------------|-------------------------------------------------|----------------------------------|----------|
|                      | 5                | \ an    | -                |                              | Project Na   | me: Long Island RailRoad                        | Sheet <u>1</u> of <u>1</u> .     |          |
|                      | $\left( \right)$ |         |                  | i                            |              | Manhasset Substation                            | By: Albert Albano                |          |
|                      | $\sim$           | =       | ULTING ENGI      | NEERS                        |              | Virginia Drive                                  |                                  |          |
| Drilling C           |                  | actor:  | LAWES            |                              | Geologist:   | Albert Albano                                   | Boring Completion Depth: 2       |          |
| Driller: E           |                  |         |                  |                              | Drilling Me  | g Method: Direct Push Ground Surface Elevation: |                                  |          |
| Drill Rig:           | Geo              | probe   |                  |                              | Drive Ham    | Prive Hammer Weight: NA Boring Diameter: 1"     |                                  |          |
| Date Sta             |                  |         |                  | <u> </u>                     |              | leted: 01/13/03                                 | Samples were collected in 2' in  | tervals. |
|                      |                  | Soil Sa | ample            | Mercury                      | Photo-       |                                                 |                                  |          |
| Dauth                |                  |         |                  | Vapor                        | ionization   | Como la                                         | Description                      | uscs     |
| Depth<br>(ft.)       | No.              | Туре    | Rec.<br>(inches) | (malm <sup>3</sup> )         | Detector     | Sample                                          | Description                      | 0565     |
| 4' - 6'              | 1                | GP      | 24               | (mg/m <sup>3</sup> )<br>.004 | (ppm)<br>0.0 | 4-5' Black stained medium                       | to coarse sand/pebble            |          |
| 4.0                  | •                |         | 24               | .004                         | 0.0          | 5-6' Tan medium to coars                        |                                  |          |
|                      |                  |         |                  |                              |              | interspersed                                    |                                  |          |
|                      |                  |         | <u>.</u>         | 000                          |              |                                                 |                                  | }        |
| 6' - 8'              | 2                | GP      | 24               | .000                         | 0.0          | Tan fine to medium silty sa                     | and, slightly stiff in sections  |          |
|                      |                  |         |                  |                              |              |                                                 |                                  |          |
|                      |                  |         |                  |                              |              |                                                 |                                  |          |
| 8' - 10'             | 3                | GP      | 18               | .000                         | 0.0          |                                                 | dium sand, some quartz rock      |          |
|                      |                  |         |                  |                              |              | and pebbles                                     |                                  |          |
|                      |                  |         |                  |                              |              |                                                 |                                  | }        |
| 10' - 12'            | 4                | GP      | 18               | .000                         | 0.0          | Brown medium sand, weat                         | thered quartz pea gravel         |          |
|                      |                  |         |                  |                              |              |                                                 |                                  | }        |
|                      |                  |         |                  |                              |              |                                                 |                                  |          |
| 12' - 14'            | 5                | GP      | 18               | .000                         | 0.0          | Tan very fine to fine sand                      |                                  |          |
|                      |                  |         |                  |                              |              | Dark brown stained sand a                       | at 13' bgs                       |          |
|                      | - 1              |         |                  |                              |              |                                                 |                                  | !        |
| 14' - 16'            | 6                | GP      | 18               | .000                         | 0.0          | Tan medium "loose" sand                         | some brown staining (natural     |          |
|                      | Ŭ                | 0.      | 10               | .000                         | 0.0          | rock), some quartz pea gra                      |                                  | 1 1      |
|                      |                  |         |                  |                              |              | , , <b>, , , , , , , , , , , , , , , , , </b>   |                                  |          |
| 16' - 18'            | 7                | GP      | 24               | .004                         | 0.0          | Proum find to madium some                       | d mixed with averty reak (4*     |          |
| 10 - 10              | ·                | GP      | 24               | .004                         | 0.0          | diameter)                                       | d mixed with quartz rock (1*     |          |
|                      |                  |         |                  |                              |              |                                                 |                                  |          |
|                      |                  |         |                  |                              |              |                                                 |                                  |          |
| 18' - 20'            | 8                | GP      | 24               | .000                         | 0.0          | Tan and brown fine loose :                      | sand                             | }        |
|                      | · {              |         |                  |                              |              |                                                 |                                  |          |
|                      |                  |         |                  |                              |              |                                                 |                                  |          |
| Sample T             | •••              |         |                  |                              |              | NOTES:                                          |                                  |          |
| SS = Split           |                  |         |                  |                              |              |                                                 | continuously for analysis of SVC | )Cs,     |
| HA = Han             |                  |         | . ·              |                              |              | PCBs, and RCRA n                                | netals.                          |          |
| GP = Geo<br>CC = Con |                  |         | нег              |                              |              |                                                 |                                  |          |
|                      |                  | 0010    |                  |                              |              |                                                 |                                  |          |

| d                                                          |                     | ) an<br>) Ba        | virka<br>d<br>Irtilucc | NEERS                | Project No<br>Project Na | .: 2015<br>me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive                                                                                   | Boring No.: MHSBX-04<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                                        |          |
|------------------------------------------------------------|---------------------|---------------------|------------------------|----------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------|
| Drilling (<br>Driller: 1<br>Drill Rig:                     | Brian<br>: Ge       | oprobe              |                        |                      | Drilling Me<br>Drive Ham | : Albert Albano       Boring Completion Depth: 16'         ethod: Direct Push       Ground Surface Elevation:         mmer Weight: NA       Boring Diameter: 1" |                                                                                                                                  |          |
| Date Sta                                                   |                     | 01/13/<br>Soil Sa   |                        | Mercury<br>Vapor     |                          | bleted: 01/13/03                                                                                                                                                | Samples were collected in 2' in                                                                                                  | tervals. |
| Depth<br>(ft.)                                             | No.                 |                     | Rec.<br>(inches)       | (mg/m <sup>3</sup> ) | Detector<br>(ppm)        |                                                                                                                                                                 | Description                                                                                                                      | USCS     |
| 4' - 6'                                                    | 1                   | GP                  | 18                     | .000                 | .0.0                     | Pebbles, some orange (oxi                                                                                                                                       | dium sand with some quartz<br>idation) staining                                                                                  |          |
| 6' - 8'                                                    | 2                   | GP                  | 18                     | .000                 | 0.0                      | Brown fine to medium sand                                                                                                                                       | d with some quartz pebbles                                                                                                       |          |
| 8' - 10'                                                   | 3                   | GP                  | 24                     | .000                 | 0.0                      | Brown/Tan fine to medium<br>gravel                                                                                                                              | silty sand, some light pea                                                                                                       |          |
| 10' - 12'                                                  | 4                   | GP                  | 24                     | .000                 | 0.0                      | Brown fine to medium silty                                                                                                                                      | sand, a little stiff                                                                                                             |          |
| 12' - 14'                                                  | 5                   | GP                  | 24                     | .000                 | 0.0                      | Brown fine to medium sand stiff and silty                                                                                                                       | d with quartz pea gravel, a little                                                                                               |          |
| 14' - 16'                                                  | 6                   | GP                  | 20                     | .000                 | 0.0                      | 14-15' 8" - Tan medium sa<br>mica particulate at bottom                                                                                                         | nd with some larger rocks,<br>of sample.                                                                                         |          |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Con | Spo<br>d Au<br>prob | on<br>ger<br>e Samp | oler                   |                      |                          | probe could not phy<br>to apparent rock for                                                                                                                     | called for advancement to 20' by<br>sically be advanced beyond 15'<br>mation. Samples collected<br>lysis of SVOCs, PCBs, and RCI | 8" due   |

| d                                                          |                     | ) an<br>Ba          | ITTILLCO         | NEERS                | -                    | Project No.:       2015       Boring No.:       MHSBX-05         Project Name:       Long Island RailRoad       Sheet 1 of 1.         Manhasset       Substation       By:       Albert Albano         Virginia       Drive       Drive       Drive |                                                   |          |
|------------------------------------------------------------|---------------------|---------------------|------------------|----------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------|
| Drilling (                                                 | Contr               | actor:              | LAWES            |                      | Geologist:           | Albert Albano                                                                                                                                                                                                                                       | Boring Completion Depth: 2                        | 0,       |
| Driller: E                                                 | Brian               |                     |                  |                      |                      | Drilling Method: Direct Push Ground Surface Elevation:                                                                                                                                                                                              |                                                   |          |
| Drill Rig:                                                 |                     | -                   |                  |                      | Drive Ham            | mer Weight: NA                                                                                                                                                                                                                                      | Boring Diameter: 1"                               |          |
| Date Sta                                                   |                     |                     |                  |                      |                      | leted: 01/13/03                                                                                                                                                                                                                                     | Samples were collected in 2' in                   | tervals. |
| Death                                                      |                     | Soil Sa             |                  | Mercury<br>Vapor     | Photo-<br>ionization |                                                                                                                                                                                                                                                     |                                                   |          |
| Depth<br>(ft.)                                             | No.                 | Туре                | Rec.<br>(inches) | (mg/m <sup>3</sup> ) | Detector             | Sample                                                                                                                                                                                                                                              | Description                                       | USCS     |
| 4' - 6'                                                    | 1                   | GP                  | 24               | .000                 | (ppm)<br>0.0         | Brown/tan very fine to fine                                                                                                                                                                                                                         | silly sand moist                                  |          |
| 6' - 8'                                                    | 2                   | GP                  | 24               | .000                 | 0.0                  | Tan fine silty sand, some o                                                                                                                                                                                                                         |                                                   |          |
| 8' - 10'                                                   | 3                   | GP                  | 18               | .000                 | 0.0                  | Brown fine to medium san<br>mica fragments, a little stif                                                                                                                                                                                           | d, some quartz pea gravel and<br>f                |          |
| 10' - 12'                                                  | 4                   | GP                  | 24               | .000                 | 0.0                  | Brown very fine to fine silty<br>mica, clay layer at 11.5-12                                                                                                                                                                                        | / sand, some quartz rock and<br>' bgs             |          |
| 12' - 14'                                                  | 5                   | GP                  | 24               | .000                 | 0.0                  | Brown fine to medium silty mica fragments                                                                                                                                                                                                           | sand, some quartz rock and                        |          |
| 14' - 16'                                                  | 6                   | GP                  | 24               | .000                 | 0.0                  | Same                                                                                                                                                                                                                                                |                                                   |          |
| 16' - 18'                                                  | 7                   | GP                  | 24               | .000                 | 0.0                  | 16-17' Brown fine silty san<br>17-18' Tan fine to medium                                                                                                                                                                                            | d, a little stiff<br>sand, some loose quartz rock |          |
| 18' - 20'                                                  | 8                   | GΡ                  | 18               | .000                 | 0.0                  | Tan fine to medium loose :                                                                                                                                                                                                                          | sand                                              |          |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Con | Spo<br>d Au<br>prob | on<br>ger<br>e Samp | bler             |                      |                      | NOTES:<br>Samples collected of<br>PCBs, and RCRA n                                                                                                                                                                                                  | continuously for analysis of SVO<br>netals.       | Cs,      |

:

|                                                            |                     | Dv<br>an            | virka    |                      | Project No<br>Project Na | .: 2015<br>me: Long Island RailRoad                   | Boring No.: MHSBX-06 Sheet $1$ of $1$ .     |          |  |
|------------------------------------------------------------|---------------------|---------------------|----------|----------------------|--------------------------|-------------------------------------------------------|---------------------------------------------|----------|--|
|                                                            | $\sum_{i=1}^{n}$    |                     | TTILLCO  |                      |                          | Manhasset Substation<br>Virginia Drive                | By: Albert Albano                           |          |  |
| Drilling (                                                 | Conti               |                     |          |                      | Geologist:               | Geologist: Albert Albano Boring Completion Depth: 10' |                                             |          |  |
| Driller: E                                                 | 3 <b>ria</b> n      |                     |          |                      | Drilling Me              | thod: Direct Push                                     | Ground Surface Elevation: -                 |          |  |
| Drill Rig:                                                 | Geo                 | probe               |          |                      | Drive Ham                | Prive Hammer Weight: NA Boring Diameter: 1"           |                                             |          |  |
| Date Sta                                                   | rted:               | 01/13/              | /03      |                      | Date Comp                | oleted: 01/13/03                                      | Samples were collected in 2' in             | tervals. |  |
|                                                            |                     | Soil Sa             | ample    | Mercury<br>Vapor     | Photo-<br>ionization     |                                                       |                                             |          |  |
| Depth                                                      |                     |                     | Rec.     |                      | Detector                 | Sample                                                | Description                                 | USCS     |  |
| <u>(ft.)</u>                                               | No.                 |                     | (inches) | (mg/m <sup>3</sup> ) |                          |                                                       | <u> </u>                                    |          |  |
| 4' - 6'                                                    | 1                   | GP                  | 24       | .000                 | 0.0                      | Reddish brown coarse to v                             | ery coarse loose sand                       |          |  |
| 6' - 8'                                                    | 2                   | GP                  | 24       | .000                 | 0.0                      | Tan (with minor brown sec                             | tions) fine silty sand, moist               |          |  |
| 8' - 10'                                                   | 3                   | GP                  | 24       | .000                 | 0.0                      | Tan fine silty sand with son                          | ne quartz pea gravel, moist                 |          |  |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Con | Spo<br>d Au<br>prob | on<br>ger<br>e Samp | bler     |                      |                          | NOTES:<br>Samples collected of<br>PCBs, and RCRA m    | continuously for analysis of SVO<br>netals. | c,       |  |

.\_\_\_\_\_

r.

|                                                            |                     | Dv<br>an            | rirka<br>d |                      | Project No.<br>Project Na                              |                                                         | me: Long Island RailRoad Sheet <u>1</u> of <u>1</u> .      |          |  |
|------------------------------------------------------------|---------------------|---------------------|------------|----------------------|--------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|----------|--|
|                                                            | $\bigcirc$          |                     |            | •i                   |                                                        | Manhasset Substation                                    | By: Albert Albano                                          |          |  |
|                                                            | $\sim$              |                     | TTILLCC    | NEERS                |                                                        | Virginia Drive                                          |                                                            |          |  |
| Drilling C                                                 |                     | actor:              | LAWES      |                      | -                                                      | Albert Albano                                           | Boring Completion Depth: 2                                 |          |  |
| Driller: E                                                 |                     |                     |            |                      | Drilling Method: Direct Push Ground Surface Elevation: |                                                         |                                                            |          |  |
| Drill Rig:                                                 |                     | •                   |            |                      |                                                        | mer Weight: NA                                          | Boring Diameter: 1"                                        | _        |  |
| Date Sta                                                   | _                   | _                   |            |                      |                                                        | leted: 01/13/03                                         | Samples were collected in 2' in                            | tervals. |  |
| 1                                                          |                     | Soil Sa             | impie      | Mercury<br>Vapor     | Photo-<br>ionization                                   |                                                         |                                                            |          |  |
| Depth                                                      |                     |                     | Rec.       | Tapor                | Detector                                               | Sample                                                  | Description                                                | USCS     |  |
| (ft.)                                                      | No.                 | Туре                | (inches)   | (mg/m <sup>3</sup> ) | (ppm)                                                  |                                                         |                                                            |          |  |
| 4' - 6'                                                    | 1                   | GP                  | 24         | .000                 | 0.0                                                    | Brown/Tan fine to medium                                | sand, sporadic pebbles, moist                              |          |  |
| 6' - 8'                                                    | 2                   | GP                  | 24         | .000                 | 0.0                                                    | Yellow/tan fine to medium                               | sand, some quartz pebbles                                  |          |  |
| 8' - 10'                                                   | 3                   | GP                  | 18         | .000                 | 0.0                                                    | Brown fine to medium silty moist                        | sand, sporadic quartz pebbles,                             |          |  |
| 10' - 12'                                                  | 4                   | GP                  | 18         | .000                 | <b>0</b> .0                                            |                                                         | sand with sporadic quartz<br>golf ball"-sized quartz rocks |          |  |
| 12' - 14'                                                  | 5                   | GP                  | 24         | .000                 | 0.0                                                    | Brown fine to medium san<br>and some larger "golf ball" | d with sporadic quartz pebbles<br>-sized quartz rocks      |          |  |
| 14' - 16'                                                  | 6                   | GP                  | 24         | .000                 | 0.0                                                    | Same                                                    |                                                            |          |  |
| 16' - 18'                                                  | 7                   | GP                  | 24         | .000                 | 0.0                                                    | Same                                                    |                                                            |          |  |
| 18' - 20'                                                  | 8                   | GP                  | 24         | .000                 | 0.0                                                    | Same                                                    |                                                            |          |  |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Con | Spo<br>d Au<br>prob | on<br>ger<br>e Samp | bler       |                      |                                                        | NOTES:<br>Samples collected of<br>PCBs, and RCRA n      | continuously for analysis of SVO<br>netals.                | Cs,      |  |

à

5

ŝ

?

1. 5

| d                                                          |                         | ) an<br>) Ba        | virka<br>d<br>artilucc | NEERS                | -                      | roject No.: 2015<br>roject Name: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive<br>Boring No.: MHSBX-08<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |                                             |          |
|------------------------------------------------------------|-------------------------|---------------------|------------------------|----------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------|
| Drilling                                                   | Conti                   | ractor:             | LAWES                  |                      | Geologist:             | Albert Albano                                                                                                                                                                | <b>Boring Completion Depth: 2</b>           | :0'      |
| Driller:                                                   | Brian                   |                     |                        |                      | Drilling Me            | Drilling Method: Direct Push Ground Surface Elevation:                                                                                                                       |                                             |          |
| Drill Rig:                                                 | Geo                     | oprobe              |                        |                      | Drive Ham              | mer Weight: NA                                                                                                                                                               | Boring Diameter: 1"                         |          |
| Date Sta                                                   | rted:                   | <u>0</u> 1/17/      | /03                    |                      | Date Comp              | oleted: 01/17/03                                                                                                                                                             | Samples were collected in 2' ir             | tervals. |
|                                                            |                         | Soil Sa             | ample                  | Mercury              | Photo-                 |                                                                                                                                                                              |                                             |          |
| Depth                                                      |                         |                     | Baa                    | Vapor                | ionization<br>Detector | Comple                                                                                                                                                                       | Description                                 | uscs     |
| (ft.)                                                      | No.                     | Туре                | Rec.<br>(inches)       | (mg/m <sup>3</sup> ) |                        | Sample                                                                                                                                                                       | Description                                 | 0363     |
| 4' - 6'                                                    | 1                       | GP                  | 24                     | .003                 | (ppm)<br>0.0           | Tan fine to medium sand                                                                                                                                                      | a little silty, moist to wet (at 6'         |          |
| 4-0                                                        | •                       | 0                   | 24                     | .005                 | 0.0                    | bgs)                                                                                                                                                                         | a hlue shiy, moisi io wei (al o             |          |
| 6' - 8'                                                    | 2                       | GP                  | 24                     | .005                 | 0.0                    | Same, but a bit stiffer                                                                                                                                                      |                                             |          |
| 8' - 10'                                                   | 3                       | GP                  | 24                     | .003                 | 0.0                    | Tan medium to coarse san                                                                                                                                                     | nd, saturated from 8-9.5' bgs               |          |
| 10' - 12'                                                  | 4                       | GP                  | 24                     | .006                 | 0.0                    | Brown/tan fine to medium s                                                                                                                                                   | sand, medium stiffness                      |          |
| 12' - 14'                                                  | 5                       | GP                  | 18                     | .007                 | 0.0                    | Tan/orange fine to medium pebble, a little stiff                                                                                                                             | a sand with small quartz                    |          |
| 14' - 16'                                                  | 6                       | GP                  | 18                     | .003                 | 0.0                    | 14-15.5' – Brown/dark brow<br>packed<br>15.5-16' – Brown coarse sa                                                                                                           | wn clayey sand, very stiff and              |          |
| 16' - 18'                                                  | 7                       | GP                  | 18                     | .003                 | 0.0                    | gravel, loose<br>Brown fine clayey sand, sti                                                                                                                                 |                                             |          |
| 18' - 20'                                                  | 8                       | GP                  | 18                     | .006                 | 0.0                    | Tan medium sand with qua                                                                                                                                                     | artz pea gravel, loose                      |          |
| Sample 1<br>SS = Split<br>HA = Han<br>GP = Gec<br>CC = Con | t Spo<br>Id Au<br>Iprob | on<br>ger<br>e Samp | bler                   |                      |                        | NOTES:<br>All sampled intervals<br>PCBs, and RCRA m                                                                                                                          | s collected for analysis of SVOC<br>netals. | Čs,      |

| d                                                          |                         | an                  | virka<br>d<br>Irtilucc | CI<br>NEERS                  | Project No<br>Project Na                               | .: 2015<br>me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive | Boring No.: MHSBX-09<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |      |  |
|------------------------------------------------------------|-------------------------|---------------------|------------------------|------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|------|--|
| Drilling                                                   | Contr                   | actor:              | LAWES                  |                              | Geologist:                                             | Albert Albano Boring Completion Depth: 20'                                    |                                                                           |      |  |
| Driller: E                                                 | Brian                   | _                   |                        |                              | Drilling Me                                            | thod: Direct Push                                                             | Ground Surface Elevation: -                                               |      |  |
| Drill Rig:                                                 | Geo                     | probe               |                        |                              | Drive Ham                                              | amer Weight: NA Boring Diameter: 1"                                           |                                                                           |      |  |
| Date Sta                                                   | _                       |                     |                        |                              |                                                        | leted: 01/17/03 Samples were collected in 2' interva                          |                                                                           |      |  |
|                                                            |                         | Soil Sa             | ample                  | Mercury                      | Photo-                                                 |                                                                               |                                                                           |      |  |
|                                                            | Vapor                   |                     |                        | Vapor                        | ionization                                             |                                                                               |                                                                           |      |  |
| Depth                                                      | No                      | Turne               | Rec.                   | 1                            | Detector                                               | Sample                                                                        | Description                                                               | USCS |  |
| (ft.)<br>6' - 8'                                           | <b>No.</b>              | Type<br>GP          | (inches)<br>24         | (mg/m <sup>3</sup> )<br>.008 | (ppm)<br>0.0                                           | Ton fing to modium condu                                                      | moist to wet, stiff and silty (like                                       |      |  |
| 0-0                                                        |                         | GP                  | 24                     | .000                         | 0.0                                                    | clay) form 6-6.5' bgs.                                                        | moist to wet, suit and siny (nee                                          |      |  |
| 8' - 10'                                                   | 2                       | GP                  | 24                     | .008                         | 0.0                                                    | Brown medium sand with o<br>at 9' bgs                                         | quartz pea gravel, moist to wet                                           |      |  |
| 10' - 12'                                                  | 3                       | GP                  | 24                     | .011                         | 0.0                                                    | Brown fine to coarse silty s<br>bgs                                           | and, moist, a bit "clayey" at 12'                                         |      |  |
| 12' - <b>1</b> 4'                                          | 4                       | GP                  | 24                     | .007                         | 0.0                                                    | Brown fine silty sand, a littl                                                | e stiff                                                                   |      |  |
| 14' - 16'                                                  | 5                       | GP                  | 18                     | .000                         | 0.0                                                    | Brown/gray silty sand, moi                                                    | st, a little stiff                                                        |      |  |
| 16' - 18'                                                  | 6                       | GP                  | 18                     | .000                         | 0.0                                                    | Brown medium to coarse s<br>some red (oxidation) staini                       | sand, some quartz pea gravel,<br>ing                                      |      |  |
| 18' - 20'                                                  | 7                       | GP                  | 12                     | .005                         | 0.0 Tan/brown medium sand, medium to heavy quartz rock |                                                                               |                                                                           |      |  |
| Sample T<br>SS = Split<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>Id Au<br>Sprob | on<br>ger<br>e Samj | bler                   |                              |                                                        | <b>NOTES:</b><br>All sampled interval<br>PCBs, and RCRA n                     | s collected for analysis of SVOC<br>netals.                               | Čs,  |  |

| d                                                      |                          | an                    | rirka<br>d<br>rtilucc | NEERS                                    | -                                         | me: Long Island Railroad       Sheet _1_ of _1         Issapequa Substation       By: Albert Albano |                                                                                                                     |           |  |
|--------------------------------------------------------|--------------------------|-----------------------|-----------------------|------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------|--|
| Drilling (<br>Driller:<br>Drill Rig:<br>Date Sta       | I.W. I<br>Geo            | Palmer<br>oprobe      |                       |                                          | Drilling Me<br>Drive Ham                  | Albert Albano<br>thod: Direct Push<br>mer Weight: NA<br>pleted: 02/04/03                            | Boring Completion Depth: 6<br>Ground Surface Elevation: -<br>Boring Diameter: 1"<br>Samples were collected in 2' in |           |  |
| Depth<br>(ft.)                                         | Vapo<br>Rec.             |                       |                       | Mercury<br>Vapor<br>(mg/m <sup>3</sup> ) | Photo-<br>ionization<br>Detector<br>(ppm) | Sample                                                                                              | Description                                                                                                         | uscs      |  |
| 0' - 2'                                                | 1                        | GP                    | 24                    | .000                                     | 0.0                                       | Brown medium silty sand,                                                                            | a little stiff, clayey                                                                                              |           |  |
| 2' - 4'                                                | 2                        | GP                    | 24                    | .000                                     | 0.0                                       | 2-3' – Same<br>3-4' – Tan/orange sand, h<br>rock, loose                                             | eavy quartz pea gravel and                                                                                          |           |  |
| 4' - 6'                                                | 3                        | GP                    | 24                    | .000                                     | 0.0                                       | Same                                                                                                |                                                                                                                     |           |  |
|                                                        |                          |                       |                       |                                          |                                           |                                                                                                     |                                                                                                                     | }         |  |
|                                                        | 1                        |                       |                       |                                          |                                           |                                                                                                     |                                                                                                                     |           |  |
|                                                        |                          |                       |                       |                                          |                                           |                                                                                                     |                                                                                                                     |           |  |
|                                                        |                          |                       |                       |                                          |                                           |                                                                                                     |                                                                                                                     |           |  |
|                                                        |                          |                       |                       |                                          |                                           |                                                                                                     |                                                                                                                     |           |  |
|                                                        | Ĩ                        |                       |                       |                                          |                                           |                                                                                                     |                                                                                                                     |           |  |
|                                                        |                          |                       |                       |                                          |                                           |                                                                                                     |                                                                                                                     |           |  |
|                                                        | r.                       |                       |                       |                                          |                                           |                                                                                                     |                                                                                                                     |           |  |
| Sample<br>SS = Spli<br>HA = Hai<br>GP = Ge<br>CC = Coi | it Spo<br>nd Au<br>oprot | oon<br>Iger<br>De Sam | pler                  |                                          |                                           | NOTES:<br>2'-4' and 4'-6' interv<br>addition, a surface<br>analyzed for mercu                       | als were analyzed for mercury.<br>sample was collected from 0"-2"<br>ry.                                            | In<br>and |  |

| d                                                         |                         | h an                    | rirka<br>d<br>Irtilucc | i<br>NEERS           | -                      | .: 2015<br>me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-09<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano         |          |
|-----------------------------------------------------------|-------------------------|-------------------------|------------------------|----------------------|------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------|----------|
| Drilling (<br>Driller: J<br>Drill Rig:                    | I.W. F                  | <b>actor:</b><br>Palmer |                        |                      | Drilling Me            | Albert Albano<br>thod: Direct Push<br>mer Weight: NA      | Boring Completion Depth: 6<br>Ground Surface Elevation: -<br>Boring Diameter: 1" |          |
| Date Sta                                                  | rted:                   | 02/04/                  | 03                     |                      | Date Comp              | oleted: 02/04/03                                          | Samples were collected in 2' in                                                  | tervals. |
| ļ                                                         |                         | Soil Sa                 | ample                  | Mercury              |                        |                                                           |                                                                                  |          |
| Depth                                                     |                         |                         | Rec.                   | Vapor                | ionization<br>Detector | Sample                                                    | Description                                                                      | uscs     |
| (ft.)                                                     | No.                     | Туре                    | (inches)               | (mg/m <sup>3</sup> ) | (ppm)                  | Campio                                                    |                                                                                  | 0000     |
| 0' - 2'                                                   | 1                       | GP                      | 24                     | .000                 | 0.0                    | Brown silty sand fine to me<br>black staining             | edium, stiff like clay, minor                                                    |          |
| 2' - 4'                                                   | 2                       | GP                      | 24                     | .000                 | 0.0                    | 2-3.5' - Same<br>3.5-4' – Tan sand, heavy c               | quartz rock, loose                                                               |          |
| 4' - 6'                                                   | 3                       | GP                      | 24                     | .000                 | 0.0                    | Same                                                      |                                                                                  |          |
|                                                           |                         |                         |                        |                      |                        |                                                           |                                                                                  |          |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam      | pler                   |                      | I                      |                                                           | vals were analyzed for mercury.<br>sample was collected from 0"-2"<br>Iry.       |          |

| d          |        | an      | irka<br>d<br>rtiluco | NEERS                | -           | : 2015<br>me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-10<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |          |
|------------|--------|---------|----------------------|----------------------|-------------|----------------------------------------------------------|--------------------------------------------------------------------------|----------|
| Drilling ( | Contr  | actor:  | LAWES                |                      | Geologist:  | Albert Albano                                            | Boring Completion Depth: 6                                               |          |
| Driller:   | I. W.  | Palmer  |                      |                      | Drilling Me | thod: Direct Push                                        | Ground Surface Elevation: -                                              |          |
| Drill Rig: | Geo    | probe   |                      |                      | Drive Ham   | mer Weight: NA                                           | Boring Diameter: 1"                                                      |          |
| Date Sta   | rted:  | 02/04/  | 03                   |                      | Date Comp   | leted: 02/04/03                                          | Samples were collected in 2' in                                          | tervals. |
|            |        | Soil Sa | mple                 | Mercury              |             |                                                          |                                                                          |          |
|            |        |         |                      | Vapor                | ionization  |                                                          | <b>—</b> • •                                                             |          |
| Depth      |        | _       | Rec.                 | 3                    | Detector    | Sample                                                   | Description                                                              | USCS     |
| (ft.)      | No.    | Type    | (inches)             | (mg/m <sup>3</sup> ) | (ppm)       |                                                          |                                                                          |          |
| 0' - 2'    | 1      | GP      | 24                   | .000                 | <b>0</b> .0 | Tan sandy clay with mediu                                | m quartz rock, stiff                                                     |          |
| 2' - 4'    | 2      | GP      | 24                   | .000                 | <b>0</b> .0 | Same                                                     |                                                                          |          |
| 4' - 6'    | 3      | GP      | 24                   | . <b>0</b> 00        | 0.0         | Tan sand, heavy quartz pe                                | a gravel and rock, loose                                                 |          |
| Sample     | Í VDe  |         |                      |                      |             | NOTES:                                                   |                                                                          |          |
| SS = Spli  | t Spo  | on      |                      |                      |             | 2'-4' and 4'-6' interv                                   | als were analyzed for mercury.                                           |          |
| HA = Har   |        |         |                      |                      |             |                                                          | sample was collected from 0"-2"                                          | and      |
| GP = Ge    |        |         | pler                 |                      |             | analyzed for mercu                                       | <b>у</b> .                                                               |          |
| CC = Co    | ncrete | Core    |                      |                      |             |                                                          |                                                                          |          |

| d                                                      |                                   | an                                        | rirka<br>d<br>rtilucc | NEERS                        | Project Na               | ct No.: 2015Boring No.: MSSB-11ct Name: Long Island RailroadSheet 1 of 1Massapequa SubstationBy: Albert Albano |                                                                                                                                                                                            |                          |  |
|--------------------------------------------------------|-----------------------------------|-------------------------------------------|-----------------------|------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| Drilling (<br>Driller:<br>Drill Rig:<br>Date Sta       | J. W.<br>Geo                      | <b>actor:</b><br>Palme <u>r</u><br>pprobe | LAWES                 |                              | Drilling Me<br>Drive Ham | Albert Albano<br>thod: Direct Push<br>mer Weight: NA<br>bleted: 02/04/03                                       | Boring Completion Depth: 6'<br>Ground Surface Elevation:<br>Boring Diameter: 1"<br>Samples were collected in 2' interval                                                                   |                          |  |
| Depth                                                  |                                   | Soil Sa                                   | Rec.                  | Mercury<br>Vapor             | ionization<br>Detector   | Sample                                                                                                         | Description                                                                                                                                                                                | USCS                     |  |
| (ft.)<br>0' - 2'                                       | <u>No.</u><br>1                   | <b>Type</b><br>GP                         | (inches)<br>24        | (mg/m <sup>3</sup> )<br>.000 | (ppm)<br>0.4             | 0-2" – Brown topsoil<br>2"-2' – Tan sand with med                                                              | lium quartz rock, loose                                                                                                                                                                    |                          |  |
| 2' - 4'                                                | 2                                 | GP                                        | 24                    | .000                         | 0.4                      | Same                                                                                                           |                                                                                                                                                                                            |                          |  |
| 4' - 6'                                                | 3                                 | GP                                        | 24                    | .000                         | 0.0                      | Same, but soil getting mor                                                                                     | re orange with depth                                                                                                                                                                       |                          |  |
|                                                        |                                   |                                           |                       |                              |                          |                                                                                                                |                                                                                                                                                                                            |                          |  |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Ge<br>CC = Col | it Spo<br>nd Au<br>opr <b>o</b> b | on<br>ger<br>e Sam                        | pler                  | I                            | I                        | addition, a surface<br>analyzed for mercu<br>There is a 9" layer<br>sampling purposes                          | vals were analyzed for mercury.<br>sample was collected from 0"-2"<br>iry.<br>of crushed stone just below grad<br>s, grade (or "0") was considered t<br>9" below the existing grade surfac | and<br>e. For<br>o exist |  |

| d                                                                    |                         | an                                                          | rirka<br>d<br>rtilucc |                  | -                        | .: 2015<br>me: Long Island Railroad<br>sapequa Substation                                                                          | oad Boring No.: MSSB-12<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                                                                                            |                           |  |
|----------------------------------------------------------------------|-------------------------|-------------------------------------------------------------|-----------------------|------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|
| Drilling (<br>Driller: 、<br>Drill Rig:                               | I. W.<br>Geo            | Palmer<br>pprobe                                            |                       |                  | Drilling Me<br>Drive Ham | ogist: Albert AlbanoBoring Completion Depth: 6'ng Method: Direct PushGround Surface Elevation:Hammer Weight: NABoring Diameter: 1" |                                                                                                                                                                                         |                           |  |
| Date Sta<br>Depth                                                    | _                       | 02/04/<br>Soil Sa                                           | imple                 | Mercury<br>Vapor | Photo-<br>ionization     | Sample                                                                                                                             | Samples were collected in 2' ir                                                                                                                                                         | USCS                      |  |
| (ft.)                                                                | No.                     | Rec. Detector<br>. Type (inches) (mg/m <sup>3</sup> ) (ppm) |                       | Campie           | Description              |                                                                                                                                    |                                                                                                                                                                                         |                           |  |
| 0' - 2'                                                              | 1                       | GP                                                          | 24                    | .000             | 0.0                      | 0-2" – Brown silty sand<br>2"-2' – Tan/orange sand, I                                                                              | neavy quartz rock                                                                                                                                                                       |                           |  |
| 2' - 4'                                                              | 2                       | GP                                                          | 24                    | .000             | 0.0                      | Tan/orange sand, heavy o                                                                                                           | juartz rock                                                                                                                                                                             |                           |  |
| 4' - 6'                                                              | 3                       | GP                                                          | 24                    | .000             | 0.0                      | Same                                                                                                                               |                                                                                                                                                                                         |                           |  |
| Sample <sup>-</sup><br>SS = Spli<br>HA = Har<br>GP = Get<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samj                                         | bler                  |                  |                          | addition, a surface<br>analyzed for mercu<br>There is a 9" layer<br>sampling purposes                                              | vals were analyzed for mercury.<br>sample was collected from 0"-2"<br>ry.<br>of crushed stone just below grad<br>, grade (or "0") was considered t<br>)" below the existing grade surfa | 'and<br>e. For<br>o exist |  |

| d                                                     |                          | an                    | rirka<br>d<br>rtilucc | NEERS                | Project Na                                             | Project No.:       2015       Boring No.:       MSSB-13         Project Name:       Long Island Railroad       Sheet 1 of 1       Group         Massapequa Substation       By:       Albert Albano |                                                                           |         |  |
|-------------------------------------------------------|--------------------------|-----------------------|-----------------------|----------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------|--|
| Drilling (                                            | Contr                    |                       |                       |                      | Geologist:                                             | Albert Albano                                                                                                                                                                                       | Boring Completion Depth: 6                                                | •       |  |
| Driller:                                              |                          |                       |                       |                      | Drilling Method: Direct Push Ground Surface Elevation: |                                                                                                                                                                                                     |                                                                           |         |  |
| Drill Rig:                                            |                          | -                     |                       |                      | -                                                      | mer Weight: NA                                                                                                                                                                                      | Boring Diameter: 1"                                                       |         |  |
| Date Sta                                              |                          | •                     | 03                    |                      |                                                        | oleted: 02/03/03                                                                                                                                                                                    | Samples were collected in 2' in                                           | tonvals |  |
| Date old                                              |                          | Soil Sa               |                       | Mercury              |                                                        |                                                                                                                                                                                                     |                                                                           |         |  |
|                                                       |                          | 0011 01               | anpic                 | Vapor                | ionization                                             |                                                                                                                                                                                                     |                                                                           |         |  |
| Depth                                                 |                          |                       | Rec.                  | Tupor                | Detector                                               |                                                                                                                                                                                                     | Description                                                               | USCS    |  |
| (ft.)                                                 | No.                      | Туре                  | (inches)              | (mg/m <sup>3</sup> ) | (ppm)                                                  |                                                                                                                                                                                                     | Desemption                                                                |         |  |
| 0' - 2'                                               | 1                        | GP                    | 24                    | .000                 | 0.0                                                    | 0-4" - Crushed stone, Bla                                                                                                                                                                           | ck/grav topsoil                                                           |         |  |
| 2' - 4'                                               | 2                        | GP                    | 24                    | .003                 | 0.0                                                    | 4"-2' – Tan sand with med                                                                                                                                                                           |                                                                           |         |  |
| 4' - 6'                                               | 4' - 6' 3 GP 24 .000     |                       |                       |                      | 0.0                                                    | Same                                                                                                                                                                                                |                                                                           |         |  |
|                                                       |                          |                       |                       |                      |                                                        |                                                                                                                                                                                                     |                                                                           |         |  |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Ge<br>CC = Co | it Spo<br>nd Au<br>oprob | ion<br>iger<br>ie Sam | pler                  |                      |                                                        |                                                                                                                                                                                                     | rals were analyzed for mercury.<br>sample was collected from 0"-2"<br>ry. |         |  |

:

| d                                                       |                          | an                    | virka<br>d<br>Irtilucc | NEERS                | Project Na                                                                                                                                         | t No.: 2015Boring No.: MSSB-14t Name: Long Island RailroadSheet 1 of 1 .Massapequa SubstationBy: Albert Albano |                                                                                                                                                                                          |                          |  |
|---------------------------------------------------------|--------------------------|-----------------------|------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| Drilling (<br>Driller:                                  | ).W. F                   | actor:<br>Palmer      |                        |                      | Geologist: Albert AlbanoBoring Completion Depth: 6'Drilling Method: Direct PushGround Surface Elevation:Drive Hammer Weight: NABoring Diameter: 1" |                                                                                                                |                                                                                                                                                                                          |                          |  |
| Drill Rig:<br>Date Sta                                  |                          | •                     | 03                     |                      |                                                                                                                                                    | bleted: 02/04/03                                                                                               | Boring Diameter: 1"<br>Samples were collected in 2' in                                                                                                                                   | tervals                  |  |
| Date Sta                                                |                          | Soil Sa               |                        | Mercury              | Photo-                                                                                                                                             |                                                                                                                |                                                                                                                                                                                          |                          |  |
|                                                         |                          |                       |                        | Vapor                | ionization                                                                                                                                         |                                                                                                                |                                                                                                                                                                                          |                          |  |
| Depth                                                   | pth Rec.                 |                       |                        | Detector             | Sample                                                                                                                                             | Description                                                                                                    | USCS                                                                                                                                                                                     |                          |  |
| (ft.)                                                   | No.                      |                       | (inches)               | (mg/m <sup>3</sup> ) | (ppm)                                                                                                                                              |                                                                                                                |                                                                                                                                                                                          |                          |  |
| 0' - 2'                                                 | 1                        | GP                    | 24                     | .000                 | 0.0                                                                                                                                                | pea gravel and quartz rock                                                                                     |                                                                                                                                                                                          |                          |  |
| 2' - 4'                                                 | 2                        | GP                    | 24                     | .000                 | 0.0                                                                                                                                                | Tan/orange medium to co<br>gravel and quartz rock                                                              | arse sand, heavy quartz pea                                                                                                                                                              |                          |  |
| 4' - 6'                                                 | 3                        | GP                    | 24                     | .000                 | 0.0                                                                                                                                                | Same                                                                                                           |                                                                                                                                                                                          |                          |  |
| Sample<br>SS = Spli<br>HA = Hai<br>GP = Gei<br>CC = Coi | it Spo<br>nd Au<br>oprob | ion<br>Iger<br>Ie Sam | pler                   | L                    |                                                                                                                                                    | addition, a surface<br>analyzed for mercu<br>There is a 9" layer of<br>sampling purposes                       | vals were analyzed for mercury.<br>sample was collected from 0"-2"<br>ry.<br>of crushed stone just below grad<br>, grade (or "0") was considered to<br>" below the existing grade surfac | and<br>e. For<br>o exist |  |

ţ

| d                                                       |                          | h an               | irka<br>d<br>rtilucc | NEERS                | -           | .: 2015<br>me: Long Island Railroad<br>sapequa Substation                             | Boring No.: MSSB-15<br>Sheet _1_ of _1<br>By: Albert Albano                                                |                          |
|---------------------------------------------------------|--------------------------|--------------------|----------------------|----------------------|-------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------|
| Drilling (                                              | Contr                    | actor:             | LAWES                |                      | Geologist:  | Albert Albano                                                                         | Boring Completion Depth: 6                                                                                 | •                        |
| Driller:                                                | J. W.                    | Palmer             |                      |                      | Drilling Me | thod: Direct Push                                                                     | Ground Surface Elevation: -                                                                                |                          |
| Drill Rig:                                              | Geo                      | probe              |                      |                      | -           | mer Weight: NA                                                                        | Boring Diameter: 1"                                                                                        |                          |
| Date Sta                                                |                          | -                  | 03                   |                      |             | oleted: 02/04/03                                                                      | Samples were collected in 2' in                                                                            | tervals                  |
| Date Old                                                | _                        | Soil Sa            |                      | Mercury              | Photo-      |                                                                                       |                                                                                                            |                          |
|                                                         |                          | 0011 01            | impic                | Vapor                | ionization  | [                                                                                     |                                                                                                            | [                        |
| Depth                                                   |                          |                    | Rec.                 |                      | Detector    | ſ                                                                                     | Description                                                                                                | uscs                     |
| (ft.)                                                   | No.                      | Туре               | (inches)             | (mg/m <sup>3</sup> ) | (ppm)       |                                                                                       |                                                                                                            |                          |
| 0' - 2'                                                 | 1                        | GP                 | 24                   | .000                 | 0.0         | Brown sand with medium                                                                | guartz rock                                                                                                |                          |
| 2' - 4'                                                 | 2                        | GP                 | 24                   | N/A                  | N/A         | No recovery                                                                           |                                                                                                            |                          |
| 4' - 6'                                                 | 3                        | GP                 | 24                   | .000                 | 0.0         | Tan/orange sand with me                                                               | dium quartz rock                                                                                           |                          |
|                                                         |                          |                    |                      |                      |             |                                                                                       |                                                                                                            |                          |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | it Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | bler                 | L                    | I           | addition, a surface<br>analyzed for mercu<br>There is a 9" layer<br>sampling purposes | of crushed stone just below grad<br>, grade (or "0") was considered t<br>)" below the existing grade surfa | and<br>e. For<br>o exist |

| d                                                      |                          | an                     | rirka<br>d<br>rtilucc | NEERS                |             | .: 2015<br>me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-16<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |           |
|--------------------------------------------------------|--------------------------|------------------------|-----------------------|----------------------|-------------|-----------------------------------------------------------|--------------------------------------------------------------------------|-----------|
| Drilling (                                             | Contr                    |                        |                       |                      | Geologist:  | Albert Albano                                             | Boring Completion Depth: 4                                               | r         |
| Driller:                                               | I.W. F                   | Palmer                 |                       |                      | Drilling Me | thod: Direct Push                                         | Ground Surface Elevation:                                                |           |
| Drill Rig:                                             | Geo                      | probe                  |                       |                      | Drive Ham   | mer Weight: NA                                            | Boring Diameter: 1"                                                      |           |
| Date Sta                                               | rted:                    | 02/04/                 | 03                    |                      | Date Comp   | leted: 02/04/03                                           | Samples were collected in 2' in                                          | ntervals. |
|                                                        |                          | Soil Sa                | ample                 | Mercury              | Photo-      |                                                           |                                                                          |           |
|                                                        |                          |                        |                       | Vарог                | ionization  |                                                           |                                                                          |           |
| Depth                                                  |                          |                        | Rec.                  |                      | Detector    | Sample                                                    | Description                                                              | USCS      |
| (ft.)                                                  |                          | Туре                   | (inches)              | (mg/m <sup>3</sup> ) | (ppm)       |                                                           |                                                                          | Ļ         |
| 0' - 2'                                                | 1                        | GP                     | 24                    | .000                 | 0.0         | Brown medium sand with gravel, 2" asphalt layer at        | medium quartz rock and pea<br>1' bgs                                     |           |
| 2' - 4'                                                | 2                        | GP                     | 24                    | .000                 | 0.0         | Brown medium sand with gravel                             | medium quartz rock and pea                                               |           |
|                                                        |                          |                        |                       |                      |             |                                                           |                                                                          |           |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Ge<br>CC = Col | it Spo<br>nd Au<br>oprot | ion<br>iger<br>ie Samj | pler                  |                      |             |                                                           | nalyzed for mercury. In addition<br>s collected from 0"-2" and analy     |           |

, •

1 . . . ...

J.

| Drilling O<br>Driller:          | J.W. F | an<br>Ba<br>cons<br>actor:<br>Palmer | ITTILUCC | i<br>NEERS           | Mas<br>Geologist:<br>Drilling Me | me: Long Island Railroad<br>sapequa Substation<br>Albert Albano<br>thod: Direct Push | Boring No.: MSSB-17<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano<br>Boring Completion Depth: 4<br>Ground Surface Elevation: |          |
|---------------------------------|--------|--------------------------------------|----------|----------------------|----------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------|
| Drill Rig:                      |        | -                                    |          |                      |                                  | mer Weight: NA                                                                       | Boring Diameter: 1"                                                                                                                 |          |
| Date Sta                        |        |                                      |          |                      |                                  | leted: 02/04/03                                                                      | Samples were collected in 2' in                                                                                                     | tervals. |
|                                 |        | Soil Sa                              | ample    | Mercury              |                                  |                                                                                      |                                                                                                                                     | l l      |
|                                 |        |                                      |          | Vapor                | ionization                       |                                                                                      |                                                                                                                                     | [ ]      |
| Depth                           | Rec.   |                                      |          |                      | Detector                         | Sample                                                                               | Description                                                                                                                         | USCS     |
| (ft.)                           | No.    | Туре                                 | (inches) | (mg/m <sup>3</sup> ) | (ppm)                            |                                                                                      |                                                                                                                                     |          |
| 0' - 2'                         | 1      | GP                                   | 24       | .000                 | 0.0                              | Brown/tan medium to coar                                                             | se sand                                                                                                                             |          |
| 2' - 4'                         | 2      | GP                                   | 24       | .000                 | 0.0                              | 2-3' – Same<br>3-3.5' – Dark brown clayey<br>3.5-4' – Tan medium sand                |                                                                                                                                     |          |
| Cample                          |        |                                      |          |                      |                                  | NOTES:                                                                               |                                                                                                                                     |          |
| Sample<br>SS = Spli<br>HA = Har | t Spo  | on                                   |          |                      |                                  | 2'-4' interval was ar                                                                | nalyzed for mercury. In addition, s collected from 0"-2" and analyz                                                                 |          |
| GP = Ge                         |        |                                      | nlor     |                      |                                  | mercury.                                                                             | S concorcu norr o -2 anu aridiyz                                                                                                    |          |
| CC = Cor                        |        |                                      | hiel     |                      |                                  |                                                                                      |                                                                                                                                     |          |
| 00-00                           | UBIE   | <u>- une</u>                         |          |                      | ·                                |                                                                                      |                                                                                                                                     |          |

i

٤

ķ

| d                                                       |                          | ∖ an               | virka<br>d<br>artilucc | NEERS                | -                 | .: 2015<br>me: Long Island Railroad<br>sapequa Substation                       | apequa Substation       Sheet 1 of 1 .         By:       Albert Albano           |           |  |
|---------------------------------------------------------|--------------------------|--------------------|------------------------|----------------------|-------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------|--|
| Drilling (<br>Driller:<br>Drill Rig:                    | J.W. F                   | Palmer             | LAWES                  |                      | Drilling Me       | Albert Albano<br>ethod: Direct Push<br>mer Weight: NA                           | Boring Completion Depth: 4<br>Ground Surface Elevation: -<br>Boring Diameter: 1" |           |  |
| Date Sta                                                |                          | 02/04/<br>Soil Sa  |                        | Mercury<br>Vapor     |                   | pleted: 02/04/03                                                                | Samples were collected in 2' in                                                  | itervals. |  |
| Depth<br>(ft.)                                          | No.                      | Туре               | Rec.<br>(inches)       | (mg/m <sup>3</sup> ) | Detector<br>(ppm) | Sample                                                                          | Description                                                                      | USCS      |  |
| 0' - 2'                                                 | 1                        | GP                 | 24                     | .000                 | 0.0               | Brown medium sand<br>Layer of black-stained san                                 | d between 6" and 8" bgs                                                          |           |  |
| 2' - 4'                                                 | 2                        | GP                 | 24                     | .000                 | 0.0               | 2-3' – Tan/brown sand<br>3-4' – Brown fine silty sand<br>and medium quartz rock | d, s <b>o</b> me dark brown staining                                             |           |  |
|                                                         |                          |                    |                        |                      |                   |                                                                                 |                                                                                  |           |  |
|                                                         |                          |                    |                        |                      |                   |                                                                                 |                                                                                  |           |  |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Ger<br>CC = Cor | it Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | pler                   |                      |                   |                                                                                 | nalyzed for mercury. In addition,<br>s collected from 0"-2" and analyz           |           |  |

| d                                                     |                          | an                 | virka<br>d<br>Irtilucc | NEERS                | -                    | .: 2015<br>me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-19<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |            |
|-------------------------------------------------------|--------------------------|--------------------|------------------------|----------------------|----------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|------------|
| Drilling (<br>Driller:                                | ).W. F                   | actor:<br>Palmer   |                        |                      | Drilling Me          | Albert Albano<br>thod: Direct Push                        | Boring Completion Depth:<br>Ground Surface Elevation:                    |            |
| Drill Rig                                             |                          | -                  |                        |                      |                      | mer Weight: NA                                            | Boring Diameter: 1"                                                      | n:         |
| Date Sta                                              |                          | _                  |                        |                      |                      | pleted: 02/04/03                                          | Samples were collected in 2'                                             | intervals. |
|                                                       |                          |                    |                        | Mercury<br>Vapor     | Photo-<br>ionization |                                                           |                                                                          |            |
| Depth                                                 |                          |                    | Vapor                  | Detector             | Sample               | Description                                               | USCS                                                                     |            |
| (ft.)                                                 | No.                      | Туре               | (inches)               | (mg/m <sup>3</sup> ) | (ppm)                |                                                           | Description                                                              |            |
| 0' - 2'                                               | 1                        | GP                 | 24                     | .000                 | 0.0                  | Brown medium sand with                                    | medium quartz rock                                                       | +          |
| 0 L                                                   |                          |                    |                        | .000                 | 0.0                  | 2" asphalt layer from 1'10'                               |                                                                          |            |
| 2' - 4'                                               | 2                        | GP                 | 24                     | .000                 | 0.0                  | 2-3' – Tan medium sand<br>3-4' – Brown silty sand wit     | h medium to heavy rock                                                   |            |
|                                                       |                          |                    |                        |                      |                      |                                                           |                                                                          |            |
| Sample<br>SS = Spl<br>HA = Har<br>GP = Ge<br>CC = Cor | it Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | pler                   |                      |                      |                                                           | nalyzed for mercury. In additions collected from 0"-2" and analy         |            |

• •

Ø

• •

ì

| d                                                     |                         | an                 | virka<br>d<br>Irtilucc | NEERS      | -                        | : 2015<br>me: Long Island Railroad<br>sapequa Substation        | Boring No.: MSSB-20<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |          |
|-------------------------------------------------------|-------------------------|--------------------|------------------------|------------|--------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|----------|
| Drilling (                                            | Contr                   | actor:             | LAWES                  |            | Geologist: Albert Albano |                                                                 | Boring Completion Depth: 4                                               | ,        |
| Driller: .                                            | I.W. F                  | Palmer             |                        |            | Drilling Me              | thod: Direct Push                                               | Ground Surface Elevation: -                                              |          |
| Drill Rig:                                            | Geo                     | probe              |                        |            | Drive Ham                | mer Weight: NA                                                  | Boring Diameter: 1"                                                      |          |
| Date Sta                                              | rted:                   | 02/04/             | /03                    |            | Date Comp                | leted: 02/04/03                                                 | Samples were collected in 2' in                                          | tervals. |
|                                                       | 1                       | Soil Sa            | ample                  | Mercury    |                          |                                                                 |                                                                          |          |
|                                                       | Vapor                   |                    |                        | Vapor      | ionization               |                                                                 | <b>D</b>                                                                 |          |
| Depth                                                 |                         | -                  | Rec.                   | 3          | Detector                 | Sample                                                          | Description                                                              | USCS     |
| (ft.)                                                 | No.                     | Туре               | (inches)               | $(mg/m^3)$ |                          | Tan/brown modium condu                                          | with minor block staining                                                |          |
| 0' - 2'<br>2' - 4'                                    | 1<br>2                  | GP<br>GP           | 24<br>24               | .000       | 0.0                      | Tan/brown medium sand v<br>Brown/gray silty sand with<br>clayey | heavy quartz rock, stiff and                                             |          |
|                                                       |                         |                    |                        |            |                          |                                                                 |                                                                          |          |
| Sample<br>SS = Spli<br>HA = Hai<br>GP = Ge<br>CC = Co | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | pler                   | I          | I                        |                                                                 | alyzed for mercury. In addition,<br>s collected from 0"-2" and analyz    |          |

,

| Drilling                                               |                          | Ba<br>CONS<br>actor: | TTILLCO  | NEERS                | Mas<br>Geologist:    | me: Long Island Railroad<br>sapequa Substation<br>Albert Albano | Boring No.: MSSB-21<br>Sheet <u>1</u> of <u>1</u><br>By: Albert Albano<br>Boring Completion Depth: 4' |           |
|--------------------------------------------------------|--------------------------|----------------------|----------|----------------------|----------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------|
| Driller: 、                                             |                          | Palmer               |          |                      | -                    | thod: Hand Auger                                                | Ground Surface Elevation:                                                                             |           |
| Drill Rig:                                             |                          |                      |          |                      |                      | mer Weight: NA                                                  | Boring Diameter: 1"                                                                                   | 1         |
| Date Sta                                               |                          |                      |          |                      |                      | oleted: 02/03/03                                                | Samples were collected in 2' in                                                                       | ntervals. |
|                                                        |                          | Soil Sa              | imple    | Mercury              | Photo-<br>ionization |                                                                 |                                                                                                       |           |
| Depth                                                  |                          | Vapor Rec.           |          |                      | Detector             | Sample                                                          | Description                                                                                           | uscs      |
| (ft.)                                                  | No.                      | Туре                 | (inches) | (mg/m <sup>3</sup> ) | (ppm)                | <b>p</b>                                                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                |           |
| 0' - 2'                                                | 1                        | HA                   | 24       | .000                 | 0.0                  | Tan/brown fine to medium                                        | sand                                                                                                  |           |
| 2' - 4'                                                | 2                        | HA                   | 24       | .000                 | 0.0                  | Same                                                            |                                                                                                       |           |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Ge<br>CC = Cor | it Spo<br>nd Au<br>oprob | on<br>ger<br>je Samj | pler     | <u> </u>             | <u> </u>             |                                                                 | alyzed for mercury. In addition<br>s collected from 0"-2" and analy                                   |           |

 $\frac{1}{2}$ 

ř

ť

1

i

| d                                                                   |                         |                    | TTILLCO  | NEERS                | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation    |                         | Boring No.: MSSB-22<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano        |          |
|---------------------------------------------------------------------|-------------------------|--------------------|----------|----------------------|-------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------|----------|
| Drilling (<br>Driller:<br>Drill Rig:                                | I.W. F                  | Palmer<br>probe    |          |                      | Geologist: Albert Albano<br>Drilling Method: Direct Push<br>Drive Hammer Weight: NA |                         | Boring Completion Depth: 4'<br>Ground Surface Elevation:<br>Boring Diameter: 1" |          |
| Date Sta                                                            |                         | 02/04/<br>Soil Sa  |          | Mercury              | Date Comp<br>Photo-                                                                 | leted: 02/04/03         | Samples were collected in 2' in                                                 | tervals. |
| Depth                                                               |                         |                    | Rec.     | Vapor                | ionization<br>Detector                                                              | Sample                  | Description                                                                     | USCS     |
| (ft.)                                                               | No.                     | Туре               | (inches) | (mg/m <sup>3</sup> ) | (ppm)                                                                               | •                       | •                                                                               |          |
| 0' - 2'                                                             | 1                       | GP                 | 24       | .000                 | 0.0                                                                                 | Brown medium sand, heav | vy quartz rock                                                                  |          |
| 2' - 4'                                                             | 2                       | GP                 | 24       | .000                 | 0.0                                                                                 | Same                    |                                                                                 |          |
|                                                                     |                         |                    |          |                      |                                                                                     |                         |                                                                                 |          |
|                                                                     |                         |                    |          |                      |                                                                                     |                         |                                                                                 |          |
|                                                                     |                         |                    |          |                      |                                                                                     |                         |                                                                                 |          |
|                                                                     |                         |                    |          |                      |                                                                                     |                         |                                                                                 |          |
|                                                                     |                         |                    |          |                      |                                                                                     |                         |                                                                                 |          |
|                                                                     |                         | -                  |          |                      |                                                                                     |                         |                                                                                 |          |
|                                                                     |                         |                    |          |                      |                                                                                     |                         |                                                                                 |          |
|                                                                     |                         |                    |          | z                    |                                                                                     |                         |                                                                                 |          |
| Sample <sup>-</sup><br>SS = Spli<br>HA = Har<br>GP = Ge<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | pler     |                      |                                                                                     |                         | nalyzed for mercury. In addition,<br>s collected from 0"-2" and analyz          |          |

| d                                                       |                         | an                  | irka<br>d<br>rtilucc | NEERS                         | -                                                                                   | .: 2015<br>me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-23<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano        |          |
|---------------------------------------------------------|-------------------------|---------------------|----------------------|-------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------|----------|
| Drilling (<br>Driller: C<br>Drill Rig:                  | I.W. F                  | Palmer              | LAWES                |                               | Geologist: Albert Albano<br>Drilling Method: Direct Push<br>Drive Hammer Weight: NA |                                                           | Boring Completion Depth: 4'<br>Ground Surface Elevation:<br>Boring Diameter: 1" |          |
| Date Sta                                                | rted:                   | 02/04/              | 03                   |                               | Date Comp                                                                           | oleted: 02/04/03                                          | Samples were collected in 2' in                                                 | tervals. |
|                                                         |                         | Soil Sa             | mple                 | Mercury                       |                                                                                     |                                                           |                                                                                 |          |
| Depth                                                   | No                      | Туре                | Rec.<br>(inches)     | Vapor<br>(mg/m <sup>3</sup> ) | ionization<br>Detector                                                              | Sample                                                    | e Description                                                                   | USCS     |
| (ft.)<br>0' - 2'                                        | 1                       | GP                  | 24                   | .000                          | (ppm)<br>0.0                                                                        | Dark brown medium sand                                    | heavy quartz rock                                                               |          |
| 2' - 4'                                                 | 2                       | GP                  | 24                   | .000                          | 0.0                                                                                 |                                                           | and, silty zone between 3.5' and                                                |          |
|                                                         |                         |                     |                      |                               |                                                                                     |                                                           |                                                                                 |          |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Ger<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samj | bler                 |                               |                                                                                     |                                                           | nalyzed for mercury. In addition,<br>s collected from 0"-2" and analyz          |          |

| Drilling                                 |                 | ) an<br>Ba  | ITTILLCO | NEERS                | Mas        | : 2015<br>me: Long Island Railroad<br>sapequa Substation<br>Albert Albano | Boring No.: MSSB-24<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano<br>Boring Completion Depth: 4 | _ of _ 1<br>rt Albano |  |
|------------------------------------------|-----------------|-------------|----------|----------------------|------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------|--|
| -                                        |                 |             |          |                      | -          | thod: Direct Push                                                         | Ground Surface Elevation: -                                                                            |                       |  |
| Driller:                                 |                 |             |          |                      | -          | mer Weight: NA                                                            | Boring Diameter: 1"                                                                                    |                       |  |
| Drill Rig<br>Date Sta                    |                 | -           | 10.2     |                      |            | leted: 02/04/03                                                           | Samples were collected in 2' in                                                                        | tonvals               |  |
| Date Sta                                 |                 | Soil Sa     |          | Mercury              |            | 102/04/05                                                                 | Samples were collected in 2 in                                                                         |                       |  |
|                                          |                 | 3011 34     | ample    | Vapor                | ionization |                                                                           |                                                                                                        |                       |  |
| Depth                                    | Rec.            |             |          | , tupo.              | Detector   | Sample                                                                    | Description                                                                                            | USCS                  |  |
| (ft.)                                    | No.             | Туре        | (inches) | (mg/m <sup>3</sup> ) | (ppm)      | •                                                                         | •                                                                                                      |                       |  |
| 0' - 2'                                  | 1               | GP          | 24       | .000                 | 0.0        | Brown medium sand, light                                                  | to medium quartz rock                                                                                  |                       |  |
| 2' - 4'                                  | 2               | GP          | 24       | .000                 | 0.0        |                                                                           |                                                                                                        |                       |  |
| Sample<br>SS = Spl<br>HA = Ha<br>GP = Ge | it Spo<br>nd Au | ion<br>Iger |          |                      |            |                                                                           | halyzed for mercury. In addition,<br>s collected from 0"-2" and analyz                                 |                       |  |

Υ.

| d                                                         |                         | ) an<br>Ba          | TTILLCC  | i<br>NEERS           | Mas                                                                                | me: Long Island Railroad<br>sapequa Substation     | Boring No.: MSSB-25<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                         |      |
|-----------------------------------------------------------|-------------------------|---------------------|----------|----------------------|------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------|
| Drilling C<br>Driller: J<br>Drill Rig:                    | .W. F                   |                     | LAWES    |                      | Geologist: Albert Albano<br>Drilling Method: Hand Auger<br>Drive Hammer Weight: NA |                                                    | Boring Completion Depth: 4<br>Ground Surface Elevation: -<br>Boring Diameter: 1"                                 |      |
| Date Sta                                                  |                         | _                   |          |                      | Date Comp                                                                          | tate Completed: 02/03/03 Samples were collected in |                                                                                                                  |      |
|                                                           |                         | Soil Sa             | ample    | Mercury              | 1                                                                                  |                                                    |                                                                                                                  |      |
| Depth                                                     | th Rec.                 |                     |          |                      | ionization<br>Detector                                                             | Sample                                             | Description                                                                                                      | USCS |
| (ft.)                                                     | No.                     | Type                | (inches) | (mg/m <sup>3</sup> ) | (ppm)                                                                              | Sample                                             | bescription                                                                                                      | 0303 |
| 0' - 2'                                                   | 1                       | HA                  | 24       | .006                 | 0.0                                                                                | Brown fine to medium san                           | d with medium rock coal                                                                                          |      |
|                                                           | •                       |                     | 24       | .000                 | 0.0                                                                                | fragments, and clinker                             | u wurmedum rock, coar                                                                                            |      |
| 2' - 4'                                                   | 2                       | ΗΑ                  | 24       | .003                 | 0.0                                                                                | Same                                               |                                                                                                                  |      |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samj | pler     | [                    | L                                                                                  |                                                    | 2'-4' interval was analyzed for mercury. In addition, a surface sample was collected from 0"-2" and analyzed for |      |

| . 1 |            |                     |         |              |                      | Durt the    |                          |                                                          |           |  |
|-----|------------|---------------------|---------|--------------|----------------------|-------------|--------------------------|----------------------------------------------------------|-----------|--|
|     |            |                     | Dv      | virka        |                      | Project No  |                          | Boring No.: MSSB-26                                      |           |  |
| £   |            |                     | an      |              |                      |             | me: Long Island Railroad | Sheet <u>1</u> of <u>1</u> .                             |           |  |
|     |            | $\bigcup_{i=1}^{n}$ |         | SULTING ENGI | NEERS                | Mas         | sapequa Substation       | By: Albert Albano                                        |           |  |
|     | Drilling ( | Contr               |         |              |                      | Geologist:  | Albert Albano            | Boring Completion Depth:                                 | 4'        |  |
|     | Driller:   | J.W. I              | Palmer  |              |                      | Drilling Me | thod: Hand Auger         | Ground Surface Elevation:                                |           |  |
|     | Drill Rig  |                     |         | -            |                      | Drive Ham   | mer Weight: NA           | Boring Diameter: 1"                                      |           |  |
|     | Date Sta   | rted:               | 02/03/  | /03          |                      | Date Comp   | oleted: 02/03/03         | Samples were collected in 2' i                           | ntervals. |  |
| 1   |            |                     | Soil Sa | ample        | Mercury              | Photo-      |                          |                                                          |           |  |
|     |            | Vapor               |         |              |                      | ionization  |                          |                                                          |           |  |
|     | Depth      |                     |         | Rec.         |                      | Detector    | Samp                     | le Description                                           | USCS      |  |
|     | (ft.)      |                     | Туре    |              | (mg/m <sup>3</sup> ) | (ppm)       |                          |                                                          |           |  |
|     | 0' - 2'    | 1                   | HA      | 24           | .000                 | 0.0         | 0-6" – Black/brown medi  |                                                          |           |  |
|     |            |                     |         |              |                      |             | 6 -2 - Tan/prown mediu   | m sand, some rock, loose                                 |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     | 2' - 4'    | 2                   | НА      | 24           | .000                 | 0.0         | Same                     |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
| -   |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
| ;   |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
| 4   |            |                     |         |              |                      |             |                          |                                                          |           |  |
| ,   |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              | ĺ                    |             |                          |                                                          |           |  |
| بر. |            |                     |         |              |                      |             |                          |                                                          |           |  |
| ·,  |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
| ~3. |            |                     |         |              | [                    |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          | ·         |  |
|     |            |                     |         |              |                      |             | ]                        |                                                          |           |  |
| ł   |            |                     |         |              |                      |             |                          |                                                          |           |  |
| 1   |            |                     |         |              |                      |             |                          |                                                          |           |  |
| -   |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            |                     |         |              |                      |             |                          |                                                          |           |  |
|     |            | l                   |         |              |                      |             |                          |                                                          |           |  |
|     | Sample     | L<br>Tvne           | ۱<br>s: | L            | L                    | I           | NOTES:                   |                                                          |           |  |
|     | SS = Spl   |                     |         |              |                      |             |                          | analyzed for mercury. In addition                        | ,а        |  |
|     | HA = Ha    | nd Au               | ıger    |              |                      |             | surface sample w         | surface sample was collected from 0"-2" and analyzed for |           |  |
|     | GP = Ge    | oprot               | be Sam  | pler         |                      |             | mercury.                 |                                                          |           |  |
|     | CC = Co    | ncret               | e Core  |              |                      |             |                          |                                                          |           |  |

| Drilling C<br>Driller: J<br>Drill Rig:        | .W. F                   | Ba<br>CONS<br>actor: | <b>TTILLCO</b><br>SULTING ENGI<br>LAWES | NEERS            | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation<br>Geologist: Albert Albano<br>Drilling Method: Hand Auger<br>Drive Hammer Weight: NA |                                                         | Boring No.: MSSB-27<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano<br>Boring Completion Depth: 4'<br>Ground Surface Elevation:<br>Boring Diameter: 1" |          |  |
|-----------------------------------------------|-------------------------|----------------------|-----------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| Date Star                                     | rted:                   | 02/03/               | /03                                     |                  | Date Comp                                                                                                                                                              | oleted: 02/03/03                                        | Samples were collected in 2' in                                                                                                                             | tervals. |  |
| Depth                                         | Vapor<br>Rec.           |                      |                                         | Mercury<br>Vapor | Photo-<br>ionization<br>Detector                                                                                                                                       | Photo-<br>onization                                     |                                                                                                                                                             |          |  |
| (ft.)                                         | No.                     | Туре                 | (inches)                                | $(mg/m^3)$       | (ppm)                                                                                                                                                                  |                                                         | Description                                                                                                                                                 | USCS     |  |
| 0' - 2'                                       | 1                       | HA                   | 24                                      | .000             | 0.0                                                                                                                                                                    | Brown/tan sand                                          |                                                                                                                                                             |          |  |
| 2' - 4'                                       | - 4' 2 HA 24 .000       |                      |                                         |                  | 0.0                                                                                                                                                                    | 2-3' – Same<br>3-4' – Black/dark brown ro<br>road spike | cky sand with coal, glass, rail                                                                                                                             |          |  |
| Sample                                        | [ ypes                  | 5:                   |                                         |                  |                                                                                                                                                                        | NOTES:                                                  |                                                                                                                                                             |          |  |
| SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam   | pler                                    |                  |                                                                                                                                                                        | 2'-4' interval was an                                   | 2'-4' interval was analyzed for mercury. In addition, a surface sample was collected from 0"-2" and analyzed for                                            |          |  |

| d                                                     |                          | an                 | virka<br>d<br>Irtilucc |                      | -                        | : 2015<br>me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-28<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano        |           |
|-------------------------------------------------------|--------------------------|--------------------|------------------------|----------------------|--------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|-----------|
| Drilling (<br>Driller: \<br>Drill Rig                 | J.W. F                   | actor:             | LAWES                  |                      | Drilling Me<br>Drive Ham | Albert Albano<br>thod: Hand Auger<br>mer Weight: NA      | Boring Completion Depth: 4'<br>Ground Surface Elevation:<br>Boring Diameter: 1" |           |
| Date Sta                                              | rted:                    | 02/03/             | /03                    |                      | Date Comp                | leted: 02/03/03                                          | Samples were collected in 2' i                                                  | ntervals. |
|                                                       |                          | Soil Sa            | ample                  | Mercury              |                          |                                                          |                                                                                 |           |
|                                                       |                          |                    |                        | Vapor                | ionization               |                                                          |                                                                                 |           |
| Depth                                                 | Rec.                     |                    |                        |                      | Detector                 | Sample                                                   | e Description                                                                   | USCS      |
| (ft.)                                                 | No.                      | Type               | (inches)               | (mg/m <sup>3</sup> ) |                          |                                                          |                                                                                 | <u> </u>  |
| 0' - 2'                                               | 1                        | HA                 | 24                     | .004                 | 0.0                      | Dark brown medium sand<br>(styrofoam cup)                | with quartz rock, some trash                                                    |           |
| 2' - 4'                                               | 2                        | HA                 | 24                     | .000                 | 0.0                      | Dark brown/black soil with                               | i coal fragments                                                                |           |
|                                                       |                          |                    |                        |                      |                          |                                                          |                                                                                 |           |
| Sample<br>SS = Spl<br>HA = Hai<br>GP = Ge<br>CC = Coi | it Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | pler                   |                      |                          |                                                          | nalyzed for mercury. In addition<br>s collected from 0"-2" and analy            |           |

.

î.

| d                                             |                         | ) an<br>Ba         | ITTILUCC | NEERS   | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation |                                    | Boring No.: MSSB-29<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                         |          |
|-----------------------------------------------|-------------------------|--------------------|----------|---------|----------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------|----------|
| Drilling (<br>Driller:                        |                         |                    |          |         | -                                                                                | Albert Albano                      | Boring Completion Depth: 4<br>Ground Surface Elevation:                                                          |          |
| Drill Rig:                                    |                         | rame               |          |         |                                                                                  | thod: Hand Auger<br>mer Weight: NA | Boring Diameter: 1"                                                                                              | -        |
| Date Sta                                      |                         | 02/03/             | 03       |         |                                                                                  | bleted: 02/03/03                   | Samples were collected in 2' in                                                                                  | tonvals  |
| Dale Sla                                      |                         | Soil Sa            |          | Mercury | Photo-                                                                           | <u>neteu.</u> 02/03/03             | Comples were concelled in 2 m                                                                                    | tervais. |
|                                               |                         |                    |          | Vapor   | ionization                                                                       |                                    |                                                                                                                  |          |
| Depth                                         |                         |                    | Rec.     |         | Detector                                                                         | Sample                             | Description                                                                                                      | USCS     |
| <u>(ft.)</u>                                  | No.                     | Туре               | (inches) | (mg/m³) |                                                                                  |                                    | <u> </u>                                                                                                         |          |
| 0' - 2'<br>2' - 4'                            | 1<br>2                  | ha<br>Ha           | 24<br>24 | .003    | 0.0                                                                              | some quartz rock                   |                                                                                                                  |          |
| Sample                                        | ſypes                   | 5:                 |          |         |                                                                                  | NOTES:                             |                                                                                                                  |          |
| SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | pler     |         |                                                                                  | 2'-4' interval was ar              | 2'-4' interval was analyzed for mercury. In addition, a surface sample was collected from 0"-2" and analyzed for |          |

۲<sup>۲</sup>

.

| d                                                   |                          | ∖ an               | virka<br>d<br>Irtiluco | NEERS            | -                         | .: 2015<br>me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-30<br>Sheet <u>1</u> of <u>1</u><br>By: Albert Albano         |          |
|-----------------------------------------------------|--------------------------|--------------------|------------------------|------------------|---------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|----------|
| Drilling (<br>Driller:<br>Drill Rig:                | I.W. F                   | Palmer             | LAWES                  |                  | Drilling Me               | Albert Albano<br>thod: Direct Push<br>mer Weight: NA      | Boring Completion Depth: 4<br>Ground Surface Elevation:<br>Boring Diameter: 1" |          |
| Date Sta                                            | rted:                    | 02/04/             | /03                    |                  | Date Comp                 | leted: 02/04/03                                           | Samples were collected in 2' in                                                | tervals. |
|                                                     |                          | Soil Sa            | ample                  | Mercury          |                           |                                                           |                                                                                |          |
|                                                     |                          |                    |                        | Vapor            | ionization                |                                                           |                                                                                |          |
| Depth                                               | N.                       | <b>T</b>           | Rec.                   | 1 mm - 1 mm - 31 | Detector                  | Sample                                                    | Description                                                                    | USCS     |
| (ft.)                                               |                          |                    | (mg/m <sup>3</sup> )   | (ppm)            | 0-1' - Brown medium silty |                                                           |                                                                                |          |
| 0' - 2'                                             | 1                        | GP                 | 24                     | .000             | 0.0                       |                                                           | sand<br>i sand, some quartz pea gravel                                         |          |
| 2' - 4'                                             | 2                        | GP                 | 24                     | .004             | 0.0                       | Tan/orange medium sand,                                   | , some quartz pea gravel                                                       |          |
| Sample<br>SS = Spl<br>HA = Ha<br>GP = Ge<br>CC = Co | it Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | pler                   |                  |                           |                                                           | nalyzed for mercury. In addition,<br>s collected from 0"-2" and analyz         |          |

-

÷

N.

| d                                                       |                                                                        | an                       | irka<br>d<br>rtiluco | NEERS | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation                               |                                               | Boring No.: MSSB-31<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                                  |      |
|---------------------------------------------------------|------------------------------------------------------------------------|--------------------------|----------------------|-------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------|
| Drilling (<br>Driller: J<br>Drill Rig:<br>Date Sta      | .W. F                                                                  | actor:<br>Palme <u>r</u> | LAWES                |       | Geologist: Albert Albano<br>Drilling Method: Hand Auger<br>Drive Hammer Weight: NA<br>Date Completed: 02/03/03 |                                               | Boring Completion Depth: 4'<br>Ground Surface Elevation:<br>Boring Diameter: 1"<br>Samples were collected in 2' intervals |      |
| Depth<br>(ft.)                                          | Soil Sample Mercury<br>Vapor<br>No. Type (inches) (mg/m <sup>3</sup> ) |                          |                      | -     | Photo-<br>ionization<br>Detector<br>(ppm)                                                                      | Sample                                        | Description                                                                                                               | USCS |
| 0' - 2'                                                 | 1                                                                      | HA                       | 24                   | .003  | 0.0                                                                                                            | 0-2" – crushed stone<br>2"-2' - Tan fine sand |                                                                                                                           |      |
| 2' - 4'                                                 | 2                                                                      | HA                       | 24                   | .000  | 0.0                                                                                                            | Dark brown/black sand, m                      | edium rock                                                                                                                |      |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Aug<br>oprob                                               | on<br>ger<br>e Samj      | bler                 |       |                                                                                                                |                                               | nalyzed for mercury. In addition,<br>s collected from 0"-2" and analy.                                                    |      |

-

c

| d                                                         |                         | an                  | rtiluco        | NEERS                        | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation<br>Geologist: Albert Albano<br>Drilling Method:<br>Direct Push/Hand Auger<br>Drive Hammer Weight: NA<br>Date Completed: 02/04/03 |                                 | Boring No.: MSSB-32<br>Sheet 1_ of 1<br>By: Albert Albano<br>Boring Completion Depth: 10'<br>Ground Surface Elevation:<br>Boring Diameter: 1"<br>Samples were collected in 2' intervals. |      |
|-----------------------------------------------------------|-------------------------|---------------------|----------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Drilling (<br>Driller: C<br>Drill Rig:<br>Date Sta        | I.W. I                  | Palmer<br>oprobe    |                |                              |                                                                                                                                                                                                                   |                                 |                                                                                                                                                                                          |      |
| Depth                                                     |                         | Soil Sa             | Rec.           | Mercury<br>Vapor             | ionization<br>Detector                                                                                                                                                                                            | Sample                          | e Description                                                                                                                                                                            | uscs |
| (ft.)<br>0' - 2'                                          | No.<br>1                | <b>Туре</b><br>НА   | (inches)<br>24 | (mg/m <sup>3</sup> )<br>.000 | (ppm)<br>0.0                                                                                                                                                                                                      | Brown silty sand with med       | lium quartz rock, moist                                                                                                                                                                  |      |
| 2' - 4'                                                   | 2                       | НА                  | 24             | .000                         | 0.0                                                                                                                                                                                                               | Brown/tan/orange sand, h        |                                                                                                                                                                                          |      |
| 4' - 6'                                                   | 3                       | GP                  | 24             | .000                         | 0.0                                                                                                                                                                                                               | Tan medium sand with me<br>rock | edium quartz pea gravel and                                                                                                                                                              |      |
| 6' - 8'                                                   | 4                       | GP                  | 24             | .000                         | 0.0                                                                                                                                                                                                               | Same                            |                                                                                                                                                                                          |      |
| 8' - 10'                                                  | 5                       | GP                  | 24             | .000                         | 0.0                                                                                                                                                                                                               | Same                            |                                                                                                                                                                                          |      |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samj | pler           | L                            | 1                                                                                                                                                                                                                 |                                 | and 8' - 10' intervals were analyz<br>on, a surface sample was collect<br>for mercury.                                                                                                   |      |

| d                                                       |                          | an                         | rirka<br>d<br>rtilucc     | <b>i</b><br>NEERS                        | -                                       | .: 2015<br>me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-33<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                                  |      |
|---------------------------------------------------------|--------------------------|----------------------------|---------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------|
| Drilling (<br>Driller: J<br>Drill Rig:<br>Date Sta      | J.W. F                   | actor:<br>Palmer<br>oprobe | LAWES                     |                                          | Drilling Me<br>Direct Push<br>Drive Ham | r/Hand Auger<br>mer Weight: NA                            | Boring Completion Depth: 10'<br>Ground Surface Elevation:<br>Boring Diameter: 1"<br>Samples were collected in 2' interval |      |
| Depth<br>(ft.)                                          | No.                      | Soil Sa                    | ample<br>Rec.<br>(inches) | Mercury<br>Vapor<br>(mg/m <sup>3</sup> ) | Photo-<br>ionization<br>Detector        | bleted: 02/04/03<br>Sample                                | Description                                                                                                               | USCS |
| 0' - 2'                                                 | 1                        | HA                         | 24                        | .000                                     | 0.0                                     | Brown medium sand, heav                                   | vy quartz rock                                                                                                            |      |
| 2' - 4'                                                 | 2                        | НА                         | 24                        | .003                                     | 0.0                                     | Same                                                      |                                                                                                                           |      |
| 4' - 6'                                                 | 3                        | GP                         | 24                        | .000                                     | 0.0                                     | Tan medium sand with he                                   | avy quartz pea gravel and rock                                                                                            |      |
| 6' - 8'                                                 | 4                        | GP                         | 24                        | .000                                     | 0.0                                     | Same, with lighter pea gra                                | vel and rock                                                                                                              |      |
| 8' - 10'                                                | 5                        | GP                         | 24                        | .000                                     | 0.0                                     | Same                                                      |                                                                                                                           |      |
|                                                         |                          |                            |                           |                                          |                                         |                                                           |                                                                                                                           |      |
|                                                         |                          | ,                          |                           |                                          |                                         |                                                           |                                                                                                                           |      |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Ger<br>CC = Cor | it Spo<br>nd Au<br>oprob | oon<br>Iger<br>De Sam      | pler                      | <u> </u>                                 | <u> </u>                                |                                                           | nd 8' - 10' intervals were analyzed<br>n, a surface sample was collected<br>for mercury.                                  |      |

:

ſ

÷

1

÷

| d                                                                                                                                                                                                                                                                             |                 | <u>an</u>       | rirka<br>d<br>Irtilucc | NEERS            | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation    |                                                         | Boring No.: MSSB-34<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano        |          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|------------------------|------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------|----------|--|
| Drilling (<br>Driller: J<br>Drill Rig:                                                                                                                                                                                                                                        | I.W.F<br>Geo    | Palmer<br>probe |                        |                  | Geologist: Albert Albano<br>Drilling Method: Direct Push<br>Drive Hammer Weight: NA |                                                         | Boring Completion Depth: 10<br>Ground Surface Elevation:<br>Boring Diameter: 1" |          |  |
| Date Sta                                                                                                                                                                                                                                                                      |                 |                 |                        |                  | · · · · · · · · · · · · · · · · · · ·                                               | leted: 02/04/03                                         | Samples were collected in 2' in                                                 | tervals. |  |
|                                                                                                                                                                                                                                                                               |                 | Soil Sa         | imple                  | Mercury<br>Vapor | Photo-<br>ionization                                                                |                                                         |                                                                                 |          |  |
| Depth                                                                                                                                                                                                                                                                         |                 |                 | Rec.                   |                  | Detector                                                                            | Sample                                                  | Description                                                                     | USCS     |  |
| (ft.)                                                                                                                                                                                                                                                                         | No.             |                 | (inches)               | $(mg/m^3)$       | (ppm)                                                                               |                                                         | ·                                                                               |          |  |
| 0' - 2'<br>2' - 4'                                                                                                                                                                                                                                                            | 1<br>2          | GP<br>GP        | 24<br>24               | .000             | 0.0                                                                                 | Brown clay with some san<br>pea gravel and rock<br>Same | d in it, medium stiffness, quartz                                               |          |  |
| 4' - 6'                                                                                                                                                                                                                                                                       | 3               | GP              | 24                     | .000             | 0.0                                                                                 | Tan medium sand, heavy                                  | quartz pea gravel and rock                                                      |          |  |
| 6' - 8'                                                                                                                                                                                                                                                                       | 8' 4 GP 24 .000 |                 |                        |                  | 0.0                                                                                 | Same                                                    |                                                                                 |          |  |
| 8' - 10'                                                                                                                                                                                                                                                                      | 5               | GP              | 24                     | .000             | 0.0                                                                                 | Same                                                    |                                                                                 |          |  |
|                                                                                                                                                                                                                                                                               |                 |                 |                        |                  |                                                                                     |                                                         |                                                                                 |          |  |
| Sample Types:NOTES:SS = Split Spoon2'-4', 4' - 6', 6' - 8' and 8' - 10' intervals were analyzed for<br>mercury. In addition, a surface sample was collected from<br>0"-2" and analyzed for mercury.GP = Geoprobe Sampler<br>CC = Concrete Core0"-2" and analyzed for mercury. |                 |                 |                        |                  |                                                                                     |                                                         |                                                                                 |          |  |

| d                                                                 | $\bigcirc$                                                                                                     |              | tilucc   | EERS             | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation |                                           | Boring No.: MSSB-36<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |          |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------|----------|------------------|----------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|----------|
| Drilling Co                                                       |                                                                                                                |              | AWES     |                  | -                                                                                | Albert Albano                             | Boring Completion Depth: 1                                               |          |
| Driller: J. \                                                     |                                                                                                                | -            |          |                  | -                                                                                | hod: Direct Push                          | Ground Surface Elevation: -                                              | -        |
| Drill Rig: 🤇                                                      |                                                                                                                |              |          |                  |                                                                                  | er Weight: NA                             | Boring Diameter: 1"                                                      |          |
| Date Starte                                                       | the second s |              |          |                  |                                                                                  | eted: 02/04/03                            | Samples were collected in 2' in                                          | tervals. |
|                                                                   | :                                                                                                              | Soil Sa      | mple     | Mercury<br>Vapor | Photo-<br>ionization                                                             |                                           |                                                                          |          |
| Depth                                                             |                                                                                                                |              | Rec.     | _                | Detector                                                                         | Sampl                                     | e Description                                                            | USCS     |
| (ft.)                                                             | No.                                                                                                            | Туре         | (inches) |                  | (ppm)                                                                            |                                           |                                                                          |          |
| 7.5' - 9.5'                                                       | 1                                                                                                              | GP           | 24       | .000             | 0.0                                                                              |                                           | quartz pea gravel and rock<br>d, smooth, no rock, moist                  |          |
| 9.5' - 11.5'                                                      | .5' - 11.5' 2 GP 24 .000                                                                                       |              |          |                  |                                                                                  | 9.5-10' – Same<br>10-11.5 – Tan coarse sa | nd with some quartz pea gravel                                           |          |
| Samula Tu                                                         |                                                                                                                |              |          |                  |                                                                                  | NOTES:                                    |                                                                          |          |
| Sample Ty<br>SS = Split S<br>HA = Hand<br>GP = Geop<br>CC = Conci | Spoor<br>Auge<br>robe                                                                                          | er<br>Sample | ər       |                  |                                                                                  |                                           | oled for analysis of UIC constitue<br>CRA metals, and TPH).              | nts      |

÷

| Drilling Co<br>Driller: J.<br>Drill Rig: 0<br>Date Starto                                                                                                                                                                   | W. Pa<br>Geop        | ctor: LA<br>almer<br>robe <sup>-</sup> | <b>tilucc</b><br>LTING ENGIN<br>AWES | EERS                 | Project Name: Long Island Railroad<br>Massapequa Substation       Sheet _1_ of _1         By: Albert Albano       By: Albert Albano         Geologist: Albert Albano       Boring Completion         Drilling Method: Direct Push       Ground Surface E         Drive Hammer Weight: NA       Boring Diameter: |                                      |                               |      |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|--------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|------|--|--|
| Dute otart                                                                                                                                                                                                                  |                      | Soil Sa                                |                                      | Mercury              | Photo-                                                                                                                                                                                                                                                                                                          |                                      |                               |      |  |  |
|                                                                                                                                                                                                                             |                      |                                        | <b></b>                              | Vapor                | ionization                                                                                                                                                                                                                                                                                                      |                                      |                               |      |  |  |
| Depth                                                                                                                                                                                                                       |                      | -                                      | Rec.                                 | 3.                   | Detector                                                                                                                                                                                                                                                                                                        | Sampl                                | e Description                 | USCS |  |  |
| (ft.)                                                                                                                                                                                                                       | No.                  |                                        | (inches)                             | (mg/m <sup>3</sup> ) |                                                                                                                                                                                                                                                                                                                 | Tan was divers to an arrow of        | and light quarter page group  |      |  |  |
| 12'-14'                                                                                                                                                                                                                     | 1                    | GP                                     | 24                                   | .003                 | 0.0                                                                                                                                                                                                                                                                                                             | l an medium to coarse s<br>saturated | and, light quartz pea gravel, |      |  |  |
| 14'-16'                                                                                                                                                                                                                     | 2                    | GP                                     | 24                                   | .000                 | 0.0                                                                                                                                                                                                                                                                                                             | Same                                 |                               |      |  |  |
| 16'-18'                                                                                                                                                                                                                     | 3                    | GP                                     | 24                                   | .000                 | 0.0                                                                                                                                                                                                                                                                                                             | Same                                 |                               |      |  |  |
| 18'-20'                                                                                                                                                                                                                     | 18'-20' 4 GP 24 .000 |                                        |                                      |                      |                                                                                                                                                                                                                                                                                                                 | Same                                 |                               |      |  |  |
| 20'-22'                                                                                                                                                                                                                     | 5                    | GΡ                                     | 0                                    | N/A                  | N/A                                                                                                                                                                                                                                                                                                             | No recovery                          | ·                             |      |  |  |
| Sample Types:NOTES:SS = Split SpoonBoth intervals sampled for analysis of UIC constituentsHA = Hand Auger(VOCs, SVOCs, RCRA metals, and TPH).GP = Geoprobe SamplerDry well is 6' deepCC = Concrete CoreN/A: Not applicable. |                      |                                        |                                      |                      |                                                                                                                                                                                                                                                                                                                 |                                      |                               |      |  |  |

| Drilling                                                  |                                                                    | ) an<br>Ba         | TTILLCO               | NEERS   | Mas               | .: 2015<br>me: Long Island Railroad<br>sapequa Substation<br>Albert Albano | Boring No.: MSSB-38<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano<br>Boring Completion Depth: 4' |          |
|-----------------------------------------------------------|--------------------------------------------------------------------|--------------------|-----------------------|---------|-------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|
| Driller: J                                                | I.W. F                                                             | Palmer             |                       |         | Drilling Me       | thod: Hand Auger                                                           | Ground Surface Elevation: -                                                                             |          |
| Drill Rig:                                                |                                                                    | -                  |                       |         | -                 | mer Weight: NA                                                             | Boring Diameter: 1"                                                                                     |          |
| Date Star                                                 |                                                                    | 02/03/             | 03                    |         |                   | leted: 02/03/03                                                            | Samples were collected in 2' in                                                                         | tervals. |
|                                                           |                                                                    | Soil Sa            | ample                 | Mercury | Photo-            |                                                                            |                                                                                                         |          |
| Donth                                                     |                                                                    |                    | Baa                   | Vapor   | ionization        | Sample                                                                     | Description                                                                                             | uscs     |
| Depth<br>(ft.)                                            | Rec.           No.         Type           (inches)         (mg/m³) |                    |                       |         | Detector<br>(ppm) | Sample                                                                     | Description                                                                                             | 0363     |
| 0' - 2'                                                   | 1 HA 24 .000                                                       |                    |                       |         | 0.0               | Tan fine to medium sand                                                    |                                                                                                         |          |
| 2' - 4'                                                   | 2                                                                  | HA                 | 24                    | .000    | 0.0               | Same                                                                       |                                                                                                         |          |
|                                                           |                                                                    |                    | -<br>-<br>-<br>-<br>- |         |                   |                                                                            |                                                                                                         |          |
|                                                           |                                                                    |                    |                       |         |                   |                                                                            |                                                                                                         |          |
|                                                           |                                                                    |                    |                       |         |                   |                                                                            |                                                                                                         |          |
|                                                           |                                                                    |                    |                       |         |                   |                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                   |          |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob                                            | on<br>ger<br>e Sam | pler                  | L       | ·                 | NOTES:<br>0"-2" and 2'-4' inter<br>SVOCs, PCBs, and                        | vals were sampled and analyzed<br>I RCRA metals.                                                        | for      |

| d                                                   |                                          | ∖ an                  | rirka<br>d<br>rtilucc | NEERS                | -                                                                                  | .: 2015<br>me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-39<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano         |            |
|-----------------------------------------------------|------------------------------------------|-----------------------|-----------------------|----------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------|------------|
| Drilling<br>Driller:<br>Drill Rig                   | J.W. F<br>:                              | actor:<br>Palmer      | LAWES                 |                      | Geologist: Albert Albano<br>Drilling Method: Hand Auger<br>Drive Hammer Weight: NA |                                                           | Boring Completion Depth: 4<br>Ground Surface Elevation: 4<br>Boring Diameter: 1" |            |
| <u>Date Sta</u>                                     | Started: 02/04/03<br>Soil Sample Mercury |                       |                       | Mercury<br>Vapor     | Photo-<br>ionization                                                               | pleted: 02/04/03                                          | Samples were collected in 2' in                                                  | intervals. |
| Depth                                               | Na                                       | Tune                  | Rec.                  | (mg/m <sup>3</sup> ) | Detector                                                                           | Sample                                                    | Description                                                                      | USCS       |
| (ft.)<br>0' - 2'                                    | No.<br>1                                 | <b>Туре</b><br>НА     | (inches)<br>24        | (mg/m)<br>.000       | (ppm)<br>0.0                                                                       | Tan/orange sand, heavy o                                  | uartz rock                                                                       |            |
| 2' - 4'                                             | 2                                        | НА                    | 24                    | .000                 | 0.0                                                                                | Same                                                      |                                                                                  |            |
|                                                     |                                          |                       |                       |                      |                                                                                    |                                                           |                                                                                  |            |
|                                                     |                                          |                       |                       |                      |                                                                                    |                                                           |                                                                                  |            |
|                                                     |                                          |                       |                       |                      |                                                                                    |                                                           |                                                                                  |            |
|                                                     |                                          |                       |                       |                      |                                                                                    |                                                           |                                                                                  |            |
|                                                     |                                          |                       |                       |                      |                                                                                    | )<br>]                                                    |                                                                                  |            |
|                                                     |                                          |                       |                       |                      |                                                                                    |                                                           |                                                                                  |            |
|                                                     |                                          |                       |                       |                      |                                                                                    |                                                           |                                                                                  |            |
|                                                     |                                          |                       |                       |                      |                                                                                    |                                                           |                                                                                  |            |
|                                                     |                                          |                       | ľ                     |                      |                                                                                    |                                                           |                                                                                  |            |
|                                                     |                                          |                       |                       |                      |                                                                                    |                                                           |                                                                                  |            |
| Sample<br>SS = Spl<br>HA = Ha<br>GP = Ge<br>CC = Co | it Spo<br>nd Au<br>oprot                 | ion<br>iger<br>ie Sam | pler                  | <u> </u>             | <u> </u>                                                                           | NOTES:<br>0"-2" and 2'-4' inter<br>SVOCs, PCBs, and       | vals were sampled and analyzed<br>I RCRA metals.                                 | t for      |

| d                                                     |                          | <u>an</u>                   | rirka<br>d<br>Irtilucc |                              | -                                                                                                               | .: 2015<br>me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-40<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                                  |        |
|-------------------------------------------------------|--------------------------|-----------------------------|------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------|
| Drilling (<br>Driller: l<br>Drill Rig:<br>Date Sta    | ₋uke<br>∶ <b>Geo</b>     | actor:<br>Tibbets<br>oprobe | Zebra                  |                              | Geologist: Albert Albano<br>Drilling Method: Direct push<br>Drive Hammer Weight: NA<br>Date Completed: 08/09/04 |                                                           | Boring Completion Depth: 8'<br>Ground Surface Elevation:<br>Boring Diameter: 1"<br>Samples were collected in 2' intervals |        |
| Depth                                                 | h Rec.                   |                             |                        | Mercury<br>Vapor             | Photo-<br>ionization<br>Detector                                                                                | Sample                                                    | Description                                                                                                               | uscs   |
| (ft.)<br>0' - 2'                                      | No.<br>1                 | <b>Type</b><br>GP           | (inches)<br>24         | (mg/m <sup>3</sup> )<br>.000 | (ppm)<br>                                                                                                       | Tan medium silty sand, lig                                | ht rock.                                                                                                                  |        |
| 2' - 4'                                               | 2                        | GP                          | 24                     | .000                         |                                                                                                                 | Tan/brown medium silty sa                                 | and, medium to heavy rock.                                                                                                |        |
| 4'6'                                                  | 3                        | GP                          | 24                     | .000                         |                                                                                                                 | Tan medium to coarse sa                                   | n <b>d, medium quart</b> z rock.                                                                                          |        |
| 6' – 8'                                               | 4                        | GP                          | 24                     | .000                         |                                                                                                                 | Tan medium sand.                                          |                                                                                                                           |        |
|                                                       |                          |                             |                        |                              |                                                                                                                 |                                                           |                                                                                                                           |        |
|                                                       |                          |                             |                        |                              |                                                                                                                 |                                                           |                                                                                                                           |        |
|                                                       |                          |                             |                        |                              |                                                                                                                 |                                                           |                                                                                                                           |        |
|                                                       |                          |                             |                        |                              |                                                                                                                 |                                                           |                                                                                                                           |        |
|                                                       |                          |                             |                        |                              |                                                                                                                 |                                                           |                                                                                                                           |        |
|                                                       |                          |                             |                        |                              |                                                                                                                 |                                                           |                                                                                                                           |        |
| Sample<br>SS = Spl<br>HA = Har<br>GP = Ge<br>CC = Cor | it Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam          | pler                   | <u> </u>                     | <u> </u>                                                                                                        | for mercury.<br>: Instrument not                          | ' intervals were sampled and an<br>used to screen sample. Supple<br>on delineation of mercury-impact                      | mental |

|                                                           | <br>]                    | Dv                     | rirka    |                      | Project No           |                                                       | Boring No.: MSSB-43                                                                                     |           |
|-----------------------------------------------------------|--------------------------|------------------------|----------|----------------------|----------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------|
|                                                           | 5                        | an                     |          |                      | -                    | me: Long Island Railroad                              | Sheet <u>1</u> of <u>1</u> .                                                                            |           |
| Q                                                         | $\sum_{n}$               |                        | TTILLCO  | NEERS                | Mas                  | sapequa Substation                                    | By: Albert Albano                                                                                       |           |
| Drilling (                                                | Contr                    | actor:                 | Zebra    |                      | Geologist:           | Albert Albano                                         | Boring Completion Depth: 8                                                                              |           |
| Driller: L                                                |                          |                        |          |                      | -                    | thod: Direct Push                                     | Ground Surface Elevation: -                                                                             |           |
| Drill Rig:                                                |                          | -                      |          |                      |                      | mer Weight: NA                                        | Boring Diameter: 1"                                                                                     |           |
| Date Sta                                                  | _                        |                        |          |                      |                      | oleted:_08/09/04                                      | Samples were collected in 2' in                                                                         | itervals. |
|                                                           |                          | Soil Sa                | ample    | Mercury<br>Vapor     | Photo-<br>ionization |                                                       |                                                                                                         |           |
| Depth                                                     |                          |                        | Rec.     | Vapor                | Detector             | Sample                                                | Description                                                                                             | uscs      |
| (ft.)                                                     | No.                      | Туре                   | (inches) | (mg/m <sup>3</sup> ) | (ppm)                | · ·                                                   | •                                                                                                       |           |
| 0' - 2'                                                   | 1                        | GP                     | 24       | .000                 |                      | Brown fine silty sand, som                            | e clay, asphalt material.                                                                               |           |
| 2' - 4'                                                   | 2                        | GP                     | 24       | .000                 | -                    | 2'-3' Brown clay, stiff, me<br>3'-4' Tan/brown medium |                                                                                                         |           |
| 4'6'                                                      | 3                        | GP                     | 24       | .000                 |                      | Tan medium sand.                                      |                                                                                                         |           |
| 6' 8'                                                     | 4                        | GP                     | 24       | .000                 | -                    | Tan/brown medium sand,                                | light pea gravel.                                                                                       |           |
|                                                           |                          |                        | -        |                      |                      |                                                       |                                                                                                         |           |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | it Spo<br>nd Au<br>oprot | oon<br>Iger<br>De Samj | pler     |                      |                      | for mercury.<br>: Instrument not                      | ' intervals were sampled and ana<br>used to screen sample. Suppler<br>on delineation of mercury-impacte | nental    |

i

| d                                                         |                         | ∖ an               | rirka<br>d<br>Irtilucc |                      | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation |                                                      | Boring No.: MSSB-41<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                               |          |
|-----------------------------------------------------------|-------------------------|--------------------|------------------------|----------------------|----------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|
| Drilling C                                                |                         | actor:             | Zebra                  |                      | -                                                                                | Albert Albano                                        | Boring Completion Depth: 8                                                                             |          |
| Driller: L                                                |                         | ·                  |                        |                      | -                                                                                | thod: Direct Push                                    | Ground Surface Elevation: -                                                                            |          |
| Drill Rig:                                                |                         | -                  |                        |                      |                                                                                  | mer Weight: NA                                       | Boring Diameter: 1"                                                                                    |          |
| Date Sta                                                  | _                       |                    |                        |                      |                                                                                  | leted: 08/09/04                                      | Samples were collected in 2' in                                                                        | tervals. |
|                                                           |                         | Soil Sa            | ample                  | Mercury<br>Vapor     | Photo-<br>ionization                                                             |                                                      |                                                                                                        |          |
| Depth                                                     | Rec.                    |                    |                        |                      | Detector                                                                         | Sample                                               | Description                                                                                            | uscs     |
| (ft.)                                                     | No.                     | Туре               |                        | (mg/m <sup>3</sup> ) | (ppm)                                                                            |                                                      |                                                                                                        |          |
| 0' - 2'                                                   | 1 GP 24 .000            |                    |                        |                      |                                                                                  | 0'-1' - Tan/brown medium                             | silty sand.                                                                                            |          |
| 2' - 4'                                                   | 2                       | GP                 | 24                     | .000                 | -                                                                                | 1'-2' – Tan fine to medium<br>Tan/brown medium sand, |                                                                                                        |          |
| 4' –6'                                                    | 3                       | GP                 | 24                     | .000                 |                                                                                  | Same as above.                                       |                                                                                                        |          |
| 6' - 8'                                                   | 4                       | GP                 | 24                     | .000                 |                                                                                  | Same as above.                                       |                                                                                                        |          |
|                                                           |                         |                    |                        |                      |                                                                                  |                                                      |                                                                                                        |          |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | pler                   |                      |                                                                                  | for mercury.<br>: Instrument not                     | " intervals were sampled and ana<br>used to screen sample. Suppler<br>on delineation of mercury-impact | nental   |

e.

| d                             |                | )<br>)<br>Ba    | irka<br>d<br>rtilucc | NEERS                |            | .: 2015<br>me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-42<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |         |
|-------------------------------|----------------|-----------------|----------------------|----------------------|------------|-----------------------------------------------------------|--------------------------------------------------------------------------|---------|
| Drilling                      | Contr          | actor:          | Zebra                |                      | Geologist: | Albert Albano                                             | Boring Completion Depth: 1                                               | 0'      |
| Driller:                      |                |                 |                      |                      | -          | thod: Direct Push                                         | Ground Surface Elevation: -                                              |         |
| Drill Rig                     |                |                 |                      |                      | -          | mer Weight: NA                                            | Boring Diameter: 1"                                                      |         |
| Date Sta                      |                |                 |                      |                      |            | bleted: 08/09/04                                          | Samples were collected in 2' in                                          | tervals |
| Date Sta                      | _              | Soil Sa         |                      | Mercury              |            |                                                           |                                                                          |         |
|                               |                | 3011 38         | ampie                | Vapor                | ionization |                                                           |                                                                          | [       |
| Depth                         | <u> </u>       |                 | Rec.                 | Tupo:                | Detector   | Sample                                                    | Description                                                              | USC     |
| (ft.)                         | No             | Туре            | (inches)             | (mg/m <sup>3</sup> ) | 1          | p.                                                        |                                                                          |         |
|                               | 1              | GP              | 24                   | .000                 | <u></u>    | Brown silty fine sand, light                              | rock and coal fragments                                                  | ╂─────  |
| 2' - 4'                       | 2              | GP              | 24                   | .000                 |            |                                                           | black and gray staining, light                                           |         |
| 4'6'                          | 3              | GP              | 24                   | .000                 |            | Brown clay, black staining                                | , wet at 6'.                                                             |         |
| 6' – 8'                       | 4              | GP              | 24                   | .000                 |            | Black silty sand, some wo                                 | od and organics, wet.                                                    |         |
| 8' – 10'                      | 5              | GP              | 24                   | .000                 |            | White medium sand, heav                                   | ry quartz rock.                                                          |         |
|                               |                |                 | -<br>-<br>-<br>-     |                      |            |                                                           |                                                                          |         |
|                               |                |                 |                      |                      |            |                                                           |                                                                          |         |
|                               |                |                 |                      |                      |            |                                                           |                                                                          |         |
| Sample<br>SS = Spl            |                |                 |                      |                      |            | <b>NOTES:</b><br>0'-2', 2'-4', and 4'-6                   | ' intervals were sampled and ana                                         | alyzed  |
| HA = Ha<br>GP = Ge<br>CC = Co | nd Au<br>oprot | iger<br>be Samj | pler                 |                      |            | for mercury.<br>: Instrument not                          | used to screen sample. Suppler<br>on delineation of mercury-impacted     | nental  |

| d                                                         |                         | an                            | rirka<br>d<br>rtiluco | NEERS                | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation |                                                      | Boring No.: MSSB-44<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                |          |
|-----------------------------------------------------------|-------------------------|-------------------------------|-----------------------|----------------------|----------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------|----------|
| Drilling (<br>Driller: L<br>Drill Rig:                    | uke <sup>-</sup><br>Geo | actor: 2<br>Tibbets<br>pprobe | Zebra                 |                      | Drilling Me<br>Drive Ham                                                         | Albert Albano<br>thod: Direct Push<br>mer Weight: NA | Boring Completion Depth: 6'<br>Ground Surface Elevation:<br>Boring Diameter: 1"         |          |
| Date Sta                                                  |                         | 08/10/<br>Soil Sa             |                       | Mercury<br>Vapor     | Date Comp<br>Photo-<br>ionization                                                | oleted: 08/10/04                                     | Samples were collected in 2' in                                                         | tervals. |
| Depth<br>(ft.)                                            | No.                     | Туре                          | Rec.<br>(inches)      | (mg/m <sup>3</sup> ) | Detector<br>(ppm)                                                                | Sample                                               | Description                                                                             | USCS     |
| 0' - 2'                                                   | 1                       | GP                            | 24                    | .004                 |                                                                                  | Tan medium sand, light ro                            | ck.                                                                                     |          |
| 2' - 4'                                                   | 2                       | GP                            | 24                    | .000                 |                                                                                  | Tan medium sand, mediur                              | n rock.                                                                                 |          |
| 4' –6'                                                    | 3                       | GP                            | 24                    | .000                 |                                                                                  | Same as above.                                       |                                                                                         |          |
|                                                           |                         |                               |                       |                      |                                                                                  |                                                      |                                                                                         |          |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samj           | pler                  | L                    |                                                                                  | for mercury.<br>: Instrument not                     | intervals were sampled and and used to screen sample. Supplementation of mercury-impact | mental   |

| d                                                                    |                         | ) an<br>Ba         | TTILLCC  | NEERS                         | Mas                    | me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-45<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                             |          |
|----------------------------------------------------------------------|-------------------------|--------------------|----------|-------------------------------|------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------|----------|
| Drilling (<br>Driller: L<br>Drill Rig:                               | .uke <sup>-</sup>       |                    |          |                               | Drilling Me            | Albert Albano<br>thod: HA<br>mer Weight: NA    | Boring Completion Depth: 5<br>Ground Surface Elevation:<br>Boring Diameter: 1"                       | F        |
| Date Sta                                                             |                         | 08/10/             | 04       |                               |                        | leted: 08/10/04                                | Samples were collected in 2' in                                                                      | tervals. |
|                                                                      |                         | Soil Sa            | mple     | Mercury                       |                        | · · · · · · ·                                  |                                                                                                      |          |
| Depth                                                                |                         |                    | Rec.     | Vapor                         | ionization<br>Detector | Sample                                         | Description                                                                                          | uscs     |
| (ft.)                                                                | No.                     | Туре               | (inches) | ( <b>mg</b> /m <sup>3</sup> ) |                        |                                                | Booonplion                                                                                           |          |
| 0' - 2'                                                              |                         |                    |          |                               |                        | Light brown fine sand, light                   | rock.                                                                                                |          |
| 2' - 4'                                                              | 2                       | HA                 | 24       | .000                          |                        | Same as above.                                 |                                                                                                      |          |
| 4'5'                                                                 | 3                       | HA                 | 12       | .000                          |                        | Same as above.                                 |                                                                                                      |          |
|                                                                      |                         |                    |          |                               |                        |                                                |                                                                                                      |          |
| Sample <sup>–</sup><br>SS = Spli<br>HA = Har<br>GP = Gea<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | pler     |                               |                        | for mercury.<br>: Instrument not u             | intervals were sampled and ana<br>used to screen sample. Suppler<br>n delineation of mercury-impacte | nental   |

| d                                                     |                          | an                   | virka<br>d<br>Irtilucc | NEERS                |                                                                                                                                                     | .: 2015<br>me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-46<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                               |          |
|-------------------------------------------------------|--------------------------|----------------------|------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|
| Drilling (<br>Driller: l<br>Drill Rig:                | .uke <sup>·</sup>        | actor:<br>Tibbets    | Zebra                  |                      | Geologist: Albert AlbanoBoring Completion Depth: 8Drilling Method: Direct PushGround Surface Elevation: -Drive Hammer Weight: NABoring Diameter: 1" |                                                           |                                                                                                        |          |
| Date Sta                                              |                          |                      |                        | 1                    |                                                                                                                                                     | leted: 08/09/04                                           | Samples were collected in 2' in                                                                        | tervals. |
|                                                       |                          | Soil Sa              | ample                  | Mercury<br>Vapor     | Photo-<br>ionization                                                                                                                                |                                                           |                                                                                                        |          |
| Depth                                                 | h Rec.                   |                      |                        | Tapol                | Detector                                                                                                                                            | Sample                                                    | Description                                                                                            | uscs     |
| (ft.)                                                 | No.                      | Туре                 |                        | (mg/m <sup>3</sup> ) | (ppm)                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                     |                                                                                                        |          |
| 0' - 2'                                               | 2' 1 GP 24 .000          |                      |                        | .000                 |                                                                                                                                                     | Tan/gray fine silty sand.                                 |                                                                                                        |          |
| 2' - 4'<br>4' -6'                                     | 2                        | GP                   | 24<br>24               | .000                 |                                                                                                                                                     | rock.                                                     | n sand, medium to heavy quartz<br>nedium silty sand, some rock,<br>v sand.                             |          |
| 6' – 8'                                               | 4                        | GP                   | 24                     | .000                 |                                                                                                                                                     | Tan medium sand, mediui                                   | m rock.                                                                                                |          |
|                                                       |                          |                      |                        |                      |                                                                                                                                                     |                                                           |                                                                                                        |          |
| Sample<br>SS = Spl<br>HA = Hai<br>GP = Ge<br>CC = Coi | it Spo<br>nd Au<br>oprob | on<br>Iger<br>Ie Sam | pler                   |                      |                                                                                                                                                     | for mercury.<br>: Instrument not                          | " intervals were sampled and ana<br>used to screen sample. Suppler<br>on delineation of mercury-impact | mental   |

| d                                                       |                         | an                 | rirka<br>d<br>rtilucc | NEERS                | Project No.:       2015       Boring No.:       MSSB-47         Project Name:       Long Island Railroad       Sheet _1_ of _1         Massapequa Substation       By:       Albert Albano |                                             |                                                                                                         |          |
|---------------------------------------------------------|-------------------------|--------------------|-----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|
| Drilling (<br>Driller: l<br>Drill Rig:                  | _uke <sup>-</sup>       | actor:             | Zebra                 |                      | Drilling Me                                                                                                                                                                                | Albert Albano<br>thod: HA<br>mer Weight: NA | Boring Completion Depth: 5<br>Ground Surface Elevation: -<br>Boring Diameter: 1"                        |          |
| Date Sta                                                | rted:                   | 08/10/             | 04                    |                      | Date Comp                                                                                                                                                                                  | oleted: 08/10/04                            | Samples were collected in 2' in                                                                         | tervals. |
|                                                         |                         | Soil Sa            | mple                  | Mercury              | Photo-                                                                                                                                                                                     |                                             |                                                                                                         |          |
| ļ                                                       |                         |                    |                       | Vapor                | ionization                                                                                                                                                                                 |                                             |                                                                                                         |          |
| Depth                                                   | epth Rec.               |                    |                       | 3                    | Detector                                                                                                                                                                                   | Sample                                      | e Description                                                                                           | USCS     |
| (ft.)                                                   |                         | Туре               |                       | (mg/m <sup>3</sup> ) | (ppm)                                                                                                                                                                                      | 1 1 1 4 h                                   |                                                                                                         |          |
| 0' - 2'<br>2' - 4'                                      | 1<br>2                  | HA<br>HA           | 24<br>24              | .120                 |                                                                                                                                                                                            | Light brown very fine silty s               | sand, light rock.                                                                                       |          |
| 2 - 4<br>4' -5'                                         | 2<br>3                  | НА                 | 12                    | .000                 |                                                                                                                                                                                            | Same as above.                              |                                                                                                         |          |
|                                                         |                         |                    |                       |                      |                                                                                                                                                                                            |                                             |                                                                                                         |          |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | pler                  |                      |                                                                                                                                                                                            | for mercury.<br>: Instrument not            | ' intervals were sampled and ana<br>used to screen sample. Suppler<br>on delineation of mercury-impacto | nental   |

| d                                                         |                                             | an                          | rirka<br>d<br>Irtiluco |                      | Project No.:       2015       Boring No.:       MSSB-48         Project Name:       Long Island Railroad       Sheet _1_ of _1         Massapequa       Substation       By:       Albert Albano |                                                                    |                                                                                                        |          |  |
|-----------------------------------------------------------|---------------------------------------------|-----------------------------|------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|--|
| Drilling (<br>Driller: L<br>Drill Rig:                    | uke <sup>-</sup>                            | actor: :<br>Tibbet <u>s</u> | Zebra                  |                      | Drilling Me                                                                                                                                                                                      | Albert Albano<br>thod: Direct Push<br>mer Weight: NA               | ct Push Ground Surface Elevation:                                                                      |          |  |
| Date Sta                                                  | _                                           | 08/09/<br>Soil Sa           |                        | Mercury              | Date Comp<br>Photo-                                                                                                                                                                              | oleted: 08/09/04                                                   | Samples were collected in 2' in                                                                        | tervals. |  |
| Depth                                                     | Vapor ior                                   |                             |                        | -                    | ionization<br>Detector                                                                                                                                                                           | Sample                                                             | e Description                                                                                          | USCS     |  |
| (ft.)                                                     | No.                                         | Туре                        | (inches)               | (mg/m <sup>3</sup> ) | (ppm)                                                                                                                                                                                            |                                                                    |                                                                                                        |          |  |
| 0' - 2'                                                   | 1                                           | GP                          | 24                     | .000                 |                                                                                                                                                                                                  | Tan/brown fine silty sand.                                         | nd light rook and from outs                                                                            |          |  |
| 2' - 4'<br>4'6'                                           | 2' - 4' 2 GP 24 .000<br>4' -6' 3 GP 24 .000 |                             |                        |                      |                                                                                                                                                                                                  | Reddish tan medium sand                                            | nd, light rock, coal fragments.<br>I, light rock.                                                      |          |  |
| 6' – 8'                                                   |                                             |                             |                        |                      |                                                                                                                                                                                                  | 6'-7' – Brown clay, moist, a<br>7'-8' – Tan/brown medium<br>moist. | a little stiff.<br>) sand, heavy quartz pea gravel,                                                    |          |  |
|                                                           |                                             |                             |                        |                      |                                                                                                                                                                                                  |                                                                    |                                                                                                        |          |  |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>Id Au<br>oprob                     | on<br>ger<br>e Sam          | pler                   |                      |                                                                                                                                                                                                  | for mercury.<br>: Instrument not                                   | i' intervals were sampled and and<br>used to screen sample. Supple<br>on delineation of mercury-impact | nental   |  |

ŗ

~

| d                                                       |                         | ∖ an                | rtiluco                          | NEERS                | 1 -         | .: 2015<br>me: Long Island Railroad<br>sapequa Substation  | Boring No.: MSSB-49<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                |         |  |
|---------------------------------------------------------|-------------------------|---------------------|----------------------------------|----------------------|-------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------|--|
| Drilling (<br>Driller: L                                | .uke <sup>-</sup>       | Fibbets             |                                  |                      | Drilling Me | Albert Albano<br>thod: Direct Push                         | Boring Completion Depth: 8'<br>Ground Surface Elevation:                                                |         |  |
| Drill Rig:<br>Date Sta                                  |                         |                     |                                  |                      |             | mer Weight: NA<br>bleted: 08/09/04                         | Boring Diameter: 1"<br>Samples were collected in 2' in                                                  | tonvale |  |
| Date Sta                                                | _                       | Soil Sa             |                                  | Mercury              |             | neted. 00/03/04                                            | Comples were conceled in 2 in                                                                           |         |  |
|                                                         |                         |                     |                                  | Vapor                | ionization  |                                                            |                                                                                                         | 1       |  |
| Depth                                                   |                         |                     | Rec. Detector Sample Description |                      |             |                                                            | USCS                                                                                                    |         |  |
| (ft.)                                                   | _                       | Туре                |                                  | (mg/m <sup>3</sup> ) | (ppm)       |                                                            |                                                                                                         | ļ       |  |
| 0' - 2'<br>2' - 4'                                      | 1<br>2                  | GP<br>GP            | 24<br>24                         | .000                 |             | Brown silty fine sand, loos<br>Tan/brown medium sand,      |                                                                                                         |         |  |
| 4' –6'                                                  | 4'-6' 3 GP 24 .000      |                     |                                  |                      |             | Same as above.                                             |                                                                                                         |         |  |
| 6' <b>- 8</b> '                                         | 4                       | GP                  | 24                               | .000                 |             | 6'-7' – Black stained silty s<br>7'-8' – Gray/tan medium s | sand, wet.<br>and, heavy pea gravel, wet.                                                               |         |  |
|                                                         |                         |                     |                                  |                      |             |                                                            |                                                                                                         |         |  |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Get<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samj | pler                             |                      |             | for mercury.<br>: Instrument not                           | ' intervals were sampled and ana<br>used to screen sample. Suppler<br>on delineation of mercury-impacte | nental  |  |

| d                                                       |                            | ) an<br>Ba          | TTILLCO | NEERS                |            | : 2015<br>me: Long Island Railroad<br>sapequa Substation | Boring No.: MSSB-50<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                               |          |
|---------------------------------------------------------|----------------------------|---------------------|---------|----------------------|------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|
| Drilling (                                              |                            |                     |         |                      |            | Albert Albano                                            | Boring Completion Depth: 8                                                                             |          |
| Driller: L                                              |                            |                     |         |                      | -          | thod: Direct Push                                        | Ground Surface Elevation: -                                                                            | -        |
| Drill Rig:                                              |                            | -                   |         |                      |            | mer Weight: NA                                           | Boring Diameter: 1"                                                                                    | ·        |
| Date Sta                                                | _                          | Soil Sa             |         | Mercury              |            | bleted: 08/10/04                                         | Samples were collected in 2' in                                                                        | tervals. |
| 1                                                       |                            |                     | mpic    | Vapor                | ionization |                                                          |                                                                                                        |          |
| Depth                                                   | pth Rec.                   |                     |         |                      | Detector   | Sample                                                   | Description                                                                                            | uscs     |
| (ft.)                                                   |                            |                     |         | (mg/m <sup>3</sup> ) | (ppm)      |                                                          | `                                                                                                      |          |
| 0' - 2'                                                 | )' - 2'   1   GP   12 .092 |                     |         | .092                 |            | Light brown very fine silty                              | sand, light rock.                                                                                      |          |
| 2' - 4'                                                 | 2                          | GP                  | 12      | .019                 |            | 2'-3.5' - Same as above.<br>3.5'-4' – Tan medium sand    | d, heavy rock.                                                                                         |          |
| 4' 6'                                                   | 3                          | GΡ                  | 24      | .000                 |            | Tan medium sand, mediur                                  | m rock.                                                                                                |          |
| 6' - 8'                                                 | 6' - 8' 4 GP 24 .000       |                     |         |                      |            | Same as above.                                           |                                                                                                        |          |
|                                                         |                            |                     |         |                      |            |                                                          |                                                                                                        |          |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob    | on<br>ger<br>e Samj | pler    |                      |            | for mercury.<br>: Instrument not                         | ' intervals were sampled and ana<br>used to screen sample. Suppler<br>on delineation of mercury-impact | nental   |

ć

| d                                                    |                          | < an               | virka<br>d<br>Irtilucc | NEERS   | Project No.:       2015       Boring No.:       MSSB-51         Project Name:       Long Island Railroad       Sheet 1 of 1       By:         Massapequa Substation       By:       Albert Albano |                                                        |                                                                                                        |          |
|------------------------------------------------------|--------------------------|--------------------|------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|
| Drilling                                             | Contr                    |                    |                        |         | Geologist:                                                                                                                                                                                        | Albert Albano                                          | Boring Completion Depth: 8                                                                             | •        |
| Driller: I                                           | uke                      | Tibbets            | ;                      |         | Drilling Me                                                                                                                                                                                       | thod: Direct Push                                      | Ground Surface Elevation: -                                                                            |          |
| Drill Rig                                            | Geo                      | probe              | -                      |         | Drive Ham                                                                                                                                                                                         | mer Weight: NA                                         | Boring Diameter: 1"                                                                                    |          |
| Date Sta                                             | rted:                    | 08/09/             | /04                    |         | Date Comp                                                                                                                                                                                         | oleted: 08/09/04                                       | Samples were collected in 2' in                                                                        | tervals. |
| [                                                    |                          | Soil Sa            | ample                  | Mercury | Photo-                                                                                                                                                                                            |                                                        |                                                                                                        |          |
| ł                                                    |                          |                    |                        | Vapor   | ionization                                                                                                                                                                                        |                                                        |                                                                                                        |          |
| Depth                                                |                          |                    | Rec.                   | }       | Detector                                                                                                                                                                                          | Sample                                                 | Description                                                                                            | USCS     |
| (ft.)                                                |                          |                    |                        |         | (ppm)                                                                                                                                                                                             |                                                        |                                                                                                        |          |
| 0' - 2'                                              | 1                        | GP                 | 18                     | .000    |                                                                                                                                                                                                   | 0'-1' – Tan/brown medium<br>1'-2' – Black medium silty |                                                                                                        |          |
| 2' - 4'                                              | 2                        | GP                 | 18                     | .000    |                                                                                                                                                                                                   | Reddish brown medium sa                                | and.                                                                                                   |          |
| 4' –6'                                               | 3                        | GP                 | 24                     | .000    |                                                                                                                                                                                                   | Tan/gray medium sand, liç                              | ght rock.                                                                                              |          |
| 6' - 8'                                              | 4                        | GP                 | 24                     | .000    |                                                                                                                                                                                                   | Same as above.                                         |                                                                                                        |          |
|                                                      |                          |                    |                        |         |                                                                                                                                                                                                   |                                                        |                                                                                                        |          |
| Sample<br>SS = Spl<br>HA = Hai<br>GP = Ge<br>CC = Co | it Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | pler                   |         |                                                                                                                                                                                                   | for mercury.<br>: Instrument not                       | ' intervals were sampled and ana<br>used to screen sample. Suppler<br>on delineation of mercury-impact | nental   |

| d                                 |                                                                                                                                                                                                                                                                                                                             | an                       | rtiluco  | NEERS                | Project Na          | t No.: 2015Boring No.: MSSB-52t Name: Long Island RailroadSheet 1 of 1 .Massapequa SubstationBy: Albert Albano |                                       |          |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|----------------------|---------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|--|
| Drilling (<br>Driller: L          |                                                                                                                                                                                                                                                                                                                             | actor:                   | Zebra    |                      | -                   | eologist: Albert AlbanoBoring Completion Depth: 10'rilling Method: Direct PushGround Surface Elevation:        |                                       |          |  |
| Drill Rig:                        |                                                                                                                                                                                                                                                                                                                             | -                        |          |                      |                     | mer Weight: NA                                                                                                 | Boring Diameter: 1"                   |          |  |
| Date Sta                          |                                                                                                                                                                                                                                                                                                                             | <u>08/09/</u><br>Soil Sa |          | Mercury              | Date Comp<br>Photo- | leted: 08/09/04                                                                                                | Samples were collected in 2' in       | tervals. |  |
|                                   |                                                                                                                                                                                                                                                                                                                             |                          | mpie     | Vapor                | ionization          |                                                                                                                |                                       |          |  |
| Depth                             | oth Rec.                                                                                                                                                                                                                                                                                                                    |                          |          |                      | Detector            | Sample                                                                                                         | Description                           | USCS     |  |
| (ft.)                             |                                                                                                                                                                                                                                                                                                                             |                          |          | (mg/m <sup>3</sup> ) | (ppm)               |                                                                                                                | _ <u></u>                             |          |  |
| 0' - 2'<br>2' - 4'                | 1<br>2                                                                                                                                                                                                                                                                                                                      | GP<br>GP                 | 24<br>24 | .000<br>.000         | -                   | Tan/brown medium silty sa<br>Reddish brown medium sa                                                           |                                       |          |  |
| 4' –6'                            | 3                                                                                                                                                                                                                                                                                                                           | GP                       | 24       | .000                 |                     | Gray/tan medium sand.                                                                                          |                                       |          |  |
| 6' – 8 <b>'</b>                   | 4                                                                                                                                                                                                                                                                                                                           | GP                       | 24       | .000                 |                     | 6'-7' - Black silty fine sand<br>7'-8' – Gray/white medium                                                     | , moist.<br>sand, medium rock, moist. |          |  |
| 8' – 10'                          | 5                                                                                                                                                                                                                                                                                                                           | GP                       | 24       | .00 <b>0</b>         |                     | Reddish tan medium sand                                                                                        | l, medium rock.                       |          |  |
|                                   |                                                                                                                                                                                                                                                                                                                             |                          |          |                      |                     |                                                                                                                |                                       |          |  |
| SS = Spli<br>HA = Har<br>GP = Geo | Sample Types:NOTES:SS = Split Spoon0'-2', 2'-4', and 4'-6' intervals were sampled and analyzedHA = Hand Auger0'-2', 2'-4', and 4'-6' intervals were sampled and analyzedGP = Geoprobe Sampler- : Instrument not used to screen sample. SupplementaCC = Concrete Coresampling focused on delineation of mercury-impacted soi |                          |          |                      |                     |                                                                                                                |                                       |          |  |

r.

£ 1

ť

| d                                                   |                          | \ an                  | virka<br>d<br>Irtilucc | NEERS                | -                                                     | .: 2015<br>me: Long Island Railroad<br>sapequa Substation                               | Boring No.: MSSB-53<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                |        |
|-----------------------------------------------------|--------------------------|-----------------------|------------------------|----------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------|
| Drilling                                            |                          |                       |                        |                      | Geologist: Albert Albano Boring Completion Depth: 10' |                                                                                         |                                                                                                         |        |
| Driller:                                            |                          |                       | _                      |                      | · ·                                                   | thod: Direct Push                                                                       | Ground Surface Elevation: -                                                                             |        |
| Drill Rig<br>Date Sta                               |                          |                       |                        |                      |                                                       | er Weight: NA Boring Diameter: 1"<br>eted: 08/09/04 Samples were collected in 2' interv |                                                                                                         |        |
| Date Sta                                            |                          | Soil Sa               |                        | Mercury              |                                                       | <b>Neted.</b> 00/09/04                                                                  | Samples were collected in 2 in                                                                          |        |
|                                                     |                          | 001100                | in pic                 | Vapor                | ionization                                            |                                                                                         |                                                                                                         | ]      |
| Depth                                               |                          |                       | Rec.                   | ]                    | Detector                                              | Sample                                                                                  | e Description                                                                                           | USCS   |
| (ft.)                                               | No.                      |                       | (inches)               | (mg/m <sup>3</sup> ) | (ppm)                                                 |                                                                                         |                                                                                                         |        |
| 0' - 2'                                             | 1                        | GP                    | 24                     | .031                 |                                                       | 0'-6" - Brown silty fine san<br>6"-2' – Tan medium sand,                                |                                                                                                         |        |
| 2' - 4'                                             | 2                        | GP                    | 24                     | .012                 |                                                       | Black silty fine sand, medi<br>concrete material, asphalt                               | um to heavy angular rock and<br>and coal fragments.                                                     |        |
| 4'6'                                                | 3                        | GP                    | 24                     | .000                 |                                                       | Same as above.                                                                          |                                                                                                         |        |
| 6' – 8'                                             | 4                        | GP                    | 24                     | .020                 |                                                       | 6'-7' – Black silty fine sand<br>7'-8' – White medium sand<br>8'.                       | d.<br>d, medium quartz rock. Wet at                                                                     |        |
| 8' – 10'                                            | 5                        | GP                    | 24                     | .000                 |                                                       | Reddish brown/tan mediu                                                                 | m sand, very heavy rock <b>, w</b> et.                                                                  |        |
|                                                     |                          |                       |                        |                      |                                                       |                                                                                         |                                                                                                         |        |
|                                                     |                          |                       |                        |                      |                                                       |                                                                                         |                                                                                                         |        |
|                                                     |                          |                       |                        |                      |                                                       |                                                                                         |                                                                                                         |        |
| Sample<br>SS = Spl<br>HA = Ha<br>GP = Ge<br>CC = Co | it Spo<br>nd Au<br>oprob | ion<br>Iger<br>De Sam | pler                   |                      |                                                       | for mercury.<br>: Instrument not                                                        | ' intervals were sampled and ana<br>used to screen sample. Supplen<br>on delineation of mercury-impacte | nental |

| Drilling                                      |                                              | ) an<br>Ba   | ULTING ENGI   | <b>i</b><br>NEERS             | Mas                   | : 2015<br>me: Long Island Railroad<br>sapequa Substation<br>Albert Albano | Boring No.: MSSB-54<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano<br>Boring Completion Depth: 6 |          |
|-----------------------------------------------|----------------------------------------------|--------------|---------------|-------------------------------|-----------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|
| -                                             |                                              |              |               |                               | -                     |                                                                           |                                                                                                        |          |
| Driller: L                                    |                                              |              |               |                               | -                     | thod: Direct Push                                                         | Ground Surface Elevation: -                                                                            | -        |
| Drill Rig:                                    |                                              | -            |               |                               |                       | mer Weight: NA                                                            | Boring Diameter: 1"                                                                                    | 4 I      |
| Date Sta                                      |                                              |              |               |                               |                       | leted: 08/09/04                                                           | Samples were collected in 2' in                                                                        | tervais. |
|                                               |                                              | Soil Sa      | ampie         |                               | Photo-<br>ionization  |                                                                           |                                                                                                        |          |
| Depth                                         | pth Rec.                                     |              |               | ναμοι                         | Detector              | Sample                                                                    | Description                                                                                            | USCS     |
| (ft.)                                         |                                              |              |               | Campic                        |                       |                                                                           |                                                                                                        |          |
|                                               |                                              |              | <u>(pp::)</u> | 0'-1' - Brown silty fine to m | edium sand light rock |                                                                           |                                                                                                        |          |
|                                               | 0' - 2' 1 GP 24 .000<br>2' - 4' 2 GP 21 .000 |              |               |                               |                       | 1'-2' – Tan/brown medium                                                  |                                                                                                        |          |
|                                               | ٤                                            |              | 21            |                               |                       | 3.5'-4' Brown/tan mediu                                                   | m sand, medium to heavy rock.                                                                          |          |
| 4'6'<br>Sample 1                              |                                              |              |               |                               |                       | Light brown medium sand                                                   |                                                                                                        |          |
| SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | nd Au<br>oprob                               | ger<br>e Sam | pler          |                               |                       | for mercury.<br>: Instrument not                                          | ' intervals were sampled and ana<br>used to screen sample. Supple<br>on delineation of mercury-impact  | nental   |

| d                                                    |                          | an                          | virka<br>d<br>artilucc | NEERS                | -                      | ne: Long Island Railroad       Sheet _1_ of _1         apequa Substation       By: Albert Albano |                                                                                                               |           |
|------------------------------------------------------|--------------------------|-----------------------------|------------------------|----------------------|------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------|
| Drilling (                                           |                          |                             |                        |                      | -                      | Albert Albano                                                                                    | Boring Completion Depth: 1                                                                                    |           |
| Driller: l                                           |                          |                             |                        |                      |                        | thod: Direct Push                                                                                | Ground Surface Elevation: -                                                                                   |           |
| Drill Rig                                            |                          | -                           |                        |                      |                        | mer Weight: NA                                                                                   | Boring Diameter: 1"                                                                                           |           |
| Date Sta                                             |                          |                             |                        |                      | ,                      | pleted: 08/09/04                                                                                 | Samples were collected in 2' in                                                                               | itervals. |
|                                                      | Soil Sample Mercur       |                             |                        |                      |                        |                                                                                                  |                                                                                                               |           |
| Depth                                                |                          |                             | Rec.                   | Vapor                | ionization<br>Detector | Sample                                                                                           | Description                                                                                                   | uscs      |
| (ft.)                                                | No.                      | Туре                        | (inches)               | (mg/m <sup>3</sup> ) |                        |                                                                                                  | besenption                                                                                                    |           |
| 0' - 2'                                              | 1                        | GP                          | 24                     | .000                 | <u>(PP····)</u>        | Tan/brown medium sand.                                                                           |                                                                                                               |           |
| 2' - 4'                                              | 2                        | GP                          | 24                     | .050                 |                        | Tan/gray medium sand, so                                                                         | ome asphalt.                                                                                                  |           |
| 4' –6'                                               | 3                        | GP                          | 24                     | .028                 |                        | Brown/black clay, moist, se                                                                      | ome wood.                                                                                                     |           |
| 6' – 8'                                              | 4                        | GP                          | 24                     | .000                 |                        | Tan medium sand, some r                                                                          | rock fill material and asphalt.                                                                               |           |
| 8' – 10'                                             | 5                        | GP                          | 24                     | .000                 |                        | 8'-9' – Brown/gray clay, mo<br>9'-10' – Gray medium to co                                        |                                                                                                               |           |
|                                                      |                          |                             |                        |                      |                        |                                                                                                  |                                                                                                               |           |
| Sample<br>SS = Spl<br>HA = Hai<br>GP = Ge<br>CC = Co | it Spo<br>nd Au<br>oprob | on<br>Iger<br>De <u>Sam</u> | pler                   |                      |                        | analyzed for mercu                                                                               | d 6'-8' intervals were sampled ar<br>ry.<br>used to screen sample. Suppler<br>n delineation of mercury-impact | nental    |

| d                                                       |                          | an                          | rirka<br>d<br>rtilucc |            | Project Nai                      | oject No.:       2015       Boring No.:       MSSB-56         oject Name:       Long Island Railroad       Sheet 1 of 1       Of 1         Massapequa Substation       By:       Albert Albano |                                                                                                        |        |  |
|---------------------------------------------------------|--------------------------|-----------------------------|-----------------------|------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------|--|
| Drilling (<br>Driller: L<br>Drill Rig:<br>Date Sta      | uke<br>Geo               | actor:<br>Tibbets<br>oprobe | Zebra                 |            | Drilling Me<br>Drive Hami        | Albert Albano<br>thod: Direct Push<br>mer Weight: NA<br>lleted: 08/09/04                                                                                                                       | NA Boring Diameter: 1"                                                                                 |        |  |
| Depth                                                   |                          |                             |                       |            | Photo-<br>ionization<br>Detector |                                                                                                                                                                                                | Description                                                                                            | USCS   |  |
| (ft.)                                                   | No.                      |                             | (inches)              | $(mg/m^3)$ | (ppm)                            |                                                                                                                                                                                                |                                                                                                        |        |  |
| 0' - 2'<br>2' - 4'                                      | 0'-2' 1 GP 24 .000       |                             |                       |            |                                  | Brown silty sand and tops<br>Tan/brown medium sand,                                                                                                                                            |                                                                                                        |        |  |
| 4'6'                                                    | 3                        | GP                          | 24                    | .000       | -                                | Tan/reddish brown mediu                                                                                                                                                                        | m sand, very light rock.                                                                               |        |  |
|                                                         |                          |                             |                       |            |                                  |                                                                                                                                                                                                |                                                                                                        |        |  |
|                                                         |                          |                             |                       |            |                                  |                                                                                                                                                                                                |                                                                                                        |        |  |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Ger<br>CC = Cor | it Spo<br>nd Au<br>oprob | ion<br>iger<br>ie Samj      | pler                  | l          |                                  | for mercury.<br>: Instrument not                                                                                                                                                               | ' intervals were sampled and ana<br>used to screen sample. Suppler<br>on delineation of mercury-impact | nental |  |

| d                                            |                   | an              | virka<br>d<br>Irtilucc | NEERS                 | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation |                                           | Boring No.: MSSB-58<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                                                                                                         |           |
|----------------------------------------------|-------------------|-----------------|------------------------|-----------------------|----------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Drilling (                                   | Contr             | actor:          | Zebra                  |                       | Geologist: Albert Albano                                                         |                                           | Boring Completion Depth: 6'                                                                                                                                                                      |           |
| Driller: l                                   | uke               | Tibbets         |                        |                       | Drilling Me                                                                      | thod: Direct Push                         | Ground Surface Elevation: -                                                                                                                                                                      |           |
| Drill Rig:                                   | Geo               | probe           |                        |                       | Drive Ham                                                                        | mer Weight: NA                            | Boring Diameter: 1"                                                                                                                                                                              |           |
| Date Sta                                     | rted:             | 08/09/          | /04                    |                       | Date Comp                                                                        | oleted: 08/09/04                          | Samples were collected in 2' in                                                                                                                                                                  | ntervals. |
|                                              |                   | Soil Sa         | ample                  | Mercury               |                                                                                  |                                           |                                                                                                                                                                                                  | ]         |
|                                              |                   |                 |                        | Vapor                 | ionization                                                                       | Comple                                    |                                                                                                                                                                                                  | 11000     |
| Depth                                        | Ma                | <b>T</b>        | Rec.                   | (m m / <sup>3</sup> ) | Detector                                                                         | Sample                                    | Description                                                                                                                                                                                      | USCS      |
| (ft.)                                        | No.               |                 | (inches)               | $(mg/m^3)$            | (ppm)                                                                            | Droum ailty fing to madium                | and some mederately stiff                                                                                                                                                                        |           |
|                                              | '-2' 1 GP 24 .000 |                 |                        |                       |                                                                                  | clay zones, moist.                        | sand, some moderately stiff                                                                                                                                                                      |           |
| 2' - 4'<br>4'6'                              | 2<br>3            | GP<br>GP        | 24                     | .000                  |                                                                                  | Tan medium sand, mediur<br>Same as above. | m quartz rock and pea gravel.                                                                                                                                                                    |           |
| Sample                                       | Гурез             | s:              |                        |                       |                                                                                  | NOTES:                                    |                                                                                                                                                                                                  |           |
| SS = Spli<br>HA = Har<br>GP = Ge<br>CC = Cor | nd Au<br>oprob    | iger<br>be Samj | pler                   |                       |                                                                                  | for mercury.<br>: Instrument not          | 0'-2', 2'-4', and 4'-6' intervals were sampled and analyzed<br>for mercury.<br>: Instrument not used to screen sample. Supplemental<br>sampling focused on delineation of mercury-impacted soil. |           |

. .

.

| d                                                         |                         | an                                 | rirka<br>d<br>rtilucc | NEERS                | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation    |                                                                                            | Boring No.: MSSBX-01<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano        |          |  |
|-----------------------------------------------------------|-------------------------|------------------------------------|-----------------------|----------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------|--|
| Drilling C<br>Driller: J<br>Drill Rig:                    | I.W. I                  | Palmer                             | LAWES                 |                      | Geologist: Albert Albano<br>Drilling Method: Direct Push<br>Drive Hammer Weight: NA |                                                                                            | Boring Completion Depth: 2<br>Ground Surface Elevation: -<br>Boring Diameter: 1" |          |  |
| Date Star                                                 | rted:                   | 02/06/                             | 03                    |                      | Date Comp                                                                           | oleted: 02/06/03                                                                           | Samples were collected in 2' in                                                  | tervals. |  |
|                                                           |                         | Soil Sa                            | mple                  | Mercury              | Photo-                                                                              |                                                                                            |                                                                                  |          |  |
| Depth                                                     | h Rec. Vapor            |                                    |                       |                      | ionization<br>Detector                                                              | Sample                                                                                     | Description                                                                      | uscs     |  |
| (ft.)                                                     | No.                     | Туре                               | (inches)              | (mg/m <sup>3</sup> ) | (ppm)                                                                               | Janpie                                                                                     | Description                                                                      | 0303     |  |
| 4' - 6'                                                   | 1                       | GP                                 | 24                    | .000                 | 0.0                                                                                 | Tan medium to coarse sar<br>gravel and rock, loose                                         | nd with medium quartz pea                                                        |          |  |
| 6' - 8'                                                   | 2                       | GP                                 | 24                    | .000                 | 0.0                                                                                 | Tan/brown medium sand v<br>rock                                                            | with light quartz pea gravel and                                                 |          |  |
| 8'-10'                                                    | 3                       | GP                                 | 24                    | .000                 | 0.0                                                                                 | Same                                                                                       |                                                                                  |          |  |
| 10'-12'                                                   | 4                       | GP                                 | 24                    | .000                 | 0.0                                                                                 | 10-10.5' – Same<br>10.5-11' – Black-stained sand with pebbles and rock (at<br>water table) |                                                                                  |          |  |
| 12'-14'                                                   | 5                       | GP                                 | 24                    | .000                 | 0.0                                                                                 | saturated<br>Same                                                                          | and with quartz pea gravel,                                                      |          |  |
| 14'-16'                                                   | 6                       | GP                                 | 0                     | N/A                  | N/A                                                                                 | No recovery                                                                                |                                                                                  |          |  |
| 16'-18'                                                   | 7                       | GP                                 | 0                     | N/A                  | N/A                                                                                 | No recovery                                                                                |                                                                                  |          |  |
| 18'-20'                                                   | 8                       | GP                                 | 0                     | N/A                  | N/A                                                                                 | No recovery                                                                                |                                                                                  |          |  |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | o <b>n</b><br>ge <b>r</b><br>e Sam | pler                  |                      | NOTES:<br>All recovered interv<br>PCBs, and RCRA r<br>N/A: Not applicable           |                                                                                            | Cs,                                                                              |          |  |

í.

ş

|   | d                                                      |                                                | ) an<br>) Ba           | rirka<br>d<br>rtiluco |                      | -                   | .: 2015<br><b>me:</b> Long Island Railroad<br>sapequa Substation         | Boring No.: MSSBX-02<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |           |
|---|--------------------------------------------------------|------------------------------------------------|------------------------|-----------------------|----------------------|---------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------|
|   | Drilling (<br>Driller:                                 |                                                |                        | LAWES                 |                      | -                   | Albert Albano<br>thod: Direct Push                                       | Boring Completion Depth: 20'<br>Ground Surface Elevation:                 |           |
|   | Drill Rig                                              |                                                |                        |                       |                      |                     | Drive Hammer Weight: NA Boring Diameter: 1"                              |                                                                           |           |
| ŀ | Date Sta                                               | rted:                                          |                        |                       |                      | Date Comp<br>Photo- | bleted: 02/06/03                                                         | Samples were collected in 2' in                                           | itervals. |
| l |                                                        | Soil Sample Mercury Photo-<br>Vapor ionization |                        |                       |                      |                     |                                                                          |                                                                           |           |
| ĺ | Depth<br>(ft.)                                         | No.                                            | Туре                   | Rec.<br>(inches)      | (mg/m <sup>3</sup> ) | Detector<br>(ppm)   |                                                                          | e Description                                                             | ບຣດ       |
|   | 4' - 6'                                                | 1                                              | GP                     | 24                    | .000                 | 0.0                 | Tan medium to coarse sa<br>rock                                          | nd, heavy quartz pea gravel and                                           |           |
|   | 6' - 8'                                                | 2                                              | GP                     | 24                    | .000                 | 0.0                 | Tan reddish brown mediu<br>gravel                                        | m sand, very light quartz pea                                             |           |
|   | 8'-10'                                                 | 3                                              | GP                     | 24                    | .000                 | 0.0                 | Same                                                                     |                                                                           |           |
|   | 10'-12'                                                | 4                                              | GP                     | 24                    | .000                 | 0.0                 | 10-10.5' – Same<br>10.5-11.5' – Black-stained<br>quartz pea gravel       | I medium to coarse sand, heavy                                            |           |
|   | 12'-14'                                                | 5                                              | GP                     | 18                    | .000                 | 0.0                 | 11.5-12' – Reddish brown<br>Same                                         | medium sand                                                               |           |
|   | 14'-16'                                                | 6                                              | GP                     | 18                    | .000                 | 0.0                 | Same                                                                     |                                                                           |           |
|   | 16'-18'                                                | 7                                              | GP                     | 0                     | N/A                  | N/A                 | No recovery                                                              |                                                                           |           |
|   | 18'-20'                                                | 8                                              | GP                     | 0                     | N/A                  | N/A                 | No recovery                                                              |                                                                           |           |
|   | Sample<br>SS = Spli<br>HA = Har<br>GP = Ge<br>CC = Cor | it Spo<br>nd Au<br>oprot                       | oon<br>iger<br>oe Samj | pler                  |                      |                     | NOTES:<br>All recovered interv<br>PCBs, and RCRA i<br>N/A: Not applicabl |                                                                           | Cs,       |

| d                                                         |                         | an                       | rirka<br>d<br>Irtilucc | NEERS            | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation    |                                                       | Boring No.: MSSBX-03<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano        |          |
|-----------------------------------------------------------|-------------------------|--------------------------|------------------------|------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------|----------|
| Drilling C<br>Driller: J<br>Drill Rig:                    | I.W. F<br>Geo           | Palme <u>r</u><br>oprobe |                        |                  | Geologist: Albert Albano<br>Drilling Method: Direct Push<br>Drive Hammer Weight: NA |                                                       | Boring Completion Depth: 20'<br>Ground Surface Elevation:<br>Boring Diameter: 1" |          |
| Date Sta                                                  |                         | 02/06/<br>Soil Sa        |                        | Mercury<br>Vapor | Date Comp<br>Photo-<br>ionization<br>Detector                                       | leted: 02/06/03                                       | Samples were collected in 2' int                                                 | tervals. |
| Depth<br>(ft.)                                            | No.                     | Туре                     | (inches)               | (mg/m³)          |                                                                                     | Sample                                                | Description                                                                      | 0303     |
| 4' - 6'                                                   | 1                       | GP                       | 24                     | .000             | 0.0                                                                                 | Tan/brown medium to coa<br>quartz pea gravel and rock | rse sand, medium to heavy<br><                                                   |          |
| 6' - 8'                                                   | 2                       | GP                       | 24                     | .000             | 0.0                                                                                 | Same                                                  |                                                                                  |          |
| 8'-10'                                                    | 3                       | GP                       | 24                     | .000             | 0.0                                                                                 | 8-9' – Black medium sand<br>9-10' – Orange/tan mediur |                                                                                  |          |
| 10'-12'                                                   | 4                       | GP                       | 24                     | .000             | 0.0                                                                                 | Tan medium sand with he                               | avy quartz pea gravel                                                            |          |
| 12'-14'                                                   | 5                       | GP                       | 18                     | .000             | 0.0                                                                                 | Same                                                  |                                                                                  |          |
| 14'-16'                                                   | 6                       | GP                       | 18                     | .000             | 0.0                                                                                 | Same                                                  |                                                                                  |          |
| 16'-18'                                                   | 7                       | GP                       | 18                     | .000             | 0.0                                                                                 | Tan medium sand with ver                              | ry light quartz pea gravel                                                       |          |
| 18'-20'                                                   | 8                       | GP                       | 18                     | .000             | 0.0                                                                                 | Same                                                  |                                                                                  |          |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Gec<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samj      | pler                   | I                | L                                                                                   | NOTES:<br>All intervals sample<br>RCRA metals.        | ed for analysis of SVOCs, PCBs,                                                  | and      |

| d                                                                   |                          | )<br>Ba               | virka<br>d<br>Irtilucc | NEERS                        | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation |                                                                                                                                                                                        | Boring No.: MSSBX-04<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |             |  |
|---------------------------------------------------------------------|--------------------------|-----------------------|------------------------|------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------|--|
| Drilling (<br>Driller:<br>Drill Rig:<br>Date Sta                    | J.W. I<br>Geo            | Palmer<br>oprobe      |                        |                              | Drilling Me<br>Drive Ham                                                         | Geologist: Albert AlbanoBoring Completion DepDrilling Method: Direct PushGround Surface ElevatDrive Hammer Weight: NABoring Diameter: 1"Date Completed: 02/07/03Samples were collected |                                                                           | o <b>n:</b> |  |
| Depth                                                               |                          | Soil Sa               | Rec.                   | Mercury<br>Vapor             | Photo-<br>ionization<br>Detector                                                 |                                                                                                                                                                                        | Description                                                               | USCS        |  |
| <u>(ft.)</u><br>4' - 6'                                             | No.<br>1                 | <b>Type</b><br>GP     | (inches)<br>24         | (mg/m <sup>3</sup> )<br>.000 | <b>(ppm)</b><br>0.0                                                              | Tan/brown medium sand v<br>and rock                                                                                                                                                    | with medium quartz pea gravel                                             |             |  |
| 6' - 8'                                                             | 2                        | GP                    | 24                     | .000                         | 0.0                                                                              | Same                                                                                                                                                                                   |                                                                           |             |  |
| 8'-10'                                                              | 3                        | GP                    | 24                     | .000                         | 0.0                                                                              | Same                                                                                                                                                                                   |                                                                           |             |  |
| 10'-12'                                                             | 4                        | GP                    | 18                     | .000                         | 0.0                                                                              |                                                                                                                                                                                        | at top of water table<br>nd with medium quartz pea                        |             |  |
| 12'-14'                                                             | 5                        | GP                    | 24                     | .000                         | 0.0                                                                              | gravel and rock<br>Same                                                                                                                                                                |                                                                           |             |  |
| 14'-16'                                                             | 6                        | GP                    | 18                     | .000                         | 0.0                                                                              | Same                                                                                                                                                                                   |                                                                           |             |  |
| 16'-18'                                                             | 7                        | GP                    | 18                     | .000                         | 0.0                                                                              | Same                                                                                                                                                                                   |                                                                           |             |  |
| 18'-20'                                                             | 8                        | GP                    | 12                     | .000                         | 0.0                                                                              | Same                                                                                                                                                                                   |                                                                           |             |  |
|                                                                     |                          |                       |                        |                              |                                                                                  |                                                                                                                                                                                        |                                                                           |             |  |
| Sample <sup>-</sup><br>SS = Spli<br>HA = Har<br>GP = Ge<br>CC = Cor | it Spo<br>nd Au<br>oprob | on<br>Iger<br>Ie Samj | pler                   |                              |                                                                                  | NOTES:<br>All recovered interv<br>PCBs, and RCRA n                                                                                                                                     | als sampled for analysis of SVO<br>netals.                                | Cs,         |  |

| d                                                         |                                                                                                            | ∖ an                               | rtiluco        | NEERS                        | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation    |                                                        | Boring No.: MSSBX-05<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano        |      |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|------|
| Drilling C<br>Driller: J<br>Drill Rig:<br>Date Stat       | I.W. F<br>Geo                                                                                              | actor:<br>Palme <u>r</u><br>oprobe | LAWES          |                              | Geologist: Albert Albano<br>Drilling Method: Direct Push<br>Drive Hammer Weight: NA |                                                        | Boring Completion Depth: 20'<br>Ground Surface Elevation:<br>Boring Diameter: 1" |      |
| Depth                                                     |                                                                                                            | Soil Sa                            | Rec.           | Mercury<br>Vapor             | Photo-<br>ionization<br>Detector                                                    | oleted: 02/06/03<br>Sample                             | Samples were collected in 2' in<br>Description                                   | USCS |
| (ft.)<br>4' - 6'                                          | <u>No.</u><br>1                                                                                            | GP                                 | (inches)<br>24 | (mg/m <sup>3</sup> )<br>.004 | (ppm)<br>0.0                                                                        | Tan/light brown medium to<br>heavy quartz pea gravel a | o coarse sand with medium to<br>nd rock                                          |      |
| 6' - 8'                                                   | 2                                                                                                          | GP                                 | 24             | .00 <b>3</b>                 | 0.0                                                                                 | 6-7' – Same<br>7-8' – Orange/tan sand wi               | th light quartz pea gravel                                                       |      |
| 8'-10'                                                    | 0'     3     GP     24     .000     0.0     Orange/tan medium to coarse sand with medium quartz pea gravel |                                    |                |                              |                                                                                     |                                                        | arse sand with medium to heavy                                                   |      |
| 10'-12'                                                   | 4                                                                                                          | GP                                 | 24             | .000                         | 0.0                                                                                 | Orange/tan medium sand                                 | with light quartz pea gravel                                                     |      |
| 12'-14'                                                   | 5                                                                                                          | GP                                 | 18             | .003                         | 0.0                                                                                 | Tan/light brown medium to<br>medium quartz pea gravel  |                                                                                  |      |
| 14'-16'                                                   | 6                                                                                                          | GP                                 | 18             | .000                         | 0.0                                                                                 | Same                                                   |                                                                                  |      |
| 16'-18'                                                   | 7                                                                                                          | GP                                 | 18             | .000                         | 0.0                                                                                 | Same                                                   |                                                                                  |      |
| 18'-20'                                                   | 8                                                                                                          | GP                                 | 18             | .003                         | 0.0                                                                                 | Same                                                   |                                                                                  |      |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob                                                                                    | on<br>ger<br>e Samj                | bler           | L                            |                                                                                     | NOTES:<br>All intervals sample<br>RCRA metals.         | ed for analysis of SVOCs, PCBs,                                                  | and  |

| Drilling (<br>Driller:                                    |                         |                     | <b>TTILLCO</b><br>SULTING ENGI<br>LAWES | NEERS                        | Project No.: 2015<br>Project Name: Long Island Railroad<br>Massapequa Substation<br>Geologist: Albert Albano<br>Drilling Method: Hand Auger |                                               | Boring No.: MSSBX-06<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano<br>Boring Completion Depth: 8'<br>Ground Surface Elevation: |           |
|-----------------------------------------------------------|-------------------------|---------------------|-----------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Drill Rig:                                                |                         | -                   |                                         |                              |                                                                                                                                             | Drive Hammer Weight: NA Boring Diameter: 1"   |                                                                                                                                       |           |
| Date Sta                                                  |                         | 02/06/<br>Soil Sa   |                                         | Mercury                      | Date Comp<br>Photo-                                                                                                                         | pleted: 02/06/03                              | Samples were collected in 2' ir                                                                                                       | itervals. |
| Depth                                                     | Rec.                    |                     |                                         |                              | ionization<br>Detector                                                                                                                      | Sample                                        | Description                                                                                                                           | USCS      |
| (ft.)<br>4' - 6'                                          | No.<br>1                | Type<br>HA          | (inches)<br>24                          | (mg/m <sup>3</sup> )<br>.003 | (ppm)<br>0.0                                                                                                                                | Ton/brown modium cond u                       | vith medium quartz pea gravel                                                                                                         |           |
| 6' - 8'                                                   | 2                       | ΗΑ                  | 24                                      | .003                         | 0.0                                                                                                                                         | Same                                          |                                                                                                                                       |           |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samj | pler                                    |                              |                                                                                                                                             | NOTES:<br>Both intervals samp<br>RCRA metals. | led for analysis of SVOCs, PCB                                                                                                        | is, and   |

| d                                                          |                         | ) an<br>Ba                 | ITTILLCO | NEERS                                                                   | Mas         | me: Long Island Railroad sapequa Substation            | Boring No.: MSSBX-07<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |          |
|------------------------------------------------------------|-------------------------|----------------------------|----------|-------------------------------------------------------------------------|-------------|--------------------------------------------------------|---------------------------------------------------------------------------|----------|
| Drilling C                                                 | Contr                   | actor:                     | LAWES    |                                                                         | Geologist:  | Albert Albano                                          | Boring Completion Depth: 2                                                | 0'       |
| Driller: J                                                 | I.W. F                  | <sup>o</sup> alme <u>r</u> |          |                                                                         | Drilling Me | thod: Direct Push                                      | Ground Surface Elevation: -                                               |          |
| Drill Rig:                                                 | Geo                     | probe                      |          |                                                                         | Drive Ham   | mer Weight: NA                                         | Boring Diameter: 1"                                                       |          |
| Date Star                                                  | rted:                   | 02/06/                     | 03       |                                                                         | Date Comp   | leted: 02/06/03                                        | Samples were collected in 2' in                                           | tervals. |
|                                                            |                         | Soil Sa                    | mple     | Mercury                                                                 | Photo-      |                                                        |                                                                           |          |
| ļ                                                          |                         |                            |          | Vapor                                                                   | ionization  |                                                        |                                                                           | }        |
| Depth                                                      | Rec.                    |                            |          |                                                                         | Detector    | Sample                                                 | e Description                                                             | USCS     |
| (ft.)                                                      |                         | Туре                       | (inches) | (mg/m <sup>3</sup> )                                                    | (ppm)       |                                                        |                                                                           | ļ        |
| 4' - 6'                                                    | 1                       | GP                         | 24       | .000                                                                    | 0.0         | Tan medium sand with me<br>rock                        | edium quartz pea gravel and                                               |          |
| 6' - 8'                                                    | 2                       | GP                         | 24       | .000                                                                    | 0. <b>0</b> | Tan medium sand with lig                               | ht quartz pea gravel and rock                                             |          |
| 8'-10'                                                     | 3                       | GP                         | 24       | .000                                                                    | 0.0         | Same                                                   |                                                                           |          |
| 10'-12'                                                    | 4                       | GP                         | 18       | .000                                                                    | 0. <b>0</b> | Tan medium sand with lig<br>black staining at 10.5-11' | ht quartz pea gravel and rock,<br>bgs (top of water table)                |          |
| 12'-14'                                                    | 5                       | GP                         | 24       | .000                                                                    | 0.0         | Same, but saturated                                    |                                                                           |          |
| 14'-16'                                                    | 6                       | GP                         | 0        | N/A                                                                     | N/A         | No recovery                                            |                                                                           |          |
| 16'-18'                                                    | 7                       | GP                         | 0        | N/A                                                                     | N/A         | No recovery                                            |                                                                           |          |
| 18'-20'                                                    | 8                       | GP                         | 0        | N/A                                                                     | N/A         | No recovery                                            |                                                                           |          |
| Sample T<br>SS = Split<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samp        | bler     | NOTES:<br>All recovered interv<br>PCBs, and RCRA<br>N/A: Not applicable |             | Cs,                                                    |                                                                           |          |

8.

| d                                                         |                          | an                              | rtiluco        | NEERS                        | -                                | .: 2015<br>me: Long Island Railroad<br>sapequa Substation                                                                                                                              | Boring No.: MSSBX-09<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |      |
|-----------------------------------------------------------|--------------------------|---------------------------------|----------------|------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------|
| Drilling<br>Driller:<br>Drill Rig:<br>Date Sta            | J.W. I<br>Geo            | Palmer                          |                |                              | Drilling Me<br>Drive Ham         | Geologist: Albert AlbanoBoring Completion DepDrilling Method: Direct PushGround Surface ElevatDrive Hammer Weight: NABoring Diameter: 1"Date Completed: 02/06/03Samples were collected |                                                                           |      |
| Depth                                                     |                          | Soil Sa                         | Rec.           | Mercury<br>Vapor             | Photo-<br>ionization<br>Detector | Sample                                                                                                                                                                                 | e Description                                                             | USCS |
| (ft.)<br>4' - 6'                                          | No.<br>1                 | Type<br>GP                      | (inches)<br>24 | (mg/m <sup>3</sup> )<br>.004 | (ppm)<br>0.0                     | Tan medium sand with m                                                                                                                                                                 | edium quartz pea gravel, loose                                            |      |
| 6' - 8'                                                   | 2                        | GP                              | 24             | .003                         | 0.0                              | 6-7.5' – Same<br>7.5-8' – Reddish tan med<br>pea gravel                                                                                                                                | ium sand with very light quartz                                           |      |
| 8'-10'                                                    | 8'-10' 3 GP 24 .000 0    |                                 |                |                              |                                  | Tan medium sand with m                                                                                                                                                                 | edium quartz pea gravel                                                   |      |
| 10'-12'                                                   | 4                        | GP                              | 24             | .000                         | 0.0                              | Reddish tan sand with ligi<br>bgs                                                                                                                                                      | ht quartz pea gravel, wet at 11'                                          |      |
| 12'-14'                                                   | 5                        | GP                              | 0              | N/A                          | N/A                              | No recovery                                                                                                                                                                            |                                                                           |      |
| 14'-16'                                                   | 6                        | GP                              | 0              | N/A                          | N/A                              | No recovery                                                                                                                                                                            |                                                                           |      |
| 16'-18'                                                   | 7                        | GP                              | 18             | .000                         | 0.0                              | Tan medium sand, satura                                                                                                                                                                | ited, loose                                                               |      |
| 18'-20'                                                   | 8                        | GP                              | 0              | N/A                          | N/A                              | No recovery                                                                                                                                                                            |                                                                           |      |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | it Spo<br>nd Au<br>oprob | oon<br>iger<br>oe Sa <b>m</b> j | pler           |                              | L                                | NOTES:<br>All recovered inten<br>PCBs, and RCRA<br>N/A: Not applicable                                                                                                                 |                                                                           | DCs, |

•

.

| d                                                          |                         | an                  | rtiluco  | NEERS            |                      | .: 2015<br>me: Long Island Railroad<br>sapequa Substation                 | Boring No.: MSSBX-10<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |             |
|------------------------------------------------------------|-------------------------|---------------------|----------|------------------|----------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------|
| Drilling C                                                 | Contr                   | actor:              | LAWES    |                  | Geologist:           | Albert Albano                                                             | Boring Completion Depth: 2                                                | 2 <b>0'</b> |
| Driller: J                                                 | .W. F                   | Palmer              |          |                  | Drilling Me          | thod: Direct Push                                                         | Ground Surface Elevation:                                                 | • ••• •••   |
| Drill Rig:                                                 | Geo                     | probe               |          |                  | Drive Ham            | me <mark>r Weight:</mark> NA                                              | Boring Diameter: 1"                                                       |             |
| Date Sta                                                   | rted:                   | 02/03/              | 03       |                  | Date Comp            | oleted: 02/03/03                                                          | Samples were collected in 2' ir                                           | itervals.   |
|                                                            |                         | Soil Sa             |          | Mercury<br>Vapor | Photo-<br>Ionization |                                                                           | '                                                                         |             |
| Depth                                                      |                         | Turns               | Rec.     | (                | Detector             | Sample                                                                    | e Description                                                             | USCS        |
| <u>(ft.)</u><br>4' - 6'                                    | <u>NO.</u>              | Type<br>GP          | (inches) | $(mg/m^3)$       |                      | Ten medium te eneme ee                                                    | ad day and loops                                                          | <b> </b>    |
| 4' - 6<br>6' - 8'                                          | 2                       |                     | 24       | .003             | 0.0                  | Tan medium to coarse sai                                                  | na, ary ana ioose                                                         |             |
|                                                            |                         | GP                  | 24       | .003             | 0.0                  | 6-7' - Same<br>7-8 – Tan/reddish medium<br>quartz rock, dry and loose     | n to coarse sand with medium                                              |             |
| 8' - 10'                                                   | 3                       | GP                  | 24       | . <b>0</b> 00    | 0.0                  | Tan/reddish sand, heavy p                                                 | bea gravel and quartz rock                                                |             |
| 10' - <b>12</b> '                                          | 4                       | GP                  | 24       | .000             | 0.0                  | Brown silty sand, very hea<br>wet below 10.5' bgs                         | ivy quartz pea gravel and rock,                                           |             |
| 1 <b>2' - 14'</b>                                          | 5                       | GP                  | 18       | .000             | 0.0                  | Same                                                                      |                                                                           |             |
| 14' - 16'                                                  | 6                       | GP                  | 0        | N/A              | N/A                  | No recovery                                                               |                                                                           |             |
| 16' - 18'                                                  | 7                       | GP                  | 18       | .000             | 0.0                  | Brown silty sand, very hea<br>wet below 10.5' bgs                         | ivy quartz pea gravel and rock,                                           |             |
| 18' - 20'                                                  | 8                       | GP                  | 18       | .000             | 0.0                  | Same                                                                      |                                                                           |             |
| Sample 1<br>SS = Split<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>Id Au<br>oprob | on<br>ger<br>e Samj | bler     |                  |                      | NOTES:<br>All recovered interv<br>PCBs, and RCRA r<br>N/A: Not applicable |                                                                           | <br> Cs,    |

T

ĸ

| ÷ -       | ~ .               |            | <u> </u>        |         | -                                  |                                |                                                                                                            |         |  |
|-----------|-------------------|------------|-----------------|---------|------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------|---------|--|
|           | 7                 | <b>D</b> v | virka           |         | <b>Project No</b>                  | .: 2015                        | Boring No.: IPSB-04A                                                                                       |         |  |
|           |                   |            | _               |         | Project Name: Long Island Railroad |                                | Sheet <u>1</u> of <u>1</u> .                                                                               |         |  |
|           |                   | an         |                 | . :     |                                    | Island Park Substation         | By: Albert Albano                                                                                          |         |  |
|           | $\mathbf{\nabla}$ | クBa        | <b>ITTILLCO</b> |         |                                    |                                |                                                                                                            |         |  |
| Drilling  | Contr             |            |                 |         | Geoloaist:                         | Albert Albano                  | Boring Completion Depth: 1                                                                                 | D'      |  |
| Driller:  |                   |            |                 |         | -                                  | thod: Direct Push              | Ground Surface Elevation: -                                                                                |         |  |
| Drill Rig |                   |            |                 | ,       | -                                  | mer Weight: NA                 | Boring Diameter: 1"                                                                                        |         |  |
| Date Sta  |                   |            |                 |         |                                    | bleted: 01/29/03               | Samples were collected in 2' in                                                                            | tervals |  |
| Date Sta  | neu.              |            | ample           | Mercury |                                    |                                |                                                                                                            |         |  |
|           |                   |            | ampie           | Vapor   | ionization                         |                                |                                                                                                            |         |  |
| Depth     |                   | 1          | Rec.            |         | Detector                           | Sample                         | Description                                                                                                | USCS    |  |
| (ft.)     | No.               | Туре       | (inches)        | (mg/m³) | (ppm)                              | -                              |                                                                                                            |         |  |
| 6' - 8'   | 1                 | GP         | 24              | .005    | 2.0                                | 6-7' - Brown silty sand        |                                                                                                            |         |  |
|           |                   |            | l               |         |                                    | 7-8' - Sand fill material with | h heav <b>y</b> a <b>ngular</b> rock                                                                       |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 | 044     |                                    | ON Torth his and card          | a quarte mat                                                                                               |         |  |
| 8' - 10'  | 2                 | GP         | 24              | .014    | 2.0                                | 8-9' – Tan/white sand, som     | material with wood 1/2" thick,                                                                             |         |  |
|           |                   |            |                 |         |                                    | light petroleum odors          | Inaterial with wood /2 thick,                                                                              |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            | ·       |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         | 1                                  |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    | [                              |                                                                                                            |         |  |
|           |                   |            | .  <br>  .      |         |                                    |                                |                                                                                                            | ſ       |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            | l       |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
|           |                   |            |                 |         |                                    |                                |                                                                                                            |         |  |
| Sample    | Types             | s:         | L               | •       | •                                  | NOTES:                         |                                                                                                            | •       |  |
| SS = Spli | it Spo            | on         |                 |         |                                    | Both intervals samp            | led for analysis of mercury.                                                                               |         |  |
| HA = Ha   | nd Âu             | iger       |                 |         |                                    |                                |                                                                                                            |         |  |
| GP = Ge   | oprob             | e Sam      | ple <b>r</b>    |         |                                    |                                | Mercury readings appear to be false positives due to possible hydrogen sulfide interference from the soil. |         |  |
| CC = Co   | ncrete            | e Core     |                 |         |                                    | possible hydrogen s            | suitide interterence from the soil.                                                                        |         |  |
|           |                   |            |                 |         | -                                  |                                |                                                                                                            |         |  |

| d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | an      | rirka<br>d<br>rtilucc | NEERS      | Project No<br>Project Na | Boring No.: IPSB-12<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |                                  |          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-----------------------|------------|--------------------------|--------------------------------------------------------------------------|----------------------------------|----------|--|
| Drilling (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contr  |         |                       |            | Geologist:               | Albert Albano                                                            | Boring Completion Depth: 1       | 0'       |  |
| Driller: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carl F | ederso  | ก                     |            | Drilling Me              | thod: Direct Push                                                        | Ground Surface Elevation: -      | -        |  |
| Drill Rig:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | _       |                       |            | -                        | mer Weight: NA                                                           | Boring Diameter: 1"              |          |  |
| Date Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | -       | 03                    |            |                          | bleted: 01/27/03                                                         | Samples were collected in 2' in  | tervals. |  |
| []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | Soil Sa |                       | Mercury    | Photo-                   | · · · · · · · · · · · · · · · · · · ·                                    |                                  |          |  |
| ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |         | •                     | Vapor      | ionization               |                                                                          |                                  | } 1      |  |
| Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |         |                       |            | Detector                 | Sample                                                                   | Description                      | USCS     |  |
| (ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No.    | Туре    | (inches)              | $(mg/m^3)$ | (ppm)                    | -                                                                        | •                                | [        |  |
| 0' - 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1      | GP      | 24                    | .008       | 0.0                      | Black-stained sand                                                       |                                  |          |  |
| 2' - 4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2      | GP      | 24                    | .008       | 0.0                      | Tan sand with some black                                                 | staining                         |          |  |
| 4' - 6'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3      | GP      | 12                    | .005       | 0.0                      | 4-5' – Black stiff yet pliable clay<br>5-6' – No recovery                |                                  |          |  |
| 6' - 8'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4      | GP      | 0                     | N/A        | N/A                      | No recovery                                                              |                                  |          |  |
| 8' - 10'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5      | GP      | 24                    | .000       | 0.0                      | Tan/white sand, heavy qua                                                | rtz rock (up to 1 inch diameter) |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |         |                       |            |                          |                                                                          |                                  |          |  |
| Sample Types:       NOTES:         SS = Split Spoon       2'-4', 4' - 6', 6' - 8' and 8' - 10' intervals were analyzed for         HA = Hand Auger       mercury. In addition, a surface sample was collected from         GP = Geoprobe Sampler       0"-2" and analyzed for mercury.         CC = Concrete Core       Mercury readings appear to be false positives due to possible hydrogen sulfide interference from the soil.         N/A: Not applicable.       N/A: Not applicable. |        |         |                       |            |                          |                                                                          |                                  |          |  |

ĩ

r -1

÷

ì

| d                                                                                                                                                                                                                                                                                        | Dvirka<br>and<br>Bartilucci<br>consulting Engineers<br>prilling Contractor: LAWES<br>priller: J.W. Palmer |         |          |                      |            | .: 2015<br>me: Long Island Railroad<br>Island Park Substation |                                                                |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------|----------|----------------------|------------|---------------------------------------------------------------|----------------------------------------------------------------|----------|
| -                                                                                                                                                                                                                                                                                        |                                                                                                           |         | LAWES    |                      | -          | Albert Albano                                                 | Boring Completion Depth: 1<br>Ground Surface Elevation: -      |          |
| Driller: Control Drill Rig:                                                                                                                                                                                                                                                              |                                                                                                           |         |          |                      | -          | thod: Direct Push<br>mer Weight: NA                           | Boring Diameter: 1"                                            | -        |
| Date Sta                                                                                                                                                                                                                                                                                 |                                                                                                           | -       | 03       |                      |            | bleted: 01/29/03                                              | Samples were collected in 2' in                                | tervals. |
| Date Old                                                                                                                                                                                                                                                                                 |                                                                                                           | Soil Sa |          | Mercury              |            |                                                               |                                                                |          |
|                                                                                                                                                                                                                                                                                          |                                                                                                           |         |          | Vapor                | ionization |                                                               |                                                                |          |
| Depth                                                                                                                                                                                                                                                                                    |                                                                                                           | _       | Rec.     |                      | Detector   | Sample                                                        | Description                                                    | USCS     |
| (ft.)                                                                                                                                                                                                                                                                                    | No.                                                                                                       |         | (inches) | (mg/m <sup>3</sup> ) | (ppm)      | 0 47 A                                                        |                                                                |          |
| 0' - 2'                                                                                                                                                                                                                                                                                  | 1                                                                                                         | GP      | 24       | .025                 | 0.4        | clinker                                                       | d rock with coal remnants and                                  |          |
| 2' - 4'                                                                                                                                                                                                                                                                                  | 2                                                                                                         | GP      | 24       | .016                 | 0.4        | Same                                                          |                                                                |          |
| 4' - 6'                                                                                                                                                                                                                                                                                  | 3                                                                                                         | GP      | 12       | .004                 | 0.4        | 4-5' – Gray/black silty clay,                                 | , pliable                                                      |          |
| 6' - 8'                                                                                                                                                                                                                                                                                  | 4                                                                                                         | GP      | 24       | .004                 | 0.0        |                                                               | y sand, strong petroleum-like<br>-like odors, wooden fragments |          |
| 8' - 10'                                                                                                                                                                                                                                                                                 | 5                                                                                                         | GP      | 18       | .004                 | 37         | 8-9.5 – Same<br>9.5-10 – Brown peat mater                     | rial                                                           |          |
|                                                                                                                                                                                                                                                                                          |                                                                                                           |         |          |                      |            |                                                               |                                                                |          |
| Sample Types:         SS = Split Spoon         HA = Hand Auger         GP = Geoprobe Sampler         CC = Concrete Core             NOTES:         2'-4', 4' - 6', 6' - 8' and 8' - 10' intervals         mercury. In addition, a surface sample         0"-2" and analyzed for mercury. |                                                                                                           |         |          |                      |            |                                                               |                                                                |          |

| d                                                          |                     | an                  | virka<br>d<br>Irtilucc | NEERS                | Project No<br>Project Na | : 2015<br>ne: Long Island Railroad<br>Island Park Substation<br>By: Albert Albano                                                                |                  |
|------------------------------------------------------------|---------------------|---------------------|------------------------|----------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Drilling (<br>Driller: 、                                   |                     | actor:              |                        |                      | -                        | Albert Albano         Boring Completion De           hod: Direct Push         Ground Surface Elevat                                              |                  |
| Drill Rig:                                                 |                     |                     |                        |                      | -                        | ner Weight: NA Boring Diameter: 1"                                                                                                               |                  |
| Date Sta                                                   | rted:               | 01/29               | 03                     |                      |                          | leted: 01/29/03 Samples were collected                                                                                                           | in 2' intervals. |
|                                                            |                     | Soil Sa             | ample                  | Mercury<br>Vapor     | Photo-<br>ionization     |                                                                                                                                                  |                  |
| Depth<br>(ft.)                                             | No.                 | Туре                | Rec.<br>(inches)       | (mg/m <sup>3</sup> ) | Detector<br>(ppm)        | Sample Description                                                                                                                               | USCS             |
| 0' - 2'                                                    | 1                   | GP                  | 24                     | .010                 | 0.2                      | 0-4° – Asphalt<br>4°-12° – Black angular rocky so <b>il</b><br>1-2° – Tan sand                                                                   |                  |
| 2' - 4'                                                    | 2                   | GP                  | 24                     | .007                 | 0.2                      | Gray/black silty sand                                                                                                                            |                  |
| 4' - 6'                                                    | 3                   | GP                  | 24                     | .005                 | 0.0                      | Same                                                                                                                                             |                  |
| 6' - 8'                                                    | 4                   | GP                  | 24                     | .006                 | 0.0                      | Gray very fine silty sand                                                                                                                        |                  |
| 8' - 10'                                                   | 5                   | GP                  | 24                     | .006                 | 0.0                      | Brown peat material, spongy, organics (grass, roots                                                                                              | )                |
|                                                            |                     |                     |                        |                      |                          |                                                                                                                                                  |                  |
|                                                            |                     |                     |                        |                      |                          |                                                                                                                                                  |                  |
|                                                            |                     |                     |                        |                      |                          |                                                                                                                                                  |                  |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Con | Spo<br>d Au<br>prob | on<br>ger<br>e Samj | bler                   |                      |                          | NOTES:<br>2'-4', 4' - 6', 6' - 8' and 8' - 10' intervals were a<br>mercury. In addition, a surface sample was<br>0"-2" and analyzed for mercury. |                  |
|                                                            |                     |                     |                        |                      |                          | Mercury readings appear to be false positive<br>possible hydrogen sulfide interference from t                                                    |                  |

1 2 7

-

;

 $S^{-1}$ 

1.144

| d                                                     |                          | ) an<br>Ba             | <b>rtiluc</b>    |                                                                 |                      | me: Long Island Railroad<br>Island Park Substation                                                                                |                                                                                                                                                                   |              |                                                  |  |
|-------------------------------------------------------|--------------------------|------------------------|------------------|-----------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------|--|
| Drilling<br>Driller:<br>Drill Rig                     | J. W.<br>: Geo           | Palmer<br>oprobe       |                  | Drilling Method:Direct PushGroundDrive Hammer Weight:NABoring I |                      |                                                                                                                                   | g Method: Direct PushGround Surface Elevation:Hammer Weight: NABoring Diameter: 1"                                                                                |              | Ground Surface Elevation:<br>Boring Diameter: 1" |  |
| Date Sta                                              |                          | Soil Sa                |                  | Mercury<br>Vapor                                                | Photo-<br>ionization | oleted: 01/29/03                                                                                                                  | Samples were collected in 2' in                                                                                                                                   |              |                                                  |  |
| Depth<br>(ft.)                                        | No.                      | Туре                   | Rec.<br>(inches) | (mg/m <sup>3</sup> )                                            | Detector<br>(ppm)    | Sample                                                                                                                            | Description                                                                                                                                                       | USCS         |                                                  |  |
| 0' - 2'<br>2' - 4'                                    | 1                        | GP<br>GP               | 24<br>24         | .014                                                            | 0.4                  | 0-4" Asphalt<br>4"-8" Black rocky soil<br>8"-1' – Tan clayey stiff san<br>1-2' – Black sand with ang<br>Black rocky sand and clay | ular rocks                                                                                                                                                        |              |                                                  |  |
| 4' - 6'                                               | 3                        | GP                     | 24               | .008                                                            | 0.4                  | 4-5' – Same<br>5-6' – Gray clayey/silty sar                                                                                       | nd                                                                                                                                                                |              |                                                  |  |
| 6' - 8'                                               | 4                        | GP                     | 24               | N/A                                                             | 0.4                  | Gray very fine silty sand                                                                                                         |                                                                                                                                                                   |              |                                                  |  |
| 8' - 10'                                              | 5                        | GP                     | 24               | N/A                                                             | 0.3                  | Peat material/organics (gra<br>sulfide odor                                                                                       | ass, roots) spongy, hydrogen                                                                                                                                      |              |                                                  |  |
|                                                       |                          |                        |                  |                                                                 |                      |                                                                                                                                   |                                                                                                                                                                   |              |                                                  |  |
|                                                       |                          |                        |                  |                                                                 |                      |                                                                                                                                   |                                                                                                                                                                   |              |                                                  |  |
| Sample<br>SS = Spl<br>HA = Har<br>GP = Ge<br>CC = Cor | it Spo<br>nd Au<br>oprob | ion<br>iger<br>ie Samj | Der              | <u> </u>                                                        |                      | mercury. In addition<br>0"-2" and analyzed<br>Mercury readings a                                                                  | nd 8' - 10' intervals were analyze<br>n, a surface sample was collecte<br>for mercury.<br>ppear to be false positives due t<br>sulfide interference from the soil | ed from<br>o |                                                  |  |

÷...

| Drilling                                                  |                          | Ba<br>CONS          | TTILLCC  | NEERS                | Geologist:           | me: Long Island Railroad<br>Island Park Substation<br>Albert Albano | Boring Completion Depth: 4                                                                               |          |
|-----------------------------------------------------------|--------------------------|---------------------|----------|----------------------|----------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------|
| Driller: J                                                |                          | Palmer              |          |                      | -                    | thod: Hand Auger<br>mer Weight: NA                                  | Ground Surface Elevation: -<br>Boring Diameter: 1"                                                       | -        |
| Date Sta                                                  | _                        |                     |          |                      |                      | leted: 01/30/03                                                     | Samples were collected in 2' in                                                                          | tervals. |
|                                                           |                          | Soil Sa             | ample    | Mercury<br>Vapor     | Photo-<br>ionization |                                                                     |                                                                                                          |          |
| Depth                                                     |                          | _                   | Rec.     | _                    | Detector             | Sample                                                              | Description                                                                                              | USCS     |
| (ft.)                                                     |                          | Туре                | (inches) | (mg/m <sup>3</sup> ) | (ppm)                |                                                                     |                                                                                                          |          |
| 0' - 2'<br>2' - 4'                                        | 1<br>2                   | на                  | 24<br>24 | .005<br>.005         | 0.0<br>0.0           | Black/brown sand with coa<br>Same                                   | a tragments                                                                                              |          |
|                                                           |                          |                     |          |                      |                      |                                                                     |                                                                                                          |          |
| Sample 7<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Aug<br>oprob | on<br>ger<br>e Samp | bler     |                      |                      | Mercury readings a                                                  | oled for analysis of mercury.<br>ppear to be false positives due t<br>sulfide interference from the soil | o        |

£

| d                                                         |                         | an                  | virka<br>d<br>Irtilucc | NEERS      | Project No.:       2015       Boring No.:       IPSB-17         Project Name:       Long Island Railroad       Sheet 1 of 1       Sheet 1         Island Park Substation       By:       Albert Albano |                                                          |                                 |          |  |
|-----------------------------------------------------------|-------------------------|---------------------|------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------|----------|--|
| Drilling (                                                | Contr                   |                     |                        |            | Geologist:                                                                                                                                                                                             | Albert Albano                                            | Boring Completion Depth: 4      |          |  |
| Driller:                                                  | J.W. F                  | Palmer              |                        |            | <b>Drilling</b> Me                                                                                                                                                                                     | thod: Hand Auger                                         | Ground Surface Elevation:       | -        |  |
| Drill Rig                                                 |                         |                     |                        |            | Drive Ham                                                                                                                                                                                              | mer Weight: NA                                           | Boring Diameter: 1"             |          |  |
| Date Sta                                                  |                         | 01/28/              | /03                    |            |                                                                                                                                                                                                        | leted: 01/28/03                                          | Samples were collected in 2' in | tervals. |  |
|                                                           |                         | Soil Sa             |                        | Mercury    |                                                                                                                                                                                                        |                                                          |                                 |          |  |
|                                                           |                         |                     |                        | Vapor      | ionization                                                                                                                                                                                             |                                                          |                                 | {        |  |
| Depth                                                     |                         |                     | Rec.                   |            | Detector                                                                                                                                                                                               | Sample                                                   | Description                     | USCS     |  |
| (ft.)                                                     | No.                     | Туре                | (inches)               | $(mg/m^3)$ | (ppm)                                                                                                                                                                                                  |                                                          |                                 |          |  |
| 0' - 2'                                                   | 1                       | HA                  | 24                     | .000       | 0.0                                                                                                                                                                                                    | 0-0.5' - Gray gravel fill mate                           | erial                           |          |  |
|                                                           |                         |                     |                        | 1          |                                                                                                                                                                                                        | 0.5-1.5' – Brown and black<br>1.5-2' – Brown and black n |                                 |          |  |
| 2' - 4'                                                   | 2                       | HA                  | 24                     | .000       | 0.0                                                                                                                                                                                                    | Brown and black rocky san                                | d                               |          |  |
|                                                           |                         |                     |                        |            |                                                                                                                                                                                                        |                                                          |                                 |          |  |
|                                                           |                         |                     |                        |            |                                                                                                                                                                                                        |                                                          |                                 |          |  |
|                                                           |                         |                     |                        |            |                                                                                                                                                                                                        |                                                          |                                 |          |  |
|                                                           |                         |                     |                        |            |                                                                                                                                                                                                        |                                                          |                                 |          |  |
|                                                           |                         |                     | )<br>}                 |            |                                                                                                                                                                                                        |                                                          |                                 |          |  |
|                                                           |                         | -                   |                        |            |                                                                                                                                                                                                        |                                                          |                                 |          |  |
| Sample 7<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samj | pler                   |            |                                                                                                                                                                                                        | NOTES:<br>Both intervals samp                            | led for analysis of mercury.    |          |  |

ł

...

----

| d                                                      |                         | ) an<br>Ba             | ITTILUCO | NEERS                                    | Project No<br>Project Na                  | .: 2015<br>me: Long Island Railroad<br>Island Park Substation                                                                                                                                   |                                                                         |      |  |
|--------------------------------------------------------|-------------------------|------------------------|----------|------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------|--|
| Drilling<br>Driller:<br>Drill Rig<br>Date Sta          | J. W.<br>:              | <b>palm<u>e</u>r</b>   |          |                                          | Drilling Me<br>Drive Ham                  | Reologist: Albert AlbanoBoring Completion Depth:rilling Method: Hand AugerGround Surface Elevation:rive Hammer Weight: NABoring Diameter: 1"ate Completed: 01/30/03Samples were collected in 2" |                                                                         |      |  |
| Depth<br>(ft.)                                         | N Rec.                  |                        |          | Mercury<br>Vapor<br>(mg/m <sup>3</sup> ) | Photo-<br>ionization<br>Detector<br>(ppm) | Sample                                                                                                                                                                                          | Description                                                             | USCS |  |
| 0' - 2'                                                | 1                       | HA                     | 24       | .008                                     | 0.0                                       | Black sand with large amo                                                                                                                                                                       | unts of coal and clinker                                                |      |  |
| 2' - 4'                                                | 2                       | HA                     | 24       | .005                                     | 0.0                                       | Same                                                                                                                                                                                            |                                                                         |      |  |
| •                                                      |                         |                        |          |                                          |                                           |                                                                                                                                                                                                 |                                                                         |      |  |
|                                                        |                         |                        |          |                                          |                                           |                                                                                                                                                                                                 |                                                                         |      |  |
|                                                        |                         |                        |          |                                          |                                           |                                                                                                                                                                                                 |                                                                         |      |  |
|                                                        |                         |                        |          |                                          |                                           |                                                                                                                                                                                                 |                                                                         |      |  |
|                                                        |                         |                        |          |                                          |                                           |                                                                                                                                                                                                 |                                                                         |      |  |
|                                                        |                         |                        |          |                                          |                                           |                                                                                                                                                                                                 |                                                                         |      |  |
|                                                        | -                       |                        |          |                                          |                                           |                                                                                                                                                                                                 |                                                                         |      |  |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Ge<br>CC = Cor | t Spo<br>nd Au<br>oprot | ion<br>iger<br>ie Samj | pler     |                                          |                                           |                                                                                                                                                                                                 | alyzed for mercury. In addition,<br>s collected from 0"-2" and analyz   |      |  |
|                                                        | icre((                  | e core                 |          |                                          |                                           |                                                                                                                                                                                                 | ppear to be false positives due t<br>sulfide interference from the soil |      |  |

| Drilling                                                  |                         |                    | ITTILUCO | i<br>NEERS           | Project Na           | ect No.: 2015       Boring No.: IPSB-19         ect Name: Long Island Railroad       Sheet 1 of 1 .         Island Park Substation       By: Albert Albano         logist: Albert Albano       Boring Completion Depth: 4' |                                                                                                                                                    |              |  |
|-----------------------------------------------------------|-------------------------|--------------------|----------|----------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| Driller: (                                                |                         |                    |          |                      | -                    | thod: Hand Auger                                                                                                                                                                                                           | Ground Surface Elevation: -                                                                                                                        |              |  |
| 4                                                         |                         | euersu             | 11       |                      |                      | mer Weight: NA                                                                                                                                                                                                             | Boring Diameter: 1"                                                                                                                                |              |  |
| Drill Rig:                                                |                         | 04107              | 00       |                      |                      |                                                                                                                                                                                                                            | Samples were collected in 2' in                                                                                                                    | tonyole      |  |
| Date Sta                                                  | _                       |                    |          |                      |                      | pleted: 01/27/03                                                                                                                                                                                                           | Samples were collected in 2 in                                                                                                                     | lervais.     |  |
| 1                                                         |                         | Soil Sa            | ample    | Mercury              | Photo-<br>ionization |                                                                                                                                                                                                                            |                                                                                                                                                    |              |  |
| Depth                                                     |                         |                    | Rec.     | Vapor                | Detector             | Sample                                                                                                                                                                                                                     | Description                                                                                                                                        | uscs         |  |
|                                                           | No.                     | Turne              | (inches) | (mg/m <sup>3</sup> ) |                      | Sample                                                                                                                                                                                                                     | Description                                                                                                                                        |              |  |
| (ft.)<br>0' - 2'                                          | 1                       | Type<br>HA         | 24       | .005                 | (ppm)<br>0.0         | Tan silty sand                                                                                                                                                                                                             |                                                                                                                                                    |              |  |
| 2' - 4'                                                   | 2                       | НА                 | 24       | .005                 | 0.0                  | Same                                                                                                                                                                                                                       |                                                                                                                                                    |              |  |
|                                                           |                         |                    |          |                      |                      |                                                                                                                                                                                                                            |                                                                                                                                                    |              |  |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | pler     |                      |                      | surface sample was<br>mercury.<br>Mercury readings a                                                                                                                                                                       | nalyzed for mercury. In addition,<br>s collected from 0"-2" and analyz<br>oppear to be false positives due t<br>sulfide interference from the soil | zed for<br>o |  |

5 · · · · · · ·

·--- }

ð

,

, ,

· · ·

ł

| Drilling C<br>Driller: E<br>Drill Rig:<br>Date Sta | Brian           | an<br>Ba<br>cons<br>actor: | <b>TTILLCO</b><br>SULTING ENGI<br>LAWES | NEERS            | Geologist:<br>Drilling Me<br>Drive Ham | : 2015<br>me: Long Island Railroad<br>Island Park Substation<br>Albert Albano<br>thod: Hand Auger<br>mer Weight: NA<br>bleted: 01/27/03 | Boring No.: IPSB-20<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano<br>Boring Completion Depth: 4<br>Ground Surface Elevation:<br>Boring Diameter: 1"<br>Samples were collected in 2' in | -    |
|----------------------------------------------------|-----------------|----------------------------|-----------------------------------------|------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Depth                                              |                 | Soil Sa                    | Rec.                                    | Mercury<br>Vapor | ionization<br>Detector                 | Sample                                                                                                                                  | Description                                                                                                                                                                                   | USCS |
| (ft.)                                              | No.             | <u> </u>                   | (inches)                                | (mg/m³)          | (ppm)                                  |                                                                                                                                         |                                                                                                                                                                                               |      |
| 0' - 2'<br>2' - 4'                                 | 1<br>2          | НА                         | 24<br>24                                | .005<br>.005     | 0.0<br>0.0                             | Reddish brown sand with a Same                                                                                                          | ingular rocks and concrete                                                                                                                                                                    |      |
| Sample 7                                           |                 |                            |                                         |                  |                                        | NOTES:                                                                                                                                  |                                                                                                                                                                                               |      |
| SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor      | nd Aug<br>oprob | ger<br>e Samj              | pler                                    |                  |                                        | Mercury readings a                                                                                                                      | ted for analysis of mercury.<br>ppear to be false positives due t<br>sulfide interference from the soil                                                                                       |      |

| d                                                          |                     |                     | ITTILUCO | i<br>NEERS |               | me: Long Island Railroad<br>Island Park Substation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                      |  |  |
|------------------------------------------------------------|---------------------|---------------------|----------|------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|
| Drilling (                                                 | Contr               | actor:              | LAWES    |            | Geologist:    | Albert Albano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Boring Completion Depth: 2                                                                                                                                                                                 | 0'                   |  |  |
| Driller: J                                                 | .W. F               | Palmer              |          |            | Drilling Me   | thod: Direct Push                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ground Surface Elevation: -                                                                                                                                                                                |                      |  |  |
| Drill Rig:                                                 | Geo                 | probe               |          |            | Drive Ham     | mer Weight: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er Weight: NA Boring Diameter: 1"                                                                                                                                                                          |                      |  |  |
| Date Sta                                                   |                     | -                   | 03       |            | •             | pleted: 01/29/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Samples were collected in 2' in                                                                                                                                                                            | tervals.             |  |  |
|                                                            | _                   | Soil Sa             |          | Mercury    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                            |                      |  |  |
| }                                                          |                     |                     |          | Vapor      | ionization    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                            | {                    |  |  |
| Depth                                                      |                     |                     | Rec.     |            | Detector      | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Description                                                                                                                                                                                                | USCS                 |  |  |
| (ft.)                                                      | No.                 | Туре                | (inches) | $(mg/m^3)$ | (pp <b>m)</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                          |                      |  |  |
| 10' - 12'<br>12' - 14'                                     | 1                   | GP<br>GP            | 24       | .022       | 3.7           | 10-11' – Brown peat mater<br>sulfide odor<br>11-12' – Black soft clay<br>12-13' – Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iał (grass, roots), hydrogen                                                                                                                                                                               |                      |  |  |
| 12 - 14                                                    | 2<br>3              | GP                  | 24       | .008       | 3.7           | 12-13 – Same<br>13-14' – No recovery<br>Brown peat material, spon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gy, hydrogen sulfide odor                                                                                                                                                                                  |                      |  |  |
| 16' - <b>18</b> '                                          | 4                   | GP                  | 24       | .005       | 3.9           | Gray very fine silty sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |                      |  |  |
| 18' - 20'                                                  | 5                   | GP                  | 24       | .005       | 0.0           | Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                      |  |  |
|                                                            |                     |                     |          |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                            |                      |  |  |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Gec<br>CC = Con | Spo<br>d Au<br>prob | on<br>ger<br>e Samp | bler     |            |               | approximately 10' d<br>All intervals collecte<br>(VOCs, SVOCs, RC<br>Mercury readings approximately set the set of the | ough Rectifier Dry Well. Dry we<br>eep and had 5' of standing wate<br>d for analysis of UIC constituen<br>RA metals, and TPHs).<br>ppear to be false positives due t<br>sulfide interference from the soil | er in it.<br>ts<br>O |  |  |

| d                                                          |                          | <u>an</u>           | rirka<br>d<br>rtilucc | i<br>NEERS           | Project No<br>Project Na | : 2015<br>me: Long Island Railroad<br>Island Park Substation | Boring No.: IPSB-22<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |          |
|------------------------------------------------------------|--------------------------|---------------------|-----------------------|----------------------|--------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|----------|
| Drilling Q                                                 | Contr                    | actor:              | LAWES                 |                      | Geologist:               | Albert Albano                                                | Boring Completion Depth: 4                                               | •        |
| Driller:                                                   | J. W.                    | Palmer              |                       |                      | Drilling Me              | thod: Direct Push                                            | Ground Surface Elevation: -                                              | -        |
| Drill Rig:                                                 | Geo                      | probe               |                       |                      | Drive Ham                | mer Weight: NA                                               | Boring Diameter: 1"                                                      |          |
| Date Sta                                                   | rted:                    | 01/29/              | 03                    |                      | Date Comp                | leted: 01/29/03                                              | Samples were collected in 2' in                                          | tervals. |
|                                                            |                          | Soil Sa             | ample                 | Mercury              |                          |                                                              |                                                                          |          |
| ļ                                                          |                          |                     |                       | Vapor                | ionization               |                                                              |                                                                          | 1        |
| Depth                                                      |                          |                     | Rec.                  |                      | Detector                 | Sample                                                       | Description                                                              | USCS     |
| <u>(ft.)</u>                                               | _                        | Туре                | (inches)              | (mg/m <sup>3</sup> ) | (ppm)                    |                                                              |                                                                          |          |
| 0' - 2'                                                    | 1                        | GP                  | 24                    | .005                 | 0.9                      | 0-4" Asphalt                                                 |                                                                          |          |
| 2' - 4'                                                    | 2                        | GP                  | 24                    | <b>.005</b> .        | 0.9                      | 4 -2 - Black/brown sand f<br>Same                            | ill material with coal fragments                                         |          |
|                                                            |                          |                     |                       |                      |                          |                                                              |                                                                          |          |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Cor | t Spor<br>d Aug<br>oprob | on<br>jer<br>e Samp | bler                  |                      |                          |                                                              | vals were analyzed for UIC cons<br>CRA metals, and TPHs).                | tituents |

| d                    |        | <u>an</u> | virka<br>d<br>Irtilucc | -i         | Project No<br>Project Na | me: Lor  | 5<br>ng Island Railroad<br>Ind Park Substation     | Boring No.: IPSB-23<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |          |  |
|----------------------|--------|-----------|------------------------|------------|--------------------------|----------|----------------------------------------------------|--------------------------------------------------------------------------|----------|--|
|                      | $\sim$ | CONS      | ULTING ENG             |            |                          |          |                                                    |                                                                          |          |  |
| Drilling (           |        |           |                        |            | Geologist:               |          |                                                    | Boring Completion Depth: 4                                               |          |  |
| Driller: 、           | J. W.  | Palmer    | •                      |            | Drilling Me              |          |                                                    | Ground Surface Elevation:                                                | - (      |  |
| Drill Rig:           | Geo    | probe     |                        |            | Drive Ham                |          | -                                                  | Boring Diameter: 1"                                                      | 1        |  |
| Date Sta             | rted:  | 01/29/    | 03                     |            | Date Comp                | pleted:  | 01/29/03                                           | Samples were collected in 2' in                                          | tervals. |  |
|                      |        | Soil Sa   | ample                  | Mercury    | Photo-                   | }        |                                                    |                                                                          |          |  |
| ļ                    |        |           | ·····                  | Vapor      | ionization               | }        |                                                    |                                                                          |          |  |
| Depth                |        |           | Rec.                   | 3          | Detector                 | {        | Sample                                             | Description                                                              | USCS     |  |
| (ft.)                |        | Туре      | (inches)               | $(mg/m^3)$ |                          |          |                                                    |                                                                          |          |  |
| 0' - 2'              | 1      | GP        | 24                     | .021       | 0.0                      |          | stained fill material, i<br>ns of tan sand, with ( |                                                                          | 1        |  |
| Į                    |        |           |                        |            | 1                        | Section  | ns or lan sand, with                               | 20ai mayments                                                            |          |  |
|                      |        |           |                        |            |                          | {        |                                                    |                                                                          |          |  |
| 2' - 4'              | 2      | GP        | 24                     | .021       | 1.8                      | Same     |                                                    |                                                                          |          |  |
|                      |        |           |                        |            |                          | <b>!</b> |                                                    |                                                                          |          |  |
| į i                  | 1      |           |                        |            |                          | 1        |                                                    |                                                                          |          |  |
| <b>[</b>             |        |           |                        |            |                          | <b>{</b> |                                                    |                                                                          |          |  |
| 1                    |        |           |                        |            | ł                        | 1        |                                                    |                                                                          |          |  |
| ļ                    |        |           |                        |            |                          | (        |                                                    |                                                                          |          |  |
|                      |        |           |                        |            |                          | ł        |                                                    |                                                                          |          |  |
|                      |        |           |                        |            | {                        | ļ        |                                                    |                                                                          |          |  |
| }                    |        |           |                        |            |                          | ł        |                                                    |                                                                          |          |  |
| ļ                    |        |           |                        |            |                          | 1        |                                                    |                                                                          |          |  |
|                      |        |           |                        |            |                          | {        |                                                    |                                                                          |          |  |
|                      |        |           |                        |            | ]                        | ł        |                                                    |                                                                          |          |  |
| ſ                    |        |           |                        |            |                          | 1        |                                                    |                                                                          |          |  |
| Į .                  |        |           |                        |            | ]                        | Į        |                                                    |                                                                          |          |  |
|                      |        |           |                        |            |                          | }        |                                                    |                                                                          |          |  |
|                      |        |           |                        |            |                          | ł        |                                                    |                                                                          |          |  |
|                      |        |           |                        |            |                          | }        |                                                    |                                                                          |          |  |
| 1                    |        |           |                        |            |                          | 1        |                                                    |                                                                          | 1 1      |  |
|                      |        |           | 1                      |            |                          |          |                                                    |                                                                          |          |  |
|                      |        |           |                        |            |                          | · ·      |                                                    |                                                                          |          |  |
|                      |        |           |                        |            |                          |          |                                                    |                                                                          |          |  |
|                      |        |           |                        |            |                          | ł        |                                                    |                                                                          | } 1      |  |
| 1                    |        |           |                        |            |                          | ļ        |                                                    |                                                                          | ( l      |  |
| <b>(</b>             |        |           |                        |            |                          |          |                                                    |                                                                          |          |  |
| 1                    |        |           |                        |            |                          | 1        |                                                    |                                                                          |          |  |
|                      |        |           |                        |            |                          | ł        |                                                    |                                                                          |          |  |
|                      |        |           |                        |            | <u> </u>                 |          |                                                    |                                                                          |          |  |
| Sample               |        |           |                        |            |                          |          | NOTES:                                             |                                                                          |          |  |
| SS = Spli            |        |           |                        |            |                          |          |                                                    | vals were analyzed for UIC cons                                          | tituents |  |
| HA = Har             |        |           | I                      |            |                          |          | (VOUS, SVOUS, RU                                   | RA metals, and TPHs).                                                    |          |  |
| GP = Geo<br>CC = Cor |        |           | pier                   |            |                          |          | Mercury readings a                                 | opear to be false positives due to                                       |          |  |
| 00 - 00              | icrete | e core    |                        |            |                          |          |                                                    | sulfide interference from the soil.                                      |          |  |
| }                    |        |           |                        |            |                          |          | . ,                                                |                                                                          |          |  |
|                      |        |           |                        |            |                          |          |                                                    |                                                                          |          |  |

n.

...

| d                                                          |                              | <u>an</u>           | rirka<br>d<br>Irtilucc | NEERS                        | Project No<br>Project Na | .: 2015<br>me: Long Island Railroad<br>Island Park Substation | Boring No.: IPSB-24<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                                             |          |  |  |
|------------------------------------------------------------|------------------------------|---------------------|------------------------|------------------------------|--------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| Drilling (                                                 |                              | actor:              |                        |                              | -                        | Albert Albano                                                 | Boring Completion Depth: 4                                                                                                           |          |  |  |
| Driller: J<br>Drill Rig:                                   |                              |                     |                        |                              | -                        | thod: Direct Push<br>mer Weight: NA                           | Ground Surface Elevation: •<br>Boring Diameter: 1"                                                                                   | ation:   |  |  |
| Date Sta                                                   |                              | •                   | 03                     |                              |                          | bleted: 01/29/03                                              | Samples were collected in 2' ir                                                                                                      | tervals. |  |  |
|                                                            | Soil Sample Mercury<br>Vapor |                     |                        | Mercury<br>Vapor             | Photo-<br>ionization     |                                                               |                                                                                                                                      |          |  |  |
| Depth                                                      |                              |                     | Rec.                   |                              | Detector                 | Sample                                                        | Description                                                                                                                          | USCS     |  |  |
| (ft.)<br>0' - 2'                                           | No.<br>1                     | <b>Type</b><br>GP   | (inches)<br>24         | (mg/m <sup>3</sup> )<br>.024 | (ppm)<br>1.8             | Tan/brown fine to coarse s                                    |                                                                                                                                      |          |  |  |
| 2' - 4'                                                    | 2                            | GP                  | 24                     | .024                         | 1.8                      | Same                                                          | ·                                                                                                                                    |          |  |  |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Con | Spo<br>d Au<br>prob          | on<br>ger<br>e Samp | bler                   |                              |                          | (VOCs, SVOCs, RC<br>Mercury readings ap                       | rals were analyzed for UIC cons<br>RA metals, and TPHs).<br>opear to be false positives due to<br>sulfide interference from the soil | o        |  |  |

(in

.

¥

ž

| d                                                         |                         | an                  | rirka<br>d<br>rtilucc | NEERS                         | Project No.:       2015       Boring No.:       IPSB-25         Project Name:       Long Island Railroad       Sheet 1 of 1 .         Island Park Substation       By:       Albert Albano |                                                            |                                                                                                                                        |      |
|-----------------------------------------------------------|-------------------------|---------------------|-----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------|
| Drilling (                                                | Contr                   |                     |                       |                               | Geologist: Albert Albano Boring Completion Depth: 4                                                                                                                                        |                                                            |                                                                                                                                        | •    |
| Driller: J                                                | .W. F                   | Palmer              |                       |                               | <b>Drilling Me</b>                                                                                                                                                                         | thod: Direct Push                                          | Ground Surface Elevation: -                                                                                                            | -    |
| Drill Rig:                                                |                         |                     |                       |                               | Drive Ham                                                                                                                                                                                  | mer Weight: NA                                             | Boring Diameter: 1"                                                                                                                    |      |
| Date Sta                                                  |                         | •                   | 03                    |                               |                                                                                                                                                                                            | ate Completed: 01/29/03 Samples were collected in 2' inter |                                                                                                                                        |      |
|                                                           | _                       | Soil Sa             |                       | Mercury                       |                                                                                                                                                                                            |                                                            |                                                                                                                                        |      |
|                                                           |                         |                     |                       | Vapor                         | ionization                                                                                                                                                                                 |                                                            |                                                                                                                                        |      |
| Depth                                                     |                         |                     | Rec.                  |                               | Detector                                                                                                                                                                                   | Sample                                                     | Description                                                                                                                            | USCS |
| (ft.)                                                     | No.                     | Туре                | (inches)              | ( <b>mg/</b> m <sup>3</sup> ) | (ppm)                                                                                                                                                                                      |                                                            |                                                                                                                                        |      |
| 0' - 2'                                                   | 1                       | GP                  | 24                    | .210                          | 1.4                                                                                                                                                                                        | Black/brown/tan medium s<br>agglomerations of tan stiff    |                                                                                                                                        |      |
| 2' - 4'                                                   | 2                       | GP                  | 24                    | .210                          | 1.0                                                                                                                                                                                        | Same                                                       |                                                                                                                                        |      |
|                                                           |                         |                     |                       |                               |                                                                                                                                                                                            |                                                            |                                                                                                                                        |      |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>Id Au<br>oprob | on<br>ger<br>e Samj | pler                  |                               |                                                                                                                                                                                            | (VOCs, SVOCs, RO<br>Mercury readings a                     | vals were analyzed for UIC cons<br>CRA metals, and TPHs).<br>ppear to be false positives due to<br>sulfide interference from the soil. | 0    |

F

--;

2

| d                                                          |                                  | an                              | rirka<br>d<br>rtilucc | NEERS                | Project No.<br>Project Na | : 2015<br>me: Long Island Railroad<br>Island Park Substation | Boring No.: IPSB-26<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                                      |          |  |
|------------------------------------------------------------|----------------------------------|---------------------------------|-----------------------|----------------------|---------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------|--|
| Drilling (                                                 | Contr                            |                                 |                       |                      | Geologist:                | Albert Albano                                                | Boring Completion Depth: 4                                                                                                    | ,        |  |
| Driller: J                                                 | ).W. F                           | Palmer                          |                       |                      | <b>Drilling Me</b>        | thod: Hand Auger                                             | Ground Surface Elevation: -                                                                                                   | ~        |  |
| Drill Rig:                                                 |                                  |                                 |                       |                      | Drive Ham                 | mer Weight: NA                                               | Boring Diameter: 1"                                                                                                           |          |  |
| Date Sta                                                   | rted:                            | 01/30/                          | 03                    |                      | Date Comp                 | leted: 01/30/03                                              | Samples were collected in 2' in                                                                                               | tervals. |  |
|                                                            |                                  | Soil Sa                         | ample                 | Mercury<br>Vapor     | Photo-<br>ionization      |                                                              | · · · ·                                                                                                                       |          |  |
| Depth                                                      | Rec. Detector Sample Description |                                 | Description           | USCS                 |                           |                                                              |                                                                                                                               |          |  |
| (ft.)                                                      | No.                              | Туре                            | (inches)              | (mg/m <sup>3</sup> ) | (ppm)                     |                                                              | ·                                                                                                                             |          |  |
| 0' - 2'<br>2' - 4'                                         | 1                                | HA<br>HA                        | 24                    | .008<br>.008         | 0.0                       | Tan/reddish-brown sand fil<br>Gray/black-stained sand, n     |                                                                                                                               |          |  |
|                                                            |                                  |                                 |                       |                      |                           |                                                              |                                                                                                                               |          |  |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Con | Spo<br>d Au<br>prob              | on<br>ger<br>e Sam <sub>l</sub> | bler                  |                      |                           | SVOCs, PCBs, and<br>Mercury readings a                       | rom 0-2", 0-2', and 2-4' for analy<br>RCRA metals.<br>opear to be false positives due t<br>sulfide interference from the soil | o        |  |

÷

ţ

ĩ

| d                                                         |                              | an                  | rirka<br>d<br>Irtilucc | ;i<br>NEERS          | Project No.<br>Project Na | : 2015<br>me: Long Island Railroad<br>Island Park Substation | Boring No.: IPSB-27<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                   |         |  |
|-----------------------------------------------------------|------------------------------|---------------------|------------------------|----------------------|---------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------|--|
| Drilling (<br>Driller: J<br>Drill Rig:                    | J.W. F                       | actor:              |                        |                      | Drilling Me               | Albert Albano<br>thod: Hand Auger<br>mer Weight: NA          |                                                                                                            |         |  |
| -                                                         |                              | 01/20/              | 10.2                   |                      |                           | bleted: 01/30/03                                             | Samples were collected in 2' in                                                                            | tervals |  |
| Date Sta                                                  |                              |                     |                        | Mercury              |                           |                                                              | Camples were conceled in 2 in                                                                              |         |  |
| }                                                         | Soil Sample Mercury<br>Vapor |                     |                        | -                    | ionization                |                                                              |                                                                                                            |         |  |
| Depth                                                     |                              |                     | Rec.                   | Tapor                | Detector                  | <br>  Sample                                                 | Description                                                                                                | uscs    |  |
| (ft.)                                                     | No.                          | Туре                | (inches)               | (mg/m <sup>3</sup> ) | (ppm)                     |                                                              |                                                                                                            |         |  |
| 0' - 2'                                                   | 1                            | HA                  | 24                     | .008                 | 0.0                       | Brown/tan/red sand                                           |                                                                                                            |         |  |
| 2' - 4'                                                   | 2                            | НА                  | 24                     | .008                 | 0.0                       | Gray silty sand, wet                                         |                                                                                                            |         |  |
|                                                           |                              |                     |                        |                      |                           |                                                              |                                                                                                            |         |  |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob      | on<br>ger<br>e Samj | pler                   |                      |                           | RCRA metals.<br>Mercury readings a                           | cted for analysis of SVOCs, PCE<br>ppear to be false positives due t<br>sulfide interference from the soil | 0       |  |

- ^ >

| d                                                         |                         |                     | TTILLCO  | NEERS                |            | me: Long Island Railroad<br>Island Park Substation                                                                                    | <u> </u>                                                                                                |          |
|-----------------------------------------------------------|-------------------------|---------------------|----------|----------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|
| Drilling (                                                |                         |                     |          |                      | -          | Albert Albano                                                                                                                         | Boring Completion Depth: 4                                                                              |          |
| Driller: J                                                |                         |                     | •        |                      |            | thod: Direct Push                                                                                                                     | Ground Surface Elevation: -                                                                             |          |
| Drill Rig:                                                |                         | -                   |          |                      |            | me <b>r Weight:</b> NA                                                                                                                | Boring Diameter: 1"                                                                                     | ľ        |
| Date Sta                                                  |                         |                     |          |                      |            | leted: 01/30/03                                                                                                                       | Samples were collected in 2' in                                                                         | tervals. |
|                                                           |                         | Soil Sa             | -        | Mercury<br>Vapor     | ionization |                                                                                                                                       |                                                                                                         |          |
| Depth                                                     |                         | _                   | Rec.     |                      | Detector   | Sample                                                                                                                                | Description                                                                                             | USCS     |
| (ft.)                                                     | _                       | Туре                | (inches) | (mg/m <sup>3</sup> ) | (ppm)      |                                                                                                                                       | · •                                                                                                     |          |
| 0' - 2'<br>2' - 4'                                        | 1<br>2                  | GP<br>GP            | 24<br>24 | .013<br>.012         | 0.2        | <ul> <li>0-1' Black sand, heavy ro</li> <li>1-2' Tan sand with quartz</li> <li>2-3' Same</li> <li>3-4' Tan/brown very fine</li> </ul> | z rock                                                                                                  |          |
| <b>Ca</b>                                                 |                         |                     |          |                      |            |                                                                                                                                       |                                                                                                         |          |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>Id Au<br>oprob | on<br>ger<br>e Samj | pler     |                      |            | and RCRA metals.<br>Mercury readings a                                                                                                | vals were analyzed for SVOCs,<br>ppear to be false positives due f<br>sulfide interference from the soi | o        |

ſ

÷

| Drilling (<br>Driller:<br>Drill Rig:<br>Date Sta        | J.W. I<br>;<br>rted:    | an<br>Ba<br>cons<br>actor:<br>Palmer   | ULTING ENGI<br>LAWES | NEERS<br>Mercury<br>Vapor | Geologist:<br>Drilling Me<br>Drive Hamı<br>Date Comp | : 2015<br>ne: Long Island Railroad<br>Island Park Substation<br>Albert Albano<br>thod: Hand Auger<br>ner Weight: NA<br>Ileted: 01/28/03 | Boring No.: IPSB-29<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano<br>Boring Completion Depth: 4<br>Ground Surface Elevation: -<br>Boring Diameter: 1"<br>Samples were collected in <u>2</u> ' in |       |
|---------------------------------------------------------|-------------------------|----------------------------------------|----------------------|---------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Depth                                                   | Rec.                    |                                        |                      | , vapoi                   | Detector                                             | Sample                                                                                                                                  | Description                                                                                                                                                                                             | uscs  |
| (ft.)                                                   | No.                     | No. Type (inches) (mg/m <sup>3</sup> ) |                      |                           | (ppm)                                                |                                                                                                                                         |                                                                                                                                                                                                         |       |
| 0' - 2'                                                 | 1                       | HA                                     | 24                   | .000                      | 0.0                                                  | Tan fine silty sand                                                                                                                     |                                                                                                                                                                                                         |       |
| 2' - 4'<br>Sample 1                                     | 2                       | HA                                     | 24                   | .000                      | 0.0                                                  | Tan medium sand, moist                                                                                                                  |                                                                                                                                                                                                         |       |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam                     | pler                 |                           |                                                      |                                                                                                                                         | vals were analyzed for SVOCs, I                                                                                                                                                                         | PCBs, |

....

| d                                                          |                         | <u>an</u>           | irka<br>d<br>rtilucc | NEERS      | -           | Project No.:       2015       Boring No.:       IPSBX-01         Project Name:       Long Island RailRoad       Sheet 1 of 1 .         Island Park Substation       By:       Albert Albano |                                                                                                                        |         |
|------------------------------------------------------------|-------------------------|---------------------|----------------------|------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------|
| Drilling (<br>Driller: (<br>Drill Rig:                     | Carl F                  | ederso              |                      | _          | Drilling Me | eologist: Albert AlbanoBoring Completion Depth: 20'rilling Method: Direct PushGround Surface Elevation:rive Hammer Weight: NABoring Diameter: 1"                                            |                                                                                                                        |         |
| Date Sta                                                   |                         | •                   | 03                   |            |             | bleted: 01/27/03                                                                                                                                                                            | Samples were collected in 2' in                                                                                        | tervals |
| Date ota                                                   |                         | Soil Sa             |                      | Mercury    |             |                                                                                                                                                                                             |                                                                                                                        |         |
|                                                            | Vapor                   |                     |                      |            | ionization  |                                                                                                                                                                                             |                                                                                                                        |         |
| Depth                                                      |                         | -                   | Rec.                 | 3          | Detector    | Sample                                                                                                                                                                                      | Description                                                                                                            | USCS    |
| (ft.)                                                      | No.                     | Type                | (inches)             | $(mg/m^3)$ | (ppm)       | A.F. Deck and concerts                                                                                                                                                                      |                                                                                                                        | ·       |
| 4' - 6'                                                    | 1                       | GP                  | 24                   | .005       | 0.0         | 4-5' – Rock and concrete<br>5-6' – Gray medium sand v                                                                                                                                       | vith shell remnants                                                                                                    |         |
| 6' - 8'                                                    | 2                       | GP                  | 12                   | .005       | 0.0         | 6-7' No recovery<br>7-8' Gray medium sand v<br>(grass, roots)                                                                                                                               | with peat material/organics                                                                                            |         |
| 8' - 10'                                                   | . 3                     | GP                  | 24                   | .007       | 0.0         | Black, brown and green pe                                                                                                                                                                   | at material, spongy, ogranics                                                                                          |         |
| 10' - 12'                                                  | 4                       | GP                  | 24                   | .007       | 0.0         | Same, but moist to wet                                                                                                                                                                      |                                                                                                                        |         |
| 12' - 14'                                                  | 5                       | GP                  | 18                   | .006       | 0.0         | Same                                                                                                                                                                                        |                                                                                                                        |         |
| 14' - 16'                                                  | 6                       | GP                  | 18                   | .000       | 0.0         | Same                                                                                                                                                                                        |                                                                                                                        |         |
| 16' - 18'                                                  | 7                       | GP                  | 24                   | .006       | 0.0         | Same                                                                                                                                                                                        |                                                                                                                        |         |
| 18' - 20'                                                  | 8                       | GP                  | 24                   | .003       | 0.0         | 18-19' – Same<br>19-20' – Gray medium to c                                                                                                                                                  | oarse sand, wet.                                                                                                       |         |
| Sample 1<br>SS = Split<br>HA = Har<br>GP = Gec<br>CC = Cor | t Spo<br>Id Au<br>oprob | on<br>ger<br>e Samj | bler                 | L          | L           | PCBs, and RCRA m<br>Mercury readings a                                                                                                                                                      | s collected for analysis of SVOC<br>netals.<br>ppear to be false positives due t<br>sulfide interference from the soil | o       |

|                                                            | 1                   | Dν                                           | <b>irka</b>                           |                  | Project No         |                                                                                                                | Boring No.: IPSBX-02                | -    |  |  |
|------------------------------------------------------------|---------------------|----------------------------------------------|---------------------------------------|------------------|--------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|------|--|--|
|                                                            |                     | an                                           | -                                     |                  | Project Na         | me: Long Island Railroad                                                                                       | Sheet <u>1</u> of <u>1</u> .        |      |  |  |
|                                                            | $\sum$              | <b>\                                    </b> | u<br>I <b>rtiluco</b><br>Sulting Engl | NEERS            |                    | Island Park Substation                                                                                         | By: Albert Albano                   |      |  |  |
| Drilling C                                                 | Contr               | actor:                                       |                                       |                  | Geologist:         | Albert Albano                                                                                                  | Boring Completion Depth: 2          | 0'   |  |  |
| Driller: J                                                 | . W.                | Palmer                                       |                                       |                  | <b>Drilling Me</b> | Drilling Method: Direct Push Ground Surface Elevation:                                                         |                                     |      |  |  |
| Drill Rig:                                                 | Geo                 | probe                                        |                                       |                  | Drive Ham          | mer Weight: NA                                                                                                 | Boring Diameter: 1"                 |      |  |  |
| Date Star                                                  |                     | •                                            | 03                                    |                  | Date Comr          | ate Completed: 01/28/03 Samples were collected in 2' interv                                                    |                                     |      |  |  |
|                                                            | _                   | Soil Sa                                      |                                       | Mercury          | Photo-             |                                                                                                                | ·                                   | 1    |  |  |
|                                                            | Vapor               |                                              |                                       | -                | ionization         |                                                                                                                |                                     | ł.   |  |  |
| Depth                                                      |                     |                                              | Rec.                                  |                  | Detector           | Sample                                                                                                         | Description                         | USCS |  |  |
| (ft.)                                                      | No.                 | Туре                                         | (inches)                              | $(mg/m^3)$       | (ppm)              |                                                                                                                |                                     |      |  |  |
| 4' - 6'                                                    | 1                   | GP                                           | 24                                    | .000             | 0.0                | 4-4.5' - Gray fine to mediu                                                                                    |                                     |      |  |  |
|                                                            |                     |                                              |                                       |                  |                    | 4.5-5' - 3" layer of shell re                                                                                  |                                     | }    |  |  |
| } {                                                        |                     |                                              |                                       |                  |                    | 5-6' – Black clay mixed wit                                                                                    | h shell remnants                    | {    |  |  |
| 6' - 8'                                                    | 2                   | GP                                           | 24                                    | .00 <del>9</del> | 0.0                | Black/brown soft pliable cla                                                                                   | ay, hydrogen sulfide odor           |      |  |  |
| 8' - 10'                                                   | 3                   | GP                                           | 24                                    | .014             | 0.0                | 0.0 <b>8-9.5' - Gray v</b> ery fine silty sand.<br>9.5-10' – Black/brown peat material/organics (grass, roots) |                                     |      |  |  |
| 10' - 12'                                                  | 4                   | GP                                           | 24                                    | .005             | 0.0                | Gray very fine silty sand, s                                                                                   | aturated                            |      |  |  |
| 12' - 14'                                                  | 5                   | GP                                           | 24                                    | .005             | 0.0                | 12-13' Same<br>13-14' Black/brown peat                                                                         | material                            |      |  |  |
| 14' - 16'                                                  | 6                   | GP                                           | 24                                    | .005             | 0.0                | 14-15' – Same<br>15-16' – Gray very fine silt                                                                  | y sand                              |      |  |  |
| 16' - 18'                                                  | 7                   | GP                                           | 24                                    | .005             | 0.0                | Same                                                                                                           |                                     |      |  |  |
| 18' - 20'                                                  | 8                   | GΡ                                           | 24                                    | .005             | 0.0                | 18-19' – Black/brown peat<br>19-20' – Gray very fine sar                                                       |                                     |      |  |  |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Con | Spo<br>d Au<br>prob | on<br>ger<br>e Samp                          | bler                                  |                  |                    | PCBs, and RCRA n<br>Mercury readings a                                                                         | ppear to be false positives due to  | D    |  |  |
| ·                                                          |                     |                                              |                                       |                  |                    | possible hydrogen s                                                                                            | sulfide interference from the soil. |      |  |  |

5

،----، :

÷Ę

÷

|                                                | 7                        | Dv                  | irka     |                      | Project No                                             |                                                                     | Boring No.: IPSBX-03                                                   | _       |
|------------------------------------------------|--------------------------|---------------------|----------|----------------------|--------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|---------|
|                                                | 6                        | an                  | -        |                      | Project Na                                             | me: Long Island Railroad                                            | Sheet <u>1</u> of <u>1</u> .                                           |         |
| Q                                              | $\sum$                   | ))Ba                | TTILLCO  | NEERS                |                                                        | Island Park Substation                                              | By: Albert Albano                                                      |         |
| Drilling (                                     | Contr                    | actor:              | LAWES    |                      | Geologist: Albert Albano Boring Completion Depth: 2    |                                                                     |                                                                        | )'      |
| Driller: J                                     | .W. I                    | Palmer              |          |                      | Drilling Method: Direct Push Ground Surface Elevation: |                                                                     |                                                                        | -       |
| Drill Rig:                                     | Geo                      | oprobe              |          |                      | Drive Ham                                              | Drive Hammer Weight: NA Boring Diameter: 1"                         |                                                                        |         |
| Date Sta                                       | rted:                    | 01/28               | 03       |                      |                                                        | pleted: 01/28/03                                                    | Samples were collected in 2' int                                       | ervals. |
|                                                |                          | Soil Sa             | ample    | Mercury              | Photo-                                                 |                                                                     |                                                                        |         |
|                                                | Vapor                    |                     |          | Vapor                | ionization                                             |                                                                     |                                                                        |         |
| Depth                                          |                          |                     | Rec.     |                      | Detector                                               | Sample                                                              | Description                                                            | USCS    |
| (ft.)                                          | No.                      | Туре                | (inches) | (mg/m <sup>3</sup> ) | (ppm)                                                  |                                                                     |                                                                        |         |
| 6' - 8'                                        | 1                        | GP                  | 24       | .006                 | 0.0                                                    | 6-7.5 – Black silty clay, sof<br>7.5-8 – Gray very fine, very       |                                                                        |         |
| 8' - 10'                                       | 2                        | GP                  | 24       | .005                 | 0.0                                                    | 8-9' Same<br>9-10' Brown peat materia<br>spongy, hydrogen sulfide o |                                                                        |         |
| .10' - 12'                                     | 3                        | GP                  | 24       | .005                 | 0.0                                                    | Gray very fine silty sand, si<br>sulfide odors                      | upersaturated, hydrogen                                                |         |
| 12' - 14'                                      | 4                        | GP                  | 24       | .006                 | 0.0                                                    | Brown peat material, orgar                                          | nics, hydrogen sulfide odors                                           |         |
| 14' - 16'                                      | 5                        | GP                  | 24       | .006                 | 0.0                                                    | 14-14.5' – Peat material<br>14.5-16' – Gray fine to very            | y coarse silty sand                                                    |         |
| 16' - 18'                                      | 6                        | GP                  | 24       | .006                 | 0.0                                                    | Same                                                                |                                                                        |         |
| 18' - 20'                                      | 7                        | GP                  | 24       | .006                 | 0.0                                                    | 18-19' – Peat material with<br>19-20' – Tan and brown m             |                                                                        |         |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo | t Spo<br>Id Au<br>Isprob | on<br>ger<br>e Samj | pler     | L                    | <u> </u>                                               | PCBs, and RCRA n                                                    |                                                                        |         |
| CC = Cor                                       | crete                    | e Core              |          |                      |                                                        |                                                                     | ppear to be false positives due to sulfide interference from the soil. |         |

77

|                                                | 7              | Dv        | virka          |                      | Project No           |                                                                                                                           | 1 <del>-</del>                                                           |          |  |
|------------------------------------------------|----------------|-----------|----------------|----------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------|--|
|                                                | ·              | h an      | d              |                      | Project Na           | me: Long Island Railroad                                                                                                  | Sheet <u>1</u> of <u>1</u> .                                             |          |  |
| Q                                              | $\sum_{n}$     | ))Ba      | <b>TTILUCO</b> |                      |                      | Island Park Substation By: Albert Albano                                                                                  |                                                                          |          |  |
| Drilling                                       | Contr          | actor:    | LAWES          |                      | Geologist:           | Albert Albano                                                                                                             | Boring Completion Depth: 2                                               | 0'       |  |
| Driller:                                       | J.W. 1         | Palmer    |                |                      | Drilling Me          | thod: Direct Push                                                                                                         | Ground Surface Elevation: -                                              |          |  |
| Drill Rig                                      | : Geo          | oprobe    |                |                      | Drive Ham            | mer Weight: NA                                                                                                            | Boring Diameter: 1"                                                      |          |  |
| Date Sta                                       | rted:          | 01/28     | /03            |                      | Date Comp            | oleted: 01/28/03                                                                                                          | Samples were collected in 2' in                                          | tervals. |  |
|                                                |                |           |                | Mercury<br>Vapor     | Photo-<br>ionization |                                                                                                                           |                                                                          |          |  |
| Depth                                          |                |           | Rec.           | 1                    | Detector             | Sample                                                                                                                    | Description                                                              | USCS     |  |
| (ft.)                                          | No.            | Туре      | (inches)       | (mg/m <sup>3</sup> ) | (ppm)                |                                                                                                                           |                                                                          |          |  |
| 4' - 6'                                        | 1              | GP        | 24             | .006                 | 0.0                  | Brown medium silty sand,                                                                                                  | some clay                                                                |          |  |
| 6' - 8'                                        | 2              | GP        | 24             | .304                 | 0.0                  | Brown/black silty clay, stiff<br>odors                                                                                    | <b>yet pliable</b> , hydrogen sulfide                                    |          |  |
| 8' - 10'                                       | 3              | GP        | 24             | .005                 | 0.0                  | 0.0 8-9' – Gray very fine silty sand, hydrogen sulfide odors<br>9-10' – Black/brown peat material/organics (grass, roots) |                                                                          |          |  |
| 10' - 12'                                      | 4              | GP        | 24             | .005                 | 0.0                  | Gray very fine silty sand                                                                                                 |                                                                          |          |  |
| 12' - 14'                                      | 5              | GP        | 24             | .005                 | 0.0                  | 12-12.5' – Same<br>12.5-14' – Black/brown pea                                                                             | at material                                                              |          |  |
| 14' - 16'                                      | 6              | GP        | 24             | .005                 | 0.0                  | Gray medium to very coars                                                                                                 | se slity sand                                                            |          |  |
| 16' - 18'                                      | 7              | GP        | 24             | .005                 | 0.0                  | Same                                                                                                                      |                                                                          |          |  |
| 18' - 20'                                      | 8              | GP        | 24             | .006                 | 0.0                  | Same                                                                                                                      |                                                                          |          |  |
|                                                |                |           |                |                      |                      |                                                                                                                           |                                                                          |          |  |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo | t Spo<br>Id Au | on<br>ger | bler           |                      |                      | NOTES:<br>All sampled interval:<br>PCBs, and RCRA m                                                                       | s collected for analysis of SVOC<br>netals.                              | s,       |  |
| CC = Con                                       |                |           |                |                      |                      |                                                                                                                           | opear to be false positives due to<br>ulfide interference from the soil. |          |  |

...

-

;

Ŧ.

| d                                  |                      | ) an<br>Ba | TTILLCC | NEERS                | Project Na             | oject No.: 2015<br>oject Name: Long Island Railroad<br>Island Park Substation<br>Boring No.: IPSBX-05<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |                                                                                 |          |  |  |
|------------------------------------|----------------------|------------|---------|----------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------|--|--|
| Drilling (<br>Driller: E           |                      | actor:     | LAWES   |                      | Drilling Me            | Albert Albano<br>thod: Direct Push                                                                                                                         | Boring Completion Depth: 20<br>Ground Surface Elevation:                        |          |  |  |
| Drill Rig:                         |                      | •          |         |                      |                        | mmer Weight: NA Boring Diameter: 1"                                                                                                                        |                                                                                 |          |  |  |
| Date Sta                           |                      |            |         |                      | <u>`</u>               | leted: 01/23/03                                                                                                                                            | Samples were collected in 2' in                                                 | tervals. |  |  |
|                                    |                      | Soil Sa    | ample   | Mercury              |                        |                                                                                                                                                            |                                                                                 |          |  |  |
| Danth                              |                      |            | Dee     | Vapor                | ionization<br>Detector |                                                                                                                                                            | Description                                                                     | uscs     |  |  |
| Depth<br>(ft.)                     |                      |            |         | (malm <sup>3</sup> ) | (ppm)                  | Sample                                                                                                                                                     | Description                                                                     | 0303     |  |  |
| 10' - 12'                          | 1                    | GP         | 24      | .125                 | 0.0                    | Black neat material and or                                                                                                                                 | ganics (grass, roots), heavy                                                    |          |  |  |
| 10 - 12                            |                      | Or         | 24      | . 120                | 0.0                    | hydrogen sulfide odors                                                                                                                                     | yanics (yrass, 10013), ficavy                                                   |          |  |  |
| 12' - 14'                          | 2                    | GP         | 24      | N/A                  | 0.0                    | Same                                                                                                                                                       |                                                                                 |          |  |  |
| 14' - 16'                          | 3                    | GP         | 24      | N/A                  | 0.0                    | Gray medium to coarse sa                                                                                                                                   | nd, wet                                                                         |          |  |  |
| 16' - 18'                          | 4                    | GP         | 24      | N/A                  | 0.0                    | Same                                                                                                                                                       |                                                                                 |          |  |  |
| 18' - 20'                          | 5                    | GP         | 18      | N/A                  | 0.0                    | Gray fine sand, wet                                                                                                                                        |                                                                                 |          |  |  |
|                                    |                      |            |         |                      |                        |                                                                                                                                                            |                                                                                 |          |  |  |
|                                    |                      |            |         |                      |                        |                                                                                                                                                            |                                                                                 |          |  |  |
| Sample T                           | vpe                  | s:         |         |                      |                        | NOTES:                                                                                                                                                     |                                                                                 |          |  |  |
| SS = Split<br>HA = Han<br>GP = Geo | t Spo<br>Id Au       | on<br>ger  | bler    |                      |                        |                                                                                                                                                            | s collected for analysis of SVOC<br>netals.                                     | Ċs,      |  |  |
| <b>CC =</b> Con                    |                      |            |         |                      | ,                      |                                                                                                                                                            | ppear to be false positives due to<br>sulfide interference from the soil.       |          |  |  |
|                                    |                      |            |         |                      |                        |                                                                                                                                                            | <sup>st</sup> sample, Mercury meter needed<br>d not use it for remaining, deepe |          |  |  |
|                                    | N/A: Not applicable. |            |         |                      |                        |                                                                                                                                                            |                                                                                 |          |  |  |

F'

| d                                                          |                         | )<br>))<br>Ba       | virka<br>d<br>Irtilucc | i<br>NEERS           | Project No<br>Project Na | No.: 2015     Boring No.: IPSBX-06       Name: Long Island RailRoad     Sheet 1 of 1.       Island Park Substation     By: Albert Albano |                                                                                                                          |          |
|------------------------------------------------------------|-------------------------|---------------------|------------------------|----------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------|
| Drilling                                                   | Cont                    | ractor:             | LAWES                  |                      | Geologist:               | Albert Albano                                                                                                                            | Boring Completion Depth: 2                                                                                               | 0'       |
| Driller:                                                   | Carl F                  | Pederso             | n                      |                      | Drilling Me              | thod: Direct Push                                                                                                                        | Ground Surface Elevation: -                                                                                              |          |
| Drill Rig                                                  | : Ge                    | oprobe              |                        |                      | Drive Ham                | mer Weight: NA                                                                                                                           | Boring Diameter: 1"                                                                                                      |          |
| Date Sta                                                   | rted:                   | 01/27/              | 03                     |                      | Date Com                 | oleted: 01/27/03                                                                                                                         | Samples were collected in 2' in                                                                                          | tervals. |
|                                                            |                         | Soil Sa             | ample                  | Mercury              | Photo-                   | 1                                                                                                                                        |                                                                                                                          |          |
| l                                                          | Vapor                   |                     | ionization             |                      |                          | [                                                                                                                                        |                                                                                                                          |          |
| Depth                                                      |                         |                     | Rec.                   | {                    | Detector                 | Sample                                                                                                                                   | Description                                                                                                              | USCS     |
| (ft.)                                                      | No.                     | Type                | (inches)               | (mg/m <sup>3</sup> ) | (ppm)                    | -                                                                                                                                        | ·                                                                                                                        | }        |
| 4' - 6'<br>6' - 8'                                         | 1<br>2                  | GP<br>GP            | 18                     | .005                 | 0.0<br>3.7               | macro liner                                                                                                                              |                                                                                                                          |          |
| 8' - 10'                                                   | 3                       | GP                  | <br>18                 | .006                 | 0.0                      | 8-9.5' – Black/gray soft silt<br>9.5-10' – Gray fine sand                                                                                | y clay, a little stiff                                                                                                   |          |
| 10' - 12'                                                  | 4                       | GP                  | 18                     | .008                 | 0.0                      | Gray fine very silty sand, s                                                                                                             | aturated                                                                                                                 |          |
| 12' - 14'                                                  | 5                       | GP                  | 18                     | .009                 | 0.0                      | Gray fine to medium sand,<br>(peat material, grass, roots                                                                                |                                                                                                                          |          |
| 14' - 16'                                                  | 6                       | GP                  | 18                     | .005                 | 0.0                      | 14-15' – Peat material, stiff<br>15-16' – Gray fine to mediu<br>organics throughout                                                      |                                                                                                                          |          |
| 16' - 18'                                                  | 7                       | GP                  | 24                     | .012                 | 0. <b>0</b>              | Gray fine to medium sand,<br>throughout                                                                                                  | some peat and organics                                                                                                   |          |
| 18' - 20'                                                  | 8                       | GP                  | 24                     | .005                 | 0.0                      | Same                                                                                                                                     |                                                                                                                          |          |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Gec<br>CC = Cor | t Spo<br>Id Au<br>oprob | on<br>ger<br>e Samp | bler                   |                      |                          | PCBs, and RCRA m<br>Mercury readings ap                                                                                                  | s collected for analysis of SVOC<br>netals.<br>opear to be false positives due to<br>sulfide interference from the soil. | 0        |

.

-----

. ~

-

5

| d                                                          |                          | <u>an</u>           | rirka<br>d<br>rtilucc | , <b>i</b><br>NEERS | -                    | No.:       2015       Boring No.:       IPSBX-07         Name:       Long Island RailRoad       Sheet 1 of 1 .         Island Park Substation       By:       Albert Albano |                                                                                                                         |          |
|------------------------------------------------------------|--------------------------|---------------------|-----------------------|---------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------|
| Drilling (<br>Driller: (<br>Drill Rig:                     | Carl F                   | actor:<br>Pederso   | LAWES                 |                     | Drilling Me          | Albert AlbanoBoring Completion Depth: 20'ethod: Direct PushGround Surface Elevation:mer Weight: NABoring Diameter: 1"                                                       |                                                                                                                         |          |
| Date Sta                                                   | _                        |                     |                       |                     |                      | oleted: 01/27/03                                                                                                                                                            | Samples were collected in 2' in                                                                                         | tervals. |
|                                                            |                          | Soil Sa             | ample                 | Mercury             | Photo-<br>ionization |                                                                                                                                                                             |                                                                                                                         |          |
| Depth<br>(ft.)                                             | No.                      | Туре                | Rec.<br>(inches)      | Vapor<br>(mg/m³)    | Detector<br>(ppm)    | Sample                                                                                                                                                                      | Description                                                                                                             | USCS     |
| 4' - 6'                                                    | 1                        | GP                  | 24                    | .006                | 0.0                  | Gray fine sand, some peat<br>sporadic silty clay zones                                                                                                                      | material and shell remnants,                                                                                            |          |
| 6' - 8'                                                    | 8' 2 GP 24 .005 0.0 Gra  |                     |                       |                     |                      | Gray/black very fine silty s                                                                                                                                                | and, <b>shell</b> remnants, loose, wet                                                                                  |          |
| 8' - 10'                                                   | 3                        | GP                  | 24                    | .007                | 0.0                  | Gray clay, medium stiffnes                                                                                                                                                  | s, moist                                                                                                                |          |
| 10' - 12'                                                  | 4                        | GP                  | 24                    | .024                | 0.0                  | Gray very fine silty sand, s                                                                                                                                                | upersaturated                                                                                                           |          |
| 12' - 14'                                                  | 5                        | GP                  | 18                    | .017                | 0.0                  | Gray very fine silty sand wi<br>hydrogen sulfide odors                                                                                                                      | ith organic/peat material,                                                                                              |          |
| 14' - 16'                                                  | 6                        | GP                  | 18                    | .020                | 0.0                  | 14-15.5' — Same<br>15.5-16' — Gray medium sa                                                                                                                                | and                                                                                                                     |          |
| 16' - 18'                                                  | 7                        | GP                  | 18                    | .005                | 0.0                  | Gray fine to medium sand throughout                                                                                                                                         | with sporadic peat layers                                                                                               |          |
| 18' - 20'                                                  | 8                        | GP                  | 18                    | .005                | 0.0                  | Same                                                                                                                                                                        |                                                                                                                         |          |
| Sample 1<br>SS = Split<br>HA = Han<br>GP = Gec<br>CC = Cor | i Spo<br>Id Au<br>Isprob | on<br>ger<br>e Samj | bler                  | <u> </u>            |                      | PCBs, and RCRA r<br>Mercury readings a                                                                                                                                      | ls collected for analysis of SVOC<br>netals.<br>ppear to be false positives due t<br>sulfide interference from the soil | 0        |

;

ï

F

| d                                                          |                         | )<br>))<br>Ba       | virka<br>d<br>Irtilucc | NEERS   | Project No<br>Project Na | .: 2015<br>me: Long Island Railroad<br>Island Park Substation                    |                                                                                                                          |          |  |
|------------------------------------------------------------|-------------------------|---------------------|------------------------|---------|--------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------|--|
| Drilling (<br>Driller: 、<br>Drill Rig:                     | ). W.                   | Palmer              |                        |         | Drilling Me              | Albert Albano<br>ethod: Direct Push<br>mer Weight: NA                            | Boring Completion Depth: 20'<br>Ground Surface Elevation:<br>Boring Diameter: 1"                                         |          |  |
| Date Sta                                                   |                         | •                   | 03                     |         | <b>k</b>                 | oleted: 01/28/03                                                                 | Samples were collected in 2' in                                                                                          | tervals. |  |
|                                                            |                         | Soil Sa             | ample                  | Mercury |                          |                                                                                  |                                                                                                                          |          |  |
| Depth                                                      |                         | <b></b>             | Rec.                   | Vapor   | ionization<br>Detector   | Sample                                                                           | Description                                                                                                              | USCS     |  |
| (ft.)                                                      | No.                     | Туре                | (inches)               | (mg/m³) | (ppm)                    | l ogubie                                                                         | Description                                                                                                              | 0000     |  |
| 4' - 6'                                                    | 1                       | GP                  | 24                     | .007    | 0.0                      | 4-4.5' – Tan/brown/red fine<br>4.5-6 – Black fine very silty<br>medium stiffness |                                                                                                                          |          |  |
| 6' - 8'                                                    | 2                       | GP                  | 24                     | .006    | 0.0                      | Black/gray soft and pliable                                                      | clay                                                                                                                     |          |  |
| 8' - 10'                                                   | 3                       | GP                  | 24                     | .006    | 0.0                      | 8-9.5 Same<br>9.5-10 Gray very fine silly                                        | <b>y sand, some</b> grass/peat                                                                                           |          |  |
| 10' - 12'                                                  | 4                       | GP                  | 24                     | .007    | 0.0                      | Gray very fine silly sand, s                                                     | upersaturated                                                                                                            |          |  |
| 12' - 14'                                                  | 5                       | GP                  | 24                     | .005    | 0.0                      | Same                                                                             |                                                                                                                          |          |  |
| 14' - 16'                                                  | 6                       | GP                  | 24                     | .005    | 0.0                      | 14-14.5' – Peat material (g<br>14.5-16 - Gray fine to coars                      |                                                                                                                          |          |  |
| 16' - 18'                                                  | 7                       | GP                  | 24                     | .003    | 0.0                      | Same                                                                             |                                                                                                                          |          |  |
| 18' - 20'                                                  | 8                       | GP                  | 24                     | .003    | 0.0                      | Same                                                                             |                                                                                                                          |          |  |
| Sample 1<br>SS = Split<br>HA = Han<br>GP = Gec<br>CC = Con | t Spo<br>Id Au<br>Iprob | on<br>ger<br>e Samp | bler                   |         |                          | PCBs, and RCRA m<br>Mercury readings ap                                          | s collected for analysis of SVOC<br>netals.<br>opear to be false positives due to<br>sulfide interference from the soil. | ,        |  |

| d                                                         |                         | )<br>)<br>Ba        | virka<br>d<br>artilucc | NEERS                | Project No<br>Project Na | .: 2015<br>me: Long Island Railroad<br>Island Park Substation | Boring No.: IPSBX-09<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |          |  |
|-----------------------------------------------------------|-------------------------|---------------------|------------------------|----------------------|--------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|----------|--|
| Drilling (                                                | Contr                   | actor:              | LAWES                  |                      | Geologist:               | Albert Albano                                                 | Boring Completion Depth: 2                                                | 0'       |  |
| Driller:                                                  |                         |                     |                        |                      | Drilling Me              | thod: Direct Push                                             | Ground Surface Elevation:                                                 | -        |  |
| Drill Rig:                                                |                         |                     |                        |                      | Drive Ham                | mer Weight: NA                                                | Boring Diameter: 1"                                                       |          |  |
| Date Sta                                                  |                         | •                   | 03                     |                      |                          | sleted: 01/29/03                                              | Samples were collected in 2' in                                           | tervals. |  |
|                                                           |                         | Soil Sa             |                        | Mercury              | Photo-                   |                                                               |                                                                           |          |  |
|                                                           |                         | 0011 00             | anpic                  | Vapor                | ionization               |                                                               |                                                                           |          |  |
| Depth                                                     |                         |                     | Rec.                   |                      | Detector                 |                                                               | Description                                                               | USCS     |  |
| (ft.)                                                     | No.                     | Туре                |                        | (mg/m <sup>3</sup> ) | (ppm)                    |                                                               |                                                                           |          |  |
| 4' - 6'                                                   | 1                       | GP                  | 12                     | .007                 | 0.0                      | 4-5' – Tan/red medium silty<br>5-6' – No recovery             | y sand                                                                    |          |  |
| 6' - 8'                                                   | 2                       | GP                  | 12                     | .008                 | 0.0                      | 6-7' - Gray silty clay, stiff                                 |                                                                           |          |  |
| 8' - 10'                                                  | 3                       | GP                  | 12                     | .005                 | 0.0                      | 8-9.5' - Gray silty clay, stiff<br>9.5-10' – Gray silty sand  | yet pliable                                                               |          |  |
| 10' - 12'                                                 | 4                       | GP                  | 24                     | .006                 | 0.0                      | Gray silty, loose, super-sat                                  | urated sand                                                               |          |  |
| 12' - 14'                                                 | 5                       | GP                  | 24                     | .009                 | 0.0                      | 12-12.5' Same<br>12.5-14' Gray silty clay a                   | nd peat material/organics                                                 |          |  |
| 14' - 16'                                                 | 6                       | GP                  | 24                     | N/A                  | 0.0                      | 14-15' – Gray fine to coars<br>15-16' – Tan/brown mediui      | e sand<br>m to coarse sand                                                |          |  |
| 16' - 18'                                                 | 7                       | GP                  | 24                     | .005                 | 0.0                      | Brown peat material/organ                                     | ics, hydrogen sulfide odor                                                |          |  |
| 18' - 20'                                                 | 8                       | GP                  | 24                     | .006                 | 0.0                      | Gray very fine silty sand, lo                                 | ose, supersaturated                                                       |          |  |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>Id Au<br>oprob | on<br>ger<br>e Samj | bler                   |                      |                          | PCBs, and RCRA n<br>Mercury readings a                        | ppear to be false positives due to<br>sulfide interference from the soil. | 0        |  |

|   | d                                      |                |           | TTILLCO | NEERS                |                                        | <b>me:</b> Lor<br>Isla | ng Island RailRoad<br>nd Park Substation     | Boring No.: IPSBX-10<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano        |          |
|---|----------------------------------------|----------------|-----------|---------|----------------------|----------------------------------------|------------------------|----------------------------------------------|----------------------------------------------------------------------------------|----------|
|   | Drilling (<br>Driller: E<br>Drill Rig: | Brian          | . –       | LAWES   |                      | Geologist:<br>Drilling Me<br>Drive Ham | thod:                  | Direct Push                                  | Boring Completion Depth: 1<br>Ground Surface Elevation: -<br>Boring Diameter: 1" |          |
|   | Date Sta                               | rted:          | 01/23/    | 03      |                      | Date Comp                              | pleted:                | 01/23/03                                     | Samples were collected in 2' in                                                  | tervals. |
|   |                                        |                | Soil Sa   | mple    | Mercury              | Photo-                                 |                        |                                              |                                                                                  |          |
| ĺ | Danth                                  |                |           | Rec.    | Vapor                | ionization<br>Detector                 |                        | Sample                                       | Description                                                                      | USCS     |
|   | Depth<br>(ft.)                         | No.            | Type      |         | (mg/m <sup>3</sup> ) | (ppm)                                  |                        | Sample                                       | Description                                                                      |          |
|   | 8' - 10'                               | 1              | GP        | 24      | .300                 | 0.0                                    |                        | soft, pliable clay, a lit<br>en sulfide odor | ttle stiff, wood fragments,                                                      |          |
|   | 10' - 12'                              | 2              | GP        | 24      | .375                 | 0.5                                    |                        | grass), getting more                         | organics (peat material, salt<br>e sandy with depth, hydrogen                    |          |
|   | 12' - 14'                              | 3              | GP        | 18      | .020                 | 0.2                                    | Gray c<br>sulfide      |                                              | anics, moist to wet, hydrogen                                                    |          |
|   | 14' - 16'                              | 4              | GP        | 18      | .014                 | 0.0                                    | Gray n                 | nedium to coarse sa                          | nd, loose, wet                                                                   |          |
|   | 16' - 18'                              | 5              | GP        | 18      | . <b>01</b> 5        | 0.0                                    | Fine to                | mediu <b>m</b> sand, more                    | e wet and packed                                                                 |          |
|   | 18' - 20'                              | 6              | GP        | 18      | N/A                  | N/A                                    | No rec                 | overy                                        |                                                                                  |          |
|   |                                        |                |           |         |                      |                                        |                        |                                              |                                                                                  |          |
|   |                                        |                |           |         |                      |                                        |                        |                                              |                                                                                  |          |
|   |                                        |                |           |         |                      |                                        |                        |                                              |                                                                                  |          |
|   | Sample 1                               |                |           |         |                      |                                        | <br> <br>              | NOTES:                                       |                                                                                  |          |
|   | SS = Spli<br>HA = Har<br>GP = Geo      | t Spo<br>nd Au | on<br>ger | bler    |                      |                                        |                        |                                              | s collected for analysis of SVO0<br>netals.                                      | Cs,      |
|   | CC = Cor                               |                |           |         |                      |                                        |                        |                                              | opear to be false positives due t<br>sulfide interference from the soil          |          |
|   |                                        |                |           |         |                      |                                        |                        | N/A: Not applicable.                         |                                                                                  |          |

- 3

-.

.

~

.

| d                                                          |                        | an                  | rirka<br>d<br>Irtilucc | NEERS                                 | Project No<br>Project Na | .: 2015<br>me: Long Island RailRoad<br>Island Park Substation | Boring No.: IPSBX-11<br>Sheet_1_of_1<br>By: Albert Albano                                                             |          |  |
|------------------------------------------------------------|------------------------|---------------------|------------------------|---------------------------------------|--------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------|--|
| Drilling (                                                 | Contr                  | actor:              | LAWES                  |                                       | Geologist:               | Albert Albano                                                 | Boring Completion Depth: 2                                                                                            | 0'       |  |
| Driller: (                                                 | Carl P                 | ederso              | n                      |                                       | Drilling Me              | thod: Direct Push                                             | Ground Surface Elevation: -                                                                                           | -        |  |
| Drill Rig:                                                 | Geo                    | probe               |                        |                                       | Drive Ham                | mer Weight: NA                                                | Boring Diameter: 1"                                                                                                   | i        |  |
| Date Sta                                                   | rted:                  | 01/27/              | 03                     | · · · · · · · · · · · · · · · · · · · | Date Comp                | oleted: 01/27/03                                              | Samples were collected in 2' in                                                                                       | tervals. |  |
| ] ]                                                        |                        | Soil Sa             | ample                  | Mercury                               | 1                        |                                                               |                                                                                                                       |          |  |
|                                                            |                        |                     |                        | Vapor                                 | ionization               |                                                               | <b>B</b> 14                                                                                                           |          |  |
| Depth<br>(ft.)                                             | No                     | Туре                | Rec.                   | (mg/m³)                               | Detector                 | Sample                                                        | Description                                                                                                           | USCS     |  |
| 4' - 6'                                                    | 1                      | GP                  | (inches)<br>24         | .006                                  | (ppm)<br>0.0             | Black very coarse sand wit                                    | h angular racks and shall                                                                                             |          |  |
| 4 - 0                                                      |                        | 5                   | 27                     | .000                                  | 0.0                      | remnants                                                      | n angular focks and sher                                                                                              |          |  |
| 6' - 8'                                                    | 2                      | GP                  | 24                     | .007                                  | 0.0                      | Tan fine to coarse sand wil<br>diameter, wet                  | th quartz rock to 1 inch                                                                                              |          |  |
| 8' - 10'                                                   | 3                      | GP                  | 24                     | .008                                  | 0.0                      | Brown/black silty clay, stiff                                 |                                                                                                                       |          |  |
| 10' - 12'                                                  | 4                      | GP                  | 24                     | .008                                  | 0.0                      | Tan medium to coarse san                                      | d, heavy quartz rock, wet                                                                                             |          |  |
| 12' - 14'                                                  | 5                      | GP                  | 18                     | .008                                  | 0. <b>0</b>              | Brown medium silty sand, s                                    | small rounded quartz rocks                                                                                            |          |  |
| 14' - 16'                                                  | 6                      | GP                  | 18                     | .005                                  | 0.0                      | Same                                                          |                                                                                                                       |          |  |
| 16' - 18'                                                  | 7                      | GP                  | 18                     | .000                                  | 0.0                      | Brown/tan medium sand w<br>some quartz rock                   | ith some finer sand mixed in,                                                                                         |          |  |
| 18' - 20'                                                  | 8                      | GP                  | 18                     | .000                                  | 0. <b>0</b>              | Brown/tan medium sand, h                                      | omogeneous (no rocks)                                                                                                 |          |  |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Con | t Spo<br>Id Au<br>prob | on<br>ger<br>e Samj | bler                   |                                       | L                        | PCBs, and RCRA m<br>Mercury readings a                        | s collected for analysis of SVO<br>netals.<br>opear to be false positives due t<br>sulfide interference from the soil | o        |  |

| d                                                          |                         |                     | ULTING ENG | i<br>NEERS           |             | me: Long Island Railroad<br>Island Park Substation    | • • • • • • • • • • • • • • • • • • •                                                                                   |          |  |
|------------------------------------------------------------|-------------------------|---------------------|------------|----------------------|-------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------|--|
| Drilling (                                                 | Conti                   | ractor:             | LAWES      |                      | Geologist:  | Albert Albano                                         | Boring Completion Depth: 2                                                                                              | 0'       |  |
| Driller:                                                   | Brian                   |                     |            |                      | Drilling Me | ethod: Direct Push                                    | Ground Surface Elevation: -                                                                                             |          |  |
| Drill Rig:                                                 | Ge                      | oprobe              |            |                      | Drive Ham   | mer Weight: NA                                        | Boring Diameter: 1"                                                                                                     |          |  |
| Date Sta                                                   |                         | •                   | 03         |                      |             | pleted: 01/23/03                                      | Samples were collected in 2' in                                                                                         | tervals. |  |
|                                                            |                         | Soil Sa             |            | Mercury              |             |                                                       | <b></b>                                                                                                                 |          |  |
|                                                            |                         |                     |            | Vapor                | Ionization  |                                                       |                                                                                                                         |          |  |
| Depth                                                      |                         |                     | Rec.       | 1 .                  | Detector    | Sample                                                | Description                                                                                                             | USCS     |  |
| (ft.)                                                      | No.                     | Туре                | (inches)   | (mg/m <sup>3</sup> ) | (ppm)       |                                                       | •                                                                                                                       |          |  |
| 4' - 6'                                                    | 1                       | GP                  | 24         | .014                 | .2          | Brown/gray stiff, yet pliable,                        | . clav                                                                                                                  |          |  |
| 6' - 8'                                                    | 2                       | GP                  | 24         | .006                 | .2          | Black very coarse, loose at<br>hydrogen sulfide odor  | ngular fill material, wet,                                                                                              |          |  |
| 8' - 10'                                                   | 3                       | GP                  | 18         | .013                 | .3          | Gray medium to coarse sa                              | nd with quartz pea gravel, wet                                                                                          |          |  |
| 10' - 12'                                                  | 4                       | GP                  | 18         | .015                 | 0.0         | Brown/black silty pliable cla<br>grass, peat), spongy | ay, heavy organics (roots,                                                                                              |          |  |
| 12' - 14'                                                  | 5                       | GP                  | 18         | .357                 | 0.0         |                                                       | oarse sand, some organics<br>oarse sand with quartz pea                                                                 |          |  |
| 14' - 16'                                                  | 6                       | GP                  | 18         | .015                 | 0.0         | Same                                                  |                                                                                                                         |          |  |
| 16' - 18'                                                  | 7                       | GP                  | 24         | .009                 | 0.0         | Same                                                  |                                                                                                                         |          |  |
| 18' - 20'                                                  | 8                       | GP                  | 18         | .005                 | 0.0         | Same                                                  |                                                                                                                         |          |  |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Con | t Spo<br>Id Au<br>oprob | on<br>ger<br>e Samp | bler       |                      |             | PCBs, and RCRA m<br>Mercury readings ap               | s collected for analysis of SVOC<br>netals.<br>opear to be false positives due to<br>ulfide interference from the soil. | 0        |  |

ŗ

The second second

;

Appendix C

**APPENDIX C** 

**TEST PIT LOGS** 

♦2015\AA1103406.doc(R01)

| d                                                         |                         | )<br>an<br>Ba       | rirka<br>d<br>rtiluco |                      | Project No<br>Project Na | .: 2015<br>me: Long Island Railroad<br>Island Park Substation                                                                                                | Test Pit No.: IPTP-02<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano                                                                                                                                                                                                        |          |
|-----------------------------------------------------------|-------------------------|---------------------|-----------------------|----------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Drilling (                                                | Conti                   | actor:              | LAWES                 |                      | Geologist:               | Albert Albano                                                                                                                                                | Test Pit Completion Depth: 2                                                                                                                                                                                                                                                      | 2.5'     |
| Driller:                                                  |                         |                     |                       |                      | -                        | thod: Backhoe                                                                                                                                                | Ground Surface Elevation: -                                                                                                                                                                                                                                                       |          |
|                                                           |                         |                     | Mini-exca             | vator                | -                        | mer Weight: NA                                                                                                                                               | Boring Diameter: 1"                                                                                                                                                                                                                                                               |          |
| Date Sta                                                  |                         |                     |                       |                      |                          | oleted: 01/22/03                                                                                                                                             | Samples were collected in 2' in                                                                                                                                                                                                                                                   | tervals  |
|                                                           | r –                     | Soil Sa             |                       | Mercury              | Photo-                   |                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |          |
|                                                           |                         |                     | •                     | Vapor                | ionization               |                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |          |
| Depth                                                     |                         |                     | Rec.                  | 1                    | Detector                 | Sample                                                                                                                                                       | Description                                                                                                                                                                                                                                                                       | USCS     |
| (ft.)                                                     | No.                     | Туре                | (feet)                | (mg/m <sup>3</sup> ) | (ppm)                    |                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |          |
| 0'-2.5'                                                   | NA                      | NA                  | 2.5'                  | .000                 | 0.0                      | of 2.5° at IPTP-02 in an effe<br>was suspected to be locate<br>Rectifier Drywell was identified<br>Groundwater was identified<br>approximately 4.5 feet bgs. | dy fill material<br>area was excavated to a depth<br>ort to identify a drywell which<br>ed in the area. The top of the<br>ified at a depth of 2.5 feet bgs.<br>4 within the drywell at<br>. The bottom of the drywell<br>ately 7.5 feet bgs. As a result,<br>or VOCs, SVOCs, RCRA |          |
|                                                           |                         |                     |                       |                      |                          |                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |          |
| Sample 1<br>SS = Spli<br>IA = Har<br>SP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samp | )ler                  |                      |                          | NOTES:<br>N/A: Not applicable.                                                                                                                               |                                                                                                                                                                                                                                                                                   | <u> </u> |

| d                                                          |                     | ) an<br>) Ba        | virka<br>d<br>Irtiluco |                      | Project No<br>Project Na | .: 2015<br>me: Long Island Railroad<br>Island Park Substation                                                           | Test Pit No.: IPTP-03<br>Sheet <u>1</u> of <u>1</u> .<br>By: Albert Albano |          |
|------------------------------------------------------------|---------------------|---------------------|------------------------|----------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------|
| Drilling (                                                 | Contr               | ractor:             | LAWES                  |                      | Geologist:               | Albert Albano                                                                                                           | Test Pit Completion Depth:                                                 | 3.5'     |
| Driller: (                                                 |                     |                     |                        |                      | -                        | thod: Backhoe                                                                                                           | Ground Surface Elevation:                                                  |          |
| Excavati                                                   | on M                | lethod:             | Mini-exca              | vator                | -                        | mer Weight: NA                                                                                                          | Boring Diameter: 1"                                                        |          |
| Date Sta                                                   |                     |                     |                        |                      |                          | oleted: 01/22/03                                                                                                        | Samples were collected in 2' in                                            | tervals. |
|                                                            |                     | Soil Sa             |                        | Mercury              | • <u> </u>               |                                                                                                                         |                                                                            |          |
|                                                            |                     |                     |                        | Vapor                | ionization               |                                                                                                                         |                                                                            |          |
| Depth                                                      |                     |                     | Rec.                   |                      | Detector                 |                                                                                                                         | <b>Description</b>                                                         | uscs     |
| (ft.)                                                      | No.                 | Туре                | (feet)                 | (mg/m <sup>3</sup> ) |                          | 1                                                                                                                       |                                                                            |          |
| 0'-1.5'                                                    | NA                  | NA                  | 1.5 <sup>°</sup>       | .000                 | 0.2                      | of 3.5' at IPTP-03 in an effe<br>was suspected to be locate<br>identified. Groundwater ide<br>noted to have a sheen. As |                                                                            |          |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Con | Spo<br>d Au<br>prob | on<br>ger<br>e Samp | bler                   |                      |                          | NOTES:<br>N/A: Not applicable.                                                                                          |                                                                            |          |

Appendix D

**APPENDIX D** 

## WELL CONSTRUCTION LOG

\_\_\_\_

\_\_\_\_

| d                                                          |                         | ) an<br>Ba          | ITTILUCO       | NEERS                               | Project Na                       | :: 2015-03<br>me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive                       |                                                                                                                     |           |
|------------------------------------------------------------|-------------------------|---------------------|----------------|-------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------|
| Drilling (<br>Driller: (<br>Drill Rig:<br>Date Sta         | Carl F<br>: Aug         | Pederse<br>jer Rig  | n              |                                     | Drilling Me<br>Drive Ham         | Kristen Panella<br><b>athod:</b> 6" Rotating Auger<br><b>mer Weight:</b> NA<br><b>bleted:</b> 01/17/03 | Boring Completion Depth: 8<br>Ground Surface Elevation: -<br>Boring Diameter: 4"<br>Samples were collected in 5' in |           |
| Depth                                                      |                         | Soil Sa             | Rec.           | Mercury<br>Vapor                    | Photo-<br>ionization<br>Detector |                                                                                                        | Description                                                                                                         | USCS      |
| (ft.)<br>5' - 7'                                           | <b>No.</b><br>1         | Type<br>SS          | (inches)<br>20 | ( <u>mg/m<sup>3</sup>)</u><br>0.003 | (ppm)<br>0.0                     | Light brown fine sand, soft,                                                                           | , loose, saturated, no odor.                                                                                        |           |
| 10' - 12'                                                  | 2                       | SS                  | . 10           | 0.003                               | 0.0                              | Light brown fine sand, soft,                                                                           | , loose, saturated, no odor.                                                                                        |           |
| 15' - 17'                                                  | 3                       | SS                  | 12             | 0.007                               | 0.0                              | Dark brown medium sand,<br>saturated, no odor.                                                         | trace pebbles, loose,                                                                                               |           |
| 20' - 22'                                                  | 4                       | SS                  | 10             | 0.005                               | 0.0                              | Dark brown medium sand,                                                                                | loose, moist, no odor.                                                                                              |           |
| 25' - 27'                                                  | 5                       | SS                  | 20             | 0.007                               | 0.0                              | Light to dark brown mediur<br>moist, no odor.                                                          | n sand, trace pebbles, loose,                                                                                       |           |
| 30' - 32'                                                  | 6                       | SS                  | 12             | 0.000                               | 0.0                              | Brown medium sand, trace<br>odor.                                                                      | e pebbles, loose, moist, no                                                                                         |           |
| 35' - 37'                                                  | 7                       | SS                  | 12             | 0.000                               | 0.0                              | Dark brown coarse sand, tr<br>no odor.                                                                 | race pebbles, loose, saturated,                                                                                     |           |
| 40' - 42'                                                  | 8                       | SS                  | 12             | 0.000                               | 0.0                              | Light brown to white fine sa<br>dry, no odor.                                                          | and with orange banning, loose,                                                                                     |           |
| 45' - 47'                                                  | 9                       | SS                  | 20             | 0.000                               | 0.0                              | Light brown to white fine sa<br>dry, no odor.                                                          | and with orange banning, loose,                                                                                     |           |
| 50' - 52'                                                  | 10                      | SS                  | 20             | 0.000                               | 0.0                              | White fine sand, neatly pac                                                                            | sked, moist, no odor.                                                                                               |           |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Geo<br>CC = Cor | t Spo<br>Id Au<br>Iprob | on<br>ger<br>e Samp | bler           |                                     |                                  | NOTES:<br>Assumed DTW was                                                                              | 73' bgs.                                                                                                            | <br> <br> |

| d                                                          |                     | <u>)</u> an         | virka<br>d<br>Irtiluc |                  | -                    | .: 2015-03<br>me: Long Island RailRoad<br>Manhasset Substation<br>Virginia Drive            | Boring No.: 1<br>Sheet <u>2</u> of <u>2</u> .<br>By: Kristen Panella |         |  |
|------------------------------------------------------------|---------------------|---------------------|-----------------------|------------------|----------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------|--|
| Drilling (                                                 | Contr               | actor:              | LAWES                 |                  | Geologist:           | Kristen Panella                                                                             | Boring Completion Depth: 86                                          |         |  |
| Driller: (                                                 | Carl F              | Pederse             | en                    |                  | Drilling Me          | thod: 6" Rotating Auger                                                                     | Ground Surface Elevation:                                            |         |  |
| Drill Rig:                                                 | : Aug               | jer Rig             |                       |                  | Drive Ham            | mer Weight: NA                                                                              | Boring Diameter: 4"                                                  |         |  |
| Date Sta                                                   | rted:               | 01/17/              | /03                   |                  | Date Comp            | oleted: 01/17/03                                                                            | Samples were collected in 5' inte                                    | ervals. |  |
|                                                            |                     | Soil Sa             |                       | Mercury<br>Vapor | Photo-<br>ionization |                                                                                             |                                                                      |         |  |
| Depth                                                      | N -                 | <b>T</b>            | Rec.                  | 1                | Detector             | Sample                                                                                      | e Description                                                        | USCS    |  |
| (ft.)<br>55' - 57'                                         | No.<br>11           | Type<br>SS          |                       | $(mg/m^3)$       | (ppm)                | 6" Light brown fing cond. k                                                                 |                                                                      |         |  |
| 55 - 57<br>60' - 62'                                       | 12                  | SS                  | 12<br>20              | 0.004            | 0.0                  | 6" Light brown fine sand, lo<br>6" Gray clay with trace silt,<br>Gray silt, densely packed, | dense, moist, no odor.                                               |         |  |
| 65' - 67'                                                  | 13                  | SS                  | 24                    | 0.006            | 0.0                  | 12" Gray silt, loose, supers<br>12" Gray silt to clay, dense                                | saturated, no odor.<br>Ny packed, saturated, no odor.                |         |  |
| 70' - 72'                                                  | 14                  | SS                  | 20                    | 0.003            | 0.0                  | Gray silt, densely packed,                                                                  | moist, no odor.                                                      |         |  |
| 75' - 77'                                                  | 15                  | SS                  | 12                    | 0.003            | 0.0                  | 6" Gray silt to clay, dense,<br>6" Gray silt, soupy, supers                                 |                                                                      |         |  |
| Sample T<br>SS = Split<br>HA = Han<br>GP = Gec<br>CC = Con | Spo<br>d Au<br>prob | on<br>ger<br>e Samj | bler                  |                  |                      | NOTES:<br>Assumed DTW wa                                                                    | as 73' bgs.                                                          |         |  |

Appendix E

## APPENDIX E

## ANALYTICAL DATA

-----

ı

:

**1**....

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### SURFACE SOIL - MERCURY

| AREASON CONCERNS OF<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MH88-14<br>(0-2)<br>1/15/03<br>83.0<br>(mg/kg) | MH\$8-15<br>(0-2)<br>1/15/03<br>88.0<br>(mg/kg) | MHSS-16<br>(0-2)<br>1/15/03<br>80.0<br>(mg/kg) | MHSS-17<br>(0-2)<br>1/15/03<br>93.0<br>(mg/kg) | MHSS-18<br>(0-2)<br>1/15/03<br>88.0<br>(mg/kg) | MHSS-19<br>(0-2)<br>1/15/03<br>74.0<br>(mg/kg) | MH8S-20<br>(0-2)<br>1/16/03<br>83.0<br>(mg/kg) | MHSS-21<br>(0-2)<br>1/16/03<br>71.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/I) | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>mg/kg |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                                | 87,9                                           | 130                                             | 354                                            | 0.097                                          | 0.12                                           | 15.6                                           | 4                                              | 9                                              | 0.042                                       | 0.1                                                                |

| AREAOBICONGERN<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHS <b>S-22</b><br>(0-2)<br>1/16/03<br>81.0<br>(mg/kg) | MHSS-23<br>(0-2)<br>1/18/03<br>87.0<br>(mg/kg) | MHSS-24<br>(0-2)<br>1/16/03<br>76.0<br>(mg/kg) | MH\$8-25<br>(0-2)<br>1/16/03<br>81.0<br>(mg/kg) | MH83-26<br>(0-2)<br>1/16/03<br>77.0<br>(mg/kg) | MHSS-27<br>(0-2)<br>1/16/03<br>61.0<br>(mg/kg) | MHSS-28<br>(0-2)<br>1/16/03<br>91.0<br>(mg/kg) | MHS8-29<br>(0-2)<br>1/18/03<br>74.0<br>(mg/kg) |       | NYSDEC TAGM 4048<br>Recommended Soli<br>Cleanup Objective<br>mg/kg |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------|--------------------------------------------------------------------|
| Mercury                                                                                           | 5.9                                                    | 10.8                                           | 7.9                                            | 7.3                                             | 9.4                                            | 5.2                                            | 1.6                                            | 6.4                                            | 0.042 | 0.1                                                                |

| 机结合物 医原氨酸 化合物分配 化合物分离合金 经                                                                     |                                                |                                                | 可指和心理的                                          |                                                |                                                                | 011 J. (1957)168 (1                            | PE-202101 1992                                  | TTORE SHOULD                                   |                                             |                                                                    |
|-----------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS               | MH88-30<br>(0-2)<br>1/16/03<br>79.0<br>(mg/kg) | MHSS-31<br>(0-2)<br>1/16/03<br>74.0<br>(mg/kg) | MH\$B-17<br>(0-2)<br>1/16/03<br>82.0<br>(mg/kg) | MHSB-18<br>(0-2)<br>1/16/03<br>82.0<br>(mg/kg) | MH8B-19<br>(0-2)<br>1/16/03<br>87.0<br>(mg/kg)                 | MH38-44<br>(0-2)<br>8/11/04<br>91.0<br>(mg/kg) | MH88-44<br>(2-12)<br>8/16/04<br>78.0<br>(mg/kg) | MHSS-45<br>(0-2)<br>8/11/04<br>84.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/i) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>mg/kg |
| Mercury                                                                                       | 1.6                                            | 0.73                                           | 1.5                                             | 0.05                                           | 0.27                                                           | 0.29                                           | 0.73                                            | 0.37                                           | 0.042                                       | 0.1                                                                |
|                                                                                               |                                                |                                                |                                                 |                                                |                                                                |                                                |                                                 |                                                |                                             |                                                                    |
| NREAMING-ING-EINCL                                                                            |                                                |                                                |                                                 | I GROWARDSIE                                   |                                                                |                                                |                                                 | MHER 40                                        |                                             |                                                                    |
| AREAOD CONCERNATION<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS | MH <b>3S-45</b><br>(2-12)<br>8/16/04<br>82.0   | MHSS-46<br>(0-2)<br>8/11/04<br>90.0            | MH8S-46<br>(2-12)<br>B/16/04<br>84.0            | MHSS-47<br>(0-2)<br>8/11/04<br>95.0            | <b>16/mental/Secto</b><br>MHSS-47<br>(2-12)<br>8/16/04<br>48.0 | 01017<br>MHSS-48<br>(0-2)<br>8/11/04<br>90.0   | MHSS-48<br>(2-12)<br>8/16/04<br>76.0            | MHSS-49<br>(0-2)<br>8/11/04<br>86.0            | INSTRUMENT<br>DETECTION<br>LIMITS           | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective          |
| SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION                                          | MHSS-45<br>(2-12)<br>8/16/04                   | MHSS-46<br>(0-2)<br>8/11/04                    | MH <b>8S-46</b><br>(2-12)<br>B/16/04            | MHSS-47<br>(0-2)<br>8/11/04                    | MHSS-47<br>(2-12)<br>8/16/04                                   | MHSS-48<br>(0-2)<br>8/11/04                    | MHSS-48<br>(2-12)<br>8/16/04                    | MHSS-49<br>(0-2)<br>8/11/04                    | DETECTION                                   | Recommended Soil                                                   |

QUALIFIERS:

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

1.1

Notes:

#### TABLE 1 (continued)

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD **DELINEATION PHASE 2 SITE ASSESSMENT**

#### SURFACE SOIL - MERCURY

| BARRIE MARINE AND AL                                                            |                                                 | n jan in                                                        | 1-17.16                                                 | विभागमा सम्बद्धाः                              | TRACETTER                                        |                                                        | المراجعة المراجع المراجعة الم<br>مراجعة المراجعة المراج |                                                 |                                   |                                                                    |
|---------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------|--------------------------------------------------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MH83-49<br>(2-12)<br>8/16/04<br>77.0<br>(mg/kg) | MH <b>SS-50</b><br>(0 <b>-2</b> )<br>8/11/04<br>96.0<br>(mg/kg) | MH <b>33-50</b><br>(2-12)<br>8/16/04<br>92.0<br>(mg/kg) | MH88-51<br>(0-2)<br>8/11/04<br>97.0<br>(mg/kg) | MH\$8-51<br>(2-12)<br>8/16/04<br>85.0<br>(mg/kg) | MH <b>88-52</b><br>(0-2)<br>8/11/04<br>94.0<br>(mg/kg) | MH33-52<br>(2-12)<br>8/16/04<br>86.0<br>(mg/kg)                                                                                                                                                                                    | MH\$8-53<br>(0-2)<br>8/11/04<br>95.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>mg/kg |
| Mercury                                                                         | 0.12                                            | 0.25                                                            | 0.24                                                    | 0.65                                           | 0.64                                             | 0.73                                                   | 0.24                                                                                                                                                                                                                               | 0.11                                            | 0.042                             | 0.1                                                                |

| AREACE ODNOVENN<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MH88-53<br>(2-12)<br>8/18/04<br>90.0<br>(mg/kg) | MH <b>SS-54</b><br>(0-2)<br>8/11/04<br>94.0<br>(mg/kg) | MHSS-54<br>(2-12)<br>8/16/04<br>87.0<br>(mg/kg) | MHSS-55<br>(0-2)<br>8/11/04<br>96.0<br>(mg/kg) | 5)61760121155671<br>MHSS-55<br>(2-12)<br>8/16/04<br>90.0<br>(mg/kg) | MHS8-56<br>(0-2)<br>8/11/04<br>92.0<br>(mg/kg) | MH33-56<br>(2-12)<br>8/16/04<br>80.0<br>(mg/kg) | MHSS-57<br>(0-2)<br>8/11/04<br>94.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>mg/kg |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                            | 2.2                                             | 35.8                                                   | 10                                              | 5.8                                            | 1.7                                                                 | 2.7                                            | 1.7                                             | 1.4                                            | 0.042                                       | 0.1                                                                |

| AREADE MONGERN<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS  | MHS8-57<br>(2-12)<br>8/16/04<br>87.0<br>(mg/kg) | MH88-58<br>(0-2)<br>8/11/04<br>94.0<br>(mg/kg) | MHSS-58<br>(2-12)<br>8/16/04<br>77.0<br>(mg/kg) | MHSS-59<br>(0-2)<br>8/19/04<br>74.0<br>(mg/kg) | 0(0)(002159)(0)<br>MHS8-59<br>(2-12)<br>8/16/04<br>77.0<br>(mg/kg) | MHS8-60<br>(0-2)<br>8/19/04<br>88.0<br>(mg/kg) | MHSS-60<br>(2-12)<br>8/16/04<br>81.0<br>(mg/kg) | MHSS-61<br>(0-2)<br>8/16/04<br>83.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4048<br>Recommended Soli<br>Cleanup Objective<br>mg/kg |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                            | 1.6                                             | 2.0                                            | 4.0                                             | 0.71                                           | 1.1                                                                | 0.50                                           | 0.63                                            | 2.9                                            | 0.042                                       | 0.1                                                                |
| AREADE SONGLAND<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MH88-61<br>(2-12)<br>8/16/04<br>90.0<br>(mg/kg) | MHSS-62<br>(0-2)<br>8/16/04<br>71.0<br>(mg/kg) | MHS8-62<br>(2-12)<br>8/18/04<br>75.0<br>(mg/kg) | MHSS-63<br>(0-2)<br>8/16/04<br>84.0<br>(mg/kg) | 614116161818341<br>MHSS-63<br>(2-12)<br>8/16/04<br>80.0<br>(mg/kg) | MHSS-64<br>(0-2)<br>8/16/04<br>79.0<br>(mg/kg) | MHS8-64<br>(2-12)<br>8/16/04<br>84.0<br>(mg/kg) | MH88-65<br>(0-2)<br>8/13/04<br>82.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>mg/kg |
| Mercury                                                                                            | 1.6                                             | 0.61                                           | 0.45                                            | 0.11                                           | 0.44                                                               | 0.18                                           | 0.061                                           | 0.28                                           | 0.042                                       | 0.1                                                                |

QUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

....

. .....

Notes:

13

12/17/04

#### TABLE 1 (continued)

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

### SURFACE SOIL - MERCURY

| AREA/OF/CONCERNESS<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHS8-65<br>(2-12)<br>8/13/04<br>88.0<br>(mg/kg) | MHS <b>3-66</b><br>(0-2)<br>8/13/04<br>85.0<br>(mg/kg) | 01/01/<br>MHSS-66<br>(2-12)<br>8/13/04<br>91.0<br>(mg/kg) | MHSS-67<br>(0-2)<br>8/13/04<br>76.0<br>(mg/kg) | Slement HS5m<br>MHSS-67<br>(2-12)<br>8/13/04<br>90.0<br>(mg/kg) | MHSS-68<br>(0-2)<br>8/13/04<br>67.0<br>(mg/kg) | MHSS-68<br>(2-12)<br>8/13/04<br>87.0<br>(mg/kg) | MHSS-69<br>(0-2)<br>8/13/04<br>63.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4048<br>Recommended Soll<br>Cleenup Objective<br>mg/kg |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                               | 0.25                                            | 0.95                                                   | 0.74                                                      | 0.55                                           | 0,19                                                            | 1.5                                            | 0.41                                            | 1.6                                            | 0.042                                       | 0.1                                                                |

| ARPACE CONCERNIC<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MH8S-69<br>(2-12)<br>8/13/04<br>86.0<br>(mg/kg) | MHSS-70<br>(0-2)<br>8/13/04<br>67.0<br>(mg/kg) | MHSS-70<br>(2-12)<br>8/13/04<br>89.0<br>(mg/kg) | MHSS-71<br>(0-2)<br>8/13/04<br>73.0<br>(mg/kg) | (2-12)<br>8/13/04<br>93.0<br>(mg/kg) | 3/105<br>MHSS-72<br>(0-2)<br>B/13/04<br>72.0<br>(mg/kg) | MHSS-72<br>(2-12)<br>8/13/04<br>84.0<br>(mg/kg) | MHSS-73<br>(0-2)<br>8/16/04<br>55.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMIT8<br>(ug/l) | NYSDEC TAGM 4048<br>Recommended Soil<br>Cleanup Objective<br>mg/kg |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|--------------------------------------|---------------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                             | 1.0                                             | 0.55                                           | 0.40                                            | 0.21                                           | 0.11                                 | 0.86                                                    | 0.075                                           | 0.17                                           | 0.042                                       | 0.1                                                                |

| AREASO ROONGERNAR<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MH88-73<br>(2-12)<br>8/16/04<br>82.0<br>(mg/kg) | MHSS-74<br>(0-2)<br>8/16/04<br>58.0<br>(mg/kg) | MHSS-74<br>(2-12)<br>8/16/04<br>88.0<br>(mg/kg) | 60-5041-5005<br>MH3S-75<br>(0-2)<br>8/16/04<br>84.0<br>(mg/kg) | Diamontalisa mai<br>MHSS-76<br>(0-2)<br>8/16/04<br>78.0<br>(mg/kg) | MHSS-77<br>(0-2)<br>8/16/04<br>74.0<br>(mg/kg) | MHSS-78<br>(0-2)<br>8/16/04<br>68.0<br>(mg/kg) | MHSS-79<br>(0-2)<br>8/16/04<br>43.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>mg/kg |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                              | 0.051                                           | 0.29                                           | 0.052                                           | 0.12                                                           | 0.093                                                              | 0.15                                           | 6.2                                            | 4.5                                            | 0 <b>.042</b>                               | 0.1                                                                |
| and the second second                                                                                |                                                 |                                                | ែកសារសេន៍ដែ                                     | ander en ser               |                                                                    | gige and a spectrum<br>Contractor and          | and a constant                                 | Section - Interior                             |                                             |                                                                    |
| SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS                               | MHSS-80<br>(0-2)<br>8/16/04<br>34.0             | MH\$B-13<br>(0-2)<br>1/15/03<br>90.0           | MHSB-14<br>(0-2)<br>1/15/03<br>94.0             | MHSB-15<br>(0-2)<br>1/15/03<br>90.0                            | MHSB-16<br>(0-2)<br>1/15/03<br>93.0                                | MHSS-32<br>(0-2)<br>8/12/04<br>82.0            | MHSS-33<br>(0-2)<br>8/12/04<br>81.0            | MHSS-34<br>(0-2)<br>8/12/04<br>87.0            | INSTRUMENT<br>DETECTION<br>LIMITS           | NYSDEC TAGM 4046<br>Recommended Soll<br>Cleanup Objective          |
| UNITS                                                                                                | (mg/kg)                                         | (mg/kg)                                        | (mg/kg)                                         | (mg/kg)                                                        | (mg/kg)                                                            | (mg/kg)                                        | (mg/kg)                                        | (mg/kg)                                        | (ug/l)                                      | mg/kg                                                              |
|                                                                                                      | 5.8                                             | 8.1                                            | 193                                             | 27.9                                                           | 3.5                                                                | 33.8                                           | 51.0                                           | 181                                            | 0.042                                       | 0.1                                                                |

QUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

: Result exceeds NYSDEC TAGM Recommended Soli Cleanup Objective

Notes:

## TABLE 1 (continued)

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### SURFACE SOIL - MERCURY

| ARHAIOMODONICHT<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHS8-35<br>(0-2)<br>8/12/04<br>86.0<br>(mg/kg) | MHSS-36<br>(0-2)<br>8/12/04<br>83.0<br>(mg/kg) | MHSS-37<br>(0-2)<br>8/12/04<br>86.0<br>(mg/kg) | MHSS-38<br>(0-2)<br>8/12/04<br>82.0<br>(mg/kg) | MHSS-39<br>(0-2)<br>8/12/04<br>75.0<br>(mg/kg) | MHSS-40<br>(0-2)<br>8/12/04<br>92.0<br>(mg/kg) | MHSS-41<br>(0-2)<br>8/12/04<br>92.0<br>(mg/kg) | MHS8-42<br>(0-2)<br>8/12/04<br>89.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soll<br>Cleanup Objective<br>mg/kg |
|----------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                            | 23.4                                           | 138                                            | 52.4                                           | 332                                            | 138                                            | 3.4                                            | 64.2                                           | 49.1                                           | 0.042                                       | 0.1                                                                |

| SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MH88-43<br>(0-2)<br>8/12/04<br>96.0<br>(mg/kg) | RUID ET HEAL | 1647 1837 1837 1837 1837 1837 1837 1837 183 | ranite) actiliae | anna cana cana a su |  | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soll<br>Cleanup Objective<br>mg/kg |
|---------------------------------------------------------------------------------|------------------------------------------------|--------------|---------------------------------------------|------------------|---------------------|--|---------------------------------------------|--------------------------------------------------------------------|
| Marcury                                                                         | 0.34                                           |              |                                             |                  |                     |  | 0.042                                       | 0.1                                                                |

QUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes:

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

ł

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

## SUBSURFACE SOIL - MERCURY

| AREAGONGERN<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHSB-17<br>(2 - 4)<br>1/18/03<br>90.0<br>(mg/kg) | MHSB-17<br>(4 - 6)<br>1/16/03<br>89.0<br>(mg/kg) | MHSB-17<br>(6 - 8)<br>1/16/03<br>90.0<br>(mg/kg) | MHSB-18<br>(2 - 4)<br>1/16/03<br>90.0<br>(mg/kg) | MHSB-18<br>(4 - 6)<br>1/16/03<br>90.0<br>(mg/kg) | MHSB-18<br>(6 - 8)<br>1/16/03<br>89.0<br>(mg/kg) | MHSB-19<br>(2 - 4)<br>1/16/03<br>91.0<br>(mg/kg) | MHSB-19<br>(4 - 8)<br>1/16/03<br>90,0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/i) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>mg/kg |
|------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                        | 0.023 B                                          | υ                                                | U                                                | U                                                | U                                                | U                                                | 0.018 B                                          | U                                                | 0.042                                       | 0.1                                                                |

| National Company                                                                | estimation of the second se |                                                   | ugas consignings again<br>Sin an an ang<br>Sin an an an an ag | e ne receiver.<br>L                              | n an                 | an a         | an a          |                                                  |                                             |                                                                    |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHSB-19<br>(6 - 8)<br>1/16/03<br>91.0<br>(mg/kg)                                                                | MHSB-06A<br>(6 - 8)<br>1/15/03<br>87.0<br>(mg/kg) | MHSB-06A<br>(8 - 10)<br>1/15/03<br>91.0<br>(mg/kg)            | MH6B-13<br>(2 - 4)<br>1/15/03<br>89.0<br>(mg/kg) | MH <b>SB-13</b><br>(4 - 6)<br>1/15/03<br>87.0<br>(mg/kg) | MHSB-13<br>(6 - 8)<br>1/15/03<br>90.0<br>(mg/kg) | MHSB-13<br>(8 - 10)<br>1/15/03<br>92.0<br>(mg/kg) | MHSB-14<br>(2 - 4)<br>1/15/03<br>92.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>mg/kg |
| Mercury                                                                         | υ                                                                                                               | 0.048                                             | 0.018 B                                                       | U                                                | 0.074                                                    | U                                                | 0.021 B                                           | 0.68                                             | 0.042                                       | 0.1                                                                |

| ABE (40) (CONCERNING<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHSB-14<br>(4 - 6)<br>1/15/03<br>89.0<br>(mg/kg) | MH\$B-14<br>(6 - 8)<br>1/15/03<br>91.0<br>(mg/kg) | MH8B-14<br>(8 - 10)<br>1/15/03<br>93.0<br>(mg/kg) | MHSB-15<br>(2 - 4)<br>1/15/03<br>88.0<br>(mg/kg) | MHSB-15<br>(4 - 6)<br>1/15/03<br>87.0<br>(mg/kg) | MHSB-15<br>(6 - 8)<br>1/15/03<br>92.0<br>(mg/kg) | MHSB-16<br>(2 - 4)<br>1/15/03<br>91.0<br>(mg/kg) | MHSB-16<br>(4 - 6)<br>1/15/03<br>91.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>mg/kg |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                                 | 0.12                                             | 0.025 B                                           | 0.045                                             | 0.32                                             | 0.051                                            | U                                                | 0.079                                            | 0.088                                            | 0.042                                       | 0.1                                                                |

| ST LORGE (WARK)                                                        | arriel<br>Therefor                    |                                             |                                       | Ann a thirt                           | e dri mano                            | n ne standing                       |                                       |                                       |        |                                                           |
|------------------------------------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|--------|-----------------------------------------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS | MHSB-16<br>(6 - 8)<br>1/15/03<br>94.0 | MH <b>SB-24</b><br>(0-2)<br>8/12/04<br>89.0 | MH3B-24<br>(2 - 4)<br>8/12/04<br>90.0 | MHSB-24<br>(4 - 6)<br>8/12/04<br>86.0 | MHSB-24<br>(6 - 8)<br>8/12/04<br>85.0 | MHSB-25<br>(0-2)<br>8/12/04<br>88.0 | MHSB-25<br>(2 - 4)<br>8/12/04<br>87.0 | MHSB-25<br>(4 - 6)<br>8/12/04<br>92.0 | LIMITS | NYSDEC TAGM 4046<br>Recommended Soll<br>Cleanup Objective |
| UNITS                                                                  | (mg/kg)                               | (mg/kg)                                     | (mg/kg)                               | (mg/kg)                               | (mg/kg)                               | (mg/kg)                             | (mg/kg)                               | (mg/kg)                               | (ug/l) | mg/kg                                                     |
| Mercury                                                                | 0.022 B                               | 3.6                                         | 0.049 B                               | 0.034 B                               | 1.8                                   | 0.36                                | 0.38                                  | 0.023 B                               | 0.042  | 0.1                                                       |

QUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective.

Notes:

#### TABLE 2 (continued)

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD **DELINEATION PHASE 2 SITE ASSESSMENT**

#### SUBSURFACE SOIL - MERCURY

| AREAND HONGERN<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHSB-25<br>(6 - 8)<br>8/12/04<br>92<br>(mg/kg) | MHSB-26<br>(0 - 2)<br>8/13/04<br>88<br>(mg/kg) | MHSB-26<br>(2 - 4)<br>8/13/04<br>86<br>(mg/kg) | MHSB-26<br>(4 - 6)<br>8/13/04<br>87<br>(mg/kg) | MHSB-26<br>(6 - 8)<br>8/13/04<br>.85.0<br>(mg/kg) | MHSB-27<br>(0 - 2)<br>8/13/04<br>91.0<br>(mg/kg) | MHSB-27<br>(2 - 4)<br>8/13/04<br>85.0<br>(mg/kg) | MHSB-27<br>(4 - 6)<br>8/13/04<br>86.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soll<br>Cleanup Objective<br>mg/kg |
|---------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                           | 0.032 B                                        | 4.0                                            | 0.23                                           | 0.041                                          | 0.13                                              | 1.7                                              | 2.2                                              | 0.030 B                                          | 0.042                                       | 0.1                                                                |

| AREA OMOLING ENN<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MH\$B-27<br>(6 - 8)<br>8/13/04<br>89.0<br>(mg/kg) | MH\$B-28<br>(0 - 2)<br>8/13/04<br>90.0<br>(mg/kg) | MHSB-28<br>(2 - 4)<br>8/13/04<br>92.0<br>(mg/kg) | MHSB-28<br>(4 - 6)<br>8/13/04<br>94.0<br>(mg/kg) | MHSB-28<br>(6 - 8)<br>8/13/04<br>89.0<br>(mg/kg) | MHSB-29<br>(0 - 2)<br>8/13/04<br>88.0<br>(mg/kg) | MHSB-29<br>(2 - 4)<br>8/13/04<br>90.0<br>(mg/kg) | MHSB-29<br>(4 - 6)<br>8/13/04<br>93.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/i) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>mg/kg |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                             | 0.037                                             | 0.31                                              | 0.11                                             | 0.066                                            | 0.070                                            | 53.9                                             | 0.90                                             | 0.43                                             | 0.042                                       | 0.1                                                                |

| SAMPLE ID<br>SAMPLE D<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHSB-30<br>(0 - 2)<br>8/13/04<br>89.0<br>(mg/kg) | MHSB-30<br>(2 - 4)<br>8/13/04<br>87.0<br>(mg/kg) | MHSB-30<br>(4 - 6)<br>8/13/04<br>86.0<br>(mg/kg) | MHSB-30<br>(6 - 8)<br>8/13/04<br>86.0<br>(mg/kg) | MHSB-31<br>(0 - 2)<br>8/13/04<br>89.0<br>(mg/kg) | MHSB-31<br>(2 - 4)<br>8/13/04<br>84.0<br>(mg/kg) | MHSB-31<br>(4 - 6)<br>8/13/04<br>87.0<br>(mg/kg) | MHSB-31<br>(6 - 8)<br>8/13/04<br>85.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>mg/kg |
|------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                | 523                                              | 1,700                                            | 2.3                                              | 13.0                                             | _46.0                                            | 1.6                                              | 0.16                                             | 0.052                                            | 0.042                                       | 0.1                                                                |

| ARCANOL OF DEPENDENT<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHSB-32<br>(0 - 2)<br>8/13/04<br>89.0<br>(mg/kg) | MHSB-32<br>(2 - 4)<br>8/13/04<br>90.0<br>(mg/kg) | MHSB-32<br>(4 - 8)<br>8/13/04<br>86.0<br>(mg/kg) | MHSB-32<br>(6 - 8)<br>8/13/04<br>85.0<br>(mg/kg) | MHSB-33<br>(0 - 2)<br>8/13/04<br>89.0<br>(mg/kg) | MHSB-33<br>(2 - 4)<br>8/13/04<br>89.0<br>(mg/kg) | MHSB-33<br>(4 - 6)<br>8/13/04<br>86,0<br>(mg/kg) | MHSB-33<br>(6 - 8)<br>8/13/04<br>88.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4048<br>Recommended Soll<br>Cleanup Objective<br>mg/kg |
|--------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                    | 208                                              | 926                                              | 24.7                                             | 0.88                                             | 204                                              | 1.8                                              | 0.57                                             | 0.033 B                                          | 0.042                                       | 0.1                                                                |

Notes:

QUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

: Result exceeds NYSDEC TAGM Recommended Soll Cleanup Objective.

## TABLE 2 (continued)

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD **DELINEATION PHASE 2 SITE ASSESSMENT**

#### SUBSURFACE SOIL - MERCURY

| AREAOF/GONGERN<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHSB-34<br>(0 - 2)<br>8/13/04<br>87.0<br>(mg/kg) | MHSB-34<br>(2 - 4)<br>8/13/04<br>87.0<br>(mg/kg) | MHSB-34<br>(4 - 6)<br>8/13/04<br>88.0<br>(mg/kg) | MHSB-34<br>(6 - 8)<br>8/13/04<br>88.0<br>(mg/kg) | MHSB-35<br>(0 - 2)<br>8/13/04<br>95.0<br>(mg/kg) | MHSB-35<br>(2 - 4)<br>8/13/04<br>94.0<br>(mg/kg) | MHSB-35<br>(4 - 6)<br>8/13/04<br>84.0<br>(mg/kg) | MHSB-35<br>(6 - 8)<br>8/13/04<br>89.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soli<br>Claenup Objective<br>mg/kg |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                           | 27.4                                             | 3.2                                              | 0.33                                             | 0.020 B                                          | 1,7                                              | 0.088                                            | 0.015 B                                          | 0.11                                             | 0.042                                       | 0.1                                                                |

OUALIFIERS: U: Constituent enalyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

.

. .

Notes:

: Result exceeds NYSDEC TAGM Recommended Soll Cleanup Objective.

...

1

.

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### OUTFALL TO MANHASSET BAY SURFACE WATER SEDIMENT - MERCURY AND TOTAL ORGANIC CARBON(TOC)

| SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS | MHSD-01<br>(0-2)<br>1/16/03<br>85.0 | MH <b>SD-01A</b><br>(0-2)<br>1/17/03<br>85.0 | MHSD-02A<br>(0-2)<br>1/17/03<br>82.0 | MHSD-03A<br>(0-2)<br>1/17/03<br>77.0 | INSTRUMENT<br>DETECTION<br>LIMITS | for Screening | inical Guidance<br>Contaminated<br>ts (mg/kg)<br>Savera Effect |
|------------------------------------------------------------------------|-------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|---------------|----------------------------------------------------------------|
| UNITS                                                                  | (mg/kg)                             | (mg/kg)                                      | (mg/kg)                              | (mg/kg)                              | (ug/l)                            | Level         | Level                                                          |
| Mercury                                                                | 0.077                               | 0.094                                        |                                      | 0.084                                | 0.1                               | 0.15          |                                                                |

| SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLID | MH\$D-01<br>(0-2)<br>1/16/03<br>85.0 | MHSD-01A<br>(0-2)<br>1/17/03<br>85.0 | MHSD-02A<br>(0-2)<br>1/17/03<br>82.0 | MHSD-03A<br>(0-2)<br>1/17/03<br>77.0 | LABORATORY<br>QUANTITATION<br>LIMITS |
|-----------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| UNITS<br>Total Organic Carbon                                         | %<br>0.24                            | 0.34                                 | <u>%</u><br>0.67                     | 1.3                                  | 0.1                                  |

QUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes:

: Result exceeds Comparison Value.

O:\2015 (LERR 3 Subs Del Phase II)\3 Subs Data\Manhasaet\Data Tables for Report\Table 3 REV

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

## SUBSURFACE SOIL - RCRA METALS

| SAMPLE ID<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHSB-21<br>(2 - 4)<br>1/15/03<br>91.0<br>(mg/kg)         | MHSB-21<br>(4 - 6)<br>1/15/03<br>87.0<br>(mg/kg)       | MHSB-21<br>(6 - 8)<br>1/15/03<br>92.0<br>(mg/kg) | MHSB-21<br>(10 - 12)<br>1/15/03<br>91.0<br>(mg/kg) | MHSB-22<br>(8 - 10)<br>1/14/03<br>89.0<br>(mg/kg)          | Matematouph2<br>(18 - 20)<br>1/14/03<br>100.0<br>(mg/kg) | MHSB-22<br>(24 - 26)<br>1/14/03<br>98.0<br>(mg/kg)      | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l)          | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>mg/kg   |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
| Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Lead<br>Mercury<br>Selenium<br>Silver            | 2.9<br>44.5<br>0.61<br>6.8<br>96.3<br>9.1<br>U<br>0.21 B | 6.8<br>477<br>6.5<br>38.9<br>1010<br>473<br>U<br>1.1 B | 2.1<br>7 B<br>U<br>4.9<br>2.5<br>U<br>0.15 B     | 4.9<br>44.5<br>0.2 B<br>9.6<br>4.1<br>U<br>0.37 B  | 2.5<br>16.8<br>0.22 B<br>9.5<br>4.1<br>0.89<br>U<br>0.19 B | 1.6<br>73.3<br>1.6<br>10.3<br>172<br>553<br>0.25 B       | 0.6 B<br>9.8<br>U<br>3.4<br>1.3<br>0.045<br>U<br>0.16 B | 3.0<br>3.0<br>2.0<br>3.0<br>1.0<br>0.1<br>8.0<br>2.0 | 7.5 or SB<br>300 or SB<br>10*<br>50*<br>SB**<br>0.1<br>2 or SB<br>SB |

## QUALIFIERS:

.

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes: SB: Site Background \*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm : Result exceeds NYSDEC TAGM recommended Soil Cleanup Objective

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

## SUBSURFACE SOIL - VOLATILE ORGANIC COMPOUNDS (VOCs)

ł

| [1][+]                    |         | 1.07411 | ITTER S |           |            | Vanageneral |           |              |                  |
|---------------------------|---------|---------|---------|-----------|------------|-------------|-----------|--------------|------------------|
| SAMPLE ID                 | MHSB-21 | MHSB-21 | MHSB-21 | MHSB-21   | MHSB-22    | MHSB-22     | MHSB-22   |              |                  |
| SAMPLE DEPTH (FT)         | (2 - 4) | (4 - 6) | (6 - 8) | (10 - 12) | (8 - 10)   | (18 - 20)   | (24 - 26) | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION        | 1/15/03 | 1/15/03 | 1/15/03 | 1/15/03   | 1/14/03    | 1/14/03     | 1/14/03   | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR           | [ 1 .   | 1       | 1       | 1         | 1          | 1           | 1         | LIMITS       | Soll Cleanup     |
| PERCENT SOLIDS            | 91.0    | 87.0    | 92.0    | 91.0      | 89,0       | 100.0       | 98.0      |              | Objective        |
| UNITS                     | (ug/Kg) | (ug/Kg) | (ug/Kg) | (ug/Kg)   | (ug/Kg)    | (ug/Kg)     | (ug/Kg)   | (ug/Kg)      | (ug/Kg)          |
| Dichlorodifluoromethane   | υ       | U       | U       | U         | U          | U           | U         | 5            |                  |
| Chloromethane             | U       | υ       | U       | U         | · U        | U           | U         | 5            |                  |
| Vinyl Chloride            | U       | U U     | U       | U         | U          | υ           | U         | 5            | 200              |
| Bromomethane              | ί υ     | ( U     | U       | U         | U          | υ           | υ         | 5            | -                |
| Chloroethane              | lυ      | U U     | · U     | υ         | υ          | U           | υ         | 5            | 1900             |
| Trichlorofiuoromethane    | υ υ     | ( υ     | υ       | Ŭ         | Ū          | Ū           | Ŭ         | 5            |                  |
| 1,1-Dichloroethene        | U U     | Ū       | Ŭ       | Ŭ         | Ŭ          | Ŭ           | Ū         | 5            | 400              |
| Acetone                   | υ       | · U     | Ú       | Ū         | Ū          | 11          | U         | 5            | 200              |
| Idomethane                | Ū       | Ū       | Ŭ       | Ŭ         | Ŭ          | U           | Ū         | 5            |                  |
| Carbone Disulfide         | υ       | ט ו     | l ú l   | Ú         | Ŭ          | υŪ          | Ū         | 5            | 2700             |
| Methylene Chloride        | U•      | i ا     | Ŭ*      | Ŭ*        | <b>ນ</b> • | Ŭ*          | Ū+        | 5            | 100              |
| trens-1,2-Dichloroethane  | l u     | l Ū     | Ŭ       | Ŭ         | Ŭ          | Ŭ           | Ū         | 5            | 300              |
| Methyl tert-butyl ether   | lυ      | ι υ     | Ū Ū     | Ū         | Ū          | Ŭ           | ū         | 5            |                  |
| 1.1-Dichloroethane        | Ū       | υ (     | Ŭ       | Ū         | Ŭ          | Ŭ Ŭ         | Ū         | 5            | 200              |
| Vinyl acetate             | Ì Ū     | ) Ū     | Ũ       | Ŭ         | Ŭ          | ไ บั-       | Ŭ.        | 5            |                  |
| 2-Butanone                | Ŭ       | Ū       | Ŭ       | Ŭ         | Ŭ          | ្រ ប័       | υŬ        | 5            | 300              |
| cla-1,2-Dichloroethene    | Ū       | l ū     | Ŭ       | ŭ         | Ŭ          | ົ້ ບໍ່      | Ū         | 5            | -                |
| 2,2-Dichioropropane       | Ū       | Ŭ       | Ŭ       | Ŭ         | Ŭ          | Ũ           | Ŭ         | 5            | - 1              |
| Bromochloromethane        | U U     | U       | υ       | ່ບ        | Ū          | Ū           | Ŭ         | 5            |                  |
| Chloroform                | υ       | U U     | υ       | U         | Ū          | . U         | Ŭ Ū       | 5            | 300              |
| 1,1,1-Trichloroethane     | Ιυ      | υ       | i Ū     | Ū         | Ū          | i u         | Ŭ         | 5            | 800              |
| 1,1-Dichloropropene       | Ú       | Ŭ       | Ū       | Ū         | Ū          | ไ บั        | Ň         | 5            |                  |
| Carbon Tetrachioride      | υ 1     | Î Ū     | Ŭ       | Ŭ         | Ŭ.         | ໄ ບັ        | Ŭ         | 5            | 600              |
| 1,2-Dichloroethane        | U       | Ŭ       | Ŭ       | Ū         | Ū.         | Ŭ           | Ŭ         | 5            | 100              |
| Benzena                   | Ū       | Ŭ       | Ū       | Ŭ         | Ū          | Ŭ           | Ŭ         | 5            | 60               |
| Trichloroethene           | Ū       | Ŭ       | Ŭ       | Ŭ         | Ŭ Ŭ        | 2 J         | Ŭ         | 5            | 700              |
| 1,2-Dichloropropane       | Ū       | Ŭ       | Ŭ       | Ŭ         | Ŭ          | ĴŪ          | Ŭ         | 5            | -                |
| Dibromomethane            | Ū       | Ŭ       | Ŭ       | Ŭ         | ŭ          | ιŭ          | Ŭ         | 5            |                  |
| Bromodichloromethane      | Ū       | Ū       | Ŭ       | Ŭ         | Ŭ          | Ŭ           | Ŭ         | 5            | -                |
| cis-1,3-Dichloropropane   | Ū       | Ŭ       | Ŭ       | Ŭ         | Ū          | บั          | Ŭ         | 5            |                  |
| 4-Methyl-2-pentanone      | Ū       | l ŭ     | ů       | Ŭ         | ม          | Ŭ           | Ŭ         | 5            | 1000             |
| Toluene                   | Ū       | Ŭ       | Ū       | Ŭ         | Ŭ          | Ŭ           | Ŭ         | 5            | 1500             |
| trans-1,3-Dichloropropene | Ū       | Ŭ       | Ŭ       | Ŭ         | Ŭ          | Ŭ           | Ŭ         | 5            |                  |
| 1,1,2-Trichloroethane     | Ū       | ΰ       | Ŭ       | Ŭ         | Ŭ          | Ŭ           | Ŭ         | 5            |                  |

## QUALIFIERS:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

U\*: Result qualified as non-detect based on validation criteria.

NOTES: -: Not applicable.

O: 2015 (LIRR 3 Subs Del Phase II) 3 Subs Data Manhasset Data Tables for Report Table 5 REV

## TABLE 5 (continued)

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

#### SUBSURFACE SOIL - VOLATILE ORGANIC COMPOUNDS (VOCs)

| Inites Stating and a statistical statistics of the statistic statistics of the statistic statistics of the statistics of |         | ાતના    | BRAINS STORE | water of the second | sta la sua de la sua<br>La sua de la | VIII TOUR      | Rear heat as a star at |              |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|--------------|------------------|
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MHSB-21 | MHSB-21 | MHSB-21      | MHSB-21             | MHSB-22                                                                                                                                                                                                                            | MHSB-22        | MHSB-22                |              |                  |
| SAMPLE DEPTH (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2 - 4) | (4 - 6) | (6 - 8)      | (10 - 12)           | (8 - 10)                                                                                                                                                                                                                           | (18 • 20)      | (24 - 26)              | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/15/03 | 1/15/03 | 1/15/03      | 1/15/03             | 1/14/03                                                                                                                                                                                                                            | 1/14/03        | 1/14/03                | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       | 1       | 1            | 1                   | 1                                                                                                                                                                                                                                  | -1             | 1                      | LIMITS       | Soll Cleanup     |
| PERCENT SOLIDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91.0    | 87.0    | 92.0         | 91.0                | 89.0                                                                                                                                                                                                                               | 100.0          | 98.0                   |              | Objective        |
| UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ug/Kg) | (ug/Kg) | (ug/Kg)      | (ug/Kg)             | (ug/Kg)                                                                                                                                                                                                                            | (ug/Kg)        | (ug/Kg)                | (ug/Kg)      | (ug/Kg)          |
| 1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U 1     | U 1     | Ū            | U_                  | U                                                                                                                                                                                                                                  | U .            | <u>_</u>               | 5            | 300              |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | υ       | U       | U            | U                   | U                                                                                                                                                                                                                                  | ( U            | U U                    | 5            | 1400             |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U       | U       | U            | U                   | U                                                                                                                                                                                                                                  | U              | ט (                    | 5            |                  |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | υ       | U       | υ            | υ                   | υ                                                                                                                                                                                                                                  | ່ <del>ບ</del> | U U                    | 5            | -                |
| 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U       | U U     | U            | U                   | U                                                                                                                                                                                                                                  | υ              | ) U                    | 5            | -                |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U       | U       | U            | U                   | U                                                                                                                                                                                                                                  | U U            | U                      | 5            | 1700             |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U       | U       | υ            | U                   | υ                                                                                                                                                                                                                                  | U              | ט (                    | 5            | - 1              |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | υ       | υ       | υ            | U                   | U                                                                                                                                                                                                                                  | U              | 1 U I                  | 5            | 5500             |
| m,p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U       | υ       | U            | U                   | U                                                                                                                                                                                                                                  | υ              | U                      | 5            | -                |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | υ.      | U U     | U            | U                   | U                                                                                                                                                                                                                                  | υ              | I U                    | 5            | [ _ '            |
| Xylene (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | υ       | U       | U            | U                   | U                                                                                                                                                                                                                                  | U              | U U                    | 5            | 1200             |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U       | υ       | υ            | U                   | <u>ບ</u>                                                                                                                                                                                                                           | υ              | U                      | 5            | -                |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U       | U       | U            | U                   | U                                                                                                                                                                                                                                  | U              | U U                    | 5            |                  |
| isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | υ       | U       | ບ            | U                   | U                                                                                                                                                                                                                                  | U              | U U                    | 5            | -                |
| 1,1,2,2-Tetrachioroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | υ       | U       | U U          | υ                   | U                                                                                                                                                                                                                                  | U              | U                      | 5            | 600              |
| Bromobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ú       | υ       | U            | U                   | ່ປ                                                                                                                                                                                                                                 | ( U            | ί U                    | 5            | -                |
| 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U       | U       | U            | U                   | U                                                                                                                                                                                                                                  | · U            | υ .                    | 5            | 400              |
| n-Propyibenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U       | U       | U            | U                   | υ                                                                                                                                                                                                                                  | U U            | υ                      | 5            |                  |
| 2-Chiorotoluane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U U     | U       | U            | U                   | U                                                                                                                                                                                                                                  | ט ן            | U U                    | 5            | -                |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | υ       | υ       | υ            | υ                   | U                                                                                                                                                                                                                                  | ) ປ            | ļ U                    | 5            | -                |
| 4-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U       | U       | U            | U                   | U                                                                                                                                                                                                                                  | U              | υ                      | 5            | -                |
| tert-Butyibenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U       | U       | ט ו          | υ                   | υ                                                                                                                                                                                                                                  | ບ              | U                      | 5            | -                |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U       | U       | U            | U                   | U                                                                                                                                                                                                                                  | 1J             | υ                      | 5            | -                |
| sec-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U       | U       | U            | U                   | U                                                                                                                                                                                                                                  | ( U            | [ U                    | 5            | ~                |
| 4-isopropyitoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U       | U U     | υ            | U                   | U                                                                                                                                                                                                                                  | U              | U                      | 5            | ~                |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U       | υ       | U            | U                   | U                                                                                                                                                                                                                                  | U U            | U                      | 5            | 1600             |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | υ       | U       | U            | U                   | U                                                                                                                                                                                                                                  | U              | U                      | 5            | 8500             |
| n-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U       | υ       | υ            | U                   | υ                                                                                                                                                                                                                                  | U              | U U                    | 5            | -                |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U       | U       | U            | ບ                   | U                                                                                                                                                                                                                                  | U              | U                      | 5            | 7900             |
| 1,2-Dibromo-3-chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U U     | U       | U            | U                   | U                                                                                                                                                                                                                                  | U              | U                      | 5            | ~                |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U       | U       | U            | U                   | U                                                                                                                                                                                                                                  | , ບ            | U                      | 5            | 3400             |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U       | U       | υ            | U                   | U                                                                                                                                                                                                                                  | U              | U                      | 5            | -                |
| Nephthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U       | U       | U            | υ                   | U                                                                                                                                                                                                                                  | 2 J            | υ                      | 5            | 13000            |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U       | U.      | U            | U                   | U                                                                                                                                                                                                                                  | υ              | U                      | 5            | -                |
| Totais VOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0       | 0       | 0            | 0                   | 0                                                                                                                                                                                                                                  | 16             | 0                      | -            |                  |

## QUALIFIERS:

U: Compound analyzed for but not detected.

NOTES: --: Not applicable.

J: Compound found at a concentration below the detection limit.

U\*: Result qualified as non-detect based on validation criteria.

U-2015 (LERR 3 Subs Dei Phase II)/3 Subs Data/Manhasset/Data Tables for Report/Table 5 REV

Page 2 of 2

.

.

~

## MANHASSET SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| Miesche falen al 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - |         | and the detrial | THE STATE |           |          | ALL PROPERTY | адаа алаан алаа<br>Алаан алаан алаа |              |                  |
|----------------------------------------------------------|---------|-----------------|-----------|-----------|----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|
| SAMPLE ID                                                | MHSB-21 | MHSB-21         | MHSB-21   | MHSB-21   | MHSB-22  | MHSB-22      | MHSB-22                                                                                                                                                                                                                             |              |                  |
| SAMPLE DEPTH (FT)                                        | (2 - 4) | (4 - 6)         | (6 - 8)   | (10 - 12) | (8 - 10) | (18 - 20)    | (24 - 26)                                                                                                                                                                                                                           | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION                                       | 1/15/03 | 1/15/03         | 1/15/03   | 1/15/03   | 1/14/03  | 1/14/03      | 1/14/03                                                                                                                                                                                                                             | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR                                          | 1       | 1               | 1         | 1         | 1        | 1            | 1                                                                                                                                                                                                                                   | LIMITS       | Soll Cleanup     |
| PERCENT SOLIDS                                           | 91.0    | 87.0            | 92.0      | 91.0      | 89.0     | 100.0        | 98.0                                                                                                                                                                                                                                |              | Objective        |
| UNITS                                                    | (ug/Kg) | (ug/Kg)         | (ug/Kg)   | (ug/Kg)   | (ug/Kg)  | (ug/Kg)      | (ug/Kg)                                                                                                                                                                                                                             | (ug/Kg)      | (ug/Kg)          |
|                                                          |         |                 |           |           |          |              |                                                                                                                                                                                                                                     |              |                  |
| Phenol                                                   | U       | 81 J            | U         | U         | U        | U            | U                                                                                                                                                                                                                                   | 330          | 30               |
| bis(2-Chloroethyl)ether                                  | U       | Ū               | υ         | υ         | U U      | U            | U                                                                                                                                                                                                                                   | 330          |                  |
| 2-Chlorophenol                                           | U       | U               | U         | U         | υ        | υ            | υ                                                                                                                                                                                                                                   | 330          | 800              |
| 1,3-Dichlorobenzene                                      | U       | U               | U         | U         | U        | U            | V                                                                                                                                                                                                                                   | 330          |                  |
| 1,4-Dichlorobenzene                                      | U       | U               | U         | U         | U        | U            | U                                                                                                                                                                                                                                   | 330          | -                |
| 1,2-Dichlorobenzene                                      | ט ו     | U               | U         | U         | U        | U            | U                                                                                                                                                                                                                                   | 330          | - 1              |
| 2-Methylphenol                                           | U       | U               | υ         | U         | U ]      | U            | U                                                                                                                                                                                                                                   | 330          | 100              |
| 2,2-oxybis (1-chloropropane)                             | U       | U               | U         | U         | V        | υ            | Ų                                                                                                                                                                                                                                   | 330          | - 1              |
| 4-Methylphenol                                           | U       | U               | U         | U         | U        | U            | υ                                                                                                                                                                                                                                   | 330          | 900              |
| N-Nitroso-di-n-propylamine                               | U       | υ               | υ         | υ         | U        | Ŭ            | Ū                                                                                                                                                                                                                                   | 330          | _                |
| Hexachloroethane                                         | U       | U               | Ŭ         | Ū         | Ŭ        | Ŭ            | Ŭ                                                                                                                                                                                                                                   | 330          | - (              |
| Nitrobenzene                                             | U       | υ               | Ū         | U         | Ű        | υ            | υ                                                                                                                                                                                                                                   | 330          | 200              |
| Isophorone                                               | U       | U               | U         | υ         | υ        | υ            | υ                                                                                                                                                                                                                                   | 330          | 4,400            |
| 2-Nitrophenol                                            | υ       | U U             | U         | U         | υ        | Ŭ            | Ū                                                                                                                                                                                                                                   | 330          | 330              |
| 2,4-Dimethylphenol                                       | υ       | υ               | υ         | υ         | Ŭ        | Ū            | Ū                                                                                                                                                                                                                                   | 330          | _                |
| 2,4-Dichlorophenol                                       | υ       | Ū               | Ū         | Ū         | Ū        | Ŭ            | Ū                                                                                                                                                                                                                                   | 330          | 400              |
| 1,2,4-Trichlorobenzene                                   | U       | υ               | Ŭ         | Ŭ         | Ŭ        | Ŭ            | Ŭ                                                                                                                                                                                                                                   | 330          | -                |
| Naphthalene                                              | U.      | Ū               | Ū         | Ū         | Ū        | 88 J         | Ū                                                                                                                                                                                                                                   | 330          | 13,000           |
| 4-Chioroaniline                                          | U       | υ.              | - U       | U         | U        | Ū            | υ                                                                                                                                                                                                                                   | 330          | 220              |
| bis(2-Chloroethoxy)methans                               | υ       | U U             | U         | U         | υ        | Ú            | Ú                                                                                                                                                                                                                                   | 330          | -                |
| Hexachlorobutadiene                                      | U       | U               | υ Ι       | U         | U        | Ū            | Ū                                                                                                                                                                                                                                   | 330          | -                |
| 4-Chioro-3-methylphenol                                  | U       | U               | Ū         | Ū         | Ū        | Ŭ            | Ū                                                                                                                                                                                                                                   | 330          | 240              |
| 2-Methylnaphthalene                                      | υ       | Ū Ū             | Ŭ         | บ         | Ŭ        | 140 J        | Ŭ                                                                                                                                                                                                                                   | 330          | 36,400           |
| Hexachlorocyclopentadiene                                | U       | Ŭ               | Ū         | Ū         | Ū        | Ŭ            | Ŭ                                                                                                                                                                                                                                   | 330          |                  |
| 2,4,6-Trichlorophenol                                    | Ú       | Ŭ               | Ū         | Ū         | Ŭ        | Ŭ            | ŭ                                                                                                                                                                                                                                   | 330          | -                |
| 2,4,5-Trichlorophenol                                    | υ       | Ŭ               | Ŭ         | Ŭ         | Ŭ        | Ŭ            | Ŭ                                                                                                                                                                                                                                   | 660          | 100              |
| 2-Chloronaphthalene                                      | Ű       | Ŭ               | Ŭ         | Ū         | Ŭ        | Ŭ            | Ŭ                                                                                                                                                                                                                                   | 330          |                  |
| 2-Nitroaniline                                           | Ŭ       | Ŭ               | Ŭ         | บั        | Ŭ        | Ŭ            | Ŭ                                                                                                                                                                                                                                   | 660          | 430              |
| Dimethylphthalate                                        | Ū       | Ŭ               | Ŭ         | Ū         | Ŭ        | Ū            | Ŭ                                                                                                                                                                                                                                   | 330          | 2,000            |
| Acenaphthylene                                           | 160 J   | 160 J           | Ŭ         | Ŭ         | Ŭ        | 160 J        | Ŭ                                                                                                                                                                                                                                   | 330          | 41,000           |
| 2,6-Dinitrotoluene                                       | υ       | Ŭ               | Ŭ         | Ŭ         | Ŭ        | Ŭ            | Ū                                                                                                                                                                                                                                   | 330          | 1,000            |
| 3-Nitroaniline                                           | ŭ       | . บั            | · Ŭ       | Ŭ         | Ŭ        | ŭ            | Ŭ                                                                                                                                                                                                                                   | 660          | 500              |
| Acenaphthene                                             | 78 J    | 81 J            | Ŭ         | ນັ        | Ŭ        | 400 J        | U U                                                                                                                                                                                                                                 | 330          | 50.000           |

QUALIFIERS:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Result taken from analysis at a secondary dilution...

Page 1 of 2

NOTES:

- : Not applicable.

÷

-----

#### TABLE 6 (continued)

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| UIORSTRUCTURE<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | MHSB-21<br>(2 - 4)<br>1/15/03<br>1<br>91.0<br>(ug/Kg) | MHSB-21<br>(4 - 6)<br>1/15/03<br>1<br>87.0<br>(ug/Kg) | MHSB-21<br>(6 - 8)<br>1/15/03<br>1<br>92.0<br>(ug/Kg) | MHSB-21<br>(10 - 12)<br>1/15/03<br>1<br>91.0<br>(ug/Kg) | MHSB-22<br>(8 - 10)<br>1/14/03<br>1<br>89.0<br>(ug/Kg) | MHSB-22<br>(18 - 20)<br>1/14/03<br>1<br>100.0<br>(ug/Kg) | MHSB-22<br>(24 - 26)<br>1/14/03<br>1<br>98.0<br>(ug/Kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/Kg) | NYSDEC TAGM<br>4046 Recommended<br>Soil Cleanup<br>Objective<br>(ug/Kg) |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|
| 2,4-Dinitrophenol                                                                                                   | υ                                                     | υ                                                     | U                                                     | U                                                       | U                                                      | υ                                                        | U                                                       | 660                                             | 200                                                                     |
| 4-Nitrophenol                                                                                                       | Ŭ                                                     | Ŭ                                                     | Ŭ                                                     | Ŭ                                                       | Ŭ                                                      | Ŭ                                                        | Ŭ                                                       | 660                                             | 100                                                                     |
| Dibenzofuran                                                                                                        | Ŭ                                                     | Ŭ                                                     | Ŭ                                                     | Ŭ                                                       | Ŭ                                                      | 74 J                                                     | Ŭ                                                       | 330                                             | 6,200                                                                   |
| 2.4-Dinitrotoluene                                                                                                  | l ŭ                                                   | Ū                                                     | ŭ                                                     | Ŭ                                                       | Ū                                                      | Ŭ                                                        | Ū                                                       | 330                                             | -                                                                       |
| Diethylphthalate                                                                                                    | Ū                                                     | Ū                                                     | Ŭ                                                     | Ū                                                       | Ū                                                      | Ū                                                        | Ŭ                                                       | 330                                             | 7,100                                                                   |
| 4-Chlorophenyl-phenylether                                                                                          | U                                                     | U                                                     | U                                                     | U                                                       | U                                                      | υ 🛛                                                      | U                                                       | 330                                             | -                                                                       |
| Fluorene                                                                                                            | 78 J                                                  | 68 J                                                  | U                                                     | U                                                       | U                                                      | 410 J                                                    | U                                                       | 330                                             | 50,000                                                                  |
| 4-Nitroaniline                                                                                                      | 220 J                                                 | 600 J                                                 | U                                                     | U                                                       | U                                                      | υ 🛛                                                      | U                                                       | 330                                             | -                                                                       |
| 4,6-Dinitro-2-methyiphenoi                                                                                          | U                                                     | U                                                     | U                                                     | U                                                       | U                                                      | U                                                        | U                                                       | 330                                             | ~                                                                       |
| N-Nitrosodiphenylamine                                                                                              | U                                                     | U                                                     | U                                                     | U                                                       | U                                                      | U                                                        | U                                                       | 330                                             | -                                                                       |
| 4-Bromophenyl-phenylether                                                                                           | U                                                     | U                                                     | U                                                     | U                                                       | U                                                      | U                                                        | U                                                       | 330                                             |                                                                         |
| Hexachlorobenzene                                                                                                   | U                                                     | U                                                     | U                                                     | U                                                       | U                                                      | U                                                        | U                                                       | 330                                             | 410                                                                     |
| Pentachiorophenol                                                                                                   | U                                                     | U                                                     | U                                                     | U                                                       | U                                                      | U                                                        | U                                                       | 660                                             | 1,000                                                                   |
| Phenanthrene                                                                                                        | 5500                                                  | 3100                                                  | U                                                     | U                                                       | U                                                      | 4300 D                                                   | U                                                       | 330                                             | 50,000                                                                  |
| Anthracene                                                                                                          | 960                                                   | 700                                                   | U                                                     | U                                                       | U                                                      | 1400                                                     | U<br>U                                                  | 330                                             | 50,000                                                                  |
| Carbazole                                                                                                           | 72 J<br>U                                             | 58 J<br>U                                             | U<br>U                                                | UU                                                      | UU                                                     | 160 J<br>U                                               | U                                                       | 330<br>330                                      | 8,100                                                                   |
| Di-n-butyiphthalate<br>Fluoranthene                                                                                 | 5600                                                  | 4300                                                  | U U                                                   | Ŭ                                                       | U U                                                    | 4600 D                                                   | U<br>U                                                  | 330                                             | 50.000                                                                  |
| Pyrene                                                                                                              | 12000 D                                               | 9500 D                                                | Ŭ                                                     | Ŭ                                                       | Ŭ                                                      | 9500 D                                                   | Ŭ                                                       | 330                                             | 50,000                                                                  |
| Butylbenzylphthalate                                                                                                |                                                       | U                                                     | Ŭ                                                     | Ŭ                                                       | Ŭ                                                      | <b>3000 D</b>                                            | ŭ                                                       | 330                                             | 50,000                                                                  |
| 3.3-Dichlorobenzidine                                                                                               | Ŭ Ŭ                                                   | Ŭ                                                     | Ŭ                                                     | Ŭ                                                       | Ŭ                                                      | ŭ                                                        | ŭ                                                       | 330                                             |                                                                         |
| Benzo(a)anthracene                                                                                                  | 6100                                                  | 5200                                                  | Ū                                                     | Ū                                                       | Ŭ                                                      | 4500 D                                                   | ū                                                       | 330                                             | 224                                                                     |
| Chrysene                                                                                                            | 7200 D                                                | 5600                                                  | Ū                                                     | Ū                                                       | Ŭ                                                      | 4600 D                                                   | Ū                                                       | 330                                             | 400                                                                     |
| bis(2-Ethylhexyl)phthalate                                                                                          | 320 J                                                 | 230 J                                                 | Ŭ                                                     | Ū                                                       | Ŭ                                                      | Ū                                                        | ū                                                       | 330                                             | 50,000                                                                  |
| Di-n-octylphthalate                                                                                                 | 460                                                   | 330 J                                                 | Ū                                                     | Ū                                                       | Ŭ                                                      | Ŭ                                                        | Ũ                                                       | 330                                             | 50,000                                                                  |
| Benzo(b)fluoranthene                                                                                                | 6500 D                                                | 5500                                                  | Ū                                                     | U                                                       | Ū                                                      | 3700 D                                                   | Ŭ                                                       | 330                                             | 1,100                                                                   |
| Benzo(k)fluoranthene                                                                                                | 2800                                                  | 2300                                                  | Ū                                                     | Ū                                                       | Ū                                                      | 2500                                                     | Ū                                                       | 330                                             | 1,100                                                                   |
| Benzo(a)pyrene                                                                                                      | 5000                                                  | 4000                                                  | Ū                                                     | Ŭ                                                       | Ū                                                      | 4400                                                     | Ū                                                       | 330                                             | 61                                                                      |
| Indeno(1,2,3-cd)pyrene                                                                                              | 1200                                                  | 1000                                                  | Ū                                                     | Ū                                                       | Ŭ                                                      | 1300                                                     | Ū                                                       | 330                                             | 3.200                                                                   |
| Dibenz(a,h)anthracene                                                                                               | 440                                                   | 370 J                                                 | Ū                                                     | Ŭ                                                       | Ŭ                                                      | 390                                                      | Ŭ                                                       | 330                                             | 14                                                                      |
| Benzo(g,h,i)perylene                                                                                                | 1300                                                  | 1000                                                  | Ŭ                                                     | Ŭ                                                       | Ŭ                                                      | 110                                                      | Ŭ                                                       | 330                                             | 50,000                                                                  |
| Total PAHs                                                                                                          | 54,918                                                | 42,879                                                | 0                                                     | 0                                                       | 0                                                      | 42,572                                                   | 0                                                       | -                                               | 100,000                                                                 |
| Total CaPAHs                                                                                                        | 29,240                                                | 23,970                                                | 0                                                     | 0                                                       | 0                                                      | 21,390                                                   | 0                                                       | -                                               | 10,000                                                                  |
| Total SVOCs                                                                                                         | 55,988                                                | 34,678                                                | 0                                                     | 0                                                       | 0                                                      | 42,732                                                   | 0                                                       | -                                               | 500,000                                                                 |

QUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Result taken from analysis at a secondary dilution..

-- : Not applicable.

Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

i.

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

. . . ·

## SUBSURFACE SOIL - TOTAL PETROLEUM HYDROCARBONS (TPH)

| UICXSTRUCTURE<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLID<br>UNITS | MHSB-21<br>(2 - 4)<br>1/15/03<br>91.0<br>(mg/kg) | MHSB-21<br>(4 - 6)<br>1/15/03<br>87.0<br>(mg/kg) | MHSB-21<br>(6 - 8)<br>1/15/03<br>92.0<br>(mg/kg) | MHSB-21<br>(10 - 12)<br>1/15/03<br>91.0<br>(mg/kg) | MHSB-22<br>(8 - 10)<br>1/14/03<br>89.0<br>(mg/kg) | MHSB-22<br>(18 - 20)<br>1/14/03<br>100.0<br>(mg/kg) | MHSB-22<br>(24 - 26)<br>1/14/03<br>98.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(mg/kg) |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|----------------------------------------------|
| Total Petroleum Hydrocarbons                                                                    | 450                                              | 1500                                             | ND                                               | ND                                                 | ND                                                | 480                                                 | ND                                                 | 12                                           |

<u>Notes:</u> ND: Not Detected

## MANHASSET SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

## GROUNDWATER - TARGET ANALYTE LIST (TAL) METALS

| SAMPLE ID<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>UNITS | MHMW-01<br>Unfiltered<br>1/21/03<br>1<br>(ug/L) | MHMW-01<br>Filtered<br>1/21/03<br>1<br>(ug/L) | MHMW-02<br>Unfiltered<br>1/23/03<br>1<br>(ug/L) | MHMW-02<br>Filtered<br>1/23/03<br>1<br>(ug/L) | MHMW-03<br>Unfiltered<br>1/22/03<br>1<br>(ug/L) | MHMW-03<br>Filtered<br>1/22/03<br>1<br>(ug/L) | INSTRUMENT<br>DETECTION<br>LIMIT<br>(IDL)<br>(ug/L) | NY STATE CLASS GA<br>GROUNDWATER<br>STANDARDS/<br>GUIDELINES<br>(ug/L) |
|-------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-------------------------------------------------|-----------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|
| Aluminum                                                    | 11600                                           | U                                             | 10600                                           | U                                             | 6070                                            | U                                             | 12                                                  | -                                                                      |
| Antimony                                                    | U                                               | Ų                                             | U                                               |                                               | U                                               | U                                             | 3                                                   | 3 ST                                                                   |
| Arsenic                                                     | 25.4                                            | U                                             | 7.1 B                                           | U                                             | 3.3 B                                           | ט                                             | 3                                                   | 25 ST                                                                  |
| Barium                                                      | 104 B                                           | 69.5 B                                        | 68.4 B                                          | 37.9 B                                        | 58.7 B                                          | 54.3 B                                        | 3                                                   | 1,000 ST                                                               |
| Beryllium                                                   | U                                               | U                                             | U                                               | U                                             | U                                               | U U                                           | 2                                                   | 3 GV                                                                   |
| Cadmium                                                     | ί U                                             | U U                                           | Ų V                                             | U                                             | U                                               | U                                             | 2                                                   | 5 ST )                                                                 |
| Calcium                                                     | 24600                                           | 25200                                         | 15500                                           | 13700                                         | 25000                                           | 24700                                         | 76                                                  | 1 - 1                                                                  |
| Chromium                                                    | 19,3 B                                          | U                                             | 19 B                                            | U                                             | 7.6 B                                           | υ                                             | 3                                                   | 50 ST                                                                  |
| Cobalt                                                      | 3.1 B                                           | U                                             | υ                                               | υ                                             | 5.2 B                                           | 4.3 B                                         | 3                                                   |                                                                        |
| Copper                                                      | 31.8                                            | 4,3 B                                         | 15.8 B                                          | 2.8 B                                         | 5.3 B                                           | 3.7 B                                         | 2                                                   | 200 GA                                                                 |
| Iron                                                        | 18500                                           | υ                                             | 4470                                            | ט ו                                           | 2850                                            | t u                                           | 35                                                  | 300 ST*                                                                |
| Lead                                                        | 24.2                                            | U U                                           | 7.8 B                                           | U                                             | 3.4 B                                           | U                                             | 1                                                   | 25 ST                                                                  |
| Magnesium                                                   | 9440                                            | 9630                                          | 4510                                            | 4350                                          | 6680                                            | 6660                                          | 23                                                  | 35,000 GV                                                              |
| Manganese                                                   | 421                                             | 313                                           | 17.8 B                                          | 10.6 B                                        | 955                                             | 909                                           | 2                                                   | 300 ST*                                                                |
| Mercury                                                     | 0.59                                            | U                                             | 0.17 B                                          | U U                                           | U U                                             |                                               | 0.1                                                 | 0.7 ST                                                                 |
| Nickel                                                      | 21.4 B                                          | 15.6 B                                        | 12.4 B                                          | 3.9 B                                         | 17.2 B                                          | 13.3 B                                        | 1                                                   | 100 ST                                                                 |
| Potassium                                                   | 6150                                            | 5570                                          | 3460                                            | 2850                                          | 5660                                            | 5500                                          | 89                                                  |                                                                        |
| Selenium                                                    | U                                               | l u                                           | l                                               | UU                                            | ເ ີ້ນ                                           | U                                             | 8                                                   | 10 ST                                                                  |
| Silver                                                      | ) ū                                             | Ū                                             | <b>l</b> Ū                                      | l Ū                                           | ιŪ                                              | Ū                                             | 2                                                   | 50 ST                                                                  |
| Sodium                                                      | 74700                                           | 76500                                         | 52200                                           | 50900                                         | 79300                                           | 79600                                         | 118                                                 | 20,000 ST                                                              |
| Thallium                                                    | U                                               | U                                             |                                                 | U                                             |                                                 |                                               | 4                                                   | 0.5 GV                                                                 |
| Vanadium                                                    | 109                                             | Ŭ                                             | 27.7 B                                          | l ŭ                                           | 15.5 B                                          | l ŭ                                           | 3                                                   |                                                                        |
| Zinc                                                        | 23.1 B                                          | 14.9 B                                        | 12.4 B                                          | 12.5 B                                        | 21.5 B                                          | 18 B                                          | 8                                                   | 2,000 GV                                                               |

## QUALIFIERS:

U: Compound analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

## NOTES:

- : Not applicable.

ST : New York State Ambient Water Quality Standards

GV : New York State Ambient Water Quality Guidance Values

<u>ST\*</u>:S

: Standard for the sum of iron and manganese is 500 ug/l ]: Result exceeds NYS Class GA Standard/Guideline

L

and the second secon

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

| SAMPLE ID                 | MHMW-01 | MHMW-02 | MHMW-03 |                         | NY STATE CLASS GA     |
|---------------------------|---------|---------|---------|-------------------------|-----------------------|
| DATE OF COLLECTION        | 1/21/03 | 1/23/03 | 1/22/03 | LABORATORY QUANTITATION | GROUNDWATER           |
| DILUTION FACTOR           | 1       | (       | 1       | LIMITS                  | STANDARDS/ GUIDELINES |
|                           | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)                  | (ug/L)                |
| Dichlorodifluoromethane   | U       | U       | U       | 5                       | 5 \$1                 |
| Chloromethane             | U       |         | U       | 5                       |                       |
| Vinyi Chloride            | U       | U       | U.      | 5                       | 2 ST                  |
| Bromomethane              | U       | U       | U       | 5                       | 5 ST                  |
| Chioroethane              | U       | . U     | U       | 5                       | 5 ST                  |
| Trichlorofluoromethane    | U       | U       | U       | 5                       | 5 ST                  |
| 1,1-Dichiorosthene        | U       | U       | U       | 5                       | 5 ST                  |
| Acetone                   | U ·     | U       | U       | 5                       | 50 GV                 |
| Idomethane                | U       | Į U Į   | U       | 5                       | -                     |
| Carbone Disulfide         | U       | U       | Ų       | 5                       | -                     |
| Methylene Chloride        | U       | U U     | Ú       | 5                       | 5 ST                  |
| trans-1,2-Dichloroethene  | U       | U       | U       | 5                       | 5 ST                  |
| Methyl tert-butyl ether   | 4 J     | Ι υ Ι   | 2 J     | 5                       | 10 GV*                |
| 1,1-Dichloroethane        | U       | υ Ι     | U       | 5                       | 5 ST                  |
| Vinyl scetate             | U       | U       | U       | 5                       | -                     |
| 2-Butanone                | U       | U       | U       | 5                       |                       |
| cis-1,2-Dichloroethene    | U       | U       | U       | 5                       | 5 ST                  |
| 2.2-Dichloropropane       | U       | i u l   | U       | 5                       | 5 ST                  |
| Bromochloromethane        | U       | ן ט     | U       | 5                       | 5 ST                  |
| Chloroform                | U       | U       | 1 Ĵ     | 5                       | 7 ST                  |
| 1,1,1-Trichloroethane     | U       | U       | Ū       | 5                       | 5 ST                  |
| 1,1-Dichloropropene       | U       | ) U     | U       | 5                       | 5 ST                  |
| Carbon Tetrachloride      | U       | υ υ     | Ū       | 5                       | 5 ST                  |
| 1,2-Dichloroethane        | U       | U       | Ū       | 5                       | 0.6 ST                |
| Benzene                   | Ū       | Ū       | ũ       | 5                       | 1 ST                  |
| Trichioroethene           | Ů       | Ū       | ŭ       | 5                       | 5 ST                  |
| 1,2-Dichloropropane       | Ū       | l ŭ l   | Ŭ       | 5                       | 1 ST                  |
| Dibromomethane            | Ū       | Ŭ       | ŭ       | 5                       | 5 ST                  |
| Bromodichloromethane      | มั      | ŭ       | ŭ       | 5                       | 50 G∨                 |
| cis-1,3-Dichloropropane   | ŭ       | l ū l   | ŭ       | j š                     |                       |
| 4-Methyl-2-pentanone      | ū       | l ŭ l   | ŭ       | 5                       |                       |
| Toluene                   | ŭ       | I ŭ I   | ŭ       | 5                       | 5 ST                  |
| trans-1,3-Dichloropropene | ŭ       | l ŭ l   | ŭ       | 5                       | 0.4 ST                |
| 1,1,2-Trichloroethane     | Ū       | Ŭ       | ŭ       | i š                     | 1 1 51                |

## GROUNDWATER - VOLATILE ORGANIC COMPOUNDS (VOCs)

#### QUALIFIERS:

NOTES:

U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

-

: Not applicable. -.

: Draft Guidance Value

ST : New York State Amblent Water Quality Standards

GV : New York State Ambient Water Quality Guidance Values

#### TABLE 9 (continued)

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

#### GROUNDWATER - VOLATILE ORGANIC COMPOUNDS (VOCs)

| SAMPLE ID                   | MHMW-01 | MHMW-02 | MHMW-03 |                         | NY STATE CLASS GA     |
|-----------------------------|---------|---------|---------|-------------------------|-----------------------|
| DATE OF COLLECTION          | 1/21/03 | 1/23/03 | 1/22/03 | LABORATORY QUANTITATION | GROUNDWATER           |
| DILUTION FACTOR             | 1       | 1       | 1       | LIMITS                  | STANDARDS/ GUIDELINES |
| UNITS                       | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)                  | (ug/L)                |
| 1,3-Dichloropropane         |         |         |         |                         | 5 ST                  |
| Tetrachloroethene           | U       | U       | U       | 5                       | 5 ST                  |
| 2-Hexanone                  | U       | ) υ     | U       | 5                       | 50 G∨                 |
| Dibromochloromethane        | U       | U U     | U       | 5                       | 50 G∨                 |
| 1,2-Dibromoethane           | U       | U       | U       | 5                       |                       |
| Chiorobenzene               | U       | ί υ     | U       | 5                       | 5 ST                  |
| 1,1,1,2-Tetrachioroethane   | U,      | ( U     | U       | 5                       | 5 ST                  |
| Ethylbenzene                | U       | U       | U       | 5                       | 5 ST                  |
| m,p-Xylene                  | U       | ί υ     | U       | 5                       | -                     |
| o-Xylene                    | U       | U       | U       | 5                       |                       |
| Xylens (total)              | U       | ι       | U       | 5                       | 5 ST                  |
| Styrene                     | U       | υ       | Ų       | 5                       | 5 ST                  |
| Bromoform                   | U       | l u     | U       | 5                       | 50 GV                 |
| Isopropylbenzene            | U       | ) U     | U U     | 5                       | 5 ST                  |
| 1,1,2,2-Tetrachloroethane   | U       | ļ U     | U       | 5                       | 5 ST                  |
| Bromobenzene                | U       | U U     | U U     | 5                       | 5 ST                  |
| 1,2,3-Trichioropropane      | U       | υ       | U U     | 5                       | 0.04 ST               |
| n-Propylbenzene             | U       | U       | U       | 5                       | 5 ST                  |
| 2-Chlorotoluene             | U       | ( U     | U       | 5                       | 5 ST                  |
| 1,3,5-Trimethylbenzene      | U       | ( U     | U       | 5                       | 5 ST                  |
| 4-Chlorotoluene             | U       | j u     | ) U     | 5                       | 5 ST                  |
| tert-Butylbenzene           | U       | U       | U U     | 5                       | 5 ST                  |
| 1,2,4-Trimethylbenzene      | U       | Ι υ     | U U     | 5                       | 5 ST                  |
| sec-Butylbenzene            | U       | l u     | U       | 5                       | 5 ST                  |
| 4-isopropyitoluene          | U       | ) U     | U       | 5                       | 5 ST                  |
| 1,3-Dichlorobenzene         | U       | U       | Į U     | 5                       | 3 ST                  |
| 1,4-Dichlorobenzene         | U       | U       | J U     | 5                       | 3 ST                  |
| n-Butylbenzene              | U       | ) V     | U       | 5                       | 5 ST                  |
| 1,2-Dichiorobenzane         | U       | l u     | U       | 5                       | 3 ST                  |
| 1,2-Dibromo-3-chloropropane | U       | U U     | U U     | 5                       | 0.04 ST               |
| 1,2,4-Trichlorobenzene      | U       | l n     | l. V    | 5                       | 5 ST                  |
| Hexachlorobutadiene         | U       | l n     |         | 5                       | 0.5 ST                |
| Naphthaiene                 | U       | U       | l u     | 5                       | 10 GV                 |
| 1,2,3-Trichlorobenzene      | U       |         | UU      | 5                       | 5 ST                  |

# QUALIFIERS: U: Compound analyzed for but not detected.

NOTES:

: Not applicable. 84 .

: Draft Guidance Value

ST

: New York State Ambient Water Quality Standards : New York State Ambient Water Quality Guidance Values GV

J: Compound found at a concentration below the detection limit.

-

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

## GROUNDWATER - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCS)

| SAMPLEID                      | MHMW-01 | MHMW-02 | MHMW-03 | LABORATORY   | NY STATE CLASS GA      |
|-------------------------------|---------|---------|---------|--------------|------------------------|
| DATE OF COLLECTION            | 1/21/03 | 1/23/03 | 1/22/03 | QUANTITATION | GROUNDWATER STANDARDS/ |
| DILUTION FACTOR               | 1       | 1       | 1       | LIMITS       | GUIDELINES             |
| UNITS                         | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)       |                        |
| Phenol                        | U       |         | U       | 10           | 1 ST*                  |
| bis(2-Chloroethyl)ether       | ŭ       | l ü     | i i     | 10           | 131                    |
| 2-Chlorophenol                | ŭ       |         | i ii    | 10           | -                      |
| 1,3-Dichiorobenzene           | Ŭ       | l ä     |         |              |                        |
| 1,4-Dichlorobenzene           | 0       |         |         | 10           | 3 ST                   |
| 1,2-Dichlorobenzene           | 0       |         |         | 10           | 3 ST                   |
| 2-Methylphenoi                | 0       |         | 0       | 10           | 3 ST                   |
| 2,2'-oxybis (1-chioropropane) | 0       |         | 0       | 10           | -                      |
| 4-Methylphenol                | Ŭ       |         | 0       | 10           | -                      |
|                               | Ŭ       | l U     | l 0     | 10           | -                      |
| N-Nitroso-dl-n-propylamine    | U       | U       | U U     | 10           | -                      |
| Hexachloroethane              | Ų       | l v     | U       | 10           | 5 ST                   |
| Nitrobenzene                  | Ų       | U       | l u     | 10           | 0.4 ST                 |
| Isophorone                    | U       | U       | U U     | 10           | 50 GV                  |
| 2-Nitrophenol                 | U       | U       | U U     | 10           | -                      |
| 2,4-Dimethylphenol            | U       | U U     | U U     | 10           | 50 GV                  |
| 2,4-Dichlorophenol            | U       | l u     | U       | 10           | 5 ST                   |
| 1,2,4-Trichlorobenzene        | Ų       | U       | U       | 10           | 5 ST                   |
| Naphthalene                   | U       | U       | U       | 10           | 10 GV                  |
| 4-Chioroaniline               | Ų       | U U     | υ υ     | 10           | 5 ST                   |
| bis(2-Chloroethoxy)methane    | U       | U       | U U     | 10           | _                      |
| Hexachiorobutadiene           | U       | l u     | Ū.      | 10           | 0.5 ST                 |
| 4-Chloro-3-methylphenol       | U       | Í Ū     | ŭ       | 10           | -                      |
| 2-Methylnaphthalene           | U       | Ū       | l ŭ     | 10           |                        |
| Hexachlorocyclopentadiene     | Ŭ       | l · ū   | Ŭ Ŭ     | 10           | 5 ST                   |
| 2,4,6-Trichlorophenol         | Ú       | l ŭ     | l ŭ     | 10           | -                      |
| 2,4,5-Trichlorophenol         | Ŭ       | i ŭ     | l ű     | 20           |                        |
| 2-Chloronaphthalene           | ũ       | l ű     | l ŭ     | 10           | 10 GV                  |
| 2-Nitroanillne                | ű       | i ii    |         | 20           |                        |
| Dimethylphthalate             | ŭ       | l ü     |         | 10           | 5 ST<br>50 GV          |
| Acenaphthylene                | ŭ       | i i     |         | 10           | 50 GV                  |
| 2,6-Dinitrotoluene            | ŭ       | l ŭ     | l ŭ     | 10           | 5 5T                   |
| 3-Nitroaniline                | ũ       | i i     |         |              |                        |
|                               |         | l ü     | 3       | 20           | 5 ST                   |
| Acenaphthene                  | U       | Ŭ       | Ŭ       | 10           | 20 GV                  |

## QUALIFIERS:

## NOTES:

ST

G٧

U: Compound analyzed for but not detected.

....

J: Compound found at a concentration below the detection limit.

E: Compound concentration exceeded the calibration range.

-- : Not applicable.

: Applies to the sum of all Phenois

: New York State Ambient Water Quality Standards

: New York State Ambient Water Quality Guidance Values

t

#### TABLE 10 (continued)

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

#### GROUNDWATER - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>UNITS | MHMW-01<br>1/21/03<br>1<br>(ug/L) | MHMW-02<br>1/23/03<br>1<br>(ug/L) | MHMW-03<br>1/22/03<br>1<br>(ug/L) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/L) | NY STATE CLASS GA<br>GROUNDWATER STANDARDS/<br>GUIDELINES<br>(ug/L) |
|-------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------------------------------------|
|                                                             |                                   |                                   |                                   |                                                |                                                                     |
| 2,4-Dinitrophenol                                           | U .                               | U                                 | U                                 | 20                                             | 10 GV                                                               |
| 4-Nitrophenol                                               | U                                 | U                                 | U                                 | 20                                             | -                                                                   |
| Dibenzofuran                                                | U                                 | U                                 | υ                                 | 10                                             | -                                                                   |
| 2,4-Dinitrotoluene                                          | U                                 | Ü                                 | υ                                 | 10                                             | 5 ST                                                                |
| Diethylphthalate                                            | 7 J                               | Ü                                 | U                                 | 10                                             | 50 GV                                                               |
| 4-Chlorophenyl-phenylether                                  | U                                 | U                                 | U                                 | 10                                             | -                                                                   |
| Fluorene                                                    | U                                 | U                                 | U                                 | 10                                             | 50                                                                  |
| 4-Nitroaniline                                              | U                                 | U                                 | บ บ                               | 20                                             | 5 ST                                                                |
| 4,6-Dinitro-2-methylphenol                                  | U                                 | U                                 | U                                 | 20                                             | -                                                                   |
| N-Nitrosodiphenylamine                                      | U                                 | U                                 | U                                 | 10                                             | 50 GV                                                               |
| 4-Bromophenyl-phenylether                                   | U                                 | U                                 | U                                 | 10                                             | -                                                                   |
| Hexachlorobenzene                                           | U                                 | U                                 | U                                 | 10                                             | 0.04 ST                                                             |
| Pentachlorophenol                                           | U                                 | Ŭ                                 | V                                 | 20                                             | 1 ST                                                                |
| Phenanthrene                                                | U                                 | U                                 | Ŭ                                 | 10                                             | 50 GV                                                               |
| Anthracene                                                  | U                                 | Ŭ                                 | U                                 | 10                                             | 50 GV                                                               |
| Carbazole                                                   | Ű                                 | Ū                                 | ບ                                 | 10                                             | -                                                                   |
| Di-n-butylphthalate                                         | U                                 | U                                 | U                                 | 10                                             | _                                                                   |
| Fluoranthene                                                | U U                               | U                                 | U                                 | 10                                             | 50 GV                                                               |
| Pyrene                                                      | U                                 | Ū                                 | Ū.                                | 10                                             | 50 GV                                                               |
| Butylbenzylphthalate                                        | ŭ                                 | ŭ                                 | ŭ                                 | 10                                             | 50 GV                                                               |
| 3.3'-Dichlorobenzidine                                      | Ŭ                                 | Ū                                 | ŭ                                 | 10                                             | 5 ST                                                                |
| Benzo(a)anthracene                                          | Ū                                 | ບໍ່                               | Ū                                 | 10                                             | -                                                                   |
| Chrysene                                                    | U                                 | U                                 | U                                 | 10                                             | 0.002 GV                                                            |
| bis(2-Ethylhexyl)phthalate                                  | 2 J                               | Ŭ                                 | U                                 | 10                                             | -                                                                   |
| Di-n-octyiphthalate                                         | U                                 | U                                 | Ŭ                                 | 10                                             | 50 GV                                                               |
| Benzo(b)fluoranthene                                        | Ŭ                                 | Ŭ                                 | Ū                                 | 10                                             | 0.002 GV                                                            |
| Benzo(k)fluoranthene                                        | บิ                                | Ū                                 | Ū                                 | 10                                             | 0.002 GV                                                            |
| Benzo(a)pyrene                                              | บั                                | Ũ                                 | บั                                | 10                                             | ND ST                                                               |
| Indeno(1,2,3-cd)pyrene                                      | Ū                                 | Ū                                 | Ū                                 | 10                                             | 0.002 GV                                                            |
| Dibenzo(a,h)anthracene                                      | บั                                | Ū                                 | Ū                                 | 10                                             |                                                                     |
| Benzo(g,h,l)perylene                                        | Ū                                 | Ū                                 | Ū                                 | 10                                             | -                                                                   |

QUALIFIERS: U: Compound analyzed for but not detected.

NOTES: --

ST G٧ : Not applicable.

: New York State Ambient Water Quality Standards : New York State Ambient Water Quality Guidance Values

J: Compound found at a concentration below the detection limit.

E: Compound concentration exceeded the calibration range.

· --,

i

## $|\mathcal{T}_{i,j}| = |\mathcal{T}_{i,j}| + |\mathcal{T$

6

## TABLE 11

and a second second

## MANHASSET SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESMENT

## GROUNDWATER - POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>UNITS | MHMW-01<br>1/21/03<br>1<br>(ug/L) | MHMW-02<br>1/23/03<br>1<br>(ug/L) | MHMW-03<br>1/22/03<br>1<br>(ug/L) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/L) | NY STATE CLASS GA<br>GROUNDWATER<br>STANDARDS/ GUIDELINES<br>(ug/L) |
|-------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------------------------------------|
| Arocior- 1016                                               |                                   | -                                 |                                   | 1                                              | _                                                                   |
| Aroclor- 1221                                               | Ŭ                                 | U U                               |                                   |                                                |                                                                     |
| Aroclor- 1232                                               | ŭ                                 | ũ                                 | l ü                               | 1                                              |                                                                     |
| Aroclor- 1242                                               | Ŭ l                               | ŭ                                 | l ŭ                               | 1                                              |                                                                     |
| Aroclor- 1248                                               | Ū                                 | Ū                                 | ) Ū                               | 1                                              |                                                                     |
| Aroclor- 1254                                               | U                                 | U                                 | Ū                                 | 1                                              |                                                                     |
| Aroclor- 1260                                               | Ŭ                                 | Ŭ                                 | U                                 | 1                                              |                                                                     |
| TOTAL PCBs                                                  | 0                                 | 0                                 | 0                                 | _                                              | 0.09 ST                                                             |

## QUALIFIERS:

U: Compound analyzed for but not detected.

NOTES:

st.

: Not applicable.

: New York State Ambient Water Quality Standards

and the second second

## MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

## SUBSURFACE SOIL - RCRA METALS

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHSBX-01<br>(4-6)<br>1/13/03<br>91.0<br>(mg/kg) | MHSBX-01<br>(8-10)<br>1/13/03<br>90.0<br>(mg/kg) | MHSBX-01<br>(12-14)<br>1/13/03<br>93.0<br>(mg/kg) | MHSBX-01<br>(14-16)<br>1/13/03<br>96.0<br>(mg/kg) | MHSBX-01<br>(16-18)<br>1/13/03<br>89.0<br>(mg/kg) | MHSBX-01<br>(18-20)<br>1/13/03<br>98.0<br>(mg/kg) | MHSBX-02<br>(4-6)<br>1/17/03<br>89.0<br>(mg/kg) | MHSBX-02<br>(6-8)<br>1/17/03<br>89.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM<br>4046 Recommended<br>Soll Cleanup<br>Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------|
| Arsenic                                                                         | 2                                               | 1.9                                              | 0.45 B                                            | 0.64 B                                            | 1.5                                               | 0.41 B                                            | 1.7                                             | 2.3                                             | 3.0                                         | 7.5 or SB                                                               |
| Barium<br>Cadmium                                                               | 10.9<br>0.58                                    | 12<br>0.39                                       | 21.3<br>0.1 B                                     | 16<br>0.15 B                                      | 27.7<br>0.38                                      | 9.3<br>U                                          | 8.3 B<br>U                                      | 9.9<br>U                                        | 3.0<br>2.0                                  | 300 or SB<br>10*                                                        |
| Chromium                                                                        | 5                                               | 5                                                | 4.6                                               | 4.8                                               | 7                                                 | 4.8                                               | 4.1                                             | 6.4                                             | 3.0                                         | 50*                                                                     |
| Lead<br>Mercury                                                                 | 4<br>U                                          | 13<br>0.054                                      | 2,7<br>U                                          | 1.9<br>U                                          | 24.7<br>0.035 B                                   | 1.4<br>ປ                                          | 2.3<br>U                                        | 4.4<br>U                                        | 1.0<br>0.1                                  | SB**<br>0.1                                                             |
| Selenium                                                                        | Ŭ                                               | Ų                                                | U                                                 | Ŭ                                                 | Ŭ                                                 | U                                                 | Ŭ                                               | U                                               | 8,0                                         | 2 or SB                                                                 |
| Silver                                                                          | 0.31 B                                          | 0.17 B                                           | 0.099 B                                           | 0.2 B                                             | 0.17 B                                            | 0.11 B                                            | 0.09 B                                          | U_                                              | 2.0                                         | SB                                                                      |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHSBX-02<br>(8-10)<br>1/17/03<br>91.0<br>(mg/kg) | MHSBX-02<br>(10-12)<br>1/17/03<br>91.0<br>(mg/kg) | MHSBX-02<br>(12-14)<br>1/17/03<br>93.0<br>(mg/kg) | MHSBX-02<br>(14-16)<br>1/17/03<br>95.0<br>(mg/kg) | MHSBX-02<br>(16-18)<br>1/17/03<br>90.0<br>(mg/kg) | MHSBX-02<br>(18-20)<br>1/17/03<br>96.0<br>(mg/kg) | MHSBX-03<br>(4-6)<br>1/13/03<br>88.0<br>(mg/kg) | MHSBX-03<br>(6-8)<br>1/13/03<br>87.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM<br>4046 Recommended<br>Soll Cleanup<br>Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------|
| Arsenic                                                                         | 1.7                                              | 1.2                                               | 1.8                                               | 0.84 B                                            | 0.68 B                                            | 0.82 B                                            | 1.5                                             | 1,6                                             | 3.0                                         | 7.5 or SB                                                               |
| Barium                                                                          | 13.3                                             | 6 B                                               | 19.2                                              | 21.7                                              | 15.5                                              | 15.7                                              | 6.8 B                                           | 8 B                                             | 3.0                                         | 300 or SB                                                               |
| Cadmium                                                                         | 0.13 B                                           | บั                                                | 0.41                                              | υ - · · · · · · · · · · · · · · · · · ·           | U                                                 | U                                                 | Ū                                               | Ŭ                                               | 2.0                                         | 10*                                                                     |
| Chromium                                                                        | 6.5                                              | 3.1                                               | 6.7                                               | 5.6                                               | 4                                                 | 5                                                 | 4,7                                             | 4.8                                             | 3.0                                         | 50*                                                                     |
| Lead                                                                            | 8.9                                              | 1.7                                               | 24                                                | 1.9                                               | 1.3                                               | 3.3                                               | 3.1                                             | 3.4                                             | 1.0                                         | SB**                                                                    |
| Mercury                                                                         | 1.3                                              | 0.039                                             | 1.4                                               | U                                                 | 0.13                                              | U                                                 | U                                               | U                                               | 0.1                                         | 0.1                                                                     |
| Selenium                                                                        | <u> </u>                                         | υ                                                 | U                                                 | U                                                 | U                                                 | U                                                 | U I                                             | U                                               | 8,0                                         | 2 or SB                                                                 |
| Silver                                                                          | 0.18 B                                           | U                                                 | U                                                 | U                                                 | U_                                                | 0.12 B                                            | 0.14 B                                          | 0.16 B                                          | 2.0                                         | SB                                                                      |

QUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes:

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm. : Result exceeds NYSDEC TAGM recommended Soil Cleanup Objective

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - RCRA METALS

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MHSBX-03<br>(8-10)<br>1/13/03<br>91.0<br>(mg/kg) | MHSBX-03<br>(10-12)<br>1/13/03<br>94.0<br>(mg/kg) | MHSBX-03<br>(12-14)<br>1/13/03<br>91.0<br>(mg/kg) | MHSBX-03<br>(14-18)<br>1/13/03<br>94.0<br>(mg/kg) | MHSBX-03<br>(18-18)<br>1/13/03<br>89.0<br>(mg/kg) | MHSBX-03<br>(18-20)<br>1/13/03<br>96.0<br>(mg/kg) | MHSBX-04<br>(4-6)<br>1/13/03<br>91.0<br>(mg/kg) | MH\$BX-04<br>(6-8)<br>1/13/03<br>92.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/i) | NYSDEC TAGM<br>4046 Recommended<br>Soll Cleanup<br>Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------|
| Arsenic                                                                         | 2.3                                              | 0.5 B                                             | 1.4                                               | 0.49 B                                            | 1.3                                               | 0.45 B                                            | 1.2                                             | 1                                                | 3.0                                         | 7.5 or SB                                                               |
| Barlum                                                                          | 3.6 B                                            | 13                                                | 17.2                                              | 15.4                                              | 16.2                                              | 14.2                                              | 4.1 B                                           | 4.5 B                                            | 3.0                                         | 300 or SB                                                               |
| Cadmium                                                                         | υ                                                | 0.11 B                                            | 0.45                                              | 0.14 B                                            | 0.46                                              | U                                                 | U                                               | U                                                | 2.0                                         | 10*-                                                                    |
| Chromium                                                                        | 5.4                                              | 4.5                                               | 7.9                                               | 4,1                                               | 6.5                                               | 5                                                 | 3                                               | 3.2                                              | 3.0                                         | 50*                                                                     |
| Lead                                                                            | 2.6                                              | 1.6                                               | 10.5                                              | 1.6                                               | 12                                                | 1.4                                               | 2.6                                             | 1.7                                              | 1.0                                         | SB**                                                                    |
| Mercury                                                                         | 0.16                                             | υ                                                 | 0.14                                              | U                                                 | 0.13                                              | U                                                 | U                                               | υ                                                | 0.1                                         | 0.1                                                                     |
| Selenium                                                                        | 0                                                | υ                                                 | - U                                               | υ                                                 | U                                                 | U                                                 | U                                               | U                                                | 8.0                                         | 2 or SB                                                                 |
| Silver                                                                          | 0.13_B                                           | 0.12 B                                            | 0.18 B                                            | 0.18 B                                            | 0.18 B                                            | 0.11 B                                            | 0.11 B                                          | _0.16 B                                          | 2.0                                         | SB                                                                      |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS   | MH\$5X-04<br>(8-10)<br>1/13/03<br>91.0<br>(mg/kg) | MHSBX-04<br>(10-12)<br>1/13/03<br>91.0<br>(mg/kg)    | MHSBX-04<br>(12-14)<br>1/13/03<br>91.0<br>(mg/kg)       | MHSBX-04<br>(14-16)<br>1/13/03<br>95.0<br>(mg/kg)        | MHSBX-05<br>(4-6)<br>1/13/03<br>90.0<br>(mg/kg) | MHSBX-05<br>(6-8)<br>1/13/03<br>93.0<br>(mg/kg) | MHSBX-05<br>(8-10)<br>1/13/03<br>90.0<br>(mg/kg)   | MHSBX-05<br>(10-12)<br>1/13/03<br>85.0<br>(mg/kg)      | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l)          | NYSDEC TAGM<br>4048 Recommended<br>Soil Cleanup<br>Objective<br>(mg/kg) |
|-----------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|
| Arsenic<br>Barlum<br>Cadmium<br>Chromium<br>Lead<br>Mercury<br>Selenium<br>Silver | 2<br>8.6 B<br>4.4<br>3<br>U<br>0.13 B             | 2.3<br>12.4<br>0.1 B<br>5.7<br>3<br>U<br>U<br>0.24 B | 1.8<br>20.5<br>0.13 B<br>8.9<br>3.7<br>U<br>U<br>0.21 B | 1.4<br>42.7<br>0.23 B<br>12.7<br>3.5<br>U<br>U<br>0.31 B | 1.5<br>5.6 B<br>3.7<br>3<br>U<br>U<br>0.12 B    | 1.9<br>10 B<br>4.8<br>2.7<br>U<br>0.17 B        | 1.5<br>30.1<br>0.18 B<br>9.5<br>3.1<br>U<br>0.25 B | 1.9<br>61<br>0.33 B<br>18.1<br>5.8<br>U<br>U<br>0.41 B | 3.0<br>3.0<br>2.0<br>3.0<br>1.0<br>0.1<br>8.0<br>2.0 | 7.5 or SB<br>300 or SB<br>10*<br>50*<br>SB**<br>0.1<br>2 or SB<br>SB    |

. .

QUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes:

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

: Result exceeds NYSDEC TAGM recommended Soil Cleanup Objective

المارية الأكور سالة

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - RCRA METALS

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS   | MHSBX-05<br>(12-14)<br>1/13/03<br>90.0<br>(mg/kg) | MHSBX-05<br>(14-16)<br>1/13/03<br>92.0<br>(mg/kg)       | MHSBX-05<br>(16-18)<br>1/13/03<br>97.0<br>(mg/kg)        | MH\$BX-05<br>(18-20)<br>1/13/03<br>96.0<br>(mg/kg)        | MHSBX-06<br>(4-6)<br>1/13/03<br>93.0<br>(mg/kg)         | MHSBX-06<br>(6-8)<br>1/13/03<br>86.0<br>(mg/kg)       | MHSBX-06<br>(8-10)<br>1/13/03<br>90.0<br>(mg/kg)   | MHSBX-07<br>(10-12)<br>1/13/03<br>91.0<br>(mg/kg)        | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l)          | NYSDEC TAGM<br>4046 Recommended<br>Soil Cleanup<br>Objective<br>(mg/kg) |
|-----------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|
| Arsenic<br>Barium<br>Cadmlum<br>Chromium<br>Lead<br>Marcury<br>Selenium<br>Silver | 1.5<br>29.5<br>0.18 B<br>12<br>3.6<br>U<br>0.23 B | 1.1<br>48.3<br>0.25 B<br>12.4<br>3.6<br>U<br>U<br>0.4 B | 0.69 B<br>16.7<br>0.12 B<br>5.1<br>3<br>U<br>U<br>0.18 B | 0.6 B<br>17.7<br>0.13 B<br>8.9<br>1.4<br>U<br>U<br>0.14 B | 1.8<br>10.2 B<br>0.15 B<br>5.2<br>3<br>U<br>U<br>0.15 B | 2.1<br>37.6<br>0.83<br>144<br>5.9<br>U<br>U<br>0.48 B | 1.8<br>14.6<br>U<br>7.6<br>3.2<br>U<br>U<br>0.17 B | 1.5<br>38.4<br>0.23 B<br>11.2<br>3.5<br>U<br>U<br>0.31 B | 3.0<br>3.0<br>2.0<br>3.0<br>1.0<br>0.1<br>8.0<br>2.0 | 7.5 or SB<br>300 or SB<br>10*<br>50*<br>SB**<br>0.1<br>2 or SB<br>SB    |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS   | MHSBX-07<br>(12-14)<br>1/13/03<br>93.0<br>(mg/kg)       | MHSBX-07<br>(14-16)<br>1/13/03<br>87.0<br>(mg/kg)       | MHSBX-07<br>(16-18)<br>1/13/03<br>88.0<br>(mg/kg)  | MHSBX-07<br>(18-20)<br>1/13/03<br>91.0<br>(mg/kg)         | MHSBX-08<br>(4-6)<br>1/17/03<br>66.0<br>(mg/kg) | MHSBX-08<br>(6-8)<br>1/17/03<br>86.0<br>(mg/kg) | MH\$BX-08<br>(8-10)<br>1/17/03<br>87.0<br>(mg/kg) | MHSBX-08<br>(10-12)<br>1/17/03<br>94.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l)          | NYSDEC TAGM<br>4048 Recommended<br>Soil Cleanup<br>Objective<br>(mg/kg) |
|-----------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|
| Arsenic<br>Berlum<br>Cadmlum<br>Chromium<br>Lead<br>Mercury<br>Selenium<br>Silver | 1.2<br>28.2<br>0.18 B<br>8.4<br>3.3<br>U<br>U<br>0.27 B | 1.3<br>33.5<br>0.28 B<br>8.8<br>3.2<br>U<br>U<br>0.36 B | 1.1<br>25.1<br>0.17 B<br>9.1<br>2.5<br>U<br>0.28 B | 0.87 B<br>18.5<br>0.16 B<br>5.9<br>2.7<br>U<br>U<br>0.3 B | 2.7<br>15.9<br>7.8<br>5.7<br>U<br>0.16 B        | 2.1<br>14.1<br>7.1<br>4<br>U<br>0.12 B          | 1.2<br>7.3 B<br>4.6<br>2.3<br>0.081<br>U<br>U     | 1.8<br>9.1 B<br>0<br>5.1<br>2.2<br>U<br>U<br>U    | 3.0<br>3.0<br>2.0<br>3.0<br>1.0<br>0.1<br>8.0<br>2.0 | 7.5 or SB<br>300 or SB<br>10*<br>50*<br>SB**<br>0.1<br>2 or SB<br>SB    |

QUALIFIERS:

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

<u>Notes:</u> SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm. : Result exceeds NYSDEC TAGM recommended Soll Cleanup Objective

e - - 9

n - - i v h tak hy

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR | MHSBX-01<br>(4-6)<br>1/13/03<br>1 | MHSBX-01<br>(8-10)<br>1/13/03<br>1 | MHSBX-01<br>(12-14)<br>1/13/03<br>1 | MHSBX-01<br>(14-16)<br>1/13/03<br>1 | MHSBX-01<br>(16-18)<br>1/13/03<br>1 | MHSBX-01<br>(18-20)<br>1/13/03<br>1 | MHSBX-02<br>(4-6)<br>1/17/03<br>1 | MHSBX-02<br>(6-8)<br>1/17/03<br>1 | LABORATORY<br>QUANTITATION<br>LIMITS | NYSDEC TAGM<br>4046 Recommended<br>Soil Cleanup<br>Objective |
|-------------------------------------------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------------------------|
| PERCENT SOLIDS                                                          | 91.0<br>(ug/kg)                   | 90.0<br>(ug/kg)                    | 93.0<br>(ug/kg)                     | 96.0<br>(ug/kg)                     | 89.0<br>(ug/kg)                     | 98.0<br>(ug/kg)                     | 89.0<br>(ug/kg)                   | 89.0<br>(ug/kg)                   | (ug/kg)                              | (ug/kg)                                                      |
| 2.4-Dinitrophenol                                                       | U                                 | υ,                                 | U                                   | U                                   | U                                   | U                                   | U                                 | U                                 | . 330                                | 200                                                          |
| 4-Nitrophenol                                                           | ŬŬ                                | Ŭ                                  | Ŭ                                   | Ŭ                                   | Ŭ                                   | Ŭ                                   | i ŭ                               | Ŭ                                 | 330                                  | 100                                                          |
| Dibenzofuran                                                            | i ŭ l                             | Ŭ                                  | Ū                                   | Ŭ                                   | Ŭ                                   | Ŭ                                   | Ŭ                                 | ŭl                                | 330                                  | 6.200                                                        |
| 2.4-Dinitrotoluene                                                      | ÍŬ                                | Ŭ                                  | Ŭ                                   | Ŭ                                   | Ŭ                                   | Ŭ                                   | Ŭ                                 | Ū                                 | 330                                  |                                                              |
| Diethylphthalate                                                        | Ū                                 | Ŭ                                  | Ū                                   | Ŭ                                   | l Ū                                 | Ŭ                                   | Ū                                 | ŭ                                 | 330                                  | 7,100                                                        |
| 4-Chlorophenyl-phenylether                                              | i ŭ l                             | Ŭ                                  | Ŭ                                   | Ŭ                                   |                                     | Ŭ                                   | U U                               | Ŭ                                 | 330                                  |                                                              |
| Fluorene                                                                | Ū                                 | Ŭ                                  | Ŭ                                   | Ŭ                                   | 77 J                                | Ŭ                                   | ů ů                               | Ŭ                                 | 330                                  | 50,000                                                       |
| 4-Nitroaniline                                                          | Ŭ                                 | Ŭ                                  | Ŭ                                   | Ŭ                                   |                                     | Ŭ                                   | Ŭ                                 | Ŭ                                 | 330                                  |                                                              |
| 4,6-Dinitro-2-methylphenol                                              | Ŭ                                 | Ū                                  | Ŭ                                   | Ū                                   | Ū                                   | Ū                                   | l Ū                               | Ũ                                 | 330                                  |                                                              |
| N-Nitrosodiphenylamine                                                  | Ū                                 | Ū                                  | Ū                                   | Ū                                   | Ū                                   | Ū                                   | Ŭ                                 | Ū                                 | 330                                  | - 1                                                          |
| 4-Bromophenyi-phenylether                                               | Ū                                 | Ū                                  | Ŭ                                   | ı Ü                                 | Ū                                   | บิ                                  | Ū                                 | Ū                                 | 330                                  |                                                              |
| Hexachlorobenzene                                                       | Ū Ū                               | Ū                                  | Ŭ                                   | Ŭ                                   | Ū                                   | Ū                                   | Ū                                 | Ū                                 | 330                                  | 410                                                          |
| Pentachlorophenol                                                       | Ū                                 | Ū                                  | Ŭ                                   | Ū                                   | Ū                                   | Ū                                   | Ű                                 | υ                                 | 330                                  | 1,000                                                        |
| Phenanthrene                                                            | U                                 | 380                                | U                                   | U                                   | 960                                 | U                                   | υ                                 | U                                 | 330                                  | 50,000                                                       |
| Anthracene                                                              | U                                 | U                                  | U                                   | U                                   | U                                   | U                                   | U U                               | υ                                 | 330                                  | 50,000                                                       |
| Carbazole                                                               | U                                 | U                                  | U                                   | U                                   | U                                   | U                                   | U U                               | υ)                                | 330                                  | ) {                                                          |
| Di-n-butylphthalate                                                     | U                                 | Ų                                  | U                                   | U                                   | U                                   | U                                   | U U                               | υ                                 | 330                                  | 8,100                                                        |
| Fluoranthene                                                            | U U                               | 240 J                              | U                                   | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  | 50,000                                                       |
| Pyrene                                                                  | U                                 | 140 J                              | U                                   | U                                   | U                                   | U                                   | υ υ                               | U                                 | 330                                  | 50,000                                                       |
| Butylbenzylphthalate                                                    | ) (                               | U                                  | U                                   | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  | 50,000                                                       |
| 3,3'-Dichlorobenzidine                                                  | U U                               | V I                                | U                                   | U                                   | U                                   | U                                   | ( U                               | · U                               | 330                                  | í I                                                          |
| Benzo(a)anthracene                                                      | ) U                               | 97 J                               | U                                   | U                                   | U                                   | U                                   | ) U                               | U                                 | 330                                  | 224                                                          |
| Chrysene                                                                | U U                               | 260 J                              | U                                   | U                                   | 94 J                                | U                                   | U                                 | U                                 | 330                                  | 400                                                          |
| bis(2-Ethylhexyl)phthalate                                              | U                                 | 44 J                               | U                                   | U                                   | Ű                                   | U                                   | U                                 | U                                 | 330                                  | 50,000                                                       |
| Di-n-octylphthalate                                                     | U U                               | U                                  | U                                   | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  | 50,000                                                       |
| Benzo(b)fluoranthene                                                    | U                                 | 230 J                              | U                                   | U                                   | 72 J                                | U                                   | U                                 | U                                 | 330                                  | 1,100                                                        |
| Banzo(k)/luoranthene                                                    | [ [                               | 110 J                              | U                                   | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  | 1,100                                                        |
| Benzo(a)pyrene                                                          | U                                 | 80 J                               | U                                   | U                                   | 47 J                                | U                                   | U                                 | U                                 | 330                                  | 61                                                           |
| indeno(1,2,3-cd)pyrane                                                  | ן ט                               | 130 J                              | U                                   | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  | 3,200                                                        |
| Dibenzo(a,h)anthracene                                                  | U                                 | U                                  | U                                   | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  | 14                                                           |
| Benzo(g,h,i)perylene                                                    | U                                 | 110 J                              | U                                   | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  | 50,000                                                       |
| Total PAHs                                                              | 0                                 | 1,887                              | 0                                   | 0                                   | 1,250                               | 0                                   | 0                                 | 0                                 | -                                    | 100,000                                                      |
| Total CaPAHs                                                            | ŏ                                 | 907                                | 0                                   | 0                                   | 213                                 | 0                                   | Ó                                 | Ō                                 | -                                    | 10,000                                                       |
| Total SVOCs                                                             | ŏ                                 | 1,931                              | ò                                   | 0                                   | 1,305                               | 0                                   | <u> </u>                          | 0                                 |                                      | 500,000                                                      |

OUALIFIERS: U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

NOTES: : Not applicable.

-

: Concentration exceeds NYSDEC TAGM Recommended Soll Cleanup Objective

G:2015 (LER 3 Subs Del Phase II)/3 Subs Data/Manhasset/Data Tables for Report/Table 13 rev ·· ---••• 

. . .

-9

÷

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                     | MHSBX-02 | MHSBX-02 | MHSBX-02     | MHSBX-02     | MHSBX-02 | MHSBX-02 | MHSBX-03 | MHSBX-03   | LABORATORY   | NYSDEC TAGM      |
|-------------------------------|----------|----------|--------------|--------------|----------|----------|----------|------------|--------------|------------------|
| SAMPLE DEPTH (FT)             | (8-10)   | (10-12)  | (12-14)      | (14-16)      | (16-18)  | (16-20)  | (4-6)    | (6-8)      | QUANTITATION | 4046 Recommended |
| DATE OF COLLECTION            | 1/17/03  | 1/17/03  | 1/17/03      | 1/17/03      | 1/17/03  | 1/17/03  | 1/13/03  | 1/13/03    | LIMITS       | Soll Cleanup     |
| DILUTION FACTOR               | 1        | 1        | 1            | 1            | 1        | 1        | 1        | 1          |              | Objective        |
| PERCENT SOLIDS                | 91.0     | 91.0     | <b>93</b> .0 | <b>95</b> .0 | 90.0     | 96.0     | 88.0     | 87.0       |              |                  |
| UNITS                         | (ug/kg)  | (ug/kg)  | (ug/kg)      | (ug/kg)      | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)    | (ug/kg)      | (ug/kg)          |
| Phenol                        | i<br>lu  | U        | υ            | ບ            | υ        | U        | υ        | U          | 330          | 30               |
| bis(2-Chloroethyl)ether       | 1        | ບັ       | Ŭ            | Ŭ            | Ŭ        | Ŭ        | Ŭ        | Ŭ          | 330          |                  |
| 2-Chlorophenol                | i õ      | Ŭ        | Ŭ            | U U          | Ŭ        | l ŭ      | U U      | Ŭ          | 330          | 800              |
| 1,3-Dichiorobenzene           |          | ι ŭ      | Ŭ            | Ŭ            | υ        | ι υ      | υ<br>υ   | U U        | 330          | 800              |
| 1,4-Dichlorobenzene           |          | Ŭ        | Ŭ            | U U          | υ        | l ŭ      | U U      |            | 330          | -                |
| 1,2-Dichlorobenzene           | i u      | υ        | Ŭ            | Ŭ            | Ŭ        | U U      | Ŭ        | Ŭ          | 330          |                  |
| 2-Methylphenol                |          | U U      | U U          | U U          | υ        | U U      | υ        | ม<br>ม     | 330          | 100              |
| 2,2'-oxybis (1-chloropropane) | U U      | Ŭ        | ŭ            | ŭ            | υ        | ŭ        | ι υ      |            | 330          |                  |
| 4-Methylphenol                | U U      | u u      | Ŭ            | U<br>U       | υŬ       | υ        | υ        | U U        | 330          | 900              |
| N-Nitroso-di-n-propylamine    | ไ บ้เ    | บั       | Ŭ            | U U          | Ŭ        | Ŭ        | Ŭ Ŭ      | i ŭ        | 330          |                  |
| Hexachloroethane              | ີ້ນີ້    | บี       | Ŭ            | Ŭ            | Ŭ        | Ŭ        | Ŭ        | ŭ          | 330          |                  |
| Nitrobenzene                  | i Ŭ      | Ŭ        | Ŭ            | Ŭ Ŭ          | l ŭ      | Î Ŭ      | Ŭ        | ໄ <u>ບ</u> | 330          | 200              |
| Isophorone                    | l ũ      | Î Ŭ      | ŭ            | ี่ บ้        | Ŭ        | Ŭ        | ι υ      | Ŭ          | 330          | 4,400            |
| 2-Nitrophenol                 | ιŭ       | l i ŭ l  | Ū            | ់ បំ         | i ŭ      | Ŭ        | ΙŪ       | Ŭ          | 330          | 330              |
| 2,4-Dimethylphenol            | i ŭ      | ี้ บ     | Ŭ            | l Ū          | i ū      | Ŭ        | l ũ      | Ū          | 330          |                  |
| 2,4-Dichlorophenol            | Ū        | l Ū      | Ū            | Ū.           | Ū        | Ŭ        | Ū        | Ŭ          | 330          | 400              |
| 1,2,4-Trichiorobenzene        | Ū        | Ŭ        | Ŭ            | Ū            | l ũ      | Ŭ        | ιŪ       | υ          | 330          | -                |
| Naphthalene                   | l u      | U U      | Ú            | Ū            | Ū        | l Ū      | u u      | Ū          | 330          | 13,000           |
| 4-Chloroaniline               | U U      | U        | υ            | { ບ          | υ        | Ū        | l Ú      | ) Ū        | 330          | 220              |
| bis(2-Chloroethoxy)methane    | ບ        | υ        | υ            | υ            | υ        | ĺ Ú      | lυ       | υ          | 330          |                  |
| Hexachiorobutadiene           | υ        | υ        | U            | ι υ          | l u      | l u      | ι υ      | υ U        | 330          |                  |
| 4-Chioro-3-methylphenol       | ໄ ປ      | υ 1      | U            | Ū            | Ū        | υ        | Ŭ        | l Ū        | 330          | 240              |
| 2-Methyinaphthalene           | U        | Ų V      | υ            | υ            | Ū        | Ū        | Ū        | Ū          | 330          | 36,400           |
| Hexachlorocyclopentadiene     | υ        | υ        | υ            | υ            | Ú        | ί υ      | l u      | l u        | 330          |                  |
| 2,4,6-Trichlorophenoi         | ່ ບໍ     | υ        | U            | U            | Ι υ      | ιu       | ί υ      | { υ        | 330          | 1                |
| 2,4,5-Trichlorophenol         | [ ປ      | U        | U            | U            | U        | υ        | ί υ      | υ          | 330          | 100              |
| 2-Chioronaphthalene           | U        | U        | U            | υ            | υ        | ί υ      | [ U      | ) U        | 330          |                  |
| 2-Nitroaniline                | U        | υ        | υ            | U .          | Ŭ        | Ū        | 1 Ū      | Ū          | 330          | 430              |
| Dimethylphthalate             | υ        | υ        | U            | υ            | U U      | υ        | U        | U          | 330          | 2,000            |
| Acenaphthylene                | U        | U        | U            | U U          | ļ υ      | ΙU       | U        | U          | 330          | 41,000           |
| 2,6-Dinitrotoluane            | U        | U        | U            | U            | υ        | ່ ບ      | υ        | υ          | 330          | 1,000            |
| 3-Nitroaniline                | U U      | Ų        | υ            | ບ            | U        | U        | ) U      | U          | 330          | 500              |
| Acenaphthene                  | UU       | υ        | U            | U            | UU       | U        | U        | U          | 330          | 50,000           |

-

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR | MH\$BX-02<br>(8-10)<br>1/17/03<br>1 | MHSBX-02<br>(10-12)<br>1/17/03<br>1 | MH\$BX-02<br>(12-14)<br>1/17/03<br>1 | MHSBX-02<br>(14-16)<br>1/17/03<br>1 | MHSBX-02<br>(16-18)<br>1/17/03<br>1 | MHSBX-02<br>(18-20)<br>1/17/03<br>1 | MHSBX-03<br>(4-6)<br>1/13/03<br>1 | MHSBX-03<br>(6-8)<br>1/13/03<br>1 | LABORATORY<br>QUANTITATION<br>LIMITS | NYSDEC TAGM<br>4046 Recommended<br>Soll Cleanup<br>Objective |
|-------------------------------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------------------------|
| PERCENT SOLIDS                                                          | 91.0<br>(ug/kg)                     | 91.0<br>(ug/kg)                     | 93.0<br>(ug/kg)                      | 95.0<br>(ug/kg)                     | 90.0<br>(ug/kg)                     | 96.0<br>(ug/kg)                     | 88.0<br>(ug/kg)                   | 87.0<br>(ug/kg)                   | (ug/kg)_                             | (ug/kg)                                                      |
|                                                                         |                                     |                                     |                                      |                                     |                                     |                                     |                                   |                                   |                                      |                                                              |
| 2,4-Dinitrophenol                                                       | U                                   | U                                   | U                                    | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  | 200                                                          |
| 4-Nitrophenol                                                           | U U                                 | U                                   | U                                    | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  | 100                                                          |
| Dibenzofuran                                                            | U                                   | U                                   | U                                    | U                                   | U                                   | U                                   | ) U                               | U                                 | 330                                  | 6,200                                                        |
| 2,4-Dinitrotoluene                                                      | U                                   | U                                   | Ų                                    | U                                   | Ų                                   | U                                   | U U                               | U                                 | 330                                  |                                                              |
| Diethylphthalate                                                        | U U                                 | U                                   | U                                    | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  | 7,100                                                        |
| 4-Chlorophenyl-phenylether                                              | υ                                   | U                                   | U                                    | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  |                                                              |
| Fluorene                                                                | U                                   | U                                   | U                                    | U                                   | U                                   | U                                   | U U                               | U                                 | 330                                  | 50,000                                                       |
| 4-Nitroaniline                                                          | U U                                 | U                                   | U                                    | <u> </u>                            | U                                   | U                                   | U                                 | U                                 | 330                                  |                                                              |
| 4,8-Dinitro-2-methylphenol                                              | U                                   | U                                   | U                                    | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  |                                                              |
| N-Nitrosodiphenylamine                                                  | U                                   | U                                   | U                                    | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  |                                                              |
| 4-Bromophenyl-phenylether                                               | U U                                 | V                                   | U                                    |                                     | U                                   | U                                   | 1 U                               | U U                               | 330                                  |                                                              |
| Hexachlorobenzene                                                       | U                                   | U                                   | U                                    | N N                                 | U                                   | υ                                   | <u> </u>                          | U U                               | 330                                  | 410                                                          |
| Pentachiorophenol                                                       | U                                   | U                                   | U                                    | U U                                 | U                                   | U U                                 | U U                               | U                                 | 330                                  | 1,000                                                        |
| Phenanthrene                                                            | U                                   | U                                   | U                                    | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  | 50,000                                                       |
| Anthracene                                                              | U                                   | U                                   | U                                    | U                                   | U                                   | U                                   | U U                               | U                                 | 330                                  | 50,000                                                       |
| Carbazole                                                               | U                                   | U                                   | U                                    | Ų                                   | U                                   | U                                   | U U                               | U                                 | 330                                  |                                                              |
| Di-n-butyiphthalate                                                     | U                                   | U U                                 | U U                                  | U U                                 | U                                   | υ                                   | U                                 | U                                 | 330                                  | 8,100                                                        |
| Fluoranthene                                                            | U.                                  | U                                   | U                                    | U                                   | U                                   | U 1                                 |                                   | U                                 | 330                                  | 50,000                                                       |
| Pyrene                                                                  | U                                   | U                                   | U                                    | U U                                 | U                                   | U U                                 | U                                 | U                                 | 330                                  | 50,000                                                       |
| Butylbenzylphthalate                                                    | U U                                 | U                                   | U                                    | U                                   | U                                   | U                                   | U                                 | U                                 | 330                                  | 50,000                                                       |
| 3,3'-Dichiorobenzidine                                                  | U                                   | U                                   | U                                    | U                                   | U                                   | U                                   | ) <u> </u>                        | U U                               | 330                                  |                                                              |
| Benzo(a)anthracene                                                      | ม (ม<br>ม                           | U U                                 | 55 J<br>77 J                         | U.                                  | U U                                 | UU                                  |                                   | U U                               | 330                                  | 224                                                          |
| Chrysene                                                                | U U                                 | U U                                 | · •                                  |                                     | U U                                 | -                                   |                                   | -                                 | 330                                  | 400                                                          |
| bis(2-Ethylhexyl)phthalate                                              | -                                   | U I                                 | U                                    | U U                                 | -                                   | U                                   | U                                 | U U                               | 330                                  | 50,000                                                       |
| Di-n-octyiphthalate                                                     | U                                   | U                                   | U                                    | U U                                 | U                                   | U                                   | U                                 | U U                               | 330                                  | 50,000                                                       |
| Benzo(b)fluoranthene                                                    | U                                   | U                                   | 110 J                                | <u> </u>                            | U                                   | U                                   | ) <u>v</u>                        | U.                                | 330                                  | 1,100                                                        |
| Benzo(k)fluoranthene                                                    | U U                                 | U<br>U                              | U<br>48 J                            | U U                                 | U<br>U                              | U<br>U                              | U U                               | U U                               | 330<br>330                           | 1,100<br>61                                                  |
| Benzo(a)pyrene                                                          | U                                   | Ŭ                                   |                                      | U U                                 | U                                   | 0                                   |                                   | U U                               | 330                                  |                                                              |
| Indeno(1,2,3-cd)pyrene                                                  | U                                   | -                                   | U                                    |                                     | U U                                 |                                     | -                                 | -                                 |                                      | 3,200                                                        |
| Dibenzo(a,h)anthracene                                                  | U                                   | U                                   | U                                    | U U                                 | U                                   |                                     | U                                 | U U                               | 330                                  | 14                                                           |
| Benzo(g,h,i)perylene                                                    | U                                   | U                                   | U                                    | U                                   | U                                   | U                                   | ļ                                 | U                                 | 330                                  | 50,000                                                       |
| Total PAHs                                                              | 0                                   | 0                                   | 290                                  | 0                                   | 0                                   | 0                                   | 0                                 | 0                                 |                                      | 100,000                                                      |
| Total CaPAHs                                                            | 0                                   | 0                                   | 290                                  | 0                                   | 0                                   | 0                                   | 0                                 | 0                                 |                                      | 10,000                                                       |
| Total SVOCs                                                             | 0                                   | 0                                   | 290                                  | 0                                   | 0                                   | 0                                   | 0                                 | 0                                 | -                                    | 500,000                                                      |

# QUALIFIERS:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

,

NOTES: -- : Not applicable.

. . . . . . . . . . . .

: Concentration exceeds NYSDEC TAGM Recommended Soli Cleanup Objective

and the second second

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

# SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | MHSBX-03<br>(8-10)<br>1/13/03<br>1<br>91.0<br>(Jus/kp) | MHSBX-03<br>(10-12)<br>1/13/03<br>1<br>94.0<br>(ug/kg) | MHSBX-03<br>(12-14)<br>1/13/03<br>1<br>91.0<br>(ug/(c)) | MHSBX-03<br>(14-16)<br>1/13/03<br>1<br>94.0<br>(us/ta) | MHSBX-03<br>(16-18)<br>1/13/03<br>1<br>89.0<br>(Ug/(g) | MHSBX-03<br>(18-20)<br>1/13/03<br>1<br>96.0 | MHSBX-04<br>(4-6)<br>1/13/03<br>1<br>91.0<br>(19/1/2) | MHSBX-04<br>(6-8)<br>1/13/03<br>1<br>92.0<br>(ug/(c)) |         | NYSDEC TAGM<br>4046 Recommended<br>Soll Cleanup<br>Objective |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------|--------------------------------------------------------------|
| 011113                                                                                             | (ug/kg)                                                | (ug/kg/                                                | (ug/kg)                                                 | (ug/kg)                                                | (ug/kg)                                                | (ug/kg)                                     | (ug/kg)                                               | (ug/kg)                                               | (ug/kg) | (ug/kg)                                                      |
| Phenol                                                                                             | υ                                                      | υ                                                      | υ                                                       | υ                                                      | υ                                                      | U                                           | ι υ                                                   | u u                                                   | 330     | 20                                                           |
| bis(2-Chloroethyl)ether                                                                            | Ŭ                                                      | Ŭ                                                      | Ŭ                                                       | Ŭ                                                      | . U                                                    | U U                                         |                                                       | U<br>U                                                | 330     | 30                                                           |
| 2-Chlorophanol                                                                                     | i i                                                    | Ŭ                                                      | Ŭ                                                       | Ŭ                                                      | ່ <u>ບ</u>                                             | ບ<br>ບ                                      | ບ<br>ບ                                                | U U                                                   | 330     | 800                                                          |
| 1,3-Dichiorobanzena                                                                                | i i                                                    | υ                                                      | υ                                                       | Ŭ                                                      | Ŭ                                                      | ່ ບໍ່                                       | U U                                                   | U U                                                   | 330     | 800                                                          |
| 1,4-Dichlorobenzene                                                                                | i ii                                                   | Ŭ                                                      | Ű                                                       | ŭ                                                      | U U                                                    | U U                                         | U U                                                   | U<br>U                                                | 330     | 1 - 1                                                        |
| 1,2-Dichlorobenzene                                                                                |                                                        | ŭ                                                      | Ŭ                                                       | U U                                                    | ່ <u>ບ</u>                                             | υ<br>υ                                      |                                                       | U U                                                   | 330     |                                                              |
| 2-Methylphenol                                                                                     |                                                        | U U                                                    | ט ט                                                     | U U                                                    | U U                                                    | U .                                         |                                                       |                                                       | 330     | 100                                                          |
| 2,2'-oxybis (1-chloropropane)                                                                      | U 1                                                    | Ŭ                                                      | Ŭ                                                       | Ŭ                                                      | U U                                                    | U U                                         |                                                       | υ                                                     | 330     | 100                                                          |
| 4-Methylphenol                                                                                     | l ñ                                                    | U U                                                    | Ŭ                                                       | บ<br>บ                                                 | Ű                                                      | υ                                           |                                                       | i i                                                   | 330     | 900                                                          |
| N-Nitroso-di-n-propylamine                                                                         | i ŭ                                                    |                                                        | υ                                                       | U U                                                    | u U                                                    | υ                                           | ໄ ບັ                                                  | U U                                                   | 330     | 900                                                          |
| Hexachloroethane                                                                                   | U U                                                    |                                                        | Ŭ                                                       | Ŭ Ŭ                                                    | ŭ                                                      | U U                                         | Ŭ                                                     | Ŭ                                                     | 330     |                                                              |
| Nitrobenzene                                                                                       | i ŭ                                                    |                                                        | Ŭ                                                       | ບ<br>ບ                                                 | ່ ບັ                                                   |                                             |                                                       | U U                                                   | 330     | 200                                                          |
| lisophorone                                                                                        | Ŭ                                                      | l ŭ                                                    | U U                                                     | Ŭ                                                      | ່ ບ                                                    | U U                                         |                                                       | U U                                                   | 330     | 4,400                                                        |
| 2-Nitrophanol                                                                                      | l ŭ                                                    | i i                                                    | ŭ                                                       | Ŭ                                                      | U U                                                    | U U                                         | U U                                                   | υ                                                     | 330     | 330                                                          |
| 2,4-Dimethylphenol                                                                                 | i ü                                                    | ŭ                                                      | ŭ                                                       | υ                                                      | ບັ                                                     | υŬ                                          | Ŭ                                                     | Ŭ                                                     | 330     |                                                              |
| 2,4-Dichlorophanol                                                                                 | l ŭ                                                    | i ü                                                    | υŬ                                                      | Ŭ                                                      | Ű                                                      | ŭ                                           | Ιŭ                                                    | Ŭ                                                     | 330     | 400                                                          |
| 1.2.4-Trichlorobenzene                                                                             | ŭ                                                      | ŭ                                                      | υ<br>υ                                                  | ŭ                                                      | ŭ                                                      | U U                                         | υ                                                     | υ                                                     | 330     | 400                                                          |
| Naphthalene                                                                                        | i ii                                                   | U U                                                    | Ŭ                                                       | U U                                                    | ບ<br>ບ                                                 | Ŭ                                           | Ŭ                                                     | Ŭ                                                     | 330     | 13,000                                                       |
| 4-Chloroaniline                                                                                    | i ŭ                                                    |                                                        | υ                                                       | Ŭ                                                      | Ŭ                                                      | Ŭ                                           | υ                                                     | Ŭ                                                     | 330     | 220                                                          |
| bis(2-Chloroethoxy)methane                                                                         | l ŭ                                                    | Ŭ                                                      | Ŭ                                                       | u u                                                    | ŭ                                                      | U<br>U                                      | υ                                                     | บ                                                     | 330     | 220                                                          |
| Hexachlorobutadiene                                                                                | U U                                                    | ŭ                                                      | Ŭ                                                       | υ                                                      | Ŭ                                                      | υŬ                                          | ίŭ                                                    | Ŭ                                                     | 330     |                                                              |
| 4-Chloro-3-methylphenol                                                                            | l ŭ                                                    | ບ<br>ບ                                                 | υŬ                                                      | ŭ                                                      | Ŭ                                                      | Ŭ                                           | Ιŭ                                                    | Ŭ                                                     | 330     | 240                                                          |
| 2-Methyinaphthalene                                                                                | <b></b>                                                | Ŭ                                                      | Ŭ                                                       | l u                                                    | ŭ                                                      | i ü                                         | υ                                                     | ບ<br>ບ                                                | 330     | 36,400                                                       |
| Hexachlorocyclopentadiene                                                                          | Ŭ.                                                     | Ŭ                                                      | Ŭ                                                       | ບ<br>ບ                                                 | υ                                                      | Ŭ                                           | Ŭ                                                     | Ŭ                                                     | 330     |                                                              |
| 2,4,8-Trichiorophenol                                                                              | ไ นี้                                                  | Ŭ                                                      | ັບ                                                      | Ŭ                                                      | ŭ                                                      | Ŭ                                           | Ŭ Ŭ                                                   | ŭ                                                     | 330     |                                                              |
| 2,4,5-Trichlorophenol                                                                              | ν υ i                                                  | Ũ                                                      | Ũ                                                       | Ŭ                                                      | Ŭ                                                      | Ū                                           | Ŭ                                                     | Ŭ                                                     | 330     | 100                                                          |
| 2-Chloronaphthalene                                                                                | Ŭ                                                      | Ũ                                                      | Ŭ                                                       | Ŭ                                                      | Ŭ                                                      | ນັ                                          | Ŭ                                                     | Ŭ                                                     | 330     | , I                                                          |
| 2-Nitroaniline                                                                                     | Ŭ                                                      | Ŭ                                                      | Ŭ                                                       | Ŭ                                                      | Ŭ                                                      | บั                                          | ไ บั                                                  | Ŭ                                                     | 330     | 430                                                          |
| Dimethylphthalate                                                                                  | Ŭ                                                      | Ŭ                                                      | Ŭ                                                       | Ŭ                                                      | Ŭ                                                      | Ŭ                                           | Ŭ                                                     | Ŭ                                                     | 330     | 2,000                                                        |
| Acenaphthylene                                                                                     | Ŭ                                                      | Ŭ                                                      | Ŭ                                                       | Ŭ                                                      | Ŭ                                                      | ນ ນັ                                        | Î Ŭ                                                   | Ŭ                                                     | 330     | 41,000                                                       |
| 2,6-Dinitrotoluene                                                                                 | U                                                      | Ū                                                      | Ū                                                       | Ŭ                                                      | Ŭ                                                      | Ŭ                                           | ΙŬ                                                    | ŭ                                                     | 330     | 1,000                                                        |
| 3-Nitroaniline                                                                                     | ບ                                                      | Ū                                                      | ŭ                                                       | Ŭ                                                      | Ū                                                      | Ŭ                                           | υŬ                                                    | Ŭ                                                     | 330     | 500                                                          |
| Acenaphthene                                                                                       | Ū                                                      | Ū                                                      | Ŭ                                                       | Ŭ                                                      | Ŭ                                                      | Ū                                           | ι                                                     | Ŭ                                                     | 330     | 50,000                                                       |

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR | MHSBX-03<br>(8-10)<br>1/13/03<br>1 | MH\$BX-03<br>(10-12)<br>1/13/03<br>1 | MHSBX-03<br>(12-14)<br>1/13/03<br>1 | MHSBX-03<br>(14-16)<br>1/13/03<br>1     | MHSBX-03<br>(16-18)<br>1/13/03<br>1 | MHSBX-03<br>(18-20)<br>1/13/03<br>1 | MHSBX-04<br>(4-6)<br>1/13/03<br>1 | MHSBX-04<br>(6-8)<br>1/13/03<br>1 | LABORATORY<br>QUANTITATION<br>LIMITS | NYSDEC TAGM<br>4046 Recommended<br>Soil Cleanup<br>Objective |
|-------------------------------------------------------------------------|------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------------------------|
| PERCENT SOLIDS                                                          | 91.0                               | 94.0                                 | 91.0                                | 94.0                                    | 89.0                                | 96.0                                | 91.0                              | 92.0                              |                                      |                                                              |
| UNITS                                                                   | (ug/kg)                            | (ug/kg)                              | (ug/kg)                             | (ug/kg)                                 | (ug/kg)                             | (ug/kg)                             | (ug/kg)                           | (ug/kg)                           | (ug/kg)                              | (ug/kg)                                                      |
| 2.4-Dinitrophenol                                                       | U U                                | υ                                    | υ                                   | U                                       | U                                   | υ                                   | υ υ                               | υ                                 | 330                                  | 200                                                          |
| 4-Nitrophenol                                                           | U U                                | U                                    | U U                                 | U                                       | ປ                                   | U                                   | U                                 | υ                                 | 330                                  | 100                                                          |
| Dibenzofuran                                                            | U U                                | U                                    | U U                                 | U                                       | U                                   | U                                   | ט ט                               | U                                 | 330                                  | 6,200                                                        |
| 2,4-Dinitrotoluene                                                      | U                                  | U                                    | U U                                 | U                                       | U                                   | U                                   | U U                               | U                                 | 330                                  |                                                              |
| Diethylphthalate                                                        | U                                  | U                                    | υ                                   | Ų                                       | U                                   | U                                   | ( U                               | U                                 | 330                                  | 7,100                                                        |
| 4-Chlorophenyl-phenylether                                              | U                                  | U                                    | ט ו                                 | Ų                                       | U                                   | U                                   | U                                 | U                                 | 330                                  |                                                              |
| Fluorene                                                                | U                                  | U                                    | U                                   | U                                       | U                                   | U                                   | U                                 | U                                 | 330                                  | 50,000                                                       |
| 4-Nitroaniline                                                          | U U                                | U                                    | <u> </u>                            | U                                       | U                                   | U                                   | U                                 | U                                 | 330                                  |                                                              |
| 4,6-Dinitro-2-methylphenol                                              | U U                                | U                                    | U                                   | U                                       | U                                   | U                                   | U                                 | U                                 | 330                                  |                                                              |
| N-Nitrosodiphenylamine                                                  | U                                  | U                                    | U                                   | U                                       | U                                   | U                                   | U                                 | U                                 | 330                                  |                                                              |
| 4-Bromophenyl-phenylether                                               | U                                  | U                                    | U                                   | U                                       | U                                   | U .                                 | U                                 | U                                 | 330                                  |                                                              |
| Hexachlorobenzene                                                       | U U                                | U                                    |                                     | U                                       | U                                   | U                                   | <u>U</u>                          | U                                 | 330                                  | 410                                                          |
| Pentachlorophenol                                                       | U U                                | U                                    | U U                                 | U                                       | U<br>U                              | U U                                 | U                                 | U                                 | 330                                  | 1,000                                                        |
| Phenanthrene                                                            |                                    | U                                    | U U                                 | U U                                     | U U                                 | U U                                 | U                                 | U<br>U                            | 330<br>330                           | 50,000                                                       |
| Anthracene                                                              |                                    | U                                    |                                     | <u>v</u>                                | U U                                 | บ<br>ม                              | UU                                | -                                 |                                      | 50,000                                                       |
| Carbazole                                                               | U U                                | U                                    | U U                                 | Ŭ                                       | U                                   | 0                                   | -                                 | U<br>U                            | 330<br>330                           | 8,100                                                        |
| Di-n-butyiphthalate                                                     | U U                                | U                                    | U                                   | Ŷ                                       |                                     | U U                                 | U<br>U                            | U U                               | 330                                  |                                                              |
| Fluoranthene                                                            | U U                                | U                                    | U U                                 | U<br>U                                  |                                     | U U                                 |                                   | U U                               | 330                                  | 50,000                                                       |
| Pyrene                                                                  | -                                  | U                                    | U<br>U                              | U U                                     |                                     | U U                                 |                                   | U U                               | 330                                  | 50,000                                                       |
| Butylbenzylphthalate                                                    |                                    | U<br>U                               | _                                   | Ŭ                                       | 0                                   | U U                                 |                                   | U U                               | 330                                  | 50,000                                                       |
| 3,3'-Dichlorobenzidine                                                  |                                    | U U                                  | U                                   | U U                                     |                                     | U U                                 | l ü                               | U U                               | 330                                  | 224                                                          |
| Benzo(a)anthracene                                                      | U U                                | l ü                                  | l Ű                                 | U U                                     |                                     | U U                                 | u u                               | U U                               | 330                                  | 400                                                          |
| Chrysene<br>bis(2-Ethylhexyl)phthalate                                  | Ŭ                                  | U                                    | Ŭ                                   | Ů                                       |                                     | U U                                 | [ ບ                               | U<br>U                            | 330                                  | 50,000                                                       |
| Dis(2-Ethylnexy)phthalate                                               | ĬŬ                                 | Ŭ                                    | Ŭ                                   | Ŭ                                       | U U                                 |                                     | l ĭ                               | Ŭ                                 | 330                                  | 50,000                                                       |
| Benzo(b)fluoranthene                                                    | Ŭ                                  | Ŭ                                    | Ŭ                                   | U<br>U                                  | Ŭ                                   | Ŭ                                   | i i                               | บั                                | 330                                  | 1,100                                                        |
| Benzo(k)fluoranthene                                                    | Ŭ                                  | Ŭ                                    | ບັ                                  | Ű                                       | Ŭ                                   | Ŭ                                   | Ŭ                                 | Ŭ                                 | 330                                  | 1,100                                                        |
| Benzo(a)pyrene                                                          | Ŭ                                  | Ű                                    | Ŭ                                   | Ŭ                                       | Ŭ                                   | Ŭ                                   | ្រៃប័                             | ט<br>ע                            | 330                                  | 61                                                           |
| Indeno(1,2,3-cd)pyrene                                                  | Ŭ                                  | Ŭ                                    | Ŭ                                   | Ŭ                                       | Ŭ                                   | Ŭ                                   | l ŭ                               | Ŭ                                 | 330                                  | 3,200                                                        |
| Dibenzo(a,h)anthracene                                                  | Ŭ                                  | Ŭ                                    | Ŭ                                   | Ū                                       | Ū                                   | Ŭ                                   | Ū                                 | บ                                 | 330                                  | 14                                                           |
| [Benzo(g,h,l)perylene                                                   | Ŭ                                  | Ŭ                                    | Ū                                   | Ŭ                                       | Ŭ                                   | Ū                                   | Ū                                 | Ũ                                 | 330                                  | 50,000                                                       |
| - anime (Minit) have a large                                            | , J                                | Ţ                                    | Ţ                                   | , i i i i i i i i i i i i i i i i i i i | •                                   |                                     |                                   |                                   |                                      |                                                              |
| Total PAHs                                                              | 0                                  | 0                                    | 0                                   | 0                                       | 0                                   | 0                                   | 0                                 | 0                                 |                                      | 100,000                                                      |
| Total CaPAHs                                                            | 0                                  | 0                                    | 0                                   | 0                                       | 0                                   | 0                                   | 0                                 | 0                                 | **                                   | 10,000                                                       |
| Total SVOCs                                                             | 0                                  | 0                                    | 0                                   | 0                                       | 0                                   | 0                                   | 0                                 | 0                                 |                                      | 500,000                                                      |

QUALIFIERS; U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

NOTES: : Not applicable. ---

: Concentration exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

G: 2015 (LERR 3 Subs Dei Phase II) 3 Subs Data Manhasset Data Tables for Report Table 13 rev

Ares - 1011 1 - 10 ., . . . . .

1

÷

12/17/04

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

# SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOC3)

| SAMPLE ID<br>SAMPLE DEPTH (FT) | MHSBX-04<br>(8-10) | MHSBX-04<br>(10-12) | MHSBX-04<br>(12-14) | MHSBX-04<br>(14-16) | MHSBX-05<br>(4-6) | MH\$BX-05<br>(6-8) | MHSBX-05<br>(8-10) | MHSBX-05<br>(10-12) |         | NYSDEC TAGM<br>4046 Recommended |
|--------------------------------|--------------------|---------------------|---------------------|---------------------|-------------------|--------------------|--------------------|---------------------|---------|---------------------------------|
| DATE OF COLLECTION             | 1/13/03            | 1/13/03             | 1/13/03             | 1/13/03             | 1/13/03           | 1/13/03            | 1/13/03            | 1/13/03             | LIMITS  | Soll Cleanup                    |
| DILUTION FACTOR                | 1                  | 1                   | 1                   | 1                   | 1                 | 1                  | 1                  | 1                   |         | Objective                       |
| PERCENT SOLIDS                 | 92.0               | 91.0                | 91.0                | 95.0                | 90.0              | 93.0               | 90.0               | 85.0                |         |                                 |
| UNITS                          | (ug/kg)            | (ug/kg)             | (ug/kg)             | (ug/kg)             | (ug/kg)           | (ug/kg)            | (ug/kg)            | (ug/kg)             | (ug/kg) | (ug/kg)                         |
| Phenoi                         |                    |                     |                     |                     |                   |                    |                    |                     |         |                                 |
|                                | U                  | U                   | U                   | U                   | U                 | U                  | U                  | U                   | 330     | 30                              |
| bis(2-Chloroethyl)ether        | U                  | U                   | U                   | U                   | . U               | U                  | U                  | U.                  | 330     |                                 |
| 2-Chlorophanol                 | l U                | U                   | U                   | U                   | U                 | U                  | U                  | U                   | 330     | 800                             |
| 1,3-Dichlorobenzene            | U                  | U                   | U                   | U                   | U                 | U                  | υ                  | υ                   | 330     |                                 |
| 1,4-Dichlorobenzene            | U                  | U U                 | U                   | U                   | υ                 | U                  | U                  | U                   | 330     | · · ·                           |
| 1,2-Dichlorobenzene            |                    | U U                 | U                   | U                   | U                 | U                  | U U                | υ                   | 330     |                                 |
| 2-Methylphenol                 | U                  | U                   | U                   | U                   | U                 | U                  | U                  | U                   | 330     | 100                             |
| 2,2'-oxybis (1-chloropropane)  | U                  | U                   | υ                   | U                   | Ų                 | U                  | U U                | U                   | 330     | - 1                             |
| 4-Methylphenol                 | U                  | U                   | U                   | U                   | U                 | U                  | υ                  | υ                   | 330     | 900                             |
| N-Nitroso-di-n-propylamine     |                    | U                   | U                   | Ų                   | Ų                 | υ                  | U                  | U                   | 330     |                                 |
| Hexachloroethane               |                    | U                   | υ                   | U                   | U                 | Ų                  | U                  | Ý                   | 330     |                                 |
| Nitrobanzana                   |                    | U                   | U                   | U                   | U                 | U                  | υ                  | υ                   | 330     | 200                             |
| Isophorone                     | U                  | U                   | U                   | U                   | U                 | U                  | U                  | U                   | 330     | 4,400                           |
| 2-Nitrophenol                  | U                  | U                   | υ                   | U                   | U                 | U                  | U                  | U                   | 330     | 330                             |
| 2,4-Dimethylphenol             | U                  | U                   | U                   | U                   | U                 | U                  | υ                  | U                   | 330     | - 1                             |
| 2,4-Dichlorophenol             | l U                | U                   | U                   | U                   | υ                 | U                  | U                  | U                   | 330     | 400                             |
| 1,2,4-Trichlorobenzene         | U                  | U                   | U                   | Ų                   | U                 | ļυ                 | U                  | υ                   | 330     |                                 |
| Naphthalene                    | ļ U                | U.                  | U                   | Ų                   | U                 | υ                  | U U                | U                   | 330     | 13,000                          |
| 4-Chloroaniline                | U                  | U                   | υ                   | U                   | U                 | U                  | ט                  | U                   | 330     | 220                             |
| bis(2-Chloroethoxy)methane     | U                  | U                   | U                   | U                   | U                 | U                  | U                  | υ                   | 330     | · •                             |
| Hexachlorobutadiene            | U                  | U                   | U                   | U                   | υ                 | υ                  | [ U                | U                   | 330     |                                 |
| 4-Chloro-3-methylphanol        | U                  | U                   | U                   | υ                   | U                 | U                  | l u                | U U                 | 330     | 240                             |
| 2-Methylnaphthalene            | ų υ                | U                   | U                   | U                   | U                 | U                  | ) ປ                | U                   | 330     | 36,400                          |
| Hexachlorocyclopentadiene      | j U                | U U                 | U                   | υ                   | U                 | U U                | ) U                | U                   | 330     |                                 |
| 2,4,6-Trichlorophanol          | U                  | υ                   | U                   | U                   | U                 | U                  | ) U                | υ                   | 330     |                                 |
| 2,4,5-Trichlorophenol          | U                  | U                   | U                   | U                   | U                 | ) <u>ບ</u>         | υ                  | U                   | 330     | 100                             |
| 2-Chloronaphthalene            | U U                | U                   | U                   | υ                   | U                 | U                  | U U                | U                   | 330     |                                 |
| 2-Nitroaniline                 | U                  | U                   | U                   | U                   | U                 | U                  | U U                | υ                   | 330     | 430                             |
| Dimethylphthalate              | U U                | U                   | U                   | Ų                   | υ                 | υ                  | [ υ                | U                   | 330     | 2,000                           |
| Acenaphthylene                 | { U                | U                   | υ                   | U                   | U                 | U U                | U                  | U                   | 330     | 41,000                          |
| 2,6-Dinitrotoluene             | υ                  | U                   | U                   | U                   | U                 | U                  | ( ບ                | υ                   | 330     | 1,000                           |
| 3-Nitroaniline                 | Ų                  | U                   | U                   | U                   | υ                 | υ                  | [ υ                | U                   | 330     | 500                             |
| Acenaphthene                   | U                  | U                   | <u>ບ</u>            | U                   | U                 | U                  | U                  | U                   | 330     | 50,000                          |

ţ

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

# SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                  | MHSBX-04 | MHSBX-04 | MHSBX-04 | MHSBX-04 | MHSBX-05 | MHSBX-05 | MHSBX-05                              | MHSBX-05 | LABORATORY   | NYSDEC TAGM      |
|----------------------------|----------|----------|----------|----------|----------|----------|---------------------------------------|----------|--------------|------------------|
| SAMPLE DEPTH (FT)          | (8-10)   | (10-12)  | (12-14)  | (14-16)  | (4-6)    | (6-8)    | (8-10)                                | (10-12)  | QUANTITATION | 4046 Recommended |
| DATE OF COLLECTION         | 1/13/03  | 1/13/03  | 1/13/03  | 1/13/03  | 1/13/03  | 1/13/03  | 1/13/03                               | 1/13/03  | LIMITS       | Soll Cleanup     |
| DILUTION FACTOR            | 1        | 1        | 1        | 1        | 1        | 1        | 1                                     | 1        |              | Objective        |
| PERCENT SOLIDS             | 92.0     | 91.0     | 91.0     | 95.0     | 90.0     | 93.0     | 90.0                                  | 85.0     |              |                  |
| UNITS                      | (ug/kg)                               | (ug/kg)  | (ug/kg)      | (ug/kg)          |
|                            |          |          |          |          |          |          | · · · · · · · · · · · · · · · · · · · |          |              |                  |
| 2,4-Dinitrophenol          | U        | υ        | U        | U        | U U      | U        | U                                     | U        | 330          | 200              |
| 4-Nitrophenol              | U        | U        | υ        | U        | Ų        | U U      | υ                                     | υ        | 330          | 100              |
| Dibenzofuran               | υ        | U        | U        | U        | ĺ Ú      | U        | υ                                     | U        | 330          | 6,200            |
| 2.4-Dinitrotoluene         | υ        | U        | U        | U        | υ        | U        | ∪                                     | U        | 330          |                  |
| Diethylphthalate           | ( U      | U        | υ        | U        | υ        | U        | l ù                                   | υ        | 330          | 7,100            |
| 4-Chlorophenyl-phenylether | υ        | U        | υ        | U        | υ        | U        | 1 Ú                                   | U        | 330          |                  |
| Fluorene                   | Ū        | Ŭ        | Ű        | U        | Ű        | Ŭ        | Ū                                     | Ŭ        | 330          | 50,000           |
| 4-Nitroaniline             | Ū        | Ŭ        | Ŭ        | Ŭ.       | Ŭ        | Ū        | Ū                                     | Ũ        | 330          |                  |
| 4,8-Dinitro-2-methylphenol | Ú        | U        | U        | Ŭ        | Ū        | Ú        | l Ŭ                                   | Ŭ        | 330          |                  |
| N-Nitrosodiphenyiamine     | υ        | U        | υ        | Ū        | υ        | Ú        | Ú                                     | U        | 330          |                  |
| 4-Bromophenyl-phenylether  | U U      | ( U      | U        | U        | U U      | U        | U U                                   | U        | 330          |                  |
| Hexachlorobenzene          | U        | U        | U U      | U        | U        | U        | U                                     | U        | 330          | 410              |
| Pentachlorophenol          | υ        | υ [      | U        | U        | U U      | U U      | υ                                     | U        | 330          | 1,000            |
| Phonanthrene               | ι υ      | ប        | U        | U        | υ [      | υ        | U U                                   | U        | 330          | 50,000           |
| Anthracene                 | υ        | U        | U        | U        | U        | U        | U U                                   | U)       | 330          | 50,000           |
| Carbazole                  | υ        | U        | U        | U        | υ        | υ        | <b>υ</b>                              | υ        | 330          |                  |
| Di-n-butylphthalate        | υ.       | U        | U        | U        | υ        | U        | U                                     | U        | 330          | 8,100            |
| Fluoranthene               | U        | U        | U        | U        | υ        | U        | U U                                   | υ        | 330          | 50,000           |
| Pyrene                     | U        | U        | υ        | U        | U .      | U        | υ (                                   | υ        | 330          | 50,000           |
| Butylbenzylphthalate       | ι υ      | υ υ      | U        | U        | ! υ      | υ        | υ [                                   | υ        | 330          | 50,000           |
| 3.3'-Dichiorobenzidine     | υ υ      | U        | U        | U        | U υ      | U        | U U                                   | U        | 330          |                  |
| Benzo(a)anthracene         | ( V      | U        | U        | U        | U        | U        | υ                                     | U )      | 330          | 224              |
| Chrysene                   | υ        | U        | U        | U        | U        | U U      | υ                                     | U U      | 330          | 400              |
| bis(2-Ethylhexyl)phthalate | υ        | υ υ      | U        | U        | Ι υ      | υ        | ( U                                   | U U      | 330          | 50,000           |
| Di-n-octyiphthalate        | U U      | U        | Ú        | U        | Ų        | U        | U U                                   | U        | 330          | 50,000           |
| Benzo(b)fluoranthene       | U        | U U      | U        | U        | U U      | U        | U U                                   | U U      | 330          | 1,100            |
| Benzo(k)fluoranthene       | U        | U        | U        | U        | U U      | U        | U U                                   | U        | 330          | 1,100            |
| Benzo(a)pyrene             | U U      | U        | U        | U        | υ        | Ų        | U U                                   | U        | 330          | 61               |
| Indeno(1,2,3-cd)pyrene     | ) U      | U        | U        | U        | U U      | Ų        | Ų                                     | U        | 330          | 3,200            |
| Dibenzo(a,h)anthracene     | Ū        | Ŭ        | Ŭ        | · U      | υ        | Ů        | Ù                                     | Ű        | 330          | 14               |
| Benzo(g,h,i)perylene       | Ū        | Ų        | Ų        | Ū        | Ū        | Ų        | Ũ                                     | Ŭ        | 330          | 50,000           |
|                            |          |          |          |          | l        |          |                                       |          |              |                  |
| Total PAHs                 | 0        | 0        | 0        | 0        | 0        | 0        | 0                                     | 0        |              | 100,000          |
| Total CaPAHs               | 0        | 0        | D        | 0        | 0        | 0        | 0                                     | 0        |              | 10,000           |
| Total SVOCs                | 0        | 0        | 0        | 0        | 0        | 0        | 0                                     | 0        |              | 500,000          |

<u>QUALIFIERS:</u> U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

NOTES: : Not applicable.

•

---

٦

)

: Concentration exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

1

12/17/04

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                     | MHSBX-05 | MHSBX-05 | MHSBX-05 | MHSBX-05 | MHSBX-06 | MHSBX-06 | MHSBX-06 | MHSBX-07 | LABORATORY   | NYSDEC TAOM      |
|-------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|------------------|
| SAMPLE DEPTH (FT)             | (12-14)  | (14-18)  | (18-18)  | (18-20)  | (4-6)    | (8-8)    | (8-10)   | (10-12)  | QUANTITATION | 4046 Recommended |
| DATE OF COLLECTION            | 1/13/03  | 1/13/03  | 1/13/03  | 1/13/03  | 1/13/03  | 1/13/03  | 1/13/03  | 1/13/03  | LIMITS       | Soll Cleanup     |
| DILUTION FACTOR               | 1 1      | 1        | 1        | 1        | 1        | 1        | 1        | 1        |              | Objective        |
| PERCENT SOLIDS                | 90.0     | 92.0     | 97.0     | 96.0     | 93.0     | 86.0     | 90.0     | 91.0     |              |                  |
| UNITS                         | (ug/kg)      | (ug/kg)          |
|                               |          |          |          |          |          |          |          |          |              |                  |
| Phenol                        | ן ט      | Ų        | U        | U        | U        | U        | U        | U        | 330          | 30               |
| bis(2-Chloroethyi)ether       | U        | U        | U        | U        | U        | υ        | υ        | U        | 330          | [                |
| 2-Chlorophenol                | U U      | U        | U        | υ        | υ        | U        | U        | U        | 330          | 800              |
| 1,3-Dichlorobenzene           | U        | υ        | υ        | υ        | U        | U        | U .      | U U I    | 330          |                  |
| 1,4-Dichlorobenzene           | U U      | υ        | U U      | U        | U        | U        | U        | U        | 330          |                  |
| 1,2-Dichlorobenzene           | υ        | U        | U        | U        | U        | U        | U        | U        | 330          | 1                |
| 2-Methylphenol                | U U      | U        | U        | U        | U        | υ        | ່ ບ      | υ        | 330          | 100              |
| 2,2'-oxybis (1-chioropropane) | ן טן     | U        | U        | U        | υ        | Ū        | Ū        | Ū        | 330          |                  |
| 4-Methylphenol                | U        | U        | υ        | υ        | U        | υ        | Ū Ū      | υ        | 330          | 900              |
| N-Nitroso-di-n-propylamine    | U        | U U      | υ        | υ        | U        | U        | ) Ú      | U        | 330          |                  |
| Hexachloroethane              | U U      | U U      | υ        | U U      | υ        | ι υ      | ίυ       | U U      | 330          |                  |
| Nitrobenzene                  | ט ו      | U U      | U        | U        | U        | U .      | U U      | Ŭ        | 330          | 200              |
| lsophorone                    | ) Ŭ      | Ū        | Ū        | Ū        | Ū        | ີ ນີ     | Ŭ        | Ū        | 330          | 4,400            |
| 2-Nitrophenol                 | Ŭ        | Ū        | Ŭ        | Ŭ        | ່ ນັ     | Ŭ        | ŭ        | Ŭ        | 330          | 330              |
| 2,4-Dimethylphenol            | ΙŬ       | ΙŬ       | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | 330          |                  |
| 2,4-Dichlorophenol            | Ú        | υ        | Ū        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | 330          | 400              |
| 1,2,4-Trichlorobenzene        | ( U      | υ        | Ū        | Ū        | Ū        | ŭ        | Ū        | Ū        | 330          |                  |
| Naphthalene                   | Ū        | Ū        | Ŭ        | Ū        | i Ū      | . Ŭ      | Ŭ        | Ŭ        | 330          | 13,000           |
| 4-Chloroaniline               | Ŭ        | Ŭ        | Ŭ        | Ŭ        |          | ບັ       | Ŭ        | Ŭ        | 330          | 220              |
| bis(2-Chloroethoxy)methane    | Ŭ        | ΙŬ       | Ŭ        | Ŭ        | ີ ບັ     | Ŭ        | Ŭ        | ŭ        | 330          |                  |
| Hexachiorobutadiene           | ΙŬ       | Ŭ        | Ŭ        | ບ ບັ     | l ŭ      | Ŭ        | Ŭ        | Ū        | 330          |                  |
| 4-Chloro-3-methylphenol       | Û Û      | Ū        | Ū        | Ū.       | i ii     | Ŭ Ŭ      | l ŭ      | ŭ        | 330          | 240              |
| 2-Methyinaphthalene           | i i      | ŭ        | Ŭ        | Ŭ Ŭ      | Ŭ        | l ŭ      | l ŭ      | u u      | 330          | 36,400           |
| Hexachlorocyclopentadiene     |          | Ŭ        | Ŭ        | Ŭ        | L ŭ      | Ŭ        | Ŭ        | υ<br>υ   | 330          | 30,400           |
| 2,4,6-Trichlorophanol         | i ŭ      | ŭ        | l ŭ      | Ŭ        | U U      | Ŭ        | υ<br>υ   | υ<br>υ   | 330          |                  |
| 2,4,5-Trichlorophenol         | Ŭ        | l ũ      | Ŭ        | Ŭ        | . Ŭ      | Ŭ        | ŭ        | υ υ      | 330          | 100              |
| 2-Chloronaphthalane           | l ŭ l    | Ŭ        | υ        | Ŭ Ŭ      | U U      | Ŭ        | Ŭ        | U<br>U   | 330          |                  |
| 2-Nitroaniline                | l ŭ l    | ŭ        | Ŭ        | u u      | U U      | Ŭ        | Ŭ        | l u      | 330          | 430              |
| Dimethylphthalate             | . ŭ      | Ŭ        | Ŭ        | U U      | Ŭ        | U U      | U U      | U U      | 330          | 2.000            |
| Acenaphthylene                | i ii     | U U      | Ŭ        |          | U U      | U U      | υ<br>υ   | υ<br>υ   | 330          | 41,000           |
| 2,6-Dinitrotoluene            | i ii     | U U      |          |          |          | U U      | υ<br>υ   | U<br>U   | 330          | 1,000            |
| 3-Nitroaniline                | i ii     | Ŭ        | Ŭ        | , ii     | ບ<br>ບ   |          | υ        | U        | 330          | 500              |
| Acenaphthene                  | i ii     | U U      | υ<br>υ   | U U      | U U      |          | U U      | U U      | 330          | -                |
| Auguaphinione                 | 0        | V        |          | 0        | U        |          | U        | U        | 330          | 50,000           |

í

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS | (12-14)<br>1/13/03<br>1<br>90.0 | (14-16)<br>1/13/03<br>1 | (16-16)<br>1/13/03 | (16-20) | (4-6)   | (6-8)                   | (8-10)  | (10-12) | QUANTITATION | 4046 Recommended |
|------------------------------------------------------------------------------|---------------------------------|-------------------------|--------------------|---------|---------|-------------------------|---------|---------|--------------|------------------|
| DILUTION FACTOR<br>PERCENT SOLIDS                                            | 1<br>90.0                       | 1                       | 1/13/03            | 4/40/00 |         | \ <b>U</b> = <b>U</b> / |         | (10-14) | QUANTIATION  | 4v40 Kecommended |
| PERCENT SOLIDS                                                               |                                 | 1                       |                    | 1/13/03 | 1/13/03 | 1/13/03                 | 1/13/03 | 1/13/03 | LIMITS       | Soll Cleanup     |
|                                                                              |                                 |                         | 1                  | 1       | 1       | 1                       | 1       | 1       |              | Objective        |
|                                                                              |                                 | 92.0                    | 97.0               | 96.0    | 93.0    | 86.0                    | 90.0    | 91.0    |              |                  |
| UNITS                                                                        | (ug/kg)                         | (ug/kg)                 | (ug/kg)            | (ug/kg) | (ug/kg) | (ug/kg)                 | (ug/kg) | (ug/kg) | (ug/kg)      | (ug/kg)          |
|                                                                              |                                 |                         |                    |         |         |                         |         |         |              |                  |
| 2,4-Dinitrophenol                                                            | U                               | U                       | U                  | U U     | U       | U                       | U U     | U       | 330          | 200              |
| 4-Nitrophenol                                                                | U                               | U                       | υ                  | U       | U       | U                       | U       | U       | 330          | 100              |
| Dibenzofuran                                                                 | U                               | U                       | U                  | U       | U       | U                       | U       | υ       | 330          | 6,200            |
| 2,4-Dinitrotoluene                                                           | U                               | U                       | U                  | U       | U       | U                       | U       | U       | 330          |                  |
| Diethylphthalate                                                             | U                               | U                       | υ                  | U       | U '     | U                       | U       | U       | 330          | 7,100            |
| 4-Chlorophenyl-phenylether                                                   | U                               | U                       | U                  | U       | U       | U                       | U       | U       | 330          |                  |
| Fluorene                                                                     | U                               | U                       | U                  | U       | U       | U                       | U       | U       | 330          | 50,000           |
| 4-Nitroaniline                                                               | U                               | U                       | U                  | υ       | U       | U                       | U       | υ       | 330          |                  |
| 4,6-Dinitro-2-methylphenol                                                   | U                               | U                       | U                  | U       | U       | U                       | U       | υ       | 330          |                  |
| N-Nitrosodiphanylamine                                                       | U                               | U                       | U                  | U       | U       | υ                       | υ       | ן ט     | 330          |                  |
| 4-Bromophenyl-phenylether                                                    | U                               | Ų                       | U                  | U       | U U     | U                       | U       | υ       | 330          |                  |
| Hexachlorobenzene                                                            | U                               | U                       | U                  | U       | U 1     | U                       | U       | U       | 330          | 410              |
| Pentachlorophenol                                                            | ບ                               | υ                       | U                  | U       | ) U     | U                       | U       | U       | 330          | 1,000            |
| Phenanthrene                                                                 | U                               | U                       | U                  | U       | U       | U                       | U       | υ       | 330          | 50,000           |
| Anthracene                                                                   | U                               | U                       | U                  | U       | U       | U                       | U       | U       | 330          | 50,000           |
| Carbazole                                                                    | บ                               | U                       | Ų                  | U       | U       | U                       | U       | ປ       | 330          |                  |
| Di-n-butylphthalate                                                          | U                               | U                       | U                  | U       | U       | U                       | 48 J    | υ       | 330          | 8,100            |
| Fluoranthene                                                                 | U                               | U                       | U                  | U       | U U     | U                       | U       | U       | 330          | 50,000           |
| Pyrene                                                                       | U                               | U                       | U                  | U       | U U     | U                       | U       | U       | 330          | 50,000           |
| Butylbenzylphthalate                                                         | U                               | U                       | U                  | U       | ( U     | U                       | U       | U       | 330          | 50,000           |
| 3,3'-Dichiorobenzidine                                                       | U                               | U                       | U                  | U       | U       | U                       | U       | U       | 330          | _                |
| Benzo(a)anthracene                                                           | U                               | U                       | U                  | U       | U       | U                       | ບ       | U       | 330          | 224              |
| Chrysene                                                                     | U                               | U                       | U                  | U       | U       | υ                       | U       | U       | 330          | 400              |
| bis(2-Ethylhexyl)phthalate                                                   | U                               | U                       | U                  | U       | U       | U                       | U       | U       | 330          | 50,000           |
| Di-n-octylphthalate                                                          | υ                               | U                       | U                  | U       | U       | U                       | U       | U       | 330          | 50,000           |
| Benzo(b)fluoranthene                                                         | U                               | U                       | U                  | U       | U       | ບ                       | ບ       | U       | 330          | 1,100            |
| Benzo(k)fluoranthene                                                         | U                               | U                       | U                  | U       | U       | U                       | U       | υ       | 330          | 1,100            |
| Benzo(a)pyrene                                                               | υ                               | U                       | U                  | U       | υ       | U                       | U       | υ       | 330          | 61               |
| indeno(1,2,3-cd)pyrene                                                       | U                               | U                       | U                  | U       | U       | U                       | U       | U       | 330          | 3,200            |
| Dibenzo(a,h)anthracene                                                       | U                               | U                       | U                  | U       | U       | U                       | U       | U       | 330          | 14               |
| Benzo(g,h,i)perylene                                                         | U                               | U                       | U                  | U       | U       | U                       | U       | υ       | 330          | 50,000           |
| Total PAHs                                                                   | 0                               | 0                       | 0                  | 0       | 0       | 0                       | 0       | 0       | _            | 100,000          |
|                                                                              | ŏ                               | ŏ                       | o                  | 0       | 0       | 0                       | 0       | 0       | _            | 10,000           |
| Total CaPAHs<br>Total SVOCs                                                  | ŏ                               | 0                       | 0                  | 0       | 0       | . 0                     | 48      | 0       |              | 500,000          |

QUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

NOTES: : Not applicable. ---

4

: Concentration exceeds NYSDEC TAGM Recommended Soll Cleanup Objective

12/17/04

 $\sim$ 

ł

المراجع المراجع

-1

5

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                     | MHSBX-07 | MHSBX-07 | MHSBX-07 | MHSBX-07 | MHSBX-08   | MHSBX-08 | MHSBX-08 | MHSBX-08 | LABORATORY   | NYSDEC TAGM      |
|-------------------------------|----------|----------|----------|----------|------------|----------|----------|----------|--------------|------------------|
| SAMPLE DEPTH (FT)             | (12-14)  | (14-16)  | (16-18)  | (18-20)  | (4-6)      | (6-8)    | (8-10)   | (10-12)  | QUANTITATION | 4046 Recommended |
| DATE OF COLLECTION            | 1/13/03  | 1/13/03  | 1/13/03  | 1/13/03  | 1/17/03    | 1/17/03  | 1/17/03  | 1/17/03  | LIMITS       | Soll Cleanup     |
| DILUTION FACTOR               | 1        | 1        | 1        | 1        | 1          | 1        | 1        | 1        |              | Objective        |
| PERCENT SOLIDS                | 93.0     | 87.0     | 88.0     | 91.0     | 66.0       | 84.0     | 87.0     | 94.0     |              |                  |
| UNITS                         | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)    | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)      | (ug/kg)          |
| Phenol                        |          |          |          |          |            |          |          |          |              |                  |
|                               | U        | U        | υ        | U        | U          | U        | U        | U        | 330          | 30               |
| bis(2-Chloroethyl)ether       | U        | U        | U        | U        | U          | U        | Ų        | U        | 330          |                  |
| 2-Chlorophanol                | U        | U        | U        | U        | U          | U U      | U        | U        | 330          | 800              |
| 1,3-Dichlorobenzene           | U        | U        | U        | U        | l U        | U U      | U        | υ        | 330          |                  |
| 1,4-Dichlorobenzene           | Ų        | U        | Ų        | U        | U          | U 1      | υ        | U U      | 330          |                  |
| 1,2-Dichlorobenzene           | U        | U        | U        | U        | υ          | V        | U        | U U      | 330          |                  |
| 2-Methylphenol                | U        | U        | U        | U        | υ          | υ        | U        | U        | 330          | 100              |
| 2,2'-oxybis (1-chloropropane) | U        | U        | υ        | υ        | υ          | U        | U U      | U        | 330          |                  |
| 4-Methylphenol                | U        | U        | U        | U        | U U        | U .      | U U      | U        | 330          | 900              |
| N-Nitroso-di-n-propylamine    | υ        | υ        | U        | U        | U          | U        | l Ú      | U U      | 330          |                  |
| Hexachloroethane              | U        | U        | U        | U        | Ú          | Ū        | U        | Ú        | 330          |                  |
| Nitrobenzene                  | U        | U U      | U        | U        | U          | Ŭ        | U        | υ        | 330          | 200              |
| isophorone                    | U        | U        | U U      | U        | U          | U        | ι U      | U        | 330          | 4,400            |
| 2-Nitrophenol                 | U        | U        | U        | Ų        | U          | U        | U        | υ        | 330          | 330              |
| 2,4-Dimethylphenol            | U        | U (      | U        | U        | U          | ່ ປີ     | U        | י ט      | 330          |                  |
| 2,4-Dichlorophenol            | U        | U        | υ        | υ        | U          | Ū        | U        | Ū        | 330          | 400              |
| 1,2,4-Trichlorobenzene        | U        | U        | υ        | Ŭ        | Ū          | Ú        | Ú        | Ú        | 330          | -                |
| Naphthalene                   | U        | U        | υ        | υ        | Ú          | Ū        | ) Ū      | Ū        | 330          | 13,000           |
| 4-Chloroaniline               | U        | U        | U        | U        | U          | l u      | U        | Ű        | 330          | 220              |
| bis(2-Chloroethoxy)methane    | U        | υ        | υ        | U        | U          | Ú        | l ú      | Ū        | 330          |                  |
| Haxachiorobutadiene           | υ        | U        | Ú        | U        | Ű          | Ű        | Ū        | Ŭ        | 330          |                  |
| 4-Chloro-3-methylphenol       | υ        | U        | Ū        | Ú        | Ū          | Ŭ        | Ŭ        | Ŭ.       | 330          | 240              |
| 2-Methylnaphthalene           | U        | U        | Ú        | Ŭ        | Ū          | Ū        | Ū        | Ū        | 330          | 36,400           |
| Hexachlorocyclopentadiene     | U        | U        | U        | Ų        | U          | Ű        | υ        | υ        | 330          |                  |
| 2,4,6-Trichlorophenol         | U        | U        | υ        | υ        | บ้         | i Ŭ      | l ū      | Ū Ū      | 330          |                  |
| 2,4,5-Trichlorophenol         | ũ l      | Ŭ        | Ŭ        | Ŭ        | Ů          | ı ŭ      | Ŭ        | ŭ        | 330          | 100              |
| 2-Chloronaphthalene           | ŭ        | Ū        | Ŭ        | Ŭ        | ı ü        | ŭ        | U U      | Ŭ        | 330          |                  |
| 2-Nitroaniline                | Ũ        | Ŭ        | ŭ        | Ŭ        | l ũ        | l Ű      | i ŭ      | Ŭ        | 330          | 430              |
| Dimethylphthalate             | Ŭ        | Ū        | Ū        | Ŭ        | ŭ          | Ŭ        | l ŭ      | Ŭ        | 330          | 2,000            |
| Acenaphthylene                | Ú        | Ū        | Ŭ        | ŭ        | l ŭ        | ũ        | l ũ      | Ŭ        | 330          | 41,000           |
| 2,8-Dinitrotoluene            | Ŭ        | ŭ        | Ŭ        | Ŭ        | i ŭ        | l ü      | l ŭ      | บั       | 330          | 1,000            |
| 3-Nitroaniline                | Ŭ        | Ŭ        | Ŭ        | Ű        | υ<br>υ     |          |          | U U      | 330          | 500              |
| Acenaphthene                  | Ŭ        | ŭ        | U U      | - U      | ່ <u>ບ</u> | . U      | Ŭ        | บ<br>บ   | 330          | 50,000           |

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

# SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR | MHSBX-07<br>(12-14)<br>1/13/03 | MH\$BX-07<br>(14-16)<br>1/13/03 | MHSBX-07<br>(16-18)<br>1/13/03 | MHSBX-07<br>(18-20)<br>1/13/03 | MHSBX-08<br>(4-6)<br>1/17/03 | MHSBX-08<br>(6-8)<br>1/17/03 | MHSBX-08<br>(8-10)<br>1/17/03 | MHSBX-08<br>(10-12)<br>1/17/03 | LABORATORY<br>QUANTITATION<br>LIMITS | NYSDEC TAGM<br>4046 Recommended<br>Soll Cleanup<br>Objective |
|-------------------------------------------------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------------|------------------------------|------------------------------|-------------------------------|--------------------------------|--------------------------------------|--------------------------------------------------------------|
| PERCENT SOLIDS                                                          | 93.0                           | 87.0                            | 88.0                           | 91.0                           | 66.0                         | 84.0                         | 87.0                          | 94.0                           |                                      | Objective                                                    |
| UNITS                                                                   | (ug/kg)                        | (ug/kg)                         | (ug/kg)                        | (ug/kg)                        | (ug/kg)                      | (ug/kg)                      | (ug/kg)                       | (ug/kg)                        | (ua/ka)                              | (ug/kg)                                                      |
|                                                                         | (09/109)                       | (09/19/                         | (09/18)                        | (08/18)                        | (********                    | (38,187                      | (09/119/                      | (09/118)                       |                                      |                                                              |
| 2,4-Dinitrophenol                                                       | υ                              | υ                               | υ                              | υ                              | υ [                          | υ                            | υ                             | υ [                            | 330                                  | 200                                                          |
| 4-Nitrophenoi                                                           | υ                              | U                               | U                              | U                              | U U                          | U                            | υ [                           | U                              | 330                                  | 100                                                          |
| Dibenzofuran                                                            | υ                              | U                               | U                              | U                              | υ [                          | U                            | υ                             | U                              | 330                                  | 6,200                                                        |
| 2,4-Dinitrotoluene                                                      | U U                            | U                               | U                              | U                              | U U                          | U                            | υ                             | U                              | 330                                  |                                                              |
| Diethylphthalate                                                        | U                              | U                               | U                              | U                              | υ                            | U                            | υ                             | υ υ                            | 330                                  | 7,100                                                        |
| 4-Chlorophenyi-phenyiether                                              | U                              | U                               | U                              | U                              | U                            | U                            | υ                             | U                              | 330                                  |                                                              |
| Fluorene                                                                | υ                              | U                               | U                              | U                              | U                            | U                            | U U                           | U                              | 330                                  | 50,000                                                       |
| 4-Nitroaniline                                                          | υ                              | υ                               | U                              | υ                              | υ                            | υ                            | υ                             | υ                              | 330                                  | I                                                            |
| 4,6-Dinitro-2-methylphenol                                              | υ                              | U                               | U                              | υ                              | ( U                          | υ                            | υ                             | υ [                            | 330                                  | -                                                            |
| N-Nitrosodiphenylamine                                                  | U                              | υ                               | U                              | U                              | U                            | Ų                            | <b>υ</b>                      | U                              | 330                                  |                                                              |
| 4-Bromophenyl-phenylether                                               | U                              | U                               | U U                            | U                              | U                            | U U                          | υ                             | U                              | 330                                  |                                                              |
| Hexachlorobenzene                                                       | ט                              | υ                               | U                              | υ                              | υ                            | υ                            | Ι υ                           | U                              | 330                                  | 410                                                          |
| Pentachlorophenol                                                       | Ū                              | υ                               | U                              | υ                              | υ                            | υ                            | υ                             | U U                            | 330                                  | 1,000                                                        |
| Phenanthrene                                                            | U                              | U                               | U                              | U U                            | U U                          | U                            | ļυ                            | ι υ                            | 330                                  | 50,000                                                       |
| Anthracene                                                              | U U                            | U U                             | U                              | U U                            | U U                          | U                            | U U                           | U                              | 330                                  | 50,000                                                       |
| Carbazole                                                               | U                              | U                               | U                              | U U                            | U V                          | U                            | U U                           | U U                            | 330                                  | <u></u> (                                                    |
| Di-n-butylphthalate                                                     | U                              | ບ 🔰                             | U                              | U                              | Ų V                          | U U                          | ) U                           | U                              | 330                                  | 8,100                                                        |
| Fluoranthene                                                            | U                              | U                               | U                              | ן U                            | U U                          | U V                          | U U                           | U                              | 330                                  | 50,000                                                       |
| Pyrene                                                                  | U U                            | U                               | U                              | U                              | U                            | U U                          | U                             | U U                            | 330                                  | 50,000                                                       |
| Butylbenzylphthalate                                                    | U                              | U                               | U                              | U                              | ן ט                          | U U                          | U                             | ປ                              | 330                                  | 50,000                                                       |
| 3,3'-Dichlorobenzidine                                                  | U                              | U                               | U                              | í U                            | U U                          | U                            | U                             | U                              | 330                                  |                                                              |
| Benzo(a)anthracene                                                      | U                              | U U                             | U                              | U                              | U                            | U                            | U                             | U                              | 330                                  | 224                                                          |
| Chrysene                                                                | U                              | U U                             | Ų                              | U                              | U U                          | U                            | U                             | ( υ                            | 330                                  | 400                                                          |
| bis(2-Ethylhexyl)phthalate                                              | U                              | U                               | U                              | U                              | U                            | U                            | U                             | U                              | 330                                  | 50,000                                                       |
| Di-n-octylphthalate                                                     | U                              | υ                               | U                              | U                              | l u                          | U                            | U                             | U                              | 330                                  | 50,000                                                       |
| Benzo(b)fluoranthene                                                    | U                              | U U                             | U                              | U                              | U                            | U U                          | ( U                           | U                              | 330                                  | 1,100                                                        |
| Benzo(k)fluoranthene                                                    | U                              | U U                             | U                              | U                              | U                            | U                            | U U                           | U                              | 330                                  | 1,100                                                        |
| Benzo(a)pyrene                                                          | U                              | U                               | U U                            | U U                            | U                            | U                            | U U                           | U                              | 330                                  | 61                                                           |
| Indeno(1,2,3-cd)pyrene                                                  | U                              | U                               | U                              | U                              | U U                          | U                            | U                             | U                              | 330                                  | 3,200                                                        |
| Dibenzo(a,h)anthracene                                                  | U                              | U U                             | U                              | U                              | U U                          | U                            | ບ                             | U                              | 330                                  | 14                                                           |
| Benzo(g,h,i)perylene                                                    | U                              | U                               | U                              | U                              | U                            | Ų                            | U                             | U                              | 330                                  | 50,000                                                       |
| Total PAHs                                                              | 0                              | o                               | 0                              | 0                              | 0                            | 0                            | 0                             | 0                              |                                      | 100,000                                                      |
| Total CaPAHs                                                            | 0                              | ٥                               | 0                              | 0                              | 0                            | 0                            | 0                             | 0                              | ••                                   | 10,000                                                       |
| Total SVOCs                                                             | 0                              | 0                               | 0                              | 0                              | 0                            | 0                            | 0                             | 0                              | F                                    | 500,000                                                      |

QUALIFIERS:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

NOTES: -- : Not applicable.

: Concentration exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

٠,

1

12/17/04

Second and the second second

1.1.2.2

~

ł

بالمراجعة المستر المتعا

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

# SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                     | MHSBX-08 | MHSBX-08 | MHSBX-08 | MHSBX-08 | MHSBX-09   | MHSBX-09 | MHSBX-09 | MHSBX-09 | LABORATORY   | NYSDEC TAGM      |
|-------------------------------|----------|----------|----------|----------|------------|----------|----------|----------|--------------|------------------|
| SAMPLE DEPTH (FT)             | (12-14)  | (14-16)  | (16-18)  | (18-20)  | (6-8)      | (8-10)   | (10-12)  | (12-14)  | QUANTITATION | 4046 Recommended |
| DATE OF COLLECTION            | 1/17/03  | 1/17/03  | 1/17/03  | 1/17/03  | 1/17/03    | 1/17/03  | 1/17/03  | 1/17/03  | LIMITS       | Soil Cleanup     |
| DILUTION FACTOR               | 1        | 1 1      | 1        | 1        | 1          | 1        | 1        | 1        |              | Objective        |
| PERCENT SOLIDS                | 92.0     | 91.0     | 92.0     | 95.0     | 85.0       | 88.0     | 88.0     | 92.0     |              |                  |
| UNITS                         | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)    | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)      | (ug/kg)          |
| Phanol                        | u u      | U        | U        | U        | υ          | U        | U        | υ        | 330          | 30               |
| bis(2-Chioroethyl)ether       | ů v      | Ŭ        | Ŭ        | U U      | Ŭ          | U U      | i ü      | Ŭ        | 330          | 30               |
| 2-Chlorophanol                | U U      | Ŭ        | Ŭ        | U<br>U   | U<br>U     | U U      | l ü      | Ŭ        | 330          | 800              |
| 1,3-Dichlorobenzene           | Ŭ        | U U      | Ŭ        | U U      | Ŭ          | i Ü      | Ŭ        | ŬŬ       | 330          | 300              |
| 1,4-Dichlorobenzene           | Ŭ        | l ŭ      | Ŭ        | Ŭ Ŭ      | Ŭ          | Ŭ        | Ŭ        | Ŭ        | 330          |                  |
| 1,2-Dichlorobenzene           | U U      | Ŭ        | Ŭ        | Ŭ        | Ŭ          | Ŭ        | υ        |          | 330          |                  |
| 2-Mathylphenol                | U U      | Ŭ        | U<br>U   | U U      | U          | U U      |          | U U      | 330          | 100              |
| 2.2'-oxybis (1-chloropropane) | U U      | l ü      | U U      |          |            | U U      |          | U U      | 330          | 100              |
| 4-Methylphenol                | Ŭ        | l ŭ      | U        | บ<br>บ   | ี <u>บ</u> |          |          | U U      | 330          | 900              |
| N-Nitroso-di-n-propylamine    | i i      | U U      | U U      | U U      | . U        | U U      | l ŭ      | υ        | 330          | 900              |
| Hexachloroethane              |          | υ<br>υ   | ม<br>บ   | U U      | Ŭ          | U U      | υ        | U U      | 330          |                  |
| Nitrobenzene                  |          | l Ŭ      |          | U U      | -          | -        | -        | -        |              |                  |
| Isophorona                    |          | -        | U .      | -        | U          | U        | U U      |          | 330          | 200              |
| 2-Nitrophenol                 |          | U        |          | U<br>U   | U          | U U      | U U      |          | 330          | 4,400            |
| 2,4-Dimethylphenoi            |          |          | , U      | U U      | U U        | U U      | U U      | U U      | 330          | 330              |
| 2,4-Dichlorophenol            |          |          |          | U U      | U U        | U        |          |          | 330          |                  |
| 1.2.4-Trichlorobenzene        |          | -        | -        |          |            | L U      | U        | -        | 330          | 400              |
| Naphthalene                   |          | U U      | U U      | U        | U          | U        | U U      | U U      | 330          |                  |
| 4-Chloroaniline               | 0        |          | U        | U        | U U        | U U      | U        | U        | 330          | 13,000           |
| bis(2-Chloroethoxy)methane    | U U      |          | U<br>U   | U<br>U   | U<br>U     | U U      | U        | U U U    | 330          | 220              |
| Hexachiorobutadiene           | 0        |          | U<br>U   | U U      |            | U<br>1 U |          |          | 330          |                  |
| 4-Chloro-3-methylphenol       | 0        | ļ        | U U      | U U      | -          | -        | -        |          | 330          |                  |
| 2-Methvinaphthalene           | . U      |          | -        | -        | ບ<br>ບ     | U        | U        |          | 330          | 240              |
| Hexachlorocyclopentadlene     | U U      | U U      | U        | UU       | -          |          | U        | U U      | 330          | 36,400           |
| 2.4.6-Trichlorophenol         |          |          | U        |          | U<br>U     | U U      | U U      | U U      | 330<br>330   | · · ·            |
| 2,4,5-Trichlorophenol         | U U      | U U      | U        | . บ<br>บ | U U        |          |          | U U      |              | 100              |
| 2-Chioronaphthalene           | U U      | . U      | U U      | U U      | -          | -        |          | -        | 330          | 100              |
| 2-Nitroaniline                | 0        | U U      | -        | -        | U          | U        | U        | U        | 330          |                  |
|                               |          | -        | U        | U        | U          | U        | U        | U        | 330          | 430              |
| Dimethylphthalate             |          | U        | U        | U        | U          | U        | U U      | U        | 330          | 2,000            |
| Acenaphthylene                | U        | U        | U        | U        | U          | U        | U        | U        | 330          | 41,000           |
| 2,6-Dinitrotoluene            | U        | U        | Ŷ        | U        | U          | U U      | U U      | U        | 330          | 1,000            |
| 3-Nitroaniline                | U<br>U   | บ<br>บ   | U U      | ' U      | U          | U        | U        | U        | 330          | 500              |
| Acenaphthene                  | <u>U</u> |          | U        | U        | U          | <u> </u> | U.       | U        | 330          | 50,000           |

,

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

.....

| SAMPLE ID                  | MHSBX-08 | MHSBX-08 | MHSBX-08 | MHSBX-08 | MHSBX-09 | MHSBX-09 | MHSBX-09 | MHSBX-09 | LABORATORY   | NYSDEC TAGM      |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|------------------|
| SAMPLE DEPTH (FT)          | (12-14)  | (14-16)  | (16-18)  | (18-20)  | (6-8)    | (8-10)   | (10-12)  | (12-14)  | QUANTITATION | 4046 Recommended |
| DATE OF COLLECTION         | 1/17/03  | 1/17/03  | 1/17/03  | 1/17/03  | 1/17/03  | 1/17/03  | 1/17/03  | 1/17/03  | LIMITS       | Soll Cleanup     |
| DILUTION FACTOR            | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        |              | Objective        |
| PERCENT SOLIDS             | 92.0     | 91.0     | 92.0     | 95.0     | 85.0     | 88.0     | 88.0     | 92.0     |              | ,                |
| UNITS                      | (ug/kg)      | (ug/kg)          |
|                            |          |          |          |          |          |          |          |          |              |                  |
| 2,4-Dinitrophenol          | U        | U        | U        | U        | U        | U        | U U      | U        | 330          | 200              |
| 4-Nitrophenol              | U        | Ų        | U        | U        | Ų        | U        | ļ V      | U        | 330          | 100              |
| Dibenzofuran               | U        | U        | U        | U        | Ų        | U        | ( U      | U        | 330          | 6,200            |
| 2,4-Dinitrotoluene         | U        | U        | Ų        | U        | U        | υ        | Įυ       | U        | 330          |                  |
| Diethylphthalate           | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 7,100            |
| 4-Chlorophenyl-phenylether | U        | U        | Ų        | U U      | U        | υ        | U        | U        | 330          |                  |
| Fluorene                   | U        | U        | U        | U        | U        | Ų        | ) U      | U        | 330          | 50,000           |
| 4-Nitroaniline             | U        | U        | U        | Ų        | U        | U        | U        | U        | 330          |                  |
| 4,6-Dinitro-2-methylphenol | U        | U        | U        | υ        | U        | U        | U        | U        | 330          |                  |
| N-Nitrosodiphenylamine     | U        | ບ        | U,       | U        | Ų        | U        | υ        | U        | 330          |                  |
| 4-Bromophenyl-phenylether  | U        | U        | U        | U        | U        | U        | ្រប      | U        | 330          |                  |
| Hexachlorobenzene          | U        | U        | υ        | U        | U        | U        | U        | U        | 330          | 410              |
| Pentachlorophenol          | U        | U        | U        | U        | υ        | U        | U        | U        | 330          | 1,000            |
| Phenanthrene               | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 50,000           |
| Anthracene                 | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 50,000           |
| Carbazole                  | U        | V        | U        | U        | U        | U        | U U      | U        | 330          | (                |
| Di-n-butylphthalate        | U        | U U      | U        | U        | U        | U        | U        | U        | 330          | 8,100            |
| Fluoranthene               | U        | U        | U        | U        | υ        | U        | U        | U        | 330          | 50,000           |
| Pyrene                     | U        | U        | U        | U        | U        | Ų        | υ        | U        | 330          | 50,000           |
| Butylbenzylphthalate       | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 50,000           |
| 3,3'-Dichlorobenzidine     | U        | U        | U        | U        | U        | U        | U        | U        | 330          |                  |
| Benzo(a)anthracene         | U        | U        | U        | U        | U        | U        | U U      | U        | 330          | 224              |
| Chrysene                   | U        | U        | υ        | U        | U        | U        | U        | U        | 330          | 400              |
| bis(2-Ethylhexyl)phthalate | U        | U        | U        | U        | U        | U        | ບ ບ      | U        | 330          | 50,000           |
| Di-n-octylphthalate        | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 50,000           |
| Benzo(b)fluoranthene       | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 1,100            |
| Benzo(k)fluoranthene       | U        | V        | U        | U        | U        | U        | U        | U        | 330          | 1,100            |
| Benzo(a)pyrene             | U        | U        | U        | U        | U        | U        | U        | υ        | 330          | 61               |
| Indeno(1,2,3-cd)pyrene     | U        | U        | U        | U        | U        | υ        | U        | U        | 330          | 3,200            |
| Dibenzo(a,h)anthracene     | U        | U        | U        | U        | U        | U        | U        | υ        | 330          | 14               |
| Benzo(g,h,i)perylene       | υ        | U        | Ų        | U        | U        | υ        | μ μ      | U        | 330          | 50,000           |
| Total PAHs                 | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | _            | 100,000          |
|                            | 0        | 0        | 0        | 0        | 0        | ŏ        | ŏ        | ŏ        |              | 10,000           |
| Total CaPAHs               | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | -            | 500,000          |
| Total SVOCs                | <u> </u> | U        |          | U        |          | <u> </u> |          | <u> </u> |              |                  |

. .. <u>.</u> ....

QUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

NOTES: : Not applicable.

---

: Concentration exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

# SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                     | MHSBX-09 | MHSBX-09 | MHSBX-09 |     |   | <br> |   | LABORATORY   | NYSDEC TAGM      |
|-------------------------------|----------|----------|----------|-----|---|------|---|--------------|------------------|
| SAMPLE DEPTH (FT)             | (14-16)  | (16-18)  | (18-20)  |     |   |      |   | QUANTITATION | 4046 Recommended |
| DATE OF COLLECTION            | 1/17/03  | 1/17/03  | 1/17/03  |     |   |      |   | LIMITS       | Soll Cleanup     |
| DILUTION FACTOR               | 1        | 1        | 1        |     |   |      |   |              | Objective        |
| PERCENT SOLIDS                | 93.0     | 95.0     | 94.0     |     |   |      |   |              | Objective        |
| UNITS                         | (ug/kg)  | (ug/kg)  | (ug/kg)  |     |   |      |   | (ug/kg)      | (ug/kg)          |
|                               |          | (-9 - 8) | (        |     |   | <br> |   | (Uging)      |                  |
| Phenol                        | υ        | U        | υ        |     |   |      |   | 330          | 30               |
| bis(2-Chioroethyl)ether       | Ú        | Ŭ        | Ū        |     |   |      | 1 | 330          |                  |
| 2-Chlorophenol                | Ů        | Ū        | Ů        |     |   |      |   | 330          | 800              |
| 1,3-Dichlorobenzene           | Ŭ        | Ŭ        | Ŭ        |     |   |      |   | 330          |                  |
| 1,4-Dichlorobenzene           | Ũ        | Ŭ        | Ŭ        |     |   |      |   | 330          |                  |
| 1,2-Dichlorobenzene           | ŭ        | Ŭ        | Ŭ        |     |   |      |   | 330          | · _ }            |
| 2-Methylphenol                | Ŭ        | Ŭ        | Ŭ        | ] . |   |      |   | 330          | 100              |
| 2,2'-oxybis (1-chloropropane) | Ŭ        | Ŭ        | Ŭ        |     |   |      |   | 330          |                  |
| 4-Methylphenol                | Ŭ        | Ū        | ν        |     |   |      |   | 330          | 900              |
| N-Nitroso-di-n-propylamine    | Ŭ        | Ū        | l Ŭ      |     |   |      |   | 330          | 300              |
| Hexachloroethane              | Ŭ        | Ŭ        | Ŭ        |     |   |      |   | 330          |                  |
| Nitrobenzene                  | Ŭ        | U U      | Ŭ        |     |   |      |   | 330          | 200              |
| Isophorone                    | Ŭ        | l ů      | Ŭ        |     |   |      |   | 330          | 4,400            |
| 2-Nitrophenol                 | Ŭ.       | l ŭ      | Ŭ        |     |   |      |   | 330          | 330              |
| 2,4-Dimethylphenol            | Ŭ        | . มี     | ບັ       |     |   |      |   | 330          |                  |
| 2,4-Dichlorophenol            | ŭ        | Ŭ        | Ŭ        |     |   |      |   | 330          | 400              |
| 1.2.4-Trichlorobenzene        | ŭ        | ີ ນັ່    | i ü      |     |   |      |   | 330          |                  |
| Naphthalene                   | Ŭ        | Ŭ        | Ŭ        |     |   |      |   | 330          | 13,000           |
| 4-Chioroaniline               | Ū        | บี       | Ŭ        |     |   |      |   | 330          | 220              |
| bis(2-Chloroethoxy)methane    | Ú        | Ŭ        | Ŭ        |     |   |      |   | 330          |                  |
| Hexachiorobutadiene           | Ŭ        | i Ŭ      | Ū        |     |   |      |   | 330          |                  |
| 4-Chloro-3-methylphenol       | Ŭ        | Ŭ        | Ŭ        |     |   |      |   | 330          | 240              |
| 2-Methylnaphthalene           | Ŭ        | Ŭ        | Ŭ        |     |   |      |   | 330          | 36,400           |
| Hexachiorocyclopentadiene     | Ũ        | Ŭ        | Ŭ        |     |   |      |   | 330          |                  |
| 2,4,6-Trichlorophenol         | Ŭ        | Ú Ú      | Ŭ        |     |   |      |   | 330          | [                |
| 2,4,5-Trichlorophenol         | Ū        | Ŭ        | Ů        |     |   |      |   | 330          | 100              |
| 2-Chloronaphthalene           | Ũ        | Ũ        | Ŭ        |     |   |      |   | 330          |                  |
| 2-Nitroaniline                | Ũ        | Ũ        | Ů        | 1   |   |      |   | 330          | 430              |
| Dimethylphthalate             | Ũ        | Ŭ        | Ŭ        |     |   |      |   | 330          | 2,000            |
| Acenaphthylene                | Ū        | Ū        | Ū        |     | ' |      |   | 330          | 41,000           |
| 2,6-Dinitrotoluene            | Ŭ        | Ŭ        | Ŭ        |     |   |      |   | 330          | 1,000            |
| 3-Nitroaniline                | Ŭ        | Ŭ        | Ũ        |     |   |      |   | 330          | 500              |
| Acenaphthene                  | Ŭ        | Ŭ        | Ŭ        |     | ļ |      |   | 330          | 50,000           |

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | MHSBX-09<br>(14-16)<br>1/17/03<br>1<br>93.0<br>(ug/kg) | MHSBX-09<br>(18-18)<br>1/17/03<br>1 | MHSBX-09<br>(18-20)<br>1/17/03 |      |   |         |     | QUANTITATION | NYSDEC TAGM<br>4048 Recommended |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------|--------------------------------|------|---|---------|-----|--------------|---------------------------------|
| DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS                                            | 1<br>93.0                                              | 1                                   |                                |      |   |         |     |              |                                 |
| PERCENT SOLIDS                                                                                     | 93.0                                                   |                                     |                                |      |   |         |     | LIMITS       | Soll Cleanup                    |
|                                                                                                    |                                                        |                                     | 1                              |      |   |         |     |              | Objective                       |
|                                                                                                    | (ualka)                                                | 95.0                                | 94.0                           |      |   |         |     | •            |                                 |
|                                                                                                    |                                                        | (ug/kg)                             | (ug/kg)                        |      |   |         |     | (ug/kg)      | (ug/kg)                         |
|                                                                                                    | (-8                                                    |                                     | (                              | <br> |   | ┝╼╌╌╴┾╸ |     |              |                                 |
| 2,4-Dinitrophenol                                                                                  | U                                                      | υ                                   | υ                              |      |   |         |     | 330          | 200                             |
| 4-Nitrophenol                                                                                      | υÌ                                                     | Ũ                                   | Ū                              |      |   | 1       |     | 330          | 100                             |
| Dibenzofuran                                                                                       | Ū                                                      | Ū                                   | Ū                              |      |   |         |     | 330          | 6,200                           |
| 2.4-Dinitrotoluene                                                                                 | Ū                                                      | Ū                                   | Ŭ                              |      |   |         |     | 330          |                                 |
| Diethylphthalate                                                                                   | ŭ                                                      | Ŭ                                   | ບັ                             |      |   | Í       |     | 330          | 7,100                           |
| 4-Chlorophenyl-phenylether                                                                         | Ŭ                                                      | Ŭ                                   | Ŭ                              |      |   | ļ į     |     | 330          |                                 |
| Fluorene                                                                                           | Ŭ                                                      | Ŭ                                   | U U                            |      |   | 1       |     | 330          | 50,000                          |
| 4-Nitroaniline                                                                                     | ŭ                                                      | Ŭ                                   | U                              |      |   |         |     | 330          |                                 |
|                                                                                                    | Ŭ                                                      | Ŭ                                   | υ                              |      |   | ] ]     |     | 330          |                                 |
| 4,6-Dinitro-2-methylphenol                                                                         |                                                        | -                                   | _                              |      |   |         |     |              |                                 |
| N-Nitrosodiphenylamine                                                                             | U                                                      | U                                   | U                              |      |   | }       |     | 330          |                                 |
| 4-Bromophenyl-phenylether                                                                          | U                                                      | U                                   | U                              |      |   |         |     | 330          |                                 |
| Hexachlorobenzene                                                                                  | U                                                      | · U                                 | U                              |      |   | }       |     | 330          | 410                             |
| Pentachlorophenol                                                                                  | U I                                                    | U                                   | U                              |      |   |         |     | 330          | 1,000                           |
| Phenanthrene                                                                                       | U                                                      | U                                   | U                              |      |   |         |     | 330          | 50,000                          |
| Anthracene                                                                                         | υj                                                     | U                                   | U                              |      |   |         |     | 330          | 50,000                          |
| Carbazole                                                                                          | U                                                      | U                                   | υ                              |      |   |         |     | 330          |                                 |
| Di-n-butyiphthalate                                                                                | U                                                      | U                                   | U                              |      | 1 | ) )     | ĺ   | 330          | 8,100                           |
| Fluoranthene                                                                                       | U                                                      | U                                   | υ                              |      |   | 1       |     | 330          | 50,000                          |
| Pyrene                                                                                             | U                                                      | U                                   | U                              |      |   |         |     | 330          | 50,000                          |
| Butylbanzylphthalate                                                                               | U                                                      | U                                   | U                              |      |   |         |     | 330          | 50,000                          |
| 3,3'-Dichlorobenzidine                                                                             | U                                                      | U                                   | Ų                              |      |   |         | }   | 330          |                                 |
| Benzo(a)anthracene                                                                                 | Ų                                                      | U                                   | U                              |      |   | [ }     |     | 330          | 224                             |
| Chrysene                                                                                           | Ú I                                                    | U                                   | υ                              |      |   |         |     | 330          | 400                             |
| bis(2-Ethylhexyl)phthalate                                                                         | Ú (                                                    | U                                   | U                              |      |   |         | 1   | 330          | 50,000                          |
| Di-n-octylphthalate                                                                                | υĪ                                                     | Ū                                   | Ū                              |      |   | {       |     | 330          | 50,000                          |
| Benzo(b)fluoranthene                                                                               | Ū                                                      | Ŭ                                   | Ũ                              |      |   | l ì     | ľ   | 330          | 1,100                           |
| Benzo(k)fluoranthene                                                                               | Ū                                                      | Ū                                   | Ŭ                              |      |   |         |     | 330          | 1,100                           |
| Benzo(a)pyrene                                                                                     | ūί                                                     | Ũ                                   | Ū                              |      |   |         | l l | 330          | 61                              |
| Indeno(1,2,3-cd)pyrene                                                                             | Ŭ                                                      | Ŭ                                   | Ŭ                              |      |   |         |     | 330          | 3,200                           |
| Dibenzo(a,h)anthracene                                                                             | υĪ                                                     | Ū                                   | Ŭ                              |      |   |         |     | 330          | 14                              |
| Benzo(g,h,i)peryiene                                                                               | Ŭ I                                                    | Ŭ                                   | Ŭ                              |      |   |         |     | 330          | 50,000                          |
| neutro/Atritikai kielie                                                                            | 5                                                      | Ŭ                                   | Ŭ                              |      |   |         |     | 000          | 00,000                          |
| Total PAHs                                                                                         | o                                                      | ο                                   | o                              |      |   |         |     | **           | 100.000                         |
| Total CaPAHs                                                                                       | ő                                                      | ŏ                                   | ō                              |      |   | ļ l     | ļ   |              | 10,000                          |
| Total SVOCs                                                                                        | ŏ                                                      | ů                                   | ŏ                              |      |   |         |     | -            | 500,000                         |

# QUALIFIERS:

U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

NOTES: ----

7

: Not applicable. : Concentration exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

• •

•

Page 16 of 16

.

۲,

'n

ł

1

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

# SUBSURFACE SOIL - POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | MHSBX-01<br>(4-6)<br>1/13/03<br>1<br>91.0<br>(ug/kg) | MH\$BX-01<br>(8-10)<br>1/13/03<br>1<br>90.0<br>(ug/kg) | MH\$BX-01<br>(12-14)<br>1/13/03<br>1<br>93.0<br>(ug/kg) | MHSBX-01<br>(14-16)<br>1/13/03<br>1<br>96.0<br>(ug/kg) | MHSBX-01<br>(16-18)<br>1/13/03<br>1<br>89.0<br>(ug/kg) | MHSBX-01<br>(18-20)<br>1/13/03<br>1<br>98.0<br>(ug/kg) | MHSBX-02<br>(4-8)<br>1/17/03<br>1<br>89.0<br>(ug/kg) | MH\$BX-02<br>(6-8)<br>1/17/03<br>1<br>89.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                    | (09/29)                                              | (ug/kg)                                                | (ug/kg)                                                 | (09/kg)                                                | (49/kg)                                                | (ug/kg)                                                |                                                      | (ug/ng)                                               |                                                 |                                                                            |
| Arocior- 1016                                                                                      | U                                                    | υ                                                      | Ŭ                                                       | υ                                                      | υ                                                      | υ                                                      | υ                                                    | υ                                                     | 34                                              |                                                                            |
| Araclor- 1221                                                                                      | υ                                                    | υ υ                                                    | υ υ                                                     | U                                                      | Ú                                                      | U                                                      | υ                                                    | υ                                                     | 34                                              | ****                                                                       |
| Araclor- 1232                                                                                      | υ                                                    | U                                                      | U U                                                     | U                                                      | ) υ                                                    | υ.                                                     | υ                                                    | ប                                                     | 34                                              |                                                                            |
| Aroclor- 1242                                                                                      | υ                                                    | ) U                                                    | Ú                                                       | U                                                      | ບ                                                      | U U                                                    | υ υ                                                  | U                                                     | 34                                              |                                                                            |
| Arocior- 1248                                                                                      | ί υ                                                  | ບ 🛛                                                    | Ι υ                                                     | U                                                      | ) υ                                                    | υ 1                                                    | υ                                                    | ប                                                     | 34                                              |                                                                            |
| Arocior- 1254                                                                                      | Ι υ                                                  | U U                                                    | U                                                       | U                                                      | υ                                                      | υ                                                      | υ                                                    | υ                                                     | 34                                              |                                                                            |
| Aroclor- 1260                                                                                      | υ                                                    | U U                                                    | U                                                       | U                                                      | U                                                      | U                                                      | U                                                    | υ                                                     | 34                                              |                                                                            |
|                                                                                                    | 0                                                    | 0                                                      | 0                                                       | 0                                                      | 0                                                      | 0                                                      | 0                                                    | 0                                                     | -                                               | 1,000/10,000*                                                              |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                  | MHSBX-02<br>(8-10)<br>1/17/03<br>1<br>91.0<br>(ug/kg) | MHSBX-02<br>(10-12)<br>1/17/03<br>1<br>91.0<br>(ug/kg) | MH\$BX-02<br>(12-14)<br>1/17/03<br>1<br>93.0<br>(ug/kg) | MHSBX-02<br>(14-16)<br>1/17/03<br>1<br>95.0<br>(ug/kg) | MHSBX-02<br>(16-18)<br>1/17/03<br>1<br>90.0<br>(ug/kg) | MHSBX-02<br>(18-20)<br>1/17/03<br>1<br>96.0<br>(ug/kg) | MH\$BX-03<br>(4-6)<br>1/13/03<br>1<br>88.0<br>(ug/kg) | MHSBX-03<br>(6-8)<br>1/13/03<br>1<br>87.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4048<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Aroclor- 1016<br>Aroclor- 1221<br>Aroclor- 1232<br>Aroclor- 1242<br>Aroclor- 1248<br>Aroclor- 1254<br>Aroclor- 1254 |                                                       |                                                        |                                                         | σοσοσ                                                  |                                                        | υ<br>υ<br>υ<br>υ<br>υ<br>υ                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                  |                                                      | 34<br>34<br>34<br>34<br>34<br>34<br>34<br>34    |                                                                            |
| TOTAL PCB                                                                                                           | 0                                                     | 0                                                      | 0                                                       | 0                                                      | 0                                                      | 0                                                      | 0                                                     | 0                                                    |                                                 | 1,000/10,000*                                                              |

OUALIFIERS:

U: Compound analyzed for but not detected.

### NOTES:

\_

- : Not applicable.

: According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

# SUBSURFACE SOIL - POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | MHSBX-03<br>(8-10)<br>1/13/03<br>1<br>91.0<br>(ug/kg) | MHSBX-03<br>(10-12)<br>1/13/03<br>1<br>94.0<br>(ug/kg) | MHSBX-03<br>(12-14)<br>1/13/03<br>1<br>91.0<br>(ug/kg) | MH\$BX-03<br>(14-16)<br>1/13/03<br>1<br>94.0<br>(ug/kg) | MHSBX-03<br>(16-18)<br>1/13/03<br>1<br>89.0<br>(ug/kg) | MHSBX-03<br>(18-20)<br>1/13/03<br>1<br>96.0<br>(ug/kg) | MH\$BX-04<br>(4-6)<br>1/13/03<br>1<br>91.0<br>(ug/kg) | MHSBX-04<br>(6-8)<br>1/13/03<br>1<br>92.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS | NYSDEC<br>TAGM 4046<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|
| Aroclor- 1016                                                                                      | 11                                                    |                                                        |                                                        |                                                         |                                                        |                                                        | U                                                     |                                                      |                                      |                                                                            |
| Arocior- 1221                                                                                      |                                                       |                                                        |                                                        | 0                                                       |                                                        | U U                                                    | ÷ i                                                   | L N                                                  | 34                                   |                                                                            |
|                                                                                                    |                                                       |                                                        |                                                        | U U                                                     |                                                        | U                                                      | U                                                     |                                                      | 34                                   |                                                                            |
| Aroclor- 1232                                                                                      |                                                       | U                                                      | U                                                      | U                                                       | U                                                      | U                                                      | υ                                                     | U                                                    | 34                                   |                                                                            |
| Arocior- 1242                                                                                      | U U                                                   | Į U                                                    | U                                                      | U                                                       | U                                                      | υ                                                      | U                                                     | U U                                                  | 34                                   |                                                                            |
| Arocior- 1248                                                                                      | U                                                     | U                                                      | υ                                                      | υ                                                       | υ                                                      | U                                                      | υ                                                     | . U                                                  | 34                                   |                                                                            |
| Arocior- 1254                                                                                      | U U                                                   | U U                                                    | υ                                                      | U                                                       | U                                                      | U                                                      | U                                                     | U                                                    | 34                                   | ****                                                                       |
| Aroclor- 1260                                                                                      | U                                                     | U                                                      | U                                                      | υ                                                       | U                                                      | U                                                      | υ                                                     | υ                                                    | 34                                   |                                                                            |
| TOTAL PCBs                                                                                         | 0                                                     | 0                                                      | 0                                                      | 0                                                       | 0                                                      | 0                                                      | 0                                                     | 0                                                    |                                      | 1,000/10,000*                                                              |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | <b>MHSBX-04</b><br>(8-10)<br>1/13/03<br>1<br>91.0<br>(ug/kg) | MH\$BX-04<br>(10-12)<br>1/13/03<br>1<br>91.0<br>(ug/kg) | MH\$BX-04<br>(12-14)<br>1/13/03<br>1<br>91.0<br>_(ug/kg) | MHSBX-04<br>(14-16)<br>1/13/03<br>1<br>95.0<br>(ug/kg) | MH\$BX-05<br>(4-6)<br>1/13/03<br>1<br>90.0<br>_(ug/kg) | MHSBX-05<br>(6-8)<br>1/13/03<br>1<br>93.0<br>(ug/kg) | MH\$BX-05<br>(8-10)<br>1/13/03<br>1<br>90.0<br>(ug/kg) | MHSBX-05<br>(10-12)<br>1/13/03<br>1<br>85.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| A                                                                                                  | - 11                                                         | 11                                                      |                                                          |                                                        |                                                        |                                                      | 11                                                     |                                                        |                                                 |                                                                            |
| Aroclor- 1016<br>Aroclor- 1221                                                                     |                                                              |                                                         | Ŭ                                                        |                                                        |                                                        | 11                                                   |                                                        | U U                                                    | 34<br>34                                        |                                                                            |
| Aroclor- 1232                                                                                      | Ŭ                                                            | ม ม ม                                                   | U U                                                      | มี มี                                                  | U U                                                    | ម ម                                                  | ม<br>บ                                                 | ບ ບ                                                    | 34                                              |                                                                            |
| Aroclor- 1242                                                                                      | Ŭ                                                            | ĪŪ                                                      | Ū                                                        | Ū                                                      | l ŭ                                                    | Ŭ                                                    | υ                                                      | ΙŬ                                                     | 34                                              |                                                                            |
| Aroclor- 1248                                                                                      | l ŭ                                                          | Ū                                                       | Ŭ                                                        | Ū                                                      | l ŭ                                                    | Ū                                                    | Ū                                                      | Ŭ                                                      | 34                                              |                                                                            |
| Arocior- 1254                                                                                      | ΙŪ                                                           | Ū                                                       | Ŭ                                                        | Ū                                                      | Î Ū                                                    | Ū                                                    | Ū                                                      | Ŭ                                                      | 34                                              |                                                                            |
| Aroclor- 1260                                                                                      | Ū                                                            | บ                                                       | Ű                                                        | Ű                                                      | Ū                                                      | Ŭ                                                    | Ŭ                                                      | Ŭ                                                      | 34                                              |                                                                            |
|                                                                                                    | 0                                                            | 0                                                       | 0                                                        | 0                                                      | 0                                                      | 0                                                    | 0                                                      | 00                                                     | , <b></b>                                       | 1,000/10,000*                                                              |

### QUALIFIERS:

U: Compound analyzed for but not detected.

#### NOTES: --- : Not applicable. --- : According to NY

: According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

Page 2 of 4

· ··· ')

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | MHSBX-05<br>(12-14)<br>1/13/03<br>1<br>90.0<br>(ug/kg) | MHSBX-05<br>(14-16)<br>1/13/03<br>1<br>92.0<br>(ug/kg) | MHSBX-05<br>(16-18)<br>1/13/03<br>1<br>97.0<br>(ug/kg) | MHSBX-05<br>(18-20)<br>1/13/03<br>1<br>96.0<br>(ug/kg) | MHSBX-06<br>(4-6)<br>1/13/03<br>1<br>93.0<br>(ug/kg) | MHSBX-06<br>(6-8)<br>1/13/03<br>1<br>86.0<br>(ug/kg) | MHSBX-06<br>(8-10)<br>1/13/03<br>1<br>90.0<br>(ug/kg) | MHSBX-07<br>(10-12)<br>1/13/03<br>1<br>91.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4048<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Araclar- 1016                                                                                      |                                                        |                                                        |                                                        |                                                        |                                                      | 11                                                   |                                                       |                                                        | 34                                              |                                                                            |
| Aroclor- 1221                                                                                      |                                                        |                                                        |                                                        |                                                        |                                                      |                                                      |                                                       |                                                        | 34                                              |                                                                            |
| Arocior- 1221<br>Arocior- 1232                                                                     |                                                        | l ñ                                                    |                                                        | i ü                                                    | l ü                                                  | l ü                                                  | U U                                                   | l ü                                                    | 34                                              |                                                                            |
| Arocior- 1242                                                                                      | i i                                                    | i ŭ                                                    | i ŭ                                                    | l ŭ                                                    | l ŭ                                                  | l Ü                                                  | l ŭ                                                   | Ŭ                                                      | 34                                              |                                                                            |
| Aroclor- 1248                                                                                      | l ŭ                                                    | l ŭ                                                    | l ŭ                                                    | l ŭ                                                    | ŭ                                                    | l ŭ                                                  | l ŭ                                                   | Ū                                                      | 34                                              |                                                                            |
| Aroclor- 1254                                                                                      | l ŭ                                                    | l ŭ                                                    | U U                                                    | l ŭ                                                    | l Ü                                                  | l ŭ                                                  |                                                       | l ũ                                                    | 34                                              |                                                                            |
| Arocior- 1260                                                                                      | Ų                                                      | Ū                                                      | U U                                                    | Ŭ                                                      | Ŭ                                                    | U U                                                  | Ŭ                                                     | υ                                                      | 34                                              |                                                                            |
|                                                                                                    | o                                                      | 0                                                      | o                                                      | 0                                                      | 0                                                    | o                                                    | 0                                                     | o                                                      |                                                 | 1,000/10,000*                                                              |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS                           | MHSBX-07<br>(12-14)<br>1/13/03<br>1<br>93.0 | MHSBX-07<br>(14-16)<br>1/13/03<br>1<br>87.0 | MHSBX-07<br>(16-18)<br>1/13/03<br>1<br>88.0 | MHSBX-07<br>(18-20)<br>1/13/03<br>1<br>91.0 | MHSBX-08<br>(4-6)<br>1/17/03<br>1<br>66.0 | MHSBX-08<br>(6-8)<br>1/17/03<br>1<br>86.0 | MHSBX-08<br>(8-10)<br>1/17/03<br>1<br>87.0 | MHSBX-08<br>(10-12)<br>1/17/03<br>1<br>94.0 | LABORATORY<br>QUANTITATION<br>LIMITS         | NYSDEC<br>TAGM 4046<br>Recommended<br>Soll Cleanup<br>Objective |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|
|                                                                                                                     | _(ug/kg)                                    | (ug/kg)                                     | (ug/kg)                                     | <u>(ug/kg)</u>                              | (ug/kg)                                   | (ug/kg)                                   | (ug/kg)                                    | (ug/kg)                                     | (ug/kg)                                      | (ug/kg)                                                         |
| Arocior- 1016<br>Arocior- 1221<br>Arocior- 1232<br>Arocior- 1242<br>Arocior- 1248<br>Arocior- 1254<br>Arocior- 1260 | 00000000000000000000000000000000000000      |                                             |                                             | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ                  |                                           | U<br>U<br>U<br>U<br>U<br>U<br>U           | ນ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ                 | σοσοσο                                      | 34<br>34<br>34<br>34<br>34<br>34<br>34<br>34 |                                                                 |
| TOTAL PCBs                                                                                                          | 0                                           | 0                                           | 0                                           | 0                                           | 0                                         | 0                                         | 0                                          | 0                                           |                                              | 1,000/10,000*                                                   |

<u>QUALIFIERS:</u> U: Compound analyzed for but not detected.

#### NOTES: -

٠

: Not applicable. : According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

#### MANHASSET SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                  | MHSBX-08<br>(12-14)<br>1/17/03<br>1<br>92.0<br>(ug/kg) | MHSBX-08<br>(14-16)<br>1/17/03<br>1<br>91.0<br>(ug/kg) | MHSBX-08<br>(16-18)<br>1/17/03<br>1<br>92.0<br>(ug/kg)        | MHSBX-08<br>(18-20)<br>1/17/03<br>1<br>95.0<br>(ug/kg) | MHSBX-09<br>(6-8)<br>1/17/03<br>1<br>85.0<br>(ug/kg) | MHSBX-09<br>(8-10)<br>1/17/03<br>1<br>88.0<br>(ug/kg) | MHSBX-09<br>(10-12)<br>1/17/03<br>1<br>88.0<br>(ug/kg) | MHSBX-09<br>(12-14)<br>1/17/03<br>1<br>92.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Arocior- 1016<br>Arocior- 1221<br>Arocior- 1232<br>Arocior- 1242<br>Arocior- 1248<br>Arocior- 1254<br>Arocior- 1260 | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ                             | υυυυυ                                                  | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ | CCCCC                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0       | 000000000000000000000000000000000000000               | 000000000000000000000000000000000000000                | σσσσσσ                                                 | 34<br>34<br>34<br>34<br>34<br>34<br>34          |                                                                            |
| TOTAL PCBs                                                                                                          | 0                                                      | 0                                                      | 0                                                             | 0                                                      | 0                                                    | 0                                                     | 0                                                      | 0                                                      |                                                 | 1,000/10,000*                                                              |
| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                  | MHSBX-09<br>(14-16)<br>1/17/03<br>1<br>93.0<br>(ug/kg) | MHSBX-09<br>(16-18)<br>1/17/03<br>1<br>95.0<br>(ug/kg) | MHSBX-09<br>(18-20)<br>1/17/03<br>1<br>94.0<br>(ug/kg)        |                                                        |                                                      |                                                       |                                                        |                                                        | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
| Arocior- 1016<br>Arocior- 1221<br>Arocior- 1232<br>Arocior- 1242<br>Arocior- 1248<br>Arocior- 1254<br>Arocior- 1260 | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ                        | ນ<br>ນ<br>ບ<br>ບ<br>ບ<br>ບ                             | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ                               |                                                        |                                                      |                                                       |                                                        |                                                        | 34<br>34<br>34<br>34<br>34<br>34<br>34<br>34    |                                                                            |
| TOTAL PCBs                                                                                                          | 0                                                      | 0                                                      | 0                                                             |                                                        |                                                      |                                                       |                                                        |                                                        | -                                               | 1,000/10,000*                                                              |

QUALIFIERS: U: Compound analyzed for but not detected.

# NOTES:

: Not applicable. •

: According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

.

• 1

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

# C SURFACE SOIL - MERCURY AND RCRA METALS

| SAMPLE ID<br>SAMPLE ID<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSS-07A<br>(0-2)<br>8/10/04<br>99.0<br>(mg/kg) | MSSS-08<br>(0-2)<br>8/10/04<br>90.0<br>(mg/kg) | MSSS-09<br>(0-2)<br>8/10/04<br>94.0<br>(mg/kg)_ | MSSS-10<br>(0-2)<br>8/10/04<br>96.0<br>(mg/kg) | MSSS-11<br>(0-2)<br>8/10/04<br>93.0<br>(mg/kg) | MSSS-12<br>(0-2)<br>8/10/04<br>97.0<br>(mg/kg) | MSSS-13<br>(0-2)<br>8/10/04<br>95.0<br>(mg/kg) | MSSS-14<br>(0-2)<br>8/10/04<br>90.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>mg/kg |
|-------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                 | 6.7                                             | 0.40                                           | 4.7                                             | 0.23                                           | 4.1                                            | 13.6                                           | 0.92                                           | 0.83                                           | 0.042                                       | 0.1                                                                |

| SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSS-15<br>(0-2)<br>8/10/04<br>49.0<br>(mg/kg) | MSSS-16<br>(0-2)<br>8/10/04<br>82.0<br>(mg/kg) | MSSS-17<br>(0-2)<br>8/10/04<br>68.0<br>(mg/kg) | MSSS-18<br>(0-2)<br>8/10/04<br>88.0<br>(mg/kg) | MSS8-19<br>(0-2)<br>8/10/04<br>98.0<br>(mg/kg) | MSSS-20<br>(0-2)<br>8/10/04<br>97.0<br>(mg/kg) | MSSB-06A<br>(0-2)<br>2/4/03<br>84.0<br>(mg/kg) | 5050100000<br>MSSB-09<br>(0-2)<br>2/4/03<br>88.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>mg/kg |
|---------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                         | 0.72                                           | 0.99                                           | 0.83                                           | 6.7                                            | 4.0                                            | 2.0                                            | 0.15                                           | 57.6                                                        | 0.042                                       | 0.1                                                                |

| AREA OF CONCERNS<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSB-10<br>(0-2)<br>2/4/03<br>86.0<br>(mg/kg) | MSSB-11<br>(0-2)<br>2/4/03<br>92.0<br>(mg/kg) | MSSB-12<br>(0-2)<br>2/4/03<br>92.0<br>(mg/kg) | MSSB-13<br>(0-2)<br>2/3/03<br>88.0<br>(mg/kg) | <b>MSSB-14</b><br>(0-2)<br>2/4/03<br>89.0<br>(mg/kg) | MSSB-15<br>(0-2)<br>2/4/03<br>91.0<br>(mg/kg) | MSSB-16<br>(0-2)<br>2/4/03<br>93.0<br>(mg/kg) | MSSB-17<br>(0-2)<br>2/4/03<br>90.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/1) | NYSDEC TAGM 4046<br>Recommended Soll<br>Cleanup Objective<br>mg/kg |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury                                                                                             | 54.6                                          | 0.22                                          | 58.8                                          | 3.5                                           | 3.2                                                  | 12.9                                          | 7.9                                           | 0.12                                          | 0.042                                       | 0.1                                                                |

| MAX WE GOWERN                                                                   | en all contra                                 |                                                | n an an The                                   | 2月47日中国                                       | 影响的开始的                                        | den en el                                     | and the second s | ng agenter an |                                   |                                                                    |
|---------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------|--------------------------------------------------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSB-18<br>(0-2)<br>2/4/03<br>88.0<br>(mg/kg) | M\$88-19<br>(0-2)<br>2/4/03<br>93.0<br>(mg/kg) | MSSE-20<br>(0-2)<br>2/4/03<br>91.0<br>(mg/kg) | MSSB-21<br>(0-2)<br>2/3/03<br>90.0<br>(mg/kg) | MSSB-22<br>(0-2)<br>2/4/03<br>91.0<br>(mg/kg) | MSSB-23<br>(0-2)<br>2/4/03<br>86.0<br>(mg/kg) | MSSB-24<br>(0-2)<br>2/4/03<br>91.0<br>(mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MSSB-25<br>(0-2)<br>2/3/03<br>88.0<br>(mg/kg)     | INSTRUMENT<br>DETECTION<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>mg/kg |
| Mercury                                                                         | 6.6                                           | 3.1                                            | 4,1                                           | 2.1_                                          | 3.8                                           | 1                                             | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.86                                              | 0.042                             | 0.1                                                                |

QUALIFIERS:

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm. : Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### SURFACE SOIL - MERCURY AND RCRA METALS

| AREAD BOONGERNS | MSSB-26<br>(0-2)<br>2/3/03<br>89.0<br>(mg/kg) | MSSB-27<br>(0-2)<br>2/3/03<br>85.0<br>(mg/kg) | MSSB-28<br>(0-2)<br>2/3/03<br>84.0<br>(mg/kg) | MS\$B-29<br>(0-2)<br>2/3/03<br>92.0<br>(mg/kg) | ISUDCH HON<br>MSSB-30<br>(0-2)<br>2/4/03<br>93.0<br>(mg/kg) | M\$SB-31<br>(0-2)<br>2/3/03<br>92.0<br>(mg/kg) | MSSB-32<br>(0-2)<br>2/4/03<br>86.0<br>(mg/kg) | MSSB-33<br>(0-2)<br>2/4/03<br>87.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/i) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>mg/kg |
|-----------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Mercury         | 0.5                                           | 1.5                                           | 0.4                                           | 0.43                                           | 30.5                                                        | 3.7                                            | 8.2                                           | 16.2                                          | 0.042                                       | 0.1                                                                |

| AREASCIGONOFINE<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | M358-34<br>(0-2)<br>2/4/03<br>88.0<br>(mg/kg) | M358-38<br>(0-2)<br>2/3/03<br>89.0<br>(mg/kg)          | M\$\$B-39<br>(0-2)<br>2/4/03<br>85.0<br>(mg/kg)       |  |  | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/i)          | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>mg/kg   |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--|--|------------------------------------------------------|----------------------------------------------------------------------|
| Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Lead<br>Mercury<br>Selenium<br>Silver                  | NA<br>NA<br>NA<br>NA<br>7.3<br>NA<br>NA       | 3.9<br>34.7<br>0.82<br>10<br>323<br>3.3<br>U<br>0.37 B | 4<br>37.8<br>0.73<br>33.8<br>16<br>178<br>U<br>0.58 B |  |  | 3.0<br>3.0<br>2.0<br>3.0<br>1.0<br>0.1<br>8.0<br>2.0 | 7.5 or SB<br>300 or SB<br>10*<br>50*<br>SB**<br>0.1<br>2 or SB<br>SB |

QUALIFIERS:

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL. NA: Not Analyzed for

Notes: SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

~**1** 

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

- -

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### SURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| શિરાગ્ય છે. ભાગમાનગાય         | Sector and the | -717-77 | <br> | <br> | <br>         |                  |
|-------------------------------|----------------|---------|------|------|--------------|------------------|
| SAMPLE ID                     | MSSB-38        | MSSB-39 |      |      |              |                  |
| SAMPLE DEPTH (IN)             | (0-2)          | (0-2)   |      |      | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION            | 2/3/03         | 2/4/03  |      |      | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR               | 1              | 1       |      |      | LIMITS       | Soil Cleanup     |
| PERCENT SOLIDS                | 89.0           | 85.0    |      |      |              | Objective        |
| UNITS                         | (ug/Kg)        | (ug/Kg) |      |      | (ua/Ka)      | (ug/Kg)          |
| <u> </u>                      |                |         | <br> | <br> |              | (49,119)         |
| Phenoi                        | U              | υ       |      |      | 330          | 30               |
| bis(2-Chloroethyl)ether       | U              | υ       |      |      | 330          |                  |
| 2-Chlorophenol                | U              | U U     |      |      | 330          | 800              |
| 1,3-Dichlorobenzene           | U              | υ       |      |      | 330          |                  |
| 1,4-Dichlorobenzene           | U              | υ [     |      |      | 330          |                  |
| 1,2-Dichlorobenzene           | υ              | Ū       |      |      | 330          |                  |
| 2-Methylphenol                | U              | Ū       |      |      | 330          | 100              |
| 2,2'-oxybis (1-chloropropane) | U              | υ       |      |      | 330          | -                |
| 4-Methylphenol                | υ              | υ υ     |      |      | 330          | 900              |
| N-Nitroso-dl-n-propylamine    | υ              | U U     |      |      | 330          |                  |
| Hexachioroethane              | ່ ບໍ່          | ) υ     |      |      | 330          |                  |
| Nitrobenzene                  | υ 🕴            | υ       |      |      | 330          | 200              |
| Isophorone                    | U              | υ υ     |      |      | 330          | 4,400            |
| 2-Nitrophenol                 | U              | U       |      |      | 330          | 330              |
| 2,4-Dimethylphenol            | υ              | υ       |      |      | 330          |                  |
| 2,4-Dichiorophenol            | U              | υ       |      |      | 330          | 400              |
| 1,2,4-Trichlorobenzene        | υ              | U       |      |      | 330          | -                |
| Naphthalene                   | U              | U       |      |      | 330          | 13,000           |
| 4-Chloroanlline               | U              | U       |      |      | 330          | 220              |
| bls(2-Chloroethoxy)methane    | U              | U       |      |      | 330          |                  |
| Hexachlorobutadiene           | U              | U       |      |      | 330          |                  |
| 4-Chloro-3-methylphenol       | U              | υ       |      |      | 330          | 240              |
| 2-Methylnaphthalene           | 44 J           | U       |      |      | 330          | 36,400           |
| Hexachlorocyclopentadiene     | U              | U U     |      |      | 330          |                  |
| 2,4,6-Trichlorophenoi         | U              | υ υ     |      |      | 330          |                  |
| 2,4,5-Trichlorophenol         | U              | U       |      |      | 660          | 100              |
| 2-Chloronaphthalene           | U              | U 🗸     |      |      | 330          |                  |
| 2-Nitroaniline                | U              | U U     |      |      | 660          | 430              |
| Dimethylphthalate             | U              | Ų       |      |      | 330          | 2,000            |
| Acenaphthylene                | 74 J           | U       |      |      | 330          | 41,000           |
| 2,6-Dinitrotoluene            | U              | U       |      |      | 330          | 1,000            |
| 3-Nitroaniline                | U              | U       |      |      | 660          | 500              |
| Acenaphthene                  | U              | U       |      |      | 330          | 50,000           |

QUALIFIERS:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

E: Compound concentration exceeded the calibration range.

NOTES: -- : Not applicable.

E: 2015 (LIRR 3 Subs Del Phase II) 3 Subs Data Massapoqua Data Tables for Report Table 16 rov

Page 1 of 2

12/20/04

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD **DELINEATION PHASE 2 SITE ASSESSMENT**

### SURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (IN)                 | MSSB-38<br>(0-2) | MSSB-39<br>(0-2) |     |            | LABORATORY     | NYSDEC TAGM      |
|------------------------------------------------|------------------|------------------|-----|------------|----------------|------------------|
| ATE OF COLLECTION                              | 2/3/03           | 2/4/03           |     |            | QUANTITATION   | 4046 Recommended |
| ILUTION FACTOR                                 | 1                | 1                |     |            | LIMITS         | Soll Cleanup     |
| PERCENT SOLIDS                                 | 89.0             | 85.0             |     | 1          |                | Objective        |
| JNITS                                          | (ug/Kg)          | (ug/Kg)          |     |            | (ug/Kg)        | (ug/Kg)          |
| 2,4-Dinitrophenoi                              | Ų                | υ                |     |            | 660            | 200              |
| -Nitrophenol                                   | U                | U                |     |            | 660            | 100              |
| Dibenzofuran                                   | U                | U                |     |            | 330            | 6,200            |
| 1,4-Dinitrotoluene                             | U U              | U U              |     |            | 330            | -                |
| )iethylphthalate                               | .ບຸ              | [ ບ              |     |            | 330            | 7,100            |
| -Chlorophenyl-phenylether                      | ປ                | ປ                |     |            | 330            | -                |
| Fluorene                                       | ( U              | U U              | í l |            | 330            | 50,000           |
| -Nitroaniline                                  | U                | U                |     |            | 330            |                  |
| I,6-Dinitro-2-methylphenol                     | ป                | U                |     |            | 330            |                  |
| N-Nitrosodiphenylamine                         | U                | U                |     |            | 330            | -                |
| l-Bromophenyl-phenylether                      | U                | U U              |     |            | 330            | -                |
| lexachlorobenzene                              | ່ ປ              | ່ ບ              |     |            | 330            | 410              |
| Pentachiorophenol                              | U                | U                |     |            | 660            | 1,000            |
| Phenanthrene                                   | 180 J            | U U              |     |            | 330            | 50,000           |
| Anthracene                                     | 76 J             |                  |     |            | 330            | 50,000           |
|                                                | U U              | ι υ              |     |            | 330            | -                |
| Di-n-butylphthalate                            | -                |                  |     |            | 330            | 8,100            |
| luoranthene                                    | 640              |                  |     |            | 330            | 50,000           |
| <sup>o</sup> yrene                             | 650<br>47 J      |                  |     |            | 330<br>330     | 50,000           |
| Butylbenzylphthalate<br>B.3'-Dichlorobenzidine | 47 J             | U U U            |     |            | 330            | 50,000           |
|                                                | 360 J            | υ<br>U           |     |            | 330            |                  |
| Benzo(a)anthracene<br>Chrysene                 | 490              | U<br>U           |     |            | 330            | 224<br>400       |
| pis(2-Ethylhexyl)phthalate                     | 280 J            | Ŭ                |     |            | 330            | 50.000           |
| Di-n-octylphthalate                            | 1 0              | ιŭ               |     |            | 330            | 50,000           |
| Senzo(b)fluoranthene                           | 620              | ΙŬ               |     |            | 330            | 1,100            |
| Senzo(k)fluoranthene                           | 28 J             | Ŭ                |     |            | 330            | 1,100            |
| enzo(a)pyrene                                  | 430              | i ŭ              |     |            | 330            | 61               |
| ndeno(1,2,3-cd)pyrene                          | 200 J            | ιŭ               |     |            | 330            | 3,200            |
| Dibenz(a,h)anthracene                          | 55 J             | <b>1</b> Ū       |     |            | 330            | 14               |
| Benzo(g,h,i)perylene                           | 200 J            | Ŭ                |     |            | 330            | 50,000           |
| otal PAHs                                      | 4,047            | o                |     |            |                | 100.000          |
|                                                |                  | Ö                |     |            |                | 100,000          |
| otal CaPAHs                                    | 2,183            | l ő              |     |            |                | 10,000           |
| Total SVOCs                                    | 4,374            | <u> </u>         |     | - <u> </u> | <del>```</del> | 500,000          |

J: Compound found at a concentration below the detection limit.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

~

and the second second

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### SURFACE SOIL - POLYCHLORINATED BIPHENYLS (PCBs)

| AREAVOL CONCERNATION<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | MSSB-38<br>(0-2)<br>2/3/03<br>1<br>89.0<br>(ug/Kg) | MSSB-39<br>(0-2)<br>2/4/03<br>1<br>85.0<br>(ug/Kg) | LABORATORY<br>QUANTITATION<br>LIMITS | NYSDEC<br>TAGM 4048<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|
| Aroclor- 1016                                                                                                              | U                                                  | U                                                  | 34                                   |                                                                            |
| Arocior- 1221                                                                                                              | Ū                                                  | Ŭ                                                  | 34                                   |                                                                            |
| Aroclor- 1232                                                                                                              | Ŭ                                                  | Ŭ                                                  | 34                                   |                                                                            |
| Arocior- 1242                                                                                                              | U U                                                | Ų                                                  | 34                                   |                                                                            |
| Aroclor- 1248                                                                                                              | ן ט                                                | U                                                  | 34                                   |                                                                            |
| Aroclor- 1254                                                                                                              | U U                                                | U                                                  | 34                                   | *===                                                                       |
| Aroclor- 1260                                                                                                              | U                                                  | U                                                  | 34                                   |                                                                            |
| TOTAL PCBs                                                                                                                 | 0                                                  | 0                                                  |                                      | 1,000/10,000*                                                              |

QUALIFIERS:

U: Compound analyzed for but not detected.

NOTES:

--: Not applicable.

\*: According to NYSDEC TAGM 4046 Recommended Soll Cleanup Objectives, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs). ,

and the second second

# MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

# SUBSURFACE SOIL - MERCURY AND RCRA METALS

| AREAICE CONCERN<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MS\$B-06A<br>(2-4)<br>2/4/03<br>89.0<br>(mg/kg) | M\$\$8-06A<br>(4-6)<br>2/4/03<br>96.0<br>(mg/kg) | MSSB-09<br>(2-4)<br>2/4/03<br>87.0<br>(mg/kg) | MSSB-09<br>(4-6)<br>2/4/03<br>92.0<br>(mg/kg) | MS8B-10<br>(2-4)<br>2/4/03<br>87.0<br>(mg/kg) | MSSB-10<br>(4-6)<br>2/4/03<br>98.0<br>(mg/kg) | M\$\$8-11<br>(2-4)<br>2/4/03<br>96.0<br>(mg/kg) | MSSB-11<br>(4-6)<br>2/4/03<br>98.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 404<br>Recommended Soil<br>Cleanup Objective<br>(mg/kg) |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|
| Marcury                                                                                            | 0.13                                            | U                                                | 0.36                                          | 0.058                                         | 0.26                                          | 0.084                                         | 0.72                                            | 1.2                                           | 0.042                                       | 0.1                                                                 |

| SAMPLE ID<br>SAMPLE DD<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MS\$B-12<br>(2-4)<br>2/4/03<br>98.0<br>(mg/kg) | M\$SB-12<br>(4-6)<br>2/4/03<br>95.0<br>(mg/kg) | MSSB-13<br>(2-4)<br>2/3/03<br>95.0<br>(mg/kg) | MSSB-13<br>(4-6)<br>2/3/03<br>97.0<br>(mg/kg) | <b>MSSB-14</b><br>(2-4)<br>2/4/03<br>93.0<br>(mg/kg) | MS8B-14<br>(4-6)<br>2/4/03<br>95.0<br>(mg/kg) | M888-15<br>(4-6)<br>2/4/03<br>96.0<br>(mg/kg) | MSSB-16<br>(2-4)<br>2/4/03<br>93.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/i) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>(mg/kg) |
|-------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Mercury                                                                 | 32.1                                           | 0.56                                           | 0.31                                          | 0.015 B                                       | 0.14                                                 | U                                             | 0.061                                         | 0.27                                          | 0.042                                       | 0.1                                                                  |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSB-17<br>(2-4)<br>2/4/03<br>88.0<br>(mg/kg) | MSSB-18<br>(2-4)<br>2/4/03<br>88.0<br>(mg/kg) | MS8B-19<br>(2-4)<br>2/4/03<br>94.0<br>(mg/kg) | MSSB-20<br>(2-4)<br>2/4/03<br>88.0<br>(mg/kg) | MSSB-21<br>(2-4)<br>2/3/03<br>95.0<br>(mg/kg) | MSSB-22<br>(2-4)<br>2/4/03<br>86.0<br>(mg/kg) | MSSB-23<br>(2-4)<br>2/4/03<br>94.0<br>(mg/kg) | MSSB-24<br>(2-4)<br>2/4/03<br>93.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Meraury                                                                         | 8.7                                           | 7.9                                           | 1.2                                           | 6.8                                           | 1.3                                           | 4.7                                           | 0.087                                         | 0.17                                          | 0.042                                       | 0.1                                                                  |

| AREALO CONGERNA<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSB-25<br>(2-4)<br>2/3/03<br>90.0<br>(mg/kg) | MSSB-26<br>(2-4)<br>2/3/03<br>92.0<br>(mg/kg) | MSSB-27<br>(2-4)<br>2/3/03<br>90.0<br>(mg/kg) | <b>M\$\$8-28</b><br>(2-4)<br>2/3/03<br>86.0<br>(mg/kg) | <b>SUbstation</b><br>MSSB-29<br>(2-4)<br>2/3/03<br>95.0<br>(mg/kg) | MSSB-30<br>(2-4)<br>2/4/03<br>94.0<br>(mg/kg) | MSSB-31<br>(2-4)<br>2/3/03<br>94,0<br>(mg/kg) | MSSB-32<br>(2-4)<br>2/4/03<br>92.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soll<br>Cleanup Objective<br>(mg/kg) |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Mercury                                                                                            | 0.52                                          | 1                                             | 3.3                                           | 1.6                                                    | 0.51                                                               | 0.091                                         | 0.41                                          | 0.27                                          | 0.042                                       | 0.1                                                                  |

QUALIFIERS:

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL. NA: Not Analyzed for

Notes:

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

ł.

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

### SUBSURFACE SOIL - MERCURY AND RCRA METALS

| AREACONCONCERNIS<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MS\$8-32<br>(4-6)<br>2/3/03<br>92.0<br>(mg/kg) | MSSB-32<br>(6-8)<br>2/3/03<br>83.0<br>(mg/kg) | MSSB-32<br>(8-10)<br>2/3/03<br>94.0<br>(mg/kg) | MSSB-33<br>(2-4)<br>2/3/03<br>90.0<br>(mg/kg) | MSSB-33<br>(4-6)<br>2/3/03<br>98.0<br>(mg/kg) | MSSB-33<br>(6-8)<br>2/3/03<br>96.0<br>(mg/kg) | MSSB-33<br>(8-10)<br>2/3/03<br>90.0<br>(mg/kg) | M\$\$B-34<br>(2-4)<br>2/4/03<br>89,0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soll<br>Cleanup Objective<br>(mg/kg) |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------|-------------------------------------------------|-----------------------------------|----------------------------------------------------------------------|
| Mercury                                                                                             | 4.3                                            | 0.056                                         | U                                              | <u>1.9</u>                                    | 0. <b>05</b> 7                                | υ                                             | 0.025 B                                        | 1.8                                             | 0.042                             | 0.1                                                                  |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | M\$\$8-34<br>(4-6)<br>2/3/03<br>97.0<br>(mg/kg) | MSSB-34<br>(6-8)<br>2/3/03<br>96.0<br>(mg/kg) | MSSB-34<br>(8-10)<br>2/3/03<br>89.0<br>(mg/kg) | MSSB-40<br>(0-2)<br>8/9/04<br>97.0<br>(mg/kg) | MS\$B-40<br>(2-4)<br>8/9/04<br>91.0<br>(mg/kg) | <b>MS\$B-40</b><br>(4-6)<br>8/9/04<br>98.0<br>(mg/kg) | MSSB-41<br>(0-2)<br>8/9/04<br>89.0<br>(mg/kg) | MSSB-41<br>(2-4)<br>8/9/04<br>94.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------------|-----------------------------------------------|------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Mercury                                                                         | U                                               | U                                             | 0.09                                           | 0.23                                          | 1.2                                            | 0.029 B                                               | 0.11                                          | 3.8                                           | 0.042                                       | 0,1                                                                  |

| ARPADE ID<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSB-41<br>(4-6)<br>8/9/04<br>95.0<br>(mg/kg) | MSSB-42<br>(0-2)<br>8/9/04<br>93.0<br>(mg/kg) | MSSB-42<br>(2-4)<br>8/9/04<br>98.0<br>(mg/kg) | MSSB-42<br>(4-6)<br>8/9/04<br>89.0<br>(mg/kg) | SUDSIA MARIA<br>MSSB-43<br>(0-2)<br>8/9/04<br>83.0<br>(mg/kg) | MS\$B-43<br>(2-4)<br>8/9/04<br>90.0<br>(mg/kg) | MSSB-43<br>(4-6)<br>8/9/04<br>98.0<br>(mg/kg) | MSSB-44<br>(0-2)<br>8/10/04<br>98.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>(mg/kg) |
|----------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|------------------------------------------------|-----------------------------------|----------------------------------------------------------------------|
| Mercury                                                                                      | 0.090                                         | 0.53                                          | 0.7                                           | 0.45                                          | 6.7                                                           | 0.12                                           | 0.091                                         | 1.7                                            | 0.042                             | 0.1                                                                  |

| SAMPLE ID<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSB-44<br>(2-4)<br>8/10/04<br>95.0<br>(mg/kg) | MSSB-44<br>(4-6)<br>8/10/04<br>93.0<br>(mg/kg) | MSSB-45<br>(0-2)<br>8/10/04<br>97.0<br>(mg/kg) | MS8B-45<br>(2-4)<br>8/10/04<br>98.0<br>(mg/kg) | MSSB-45<br>(4-5)<br>8/10/04<br>97.0<br>(mg/kg) | MSSB-46<br>(0-2)<br>8/9/04<br>94.0<br>(mg/kg) | MSSB-46<br>(2-4)<br>8/9/04<br>85.0<br>(mg/kg) | MSSB-46<br>(4-6)<br>8/9/04<br>94.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/i) | NYSDEC TAGM 4048<br>Recommended Soli<br>Cleanup Objective<br>(mg/kg) |
|----------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Mercury                                                                                      | 3.5                                            | 154                                            | 0.59                                           | 0.39                                           | 0.31                                           | 0.52                                          | 4.8                                           | 0.079                                         | 0.042                                       | 0.1                                                                  |

QUALIFIERS; U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL. NA: Not Analyzed for

174

Notes: SB: Site Background \*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

: Result exceeds NYSDEC TAGM recommended Soil Cleanup Objective

'n

Ł

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD **DELINEATION PHASE 2 SITE ASSESSMENT**

#### SUBSURFACE SOIL - MERCURY AND RCRA METALS

| AREALOP CONCERNA<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSB-47<br>(0-2)<br>8/10/04<br>96.0<br>(mg/kg) | MSSB-47<br>(2-4)<br>8/10/04<br>96.0<br>(mg/kg) | MSSB-47<br>(4-5)<br>8/10/04<br>96.0<br>(mg/kg) | MSSB-48<br>(0-2)<br>8/9/04<br>93.0<br>(mg/kg) | MSSB-48<br>(2-4)<br>8/9/04<br>95.0<br>(mg/kg) | MSSB-48<br>(4-6)<br>8/9/04<br>82.0<br>(mg/kg) | MSSB-49<br>(0-2)<br>8/9/04<br>92.0<br>(mg/kg) | MSSB-49<br>(2-4)<br>8/9/04<br>94.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>(mg/kg) |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------------------------------------------|
| Mercury                                                                                             | 1.9                                            | 1.6                                            | 1.4                                            | 0.042                                         | 0.41                                          | 12.7                                          | 2.4                                           | 0.04 B                                        | 0.042                             | 0.1                                                                  |

| AREALORGONCERNING<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSB-49<br>(4-6)<br>8/9/04<br>80.0<br>(mg/kg) | MSSB-50<br>(0-2)<br>8/10/04<br>89.0<br>(mg/kg) | MSSB-50<br>(2-4)<br>8/10/04<br>92.0<br>(mg/kg) | MSSB-50<br>(4-6)<br>8/10/04<br>97.0<br>(mg/kg) | MSSB-51<br>(0-2)<br>8/9/04<br>92.0<br>(mg/kg) | MSSB-51<br>(2-4)<br>8/9/04<br>94.0<br>(mg/kg) | MSSB-51<br>(4-8)<br>8/9/04<br>90.0<br>(mg/kg) | MSSB-52<br>(0-2)<br>8/9/04<br>91.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>(mg/kg) |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Mercury                                                                                              | 0.031 B                                       | 7.2                                            | 14.6                                           | 0.18 B                                         | 0.99                                          | 0.042                                         | 0.039                                         | 0.41                                          | 0.042                                       | 0.1                                                                  |

| AREAOLOGNOLINI<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MS8B-52<br>(2-4)<br>8/9/04<br>93.0<br>(mg/kg) | MSSB-52<br>(4-6)<br>8/9/04<br>95.0<br>(mg/kg) | MSSB-53<br>(0-2)<br>8/9/04<br>94,0<br>(mg/kg) | 60/500646000<br>M\$\$B-53<br>(2-4)<br>8/9/04<br>93.0<br>(mg/kg) | MS\$B-53<br>(6-8)<br>8/9/04<br>.66.0<br>(mg/kg) | MS3B-54<br>(0-2)<br>8/9/04<br>95.0<br>(mg/kg) | MSSB-54<br>(2-4)<br>8/9/04<br>93.0<br>(mg/kg) | MSSB-54<br>(4-6)<br>8/9/04<br>98.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------------------------------------------|
| Mercury                                                                                           | 0.053                                         | 0.045                                         | 5.4                                           | 103                                                             | 2.3                                             | 0.91                                          | 0.32                                          | 0.020 B                                       | 0.042                             | 0.1                                                                  |

| AREA OF CONCERNIA<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSB-55<br>(0-2)<br>8/9/04<br>92.0<br>(mg/kg) | MSSB-55<br>(2-4)<br>8/9/04<br>95,0<br>(mg/kg) | MSSB-55<br>(4-6)<br>8/9/04<br>84.0<br>(mg/kg) | <b>MSSB-55</b><br>(6-8)<br>8/9/04<br>91.0<br>(mg/kg) | MSSB-56<br>(0-2)<br>8/9/04<br>96.0<br>(mg/kg) | MSSB-56<br>(2-4)<br>8/9/04<br>91.0<br>(mg/kg) | MSSB-56<br>(4-6)<br>8/9/04<br>95.0<br>(mg/kg) | MSSB-57<br>(0-2)<br>8/9/04<br>87.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>(mg/kg) |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------------------------------------------|
| Marcury                                                                                              | 0.89                                          | 0.10                                          | 0.92                                          | 7.0                                                  | 32.3                                          | 5.8                                           | 0.029                                         | 0.90                                          | 0.042                             | 0.1                                                                  |

# QUALIFIERS:

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL. NA: Not Analyzed for

<u>Notes:</u> SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

: Result exceeds NYSDEC TAGM recommended Soil Cleanup Objective

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD **DELINEATION PHASE 2 SITE ASSESSMENT**

#### SUBSURFACE SOIL - MERCURY AND RCRA METALS

| AREAGREGONCERNING<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MS8B-57<br>(2-4)<br>8/9/04<br>89.0<br>(mg/kg) | MSSB-57<br>(4-6)<br>8/9/04<br>98.0<br>(mg/kg) | 14/07/SUBblen<br>MSSB-58<br>(0-2)<br>8/9/04<br>91.0<br>(mg/kg) | <b>MSSB-58</b><br>(2-4)<br>8/9/04<br>96.0<br>(mg/kg) | MSSB-58<br>(4-6)<br>8/9/04<br>98.0<br>(mg/kg) | MSSB-38<br>(2-4)<br>2/3/03<br>91.0<br>(mg/kg)                | MSSB-39         2/4/03         97.0         (mg/kg)      | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l)          | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>(mg/kg) |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
| Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Lead<br>Mercury<br>Selenium<br>Silver                    | NA<br>NA<br>NA<br>NA<br>0.11<br>NA<br>NA      | NA<br>NA<br>NA<br>NA<br>0.019 B<br>NA<br>NA   | NA<br>NA<br>NA<br>NA<br>0.30<br>NA<br>NA                       | NA<br>NA<br>NA<br>NA<br>0.016 B<br>NA<br>NA          | NA<br>NA<br>NA<br>NA<br>0.048<br>NA<br>NA     | 15.9<br>6.6 B<br>0.23 B<br>8.5<br>11.4<br>1.1<br>U<br>0.32 B | 3<br>5.4 B<br>0.21 B<br>8.8<br>2.7<br>5.6<br>U<br>0.39 B | 3.0<br>3.0<br>2.0<br>3.0<br>1.0<br>0.1<br>8.0<br>2.0 | 7.5 or SB<br>300 or SB<br>10*<br>50*<br>SB**<br>0.1<br>2 or SB<br>SB |

QUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL. NA: Not Analyzed for

Notes: SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

: Result exceeds NYSDEC TAGM recommended Soll Cleanup Objective

B:2015 (LIRR 3 Subs Del Phase II)/3 Subs Deta/Massapoqua/Data Tables for Report/Table 18 REV 

- 66 - F.B.

وحبر المأدسين

....

/• -- -- •

12/20/04

ъ · ·

t

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| MEL-Melteromel-EN             |         |          |     |   | <u></u>  |   |              |                  |
|-------------------------------|---------|----------|-----|---|----------|---|--------------|------------------|
| SAMPLE ID                     | MSSB-38 | MSSB-39  |     |   |          |   |              |                  |
| SAMPLE DEPTH (FT)             | (2-4)   | (2-4)    |     | ) | 1        |   | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION            | 2/3/03  | 2/4/03   |     |   |          |   | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR               | 1       | 1        |     |   |          |   | LIMITS       | Soil Cleanup     |
| PERCENT SOLIDS                | 91.0    | 97.0     |     |   |          |   |              | Objective        |
| UNITS                         | (ug/kg) | (ug/kg)  |     |   |          |   | (ug/Kg)      | (ug/Kg)          |
|                               |         |          |     |   |          |   |              |                  |
| Phenol                        | U       | U        |     |   |          |   | 330          | 30               |
| bis(2-Chloroethyl)ether       | U       | U U      |     |   |          |   | 330          | - 1              |
| 2-Chlorophenol                | U       | U        |     |   |          |   | 330          | 800              |
| 1,3-Dichlorobenzene           | U       | U        |     |   |          |   | 330          | i I              |
| 1,4-Dichlorobenzene           | U       | U        |     |   |          |   | 330          |                  |
| 1,2-Dichlorobenzene           | U       | U        |     |   |          |   | 330          |                  |
| 2-Methylphenol                | Ų       | ן ט      |     |   |          |   | 330          | 100              |
| 2,2'-oxybis (1-chloropropane) | U       | U U      |     |   |          |   | 330          | -                |
| 4-Methylphenol                | U       | Į U      |     | 1 | ]        |   | 330          | 900              |
| N-Nitroso-di-n-propylamine    | U       | [ U      |     | { | [ [      |   | 330          | i )              |
| Hexachioroethane              | U       | [ U      |     |   |          |   | 330          |                  |
| Nitrobenzene                  | j U     | U U      |     |   | ( }      |   | 330          | 200              |
| Isophorone                    | U       | U        |     |   |          |   | 330          | 4,400            |
| 2-Nitrophenol                 | U       | U U      |     |   | 1 1      | 1 | 330          | 330              |
| 2,4-Dimethylphanol            | U       | ( U      |     |   |          |   | 330          | 1                |
| 2,4-Dichlorophenol            | l U     | U        |     |   | ↓ \      |   | 330          | 400              |
| 1,2,4-Trichlorobenzene        | U       | ) U      |     |   |          |   | 330          | ) ~ (            |
| Naphthalene                   | U       | ( U      |     |   |          |   | 330          | 13,000           |
| 4-Chloroaniline               | l U     | ( U      |     |   |          |   | 330          | 220              |
| bis(2-Chioroethoxy)methane    | ) U     | U U      |     |   |          |   | 330          | -                |
| Hexachlorobutadiene           | U U     | U        |     | ļ | {        |   | 330          | - 1              |
| 4-Chioro-3-methyiphenoi       | U U     | U        |     |   |          |   | 330          | 240              |
| 2-Methylnaphthalene           | U       | U U      |     |   |          |   | 330          | 36,400           |
| Hexachlorocyclopentadiene     | U       | } U      | ļ ļ |   | ( ł      |   | 330          | -                |
| 2,4,6-Trichlorophenoi         | U       | [ U      | l ( | { | ļ {      |   | 330          | ! _ !            |
| 2,4,5-Trichlorophenol         | U       | [ U      |     |   |          |   | 660          | 100              |
| 2-Chloronaphthalene           | U       | [ U      | ł   |   | <b>\</b> |   | 330          | - 1              |
| 2-Nitroaniline                | U       | { U      | l l |   | { }      | j | 660          | 430              |
| Dimethylphthalate             | Ų       | <u>υ</u> | l l | 1 | l        |   | 330          | 2,000            |
| Acenaphthylene                | U       | U U      |     |   | { }      |   | 330          | 41,000           |
| 2,6-Dinitrotoluene            | U       | U U      |     | 1 | { }      |   | 330          | 1,000            |
| 3-Nitroaniline                | υ       | ) U      |     |   | 4 I      |   | 660          | 500              |
| Acenaphthene                  | U       | UU       |     | _ | Į – Į    |   | 330          | 50,000           |

QUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

NOTES: - : Not applicable. . t

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | MSSB-38<br>(2-4)<br>2/3/03<br>1<br>91.0<br>(ug/kg) | MSSB-39<br>(2-4)<br>2/4/03<br>1<br>97.0<br>(ug/kg) |          |   |      |     |   | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/Kg) | NYSDEC TAGM<br>4046 Recommended<br>Soli Cleanup<br>Objective<br>(ug/Kg) |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------|---|------|-----|---|-------------------------------------------------|-------------------------------------------------------------------------|
| 2,4-Dinitrophenol                                                                                  | υ                                                  | U                                                  |          |   |      | 1   | ] | 660                                             | 200                                                                     |
| 4-Nitrophenol                                                                                      | Ŭ                                                  | ι υ                                                |          |   | [    |     |   | 660                                             | 100                                                                     |
| Dibenzofuran                                                                                       | U Ŭ                                                | Ŭ                                                  |          |   | ļ    |     |   | 330                                             | 6,200                                                                   |
| 2.4-Dinitrotoluene                                                                                 | ບ                                                  | ບັ                                                 |          |   | Í    |     |   | 330                                             | 0,200                                                                   |
| Diethylphthalate                                                                                   | Ŭ                                                  | Ŭ                                                  |          |   |      |     |   | 330                                             | 7,100                                                                   |
| 4-Chlorophenyl-phenylether                                                                         | Ū                                                  | Ŭ                                                  |          |   |      | ļ [ |   | 330                                             |                                                                         |
| Fluorene                                                                                           | Ū                                                  | Ŭ                                                  |          |   |      |     |   | 330                                             | 50,000                                                                  |
| 4-Nitroaniline                                                                                     | Ŭ                                                  | Ŭ                                                  |          |   |      |     |   | 330                                             |                                                                         |
| 4.6-Dinitro-2-methyiphenoi                                                                         | υ                                                  | Ŭ                                                  |          |   |      |     |   | 330                                             |                                                                         |
| N-Nitrosodiphenylamine                                                                             | ΙŬ                                                 | Ŭ                                                  |          |   | 1    | 1   |   | 330                                             |                                                                         |
| 4-Bromophenyl-phenylether                                                                          | U                                                  | υ υ                                                |          |   |      |     |   | 330                                             | -                                                                       |
| Hexachlorobenzene                                                                                  | Ű                                                  | Ű                                                  |          |   |      |     |   | 330                                             | 410                                                                     |
| Pentachlorophenol                                                                                  | υ                                                  | U U                                                |          |   | 1    | 1   |   | 660                                             | 1,000                                                                   |
| Phenanthrene                                                                                       | υ                                                  | U                                                  |          |   | 1    |     |   | 330                                             | 50,000                                                                  |
| Anthracene                                                                                         | U U                                                | U                                                  |          |   | 1    | 1   |   | 330                                             | 50,000                                                                  |
| Carbazole                                                                                          | U U                                                | ט (                                                |          |   |      |     |   | 330                                             | -                                                                       |
| Di-n-butylphthaiate                                                                                | ί U                                                | U                                                  |          |   |      |     |   | 330                                             | 8,100                                                                   |
| Fluoranthene                                                                                       | 65 J                                               | U                                                  |          |   |      |     |   | 330                                             | 50,000                                                                  |
| Pyrene                                                                                             | 60 J                                               | U                                                  |          |   |      |     |   | 330                                             | 50,000                                                                  |
| Butylbenzylphthalate                                                                               | ( U                                                | U                                                  | ĺ        |   |      |     |   | 330                                             | 50,000                                                                  |
| 3,3'-Dichlorobenzidine                                                                             | ט [                                                | [ ປ                                                |          |   |      |     |   | 330                                             | -                                                                       |
| Benzo(a)anthracene                                                                                 | 48 J                                               | U                                                  |          |   |      |     |   | 330                                             | 224                                                                     |
| Chrysene                                                                                           | 54 J                                               | υ                                                  |          |   | 1    | ] ( |   | 330                                             | 400                                                                     |
| bis(2-Ethylhexyl)phthalate                                                                         | υ                                                  | U                                                  |          | 1 | ]    |     |   | 330                                             | 50,000                                                                  |
| Di-n-octylphthalate                                                                                | U                                                  | U                                                  |          |   |      |     |   | 330                                             | 50,000                                                                  |
| Benzo(b)fluoranthene                                                                               | 59 J                                               | U                                                  |          |   | 1    |     |   | 330                                             | 1,100                                                                   |
| Benzo(k)fluoranthene                                                                               | Ų                                                  | υ                                                  |          |   |      |     |   | 330                                             | 1,100                                                                   |
| Benzo(a)pyrene                                                                                     | 44 J                                               | U                                                  | 1        |   | 1    | [ [ |   | 330                                             | 61                                                                      |
| Indeno(1,2,3-cd)pyrene                                                                             | U                                                  | U                                                  | <b>)</b> |   |      | ]   |   | 330                                             | 3,200                                                                   |
| Dibenz(a,h)anthracene                                                                              | U                                                  | U                                                  |          |   |      |     |   | 330                                             | 14                                                                      |
| Benzo(g,h,i)perviene                                                                               | υ                                                  | U                                                  |          |   |      |     |   | 330                                             | 50,000                                                                  |
| Total PAHs                                                                                         | 330                                                | 0                                                  |          |   |      |     |   | -                                               | 100,000                                                                 |
| Total CaPAHs                                                                                       | 205                                                | 0                                                  |          |   | 1    | Į   |   |                                                 | 10,000                                                                  |
| Total SVOCs                                                                                        | 330                                                | 0                                                  |          |   | TES: |     |   | ~                                               | 500,000                                                                 |

QUALIFIERS: U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

Page 2 of 2

1

ł

ι.

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### SUBSURFACE SOIL - POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE ID<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | <b>Hotential</b><br><b>MSSB-38</b><br>(2-4)<br>2/3/03<br>1<br>91.0<br>(ug/kg) | <b>Beleases</b><br>(2-4)<br>2/4/03<br>1<br>97.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Aroclor- 1016                                                                              | ບ                                                                             | υ                                                          | 34                                              |                                                                            |
| Aroclor- 1221                                                                              | Ū                                                                             | Ū                                                          | 34                                              |                                                                            |
| Aroclor- 1232                                                                              | U                                                                             | U                                                          | 34                                              |                                                                            |
| Aroclor- 1242                                                                              | U                                                                             | U                                                          | 34                                              |                                                                            |
| Aroclor- 1248                                                                              | U                                                                             | υ                                                          | 34                                              |                                                                            |
| Arocior- 1254                                                                              | U                                                                             | υ                                                          | 34                                              |                                                                            |
| Arocior- 1260                                                                              | υ                                                                             | U                                                          | 34                                              |                                                                            |
| TOTAL PCBs                                                                                 | 0                                                                             | 0                                                          |                                                 | 1,000/10,000*                                                              |

QUALIFIERS:

U: Compound analyzed for but not detected.

NOTES:

-: Not applicable.

\*: According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

#### SUBSURFACE SOIL - RCRA METALS

| UICISSIRUCOURE<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | <b>MSSB-36</b><br>(7.5-9.5)<br>2/4/03<br>96.0<br>(mg/kg)    | MSSB-36<br>(9.5-11.5)<br>2/4/03<br>87.0<br>(mg/kg)         | MSSB-37<br>(12-14)<br>2/7/03<br>85.0<br>(mg/kg)   | MSSB-37<br>(14-16)<br>2/7/03<br>85.0<br>(mg/kg) | MSSB-37<br>(16-18)<br>2/7/03<br>88.0<br>(mg/kg)    | MSSB-37<br>(18-20)<br>2/7/03<br>82.0<br>(mg/kg)   | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/i)          | NYSDEC TAGM<br>4046<br>Recommended Soil<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|----------------------------------------------------|---------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|
| Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Lead<br>Mercury<br>Selenium<br>Silver                 | 1.1<br>6.1 B<br>0.19 B<br>3.5<br>2.5<br>0.74<br>U<br>0.26 B | 0.58 B<br>3.4 B<br>0.061 B<br>2<br>0.88<br>0.074<br>U<br>U | 0.6 B<br>3.1 B<br>U<br>1.6<br>0.95<br>U<br>U<br>U | 0.63 B<br>3.8 B<br>U<br>2<br>1<br>U<br>0.11 B   | 0.79 B<br>3.4 B<br>U<br>1.9<br>1.4<br>U<br>0.092 B | 0.71 B<br>5.9 B<br>U<br>2.1<br>1.9<br>U<br>U<br>U | 3.0<br>3.0<br>2.0<br>3.0<br>1.0<br>0.1<br>8.0<br>2.0 | 7.5 or SB<br>300 or SB<br>10*<br>50*<br>SB**<br>0.1<br>2 or SB<br>SB    |

OUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes:

.

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

. . . . . .

÷

the second se

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

#### SUBSURFACE SOIL - VOLATILE ORGANIC COMPOUNDS (VOCs)

| SAMPLE ID         MSSB-36         MSSB-36         MSSB-37         MSSB-37         MSSB-37         MSSB-37         CAMPLE DEPTH (FT)         CF-36-50         CAMPLE DEPTH (FT)         CF-36-50         CP-36-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MERSENCE REAL             | WIRLS.    | MARCE IF   | and the second | in the successful of BA | William | and the life of the second starts |            | ·                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|------------|------------------------------------------------------------------------------------------------------------------|-------------------------|---------|-----------------------------------|------------|------------------|
| SAMPLE DEPTH (FT)         (7.5-9.5)         (9.5-11.5)         (12-14)         (14-16)         (16-20)         LABORATORY         NYSDEC TAOM           DATE OF COLLECTION         1         1         1         1         1         004703         0047013         004703         0047013         004703         0047013         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703         004703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPLE ID                 |           | MSSB-36    |                                                                                                                  | MSSB-37                 | MSSB-37 | MSSB-37                           |            |                  |
| DATE OF COLLECTION         2/4/03         2/7/03         2/7/03         2/7/03         2/7/03         CUANTITATION         4046 Recommended<br>Soli Cleanup           DERCENT SOLIDS         96.0         87.0         85.0         85.0         82.0         62.0         Objective         Objective <td>SAMPLE DEPTH (FT)</td> <td>(7.5-9.5)</td> <td>(9.5-11.5)</td> <td>(12-14)</td> <td>(14-16)</td> <td>(16-18)</td> <td></td> <td>LABORATORY</td> <td>NYSDEC TAGM</td>                                                                                                                                                                                                                                                                                                                                                                                               | SAMPLE DEPTH (FT)         | (7.5-9.5) | (9.5-11.5) | (12-14)                                                                                                          | (14-16)                 | (16-18) |                                   | LABORATORY | NYSDEC TAGM      |
| PERCENT SOLIDS         99.0         87.0         85.0         86.0         82.0         (ug/Kg)         (ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DATE OF COLLECTION        | 2/4/03    | 2/4/03     | 2/7/03                                                                                                           | 2/7/03                  | 2/7/03  | 2/7/03                            |            | 4046 Recommended |
| UNITS         (Ug/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DILUTION FACTOR           | 1         |            | 1                                                                                                                | 1                       | 1       | 1                                 | LIMITS     | Soil Cleanup     |
| UNITS         (ug/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PERCENT SOLIDS            | 96.0      |            | 85.0                                                                                                             | 85.0                    | 88.0    | <b>82</b> .0                      |            |                  |
| Dichlorodifluoromethane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNITS                     | (ug/Kg)   | (ug/Kg)    | (ug/Kg)                                                                                                          | (ug/Kg)                 | (ua/Ka) |                                   | (ua/Ka)    |                  |
| Viny Chorida         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú <t< td=""><td>Dichlorodifluoromethane</td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dichlorodifluoromethane   |           |            |                                                                                                                  |                         |         |                                   | 5          |                  |
| Bromonethane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U <t< td=""><td>Chloromethane</td><td>U</td><td>U</td><td>U</td><td>U</td><td>Ú</td><td>U U</td><td>5</td><td>- 1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chloromethane             | U         | U          | U                                                                                                                | U                       | Ú       | U U                               | 5          | - 1              |
| Chicroethane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U <t< td=""><td>Vinyl Chloride</td><td>υ</td><td>υ</td><td>υ</td><td>υ</td><td>υ υ</td><td>U U</td><td>5</td><td>200</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vinyl Chloride            | υ         | υ          | υ                                                                                                                | υ                       | υ υ     | U U                               | 5          | 200              |
| Trichlorofluoromethane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bromomethane              | U         | U U        | υ                                                                                                                | υ                       | U       | U                                 | 5          |                  |
| Trichlorofluoromethane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chloroethane              | U         | Ú          | υ                                                                                                                | υ                       | Ū       | Ū                                 | 5          | 1900             |
| 1.1-Dichloroethane       U       U       U       U       U       U       U       U       U       U       U       U       U       Colored for the formed for the formed | Trichlorofluoromethane    | ט ו       | U          | Ū                                                                                                                | บ้                      | Ŭ       | Ů                                 | 5          |                  |
| Acetone         4 J         10         12         2 J         11         13         5         200           Idomethane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U </td <td>1.1-Dichloroethene</td> <td>-</td> <td>Ū</td> <td>ŭ</td> <td></td> <td>•</td> <td>Ŭ</td> <td>5</td> <td>400</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1-Dichloroethene        | -         | Ū          | ŭ                                                                                                                |                         | •       | Ŭ                                 | 5          | 400              |
| Idomethane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acetone                   | 4 J       | -          | 12                                                                                                               |                         | •       | 13                                | 5          |                  |
| Carbone Disulfide         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Idomethane                | υ I       | U          | - Ū                                                                                                              |                         | u l     |                                   | 5          |                  |
| Methylene Chloride       U*       U*       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Carbone Disulfide         | Ű         | U          | Ū.                                                                                                               | Ŭ                       | -       | Ū Ū                               | 5          | 2700             |
| trans-1,2-Dichloroethene         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U <td></td> <td>Ū•</td> <td>Ū•</td> <td>3 Ĵ</td> <td>2.1</td> <td>5</td> <td>3.</td> <td>5</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | Ū•        | Ū•         | 3 Ĵ                                                                                                              | 2.1                     | 5       | 3.                                | 5          |                  |
| Methyl terh-<br>1,1-Dichloroethane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U <t< td=""><td></td><td>Ŭ</td><td>-</td><td></td><td></td><td>-</td><td></td><td>5</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | Ŭ         | -          |                                                                                                                  |                         | -       |                                   | 5          |                  |
| 1,1-Dichlorosthane       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | ū         | -          | Ŭ                                                                                                                | -                       | -       | -                                 | 5          | -                |
| Vinyl acetate       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1-Dichioroethane        |           |            | _                                                                                                                | -                       | -       | -                                 | 5          | 200              |
| 2-Butanone         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U <thu< td=""><td>Vinyl acetate</td><td>υŪ</td><td>Ŭ</td><td>Ŭ</td><td>-</td><td>Ŭ</td><td>Ŭ</td><td>5</td><td></td></thu<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vinyl acetate             | υŪ        | Ŭ          | Ŭ                                                                                                                | -                       | Ŭ       | Ŭ                                 | 5          |                  |
| Cis-1,2-Dichloroethene         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-Butanone                | ່ ບ       | υ          | Ū                                                                                                                | Ū                       | Ŭ       | Ŭ                                 | 5          | 300              |
| 2,2-Dichloropropane         U         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | บ         | ប          | Ū Ū                                                                                                              | Ŭ                       | Ŭ Ŭ     | Ŭ                                 | 5          | · · · ·          |
| Bromochloromethane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | Ū         | Ŭ          | υŬ                                                                                                               | Ŭ                       | Ŭ Ŭ     | Ū Ū                               | 5          | 1 - 1            |
| 1,1-Trichloroethane       U       U       U       U       U       U       U       U       Store       Store         1,1-Dichloropropane       U       U       U       U       U       U       U       Store       Store         Carbon Tetrachloride       U       U       U       U       U       U       U       Store       Store         Carbon Tetrachloride       U       U       U       U       U       U       Store       Store       Store         1,2-Dichloroethane       U       U       U       U       U       U       Store       Store       Store         Store       U       U       U       U       U       U       Store                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bromochloromethane        | Ū         | Ŭ          | -                                                                                                                |                         |         | -                                 | 5          |                  |
| 1,1-Dichloropropene       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chloroform                | Ú         | Ú          | Ŭ                                                                                                                | Ū                       | Ū       | Ū                                 | 5          | 300              |
| 1,1-Dichloropropane       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1,1-Trichloroethane     | U         | U          | Ú                                                                                                                | Ŭ                       | Ū       | Ū                                 | 5          |                  |
| Carbon Tetrachloride         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,1-Dichloropropene       | U         | U          | Ū                                                                                                                | Ŭ                       | Ŭ       | Ū                                 | 5          |                  |
| 1,2-Dichloroethane       Ú       Ú       Ú       Ú       Ú       Ú       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í       Í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Carbon Tetrachloride      | U         | U          | Ū                                                                                                                | -                       | -       |                                   | 5          | 600              |
| Trichloroethene         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú         Ú                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2-Dichloroethane        | Ŭ         | Ū          | Ū                                                                                                                |                         | Ū       |                                   | 5          |                  |
| 1,2-Dichloropropane       U       U       U       U       U       U       J         Dibromomethane       U       U       U       U       U       U       U       U       Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzene                   | Ū         | Ū          | Ŭ                                                                                                                |                         | Ū       | Ū                                 | 5          |                  |
| Dibromomethane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Trichloroethene           | υ         | υ          | Ų                                                                                                                | U ]                     | U       | U U                               | 5          | 700              |
| Bromodichloromethane         U         U         U         U         U         U         U         Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-Dichloropropane       | υ         | υ          | ט ו                                                                                                              | υ                       | U       | υ                                 | 5          | [ <b></b> ]      |
| Cls-1,3-Dichloropropane         U         U         U         U         U         U         U         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dibromomethane            | U         | ບ          | υ                                                                                                                | U                       | U       | υ                                 | 5          | - 1              |
| 4-Methyl-2-pentanone U U U U U U 5 1000<br>Toluene U U U U U U 5 1500<br>rrans-1,3-Dichloropropene U U U U U U 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bromodichloromethane      | U         | U          | υ                                                                                                                | υ                       | Ū       | Ū                                 | 5          | -                |
| Toluene U U U U U 5 1500<br>rans-1,3-Dichloropropene U U U U U 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cis-1,3-Dichloropropane   | U         | U          | U                                                                                                                | Ŭ                       | Ū       | Ū                                 | 5          | ) - )            |
| rans-1,3-Dichloropropene U U U U U 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-Methyl-2-pentanone      | U         | U          | Ú                                                                                                                | U                       | Ū       | υ                                 | 5          | 1000             |
| rans-1,3-Dichloropropene UUUUUU5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toluene                   | U         | U          | Ū                                                                                                                | Ū                       | Ū       | Ū                                 | 5          | 1500             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | trans-1,3-Dichloropropene | U         | U          | U                                                                                                                | Ŭ                       | Ŭ       | Ū                                 | 5          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1,2-Trichloroethane     | Ū         | Ŭ          | Ŭ                                                                                                                | บั                      | Ŭ       | Ŭ                                 | 5          |                  |

QUALIFIERS: U: Compound analyzed for but not detected.

NOTES: -: Not applicable.

J: Compound found at a concentration below the detection limit.

U\*: Compound qualified as non-detect due to validation criteria.

E:\2015 (LIRR 3 Subs Del Phase II)\3 Subs Deta\Massapequa\Data Tables for Report\Table 22 REV0

Page 1 of 2

L

### TABLE 22 (continued)

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

### SUBSURFACE SOIL - VOLATILE ORGANIC COMPOUNDS (VOCs)

| WILE STRATE AND | W The second |            | A Maria Antonio and Antonio | Weiter Breek | Wall    | a and a set of the provide for the |              |                  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|--------------|---------|------------------------------------|--------------|------------------|
| SAMPLE ID                                           | MSSB-36                                                                                                        | MSSB-36    | MS88-37                                                                                                         | MSSB-37      | MSSB-37 | MSSB-37                            |              |                  |
| SAMPLE DEPTH (FT)                                   | (7.5-9.5)                                                                                                      | (9.5-11.5) | (12-14)                                                                                                         | (14-16)      | (16-18) | (18-20)                            | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION                                  | 2/4/03                                                                                                         | 2/4/03     | 2/7/03                                                                                                          | 2/7/03       | 2/7/03  | 2/7/03                             | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR                                     | 1                                                                                                              | 1          | 1                                                                                                               | 1            | 1       | 1                                  | LIMITS       | Soil Cleanup     |
| PERCENT SOLIDS                                      | 96.0                                                                                                           | 87.0       | 85.0                                                                                                            | 85.0         | 88.0    | 82.0                               |              | Objective        |
| UNITS                                               | (ug/Kg)                                                                                                        | (ug/Kg)    | (ug/Kg)                                                                                                         | (ug/Kg)      | (ug/Kg) | (ug/Kg)                            | (ug/Kg)      | (ug/Kg)          |
| 1,3-Dichloropropane                                 | U                                                                                                              | υ -        | U U                                                                                                             | U            | υ       | 0                                  | 5            | 300              |
| Tetrachloroethene                                   | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | 1400             |
| 2-Hexanone                                          | U                                                                                                              | U          | U                                                                                                               | U            | U       | 3 J                                | 5            |                  |
| Dibromochloromethane                                | U                                                                                                              | U U        | U                                                                                                               | U            | U       | U                                  | 5            |                  |
| 1,2-Dibromoethane                                   | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | -                |
| Chlorobenzene                                       | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | 1700             |
| 1,1,1,2-Tetrachloroethane                           | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | -                |
| Ethylbenzene                                        | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | 5500             |
| m,p-Xylene                                          | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | -                |
| o-Xylene                                            | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | -                |
| Xylene (total)                                      | U                                                                                                              | U U        | U                                                                                                               | U            | U       | U                                  | 5            | 1200             |
| Styrene                                             | ່ ປ                                                                                                            | U U I      | U                                                                                                               | U            | U       | U                                  | 5            | - }              |
| Bromoform                                           | U                                                                                                              | U          | U                                                                                                               | U            | U U     | U                                  | 5            | - 1              |
| Isopropyibenzene                                    | U                                                                                                              | U          | U                                                                                                               | U            | U       | ) U                                | 5            |                  |
| 1,1,2,2-Tetrachloroethane                           | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | 600              |
| Bromobenzene                                        | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | -                |
| 1,2,3-Trichloropropane                              | ປ                                                                                                              | U          | U                                                                                                               | υ            | υ       | U                                  | 5            | 400              |
| n-Propylbenzene                                     | ( U                                                                                                            | U U        | U                                                                                                               | U            | U       | U                                  | 5            |                  |
| 2-Chlorotoiuene                                     | U                                                                                                              | . U        | U                                                                                                               | U            | U       | U                                  | 5            |                  |
| 1,3,5-Trimethylbenzene                              | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | -                |
| 4-Chiorotoluene                                     | U                                                                                                              | U U        | U                                                                                                               | U            | U       | U                                  | 5            | -                |
| tert-Butylbenzene                                   | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | -                |
| 1,2,4-Trimethylbenzene                              | U                                                                                                              | U          | υ                                                                                                               | U            | υ       | U                                  | 5            |                  |
| sec-Butylbenzene                                    | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            |                  |
| 4-isopropyltoluene                                  | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | - 1              |
| 1,3-Dichlorobenzene                                 | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | 1600             |
| 1,4-Dichlorobenzene                                 | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | 8500             |
| n-Butylbenzene                                      | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | _                |
| 1,2-Dichlorobenzene                                 | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | 7900             |
| 1,2-Dibromo-3-chloropropane                         | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            |                  |
| 1,2,4-Trichlorobenzene                              | U                                                                                                              | U          | U                                                                                                               | U            | U U     | U                                  | 5            | 3400             |
| Hexachlorobutadiene                                 | U                                                                                                              | l V        | U                                                                                                               | U            | U U     | U                                  | 5            |                  |
| Naphthalene                                         | U                                                                                                              | 4 J        | U                                                                                                               | U            | U       | 22 B                               | 5            | 13000            |
| 1,2,3-Trichlorobenzene                              | U                                                                                                              | U          | U                                                                                                               | U            | U       | U                                  | 5            | -                |
| Totals VOCs                                         | 4                                                                                                              | 14         | 15                                                                                                              | 4            | 16      | 41                                 |              |                  |

# QUALIFIERS:

NOTES:

U: Compound analyzed for but not detected.

--: Not applicable.

J: Compound found at a concentration below the detection limit. U\*: Compound qualified as non-detect due to validation criteria.

Page 2 of 2

### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

## SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (VOCs)

| latie 1 24-381« 4at 15        | NE COMPANY |            |            |         |         | and the second sec |              |                  |
|-------------------------------|------------|------------|------------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|
| SAMPLE ID                     | MSSB-36    | MSSB-36    | MSSB-37    | MSSB-37 | MSSB-37 | MSSB-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                  |
| SAMPLE DEPTH (FT)             | (7.5-9.5)  | (9.5-11.5) | (12-14)    | (14-16) | (16-18) | (18-20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION            | 2/4/03     | 2/4/03     | 2/7/03     | 2/7/03  | 2/7/03  | 2/7/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR               | 1          | 1          | 1          | 1       | 1       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LIMITS       | Soil Cleanup     |
| PERCENT SOLIDS                | 96.0       | 87.0       | 85.0       | 85.0    | 88.0    | 82.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Objective        |
| UNITS                         | (ug/Kg)    | (ug/Kg)    | (ug/Kg)    | (ug/Kg) | (ug/Kg) | (ug/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ug/Kg)      | (ug/Kg)          |
|                               |            |            |            |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                  |
| Phenol                        | U          | υ          | U          | U       | U       | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 30               |
| bis(2-Chioroethyl)ether       | U          | U          | U          | U       | υ       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | - 1              |
| 1,3-Dichiorobenzene           | υ          | <u></u> ט  | U          | U       | U       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | -                |
| 1,4-Dichlorobenzene           | U          | U          | U          | U       | U       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          |                  |
| 1,2-Dichlorobenzene           | U          | U          | U          | υ       | υ       | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | -                |
| 2-Methylphenol                | U          | U          | U          | U       | U       | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 100              |
| 2,2'-oxybis (1-chloropropane) | U          | U          | U          | U       | U       | י <del>ט</del> יי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | -                |
| 4-Methylphenol                | U U        | υ          | U          | U       | U       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 900              |
| N-Nitroso-di-n-propylamine    | U          | U          | U          | U       | U       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>3</b> 30  | -                |
| Hexachioroethane              | υ          | Ú          | Ú          | Ū       | ົບ      | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | -                |
| Nitrobenzene                  | U          | Ŭ          | Ú          | Ū       | ũ       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 200              |
| Isophorone                    | U          | U          | U          | υ       | Ū       | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 4,400            |
| 2-Nitrophenol                 | U          | U          | Ŭ          | Ũ       | Ū       | Ũ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 330              |
| 2,4-Dimethylphenoi            | υ          | U          | Ŭ          | Ú       | Ū       | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | -                |
| 2,4-Dichlorophenol            | υ          | Ū          | υ          | Ū       | Ŭ       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 400              |
| 1,2,4-Trichlorobenzene        | U          | Ú          | Ū          | Ŭ       | Ŭ       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | -                |
| Naphthalene                   | ט א        | Ŭ          | Ū          | Ŭ       | Ŭ       | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 13,000           |
| 4-Chloroanlline               | U          | Ŭ          | Ú          | Ū       | Ŭ       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 220              |
| bis(2-Chloroethoxy)methane    | υ          | Ū          | Ŭ          | Ū       | Ŭ       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          |                  |
| Hexachlorobutadiene           | U          | U          | U          | U       | υ       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | -                |
| 4-Chloro-3-methylphenol       | U          | U          | U          | U       | Ŭ       | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 240              |
| 2-Methylnaphthalene           | υ          | υ          | ບ <u>ບ</u> | Ū       | Ŭ       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 36,400           |
| Hexachlorocyclopentadiene     | U          | U          | Ú          | U       | Ū       | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          |                  |
| 2,4,6-Trichlorophenol         | υ          | U          | υ          | U       | Ū       | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | -                |
| 2,4,5-Trichlorophenol         | U          | U          | Ŭ          | Ū       | Ŭ       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 660          | 100              |
| 2-Chloronaphthalene           | U          | U          | Ŭ          | Ū       | Ū       | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | _                |
| 2-Nitroaniline                | υ          | υ          | Ū          | Ū       | Ū       | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 660          | 430              |
| Dimethylphthalate             | U          | Ū          | Ŭ          | Ū       | Ŭ       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 2,000            |
| Acenaphthylene                | U          | Ŭ          | Ŭ          | Ŭ       | Ŭ       | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 41,000           |
| 2,6-Dinitrotoluene            | U          | Ū          | Ŭ          | Ű       | Ŭ       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 1,000            |
| 3-Nitroaniline                | U          | Ū          | Ŭ          | Ū       | Ŭ       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 660          | 500              |
| Acenaphthene                  | U          | _ U        | Ú          | Ŭ       | Ū       | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330          | 50,000           |

QUALIFIERS: U: Compound analyzed for but not detected.

NOTES: -- : Not applicable.

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

## SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (VOCs)

| Olessi Nienel Antonio Antonio                                           | ALC MANYSER OF                        | Teally and a                         | and the second s |                                   | WC111                             | marian in and                |                                      |                                                 |
|-------------------------------------------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|------------------------------|--------------------------------------|-------------------------------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR | M\$\$B-36<br>(7.5-9.5)<br>2/4/03<br>1 | MSSB-36<br>(9.5-11.5)<br>2/4/03<br>1 | MSSB-37<br>(12-14)<br>2/7/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MS8B-37<br>(14-16)<br>2/7/03<br>1 | MSSB-37<br>(16-18)<br>2/7/03<br>1 | MSSB-37<br>(18-20)<br>2/7/03 | LABORATORY<br>QUANTITATION<br>LIMITS | NYSDEC TAGM<br>4048 Recommended<br>Soil Cleanup |
| PERCENT SOLIDS                                                          | 96.0                                  | 87.0                                 | 85.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85.0                              | 88.0                              | 82.0                         | Fund                                 | Objective                                       |
|                                                                         | (ug/Kg)                               | (ug/Kg)                              | (ug/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ug/Kg)                           | (ug/Kg)                           | (ug/Kg)                      | (ug/Kg)                              | _(ug/Kg)                                        |
| 2.4-Dinitrophenol                                                       | υ                                     | υ                                    | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | υ                                 | U                                 | υ                            | 660                                  | 200                                             |
| 4-Nitrophenol                                                           | Ŭ                                     | ĺŬ                                   | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l ũ                               | Ŭ                                 | Ŭ                            | 660                                  | 100                                             |
| Dibenzofuran                                                            | Ŭ                                     | l ŭ                                  | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ                                 | Ŭ                                 | Ŭ                            | 330                                  | 6,200                                           |
| 2.4-Dinitrotoluene                                                      | U U                                   | l ŭ                                  | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ                                 | Ŭ                                 | Ŭ                            | 330                                  | 0,200                                           |
| Diethylphthalate                                                        | Ŭ                                     | ΙŬ                                   | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | υ                                 | Ŭ                                 | Ŭ                            | 330                                  | 7,100                                           |
| 4-Chlorophenyl-phenylether                                              | Ŭ Ŭ                                   | Ŭ                                    | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l ŭ                               | Ŭ                                 | Ŭ                            | 330                                  |                                                 |
| Fluorene                                                                | 1 Ŭ                                   | ĺŬ                                   | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ì Ŭ                               | Ŭ                                 | Ŭ                            | 330                                  | 50,000                                          |
| 4-Nitroaniline                                                          | Ū Ū                                   | l ũ                                  | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ                                 | Ŭ                                 | Ŭ                            | 330                                  |                                                 |
| 4,6-Dinitro-2-methylphenol                                              | l Ŭ                                   | l ŭ                                  | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ                                 | Ŭ                                 | Ŭ                            | 330                                  |                                                 |
| N-Nitrosodiphenylamine                                                  | l Ŭ                                   | l Ŭ                                  | l Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l ŭ                               | Ŭ                                 | Ū                            | 330                                  |                                                 |
| 4-Bromophenyl-phenylether                                               | Î Ŭ                                   | l ũ                                  | ΙŬ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l ŭ                               | Ŭ                                 | Ŭ                            | 330                                  |                                                 |
| Hexachlorobenzana                                                       | l ŭ                                   | ĺ Ū                                  | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i ŭ                               | Ŭ                                 | Ŭ                            | 330                                  | 410                                             |
| Pentachlorophenol                                                       | Ŭ                                     | Ŭ                                    | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ                                 | Ŭ                                 | บั                           | 660                                  | 1,000                                           |
| Phenanthrene                                                            | Ū                                     | l ũ                                  | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ū                                 | Ū                                 | Ŭ                            | 330                                  | 50,000                                          |
| Anthracene                                                              | l Ŭ                                   | l ū                                  | l ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l Ŭ                               | l ŭ                               | Ŭ                            | 330                                  | 50,000                                          |
| Carbazole                                                               | Ŭ                                     | ΙŬ                                   | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l ŭ                               | Ŭ                                 | Ŭ                            | 330                                  |                                                 |
| Di-n-butylphthalate                                                     | l ŭ                                   | ΙŬ                                   | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l ŭ                               | Ū                                 | Ŭ                            | 330                                  | 8,100                                           |
| Fluoranthene                                                            | l ŭ                                   | l ∞ŭ                                 | ΙŬ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l ŭ                               | Ŭ                                 | Ū                            | 330                                  | 50,000                                          |
| Pyrene                                                                  | l ũ                                   | Ū                                    | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ū                                 | Ŭ                                 | Ū                            | 330                                  | 50,000                                          |
| Butylbenzylphthalate                                                    | l ū                                   | l ŭ                                  | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Í Ú                               | Ū                                 | Ū                            | 330                                  | 50,000                                          |
| 3.3'-Dichlorobenzidine                                                  | Ŭ                                     | l ŭ                                  | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l ŭ                               | Ŭ                                 | Ŭ                            | 330                                  |                                                 |
| Benzo(a)anthracene                                                      | l ũ                                   | Ū                                    | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ū                                 | Ū                                 | Ū                            | 330                                  | 224                                             |
| Chrysene                                                                | Ū                                     | Ū                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ū                                 | Ū                                 | Ŭ                            | 330                                  | 400                                             |
| bis(2-Ethylhexyl)phthalate                                              | l ú                                   | l u                                  | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i u                               | υ                                 | U                            | 330                                  | 50,000                                          |
| Di-n-octylphthalate                                                     | ĪŪ                                    | Ū                                    | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ū                                 | Ū                                 | Ū                            | 330                                  | 50,000                                          |
| Benzo(b)fluoranthene                                                    | Ů                                     | l ŭ                                  | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ                                 | Ŭ                                 | Ŭ                            | 330                                  | 1,100                                           |
| Benzo(k)fluoranthene                                                    | ΙŬ                                    | ΙŬ                                   | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l Ŭ                               | Ŭ                                 | Ŭ                            | 330                                  | 1,100                                           |
| Benzo(a)pyrene                                                          | U U                                   | Ū                                    | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ů                                 | Ŭ                                 | Ŭ                            | 330                                  | 61                                              |
| Indeno(1,2,3-cd)pyrene                                                  | Ŭ Ŭ                                   | Ŭ                                    | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ū                                 | Ū                                 | Ū                            | 330                                  | 3,200                                           |
| Dibenz(a,h)anthracene                                                   | Ŭ                                     | Ū Ū                                  | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ιŬ                                | Ŭ                                 | Ŭ                            | 330                                  | 14                                              |
| Benzo(g,h,i)peryiene                                                    | Ŭ                                     | Ŭ                                    | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ū                                 | Ŭ                                 | Ŭ                            | 330                                  | 50,000                                          |
| Total PAHs                                                              | 0                                     | 0                                    | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                 | 0                                 | 0                            |                                      | 100,000                                         |
| Total CaPAHs                                                            | Ó                                     | Ó                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                 | 0                                 | 0                            |                                      | 10,000                                          |
| Total SVOCs                                                             | 0                                     | 0                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                 | 0                                 | 0                            |                                      | 500,000                                         |
| QUALIFIERS:                                                             |                                       |                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO                                | TES:                              |                              | ω <u> </u>                           |                                                 |

QUALIFIERS: U: Compound analyzed for but not detected.

-- : Not applicable.

ł

4

بالإستاد فالحا

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

### SUBSURFACE SOIL - TOTAL PETROLEUM HYDROCARBONS (TPH)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLID<br>UNITS | MSSB-36<br>(7.5-9.5)<br>2/4/03<br>96.0<br>(ug/kg) | MSSB-36<br>(9.5-11.5)<br>2/4/03<br>87.0<br>(ug/kg) | MSSB-37<br>(12-14)<br>2/7/03<br>85.0<br>(ug/kg) | MSSB-37<br>(14-16)<br>2/7/03<br>85.0<br>(ug/kg) | MSSB-37<br>(16-18)<br>2/7/03<br>88.0<br>(ug/kg) | MSSB-37<br>(18-20)<br>2/7/03<br>82.0<br>(ug/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(mg/kg) |
|--------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------|
| Total Petroleum Hydrocarbons                                                   | ND                                                | ND                                                 | ND                                              | ND                                              | ND                                              | ND                                              | 12.0                                         |

Notes: ND: Not Detected .

.

ł Ł 1 ł 1 1 - $\epsilon = 1$ ł . ł ł Ł ł. ł Ł 1

Ł

,· ·

8 ...

.

## MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

## GROUNDWATER - TARGET ANALYTE LIST METALS (TAL Metals)

| SAMPLE ID          | MSGP-01<br>Unfiltered | MSGP-01<br>Filtered | MSGP-02<br>Unfiltered | MSGP-02<br>Filtered | MSGP-03<br>Unfiltered | MSGP-03<br>Filtered | INSTRUMENT<br>DETECTION | NY STATE CLASS GA<br>GROUNDWATER |
|--------------------|-----------------------|---------------------|-----------------------|---------------------|-----------------------|---------------------|-------------------------|----------------------------------|
| DATE OF COLLECTION | 2/5/03                | 2/5/03              | 2/5/03                | 2/5/03              | 2/5/03                | 2/5/03              | LIMIT                   | STANDARDS/                       |
| DILUTION FACTOR    | 1                     | 1                   | 1                     | 1                   | 1                     | 1                   | (IDL)                   | GUIDELINES                       |
| UNITS              | (ug/L)                | (ug/L)              | (ug/L)                | (ug/L)              | (ug/L)                | (ug/L)              | (ug/L)                  | (ug/L)                           |
|                    |                       |                     |                       |                     |                       |                     |                         |                                  |
| Aiuminum           | 829                   | υ                   | 1820                  | ບ                   | 1290                  | υ                   | 17                      |                                  |
| Antimony           | 3.7 B                 | U                   | U                     | U                   | U                     | U                   | 3                       | 3 ST                             |
| Arsenic            | U                     | U                   | U                     | υ                   | U                     | U.                  | 3                       | 25 ST                            |
| Barium             | 46.4 B                | 70.9 B              | 40.3 B                | 32.6 B              | 29.6 B                | 29.7 B              | 4                       | 1,000 ST                         |
| Beryllium          | ן טן                  | U                   | U                     | U                   | U                     | U                   | 0.5                     | 3 GV                             |
| Cadmlum            | U                     | - U                 | Ų                     | U                   | U                     | U                   | 0.7                     | 5 ST                             |
| Calcium            | 35500                 | 35400               | 24200                 | 23600               | 26100                 | 26600               | 240                     | ) - 1                            |
| Chromium           | 26.1                  | 0.86 B              | 23.5                  | 1.8 B               | 19.2 B                | 0.96 B              | 0.6                     | 50 ST                            |
| Cobalt             | 4.1 B                 | 1.7 8               | 4.7 B                 | 2.7 B               | 2.6 B                 | 1.5 B               | 0.9                     |                                  |
| Copper             | 7.4 B                 | U                   | 6.3 B                 | U                   | 8.4 B                 | 6 B                 | 4                       | 200 GA                           |
| Iron               | 4590                  | 1110                | 6070                  | 725                 | 5260                  | 892                 | 26                      | 300 ST*                          |
| Lead               |                       |                     | U                     | U                   | U                     |                     | 4                       | 25 ST                            |
| Magnesium          | 7660                  | 7570                | 4630                  | 4480                | 5160                  | 5160                | 8                       | 35,000 GV                        |
| Manganese          | 434                   | 229                 | 501                   | 343                 | 354                   | 228                 | 0.8                     | 300 ST*                          |
| Mercury            | U                     | υ                   | U                     | U                   | U                     | υ                   | 0.1                     | 0.7 ST                           |
| Nickel             | 15.4 B                | 5.1 B               | 9.8 B                 | 4.1 B               | 11 B                  | 4.4 B               | 0.8                     | 100 ST                           |
| Potassium          | 9060                  | 9760                | 3870                  | 3700                | 4360                  | 4340                | 78                      | ( <b>(</b>                       |
| Selenium           | U.                    | U                   | U                     | U                   | υ                     | U                   | 9                       | 10 ST                            |
| Silver             | U                     | U                   | U                     | U                   | U U                   | U                   | 2                       | 50 ST                            |
| Sodium             | 45200                 | 40500               | 53700                 | 52700               | 43200                 | 43900               | 83                      | 20,000 ST                        |
| Thallium           | U                     | U                   | Ū                     | U                   | U                     | U                   | 3                       | 0.5 GV                           |
| Vanadium           | 1.8 B                 | υ                   | 2.3 B                 | U                   | 2.6 B                 | U                   | 0.7                     | - 1                              |
| Zinc               | 27 B                  | 22.3 B              | 17.7 B                | 20.5 B              | 19.7 B                | 14.3 B              | 7                       | 2,000 GV                         |

## QUALIFIERS:

U: Compound analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

## NOTES:

ST\*

: Not applicable. 40

ST : New York State Ambient Water Quality Standards GV

: New York State Ambient Water Quality Guidance Values

: Standard for the sum of iron and manganese is 500 ug/l

: Value exceeds Standard/Guideline.

and a second second

## MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

### GROUNDWATER - VOLATILE ORGANIC COMPOUNDS (VOCs)

| SAMPLE ID                 | MSGP-01 | MSGP-02 | MSGP-03 | LABORATORY   | NY STATE CLASS GA      |
|---------------------------|---------|---------|---------|--------------|------------------------|
| DATE OF COLLECTION        | 2/5/03  | 2/5/03  | 2/5/03  | QUANTITATION | GROUNDWATER STANDARDS/ |
| DILUTION FACTOR           | 1       | 1       | 1       | LIMITS       | GUIDELINES             |
| UNITS                     | (ug/l)  | (ug/l)  | (ug/l)  | (ug/L)       | (ug/L)                 |
| Dichlorodifluoromethane   | U       | υ       | U       | 5            | 5 ST                   |
| Chloromethane             | U       | Ų       | υ       | 5            | ) – )                  |
| Vinyi Chloride            |         | U       | U       | 5            | 2 ST                   |
| Bromomethane              | U       | U       | ( υ     | 5            | 5 ST                   |
| Chioroethane              | U       | U       | U       | 5            | 5 ST                   |
| Trichlorofluoromethane    | U I     | U       | U       | 5            | 5 ST                   |
| 1,1-Dichloroethene        | U       | U       | υ       | 5            | 5 ST                   |
| Acetone                   | U       | U       | ) U     | 5            | 50 GV                  |
| Idomethane                | U       | Ų       | U       | 5            | -                      |
| Carbone Disulfide         | l u     | U       | U .     | 5            | -                      |
| Methylene Chioride        | 1 J     | 2 J     | U       | 5            | 5 ST                   |
| trans-1,2-Dichloroethene  | ) U     | Ų       | Į U .   | 5            | 6 ST                   |
| Methyl tert-butyl ether   | υ       | Ų       | U       | 5            | 10 GV*                 |
| 1,1-Dichloroethane        | U       | U       | U       | 5            | 5 ST                   |
| Vinyl acetate             | U       | U       | U       | 5            | -                      |
| 2-Butanone                | U       | U       | U       | 5            | - 1                    |
| cis-1,2-Dichloroethene    | U       | U       | U       | 5            | 5 ST                   |
| 2,2-Dichloropropane       | U       | U       | U       | 5            | 5 ST                   |
| Bromochloromethane        | U U     | U       | U       | 5            | 557                    |
| Chloroform                | υ       | U       | U       | 5            | 7 ST                   |
| 1,1,1-Trichloroethane     | U       | U       | U       | 5            | 5 ST                   |
| 1,1-Dichloropropene       | U U     | U       | U       | 5            | 5 ST                   |
| Carbon Tetrachloride      | U U     | U       | υ       | 5            | 5 ST                   |
| 1,2-Dichloroethane        | U       | U       | U       | 5            | 0.6 ST                 |
| Benzene                   | U       | U       | U       | 5            | 1 ST                   |
| Trichloroethene           | U U     | U       | U I     | 5            | 5 ST                   |
| 1,2-Dichloropropane       | U       | U       | U       | 5            | 1 ST                   |
| Dibromomethane            | U       | U       | U       | 5            | 5 ST                   |
| Bromodichloromethane      | L U     | υ       | Y U     | 5            | 50 GV                  |
| cis-1,3-Dichloropropane   | U       | U       | U       | 5            | - 1                    |
| 4-Methyl-2-pentanone      | U       | U       | U       | 5            | -                      |
| Toluene                   | U       | U       | U       | 5            | 5 ST                   |
| trans-1,3-Dichloropropene |         | U       | U       | 5            | 0.4 ST                 |
| 1,1,2-Trichloroethane     | UU      | U       | UU      | 5            | 1 ST                   |

# QUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

NOTES:

: Not applicable. ---٠

: Draft Guidance Value

ST : New York State Ambient Water Quality Standards

GV : New York State Amblent Water Quality Guidance Values

: Value exceeds the referenced criteria.

í

#### TABLE 26 (continued)

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

#### GROUNDWATER - VOLATILE ORGANIC COMPOUNDS (VOCs)

| SAMPLE ID                   | MSGP-01 | MSGP-02        | MSGP-03 | LABORATORY   | NY STATE CLASS GA      |
|-----------------------------|---------|----------------|---------|--------------|------------------------|
| DATE OF COLLECTION          | 2/5/03  | 2/5/03         | 2/5/03  | QUANTITATION | GROUNDWATER STANDARDS/ |
| DILUTION FACTOR             | 1       | 1              | 1       | LIMITS       | GUIDELINES             |
|                             | (ug/l)  | (ug/l)         | (ug/l)  | (ug/L)       | (ug/L)                 |
| 1,3-Dichloropropane         |         |                |         | 5            | 5 51                   |
| Tetrachioroethene           | U       | 1 J            | U.      | 5            | 5 ST                   |
| 2-Hexanone                  | U       | Ŭ              | U       | 5            | 50 GV                  |
| Dibromochloromethane        | U       | U              | U       | 5            | 50 GV                  |
| 1,2-Dibromoethane           | U       | U              | U       | 5            | -                      |
| Chlorobenzene               | U       | υ              | U       | 5            | 5 ST                   |
| 1,1,1,2-Tetrachioroethane   | U       | U              | U       | 5            | 5 ST                   |
| Ethylbenzene                | U       | U              | U       | 5            | 5 ST                   |
| m,p-Xyiene                  | U       | υ              | U -     | 5            |                        |
| o-Xylene                    | U       | U              | U       | 5            | -                      |
| Xylene (total)              | U       | U              | U       | 5            | 5 ST                   |
| Styrene                     | U       | U              | U       | 5            | 5 ST                   |
| Bromoform                   | U       | υ              | υ       | 5            | 50 GV                  |
| Isopropylbenzene            | U       | υ              | Ŭ       | 5            | 5 ST                   |
| 1,1,2,2-Tetrachioroethane   | U       | υ              | υ       | 5            | 5 ST                   |
| Bromobenzene                | U       | υ              | U       | 5            | 5 ST                   |
| 1,2,3-Trichloropropane      | U       | υ              | υ       | 5            | 0.04 ST                |
| n-Propylbenzene             | U       | U              | U       | 5            | 5 ST                   |
| 2-Chiorotoluene             | Ŭ       | U              | Ŭ       | 5            | 5 ST                   |
| 1,3,5-Trimethylbenzane      | U       | U              | Ū       | 5            | 5 ST                   |
| 4-Chlorotoluene             | Ū       | U              | U       | 5            | 5 ST                   |
| tert-Butylbenzene           | U       | U              | U       | 5            | 5 ST                   |
| 1,2,4-Trimethylbenzene      | U       | U              | U       | 5            | 5 ST                   |
| sec-Butylbenzene            | υ       | U              | U       | 5            | 5 ST                   |
| 4-isopropyitotuene          | Ų       | U              | U       | 5            | 5 ST                   |
| 1,3-Dichlorobenzene         | Ú       | U <sup>·</sup> | U       | 5            | 3 ST                   |
| 1,4-Dichlorobenzene         | U       | U              | U       | 5            | 3 ST                   |
| n-Butylbenzene              | U       | υ              | U       | 5            | 5 ST                   |
| 1,2-Dichlorobenzene         | U       | υ              | U       | 5            | 3 ST                   |
| 1,2-Dibromo-3-chioropropane | U       | U              | U       | 5            | 0.04 ST                |
| 1,2,4-Trichlorobenzene      | Ū       | Ū              | Ū       | 5            | 5 ST                   |
| Hexachiorobutadiene         | Ū       | Ū              | Ū       | 5            | 0.5 ST                 |
| Naphthaiene                 | 3 J     | U              | U       | 5            | 10 GV                  |
| 1,2,3-Trichlorobenzene      | U       | Ű              | U       | 5            | 5 ST                   |

QUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

. .

NOTES: -

... a.

.

: Not applicable.

: Draft Guidance Value

ST

: New York State Ambient Water Quality Standards : New York State Ambient Water Quality Guldance Values G٧

: Value exceeds the referenced criteria.

ł

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

## GROUNDWATER - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                             | MSGP-01  | MSGP-02 | MSGP-03 | LABORATORY   | NY STATE CLASS GA      |
|---------------------------------------|----------|---------|---------|--------------|------------------------|
| DATE OF COLLECTION                    | 2/5/03   | 2/5/03  | 2/5/03  | QUANTITATION | GROUNDWATER STANDARDS/ |
| DILUTION FACTOR                       | . 1      | 1       | 1       | LIMITS       | GUIDELINES             |
| UNITS                                 | (ug/i)   | (ug/l)  | (ug/l)  | (ug/L)       | (ug/L)                 |
| Phenol                                |          |         |         |              |                        |
|                                       | U        | U       | U       | 10           | 1 ST*                  |
| bis(2-Chioroethyl)ether               | U I      | U       | ្រុះ    | 10           | -                      |
| 2-Chlorophenol<br>1,3-Dichlorobenzene | U .      | U       | U U     | 10           | -                      |
|                                       | U.       | U       | U U     | 10           | 3 ST                   |
| 1,4-Dichlorobenzene                   | U        | U       | j U     | 10           | 3 ST                   |
| 1,2-Dichlorobenzene                   | U        | U       | l u     | 10           | 3 ST                   |
| 2-Methylphenol                        | U        | U       | U       | 10           | -                      |
| 2,2'-oxybis (1-chloropropane)         | U        | U       | U       | 10           | -                      |
| 4-Methylphenol                        | U        | U       | U       | 10           | -                      |
| N-Nitroso-di-n-propylamine            | U        | U       | ່ ບ     | 10           | -                      |
| Hexachloroethane                      | U        | U       | l u     | 10           | 5 ST                   |
| Nitrobenzene                          | U        | U       | Ú Ű     | 10           | 0.4 ST                 |
| isophorone                            | U        | Ŭ       | l ŭ     | 10           | 50 GV                  |
| 2-Nitrophenol                         | Ū        | ŭ       | l ũ     | 10           |                        |
| 2,4-Dimethylphenol                    | Ŭ        | ŭ       | l ũ     | 10           | 50 GV                  |
| 2,4-Dichlorophenol                    | U        | Ŭ       | ŭ       | 10           | 5 ST                   |
| 1.2.4-Trichlorobenzene                | ŭ        | Ŭ       | i ii    | 10           | 5 ST                   |
| Naphthalene                           | ŭ        | Ŭ       | i i     | 10           | 10 GV                  |
| 4-Chloroaniline                       | ŭ        |         |         | 10           |                        |
| bis(2-Chloroethoxy)methane            | ů.       | U U     |         | 10           | 5 ST                   |
| Hexachlorobutadiene                   | ŭ        | U U     |         | 10           | 0.5 ST                 |
| 4-Chioro-3-methylphenol               | ŭ        | u 8     | l ü     | 10           | 0.531                  |
| 2-Methylnaphthalene                   | ŭ        | а<br>и  | i ö     | -            | -                      |
| Hexachlorocyclopentadiene             | 0        | ŭ       | 0       | 10           |                        |
| 2,4,6-Trichlorophenol                 | 0        | U U     |         | 10           | 5 ST                   |
| 2,4,5-Trichlorophenol                 | 0        | U U     | l ü     | 10           | -                      |
| 2-Chloronaphthalene                   | 0        | 0       |         | 20           | -                      |
| 2-Nitroaniline                        | ů,       | U       | l n     | 10           | 10 GV                  |
|                                       |          | U       |         | 20           | 5 ST                   |
| Dimethylphthalate                     | U        | U       | U U     | 10           | 50 GV                  |
| Acenaphthylene                        | U I      | U       | U       | 10           | -                      |
| 2,6-Dinitrotoluene                    | U        | U U     | U       | 10           | 5 ST                   |
| 3-Nitroaniline                        | U I      | U       | U U     | 20           | 5 ST                   |
| Acenaphthene                          | <u> </u> | U       | U       | 10           | 20 GV                  |

## QUALIFIERS:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

E: Compound concentration exceeded the calibration range.

| NOTES: |
|--------|
|--------|

\*\*

\*

G٧

: Not applicable.

: Applies to the sum of all Phenols

ST : New York State Ambient Water Quality Standards

: New York State Ambient Water Quality Guidance Values

Result exceeds NYS Class GA Standard/Guideline

f

#### TABLE 27 (continued)

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

### GROUNDWATER - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                  | MSGP-01 | MSGP-02 | MSGP-03 | LABORATORY   | NY STATE CLASS GA      |
|----------------------------|---------|---------|---------|--------------|------------------------|
| DATE OF COLLECTION         | 2/5/03  | 2/5/03  | 2/5/03  | QUANTITATION | GROUNDWATER STANDARDS/ |
| DILUTION FACTOR            | 1       | 1       | 1       | LIMITS       | GUIDELINES             |
|                            | (ug/l)  | (ug/l)  | (ug/l)  | (ug/L)       | (ug/L)                 |
| 2,4-Dinitrophenol          | U       | U       | U       | 20           | 10 GV                  |
| 4-Nitrophenol              | ŭ       | ŭ       | Ŭ Ŭ     | 20           |                        |
| Dibenzofuran               | ŭ       | ů       | l ŭ     | 10           | -                      |
| 2.4-Dinitrotoluene         | ŭ       | ŭ       | l ū     | 10           | 5 ST                   |
| Diethylphthalate           | ŭ       | ŭ       | i ŭ     | 10           | 50 GV                  |
| 4-Chlorophenyl-phenylether | Ŭ       | U       | υ ΄     | 10           | -                      |
| Fluorene                   | Ŭ       | U       | Ι υ     | 10           | 50                     |
| 4-Nitroaniline             | Ŭ       | Ú       | l ú     | 20           | 5 ST                   |
| 4,6-Dinitro-2-methylphenol | Ŭ       | Ŭ       | l ũ     | 20           | _                      |
| N-Nitrosodiphenylamine     | Ŭ       | Ŭ       | l ŭ     | 10           | 50 GV                  |
| 4-Bromophenyl-phenylether  | Ū       | Ŭ       | Ū       | 10           | -                      |
| Hexachlorobenzene          | U       | U       | Ú       | 10           | 0.04 ST                |
| Pentachlorophenol          | U       | · U     | Ι υ     | 20           | 1 ST                   |
| Phenanthrene               | Ŭ       | U       | Ū       | 10           | 50 GV                  |
| Anthracene                 | ບັ      | Ű       | Ŭ       | 10           | 50 GV                  |
| Carbazole                  | U       | U       | Ú       | 10           | -                      |
| Di-n-butylphthalate        | U       | U       | Ι υ     | 10           | -                      |
| Fluoranthene               | U       | U       | U       | 10           | 50 GV                  |
| Pyrene                     | U       | υ       | U       | 10           | 50 GV                  |
| Butylbenzylphthalate       | U       | υ       | U       | 10           | 50 GV                  |
| 3.3'-Dichlorobenzidine     | Ŭ       | υ       | U       | 10           | 5 ST                   |
| Benzo(a)anthracene         | U       | U       | U       | 10           | -                      |
| Chrysene                   | U       | U       | U       | 10           | 0.002 GV               |
| bis(2-Ethylhexyl)phthalate | U       | U       | U       | 10           | -                      |
| Di-n-octylphthalate        | U       | U       | U       | 10           | 50 GV                  |
| Benzo(b)fluoranthene       | Ŭ       | U       | U       | 10           | 0.002 GV               |
| Benzo(k)fluoranthene       | U       | U       | U       | 10           | 0.002 GV               |
| Benzo(a)pyrene             | U       | Ŭ       | U       | 10           | ND ST                  |
| Indeno(1,2,3-cd)pyrene     | U       | Ų       | U       | 10           | 0.002 GV               |
| Dibenzo(s,h)anthracene     | U       | Ų       | U       | 10           | -                      |
| Benzo(g,h,i)perylene       | Ŭ       | Ú       | U       | 10           | -                      |

QUALIFIERS: U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

NOTES: -

ST

: Not applicable.

E: Compound concentration exceeded the calibration range. G٧ New York State Ambient Water Quality Standards New York State Ambient Water Quality Guidance Values

: Result exceeds NYS Class GA Standard/Guideline

T

## MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

## GROUNDWATER - POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>UNITS | MSGP-01<br>2/5/03<br>1<br>(ug/l) | MSGP-02<br>2/5/03<br>1<br>(ug/l) | 2/5/03 2/5/03<br>1 1 |   | NY STATE CLASS GA<br>GROUNDWATER<br>STANDARDS/<br>(ug/L) |
|-------------------------------------------------------------|----------------------------------|----------------------------------|----------------------|---|----------------------------------------------------------|
| Aroclor- 1016                                               | U                                | U                                | U                    | 1 |                                                          |
| Aroclor- 1221                                               | Ŭ                                | Ŭ                                | U                    | 1 |                                                          |
| Aroclor- 1232                                               | U                                | U                                | U                    | 1 |                                                          |
| Aroclor- 1242                                               | U                                | U                                | U                    | 1 |                                                          |
| Aroclor- 1248                                               | U                                | U                                | U                    | 1 |                                                          |
| Aroclor- 1254                                               | U                                | U                                | U U                  | 1 |                                                          |
| Aroclor- 1260                                               | U                                | U                                | U                    | 1 | -                                                        |
| TOTAL PCBs                                                  | 0                                | 0                                | 0                    |   | 0.09 ST                                                  |

: Not applicable.

QUALIFIERS: U: Compound analyzed for but not detected.

NOTES:

---ST

: New York State Ambient Water Quality Standards

## MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

## SUBSURFACE SOIL - RCRA METALS

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS   | MSSBX-01<br>(4-6)<br>2/6/03<br>99.0<br>(mg/kg)     | M\$\$BX-01<br>(6-8)<br>2/6/03<br>83.0<br>(mg/kg)  | MSSBX-01<br>(8-10)<br>2/6/03<br>84.0<br>(mg/kg) | M\$\$BX-01<br>(10-12)<br>2/6/03<br>89.0<br>(mg/kg)   | M\$\$BX-01<br>(12-14)<br>2/6/03<br>85.0<br>(mg/kg) | MSSBX-02<br>(4-6)<br>2/6/03<br>99.0<br>(mg/kg)    | M\$\$BX-02<br>(6-8)<br>2/6/03<br>98.0<br>(mg/kg) | M\$\$8X-02<br>(8-10)<br>2/6/03<br>93.0<br>(mg/kg)      | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l)          | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>(mg/kg) |
|-----------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
| Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Lead<br>Mercury<br>Selenium<br>Silver | 0.54 B<br>2.1 B<br>U<br>6.4<br>0.74<br>U<br>U<br>U | 0.78 B<br>3.3 B<br>U<br>2.6<br>1.5<br>U<br>U<br>U | 3.2<br>3 B<br>U<br>10.1<br>1.5<br>U<br>U<br>U   | 2.3<br>3.7 B<br>0.054 B<br>5.4<br>1.9<br>U<br>U<br>U | 0.72 B<br>3.1 B<br>U<br>3.8<br>0.93<br>U<br>U<br>U | 0.33 B<br>2.5 B<br>U<br>1.1<br>1.1<br>U<br>U<br>U | 1.1<br>3.4 B<br>3<br>1.6<br>U<br>U<br>U          | 0.8 B<br>3.5 B<br>0.037 B<br>3.8<br>5.3<br>U<br>U<br>U | 3.0<br>3.0<br>2.0<br>3.0<br>1.0<br>0.1<br>8.0<br>2.0 | 7.5 or SB<br>300 or SB<br>10*<br>50*<br>SB**<br>0.1<br>2 or SB<br>SB |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS   | MSSBX-02<br>(10-12)<br>2/6/03<br>89,0<br>(mg/kg) | MSSBX-02<br>(12-14)<br>2/6/03<br>86.0<br>(mg/kg) | MSSBX-02<br>(14-16)<br>2/6/03<br>84,0<br>(mg/kg) | M\$\$BX-03<br>(4-6)<br>2/3/03<br>97.0<br>(mg/kg)    | MSSBX-03<br>(6-8)<br>2/3/03<br>98.0<br>(mg/kg)    | M\$\$BX-03<br>(8-10)<br>2/6/03<br>94.0<br>(mg/kg) | MSSBX-03<br>(10-12)<br>2/6/03<br>93.0<br>(mg/kg) | MSSBX-03<br>(12-14)<br>2/6/03<br>85.0<br>(mg/kg)   | INSTRUMENT<br>DETECTION<br>LIMITS                    | NYSDEC TAGM 4046<br>Recommended Soll<br>Cleanup Objective<br>(mg/kg) |
|-----------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
| Arsenic<br>Barlum<br>Cadmium<br>Chromium<br>Lead<br>Mercury<br>Selenium<br>Silver | 0.54 B<br>11.1<br>0.13 B<br>2<br>1.2<br>U<br>U   | 0.73 B<br>3.8 B<br>2.8<br>1.3<br>U<br>U<br>U     | 1.1<br>5.1 B<br>U<br>3<br>1.7<br>U<br>U          | 0.61 B<br>2.3 B<br>U<br>1.5 B<br>1 B<br>U<br>U<br>U | 0.8<br>4.4 B<br>U<br>2.7<br>0.96 B<br>U<br>U<br>U | 0.7 B<br>7.9 B<br>0.037 B<br>2.1<br>1.8<br>U<br>U | 0.43 B<br>6.8 B<br>U<br>1.4<br>1.2<br>U<br>U     | 0.64 B<br>2.9 B<br>U<br>1.4<br>0.99<br>U<br>U<br>U | 3.0<br>3.0<br>2.0<br>3.0<br>1.0<br>0.1<br>8.0<br>2.0 | 7.5 or SB<br>300 or SB<br>10*<br>50*<br>SB**<br>0.1<br>2 or SB<br>SB |

QUALIFIERS:

U: Constituent analyzed for but not detected. B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes:

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

#### TABLE 29 (continued)

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - RCRA METALS

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS   | MSSBX-03<br>(14-16)<br>2/6/03<br>91.0<br>(mg/kg) | M\$\$BX-03<br>(16-18)<br>2/6/03<br>99.0<br>(mg/kg) | MSSBX-03<br>(18-20)<br>2/6/03<br>91.0<br>(mg/kg) | M\$\$BX-04<br>(4-6)<br>2/7/03<br>97.0<br>(mg/kg)                | M\$\$BX-04<br>(6-8)<br>2/7/03<br>92.0<br>(mg/kg) | MSSBX-04<br>(8-10)<br>2/7/03<br>88.0<br>(mg/kg) | MSSBX-04<br>(10-12)<br>2/7/03<br>89.0<br>(mg/kg) | M\$\$BX-04<br>(12-14)<br>2/7/03<br>86.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/i)          | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>(mg/kg) |
|-----------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
| Arsenic<br>Barlum<br>Cadmium<br>Chromium<br>Lead<br>Mercury<br>Selenium<br>Silver | 0.6 B<br>3 B<br>U<br>3.7<br>1.1<br>U<br>U<br>U   | 0.93<br>2.9 B<br>U<br>2.6<br>1<br>U<br>U<br>U      | 0.69 B<br>2.8 B<br>2.4<br>1.1<br>U<br>U<br>U     | 2.2<br>4.2 B<br>0.073 B<br>14.3<br>2.8<br>0.025 B<br>U<br>0.1 B | 1.4<br>4.5 B<br>0.31<br>13.7<br>1.8<br>U<br>U    | U<br>1.6 8<br>U<br>2.2<br>2.2<br>U<br>U<br>U    | 0.55 B<br>3.7 B<br>4.2<br>1.1<br>U<br>U<br>U     | 0.58 B<br>3.4 B<br>U<br>2.1<br>1.1<br>U<br>U<br>U  | 3.0<br>3.0<br>2.0<br>3.0<br>1.0<br>0.1<br>8.0<br>2.0 | 7.5 or SB<br>300 or SB<br>10*<br>50*<br>SB**<br>0.1<br>2 or SB<br>SB |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSBX-04<br>(14-16)<br>2/7/03<br>86.0<br>(mg/kg) | MSSBX-04<br>(16-18)<br>2/7/03<br>84.0<br>(mg/kg) | MSSBX-04<br>(18-20)<br>2/7/03<br>82.0<br>(mg/kg) | MSSBX-05<br>(4-6)<br>2/6/03<br>98.0<br>(mg/kg) | MSSBX-05<br>(6-8)<br>2/6/03<br>99.0<br>(mg/kg) | MSSBX-05<br>(8-10)<br>2/6/03<br>97.0<br>(mg/kg) | MSSBX-05<br>(10-12)<br>2/6/03<br>94.0<br>(mg/kg) | M\$\$8X-05<br>(12-14)<br>2/6/03<br>94.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4048<br>Recommended Soil<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Lead                                | 0.67 B<br>3.7 B<br>U<br>2.3<br>1                 | 0.77 B<br>3.5 B<br>U<br>2.8<br>1.4               | 0.74 B<br>5.6 B<br>U<br>3.9<br>1.5               | 0.56 B<br>2.2 B<br>U<br>1.8<br>1.1             | 0.51 B<br>2.9 B<br>U<br>2<br>1.1               | 4.4<br>5.4 B<br>0.068 B<br>11.5<br>3.3          | 0.79 B<br>4.8 B<br>U<br>5.7<br>1.4               | 0.31 B<br>2.2 B<br>U<br>1.7<br>0.93                | 3.0<br>3.0<br>2.0<br>3.0<br>1.0             | 7.5 or SB<br>300 or SB<br>10*<br>50*<br>SB**                         |
| Mercury<br>Selenium<br>Silver                                                   | c c c                                            |                                                  | ບ<br>ບ<br>ບ                                      | ີ ບ<br>ບ                                       | ບ<br>ບັນ                                       |                                                 | <br>U<br>U                                       | U<br>U<br>U                                        | 0.1<br>8.0<br>2.0                           | 0.1<br>2 or SB<br>SB                                                 |

QUALIFIERS:

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

#### <u>Notes:</u>

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.
\_\_\_\_\_\_\_\_: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

### TABLE 29 (continued)

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - RCRA METALS

.

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSBX-05<br>(14-16)<br>2/6/03<br>88.0<br>(mg/kg) | MSSBX-05<br>(16-18)<br>2/6/03<br>90.0<br>(mg/kg) | MSSBX-05<br>(18-20)<br>2/6/03<br>92.0<br>(mg/kg) | MSSBX-06<br>(4-6)<br>2/6/03<br>90.0<br>(mg/kg) | MSSBX-06<br>(6-8)<br>2/6/03<br>96,0<br>(mg/kg) | MSSBX-07<br>(4-6)<br>2/6/03<br>97,0<br>(mg/kg) | MSSBX-07<br>(6-8)<br>2/6/03<br>98.0<br>(mg/kg) | MSSBX-07<br>(8-10)<br>2/6/03<br>97.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/i) | NYSDEC TAGM 4046<br>Recommended Soll<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Arsenic                                                                         | 0.8 B                                            | 0.53 B                                           | 0.58 B                                           | 0.84 B                                         | 1.2                                            | 1.1                                            | 0.69 B                                         | 1.1                                             | 3.0                                         | 7.5 or SB                                                            |
| Barium                                                                          | 2.5 B                                            | 2.8 B                                            | 2.7 B                                            | 3 B                                            | 10.3                                           | 3.7 B                                          | 3 B                                            | 5.1 B                                           | 3.0                                         | 300 or SB                                                            |
| Cadmium                                                                         | U                                                | U                                                | U                                                | 0.077 B                                        | 0.29                                           | 0.14 B                                         | 0.072 B                                        | 0.32                                            | 2.0                                         | 10*                                                                  |
| Chromium                                                                        | 1.6                                              | 2.6                                              | 2                                                | 2                                              | 6.2                                            | 4.3                                            | 1.9                                            | 10.4                                            | 3.0                                         | 50*                                                                  |
| Lead                                                                            | 1                                                | 1                                                | 1                                                | 24.8                                           | 71.6                                           | 1.3                                            | 1.1                                            | 38.5                                            | 1.0                                         | SB**                                                                 |
| Mercury                                                                         | บ                                                | ບ                                                | ບ                                                | ບ                                              | 0.13                                           | บ                                              | ບ                                              | ບ                                               | 0.1                                         | 0.1                                                                  |
| Selenium                                                                        | บ                                                | ບ                                                | ບ                                                | ບ                                              |                                                | บ                                              | ບ                                              | ບ                                               | 8.0                                         | 2 or SB                                                              |
| Sliver                                                                          | บ                                                | ບ                                                | ບ                                                | ບ                                              | ປ                                              | บ                                              | ບ                                              | ບ                                               | 2.0                                         | SB                                                                   |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSBX-07<br>(10-12)<br>2/6/03<br>88.0<br>(mg/kg) | MSSBX-07<br>(12-14)<br>2/6/03<br>87.0<br>(mg/kg) | MSSBX-09<br>(4-6)<br>2/6/03<br>98.0<br>(mg/kg) | MSSBX-09<br>(6-8)<br>2/6/03<br>97.0<br>(mg/kg) | MSSBX-09<br>(8-10)<br>2/6/03<br>98.0<br>(mg/kg) | MSSBX-09<br>(10-12)<br>2/6/03<br>95.0<br>(mg/kg) | MSSBX-09<br>(16-18)<br>2/6/03<br>88.0<br>(mg/kg) | MSSBX-10<br>(4-6)<br>2/6/03<br>98.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soll<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Arsenic<br>Berium<br>Cadmium<br>Chromium                                        | 1.9<br>2.8 B<br>0.066 B<br>4.1                   | 1.5<br>3.7 B<br>0.037 B<br>3                     | 0.57 B<br>3.6 B<br>U<br>1.5                    | 0.72 B<br>2.7 B<br>0.059 B<br>2.3              | 1.3<br>4 B<br>0.065 B<br>8.8                    | 1.8<br>3 B<br>0.18 B<br>5.5                      | 0.58 B<br>2.7 B<br>U<br>3.8                      | 0.95<br>2.3 B<br>0.035 B<br>2                  | 3.0<br>3.0<br>2.0<br>3.0                    | 7.5 or SB<br>300 or SB<br>10*<br>50*                                 |
| Lead<br>Mercury<br>Selenium<br>Silver                                           | 1.9<br>ປ<br>ປ                                    | 1.6<br>U<br>U<br>U                               | 4<br>U<br>U<br>U                               | 2.3<br>U<br>U<br>U                             | 3<br>U<br>U<br>U                                | 2<br>U<br>U<br>U                                 | 2.1<br>U<br>U<br>U                               | 1 B<br>U<br>U<br>0 <u>.</u> 45 B               | 1.0<br>0.1<br>8.0<br>2.0_                   | SB**<br>0.1<br>2 or SB<br>SB                                         |

### **OUALIFIERS:**

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

### Notes:

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

#### TABLE 29 (continued)

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - RCRA METALS

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | MSSBX-10<br>(6-8)<br>2/6/03<br>96.0<br>(mg/kg) | MS\$BX-10<br>(8-10)<br>2/6/03<br>91.0<br>(mg/kg) | MSSBX-10<br>(10-12)<br>2/6/03<br>80.0<br>(mg/kg) | MS\$BX-10<br>(12-14)<br>2/3/03<br>83.0<br>(mg/kg) | MSSBX-10<br>(16-18)<br>2/3/03<br>86.0<br>(mg/kg) | MSSBX-10<br>(18-20)<br>2/3/03<br>88.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soll<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Arsenic                                                                         | 0.7                                            | 3.5                                              | 0.83                                             | 1                                                 | 0.67 B                                           | 0.73 B                                           | 3.0                                         | 7.5 or SB                                                            |
| Barium                                                                          | 3.6 B                                          | 19.5                                             | 5.7 B                                            | 2.8 B                                             | 3.3 B                                            | 2.1 B                                            | 3.0                                         | 300 or SB                                                            |
| Cadmium                                                                         | U                                              | 0.17 B                                           | 0.073 B                                          | U                                                 | υ                                                | υ                                                | 2.0                                         | 10*                                                                  |
| Chromium                                                                        | 1.8 B                                          | 11.8                                             | 2.4                                              | 2.4                                               | 2.4                                              | 2.6                                              | 3.0                                         | 50*                                                                  |
| Lead                                                                            | 0.87 B                                         | 8.3                                              | 1.3 B                                            | 0.95 B                                            | 0.88 B                                           | 0.79 B                                           | 1.0                                         | SB**                                                                 |
| Mercury                                                                         | U                                              | 0.3                                              | U                                                | U                                                 | U                                                | U                                                | 0.1                                         | 0.1                                                                  |
| Selenium                                                                        | U                                              | U                                                | U                                                | υ                                                 | U                                                | U                                                | 8.0                                         | 2 or SB                                                              |
| Silver                                                                          | 0.3 B                                          | 0.39 B                                           | 0.26 B                                           | 0.14 B                                            | <u> </u>                                         | U                                                | 2.0                                         | SB                                                                   |

145

QUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

## Notes:

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

----

12/20/04

÷.,

۰.

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                                          | MSSBX-01 | MSSBX-01   | MSSBX-01                                         | MSSBX-01  | MSSBX-01   | MSSBX-02   | MSSBX-02 | MSSBX-02 |                | · · · · · · · · · · · · · · · · · · · |
|----------------------------------------------------|----------|------------|--------------------------------------------------|-----------|------------|------------|----------|----------|----------------|---------------------------------------|
| SAMPLE DEPTH (FT)                                  | (4-6)    | (6-8)      | (8-10)                                           | (10-12)   | (12-14)    |            |          |          |                |                                       |
| DATE OF COLLECTION                                 | 2/6/03   | 2/6/03     |                                                  |           |            | (4-6)      | (6-8)    | (8-10)   | LABORATORY     | NYSDEC TAGM                           |
| DATE OF COLLECTION                                 | 2/0/03   | 2/0/03     | 2/6/03                                           | 2/6/03    | 2/6/03     | 2/6/03     | 2/6/03   | 2/6/03   | QUANTITATION   | 4046 Recommended                      |
|                                                    | 99.0     | 820        |                                                  | 1         | 1          |            | 1        | 1        | LIMITS         | Soli Cleanup                          |
| PERCENT SOLIDS                                     |          | 83.0       | 84.0                                             | 89.0      | 85.0       | 99.0       | 96.0     | 93.0     | í <i>,</i> " . | Objective                             |
| UNITS                                              | (ug/kg)  | (ug/kg)    | (ug/kg)                                          | (ug/kg)   | (ug/kg)    | (ug/kg)    | (ug/kg)  | (ug/kg)  | (ug/kg)        | (ug/kg)                               |
| Phenol                                             | υ        | υ          | υ                                                | υ         | ່ນ         |            | υ        | υ        | 330            | 30                                    |
| bis(2-Chloroethyl)ether                            | l ŭ      | l ũ        | Ŭ                                                | Ū         | ŭ          | l ä        | Ŭ        | U U      | 330            |                                       |
| 2-Chlorophenol                                     | i ii     | Ιŭ         | ίυ                                               | ι υ       | l ŭ        |            | Ŭ Ŭ      | ň        | 330            | 800                                   |
| 1,3-Dichiorobenzene                                | ) ŭ      | ĴŬ         | Ŭ                                                | ι. υ      |            | i ñ        |          | Ŭ        | 330            | 800                                   |
| 1.4-Dichlorobenzene                                |          | Ŭ          | l Ŭ                                              | ΪŪ        | i ii       |            | Ŭ        | Ŭ        | 330            |                                       |
| 1.2-Dichlorobenzene                                |          | Ŭ          | Ŭ                                                | រ ប       | l ä        | l X        | ι υ      | υ        | 330            | _                                     |
| 2-Methylphenol                                     | l ŭ      | l ŭ        | l ŭ                                              | ĮŪ        | i i        | 1          | łŭ       | ŭ        | 330            | 100                                   |
| 2.2-oxybis (1-chloropropane)                       |          | i ŭ        | Ŭ                                                | ίŬ        |            | ររ         |          | U U      | 330            |                                       |
| 4-Methylphenol                                     | i ŭ      | Ŭ          | i ŭ                                              | υŬ        |            |            | i ü      | Ŭ        | 330            | 900                                   |
| N-Nitroso-di-n-propylamina                         | Ŭ        | ŭ          | Ŭ                                                | Ŭ         |            | U U        |          | υ<br>υ   | 330            | 900                                   |
| Hexachloroethane                                   | Ŭ Ŭ      | l ŭ        | υ                                                | ΙŬ        | i ii       |            | i ü      | Ŭ        | 330            |                                       |
| Nitrobenzene                                       | i ŭ      | Ŭ          | ) Ŭ                                              | ່ັ້       | i i        | U U        | l ŭ      | U U      | 330            | 200                                   |
| lisophorone                                        |          |            | ) ŭ                                              | Ŭ         |            |            |          | υ        | 330            |                                       |
| 2-Nitrophenol                                      | 1 Ŭ      | Ŭ          | υ<br>υ                                           | ບ ບ       |            | [ ປ        |          |          |                | 4,400                                 |
| 2,4-Dimathylphenol                                 | l ŭ      | Ŭ          |                                                  | -         |            | -          |          | •        | 330            | 330                                   |
| 2,4-Dichlorophenol                                 |          | U U        |                                                  |           |            | U U        | 1 U      | U U      | 330            |                                       |
| 1,2,4-Trichlorobenzene                             |          | l ŭ        |                                                  | U U       | ט <u>ו</u> |            |          |          | 330<br>330     | 400                                   |
| Naphthalene                                        |          | ι υ        |                                                  |           |            |            |          | U U      | 330            |                                       |
| 4-Choroaniline                                     |          | l ŭ        | -                                                | _         |            |            |          | -        |                | 13,000                                |
|                                                    |          |            | } <u> </u>                                       | ) U       | U          | U U        | r U      | U U      | 330            | 220                                   |
| bis(2-Chloroethoxy)methane                         |          | { <u>.</u> | ( U                                              | U U       | U U        | U          | U        | U        | 330            |                                       |
| Hexachiorobutadiene                                |          | [          | l n                                              | U U       | U          | U          | U U      | U        | 330            |                                       |
| 4-Chloro-3-methylphenol                            |          |            | U U                                              | י ט<br>נו | U          | U          | ) !!     | l U      | 330            | 240                                   |
| 2-Methylnaphthalene                                |          | U<br>U     | U U                                              | U U       | U U        | ) U        | U U      | U        | 330            | 36,400                                |
| Hexachlorocyclopentadiene<br>2,4,6-Trichlorophenol |          |            | U U                                              |           |            | U U        |          | U U      | 330            |                                       |
|                                                    |          |            |                                                  | U U       |            |            |          | U U      | 330            |                                       |
| 2,4,5-Trichlorophenol                              |          | <u>ן</u> א | <u>ט</u>                                         | U U       | U U        | ן ע        |          | U U      | 330            | 100                                   |
| 2-Chloronaphthalene                                |          | <u> </u>   | U U                                              | ) U       |            | í U        |          | U        | 330            |                                       |
| 2-Nitroaniline                                     |          | U U        |                                                  | U         |            |            |          | U        | 330            | 430                                   |
| Dimethyiphthalate                                  | U U      | U U        | U U                                              | U         |            |            | l U      | U U      | 330            | 2,000                                 |
| Acenaphthylene                                     | U        | U U        | <u>ט</u> און | U         | U U        | U          | U U      | U        | 330            | 41,000                                |
| 2,6-Dinitrotoluene                                 |          | U U        | U U                                              | U         | U U        | <u>ا</u> ا | l U      | U        | 330            | 1,000                                 |
| 3-Nitroaniline                                     | U        |            | U U                                              | U U       | U U        |            | l U      | U        | 330            | 500                                   |
| Acenaphthene                                       | <u> </u> | [ <u>U</u> | UU                                               | UU        | UU         | υ          | U        | U        | 330            | 50,000                                |

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCe)

| SAMPLE ID<br>SAMPLE DEPTH (FT) | MSSBX-01<br>(4-6) | M\$\$8X-01<br>(6-8) | M\$SBX-01<br>(8-10) | M\$SBX-01<br>(10-12) | MSSBX-01<br>(12-14) | MSSBX-02<br>(4-6) | MSSBX-02<br>(6-8) | MSSBX-02<br>(8-10) | LABORATORY   | NYSDEC TAGM      |
|--------------------------------|-------------------|---------------------|---------------------|----------------------|---------------------|-------------------|-------------------|--------------------|--------------|------------------|
| DATE OF COLLECTION             | 2/6/03            | 2/6/03              | 2/6/03              | 2/6/03               | 2/6/03              | 2/6/03            | 2/6/03            | 2/6/03             | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR                |                   | 1                   | 1                   | 1                    | 1                   | 1                 | 1                 | 1                  | LIMITS       | Soli Cleanup     |
| PERCENT SOLIDS                 | 99.0              | 83.0                | 84.0                | 89.0                 | 85.0                | 99.0              | 98.0              | 93.0               |              | Objective        |
| UNITS                          | (ug/kg)           | (ug/kg)             | (ug/kg)             | (ug/kg)              | (ug/kg)             | (ug/kg)           | (ug/kg)           | (ug/kg)            | (ug/kg)      | (ug/kg)          |
| 2,4-Dinitrophenol              | υ                 | υ                   | υ                   | U                    | U                   | υ                 | υ υ               | υ                  | 330          | 200              |
| 4-Nitrophenol                  | ι υ               | υ                   | U                   | U                    | U                   | Ι υ               | ) υ               | υ                  | 330          | 100              |
| Dibenzofuran                   | ί υ               | υ                   | U                   | υ                    | U                   | υ [               | U U               | υ                  | 330          | 6,200            |
| 2,4-Dinitrotoluene             | υ υ               | U                   | U                   | U                    | U U                 | υ                 | υ                 | υ                  | 330          | I                |
| Diethylphthaiate               | υ υ               | U                   | U                   | U U                  | υ                   | υ                 | [ υ               | υ                  | 330          | 7,100            |
| 4-Chlorophenyi-phenylether     | U U               | U                   | U                   | U                    | υ                   | υ                 | l u               | ן טן               | 330          |                  |
| Fluorene                       | υ υ               | ( U                 | V                   | U                    | U                   | U                 | Ι υ               | ( U                | 330          | 50,000           |
| 4-Nitroanline                  | Ū                 | Ū                   | Ŭ                   | Ū                    | Ū                   | Ū                 | Ū                 | Ŭ                  | 330          |                  |
| 4,6-Dinitro-2-methylphanoi     | U U               | υ                   | U                   | Ū                    | U                   | υ                 | υ                 | υ                  | 330          |                  |
| N-Nitrosodiphenylamine         | υ                 | U                   | Ŭ                   | U                    | U                   | υ                 | U                 | U                  | 330          |                  |
| 4-Bromophenyl-phenylether      | l Ū               | Ū                   | Ū                   | U                    | Ū                   | Ū                 | Ú                 | Ū                  | 330          |                  |
| Hexachiorobenzene              | l ū               | U                   | Ū                   | U                    | Ū                   | l u               | υ                 | Ū                  | 330          | 410              |
| Pentachlorophenol              | l ū'              | Ū                   | Ū                   | Ū                    | Ū                   | Ū                 | Ū                 | Ū                  | 330          | 1,000            |
| Phenanthrane                   | l ŭ               | Ū                   | Ū                   | Ū                    | Ū                   | l ū               | l ũ               | Ū                  | 330          | 50,000           |
| Anthracene                     | ן ה               | Ū                   | Ŭ                   | Ū                    | i ŭ                 | ΙŪ                | i ŭ               | Ŭ                  | 330          | 50,000           |
| Carbazole                      | l ū               | Ŭ                   | Ū                   | Ũ                    | ŭ.                  | ່ ມັ              | l ŭ               | Ŭ                  | 330          |                  |
| Di-n-butyiphthalate            | υŬ                | Ŭ                   | Ŭ                   | Ū                    | ŭ                   | ΙŬ                | υ                 | Ŭ                  | 330          | 8,100            |
| Fluoranthene                   | l ŭ               | ĪŪ                  | Ŭ                   | Ū                    | l ŭ                 | l ŭ               | i ū               | Ū                  | 330          | 50,000           |
| Pyrene                         | í Ŭ               | ΙŪ                  | Ŭ                   | Ū                    | Ū.                  | υ                 | l ŭ               | ιŭ                 | 330          | 50,000           |
| Butyibenzyiphthalate           | Ŭ                 | Ū                   | Ū                   | Ŭ                    | i ŭ                 | l ŭ               | l ŭ               | Ū                  | 330          | 50,000           |
| 3.3-Dichlorobenzidine          | Ŭ                 | Ŭ                   | Ŭ                   | Ŭ                    | l ŭ                 | l ū               | l ŭ               | Ū                  | 330          |                  |
| Benzo(a)anthracene             | Ŭ                 | Ŭ                   | Ŭ                   | Ū                    | l ŭ                 | l ŭ               | i ŭ               | i ŭ                | 330          | 224              |
| Chrysene                       | Ŭ                 | Ŭ Ŭ                 | Ŭ                   | Ŭ                    | Ŭ                   | l ŭ               | Ιŭ                | Ū                  | 330          | 400              |
| bis(2-Ethylhexyl)phthalate     | Ŭ                 | ŭ                   | Ŭ                   | ี มี                 | ŭ                   | ιŭ                | บั                | บั                 | 330          | 50,000           |
| Di-n-octyiphthalate            | l ŭ               | Ū                   | Ŭ                   | Ŭ                    | Ū                   | Ū                 | l ū               | l ũ                | 330          | 50,000           |
| Benzo(b)fluoranthene           | l ŭ               | l ū                 | Ŭ                   | Ū                    | ŭ                   | ΙŬ                | l ŭ               | Ū                  | 330          | 1,100            |
| Benzo(k)fluoranthene           | Ŭ                 | Ŭ                   | Ŭ                   | Ŭ                    | l ŭ                 | l ŭ               | l ŭ               | Ĵ Ŭ                | 330          | 1,100            |
| Benzo(a)pyrene                 | Ŭ                 | Ŭ                   | Ŭ                   | Ŭ                    | ŭ                   | υ                 | l ŭ               | Ŭ                  | 330          | 61               |
| Indeno(1,2,3-cd)pyrene         | Ŭ                 | Ŭ                   | Ŭ                   | Ŭ                    | Ŭ,                  | Ŭ                 | l ŭ               | Ŭ                  | 330          | 3,200            |
| Dibenzo(a,h)anthracene         | Ŭ                 | Ŭ                   | Ŭ                   | Ŭ                    | i ü                 | l ŭ               | l ŭ               | Ŭ                  | 330          | 14               |
| Benzo(g,h,l)perviene           | Ŭ                 |                     | Ŭ                   | ບ ບ                  | Ĭ                   | ŭ                 | !                 | U U                | 330          | 50.000           |
| Lagren(A). (1) has have        |                   | U                   | 5                   | <b>v</b>             | 0                   |                   | Ĭ                 | Í                  |              | 00,000           |
| Total PAHs                     | 0                 | 0                   | 0                   | 0                    | 0                   | 0                 | 0                 | 0                  |              | 100,000          |
| Total CaPAHs                   | 0                 | 0                   | 0                   | 0                    | 0                   | 0                 | 0                 | 0                  | -            | 10,000           |
| Total SVOCs                    | 0                 | 0                   | 0                   | 0                    | 0                   | 0                 | 0                 | 0                  | - +          | 500,000          |

QUALIFIERS: U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

NOTES:

a .....

: Not applicable. \*\*

: Concentration exceeds NYSDEC TAGM 4046 Recommended Soil Cleanup Objective

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

## SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

|                              |          |          | _         |                |            |          |          |          |              | 1                |
|------------------------------|----------|----------|-----------|----------------|------------|----------|----------|----------|--------------|------------------|
| SAMPLE ID                    | MSSBX-02 | MSSBX-02 | M\$8BX-02 | MSSBX-03       | MSSBX-03   | MSSBX-03 | MSSBX-03 | MSSBX-03 |              |                  |
| SAMPLE DEPTH (FT)            | (10-12)  | (12-14)  | (14-16)   | (4-6)          | (6-8)      | (8-10)   | (10-12)  | (12-14)  | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION           | 2/6/03   | 2/6/03   | 2/6/03    | 2/3/03         | 2/3/03     | 2/6/03   | 2/6/03   | 2/6/03   | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR              | t        | ( 1 ;    | 1         | 1              | 1          | 1        | [ 1      | 1        | LIMITS       | Soil Cleanup     |
| PERCENT SOLIDS               | 89.0     | 86.0     | 84.0      | 97.0           | 98.0       | 94.0     | 93.0     | 85.0     |              | Objective        |
| UNITS                        | (ug/kg)  | (ug/kg)  | (ug/kg)   | (ug/kg)        | (ug/kg)    | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)      | (ug/kg)          |
| Phenol                       | υ        | υ        | υ         | υ              | υ<br>υ     | U        | υ<br>υ   | U        | 330          | 20               |
| bis(2-Chloroethyl)ether      | ľ ů      | Ŭ        | Ŭ         | . Ŭ            | l ŭ        | Ŭ        | Ŭ        | l ŭ      | 330          | 30               |
| 2-Chlorophenol               | Ŭ Ŭ      | Ŭ        | Ŭ         | Ŭ              | Ŭ          | ី បី     | U U      | Ü        | 330          |                  |
| 1.3-Dichlorobenzene          | Ŭ Ŭ      | υ        | Ŭ         | U U            | ιŭ         | U U      |          | -        | 330          | 800              |
| 1.4-Dichlorobanzana          | Ŭ        | Ŭ        | Ŭ         | Ŭ              | l ŭ        | u u      | -        |          | 330          |                  |
| 11,2-Dichlorobenzene         |          | U U      | Ŭ         |                |            |          |          | ່ ບ<br>ເ |              |                  |
| 2-Methylphenol               |          | υ        | Ŭ         |                |            |          |          |          | 330<br>330   | 100              |
| 2,2-oxybia (1-chloropropane) | l ŭ      | Ŭ        | Ŭ         |                | Ŭ          | i ŭ      |          |          | 330          |                  |
| 4-Methylphanol               |          | Ŭ        | νŬ        |                |            | U U      |          |          | 330          |                  |
| N-Nitroso-di-n-propylamine   | i ii     | Ŭ        | Ŭ         | ່ <del>ບ</del> | ι υ        | υ<br>υ   |          |          | 330          | 900              |
| Hexachloroethane             | U U      | Ŭ        | Ŭ         | . U            |            | ໄ ນ      | ມ ບ<br>ບ |          |              |                  |
| Nitrobenzene                 | Ŭ        | Ŭ        | Ŭ         | Ŭ              | l          | Ŭ        | l ŭ      | υ        | 330<br>330   | 200              |
| lisophorone                  | U U      | Ŭ        | Ŭ         | Ŭ              | i ü        | Ŭ        | ) ŭ      |          | 330          | 4,400            |
| 2-Nitrophenol                |          | Ŭ        | Ŭ         |                | ι υ<br>Ι υ | l u      | l U      | u u      | 330          |                  |
| 2,4-Dimethylphenol           |          | ບັ       | Ŭ         |                |            |          |          |          |              | 330              |
| 2.4-Dichlorophenol           | l ŭ      | U U      |           | -              |            | -        |          | -        | 330          |                  |
| 1,2,4-Trichlorobenzene       |          | U U      | Ų         | U U            | -          | L N      |          | U        | 330          | 400              |
| Naphthalene                  |          |          | U<br>U    | υυ             |            | ບ<br>ນ   | U U      | U        | 330          |                  |
| 4-Chioroaniline              |          | Ŭ        | Ŭ         |                | ) ບ        |          | ) !      | U U      | 330<br>330   | 13,000           |
| bis(2-Chloroethoxy)methane   | Ŭ        | U U      | Ŭ         | . U            |            | l ŭ      |          | บ<br>บ   | 330          | 220              |
| Hexachlorobutadiene          | υ        | U U      |           |                |            | -        | -        | -        |              | }                |
| 4-Chloro-3-methylphenol      |          | υ<br>υ   | U         |                | U U        | U U      | U U      | U U      | 330          |                  |
| 2-Methylnaphthalene          | U U      | υ        |           | U U            |            |          | U 1      | l 0      | 330          | 240              |
| Hexachlorocyclopentadiene    | υ        | υ        | υ         | ່ U<br>ບ       |            | U<br>U   | U U      | U U      | 330          | 36,400           |
| 2,4,6-Trichiorophenol        | Ŭ        | Ŭ        | Ŭ         |                | U U        | U U      |          |          | 330<br>330   |                  |
| 2,4,5-Trichlorophenol        | U U      | U U      | Ŭ         | Ŭ              | l ŭ        | l ŭ      |          |          | 330          |                  |
| 2-Chloronaphthalena          | U U      | U U      | Ŭ         | Ŭ              | ίυ         | l ŭ      | l ŭ      | ι υ<br>υ | 330          | 100              |
| 2-Nitroaniline               |          | U U      | Ŭ         |                | U U        |          |          |          | 330          | 430              |
| Dimethylphthalate            |          | ι υ<br>υ | υ         |                |            | U U      |          |          | 330          | 2,000            |
| Acenaphthylene               | l ŭ      | Ŭ        | υ         |                |            | υ<br>1 υ |          |          | 330          |                  |
| 2,6-Dinitrotoluene           | i ŭ      | Ŭ        | Ŭ         | ນັ             | Ŭ          | υ        |          | 1        | 330          | 41,000           |
| 3-Nitroaniline               | Ŭ        | Ŭ        | Ŭ         | Ŭ              | Ŭ          | ί υ      |          |          | 330          | 500              |
| Acenaphthene                 | 1 1      | U U      | U U       | U U            | ŭ          |          | ม ม      |          | 330          |                  |
|                              |          | <u> </u> |           |                |            |          | JV       |          | 330          | 50,000           |

یں به د تیسی

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                                                                                     | M\$\$BX-02<br>(10-12)<br>2/6/03<br>1<br>89.0<br>(ug/kg)                                     | M\$\$BX-02<br>(12-14)<br>2/6/03<br>1<br>86.0<br>(ug/kg) | MSSBX-02<br>(14-16)<br>2/6/03<br>1<br>84.0<br>(ug/kg) | M\$\$BX-03<br>(4-6)<br>2/3/03<br>1<br>97.0<br>(ug/kg) | M\$\$BX-03<br>(6-8)<br>2/3/03<br>1<br>98.0<br>(ug/kg)                                            | MSSBX-03<br>(8-10)<br>2/6/03<br>1<br>94.0<br>(ug/kg)                                        | M\$888X-03<br>(10-12)<br>2/6/03<br>1<br>93.0<br>(ug/kg)                           | M8\$8X-03<br>(12-14)<br>2/6/03<br>1<br>85.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg)                    | NYSDEC TAGM<br>4045 Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|
| 2,4-Dinitrophenol<br>4-Nitrophenol<br>Dibenzofuran<br>2,4-Dinitrotolusne<br>Diethylphthalate<br>4-Chlorophenyl-phenylether<br>Fluorene<br>4-Nitroaniline<br>4,6-Dinitro-2-methylphenol | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                         |                                                       |                                                       | 3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                        | 330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330 | 200<br>100<br>6,200<br>7,100<br>50,000                                  |
| N-Nitrosodiphenylamine<br>4-Bromophenyl-phenylether<br>Hexachlorobenzene<br>Pentachlorophenol<br>Phenanthrene<br>Anthracene<br>Carbazole<br>Di-n-butylphthalate                        | υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ                                                   | ככנטט                                                   | ccccc                                                 | ccccc                                                 | ccccc                                                                                            |                                                                                             | υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ                                              |                                                        | 330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330        | 410<br>1,000<br>50,000<br>50,000<br><br>6,100                           |
| Fluoranthene<br>Pyrene<br>Butylbenzylphthalate<br>3,3-Dichlorobenzidine<br>Benzo(a)anthracene<br>Chrysene<br>bis(2-Ethylhexyl)phthalate                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 2000<br>2000<br>2000                                    | cccc                                                  | cccc                                                  |                                                                                                  |                                                                                             | ບ<br>ນ<br>ບ<br>ບ<br>ບ<br>ບ                                                        | 000000000000000000000000000000000000000                | 330<br>330<br>330<br>330<br>330<br>330<br>330<br>330               | 50,000<br>50,000<br>50,000<br><br>224<br>400<br>50,000                  |
| Di-n-octylphthalate<br>Benzo(b)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(a)pyrene<br>Indeno(1,2,3-od)pyrene<br>Dibenzo(a,h)anthracene<br>Benzo(g,h,i)perylene                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                    |                                                       | CCCC                                                  | CCCCC                                                                                            | 00000                                                                                       | U U U U U U U U U U U                                                             | 000000000000000000000000000000000000000                | 330<br>330<br>330<br>330<br>330<br>330<br>330<br>330               | 50,000<br>1,100<br>1,100<br>81<br>3,200<br>14<br>50,000                 |
| Total PAHs<br>Total CaPAHs<br>Total SVOCs                                                                                                                                              | 0                                                                                           | 0<br>0<br>0                                             | 0<br>0                                                | 0<br>0<br>0                                           | 0<br>0                                                                                           | 000                                                                                         | 0<br>0<br>0                                                                       | 0<br>0<br>0                                            |                                                                    | 100,000<br>10,000<br>500,000                                            |

QUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

NOTES:

: Not applicable. -

Concentration exceeds NYSDEC TAGM 4046 Recommended Soil Cleanup Objective

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS | MSSBX-03<br>(14-16)<br>2/6/03<br>1<br>91.0 | MSSBX-03<br>(16-18)<br>2/6/03<br>1<br>99.0 | M\$\$BX-03<br>(18-20)<br>2/6/03<br>1<br>91.0 | MS\$BX-04<br>(4-6)<br>2/7/03<br>1<br>97.0 | M\$\$BX-04<br>(6-8)<br>2/7/03<br>1<br>92.0 | MS\$BX-04<br>(8-10)<br>2/7/03<br>1<br>88.0 | MSSBX-04<br>(10-12)<br>2/7/03<br>1<br>89.0 | MSSBX-04<br>(12-14)<br>2/7/03<br>1<br>86.0 | LABORATORY<br>QUANTITATION<br>LIMITS | NYSDEC TAGM<br>4046 Recommended<br>Soil Cleanup<br>Objective |
|-------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------|--------------------------------------------------------------|
| UNITS                                                                                     | (ug/kg)                                    | (ug/kg)                                    | (ug/kg)                                      | (ug/kg)                                   | (ug/kg)                                    | (ug/kg)                                    | (ug/kg)                                    | (ug/kg)                                    | _(ug/kg)                             | (ug/kg)                                                      |
|                                                                                           |                                            |                                            |                                              |                                           |                                            |                                            |                                            |                                            |                                      |                                                              |
| Phenol<br>bis(2-Chloroethyl)ether                                                         | U<br>U                                     |                                            | U I                                          | U                                         | U                                          | U U                                        | U U                                        | U                                          | 330                                  | 30                                                           |
| 2-Chiorophenol                                                                            | U U                                        | Ŭ                                          | U<br>U                                       |                                           | U U                                        | บ<br>บ                                     | L U                                        | •                                          | 330<br>330                           |                                                              |
| 1.3-Dichlorobenzene                                                                       | υ                                          |                                            | U U                                          | U U                                       | U<br>U                                     | U U                                        |                                            | U                                          | 330                                  | 800                                                          |
| 1.4-Dichiorobenzene                                                                       | υ                                          | U U                                        | Ŭ                                            | 0                                         |                                            | U U                                        |                                            | U U                                        |                                      |                                                              |
| 1.2-Dichlorobenzene                                                                       | U U                                        | U U                                        |                                              | U U                                       |                                            | •                                          |                                            |                                            | 330                                  |                                                              |
| 2-Methylphenol                                                                            | Ŭ                                          | -                                          | U                                            | U                                         | 5                                          | U                                          | U                                          | U                                          | 330                                  |                                                              |
| 2.2-oxybis (1-chloropropane)                                                              | ι υ<br>υ                                   | ບ<br>ນ                                     | U U                                          | U                                         | U                                          | U                                          |                                            | U U                                        | 330                                  | 100                                                          |
| 4-Methylphenol                                                                            | ບ<br>ບ                                     | υ                                          | U<br>ט                                       | υ<br>υ                                    |                                            | U<br>U                                     | UUU                                        | UU                                         | 330<br>330                           | 900                                                          |
| N-Nitroso-di-n-propylamine                                                                | ม<br>บ                                     | υ<br>υ                                     | υ υ                                          | υ<br>υ                                    |                                            | ບ ບ                                        | U U                                        |                                            | 330                                  |                                                              |
| Hexachloroathane                                                                          | Ŭ                                          | υŬ                                         | υŬ                                           | υ                                         | U U                                        | U U                                        | -                                          | U U                                        |                                      |                                                              |
| Nitrobanzane                                                                              | υ                                          | υ                                          | -                                            |                                           |                                            |                                            | ļ                                          | -                                          | 330                                  |                                                              |
|                                                                                           | -                                          | -                                          | U                                            | U.                                        |                                            | U                                          |                                            | U                                          | 330                                  | 200                                                          |
| Isophorone                                                                                | <u> </u>                                   | U U                                        | U U                                          | U                                         |                                            | U U                                        | U                                          | U                                          | 330                                  | 4,400                                                        |
| 2-Nitrophenol                                                                             | υ<br>υ                                     | ບ<br>ບ                                     | υ                                            | U                                         | U U                                        |                                            | L U                                        | U                                          | 330                                  | 330                                                          |
| 2,4-Dimethylphenol<br>2,4-Dichlorophenol                                                  | U U                                        | U U                                        | υ                                            | ບ<br>ບ                                    |                                            | U U                                        |                                            | U U                                        | 330                                  | -                                                            |
| 1.2.4-Trichlorobenzene                                                                    | υ                                          | -                                          | U U                                          | -                                         | 0                                          | i u                                        |                                            | U                                          | 330                                  | 400                                                          |
|                                                                                           | -                                          | U                                          | U                                            | υ                                         | υ                                          | U                                          | U                                          | U                                          | 330                                  | [ [                                                          |
| Naphthalene                                                                               | U                                          | U                                          | υ                                            | υ                                         | U                                          | l U                                        | U U                                        | U                                          | 330                                  | 13,000                                                       |
| 4-Chioroaniline                                                                           | U                                          | U                                          | υ                                            | υ                                         | U                                          | U                                          | U                                          | U                                          | 330                                  | 220                                                          |
| bis(2-Chloroethoxy)methane                                                                | U                                          | U                                          | U                                            | υ                                         | U                                          | U                                          | U U                                        | U                                          | 330                                  |                                                              |
| Hexachiorobutadiene                                                                       | U U                                        | U                                          | U                                            | U                                         | U                                          | U                                          | U                                          | υ                                          | 330                                  |                                                              |
| 4-Chioro-3-methylphenol                                                                   | U                                          | U U                                        | U                                            | U                                         |                                            | U                                          | U                                          | U                                          | 330                                  | 240                                                          |
| 2-Methylnaphthalene                                                                       | U U                                        | U                                          | U .                                          | U                                         | Ų                                          | U                                          | ) U                                        | U                                          | 330                                  | 36,400                                                       |
| Hexachiorocyclopentadiene                                                                 | U U                                        | U                                          | U                                            | U                                         | U                                          | U                                          | υ                                          | U                                          | 330                                  |                                                              |
| 2,4,6-Trichlorophenol                                                                     | U U                                        | U                                          | U                                            | U                                         | U                                          | U                                          | U                                          | U                                          | 330                                  |                                                              |
| 2,4,5-Trichlorophenol<br>2-Chioronaphthalene                                              | U                                          | U.                                         | U                                            | U U                                       | U                                          | U U                                        | l U                                        | U                                          | 330                                  | 100                                                          |
| 2-Chloronaphinalene                                                                       | U U                                        | U U U                                      | U                                            | U U                                       |                                            | U                                          | U                                          | U                                          | 330                                  |                                                              |
| Dimethylphthalate                                                                         |                                            |                                            | U                                            | U U                                       |                                            | U                                          | U U                                        | U                                          | 330                                  | 430                                                          |
|                                                                                           |                                            | U                                          | U                                            | U                                         | U                                          | U                                          | U U                                        | U                                          | 330                                  | 2,000                                                        |
| Acenaphthylene                                                                            |                                            | U                                          | U                                            | U                                         | U                                          | U                                          | - U                                        | U                                          | 330                                  | 41,000                                                       |
| 2,6-Dinitrotoluene                                                                        | U                                          | U                                          | U                                            | U U                                       | U                                          | U                                          | l u                                        | U                                          | 330                                  | 1,000                                                        |
| 3-Nitroaniline                                                                            | U<br>U                                     | U U                                        | U                                            | U                                         | U                                          | U                                          | L U                                        | U                                          | 330                                  | 500                                                          |
| Acenaphthene                                                                              | · · · · · · · · · · · · · · · · · · ·      | <u> </u>                                   | UU                                           | U                                         | U                                          | U                                          | U                                          | U                                          | 330                                  | 50,000                                                       |

- 2000 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100

t

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCa)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MSSBX-03<br>(14-16)<br>2/6/03<br>1<br>91,0<br>(ug/kg) | MSSBX-03<br>(16-18)<br>2/6/03<br>1<br>99.0<br>(ug/kg) | MSSBX-03<br>(18-20)<br>2/6/03<br>1<br>91.0<br>(ug/kg) | MS\$BX-04<br>(4-6)<br>2/7/03<br>1<br>97.0<br>(ug/kg) | MSSBX-04<br>(6-8)<br>2/7/03<br>1<br>92.0<br>(ug/kg) | MSSBX-04<br>(8-10)<br>2/7/03<br>1<br>88.0<br>(ug/kg) | MSSBX-04<br>(10-12)<br>2/7/03<br>1<br>89.0<br>(ug/kg) | MSSBX-04<br>(12-14)<br>2/7/03<br>1<br>86.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg)                    | NYSDEC TAGM<br>4048 Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|
| 2,4-Dinitrophenol<br>4-Nitrophenol<br>Dibenzofuran<br>2,4-Dinitrotoluene<br>Diathylphthalate<br>4-Chiorophenyl-phenylether<br>Fluorene<br>4-Nitrosodiphenylemine<br>4-Stromophenyl-phenylether<br>Hexachlorobenzene<br>Pentachlorobenzene<br>Pentachlorobenzene<br>Pentachlorophenol<br>Phenanthrene<br>Anthracene<br>Carbazole<br>Di-n-butylphthalate<br>Fluoranthene<br>Pyrene<br>Butylbenzylphthalate<br>3,3-Dichiorobenzidine<br>Benzo(a)anthracene<br>Chrysene<br>bis(2-Ethylhexyl)phthalate<br>Di-n-octylphthalate<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(a)pyrene<br>Dibenzo(a,h)anthracene |                                                       |                                                       |                                                       |                                                      |                                                     |                                                      |                                                       |                                                       | 330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330 | 200<br>100<br>8,200<br>                                                 |
| Benzo(g,h,i)perylene<br>Total PAHs<br>Total CaPAHs<br>Total SVOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U<br>0<br>0<br>0                                      | U<br>0<br>0                                           | U<br>0<br>0<br>0                                      | 0<br>0<br>0                                          | 0                                                   | 0<br>0<br>0                                          | 0<br>0<br>0                                           | 0<br>0<br>0                                           | 330                                                                | 50,000<br>100,000<br>10,000<br>500,000                                  |

QUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

## NOTES:

: Not applicable. --

: Concentration exceeds NYSDEC TAGM 4046 Recommended Soll Cleanup Objective

الأجار المتواجة الأردان

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

## SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | MSSBX-04<br>(14-16)<br>2/7/03<br>1<br>66.0<br>(ug/kg) | M\$SBX-04<br>(16-18)<br>2/7/03<br>1<br>84.0<br>(ug/kg) | MSSBX-04<br>(18-20)<br>2/7/03<br>1<br>82.0<br>(ug/kg) | MSSBX-05<br>(4-6)<br>2/7/03<br>- 1<br>98.0<br>(ug/kg) | MSSBX-05<br>(8-8)<br>2/7/03<br>1<br>99.0<br>(ug/kg) | MSSBX-05<br>(8-10)<br>2/7/03<br>1<br>97.0<br>(ug/kg) | MS\$BX-05<br>(10-12)<br>2/7/03<br>1<br>94.0<br>(ug/kg) | MSSBX-05<br>(12-14)<br>2/7/03<br>1<br>94.0<br>(ug/kg)                                       | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC TAGM<br>4048 Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|
| Phenol<br>bis(2-Chlorosthyl)ether<br>2-Chlorophenol<br>1.3-Dichlorobenzene                         | U<br>U<br>U<br>U                                      | U<br>U<br>U<br>U                                       | ນ<br>ນ<br>ນ                                           | ບ<br>ບ<br>ບ                                           | U<br>U<br>U                                         | U<br>U<br>U                                          | U<br>U<br>U<br>U                                       | U<br>U<br>U<br>U                                                                            | 330<br>330<br>330                               | 30<br>800                                                               |
| 1,4-Dichlorobenzene<br>1,2-Dichlorobenzene<br>2-Methylphenol                                       | U<br>U<br>U                                           | U<br>U<br>U                                            | ບ<br>ບ<br>ບ<br>ບ                                      | ບ<br>ບ<br>ບ                                           |                                                     |                                                      | 0<br>0<br>0                                            | U<br>U<br>U                                                                                 | 330<br>330<br>330<br>330                        |                                                                         |
| 2,2-oxybis (1-chloropropane)<br>4-Methylphenol<br>N-Nitroso-di-n-propylamine                       | U<br>U<br>U                                           | ม<br>บ<br>บ                                            | ບ<br>ບ<br>ບ                                           | ບ<br>ບ<br>ບ                                           | U<br>U<br>U                                         | U<br>U<br>U                                          | U<br>U<br>U<br>U                                       |                                                                                             | 330<br>330<br>330                               | 900                                                                     |
| Hexachlorgethane<br>Nitrobenzene<br>Isophorone<br>2-Nitrophenol                                    | บ<br>บ<br>บ<br>บ                                      | ບ<br>ບ<br>ບ                                            | ບ<br>ບ<br>ບ                                           | U<br>U<br>U                                           | U<br>U<br>U                                         | U<br>U<br>U                                          | U<br>U<br>U                                            | U<br>U<br>U                                                                                 | 330<br>330<br>330                               | 200<br>4,400                                                            |
| 2,4-Dimethylphenol<br>2,4-Dichlorophenol<br>1,2,4-Trichlorophenzene                                | U<br>U<br>U                                           | ບ<br>ບ<br>ບ<br>ບ                                       | ບ<br>ບ<br>ບ<br>ບ                                      | υ<br>Ψ<br>υ<br>υ                                      | U<br>U<br>U                                         | U<br>U<br>U<br>U                                     | ม<br>ม<br>ม<br>ม                                       | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U | 330<br>330<br>330<br>330                        | 330<br>                                                                 |
| Naphthalene<br>4-Chloroaniline<br>bis(2-Chloroethoxy)methane<br>Hexachlorobutadiene                | U<br>U<br>U<br>U                                      | ນ<br>ບ<br>ບ<br>ບ                                       | ບ<br>ບ<br>ບ<br>ບ                                      | ט<br>ט<br>ט                                           | U<br>U<br>U                                         |                                                      |                                                        |                                                                                             | 330<br>330<br>330<br>330<br>330                 | 13,000<br>220<br>                                                       |
| 4-Chloro-3-methylphenol<br>2-Methylnaphthalene<br>Hexachlorocyclopentadiene                        | 5<br>0<br>0<br>0                                      | 5<br>5<br>5<br>7<br>7                                  | 0<br>U<br>U<br>U                                      | บ<br>บ<br>บ                                           | ບ<br>ບ<br>ບ<br>ບ                                    |                                                      |                                                        | 0<br>0<br>0<br>0                                                                            | 330<br>330<br>330<br>330                        | 240<br>36,400                                                           |
| 2,4,6-Trichlorophenol<br>2,4,5-Trichlorophenol<br>2-Chloronaphthalene<br>2-Nitroaniline            | U<br>U<br>U                                           | <b>U</b><br>U<br>U                                     | U<br>U<br>U                                           | ບ<br>ບ<br>ບ                                           | ນ<br>ນ<br>ນ                                         | U<br>U<br>U                                          | U<br>U<br>U                                            | U<br>U<br>U                                                                                 | 330<br>330<br>330                               | 100                                                                     |
| 2-Nitroaniine<br>Dimethylphthalate<br>Acenaphthylane<br>2,6-Dinitrotoluene                         | U<br>U<br>U<br>U                                      | U<br>U<br>U<br>U                                       |                                                       | U<br>U<br>U<br>U                                      | ບ<br>ບ<br>ບ<br>ບ                                    | ט<br>ט<br>ט                                          |                                                        |                                                                                             | 330<br>330<br>330<br>330                        | 430<br>2,000<br>41,000<br>1,000                                         |
| 3-Nitroaniline<br>Acenaphthene                                                                     | Ü<br>U                                                | U<br>U                                                 | Ŭ                                                     | U<br>U                                                | Ü                                                   | ບ<br>ບ                                               | U<br>U                                                 | ม<br>บ                                                                                      | 330<br>330                                      | 500<br>50,000                                                           |

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | MSSBX-04<br>(14-16)<br>2/7/03<br>1<br>86.0<br>(ug/kg) | MSSBX-04<br>(16-18)<br>2/7/03<br>1<br>84.0<br>(ug/kg) | M\$\$8X-04<br>(18-20)<br>2/7/03<br>1<br>(ug/kg) | MSSBX-05<br>(4-6)<br>2/7/03<br>1<br>98.0<br>(ug/kg) | MSSBX-05<br>(6-8)<br>2/7/03<br>1<br>99.0<br>(ug/kg) | MSSBX-05<br>(8-10)<br>2/7/03<br>1<br>97.0<br>(ug/kg) | MS\$BX-05<br>(10-12)<br>2/7/03<br>1<br>94.0<br>(ug/kg) | M\$\$BX-05<br>(12-14)<br>2/7/03<br>1<br>94.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC TAGM<br>4046 Recommended<br>Soll Cleanup<br>Objective<br>(ua/kg) |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|
|                                                                                                    |                                                       |                                                       | (39,19)                                         |                                                     |                                                     |                                                      |                                                        |                                                         |                                                 |                                                                         |
| 2,4-Dinitrophenol                                                                                  | υ                                                     | U                                                     | U                                               | U                                                   | U                                                   | υ –                                                  | ί υ                                                    | υ                                                       | 330                                             | 200                                                                     |
| 4-Nitrophenol                                                                                      | U U                                                   | U                                                     | U                                               | U                                                   | U                                                   | U                                                    | I U                                                    | U                                                       | 330                                             | 100                                                                     |
| Dibenzofuran                                                                                       | U U                                                   | U                                                     | U                                               | U                                                   | U U                                                 | U                                                    | ) U                                                    | U                                                       | 330                                             | 6,200                                                                   |
| 2,4-Dinitrotoluene                                                                                 | U                                                     | U                                                     | U                                               | U                                                   | U U                                                 | U                                                    | U U                                                    | U                                                       | 330                                             |                                                                         |
| Diethylphthalate                                                                                   | U                                                     | U U                                                   | U .                                             | U                                                   | U                                                   | i U                                                  | ( U                                                    | U                                                       | 330                                             | 7,100                                                                   |
| 4-Chlorophenyl-phenylether                                                                         | U !                                                   | U                                                     | U U                                             | U                                                   | U                                                   | U U                                                  | { U                                                    | U                                                       | 330                                             |                                                                         |
| Fluorene                                                                                           | U                                                     | U                                                     | U                                               | U                                                   | U                                                   | ] ປ                                                  | U                                                      | U                                                       | 330                                             | 50,000                                                                  |
| 4-Nitroanline                                                                                      | U                                                     | U                                                     | U                                               | U                                                   | U                                                   | U                                                    | U                                                      | U                                                       | 330                                             |                                                                         |
| 4,6-Dinitro-2-methylphenol                                                                         | יט                                                    | U                                                     | U                                               | U                                                   | i U                                                 | U                                                    | ( U                                                    | . U                                                     | 330                                             |                                                                         |
| N-Nitrosodiphenylamine                                                                             | U                                                     | U U                                                   | U                                               | U                                                   | U                                                   | U U                                                  | U U                                                    | U                                                       | 330                                             |                                                                         |
| 4-Bromophenyi-phenylether                                                                          | ן ט                                                   | ( U                                                   | U                                               | U                                                   | U                                                   | U U                                                  | ) U                                                    | U                                                       | 330                                             |                                                                         |
| Hexachlorobenzene                                                                                  | U U                                                   | U U                                                   | U                                               | U                                                   | U                                                   | U                                                    | U                                                      | ) บ                                                     | 330                                             | 410                                                                     |
| Pentachlorophenoi                                                                                  | U                                                     | U U                                                   | U                                               | U                                                   | U                                                   | ( υ                                                  | U U                                                    | U                                                       | 330                                             | 1,000                                                                   |
| Phenanthrene                                                                                       | U U                                                   | ) U                                                   | υ                                               | U                                                   | U                                                   | υ                                                    | i U                                                    | U U                                                     | 330                                             | 50,000                                                                  |
| Anthracene                                                                                         | U                                                     | U                                                     | U                                               | U                                                   | U                                                   | ļ υ                                                  | U U                                                    | U                                                       | 330                                             | 50,000                                                                  |
| Carbazole                                                                                          | U                                                     | U U                                                   | U                                               | U                                                   | U                                                   | U U                                                  | l U                                                    | U                                                       | 330                                             |                                                                         |
| Di-n-butyiphthalete                                                                                | U U                                                   | U                                                     | U U                                             | U                                                   | U                                                   | U U                                                  | ( U                                                    | U U                                                     | 330                                             | 8,100                                                                   |
| Fluoranthene                                                                                       | 1 U                                                   | U U                                                   | U                                               | U                                                   | U                                                   | U U                                                  | U U                                                    | U                                                       | 330                                             | 50,000                                                                  |
| Pyrene                                                                                             | υ                                                     | ίU                                                    | U                                               | U                                                   | υ                                                   | υ                                                    | Ι υ                                                    | U                                                       | 330                                             | 50,000                                                                  |
| Butyibenzyiphthalate                                                                               | U U                                                   | υ                                                     | U                                               | U                                                   | U                                                   | U U                                                  | U U                                                    | ļ U                                                     | 330                                             | 50,000                                                                  |
| 3,3-Dichlorobenzidine                                                                              | U U                                                   | ) U                                                   | U                                               | U                                                   | U                                                   | <u>ι</u> υ                                           | U U                                                    | U U                                                     | 330                                             |                                                                         |
| Benzo(a)anthracene                                                                                 | U 1                                                   | U                                                     | U U                                             | U                                                   | U                                                   | U                                                    | U                                                      | U U                                                     | 330                                             | 224                                                                     |
| Chrysene                                                                                           | - U '                                                 | 1 U                                                   | U                                               | U                                                   | U U                                                 | ) ປ                                                  | <u>ا</u> ا                                             | U                                                       | 330                                             | 400                                                                     |
| bis(2-Ethylhexyl)phthalate                                                                         | L U                                                   | U                                                     | U                                               | U I                                                 | l U                                                 | 55 J                                                 | U                                                      | U                                                       | 330                                             | 50,000                                                                  |
| Di-n-octyiphthalate                                                                                | U                                                     | [ น                                                   | Ŭ                                               | U                                                   | U                                                   | U U                                                  | U                                                      | U                                                       | 330                                             | 50,000                                                                  |
| Benzo(b)fluoranthene                                                                               | U U                                                   | U                                                     | U                                               | U                                                   | U                                                   | U U                                                  | U U                                                    | U                                                       | 330                                             | 1,100                                                                   |
| Benzo(k)/luoranthene                                                                               | U                                                     | U                                                     | U                                               | ų                                                   | U U                                                 | U                                                    | U                                                      | U                                                       | 330                                             | 1,100                                                                   |
| Benzo(a)pyrene                                                                                     | U                                                     | U                                                     | U                                               | U                                                   | U                                                   | U                                                    | U                                                      | U U                                                     | 330                                             | 61                                                                      |
| Indeno(1,2,3-cd)pyrene                                                                             |                                                       | U                                                     | U                                               | U                                                   | U                                                   | U                                                    | U U                                                    | U                                                       | 330                                             | 3,200                                                                   |
| Dibenzo(a,h)anthracene                                                                             | ן ט                                                   | U                                                     | ע                                               | U                                                   | U                                                   |                                                      | U                                                      | U                                                       | 330                                             | 14                                                                      |
| Benzo(g,h,i)perylene                                                                               | U                                                     | U                                                     | U                                               | U                                                   | U                                                   | U                                                    | U                                                      | U                                                       | 330                                             | 50,000                                                                  |
| Total PAHs                                                                                         | 0                                                     | 0                                                     | 0                                               | 0                                                   | 0                                                   | 0                                                    | 0                                                      | 0                                                       |                                                 | 100,000                                                                 |
| Total CaPAHs                                                                                       | 0                                                     | 0                                                     | 0                                               | 0                                                   | 0                                                   | 0                                                    | 0                                                      | 0                                                       |                                                 | 10,000                                                                  |
| Total SVOCs                                                                                        | 0                                                     | 0                                                     | 0                                               | 0                                                   | 0                                                   | 55                                                   | 0                                                      | 0                                                       |                                                 | 500,000                                                                 |

QUALIFIERS: U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

## NOTES:

Э

.....

: Not applicable. ]: Concentration exceeds NYSDEC TAGM 4046 Recommended Soil Cleanup Objective

à.

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

## SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                      | MSSBX-05 | MSSBX-05 | MSSBX-05 | 116687 77 |          |          |            |            |              |                  |
|--------------------------------|----------|----------|----------|-----------|----------|----------|------------|------------|--------------|------------------|
|                                |          |          |          | MSSBX-06  | MSSBX-06 | MSSBX-07 | MSSBX-07   | MSSBX-07   |              |                  |
| SAMPLE DEPTH (FT)              | (14-16)  | (16-18)  | (18-20)  | (4-6)     | (8-8)    | (4-6)    | (6-8)      | (8-10)     | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION             | 2/7/03   | 2/7/03   | 2/7/03   | 2/6/03    | 2/6/03   | 2/6/03   | 2/6/03     | 2/6/03     | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR                |          |          | 1        | 1         | 1        | 1        | 1          | 1          | LIMITS       | Boil Cleanup     |
| PERCENT SOLIDS                 | 88.0     | 90.0     | 92.0     | 90.0      | 96.0     | 97.0     | 98.0       | 97.0       |              | Objective        |
| UNITS                          | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)   | (ug/kg)  | (ug/kg)  | (ug/kg)    | (ug/kg)    | (ug/kg)      | (ug/kg)          |
| Phenol                         | U        | υ        | υ        | υ         | U        | υ.<br>Ú  | υ          | U          | 330          | 30               |
| bis(2-Chioroethyl)ether        | l ũ      | l ū      | ່ ບໍ່    | ı Ŭ       | Ŭ        | ŭ        | Ŭ          | U U        | 330          |                  |
| 2-Chlorophenol                 | i i      | . Ŭ      | บั       | ັບ        | . Ŭ      | Ŭ        | Ŭ          | Ŭ          | 330          | 800              |
| 1.3-Dichlorobenzene            | i ii     | l ä      | . ប      | ບ<br>ບ    | ບ<br>ນ   | U U      | υ          | U U        | 330          | 600              |
| 1.4-Dichlorobenzene            | i ii     | l ŭ      | Ŭ        | Ŭ         | ບ<br>ບ   | ບ<br>ບ   | Ŭ          | Ŭ          | 330          |                  |
| 1,2-Dichlorobenzene            | i ii     | i i      | i i      | Ŭ         | U U      | มี<br>เ  | ม<br>บ     | U U        | 330          |                  |
| 2-Methylphenol                 | i i      | Ŭ        | i i i    | ŭ         | l ŭ      | l ü      | U U        | Ŭ          | 330          | 100              |
| 2,2-oxybis (1-chloropropane)   |          | Ŭ        | U U      | Ŭ         | . U      | Ŭ        | Ŭ          | Ŭ          | 330          |                  |
| 4-Methylphenol                 | 1 N      | U U      | U U      | Ŭ         | Ŭ        | U U      | 0          | υ          | 330          | 900              |
| N-Nitroso-di-n-propylamine     |          | ม ม      | U U      |           | l ü      | -        |            | -          |              | 900              |
| iHexachioroethane              |          | U U      | -        | U<br>U    |          | U        | !!         | U U        | 330          | -                |
| Nitrobenzene                   |          |          | U<br>U   |           | U U      | U        | l 9        | U U        | 330          |                  |
|                                | l ŭ      | υ        | -        | U U       | U U      | U U      | l U        |            | 330          | 200              |
|                                | -        | -        | U U      | U         | U U      | l V      | U U        | U U        | 330          | 4,400            |
| 2-Nitrophenol                  | U .      | U U      | U        | U         | l v      | U        | U          | U          | 330          | 330              |
| 2,4-Dimethylphenol             | U U      | U        | U        |           | U        | Ų        | U          | U          | 330          |                  |
| 2,4-Dichlorophenol             | U U      | V        | U U      | U         | U        | U        | U U        | [ <u>U</u> | 330          | 400              |
| 1,2,4-Trichlorobenzene         | L U      | U U      | υ        | U U       |          | U U      | l U        | U U        | 330          |                  |
| Naphthalene<br>I4-Chlomaniline | U        | U U      | U U      | U         | ' U      | U U      |            |            | 330          | 13,000           |
|                                | ( U      | U        |          |           | U        | U        | U          | U          | 330          | 220              |
| bis(2-Chloroethoxy)methane     |          | U        | . U      | 'U        | U        | U        | U          | U          | 330          |                  |
| Hexachiorobutadiene            | U        | U        | U        | U         | U        | U        | U          | υ          | 330          |                  |
| 4-Chloro-3-methylphenol        | U        | U        | U        | U         | U        | U        | U          | U          | 330          | 240              |
| 2-Methylnaphthalene            |          | U U      | U        | U         | U        | U        | U U        | U          | 330          | 36,400           |
| Hexachlorocyclopentadiene      | U U      | ្រ       | U U      | U         | U U      | U        | L U        | U U        | 330          |                  |
| 2,4,8-Trichlorophenol          | l U      | U U      | U        |           | U.       | U        | U U        | U U        | 330          |                  |
| 2,4,5-Trichlorophenol          | U        | U U      | U        | U         | Ų        | U        | U U        | U U        | 330          | 100              |
| 2-Chloronaphthaiene            | U U      | U        | υ        | U         | U        | U        | U          | U          | 330          |                  |
| 2-Nitroanline                  | U        | Ų        | Ų        | U         | U        | U        | U          | יט         | 330          | 430              |
| Dimethylphthalate              | U        | U        | υ        | υ         | U        | U        | ) <u> </u> | υ          | 330          | 2,000            |
| Acenaphthylene                 | U        | U U      | U        | U         | U        | υ        | U U        | U U        | 330          | 41,000           |
| 2,8-Dinitrotoluene             | U        | U        | U        | U         | U        | υ        | υ          | υ          | 330          | 1,000            |
| 3-Nitroaniline                 | Į U      |          | U        | U         | U        | υ        | υ          | υ          | 330          | 500              |
| Acenaphthene                   | ) U      | U        | Ŭ        | U         | U        | U        | U          | U          | 330          | 50,000           |

. . . .

## MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                  | MSSBX-05 | MSSBX-05       | MSSBX-05 | MSSBX-06 | MSSBX-06 | MSSBX-07 | MSSBX-07 | MSSBX-07 |              |                  |
|----------------------------|----------|----------------|----------|----------|----------|----------|----------|----------|--------------|------------------|
| SAMPLE DEPTH (FT)          | (14-16)  | (16-18)        | (18-20)  | (4-6)    | (6-8)    | (4-6)    | (6-8)    | (8-10)   | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION         | 2/7/03   | 2/7/03         | 2/7/03   | 2/6/03   | 2/6/03   | 2/6/03   | 2/6/03   | 2/6/03   | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR            | 1        | 1              | 1        | 1        | 1        | 1        | 1        | 1        | LIMITS       | Soll Cleanup     |
| PERCENT SOLIDS             | 88.0     | 90.0           | 92.0     | 90.0     | 96.0     | 97.0     | 98.0     | 97.0     |              | Objective        |
| UNITS                      | (ug/kg)  | (ug/kg)        | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)      | (ug/kg)          |
|                            |          | (+9            | (-g g /  | (+33)    | (+00/    | (        | (49/10)  | <u> </u> |              |                  |
| 2,4-Dinitrophenol          | U        | U              | υ        | U        | U        | U        | υ        | υ        | 330          | 200              |
| 4-Nitrophenol              | υ Ι      | ι υ            | U        | U        | U        | U        | i u      | ן ט      | 330          | 100              |
| Dibenzofuran               | Ū        | Ū              | U        | υ        | Ū        | Ū        | ιŭ       | Ū        | 330          | 6,200            |
| 2,4-Dinitrotoluene         | Ū        | Ū              | Ū        | Ŭ        | Ŭ        | Ū        | l Ū      | Ŭ        | 330          |                  |
| Diethylphthalate           | Ū        | Ū              | Ŭ        | Ũ        | Ū        | Ū        | l Ū      | Ū        | 330          | 7,100            |
| 4-Chlorophenyl-phenylether | Ū        | Ū              | Ū        | U        | Ū        | Ū        | Ū        | Ū        | 330          |                  |
| Fluorene                   | U        | U              | U        | U U      | Ū        | Ū        | ) Ū      | Ū        | 330          | 50,000           |
| 4-Nitroaniline             | υ υ      | U              | U        | U U      | U        | U        | Ι υ      | ί υ      | 330          |                  |
| 4,6-Dinitro-2-methylphenol | U U      | U              | U        | ] υ      | U        | υ.       | υ        | υ        | 330          | ~~               |
| N-Nitrosodiphenyiamine     | Ū        | Ū              | Ū        | U        | Ū        | Ū        | Î Ū      | Ū        | 330          |                  |
| 4-Bromophenyl-phenylether  | Í Ŭ      | Ū              | Ū        | Ŭ        | Ŭ        | Ū        | l ū      | Ũ        | 330          |                  |
| Hexachlorobenzene          | Ū        | Ŭ              | Ū        | Ū        | Ū        | ΙŪ       | Ū        | Ŭ        | 330          | 410              |
| Pentachiorophenol          | Ū        | i Ū            | Ū        | Ŭ        | ı Ü      | ĪŪ       | l Ū      | L Ū.     | 330          | 1,000            |
| Phenanthrene               | { U      | Ū              | ט ו      | U        | Ū        | Ū        | Ū        | Î Û      | 330          | 50,000           |
| Anthracene                 | Ú        | ບ              | Ū        | Ū        | Ŭ        | Ū        | Ū        | Ŭ        | 330          | 50,000           |
| Carbazole                  | Ŭ        | Ū              | Ū        | Ū        | ı Ū      | Ū        | l Ū      | Ŭ        | 330          |                  |
| Di-n-butyiphthalate        | Î Ū      | Ū              | Ū        | Ū        | 54 J     | Ū        | ĪŪ       | Ū        | 330          | 8,100            |
| Fluoranthene               | Ū        | Ū              | Ũ        | U        | Ū        | Ū        | Ĵ Ū      | Ū        | 330          | 50,000           |
| Pyrane                     | U U      | υ              | U        | U        | Ű        | υ        | U        | Ū        | 330          | 50,000           |
| Butylbenzylphthalate       | ί υ      | U.             | ປ        | U        | υ        | ί U      | υ υ      | ט ו      | 330          | 50,000           |
| 3.3-Dichlorobenzidine      | Ū        | Ū              | U        | Ū        | Ū        | Ú        | υ 1      | Ű        | 330          |                  |
| Benzo(a)anthracene         | Ú        | Ū              | Ū        | U        | Ū        | Ū        | Ι υ      | Ū        | 330          | 224              |
| Chrysene                   | Ū        | U              | U        | Ū        | Ū        | Ū        | l ū      | Ū        | 330          | 400              |
| bis(2-Ethylhexyl)phthalate | υ υ      | υ              | U        | υ        | U        | Ū        | į Ū      | U        | 330          | 50,000           |
| Di-n-octyiphthalate        | U U      | U              | υ        | ່ ປ່     | U        | U U      | ( U      | υ        | 330          | 50,000           |
| Benzo(b)fluoranthene       | U        | U              | U        | U        | U        | U        | U        | U        | 330          | 1,100            |
| Benzo(k)fluoranthene       | U        | υ              | U        | U        | U        | υ        | υ        | U        | 330          | 1,100            |
| Benzo(a)pyrene             | Ū        | U              | Ū,       | Ū        | Ŭ        | Ū        | Ū        | Ū        | 330          | 61               |
| Indeno(1,2,3-cd)pyrene     | U        | U              | Ū        | Ū        | Ũ        | Ū        | υ        | ט (      | 330          | 3,200            |
| Dibenzo(a,h)anthracene     | U        | υ              | U        | υ        | U        | U        | υ (      | υ        | 330          | 14               |
| Benzo(g,h,i)perviene       | U        | U U            | U        | U        | U        | U        | ί υ      | U        | 330          | 50,000           |
|                            |          |                |          |          |          |          |          | 1        |              |                  |
| Total PAHs                 | 0        | 0              | 0        | 0        | 0        | 0        | 0        | 0        |              | 100,000          |
| Total CaPAHs               | Ō        | Ō              | Ō        | Ō        | Ō        | Ō        | Ō        | ŏ        |              | 10,000           |
| Total SVOCs                | · Õ      | 0 <sup>-</sup> | 0        | Ő        | 54       | Ō        | Ö        | Ō        |              | 500,000          |

QUALIFIERS: U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

NOTES: : Not applicable. ....

: Concentration exceeds NYSDEC TAGM 4046 Recommended Soil Cleanup Objective

Page 10 of 14

12/20/04

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                    | MSSBX-07 | MSSBX-07 | MSSBX-09 | MSSBX-09         | MSSBX-09 | MSSBX-09 | MSSBX-09 | MSSBX-10 |              |                  |
|------------------------------|----------|----------|----------|------------------|----------|----------|----------|----------|--------------|------------------|
| SAMPLE DEPTH (FT)            | (10-12)  | (12-14)  | (4-6)    | (6-8)            | (8-10)   | (10-12)  | (16-18)  | (4-6)    | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION           | 2/6/03   | 2/6/03   | 2/6/03   | 2/6/03           | 2/6/03   | 2/6/03   | 2/6/03   | 2/6/03   | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR              | t        | 1        | 1        | 1                | 1        | 1        | 1        | 1        | LIMITS       | Soll Cleanup     |
| PERCENT SOLIDS               | 88.0     | 87.0     | 96.0     | 97.0             | 98.0     | 95.0     | 88.0     | 98.0     |              | Objective        |
| UNITS                        | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)          | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)      | (ug/kg)          |
| )                            |          |          |          | (-3              | (-9/19/  |          |          | (09/.19/ |              |                  |
| Phenol                       | υ        | υ        | ט ו      | υ                | U        | υ        | υ        | ט ו      | 330          | 30               |
| bis(2-Chioroethyi)ether      | Ū        | Ú        | Ŭ        | Ũ                | Ŭ        | Ŭ        | Ŭ        | Ŭ        | 330          | -                |
| 2-Chlorophenol               | ΰ        | Ú Ú      | Ú Ú      | Ŭ                | Ũ        | Ŭ        | Ŭ        | ŬŬ       | 330          | 800              |
| 1,3-Dichlorobenzene          | U        | Ú        | Ŭ        | Ũ.               | Ŭ        | Ŭ        | Ŭ        | Ŭ        | 330          |                  |
| 1,4-Dichiorobenzene          | ט ו      | Ú        | Ú        | Ŭ                | Ŭ        | Ŭ        | ) Ŭ      | Ŭ        | 330          |                  |
| 1,2-Dichlorobenzene          | Ű        | Ŭ        | Ŭ        | Ŭ                | Ŭ        | Ŭ        | ł ŭ      | Ŭ        | 330          |                  |
| 2-Methylphenol               | Ū        | Ū        | Ū        | Ŭ                | Ũ        | Ŭ        | Ŭ        | Ŭ        | 330          | 100              |
| 2,2-oxybis (1-chloropropane) | U U      | ן ט      | Ŭ        | Ŭ                | ŭ        | Ŭ        | Ū        | Ŭ        | 330          |                  |
| 4-Methylphenol               | ט ו      | Ű        | Ŭ        | Ū                | ŭ        | Ŭ        | Ŭ        | Ŭ        | 330          | 900              |
| N-Nitroso-di-n-propylamina   | Ú Ú      | Ú.       | Ū        |                  | Ŭ        | ່ ນັ່    | ່ ບໍ່    | Ŭ        | 330          |                  |
| Hexachloroethane             | Ŭ        | Ŭ        | Ŭ        | ů                | ŭ        | Ů        | Ŭ        | ŭ        | 330          |                  |
| Nitrobenzene                 | Ū        | Ŭ        | Ũ        | Ŭ.               | Ŭ        | ນັ       | υŬ       | Ŭ.       | 330          | 200              |
| lsophorone                   | U        | Ú        | Ũ        | Ũ                | Ŭ        | Ũ        | Ŭ        | Ŭ        | 330          | 4,400            |
| 2-Nitrophenol                | U        | U        | U        | υ                | Ŭ        | υ        | ΰ        | Ú        | 330          | 330              |
| 2,4-Dimethylphenol           | U        | U        | U        | U                | U        | U        | Ú        | Ű        | 330          |                  |
| 2,4-Dichlorophenol           | U        | υ        | υ        | ι U <sup>'</sup> | Ŭ        | Ŭ        | Ŭ        | Ŭ        | 330          | 400              |
| 1,2,4-Trichlorobenzene       | U        | U        | U        | Ŭ                | Ŭ        | Ŭ        | Ū        | Ũ        | 330          |                  |
| Naphthalene                  | U        | υ        | U 1      | Ŭ                | Ŭ        | Ū        | ΪŪ       | Ŭ        | 330          | 13,000           |
| 4-Chloroaniline              | U        | Ŭ        | Ŭ        | Ū                | Ū        | Ŭ        | Ŭ        | Ũ        | 330          | 220              |
| bis(2-Chloroethoxy)methane   | υ        | U        | U        | U                | Ŭ        | Ū        | Ū        | Ŭ        | 330          |                  |
| Hexachlorobutadiene          | U        | υ        | Ú        | U                | Ŭ        | Ŭ        | Uυ       | Ú        | 330          |                  |
| 4-Chloro-3-mathylphenol      | υ        | U        | U        | U                | U        | U        | i u      | U        | 330          | 240              |
| 2-Methylnaphthalene          | U        | U        | U        | U                | Ú        | U        | l Ú      | U        | 330          | 36,400           |
| Hexachlorocyclopentadiene    | U U      | U        | U        | U                | U        | U        | υ.       | U        | 330          |                  |
| 2,4,6-Trichiorophenol        | U        | U        | U        | U                | U        | U        | ι. υ     | U        | 330          |                  |
| 2,4,5-Trichlorophenoi        | υ        | U        | U        | U                | · U      | υ        | U U      | U        | 330          | 100              |
| 2-Chloronaphthalene          | U U .    | U        | U        | U                | U        | U        | U        | υ        | 330          |                  |
| 2-Nitroanlline               | U        | U        | U        | U                | U        | U        | υ        | U        | 330          | 430              |
| Dimethylphthalate            | U        | U        | U        | U .              | υ        | U        | υ        | υ        | 330          | 2,000            |
| Acenaphthylene               | Ų        | U        | U        | · U              | U        | U        | U        | U U      | 330          | 41,000           |
| 2,8-Dinitrotoluene           | U U      | U        | บ        | U                | υ        | U        | ί υ      | υ        | 330          | 1,000            |
| 3-Nitroaniline               | U U      | U        | U        | U                | U        | U        | U        | U        | 330          | 500              |
| Acenaphthene                 | <u> </u> | UU       | <u>U</u> | ່ປ               | ບ        | ບ        | U U      | U        | 330          | 50,000           |

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                  | MSSBX-07 | MSSBX-07 | MSSBX-09 | MŚŚBX-09 | MSSBX-09 | MSSBX-09 | MSSBX-09 | MSSBX-10 | ·            |                  |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|------------------|
| SAMPLE DEPTH (FT)          | (10-12)  | (12-14)  | (4-6)    | (6-8)    | (8-10)   | (10-12)  | (16-18)  | (4-6)    | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION         | 2/6/03   | 2/6/03   | 2/6/03   | 2/6/03   | 2/6/03   | 2/8/03   | 2/6/03   | 2/6/03   | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR            | 1        | 1        | 1        | 1        | 1        | 1.       | 1        | 1        | LIMITS       | Soli Cleanup     |
| PERCENT SOLIDS             | 88.0     | 67.0     | 98.0     | 97.0     | 98.0     | 95.0     | 88.0     | 98.0     |              | Objective        |
| UNITS                      | (ug/kg)      | (ug/kg)          |
|                            |          |          |          |          |          |          |          |          |              |                  |
| 2,4-Dinitrophenol          | U        | U        | U        | U        | U        | U U      | U        | U        | 330          | 200              |
| 4-Nitrophenol              | U        | U        | U        | U        | U U      | U        | U U      | U        | 330          | 100              |
| Dibenzofuran               | U        | U        | U        | U        | U U      | U U      | U        | U        | 330          | 6,200            |
| 2,4-Dinitrotoluene         | U        | U        | U        | U        | U U      | U        | U        | U        | 330          |                  |
| Diethylphthalate           | U        | U        | U U      | U        | U U      | U        | U        | U        | 330          | 7,100            |
| 4-Chlorophenyl-phenylether | U        | U        | U U      | U        | U U      | U        | U        | U        | 330          |                  |
| Fluorene                   | U        | U        | U        | U        | U U      | U U      | U        | U        | 330          | 50,000           |
| 4-Nitroaniline             | U        | U        | U        | U        | U        | υ        | U        | U        | 330          |                  |
| 4,6-Dinitro-2-methylphenol | U        | U        | U U      | U        | U        | υ        | υ        | U        | 330          |                  |
| N-Nitrosodiphenylamine     | U        | U        | U U      | U        | U        | υ        | υ        | υ        | 330          |                  |
| 4-Bromophenyl-phenylether  | U        | U        | U U      | U        | U        | υ        | U        | U        | 330          |                  |
| Hexachlorobenzene          | U        | U        | U U      | U        | U U      | υ        | U        | U        | 330          | 410              |
| Pentachlorophenol          | U        | U        | U        | U        | U        | U U      | U        | U        | 330          | 1,000            |
| Phenanthrene               | U        | U        | U        | U        | U        | U U      | ] υ      | U        | 330          | 50,000           |
| Anthracene                 | U        | U        | U        | U        | U        | υ        | υ υ      | U        | 330          | 50,000           |
| Carbazole                  | U        | U        | U        | U        | U        | U U      | υ [      | U        | 330          | <u> </u>         |
| Di-n-butyiphthalate        | U        | U        | U        | U        | U        | U        | υ 🔰      | U        | 330          | 8,100            |
| Fluoranthene               | U        | U        | U        | U        | U        | U        | υ 🔰      | U        | 330          | 50,000           |
| Pyrane                     | U        | U        | U        | U        | U        | U        | υ 🔰      | U        | 330          | 50,000           |
| Butyibenzyiphthalate       | U        | U        | U        | U        | U        | U        | υ        | U        | 330          | 50,000           |
| 3,3-Dichlorobenzidine      | U        | U        | U        | U        | U        | U        | U        | U        | 330          |                  |
| Benzo(a)anthracene         | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 224              |
| Chrysene                   | U        | U        | U        | U        | . U      | U U      | U        | U        | 330          | 400              |
| bis(2-Ethylhexyl)phthalate | U        | U        | . U      | U        | U        | U        | U U      | U        | 330          | 50,000           |
| Di-n-octylphthalate        | U        | U        | U        | U        | U        | U U      | U U      | U        | 330          | 50,000           |
| Benzo(b)fluoranthene       | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 1,100            |
| Benzo(k)fluoranthene       | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 1,100            |
| Benzo(a)pyrene             | U U      | U        | U        | U        | U        | U        | U        | U        | 330          | 61               |
| Indeno(1,2,3-cd)pyrane     | U U      | U        | U        | U        | · U      | U        | U        | U        | 330          | 3,200            |
| Dibenzo(a,h)anthracene     | U U      | Ų        | U        | U        | U        | U        | U U      | U        | 330          | 14               |
| Benzo(g,h,i)perylene       | U        | U        | U        | U        | U        | U        | U U      | U        | 330          | 50,000           |
| Total PAHs                 | 0        | 0        | <u>م</u> | ٥        | 0        | 0        |          | o        | ·            | 100.000          |
| Total CaPAHs               | Ö        | l o      | 0        | l o      | 0        | 0        | ů ů      | ŏ        |              | 10,000           |
|                            |          | 0        | 0        | 0        | 0        | 0        | 0        | 0        |              |                  |
| Total SVOCs                | L V      | <u> </u> | v        | U        | v        | V        | U V      | Ų        |              | 500,000          |

0

OUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.



: Not applicable.

: Concentration exceeds NYSDEC TAGM 4046 Recommended Soll Cleanup Objective

.

#### MASSAPEGUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

## SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                    | MSSBX-10 | MSSBX-10 | MSSBX-10 | MSSBX-10 | MSSBX-10 | MSSBX-10 |       | <br>         |                  |
|------------------------------|----------|----------|----------|----------|----------|----------|-------|--------------|------------------|
| SAMPLE DEPTH (FT)            | (6-8)    | (8-10)   | (10-12)  | (12-14)  | (16-18)  | (18-20)  |       | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION           | 2/6/03   | 2/6/03   | 2/3/03   | 2/3/03   | 2/3/03   | 2/3/03   | )     | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR              | 1        | 1        | 1        | 1        | 1        | 1        |       | LIMITS       | Soil Cleanup     |
| PERCENT SOLIDS               | 96.0     | 91.0     | 80.0     | 83.0     | 86.0     | 88.0     |       | Putter A     | Objective        |
| UNITS                        | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | 1     | (ug/kg)      | (ug/kg)          |
|                              |          |          | (~9/(9/  | (09/19/  | (09/19)  |          | ┼───┼ |              | ( <u>Ug/kg</u> ) |
| Phenol                       | υ 1      | ט ט      | U        | U        | u        | υ        |       | 330          | 30               |
| bis(2-Chloroethyl)ether      | Ŭ        | Ŭ        | Ŭ        | Ŭ        | ມີ       | Ŭ        |       | 330          |                  |
| 2-Chlorophenol               | Ū        | Ū        | Ŭ        | Ŭ        | Ŭ        | Ŭ        |       | 330          | 800              |
| 1.3-Dichiorobanzene          | Ū        | Ŭ        | i Ŭ      | Ŭ        | Ŭ        | ΙŬ       |       | 330          | 000              |
| 1,4-Dichiorobenzena          | Ū        | Ŭ        | Ŭ        | Ŭ        | ŭ        | Ŭ        | 1     | 330          |                  |
| 1,2-Dichlorobenzene          | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | j ł   | 330          |                  |
| 2-Methylphenol               | ů ů      | ŭ        | i ŭ      | Ŭ        | ŭ        | l ũ      |       | 330          | 100              |
| 2,2-oxybis (1-chloropropane) | ŭ        | Ŭ        | Ŭ        | Ŭ        | ŭ        | l ŭ      | ) I   | 330          |                  |
| 4-Methylphenoi               | Ŭ        | Ū        | Ŭ        | Ŭ        | Ŭ        | Ŭ        |       | 330          | 900              |
| N-Nitroso-di-n-propylamine   | Ŭ        | ŭ        | ŭ        | ŭ        | Ŭ        | l ŭ      |       | 330          |                  |
| Hexachloroethane             | Ŭ        | Ŭ        | Ŭ        | ŭ        | Ů Ů      | Ĭ        |       | 330          |                  |
| Nitrobenzene                 | Ŭ        | Ŭ Ŭ      | Ŭ        | i ŭ      | ů        | Ŭ        |       | 330          | 200              |
| isophorone                   | Ŭ        | Ū        | ů ů      | ŭ        | Ů        | Ιŭ       |       | 330          | 4,400            |
| 2-Nitrophenol                | Ū        | Ŭ        | Ŭ        | ŭ        | ່ ນັ     | l ŭ      |       | 330          | 330              |
| 2,4-Dimethylphenol           | Ū        | Ū        | Ŭ        | Ŭ        | Ŭ        | Ŭ        |       | 330          |                  |
| 2,4-Dichlorophenol           | υ        | Ű        | Ŭ        | Ŭ        | Ū.       | Ŭ        |       | 330          | 400              |
| 1,2,4-Trichlorobenzene       | U U      | Ū        | Ū        | Ŭ.       | ไ บ้     | Ŭ        |       | 330          |                  |
| Naphthalene                  | ί υ      | U U      | Ū        | Ŭ        | Ŭ        | Ŭ        |       | 330          | 13,000           |
| 4-Chloroaniline              | Ū        | Ū        | Ū        | Ŭ        | Ŭ        | Ŭ        |       | 330          | 220              |
| bis(2-Chloroethoxy)methane   | ບ .      | Ū        | Ü        | Ū        | Ŭ        | Ŭ        |       | 330          |                  |
| Hexachlorobutadiene          | U U      | U        | U        | U        | U        | U        |       | 330          |                  |
| 4-Chioro-3-methylphenol      | υ        | υ .      | υ        | Ū        | Ū        | Ŭ        |       | 330          | 240              |
| 2-Methylnaphthalene          | U        | U        | υ        | υ        | Ū        | Ū        |       | 330          | 36,400           |
| Hexachiorocyclopentadiene    | U        | U        | U U      | Ű        | Ú        | Ū        |       | 330          |                  |
| 2,4,6-Trichlorophenol        | U        | U        | U        | υ        | U        | U        | 1     | 330          |                  |
| 2,4,5-Trichlorophenol        | ) U      | U        | υ        | U        | U        | U        |       | 330          | 100              |
| 2-Chloronaphthaiene          | U 1      | U        | υ        | U        | U        | U        |       | 330          |                  |
| 2-Nitroaniline               | U        | U        | U        | U        | U        | ι υ      | 1     | 330          | 430              |
| Dimethylphthalate            | ) U      | U        | U        | U        | U        | U U      | {     | 330          | 2,000            |
| Acenaphthylene               | U U      | U        | U        | U        | U        | U        | ]     | 330          | 41,000           |
| 2,6-Dinitrotoluene           | U U      | U        | U        | U        | Ų        | υ        |       | 330          | 1,000            |
| 3-Nitroaniline               | U        | U)       | U        | U        | U        | υ        | [ }   | 330          | 500              |
| Acenaphthene                 | U        | UU       | U        | U        | U        | U        |       | 330          | 50,000           |

ري بر د ميدورد د د

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                  | MSSBX-10 | MSSBX-10 | MSSBX-10 | MSSBX-10 | MSSBX-10 | MSSBX-10 |     |              | ·                |
|----------------------------|----------|----------|----------|----------|----------|----------|-----|--------------|------------------|
| SAMPLE DEPTH (FT)          | (6-8)    | (8-10)   | (10-12)  | (12-14)  | (16-18)  | (18-20)  | 1 1 | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION         | 2/6/03   | 2/6/03   | 2/3/03   | 2/3/03   | 2/3/03   | 2/3/03   |     | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR            | 1        | 1        | 1        | 1        | 1        | 1        |     | LIMITS       | Soll Cleanup     |
| PERCENT SOLIDS             | 96.0     | 91.0     | 80.0     | 83.0     | 86.0     | 88.0     | ]   |              | Objective        |
| UNITS                      | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | 1 1 | (ug/kg)      | (ug/kg)          |
|                            |          |          |          | _        |          |          |     |              |                  |
| 2,4-Dinitrophenol          | U U      | U U      | U        | υ        | U        | U        | 1   | 330          | 200              |
| 4-Nitrophenol              | U U      | U U      | U U      | U        | U        | U        |     | 330          | 100              |
| Dibenzofuran               | U U      | υ        | U        | U        | U        | U        | 1 1 | 330          | 6,200            |
| 2,4-Dinitrotoluene         | U U      | U U      | U        | U        | U        | U        |     | 330          |                  |
| Diethylphthalate           | U U      | U        | U        | U        | υ        | U        |     | 330          | 7,100            |
| 4-Chlorophanyl-phenylether | U        | U        | U        | U        | υ        | U        | 1 1 | 330          |                  |
| Fluorene                   | ) U      | U U      | U        | υ        | Ų        | U        |     | 330          | 50,000           |
| 4-Nitroaniline             | U        | U        | U        | U        | Ú        | U        | 1   | 330          |                  |
| 4,6-Dinitro-2-methylphenol | U        | U U      | U U      | U        | U        | U U      | i I | 330          |                  |
| N-Nitrosodiphenylamine     | U U      | υ        | ี บ      | U        | U        | υ        |     | 330          |                  |
| 4-Bromophenyl-phenylether  | U U      | ) U      | ט        | U        | ບ        | U        |     | 330          |                  |
| Hexachlorobenzene          | U U      | υ        | U        | U        | υ        | U        |     | 330          | 410              |
| Pentachiorophenol          | U U      | υ        | U        | U        | υ        | U        | 1   | 330          | 1,000            |
| Phenanthrene               | U        | υ        | U        | U        | U        | U        | 1 1 | 330          | 50,000           |
| Anthracene                 | U        | U U      | υ        | U        | U        | U        |     | 330          | 50,000           |
| Carbazole                  | U        | υ        | U        | U        | Ų        | U        | \   | 330          |                  |
| Di-n-butyiphthalate        | U        | U U      | U        | U        | Ú        | U        |     | 330          | 8,100            |
| Fluoranthene               | U'       | l u      | υ        | U        | U        | U        |     | 330          | 50,000           |
| Pyrene                     | υ 1      | υ 1      | υ        | Ú        | U        | Ú        |     | 330          | 50,000           |
| Butylbenzylphthalate       | υ υ      | υ        | υ        | U        | Ú        | Ū        | l l | 330          | 50,000           |
| 3.3-Dichlorobenzidine      | υ υ      | υ.       | U U      | Ŭ        | U        | Ŭ        |     | 330          |                  |
| Benzo(a)anthracene         | ) U      | ί υ      | U U      | U        | U        | U        |     | 330          | 224              |
| Chrysene                   | U        | U        | U        | U        | U        | υ        | 1   | 330          | 400              |
| bis(2-Ethylhexyi)phthalate | 38 J     | 46 J     | υ υ      | U        | U        | U        |     | 330          | 50,000           |
| Di-n-octylphthalate        | U        | υ        | υ        | Ų        | U        | U        |     | 330          | 50,000           |
| Benzo(b)fluoranthene       | U        | υ        | U        | Ú        | υ        | U        |     | 330          | 1,100            |
| Benzo(k)fluoranthene       | υ υ      | υ        | U        | Ú        | U        | υ        |     | 330          | 1,100            |
| Benzo(a)pyrene             | υ υ      | Ū        | Ū        | Ū        | Ú        | Ū        | 1   | 330          | 61               |
| Indeno(1,2,3-cd)pyrene     | Ū        | Ū        | Ū        | Ū        | Ū        | Ū        |     | 330          | 3,200            |
| Dibenzo(a,h)anthracena     | U        | υ        | Ŭ        | Ū        | Ū        | Ū        |     | 330          | 14               |
| Benzo(g,h,i)perylene       | U U      | U U      | U        | Ū        | Ū        | Ū        |     | 330          | 50,000           |
|                            |          |          |          |          |          |          |     |              |                  |
| Total PAHs                 | 0        | 0        | 0        | 0        | 0        | 0        | 1 1 | 40           | 100,000          |
| Total CaPAHs               | 0        | 0        | 0        | 0        | 0        | 0        |     | -            | 10,000           |
| Total SVOCs                | 38       | 48       | 0        | 0        | 0        | 0        |     |              | 500,000          |

## QUALIFIERS:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

NOTES:

71

--\_\_\_: Not applicable.

: Concentration exceeds NYSDEC TAGM 4046 Recommended Soll Cleanup Objective

1

12/20/04

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

: 

## SUBSURFACE SOIL - POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                                                 | MSSBX-01<br>(4-6)<br>2/6/03<br>1<br>99.0<br>(ug/kg)   | MSSBX-01<br>(6-8)<br>2/6/03<br>1<br>83.0<br>(ug/kg)   | MSSBX-01<br>(8-10)<br>2/6/03<br>1<br>84.0<br>(ug/kg)  | MSSBX-01<br>(10-12)<br>2/6/03<br>1<br>89.0<br>(ug/kg) | MSSBX-01<br>(12-14)<br>2/6/03<br>1<br>84.0<br>(ug/kg) | MSSBX-02<br>(4-6)<br>2/6/03<br>1<br>99.0<br>(ug/kg)   | MSSBX-02<br>(6-8)<br>2/6/03<br>1<br>98.0<br>(ug/kg)   | MSSBX-02<br>(8-10)<br>2/6/03<br>1<br>93.0<br>(ug/kg)  | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg)          | NYSDEC<br>TAGM 4046<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|
| Arocior- 1016<br>Arocior- 1221<br>Arocior- 1232<br>Arocior- 1242<br>Arocior- 1248<br>Arocior- 1254<br>Arocior- 1254<br>Arocior- 1260<br>TOTAL PCBs |                                                       | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U                  |                                                       |                                                       |                                                       |                                                       |                                                       | 0<br>0<br>0                                           | 34<br>34<br>34<br>34<br>34<br>34<br>34<br>34             | <br><br><br>1,000/10,000*                                                  |
| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                                                 | MSSBX-02<br>(10-12)<br>2/6/03<br>1<br>89.0<br>(ug/kg) | MSSBX-02<br>(12-14)<br>2/6/03<br>1<br>86.0<br>(ug/kg) | MSSBX-02<br>(14-16)<br>2/6/03<br>1<br>84.0<br>(ug/kg) | M\$\$85.03<br>(4-8)<br>2/3/03<br>1<br>97.0<br>(ug/kg) | MSSBX-03<br>(6-8)<br>2/3/03<br>1<br>98.0<br>(ug/kg)   | M\$SBX-03<br>(8-10)<br>2/6/03<br>1<br>94.0<br>(ug/kg) | MSSBX-03<br>(10-12)<br>2/6/03<br>1<br>93.0<br>(ug/kg) | MSSBX-03<br>(12-14)<br>2/6/03<br>1<br>85.0<br>(ug/kg) |                                                          | NYSDEC<br>TAGM 4046<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
| Aroclor- 1018<br>Aroclor- 1221<br>Aroclor- 1232<br>Aroclor- 1242<br>Aroclor- 1248<br>Aroclor- 1254<br>Aroclor- 1254                                | ນ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ                       | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ        |                                                       |                                                       |                                                       |                                                       |                                                       | υ<br>υ<br>υ<br>υ<br>υ<br>υ                            | 34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34 |                                                                            |
| TOTAL PCBs                                                                                                                                         | 0                                                     | 0                                                     | 0                                                     | 00                                                    | 0                                                     | 0                                                     | 0                                                     | 0                                                     |                                                          | 1,000/10,000*                                                              |

OUALIFIERS: U: Compound analyzed for but not detected.

## NOTES:

- 5-

---: Not applicable. •

: According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0'-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                  | MS\$BX-03<br>(14-16)<br>2/6/03<br>1<br>91.0<br>(ug/kg) | MSSBX-03<br>(16-18)<br>2/6/03<br>1<br>99.0<br>(ug/kg) | MSSBX-03<br>(18-20)<br>2/6/03<br>1<br>91.0<br>(ug/kg) | MSSBX-04<br>(4-6)<br>2/7/03<br>1<br>97.0<br>(ug/kg) | MŠŠBX-04<br>(6-8)<br>2/7/03<br>1<br>92.0<br>(ug/kg) | M\$SBX-04<br>(8-10)<br>2/7/03<br>1<br>88.0<br>(ug/kg) | MSSBX-04<br>(10-12)<br>2/7/03<br>1<br>89.0<br>(ug/kg) | M\$\$BX-04<br>(12-14)<br>2/7/03<br>1<br>86.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Aroclor- 1018<br>Aroclor- 1221<br>Aroclor- 1232<br>Aroclor- 1242<br>Aroclor- 1248<br>Aroclor- 1254<br>Aroclor- 1254 | ບ<br>ບບບ<br>ບບ<br>ບ<br>ບ<br>ບ<br>ບ                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        | ccccc                                                 | ccccc                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 000000000000000000000000000000000000000               | 000000000000000000000000000000000000000               | ccccc                                                   | 34<br>34<br>34<br>34<br>34<br>34<br>34<br>34    |                                                                            |
|                                                                                                                     | 0                                                      | 0                                                     | 0                                                     | 0                                                   | 0                                                   | 0                                                     | 0                                                     | _0                                                      |                                                 | 1, <u>00</u> 0/10, <u>0</u> 00*                                            |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                  | M\$\$BX-04<br>(14-16)<br>2/7/03<br>1<br>86.0<br>(ug/kg) | M\$\$8X-04<br>(16-18)<br>2/7/03<br>1<br>84.0<br>(ug/kg) | M\$\$8X-04<br>(18-20)<br>2/7/03<br>1<br>82.0<br>(ug/kg) | M\$\$BX-05<br>(4-6)<br>2/6/03<br>1<br>98.0<br>(ug/kg) | MSSBX-05<br>(6-8)<br>2/6/03<br>1<br>99.0<br>(ug/kg) | MSSBX-05<br>(8-10)<br>2/6/03<br>1<br>97.0<br>(ug/kg) | MSSBX-05<br>(10-12)<br>2/6/03<br>1<br>94.0<br>(ug/kg) | M\$\$BX-05<br>(12-14)<br>2/6/03<br>1<br>94.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4048<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Arocior- 1016<br>Arocior- 1221<br>Arocior- 1232<br>Arocior- 1242<br>Arocior- 1248<br>Arocior- 1254<br>Arocior- 1254 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0               | σοσοσο                                                  | ccccc                                                   | cccc                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                 | σσσσσσ                                                | 000000000000000000000000000000000000000                 | 34<br>34<br>34<br>34<br>34<br>34<br>34<br>34    |                                                                            |
| TOTAL PCBs                                                                                                          | 0                                                       | 0                                                       | 0                                                       | 0                                                     | 00                                                  | <u>0</u>                                             | 0                                                     | 0                                                       | -                                               | 1,000/10,000*                                                              |

## QUALIFIERS:

U: Compound analyzed for but not detected.

## NOTES:

- : Not applicable.

: According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0'-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

.

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | MS\$BX-05<br>(14-16)<br>2/6/03<br>1<br>88.0<br>(ug/kg) | MSSBX-05<br>(16-18)<br>2/6/03<br>1<br>90.0<br>(ug/kg) | M\$\$BX-05<br>(18-20)<br>2/6/03<br>1<br>92.0<br>(ug/kg) | MSSBX-06<br>(4-6)<br>2/6/03<br>1<br>90.0<br>(ug/kg) | M\$SBX-06<br>(6-8)<br>2/6/03<br>1<br>96.0<br>(ug/kg) | MSSBX-07<br>(4-8)<br>2/6/03<br>1<br>97.0<br>(ug/kg) | MSSBX-07<br>(6-8)<br>2/6/03<br>1<br>98.0<br>(ug/kg) | M\$\$88X-07<br>(8-10)<br>2/6/03<br>1<br>97.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4048<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                    |                                                        |                                                       |                                                         |                                                     |                                                      |                                                     | υ                                                   |                                                         | 34                                              |                                                                            |
| Arocior- 1016                                                                                      |                                                        |                                                       | U.                                                      | U U                                                 | U U                                                  |                                                     |                                                     |                                                         |                                                 |                                                                            |
| Aroclor- 1221                                                                                      |                                                        | U                                                     | U                                                       | U U                                                 | U                                                    | U                                                   | 0                                                   | U U                                                     | 34                                              |                                                                            |
| Aroclor- 1232                                                                                      | U U                                                    | U U                                                   | U                                                       | U                                                   | 0                                                    | 0                                                   | U U                                                 | U                                                       | 34                                              | ****                                                                       |
| Aroclor- 1242                                                                                      | U                                                      | 0                                                     | U                                                       | U                                                   | U                                                    | ) U                                                 | l U                                                 | U                                                       | 34                                              |                                                                            |
| Aroclor- 1248                                                                                      | ) U                                                    | υ                                                     | υ                                                       | υ                                                   | υ                                                    | U                                                   | <b>Ι</b> υ                                          | U U                                                     | 34                                              |                                                                            |
| Aroclor- 1254                                                                                      | U U                                                    | U                                                     | U                                                       | U                                                   | ປີ                                                   | υ (                                                 | ί υ                                                 | U                                                       | 34                                              | ****                                                                       |
| Arocior- 1280                                                                                      | ט (                                                    | ບ                                                     | ບ                                                       | υ                                                   | υ                                                    | υ                                                   | υ                                                   | υ                                                       | 34                                              |                                                                            |
| TOTAL PCB8                                                                                         | <u> </u>                                               | 0                                                     | 0                                                       | 0                                                   | 0                                                    | 0                                                   | 0                                                   | 0                                                       | <u></u>                                         | 1,000/10,000*                                                              |
|                                                                                                    |                                                        |                                                       |                                                         |                                                     |                                                      |                                                     |                                                     |                                                         | · <u>········</u> ···                           |                                                                            |
| SAMPLE ID                                                                                          | MSSBX-07                                               | MSSBX-07                                              | MSSBX-09                                                | MSSBX-09                                            | MSSBX-09                                             | MSSBX-09                                            | MSSBX-09                                            | MSSBX-10                                                | LABORATORY                                      | NYSDEC                                                                     |

| SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | (10-12)<br>2/6/03<br>1<br>88.0<br>(ug/kg) | (12-14)<br>2/6/03<br>1<br>87.0<br>(ug/kg) | (4-6)<br>2/6/03<br>1<br>98.0<br>(ug/kg) | (6-8)<br>2/6/03<br>1<br>97.0<br>(ug/kg) | (8-10)<br>2/6/03<br>1<br>98.0<br>(ug/kg) | (10-12)<br>2/6/03<br>1<br>95.0<br>(ug/kg) | (16-18)<br>2/6/03<br>1<br>88.0<br>(ug/kg) | (4-6)<br>2/6/03<br>1<br>98.0<br>(ug/kg) | QUANTITATION<br>LIMITS | TAGM 4048<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
|---------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|------------------------|------------------------------------------------------------------|
| Arocior- 1016<br>Arocior- 1221<br>Arocior- 1232                                       | U<br>U                                    | U<br>U<br>U                               | ບ<br>ບ                                  | ບ<br>ບ                                  | ບບບ                                      | ບ<br>ບ                                    | UUU                                       | U<br>U<br>U                             | 34<br>34<br>34         |                                                                  |
| Aroclor- 1242<br>Aroclor- 1248                                                        | U<br>U                                    | υ<br>υ                                    | ບ<br>ບ                                  | υ<br>υ                                  | ม<br>บ<br>บ                              |                                           | υ<br>υ                                    |                                         | 34<br>34               |                                                                  |
| Aroclor- 1254<br>Aroclor- 1260                                                        | U<br>U                                    | บ<br>บ                                    | บ<br>บ                                  | U<br>U                                  | U<br>U                                   | U<br>U                                    | ບ<br>ບ                                    | U<br>U                                  | 34<br>34               |                                                                  |
|                                                                                       | 0                                         | 0                                         | 0                                       | 0                                       | 0                                        | 0                                         | _0                                        | 0                                       |                        | 1,000/10,000*                                                    |

NOTES: ٠

and the Second and the Se

QUALIFIERS: U: Compound analyzed for but not detected.

: Not applicable. ----

: According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0'-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

#### MASSAPEQUA SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

## SUBSURFACE SOIL - POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | M\$\$BX-10<br>(6-8)<br>2/6/03<br>1<br>96.0<br>(ug/kg) | MSSBX-10<br>(8-10)<br>2/6/03<br>1<br>91.0<br>(ug/kg) | MSSBX-10<br>(10-12)<br>2/6/03<br>1<br>80.0<br>(ug/kg) | MSSBX-10<br>(12-14)<br>2/3/03<br>1<br>83.0<br>(ug/kg) | MSSBX-10<br>(16-18)<br>2/3/03<br>1<br>86.0<br>(ug/kg) | MSSBX-10<br>(18-20)<br>2/3/03<br>1<br>88.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4048<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Aroclor- 1016                                                                                      | II                                                    | l 11                                                 | і – п                                                 | L)                                                    |                                                       |                                                       | 34                                              |                                                                            |
| Aroclor- 1221                                                                                      | Ŭ                                                     | l ŭ                                                  | ŭ                                                     | Ŭ                                                     | u u                                                   | U U                                                   | 34                                              |                                                                            |
| Aroclor- 1232                                                                                      | l ŭ                                                   | l ŭ                                                  | Ŭ                                                     | Ŭ                                                     | l Ŭ                                                   | ŭ                                                     | 34                                              |                                                                            |
| Aroclor- 1242                                                                                      | Ū                                                     | Ŭ                                                    | Ū                                                     | Ŭ                                                     | Ū                                                     | Ŭ                                                     | 34                                              |                                                                            |
| Aroclor- 1248                                                                                      | U                                                     | U                                                    | υ                                                     | υ                                                     | υ                                                     | Ú                                                     | 34                                              |                                                                            |
| Aroclor- 1254                                                                                      | U                                                     | U U                                                  | U                                                     | U                                                     | U                                                     | U                                                     | 34                                              |                                                                            |
| Aroclor- 1260                                                                                      | U                                                     | U                                                    | U                                                     | U                                                     | U                                                     | U                                                     | 34                                              |                                                                            |
| TOTAL PCBs                                                                                         | 0                                                     | 0                                                    | 0                                                     | 0                                                     | 0                                                     | 0                                                     |                                                 | 1,000/10,000*                                                              |

**QUALIFIERS:** 

NOTES:

.

U: Compound analyzed for but not detected.

-- : Not applicable.

: According to NYSDEC TAGM 4048 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0'-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

and the second second second

### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD **DELINEATION PHASE 2 SITE ASSESSMENT**

### SURFACE SOIL - MERCURY AND RCRA METALS

|                                                                    | iP\$8-12                              | IPSB-13                               | iPSB-14                               | IP88-15                               | IPSB-18                               | PSS-05                              | ISULTITRI-Dama<br>IPSS-06           | INSTRUMENT          |                                                                    |
|--------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|---------------------|--------------------------------------------------------------------|
| SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | (0 - 2)<br>1/27/03<br>95.0<br>(mg/kg) | (0 - 2)<br>1/29/03<br>94.0<br>(mg/kg) | (0 • 2)<br>1/29/03<br>92.0<br>(mg/kg) | (0 - 2)<br>1/29/03<br>90.0<br>(mg/kg) | (0 - 2)<br>1/30/03<br>84.0<br>(mg/kg) | (0-2)<br>1/28/03<br>90.0<br>(mg/kg) | (0-2)<br>1/28/03<br>93.0<br>(mg/kg) | DETECTION<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>mg/kg |
| Mercury                                                            | 2.2                                   | 12.9                                  | 0.21                                  | 1.1                                   | 0.12 8                                | 0.52                                | 0.49                                | 0.1                 | 0.1                                                                |

| AREADECONCERN<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | IPSB-19<br>(0 - 2)<br>1/27/03<br>92.0<br>(mg/kg) | IPSB-26<br>(0-2)<br>1/30/03<br>87.0<br>(mg/kg) | iPSB-27<br>(0-2)<br>1/30/03<br>83.0<br>(mg/kg) | IPSB-28<br>(0-2)<br>1/30/03<br>94.0<br>(mg/kg) | <b>R414419</b><br>IPSB-29<br>(0-2)<br>1/28/03<br>85.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>(mg/kg) |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------|
| Arsenic                                                                                          | NA                                               | 4                                              | 3.6                                            | 2,4                                            | 7.6                                                              | 3.0                               | 7.5 or SB                                                            |
| Barium                                                                                           | NA                                               | 17                                             | 15.6                                           | 23,6                                           | 79.3                                                             | 3.0                               | 300 or SB                                                            |
| Cadmium                                                                                          | NA                                               | 0.2 B                                          | ບ ບ                                            | U                                              | 0.93                                                             | 2.0                               | 10*                                                                  |
| Chromium                                                                                         | NA                                               | 9.2                                            | 8.5                                            | 4.2                                            | 14.8                                                             | 3.0                               | 50*                                                                  |
| Lead                                                                                             | NA                                               | 7.9                                            | 11                                             | 42.9                                           | 60.5                                                             | 1.0                               | SB**                                                                 |
| Mercury                                                                                          | 1.3                                              | U                                              | 0.031 B                                        | 0.087 B                                        | 0.16                                                             | 0.1                               | 0.1                                                                  |
| Selenium                                                                                         | NA                                               | ן ט                                            | U                                              | 0.47 B                                         | υ                                                                | 8.0                               | 2 or SB                                                              |
| Silver                                                                                           | NA                                               | υ                                              | U                                              | U                                              | 1 B                                                              | 2.0                               | SB                                                                   |

<u>QUALIFIERS:</u> U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes: SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm. : Result exceeds NYSDEC TAGM recommended Soil Cleanup Objective

.

E/2015 (LER 3 Subs Del Phase II)/J Subs Data/Island Park/Data Tables for Report/Table 32 rev.xis

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

## SURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| MARANGE GUINGERN              |         | Start First |         | 0000    |              |                  |
|-------------------------------|---------|-------------|---------|---------|--------------|------------------|
| SAMPLE ID                     | IPSB-26 | IPSB-27     | IPSB-28 | IPSB-29 |              |                  |
| SAMPLE DEPTH (IN)             | (0-2)   | (0-2)       | (0-2)   | (0-2)   | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION            | 1/30/03 | 1/30/03     | 1/30/03 | 1/28/03 | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR               | 1       | 1           | 1       | 1       | LIMITS       | Soll Cleanup     |
| PERCENT SOLIDS                | 87.0    | 83.0        | 94.0    | 85.0    |              | Objective        |
|                               | (ug/kg) | (ug/kg)     | (ug/kg) | (ug/kg) | (ug/Kg)      | (ug/Kg)          |
|                               |         |             |         |         |              |                  |
| Phenol                        | U       | U           | U       | U       | 330          | 30               |
| bis(2-Chloroethyl)ether       | U       | ບ           | Ų       | V       | 330          |                  |
| 2-Chlorophenol                | U       | Ų           | U       | U       | 330          | 800              |
| 1,3-Dichlorobenzene           | U       | U           | U       | U       | 330          | -                |
| 1,4-Dichlorobenzene           | U       | U           | U       | U       | 330          |                  |
| 1,2-Dichlorobenzene           | υ       | U           | U       | U       | 330          | -                |
| 2-Methylphenol                | U       | Ų           | U       | υ       | 330          | 100              |
| 2,2'-oxybis (1-chloropropane) | U       | V           | U       | U U     | 330          | -                |
| 4-Methylphenol                | Ų       | U           | U       | υ       | 330          | 900              |
| N-Nitroso-di-n-propylamine    | U       | U           | U       | U       | 330          | -                |
| Hexachloroethane              | ) U     | υ           | U       | U       | 330          | -                |
| Nitrobenzene                  | υ       | Ú           | υ       | - Ū     | 330          | 200              |
| Isophorone                    | U       | U           | Ŭ       | Ū       | 330          | 4,400            |
| 2-Nitrophenol                 | U       | Ú           | Ú       | Ū       | 330          | 330              |
| 2,4-Dimethylphenol            | U       | υ           | U       | Ū       | 330          | -                |
| 2,4-Dichlorophenol            | U       | υ           | υ       | Ű       | 330          | 400              |
| 1,2,4-Trichlorobenzene        | U       | υ           | U       | U       | 330          |                  |
| Naphthalene                   | U       | U           | Ŭ       | U       | 330          | 13,000           |
| 4-Chloroaniline               | U       | υ           | U       | Ŭ       | 330          | 220              |
| bis(2-Chiorcethoxy)methane    | U       | U           | U       | U       | 330          |                  |
| Hexachlorobutadiene           | U       | Ú           | Ú       | Ů       | 330          | -                |
| 4-Chloro-3-methylphenol       | υ       | U           | Ŭ       | Ū       | 330          | 240              |
| 2-Methylnaphthalene           | U       | υ           | Ŭ       | Ŭ       | 330          | 36,400           |
| Hexachlorocyclopentadiene     | U       | Ŭ           | Ū       | Ū       | 330          | _                |
| 2,4,6-Trichlorophenol         | Ū       | Ű           | Ū       | Ŭ       | 330          | -                |
| 2,4,5-Trichlorophenol         | U       | U           | U       | Ū       | 660          | 100              |
| 2-Chloronaphthaiene           | Ŭ       | Ū           | Ū       | Ū       | 330          | -                |
| 2-Nitroaniline                | U       | Ū           | Ű       | Ū       | 660          | 430              |
| Dimethylphthalate             | Ŭ       | Ŭ           | Ū       | Ū       | 330          | 2,000            |
| Acenaphthylene                | Ŭ       | 67 J        | Ŭ       | Ŭ       | 330          | 41,000           |
| 2,6-Dinitrotoluene            | Ū       | Ŭ           | Ŭ       | Ŭ       | 330          | 1,000            |
| 3-Nitroaniiine                | Ŭ       | Ŭ           | Ŭ       | Ŭ       | 660          | 500              |
| Acenaphthene                  | Ŭ       | 200 J       | Ŭ       | Ŭ       | 330          | 50,000           |

QUALIFIERS:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

12/20/04

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

## SURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| APPENDE (CONTRACTS)        | in the second second |         |         | 20001193 2 13 |              |                  |
|----------------------------|----------------------|---------|---------|---------------|--------------|------------------|
| SAMPLE ID                  | IPSB-26              | IP88-27 | IP88-28 | IP88-29       |              |                  |
| SAMPLE DEPTH (IN)          | (0-2)                | (0-2)   | (0-2)   | (0-2)         | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION         | 1/30/03              | 1/30/03 | 1/30/03 | 1/28/03       | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR            |                      | 1       | 1       | 1             | LIMITS       | Soll Cleanup     |
| PERCENT SOLIDS             | 87.0                 | 83.0    | 94.0    | 85.0          | (            | Objective        |
|                            | (ug/kg)              | (ug/kg) | (ug/kg) | (ug/kg)       | (ug/Kg)      | (ug/Kg)          |
| 2,4-Dinitrophenoi          | υ                    | υ       | υ       | υ             | 660          | 200              |
| 4-Nitrophenol              | U                    | U       | U       | U             | 660          | 100              |
| Dibenzofuran               | U                    | U       | U       | υ             | 330          | 6,200            |
| 2,4-Dinitrotoluene         | U                    | U       | U       | U             | 330          |                  |
| Diethylphthalate           | U                    | U U     | U 1     | U             | 330          | 7,100            |
| 4-Chlorophenyl-phenylether | U U                  | U       | U       | U             | 330          | -                |
| Fluorene                   | U U                  | 160 J   | U       | U             | 330          | 50,000           |
| 4-Nitroaniline             | ) ບ                  | U       | υ       | U             | 330          | -                |
| 4,6-Dinitro-2-methylphenol | U (                  | U       | U       | U             | 330          | -                |
| N-Nitrosodiphenylamine     | ) U                  | υ       | υ       | υ             | 330          | -                |
| 4-Bromophenyl-phenylether  | Į U                  | U       | U       | U             | 330          |                  |
| Hexachlorobenzene          | U U                  | U       | ן ט     | U             | 330          | 410              |
| Pentachlorophenol          | U                    | U       | U [     | U             | 660          | 1,000            |
| Phenanthrene               | U                    | 2900    | 37 J    | 150 J         | 330          | 50,000           |
| Anthracene                 | U                    | 840     | U       | U             | 330          | 50,000           |
| Carbazole                  | U U                  | U U     | U       | U             | 330          | -                |
| Di-n-butyiphthalete        | { U                  | U       | U       | U             | 330          | 8,100            |
| Fluoranthene               | U                    | 5300    | 52 J    | 200 J         | 330          | 50,000           |
| Pyrane                     | U                    | 9200 D  | 50 J    | 210 J         | 330          | 50,000           |
| Butylbenzylphthalate       | U                    | U       | U       | U             | 330          | 50,000           |
| 3,3'-Dichlorobenzidine     | ) U                  | UU      | U       | U             | 330          | -                |
| Benzo(a)anthracene         | U                    | 5200    | U [     | 97 J          | 330          | 224              |
| Chrysene                   | U                    | 6200    | 38 J    | 110 J         | 330          | 400              |
| bls(2-Ethylhexyl)phthalate | U                    |         | U       | 540           | 330          | 50,000           |
| Di-n-octylphthalate        | Ú                    | U       | U       | υ             | 330          | 50.000           |
| Benzo(b)fluoranthene       | U                    | 5000    | U U     | 130 J         | 330          | 1,100            |
| Benzo(k)fluoranthene       | υ 1                  | 1800    | υ       | 66 J          | 330          | 1,100            |
| Benzo(a)pyrene             | ່ ບ                  | 3800    | υ       | 92 J          | 330          | 61               |
| Indeno(1,2,3-cd)pyrene     | l Ū                  | 800     | Ŭ       | 64 J          | 330          | 3.200            |
| Dibenz(a,h)anthracene      | υ                    | 350 J   | U U     | Ŭ             | 330          | 14               |
| Benzo(g,h,i)perviene       | Ŭ                    | 750     | Ŭ       | 67 J          | 330          | 50,000           |
|                            |                      | 10 507  |         | 4 4 9 9       |              | 400.000          |
| Total PAHs                 | 0                    | 42,567  | 177     | 1,186         |              | 100,000          |
| Total CaPAHs               | 0                    | 23,150  | 38      | 559           |              | 10,000           |
| Total SVOCs                | 0                    | 42,587  | 177     | 1,728         |              | 500,000          |

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

12/20/04

· · ·

ł

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### SURFACE SOIL - POLYCHLORINATED BIPHENYLS (PCBs)

| AREA OF CONGERN<br>SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | IPSB-28<br>(0-2)<br>1/30/03<br>1<br>87.0<br>(ug/kg) | P/m1/0<br>IPSB-27<br>(0-2)<br>1/30/03<br>1<br>83.0<br>(ug/kg) | IPSB-28<br>(0-2)<br>1/30/03<br>1<br>94.0<br>(ug/kg) | Relo r.c.<br>IPSB-29<br>(0-2)<br>1/28/03<br>1<br>85.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4048<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Aroclor- 1016                                                                                                         | υ                                                   | υ                                                             | υ                                                   | U                                                                | 34                                              |                                                                            |
| Arocior- 1221                                                                                                         | U U                                                 | υ                                                             | U                                                   | U                                                                | 34                                              |                                                                            |
| Arocior- 1232                                                                                                         | U                                                   | U                                                             | U                                                   | U                                                                | 34                                              |                                                                            |
| Aroclor- 1242                                                                                                         | ( U                                                 | U                                                             | U                                                   | ן ט                                                              | 34                                              |                                                                            |
| Arocior- 1248                                                                                                         | U                                                   | υ                                                             | υ -                                                 | U                                                                | 34                                              |                                                                            |
| Aroclor- 1254                                                                                                         | υ                                                   | U                                                             | U                                                   | U                                                                | 34                                              | ****                                                                       |
| Aroclor- 1280                                                                                                         | U                                                   | U                                                             | U                                                   | U                                                                | 34                                              |                                                                            |
| TOTAL PCBs                                                                                                            | 0                                                   | 0                                                             | 0                                                   | 0                                                                |                                                 | 1,000/10,000*                                                              |

#### QUALIFIERS:

U: Compound analyzed for but not detected.

#### NOTES:

--- : Not applicable.

: According to NYSDEC TAGM 4048 Recommended Soll Cleanup Objectives, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD **DELINEATION PHASE 2 SITE ASSESSMENT**

# SUBSURFACE SOIL - MERCURY AND RCRA METALS

| AREASOR CONCERNISH<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | IPSB-04A<br>(6 - 8)<br>1/29/03<br>73.0<br>(mg/kg) | IPSB-12<br>(2 - 4)<br>1/27/03<br>85.0<br>(mg/kg) | iPSB-12<br>(4 - 8)<br>1/27/03<br>57.0<br>(mg/kg) | IPSB-12<br>(8 - 10)<br>1/27/03<br>91.0<br>(mg/kg) | IPSB-13<br>(2 - 4)<br>1/29/03<br>89.0<br>(mg/kg) | IPSB-13<br>(4 - 6)<br>1/29/03<br>87.0<br>(mg/kg) | IPSB-14<br>(2 - 4)<br>1/29/03<br>84.0<br>(mg/kg) | IPSB-14<br>(4 - 6)<br>1/29/03<br>83.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Appendix A<br>Comparison Criteria<br>mg/kg |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|
| Mercury                                                                                               | 11.3                                              | 0,1 B                                            | 0.048 B                                          | U                                                 | 0.28                                             | 1.2                                              | 0.13                                             | U                                                | 0.1                                         | 0.1                                                            |

| AREAION CONCERNING<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | IPSB-14<br>(6 - 8)<br>1/29/03<br>63.0<br>(mg/kg) | IPSB-14<br>(8 - 10)<br>1/29/03<br>60.0<br>(mg/kg) | IPSB-15<br>(2 - 4)<br>1/29/03<br>86.0<br>(mg/kg) | <b>IPSB-15</b><br>(4 - 6)<br>1/29/03<br>84.0<br>(mg/kg) | IPSB-15<br>(6 - 8)<br>1/29/03<br>76.0<br>(mg/kg) | (PSB-15<br>(8 - 10)<br>1/29/03<br>75.0<br>(mg/kg) | IN an In Viet History<br>(0 - 2)<br>1/30/03<br>86.0<br>(mg/kg) | <b>IPSB-16</b><br>(2 - 4)<br>1/30/03<br>86.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Appendix A<br>Comparison Criteria<br>mg/kg |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|
| Mercury                                                                                               | 0.028 B                                          | U                                                 | 0.11                                             | 0.41                                                    | U                                                | U                                                 | 0.29                                                           | 0.038 B                                                 | 0.1                                         | 0.1                                                            |

| AREAIORICONCERN<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | IPSB-17<br>(0 - 2)<br>1/28/03<br>88.0<br>(mg/kg) | IPSB-17<br>(2 - 4)<br>1/28/03<br>78.0<br>(mg/kg) | IPSB-18<br>(2 - 4)<br>1/30/03<br>85.0<br>(mg/kg) | IPSB-20<br>(0 - 2)<br>1/27/03<br>91.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Appendix A<br>Comparison Criteria<br>mg/kg |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|
| Marcury                                                                                            | 0.057 B                                          | 0.07 B                                           | 0.1 B                                            | 0,15                                             | 0.1                                         | 0.1                                                            |

QUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes:

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

E

#### TABLE 35 (continued)

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### SUBSURFACE SOIL - MERCURY AND RCRA METALS

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | IPSB-04A<br>(8-10)<br>1/29/03<br>84.0<br>(mg/kg) | IPSB-13<br>(6-8)<br>1/29/03<br>82.0<br>(mg/kg) | IPSB-13<br>(8-10)<br>1/29/03<br>74.0<br>(mg/kg) | IPSB-20<br>(2-4)<br>1/27/03<br>87.0<br>(mg/kg) | IPSB-19<br>(2 - 4)<br>1/27/03<br>82.0<br>(mg/kg) | IPSB-26<br>(0-2)<br>1/30/03<br>94.0<br>(mg/kg) | IPSB-26<br>(2-4)<br>1/30/03<br>76.0<br>(mg/kg) | IPSB-27<br>(0-2)<br>1/30/03<br>89.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS      | NYSDEC TAGM 4048<br>Recommended Soll<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|
| Arsenic<br>Barlum<br>Cadmium<br>Chromium<br>Lead<br>Mercury                     | 4.3<br>17.5<br>0.097 B<br>13.4<br>29.3<br>0.11 B | 3.8<br>21.9<br>0.091 B<br>8.7<br>13.6<br>0.57  | 5.7<br>9.4 B<br>0.24 B<br>8.2<br>19<br>0.041    | 4.1<br>15.7<br>0.33<br>9.2<br>15.7<br>0.34     | NA<br>NA<br>NA<br>NA<br>U                        | 3.1<br>28.2<br>1.2<br>5.7<br>18.2<br>0.051 B   | 1.3<br>6.2 B<br>U<br>5.7<br>2 B<br>U           | 3.7<br>26.4<br>0.85<br>6.7<br>12.7<br>0.05 B   | 3.0<br>3.0<br>2.0<br>3.0<br>1.0<br>0.1 | 7.5 or SB<br>300 or SB<br>10*<br>50*<br>SB**<br>0.1                  |
| Selenium<br>Silver                                                              | UUU                                              | UUU                                            | U<br>U                                          | U<br>0.64 B                                    | NA<br>NA                                         | U<br>U                                         | ม<br>บ                                         | UUU                                            | 8.0<br>2.0                             | 2 or SB<br>SB                                                        |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS   | iP\$B-27<br>(2-4)<br>1/30/03<br>73.0<br>(mg/kg) | iPSB-28<br>(2-4)<br>1/30/03<br>85.0<br>(mg/kg)     | <b>IP8B-29</b><br>(2-4)<br>1/28/03<br>87.0<br>(mg/kg)    | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/i)          | NYSDEC TAGM 4048<br>Recommended Soil<br>Cleanup Objective<br>(mg/kg) |
|-----------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
| Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Lead<br>Mercury<br>Selenium<br>Silver | 3.9<br>7.4 B<br>8.4<br>3.9<br>U<br>U<br>U       | 6.6<br>32.7<br>U<br>14.2<br>24.7<br>0.14<br>U<br>U | 11.8<br>70.7<br>0.53<br>7<br>47.3<br>0.11<br>U<br>0.93 B | 3.0<br>3.0<br>2.0<br>3.0<br>1.0<br>0.1<br>8.0<br>2.0 | 7.5 or SB<br>300 or SB<br>10*<br>50*<br>SB**<br>0.1<br>2 or SB<br>SB |

QUALIFIERS:

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes:

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

e= 1

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm. : Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

-

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD **DELINEATION PHASE 2 SITE ASSESSMENT**

#### SUBSURFACE SOIL - VOLATILE ORGANIC COMPOUNDS (VOCs)

| RAN KYOL THON HAND        | i in the | NHECOMON | THE STREET |              |              |
|---------------------------|----------|----------|------------|--------------|--------------|
| SAMPLE ID                 | IPSB-04A | IPSB-13  | IPSB-13    |              |              |
| SAMPLE DEPTH (FT)         | (8-10)   | (6-8)    | (8-10)     | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION        | 1/29/03  | 1/29/03  | 1/29/03    | QUANTITATION | Recommended  |
| DILUTION FACTOR           | 57       | 250      | 57         | LIMITS       | Soil Cleanup |
| PERCENT SOLIDS            | 84.0     | 82.0     | 74.0       |              | Objective    |
| UNITS                     | (ug/kg)  | (ug/kg)  | (ug/kg)    | (ug/Kg)      | (ug/Kg)      |
| Dichlorodifluoromethane   | Ū        | U        | Ű          | 5            |              |
| Chloromethane             | U        | U        | U          | 5            |              |
| Vinyl Chloride            | U        | U        | U          | 5            | 200          |
| Bromomethane              | U        | U        | U          | 5            | -            |
| Chloroethane              | υ        | U        | U          | 5            | 1900         |
| Trichlorofluoromethane    | U U      | U .      | U          | 5            |              |
| 1,1-Dichloroethene        | U        | U        | U          | 5            | 400          |
| Acetone                   | U        | U        | 210 J      | 5            | 200          |
| Idomethane                | ( U      | υ        | U          | 5            | -            |
| Carbone Disulfide         | <u> </u> | υ        | υ          | 5            | 2700         |
| Methylene Chloride        | 260 J    | 260 J    | 120 J      | 5            | 100          |
| trans-1,2-Dichloroethene  |          | U        |            | 5            | 300          |
| Methyl tert-butyl ether   | Ú        | Ú        | Ú          | 5            |              |
| 1,1-Dichloroethane        | U        | U        | U          | 5            | 200          |
| Vinyl acetate             | U        | U        | ບ          | 5            | -            |
| 2-Butanone                | U        | U        | U          | 5            | 300          |
| cis-1,2-Dichloroethene    | U        | U        | υ          | 5            |              |
| 2,2-Dichloropropane       | U U      | U        | υ          | 5            |              |
| Bromochloromethane        | U U      | U        | U          | 5<br>5<br>5  |              |
| Chioroform                | υ        | U        | U          | 5            | 300          |
| 1,1,1-Trichloroethane     | U        | U        | U          | 5<br>5       | 800          |
| 1,1-Dichloropropene       | U        | υ        | υ          | 5            |              |
| Carbon Tetrachloride      | U        | U        | U          | 5            | 600          |
| 1,2-Dichloroethane        | U        | U        | U          | 5            | 100          |
| Benzene                   | U        | υ        | U          | 5            | 60           |
| Trichloroethene           | U        | U        | U          | 5            | 700          |
| 1,2-Dichloropropane       | U        | U        | U          | 5            | i –          |
| Dibromomethane            | U        | U        | U          | 5            | -            |
| Bromodichloromethane      | ບ        | υ        | υ          | 5            | -            |
| cis-1,3-Dichloropropane   |          | U        | U          | 5            |              |
| 4-Methyl-2-pentanone      | U        | U        | U          | 5            | 1000         |
| Toluene                   | U        | U        | U          | 5            | 1500         |
| trans-1,3-Dichloropropane | U        | U        | U          | 5            |              |
| 1,1,2-Trichloroethane     | <u> </u> | U        | UU         | 5            |              |
| QUALIFIERS:               |          |          | NOT        | <u>(ES;</u>  |              |

QUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

-: Not applicable.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

# TABLE 36 (continued)

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

# SUBSURFACE SOIL - VOLATILE ORGANIC COMPOUNDS (VOCs)

| 机体织动力和动物动动制造工作法计            | C C Section | TER BRANCH ST | anten de la dela |                               |              |
|-----------------------------|-------------|---------------|------------------|-------------------------------|--------------|
| SAMPLE ID                   | IPSB-04A    | IPSB-13       | IPSB-13          |                               |              |
| SAMPLE DEPTH (FT)           | (8-10)      | (6-8)         | (8-10)           | LABORATORY                    | NYSDEC TAGM  |
| DATE OF COLLECTION          | 1/29/03     | 1/29/03       | 1/29/03          | QUANTITATION                  | Recommended  |
| DILUTION FACTOR             | 57          | 250           | 57               | LIMITS                        | Soll Cleanup |
| PERCENT SOLIDS              | 84.0        | 82.0          | 74.0             |                               | Objective    |
| UNITS                       | (ug/kg)     | (ug/kg)       | (ug/kg)          | (ug/Kg)                       | (ug/Kg)      |
| 1,3-Dichloropropane         | U           | U             | U                | 5                             | 300          |
| Tetrachloroethene           | U           | U             | U                | 5                             | 1400         |
| 2-Hexanone                  | U           | U             | U                | 5                             |              |
| Dibromochloromethane        | U           | U             | U                | 5                             |              |
| 1,2-Dibromoethane           | U           | U             | U U              | 5                             |              |
| Chlorobenzene               | U           | U             | U                | 5                             | 1700         |
| 1,1,1,2-Tetrachloroethane   | U           | U             | U                | 5                             |              |
| Ethylbenzene                | U           | U             | U                | 5                             | 5500         |
| m,p-Xylene                  | U           | U             | U                | 5                             | -            |
| o-Xylene                    | U           | U             | U                | 5                             |              |
| Xylene (total)              | U           | U             | U                | 5                             | 1200         |
| Styrene                     | U           | U             | U                | 5                             | -            |
| Bromoform                   | U           | U             | U                | 5                             |              |
| isopropylbanzana            | U           | Ų             | U                | 5                             |              |
| 1,1,2,2-Tetrachloroethane   | U           | U             | U                | 5                             | 600          |
| Bromobenzene                | U           | U             | U                | 5                             | -            |
| 1,2,3-Trichloropropane      | U           | Ų             | U                | 5                             | 400          |
| n-Propylbenzene             | Ų           | U             | U                | 5                             |              |
| 2-Chlorotoluene             | U           | Ų             | U U              | 5                             |              |
| 1,3,5-Trimethylbenzene      | U           | U             | U                | 5                             | -            |
| 4-Chlorotoluene             | U           | U             | U                | 5                             |              |
| tert-Butylbenzene           | U           | U             | U U              | 5                             |              |
| 1,2,4-Trimethylbenzene      | U           | U             | U                | 5                             | -            |
| sec-Butylbenzene            | • U         | U             | U U              | 5                             |              |
| 4-Isopropyitoluene          | U.          | U             | U U              | 5                             |              |
| 1,3-Dichlorobenzene         | U           | U             | U U              | 5                             | 1600         |
| 1,4-Dichlorobenzene         | U           | U             | U U              | 5                             | 8500         |
| n-Butylbenzene              | U           | U             | U                | 5                             |              |
| 1,2-Dichlorobenzene         | U           | U             | U U              | 5                             | 7900         |
| 1,2-Dibromo-3-chloropropane | UU          | U<br>U        | U<br>U           | 5<br>5                        | 3400         |
| 1,2,4-Trichlorobenzene      | UU          | U<br>U        |                  | 5                             |              |
| Hexachlorobutadiene         | -           |               |                  |                               |              |
| Naphthalene                 | 1600        | 50000         | 15000 D          | 5                             | 13000        |
| 1,2,3-Trichlorobenzene      | U           | 0             | Ū                | 5                             | -            |
| Totals VOCs                 | 1,860       | 50,260        | 15,330           |                               | -            |
| QUALIFIERS:                 |             |               | NOT              | <u>[ES:</u><br>lot epolicable |              |

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

--: Not applicable.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

and the second second

### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD **DELINEATION PHASE 2 SITE ASSESSMENT**

## SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

|                                                   | ្រះ្លាំ ំងោរ |         | 1001    | Construction of the second second |         | Jun Da  | en an anaiste anna ann ann an |              |              |
|---------------------------------------------------|--------------|---------|---------|-----------------------------------|---------|---------|-------------------------------|--------------|--------------|
| AMPLE ID                                          | IPSB-04A     | IPSB-13 | IP88-13 | IPSB-26                           | IPS8-26 | IPSB-27 | IPSB-27                       |              |              |
| AMPLE DEPTH (FT)                                  | (8-10)       | (6-8)   | (8-10)  | (0-2)                             | (2-4)   | (0-2)   | (2-4)                         | LABORATORY   | NYSDEC TAGM  |
| ATE OF COLLECTION                                 | 1/29/03      | 1/29/03 | 1/29/03 | 1/30/03                           | 1/30/03 | 1/30/03 | 1/30/03                       | QUANTITATION | Recommended  |
| DILUTION FACTOR                                   | 1            | 5       | 2       | 1                                 | 1       | 1       | 1                             | LIMITS       | Soll Cleanup |
| PERCENT SOLIDS                                    | 84.0         | 82.0    | 74.0    | 94.0                              | 76.0    | 89.0    | 73.0                          |              | Objective    |
| UNITS                                             | (ug/kg)      | (ug/kg) | (ug/kg) | (ug/kg)                           | (ug/kg) | (ug/kg) | (ug/kg)                       | (ug/Kg)      | (ug/Kg)      |
|                                                   |              |         |         |                                   |         |         |                               |              |              |
| Phenoi                                            | U            | U       | U       | U                                 | υ       | U U     | U U                           | 330          | 30           |
| is(2-Chloroethyl)ether                            | U U          | U       | U       | U                                 | U       | U       | υ                             | 330          | -            |
| -Chlorophenol                                     | υ            | U       | υ       | Ű                                 | Ū       | Ū       | Ū                             | 330          | 800          |
| ,3-Dichlorobenzene                                | Ú            | U       | Ū       | Ū                                 | Ū       | ũ       | ŪŪ                            | 330          |              |
| ,4-Dichlorobenzene                                | Ū            | Ū       | Ū       | Ŭ                                 | Ŭ       | Ū       | Ŭ                             | 330          | -            |
| ,2-Dichlorobenzene                                | Ū            | Ū       | Ū       | Ŭ l                               | Ŭ       | Ŭ       | Ŭ Ū                           | 330          |              |
| -Methylphenol                                     | Ū            | Ŭ       | Ū       | Ŭ                                 | Ŭ       | Ŭ       | Ŭ                             | 330          | 100          |
| 2,2-oxybis (1-chloropropane)                      | Ū            | Ū       | Ŭ       | Ŭ                                 | Ŭ       | Ŭ       | Ŭ                             | 330          | -            |
| -Methylphenol                                     | Ŭ            | บ       | ŭ       | υŪ                                | Ŭ       | Ŭ       | υŬ                            | 330          | 900          |
| N-Nitroso-di-n-propylamine                        | ιŭ           | Ŭ       | Ŭ       | ŭ                                 | Ŭ       | Ŭ       | Ŭ                             | 330          |              |
| lexachioroethane                                  | Ū            | Ŭ       | Ŭ       | Ŭ                                 | Ŭ       | Ŭ       | Ŭ                             | 330          | -            |
| Vitrobenzene                                      | บั           | Ŭ       | ŭ       | ŭ                                 | Ŭ       | ບ<br>ບ  | Ŭ . Ŭ                         | 330          | 200          |
| sophorone                                         | ŭ            | ŭ       | ŭ       | ŭ                                 | Ŭ       | Ŭ       | Ŭ                             | 330          | 4,400        |
|                                                   | ŭ            | Ŭ       | Ŭ       | ŭ                                 | Ŭ       | Ŭ       | Ŭ                             | 330          | 330          |
| 2,4-Dimethylphenol                                | U U          | Ŭ       | Ŭ       | Ŭ                                 | ŭ       | U U     | U U                           | 330          |              |
| 2,4-Dichlorophenol                                | บ บ บ        | Ŭ       | ŭ       | Ŭ I                               | Ŭ       | -       | -                             |              | -            |
| .2.4-Trichlorobenzene                             | Ŭ            | U U     | i i i   | -                                 | -       | U       | U                             | 330          | 400          |
| Naphthalene                                       | -            |         | U U     | U                                 | U       | Ų       | U                             | 330          |              |
|                                                   | 3000         | 27000   | 9900    | U                                 | U       | U       | U                             | 330          | 13,000       |
|                                                   | U U          | :0      | U U     | U                                 | U       | U       | U U                           | 330          | 220          |
| bis(2-Chloroethoxy)methane<br>fexachlorobutadiene | U U          | U       | U I     | U                                 | · U     | U       | U                             | 330          | -            |
|                                                   | U U          | U       | U I     | U                                 | U       | U       | U                             | 330          |              |
| -Chloro-3-methylphenol                            | U            | U       | U       | <u>U</u>                          | U       | U       | U                             | 330          | 240          |
| 2-Methylnaphthalene                               | 190 J        | 7600    | 1600    | U.                                | U       | U       | U                             | 330          | 36,400       |
| exachiorocyclopentadiene                          | U            | U       | U I     | U                                 | U       | U U     | U                             | 330          |              |
| 2,4,6-Trichlorophenol                             | U U          | U       | U U     | U                                 | U       | U       | U U                           | 330          | -            |
| 2,4,5-Trichlorophenol                             | U            | U       | U       | U                                 | U       | U       | U                             | 660          | 100          |
| 2-Chloronaphthalene                               | U            | U       | U       | U                                 | U       | U       | U                             | 330          |              |
| 2-Nitroaniline                                    | U U          | U       | U       | U                                 | U       | U       | U                             | 660          | 430          |
| Dimethylphthalate                                 | U            | U       | U       | U                                 | Ų       | U       | U                             | 330          | 2,000        |
| cenaphthylene                                     | U            | U       | U       | U                                 | U       | U       | U                             | 330          | 41,000       |
| 1,6-Dinitrotoluene                                | U            | U       | U       | Ψ                                 | U       | U       | U                             | 330          | 1,000        |
| Nitroaniline                                      | U            | U       | U       | U                                 | U       | U       | U                             | 660          | 500          |
| cenaphthene                                       | 450          | 6700    | 3700    | U                                 | U       | U       | ט ו                           | 330          | 50,000       |

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

....

Sec. 2. Sec. Sec. 1.

- : Not applicable.

: Result exceeds NYSDEC TAGM Recommended Soll Cleanup Objective

1

1

ł

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                  | IPSB-04A     |           |              | 1000 04       |         |         | 1000.07      |              |              |
|----------------------------|--------------|-----------|--------------|---------------|---------|---------|--------------|--------------|--------------|
| SAMPLE DEPTH (FT)          |              | IPSB-13   | IPSB-13      | IPSB-26       | IPSB-26 | IPSB-27 | IP88-27      | 1 4000 47001 |              |
|                            | (8-10)       | (6-8)     | (8-10)       | (0-2)         | (2-4)   | (0-2)   | (2-4)        | LABORATORY   | NY8DEC TAGM  |
| DATE OF COLLECTION         | 1/29/03      | 1/29/03   | 1/29/03      | 1/30/03       | 1/30/03 | 1/30/03 | 1/30/03<br>1 | QUANTITATION | Recommended  |
| PERCENT SOLIDS             | 1<br>84.0    | 5<br>82.0 | 2<br>74.0    | 1<br>94.0     | 1       | 1 100 0 |              | LIMITS       | Soll Cleanup |
| JNITS                      |              |           |              |               | 76.0    | 100.0   | 100.0        | 1            | Objective    |
|                            | (ug/kg)      | (ug/kg)   | (ug/kg)      | (ug/kg)       | (ug/kg) | (ug/kg) | (ug/kg)      | (ug/Kg)      | (ug/Kg)      |
| ,4-Dinitrophenol           | ບ            | υ         | U            | U             | υ       | υ       | υ            | 660          | 200          |
| -Nitrophenol               | U            | U         | U            | υ             | U       | υ       | U            | 660          | 100          |
| Dibenzofuran               | 53 J         | 6000      | 2500         | U             | U       | υ       | υ            | 330          | 6,200        |
| 4-Dinitrotoluene           | U            | U         | U            | U             | U       | U       | U            | 330          |              |
| Diethylphthalate           | U            | U         | U            | U             | U       | U       | U            | 330          | 7,100        |
| -Chiorophenyi-phenyiether  | U            | υ         | U            | U             | U       | U)      | U            | 330          |              |
| luorene                    | 240 J        | 6900      | 4200         | U             | U       | U       | U            | 330          | 50,000       |
| -Nitroaniline              | υ            | U         | U            | U             | U       | U       | U            | 330          |              |
| ,6-Dinitro-2-methylphenol  | U            | U         | U            | U             | U       | U       | U            | 330          | -            |
| I-Nitrosodiphenyiamine     | U            | Ų         | U            | U             | U       | U       | υ            | 330          | -            |
| -Bromophenyl-phenylether   | U            | U         | U            | υ             | U       | U       | υ            | 330          |              |
| lexachiorobenzene          | U            | U         | U            | U             | U       | υ       | υ            | 330          | 410          |
| entachlorophenoi           | U            | U         | U U          | U             | U       | υ       | U            | 660          | 1,000        |
| henanthrene                | 300 J        | 17000     | 11000        | 270 J         | 200 J   | 560     | U            | 330          | 50,000       |
| athracene                  | 80 J         | 4900      | 3300         | 84 J          | 47 J    | 170 J   | U            | 330          | 50,000       |
| Carbazole                  | U            | 810 J     | 520 J        | U             | U       | U       | U            | 330          |              |
| Di-n-butyiphthalate        | U            | U         | U            | U             | U       | U       | U            | 330          | 8,100        |
| luoranthene                | 170 J        | 5400      | 5900         | 530           | 210 J   | 1200    | U            | 330          | 50,000       |
| Pyrene                     | 160 J        | 5100      | 5400         | 830           | 320 J   | 2100    | U            | 330          | 50,000       |
| Butylbenzylphthalate       | Ų            | U         | U            | U             | U       | U       | U            | 330          | 50,000       |
| ,3-Dichlorobenzidine       | U            | U         | <u> </u>     | U             | Υ       | Ų       | U            | 330          | -            |
| Benzo(a)anthracene         | 56 J         | 1200 J    | 920          | 510           | 180 J   | 1200    | U            | 330          | 224          |
| Chrysene                   | 61 J         | 1300 J    | <u> </u>     | 560           | 210 J   | 1400    | U            | 330          | 400          |
| ois(2-Ethyihexyl)phthalate | U [          | U         | Ų –          | U             | υ       | — U     | υ            | 330          | 50,000       |
| Di-n-octylphthalate        | U            | U         | U            | U             | U       | U       | U            | 330          | 50,000       |
| Benzo(b)fluoranthene       | 60 J         | 840 J     | 530 J        | 370           | 140 J   | 990     | U            | 330          | 1,100        |
| lenzo(k)fluoranthene       | υ            | 380 J     | 260 J        | 160 J         | 51 J    | 370     | U            | 330          | 1,100        |
| lenzo(a)pyrene             | <b>4</b> 4 J | 580 J     | <u>350</u> J | 350           | 130 J   | 920     | U            | 330          | 61           |
| ndeno(1,2,3-cd)pyrene      | υ            | U ]       | 100 J        | 14 <u>0</u> J | 51 J    | 280 J   | U            | 330          | 3,200        |
| benz(s,h)anthracene        | υ)           | U         | υ            | 56 J          | U       | 120 J   | Ų            | 330          | 14           |
| lenzo(g,h,i)perylene       | υ            | U         | 95 J         | 150 J         | 58 J    | 280 J   | U            | 330          | 50,000       |
| otal PAHs                  | 4,864        | 90.880    | 50,665       | 4,010         | 1,597   | 9,590   | o            | -            | 100,000      |
| otal CaPAHs                | 221          | 4,280     | 3,070        | 2,146         | 762     | 5,280   | ŏ            | -            | 10,000       |
| Fotal SVOCs                | 4,864        | 91,690    | 51,185       | 4,010         | 1,597   | 9.590   | ŏ            | -            | 500,000      |

-.

J: Compound found at a concentration below the detection limit.

: Result exceeds NYSDEC TAGM Recommended Soll Cleanup Objective

1

.

.

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| AREANOBICONORRAN<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | iPSB-28<br>(2-4)<br>1/30/03<br>1<br>85.0<br>(ug/kg) | <b>IPSB-29</b><br>(2-4)<br>1/28/03<br>1<br>87.0<br>(ug/kg) |     |     |       |   |     | NYSDEC TAGM<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/Kg) |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|-----|-----|-------|---|-----|--------------------------------------------------------------------|
| Phenol                                                                                                                 |                                                     |                                                            |     |     |       |   |     |                                                                    |
|                                                                                                                        | U U                                                 | U                                                          | 1   |     |       |   | 330 | 30                                                                 |
| bis(2-Chloroethyl)ether                                                                                                | U                                                   | U                                                          |     |     |       |   | 330 | -                                                                  |
| 2-Chlorophenol                                                                                                         | U                                                   | U U                                                        |     |     |       |   | 330 | 800                                                                |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene                                                                             | U                                                   | U                                                          |     |     |       |   | 330 |                                                                    |
|                                                                                                                        | U                                                   | U                                                          | 1 1 |     |       |   | 330 | -                                                                  |
| 1,2-Dichlorobenzene                                                                                                    | U                                                   | U                                                          | 1   |     |       |   | 330 | -                                                                  |
| 2-Methylphenol                                                                                                         | U                                                   | U                                                          |     |     |       |   | 330 | 100                                                                |
| 2,2-oxybis (1-chloropropane)                                                                                           | U                                                   | U                                                          | 4 1 |     |       |   | 330 | ~                                                                  |
| 4-Methylphenol                                                                                                         | U                                                   | U                                                          |     |     |       |   | 330 | 900                                                                |
| N-Nitroso-di-n-propylamine                                                                                             | U                                                   | U                                                          |     |     |       |   | 330 | - 1                                                                |
| Hexachloroethane                                                                                                       | U U                                                 | U                                                          |     |     |       |   | 330 |                                                                    |
| Nitrobenzene                                                                                                           | U                                                   | U                                                          |     |     |       |   | 330 | 200                                                                |
| Isophorone                                                                                                             | U                                                   | U                                                          |     |     |       |   | 330 | 4,400                                                              |
| 2-Nitrophenol                                                                                                          | U                                                   | U                                                          | 1   |     |       |   | 330 | 330                                                                |
| 2,4-Dimethylphenol                                                                                                     | U                                                   | U                                                          |     |     |       |   | 330 | -                                                                  |
| 2,4-Dichlorophenol                                                                                                     | U                                                   | υ                                                          | 1   |     |       |   | 330 | 400                                                                |
| 1,2,4-Trichlorobenzene                                                                                                 | U                                                   | U                                                          |     |     |       |   | 330 |                                                                    |
| Naphthalene                                                                                                            | U                                                   | 390                                                        |     |     |       |   | 330 | 13,000                                                             |
| 4-Chloroaniline                                                                                                        | U                                                   | U                                                          |     |     | i     |   | 330 | 220                                                                |
| bis(2-Chloroethoxy)methane                                                                                             | U                                                   | U U                                                        |     |     |       |   | 330 |                                                                    |
| Hexachlorobutadiene                                                                                                    | U U                                                 | U                                                          |     |     |       |   | 330 | - 1                                                                |
| 4-Chloro-3-methylphenol                                                                                                | U                                                   | U                                                          |     |     |       |   | 330 | 240                                                                |
| 2-Methylnaphthalene                                                                                                    | U                                                   | 540                                                        | 1   |     |       |   | 330 | 36,400                                                             |
| Hexachlorocyclopentadiene                                                                                              | U                                                   | U                                                          |     |     |       |   | 330 | - (                                                                |
| 2,4,6-Trichlorophenol                                                                                                  | U                                                   | U                                                          | 1 1 |     |       |   | 330 | -                                                                  |
| 2,4,5-Trichiorophenol                                                                                                  | U                                                   | U                                                          |     |     |       |   | 660 | 100                                                                |
| 2-Chloronaphthalene                                                                                                    | U                                                   | υ                                                          |     |     |       | [ | 330 | -                                                                  |
| 2-Nitroaniline                                                                                                         | U                                                   | U                                                          | l   |     |       |   | 660 | 430                                                                |
| Dimethylphthalate                                                                                                      | U                                                   | υ                                                          |     |     |       |   | 330 | 2,000                                                              |
| Acenaphthylene                                                                                                         | U                                                   | U                                                          |     |     |       |   | 330 | 41,000                                                             |
| 2,6-Dinitrotoiuene                                                                                                     | U                                                   | U                                                          |     |     |       |   | 330 | 1,000                                                              |
| 3-Nitroaniline                                                                                                         | U                                                   | U                                                          | { { |     |       |   | 660 | <b>50</b> 0                                                        |
| Acenaphthene                                                                                                           | <u> </u>                                            | <u>210_J</u>                                               |     | NOT | <br>_ |   | 330 | 50,000                                                             |

QUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found et a concentration below the detection limit.

.....

١.

ale 1

.

NOTES: - : Not applicable.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| ALTERNOL GIONGLER ME ALLER THE |         |         |  |    |     |  |              |              |
|--------------------------------|---------|---------|--|----|-----|--|--------------|--------------|
| SAMPLE ID                      | IPSB-28 | IPSB-29 |  |    |     |  |              |              |
| SAMPLE DEPTH (FT)              | (2-4)   | (2-4)   |  |    |     |  | LABORATORY   | NYSDEC TAGM  |
| ATE OF COLLECTION              | 1/30/03 | 1/28/03 |  |    |     |  | QUANTITATION | Recommended  |
| ILUTION FACTOR                 | 1       | 1       |  |    |     |  | LIMITS       | Soll Cleanup |
| PERCENT SOLIDS                 | 100.0   | 87.0    |  |    |     |  |              | Objective    |
| INITS                          | (ug/kg) | (ug/kg) |  |    |     |  | (ug/Kg)      | (ug/Kg)      |
| 4-Dinitrophenol                | U       | υ       |  |    |     |  | 660          | 200          |
| -Nitrophenol                   | ŭ       | Ŭ       |  |    |     |  | 660          | 100          |
| ibenzofuran                    | Ŭ       | 220 J   |  |    |     |  | 330          | 6,200        |
| 4-Dinitrotoluene               | u u     | U       |  |    |     |  | 330          | 0,200        |
| iethylphthalate                | Ŭ       | Ŭ       |  |    |     |  | 330          | 7,100        |
| -Chlorophenyl-phenylether      | Ŭ       | Ŭ       |  |    |     |  | 330          | -            |
| luorene                        | Ŭ       | 150 J   |  |    |     |  | 330          | 50,000       |
| Nitroaniline                   | ů       | Ŭ       |  |    |     |  | 330          |              |
| 6-Dinitro-2-methylphenol       | Ŭ       | Ŭ       |  |    |     |  | 330          |              |
| -Nitrosodiphenylamine          | Ŭ       | Ŭ       |  |    |     |  | 330          | -            |
| -Bromophenyl-phenylether       | l ū     | Ŭ       |  |    |     |  | 330          | -            |
| exachiorobenzene               | Ū       | Ŭ       |  |    |     |  | 330          | 410          |
| entachlorophenol               | U       | υ       |  |    |     |  | 660          | 1,000        |
| henanthrene                    | 320 J   | 1500    |  |    |     |  | 330          | 50.000       |
| nthracene                      | 60 J    | 280 J   |  |    |     |  | 330          | 50,000       |
| arbazole                       | 39 J    | 150 J   |  |    |     |  | 330          | -            |
| Di-n-butylphthalate            | U       | U       |  |    |     |  | 330          | 8,100        |
| luoranthene                    | 530     | 1500    |  |    |     |  | 330          | 50,000       |
| yrene                          | 500     | 1200    |  |    |     |  | 330          | 50,000       |
| lutylbenzyiphthalate           | U       | U       |  |    |     |  | 330          | 50,000       |
| ,3-Dichlorobenzidine           | Ū       | Ū       |  |    |     |  | 330          |              |
| enzo(a)anthracene              | 260 J   | 690     |  |    |     |  | 330          | 224          |
| hrysene                        | 360 J   | 740     |  |    |     |  | 330          | 400          |
| ls(2-Ethylhexyl)phthalate      | U U     | U       |  |    |     |  | 330          | 50,000       |
| Di-n-octylphthalate            | ũ       | Ū.      |  |    |     |  | 330          | 50,000       |
| lenzo(b)fluoranthene           | 300 J   | 930     |  |    |     |  | 330          | 1,100        |
| ienzo(k)fluoranthene           | 160 J   | 380     |  |    |     |  | 330          | 1,100        |
| enzo(a)pyrehe                  | 220 J   | 590     |  |    |     |  | 330          | 61           |
| ndeno(1,2,3-cd)pyrene          | 120 J   | 260 J   |  |    |     |  | 330          | 3,200        |
| libenz(a,h)anthracene          | Ŭ       | 73 J    |  |    |     |  | 330          | 14           |
| lenzo(g,h,i)perylene           | 110 J   | 260 J   |  |    |     |  | 330          | 50,000       |
| otal PAHs                      | 2,940   | 9,913   |  |    |     |  | -            | 100,000      |
| otal CaPAHs                    | 1,420   | 3,663   |  |    |     |  | -            | 10,000       |
| Total SVOCs                    | 2,979   | 10,063  |  |    |     |  |              | 500,000      |
| QUALIFIERS:                    |         |         |  | NO | ES: |  |              |              |

QUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

-- : Not applicable.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

. 1

the second se

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD DELINEATION PHASE 2 SITE ASSESSMENT

#### SUBSURFACE SOIL - POLYCHLORINATED BIPHENYLS (PCBs)

| AREA OF CONSTRNI<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                             | (8-10)<br>1/29/03<br>1<br>84.0<br>(ug/kg)             | <b>iPSB-13</b><br>(6-8)<br>1/29/03<br>1<br>82.0<br>(ug/kg) | 1115<br>IPSB-13<br>(8-10)<br>1/29/03<br>1<br>74.0<br>(ug/kg) | IPSB-26<br>(0-2)<br>1/30/03<br>1<br>94.0<br>(ug/kg) | (2-4)<br>1/30/03<br>1<br>76.0<br>(ug/kg) | 0(1)<br>IPSB-27<br>(0-2)<br>1/30/03<br>1<br>89.0<br>(ug/kg) | IPSB-27<br>(2-4)<br>1/30/03<br>1<br>73.0<br>(ug/kg) | IC(10111<br>IPSB-28<br>(2-4)<br>1/30/03<br>1<br>85.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4048<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Arocior- 1016<br>Arocior- 1221<br>Arocior- 1232<br>Arocior- 1242<br>Arocior- 1248<br>Arocior- 1254<br>Arocior- 1254<br>Arocior- 1260<br>TOTAL PCBs | 0 22220                                               | 0 22222                                                    | 0 כככככ                                                      | 0 55555                                             | 0 0000                                   | ο                                                           | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0                                                     | 34<br>34<br>34<br>34<br>34<br>34<br>34<br>34    | <br><br><br><br>1,000/10,000*                                              |
| ARE OF CONSTRUCTOR<br>SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                           | 1/28/03<br>1/28/03<br>1/28/03<br>1<br>87.0<br>(ug/kg) |                                                            |                                                              |                                                     |                                          |                                                             |                                                     |                                                                 | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
| Aroclor- 1016<br>Aroclor- 1221<br>Aroclor- 1232<br>Aroclor- 1242<br>Aroclor- 1248<br>Aroclor- 1254<br>Aroclor- 1260<br>TOTAL PCBs                  | 0<br>0<br>0<br>0                                      |                                                            |                                                              |                                                     |                                          |                                                             |                                                     |                                                                 | 34<br>34<br>34<br>34<br>34<br>34<br>34<br>34    | <br><br><br>1.000/10.000*                                                  |

QUALIFIERS: U: Compound analyzed for but not detected. NOTES:

-- : Not applicable.

: According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0'-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

ţ

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

#### SUBSURFACE AND SURFACE SOIL - RCRA METALS

|                                                                                                                 |                 |                      |                                       | SUBSURFA               |         |         |         |            |                   |
|-----------------------------------------------------------------------------------------------------------------|-----------------|----------------------|---------------------------------------|------------------------|---------|---------|---------|------------|-------------------|
| un de la company de la comp |                 | and a constantes and | CHILDER WWW                           |                        |         |         |         |            |                   |
| SAMPLE ID                                                                                                       | IP88-21         | IP88-21              | IPSB-21                               | IP8B-21                | IPSB-21 | IPSB-22 | IPSB-23 | INSTRUMENT | NYSDEC TAGM       |
| SAMPLE DEPTH (FT)                                                                                               | (10-12)         | (12-14)              | (14-16)                               | (16-18)                | (18-20) | (2-4)   | (2-4)   | DETECTION  | 4046              |
| DATE OF COLLECTION                                                                                              | 1/29/03         | 1/29/03              | 1/29/03                               | 1/29/03                | 1/29/03 | 1/29/03 | 1/29/03 | LIMITS     | Recommended Soll  |
| PERCENT SOLIDS                                                                                                  | 32.0            | 33.0                 | 48.0                                  | 89.0                   | 85.0    | 89.0    | 73.0    | () (1)     | Cleanup Objective |
|                                                                                                                 | (mg/kg)         | (mg/kg)              | (mg/kg)                               | (mg/kg)                | (mg/kg) | (mg/kg) | (mg/kg) | (ug/l)     | (mg/kg)           |
| Arsenic ·                                                                                                       | 8.9             | 17.6                 | 16.3                                  | 2.5                    | 2.4     | 2.9     | 3.9     | 3.0        | 7.5 or SB         |
| Barium                                                                                                          | 35.7            | 81.8                 | 27.2                                  | 1,9 B                  | 1.4 B   | 28.2    | 27.8    | 3.0        | 300 or SB         |
| Cadmium                                                                                                         | 0.5 8           | 0.48 B               | 0.36 B                                | U                      | U       | 0.098 B | 0.18 8  | 2.0        | 10*               |
| Chromium                                                                                                        | 34.7            | 39                   | 37.1                                  | 4.6                    | 3.3     | 7.3     | 8.4     | 3.0        | 50*               |
| Lead                                                                                                            | 20.6            | 31.6                 | 12                                    | 1.8 B                  | 1.3 B   | 38.1    | 42.9    | 1.0        | SB**              |
| Mercury                                                                                                         | 5.4             | 2.4                  | 0.058 B                               | U U                    | U       | 0.047 B | 0.47    | 0.1        | 0.1               |
| Selenium                                                                                                        | C               | U                    | U U                                   | U U                    | υ       | U       | Ū       | 8.0        | 2 or SB           |
| Silver                                                                                                          | U               | U U                  | U                                     | U U                    | υ       | U       | U       | 2.0        | SB                |
|                                                                                                                 |                 |                      |                                       | SUB SURFA              | CE SOIL | ,       |         |            | ·                 |
| falles Photographic and                                                                                         |                 |                      |                                       |                        |         |         |         |            |                   |
| SAMPLE ID                                                                                                       | IPSB-24         | IP88-25              |                                       |                        |         |         |         | INSTRUMENT | NYSDEC TAGM       |
| SAMPLE DEPTH (FT)                                                                                               | (2-4)           | (2-4)                |                                       |                        |         |         |         | DETECTION  | 4048              |
| DATE OF COLLECTION                                                                                              | 1/29/03         | 1/29/03              |                                       |                        |         |         |         | LIMITS     | Recommended Soil  |
| PERCENT SOLIDS                                                                                                  | 83.0            | 77.0                 |                                       |                        |         |         |         |            | Cleanup Objective |
| UNITS                                                                                                           | (mg/kg)         | (mg/kg)              |                                       |                        |         |         |         | (ug/l)     | (mg/kg)           |
| Arsenic                                                                                                         | 7.3             | 27.3                 |                                       |                        |         |         |         | 3.0        | 7.5 or SB         |
| Barium                                                                                                          | 130             | 148                  |                                       |                        |         |         |         | 3.0        | 300 or SB         |
| Cadmium                                                                                                         | 0.48            | 0.49                 |                                       |                        |         |         |         | 2.0        | 10*               |
| Chromlum                                                                                                        | 11.5            | 9.4                  |                                       |                        |         |         |         | 3.0        | 50*               |
| Lead                                                                                                            | 478             | 174                  |                                       |                        |         |         |         | 1.0        | SB**              |
| Mercury                                                                                                         | 0.79            | 0.28                 |                                       |                        |         |         |         | 0.1        | 0.1               |
| Selenium                                                                                                        | U               | υ                    | 1                                     |                        |         |         |         | 8.0        | 2 or SB           |
| Silver                                                                                                          | U               | U U                  |                                       |                        |         |         |         | 2.0        | SB                |
| ·                                                                                                               |                 |                      | · · · · · · · · · · · · · · · · · · · | SURFAC                 | ESOIL   |         |         |            | l                 |
| <b>建成5%出现40%和</b> 45%。1.3                                                                                       | ana ta ta ta ta |                      | ACTED AND AND A                       | - m - Sur die met stad |         |         |         |            | 1                 |
| SAMPLE ID                                                                                                       | IPSB-22         | IP88-23              | IP88-24                               | IPSB-25                |         |         |         | INSTRUMENT | NYSDEC TAGM       |
| SAMPLE DEPTH (IN)                                                                                               | (0-2)           | (0-2)                | (0-2)                                 | (0-2)                  |         |         |         | DETECTION  | 4046              |
| DATE OF COLLECTION                                                                                              | 1/29/03         | 1/29/03              | 1/29/03                               | 1/29/03                |         |         |         | LIMITS     | Recommended Soli  |
| PERCENT SOLIDS                                                                                                  | 87.0            | 90.0                 | 89.0                                  | 85.0                   |         |         |         |            | Cleanup Objective |
| UNITS                                                                                                           | (mg/kg)         | (mg/kg)              | (mg/kg)                               | (mg/kg)                |         |         |         | (ug/l)     | (mg/kg)           |
| Arsenic                                                                                                         | 5.2             | 8.5                  | 3,8                                   | 5                      |         |         |         | 3.0        | 7.5 or SB         |
| Barium                                                                                                          | 231             | 86                   | 27.2                                  | 38.2                   |         |         |         | 3.0        | 300 or SB         |
| Cadmium                                                                                                         | 0.16 B          | 0.39                 | 0,11 B                                | 38.∠<br>0.2 B          |         |         |         | 2.0        | 300 or SB         |
| Chromium                                                                                                        | 8.8             | 9.2                  | 8.4                                   | 7.7                    |         |         |         | 3.0        | 50*               |
| Lead                                                                                                            | 4.4             | 116                  | 36.3                                  | 48.8                   |         |         |         | 1,0        | SB**              |
| Marcury                                                                                                         | 0.028 B         | 0.99                 | 0,045 B                               | 0.55                   |         |         |         | 0.1        | 0.1               |
| Selenium                                                                                                        | U               | <u>U</u>             | U 0,040 U                             | 0.00                   |         |         |         | 8.0        | 2 or SB           |
| Silver                                                                                                          | U U             | U U                  | U U                                   | U U                    |         |         |         | 2.0        | SB                |
|                                                                                                                 | U U             | l ü                  | l č                                   |                        |         |         |         | 2.0        | 50                |

OUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

<u>Notes:</u> SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\* Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

e de la companya de la

Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

•

and the second second

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

# SURFACE AND SUBSURFACE SOIL - VOLATILE ORGANIC COMPOUNDS (VOCs)

|                           |          | ŠURFAČ   | ESOIL         |                    | su         | BSURFACE SO   | iL III   | 1            | I                |
|---------------------------|----------|----------|---------------|--------------------|------------|---------------|----------|--------------|------------------|
| fulle 13 craner lates     |          |          | Second Second | S. SILLIVERSITE C. | AND BARRAN | es de la cont |          |              |                  |
| SAMPLE ID                 | IPSB-22  | IPSB-23  | IPSB-24       | IPSB-25            | IPSB-22    | IPSB-23       | IPSB-24  |              |                  |
| SAMPLE DEPTH              | (0-2 IN) | (0-2 IN) | (0-2 IN)      | (0-2 IN)           | (2-4 FT)   | (2-4 FT)      | (2-4 FT) | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION        | 1/29/03  | 1/29/03  | 1/29/03       | 1/29/03            | 1/29/03    | 1/29/03       | 1/29/03  | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR           | 1 1      | 1        | 1             | 1                  | 1          | 1             | 1 ]      | LIMITS       | Soll Cleanup     |
| PERCENT SOLIDS            | 87.0     | 90.0     | 89.0          | 85.0               | 89.0       | 73.0          | 83.0     |              | Objective        |
| UNITS                     | (ug/kg)  | (ug/kg)  | (ug/kg)       | (ug/kg)            | (ug/kg)    | (ug/kg)       | (ug/kg)  | (ug/Kg)      | (ug/Kg)          |
| Dichlorodifluoromethane   | U        | 0        |               | 0                  | U          | U             | U 1      | 5            | _                |
| Chloromethane             | U U I    | U        | U             | U                  | U          | U             | υ        | 5            |                  |
| Vinyl Chioride            | U U      | U        | U             | U                  | U          | U             | U        | 5            | 200              |
| Bromomethane              | U U      | U        | U             | U                  | U          | U             | U        | 5            | -                |
| Chloroethane              | U        | υĮ       | U             | U                  | U          | U             | U        | 5            | 1900             |
| Trichlorofluoromethane    | ן ט      | U        | U             | U                  | U          | U             | U        | 5            | -                |
| 1,1-Dichloroethene        | ן ט      | U        | U             | U                  | U          | U             | U        | 5            | 400              |
| Acetone                   | 6        | 39       | 57            | 7                  | 25         | 100           | 35       | 5            | 200              |
| Idomethane                | υ        | U        | U             | U                  | U          | U             | U        | 5            | -                |
| Carbone Disuifide         | U        | 2 J      | 3 J           | U                  | 2 J        | 4 J           | 5 J      | 5            | 2700             |
| Methylene Chloride        | 27 B     | 33       | 15            | 50 B               | 23 B       | 140           | 21       | 5            | 100              |
| trans-1,2-Dichloroethene  |          | υ        | U             | υ                  | U          |               | U        | 5            | 300              |
| Methyl tert-butyl sther   | U U      | υ        | υ             | ΰ                  | · Ū        | Ū             | Ŭ        | 5            | -                |
| 1,1-Dichloroethane        | U U      | U [      | U             | υ                  | Ū          | Ū             | Ũ        | 5            | 200              |
| Vinyl acetate             | U        | U        | U             | U                  | · U        | U             | Ŭ        | 5            | -                |
| 2-Butanone                | { U      | 5 J      | 9             | U                  | U          | 9             | 8        | 5            | 300              |
| cis-1,2-Dichloroethene    | U U      | U        | υ             | U                  | U          | U             | U        | 5            |                  |
| 2,2-Dichloropropane       | υ υ      | U        | U             | U                  | U          | U             | Ŭ        | 5            | ! _              |
| Bromochloromethane        | ) U      | U        | υ             | U                  | U          | υ             | Ū        | 5            |                  |
| Chloroform                | υ        | U        | U             | U                  | U          | U             | U        | 5            | 300              |
| 1,1,1-Trichioroethane     | υ        | U        | U             | U                  | U          | U U           | U        | 5            | 800              |
| 1,1-Dichloropropene       | [ υ      | U        | U             | U                  | U          | υ             | U        | 5            | -                |
| Carbon Tetrachloride      | υ        | U U      | υ             | U                  | U          | U             | U        | 5            | 600              |
| 1,2-Dichloroethane        | <b>υ</b> | U        | U             | Ŭ                  | Ū          | Ŭ             | Ŭ        | 5            | 100              |
| Benzene                   | ι υ      | 5 J      | Ú             | Ŭ                  | Ŭ          | Ŭ             | Ŭ        | 5            | 60               |
| Trichloroethene           | ( U      | υ        | ט             | Ŭ                  | Ψ          | Ū             | Ŭ        | 5            | 700              |
| 1,2-Dichloropropane       | U        | U        | Ű             | υ                  | Ú          | υ             | U        | 5            |                  |
| Dibromomethane            | U        | U        | U             | Ų                  | υ          | ט ו           | U        | 5            | ) _              |
| Bromodichioromethane      | ι υ      | . U      | Ų             | Ŭ                  | Ŭ          | Ŭ             | U        | 5            | -                |
| cis-1,3-Dichloropropane   | Į U      | U        | U             | U                  | Ų          | Ů             | Ű        | 5            | -                |
| 4-Methyl-2-pentanone      | U        | Ŭ l      | U             | Ų                  | Ú          | Ŭ             | Ŭ        | 5            | 1000             |
| Toluene                   | 6        | 9        | 1 Ĵ           | 3 J                | Ŭ          | 2 J           | 4 J      | 5            | 1500             |
| trans-1,3-Dichloropropene | ) U      | U        | U             | U                  | Ú          | U             | Ŭ        | 5            | -                |
| 1,1,2-Trichloroethane     | U .      | U        | U             | U                  | Ŭ          | Ũ             | Ŭ        | 5            | -                |
| QUALIFIERS:               |          |          |               | NOT                | ES:        |               |          |              |                  |

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

B: Compound was also detected in the associated Method Blank.

Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

1

-: Not applicable.

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

#### SURFACE AND SUBSURFACE SOIL - VOLATILE ORGANIC COMPOUNDS (VOCs)

| 1                           |          | SURFAC   | ESOIL             |                | \$U                   | BSURFACE SO                                     |                                        |              | I                |
|-----------------------------|----------|----------|-------------------|----------------|-----------------------|-------------------------------------------------|----------------------------------------|--------------|------------------|
| Inter Protection:           |          |          | the second second | - TREADE       | and the second second | Sana Tangan Angéria.<br>Tanèn aran-kana ara-dan | and a state of the second state of the |              |                  |
| SAMPLE ID                   | IPSB-22  | IPSB-23  | IPSB-24           | IPSB-25        | IPSB-22               | IPSB-23                                         | IPSB-24                                |              |                  |
| SAMPLE DEPTH                | (0-2 IN) | (0-2 IN) | (0-2 IN)          | (0-2 IN)       | (2-4 FT)              | (2-4 FT)                                        | (2-4 FT)                               | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION          | 1/29/03  | 1/29/03  | 1/29/03           | 1/29/03        | 1/29/03               | 1/29/03                                         | 1/29/03                                | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR             | 1        | 1        | 1                 | 1              | 1                     | 1                                               | 1                                      | LIMITS       | Soil Cleanup     |
| PERCENT SOLIDS              | 67.0     | 90.0     | 89.0              | 85.0           | 89.0                  | 73.0                                            | 83.0                                   | •            | Objective        |
| UNITS                       | _(ug/kg) | (ug/kg)  | (ug/kg)           | <u>(ug/kg)</u> | (ug/kg)               | (ug/kg)                                         | (ug/kg)                                | (ug/Kg)      | (ug/Kg)          |
| 1,3-Dichloropropane         |          | U_]      |                   | U              | U                     | _ U                                             |                                        | 5            | 300              |
| Tetrachloroethene           | U        | U        | U                 | U              | U                     | U                                               | U                                      | 5            | 1400             |
| 2-Hexanone                  | • U      | υI       | U                 | U              | U                     | U (                                             | U                                      | 5            |                  |
| Dibromochloromethane        | U        | U        | U                 | U ]            | U                     | U                                               | U                                      | 5            |                  |
| 1,2-Dibromoethane           | U        | U        | U                 | , UĮ           | U                     | U                                               | U                                      | 5            |                  |
| Chlorobenzene               | U        | U        | U                 | U              | U                     | U                                               | U                                      | 5            | 1700             |
| 1,1,1,2-Tetrachioroethane   | U        | U        | U                 | U              | U                     | U                                               | U                                      | 5            |                  |
| Ethyibenzene                | U        | 1 J      | U                 | U              | U                     | U                                               | 2 J                                    | 5            | 5500             |
| m,p-Xylene                  | 3 J      | 3 J      | υ                 | U              | U                     | 2 J                                             | 2 J                                    | 5            | -                |
| o-Xylene                    | 2 J      | 2 J      | U                 | U              | U                     | U 1                                             | U                                      | 5            |                  |
| Xylene (total)              | 5 J      | 6        | U                 | U              | U                     | 2 J                                             | 2 J                                    | 5            | 1200             |
| Styrene                     | U        | U        | U                 | U              | U                     | U U                                             | 10                                     | 5            |                  |
| Bromoform                   | U        | U        | U                 | U U            | U                     | U                                               | U                                      | 5            | í -              |
| Isopropylbenzene            | U        | U        | U                 | U              | U                     | U                                               | U                                      | 5            |                  |
| 1,1,2,2-Tetrachioroethane   | U        | U        | U                 | U              | U                     | U                                               | U                                      | 5            | 600              |
| Bromobenzene                | U        | U        | U                 | U              | U                     | U                                               | U                                      | 5            | . <del>-</del>   |
| 1,2,3-Trichloropropane      | U        | U        | U                 | U              | U                     | U                                               | U                                      | 5            | 400              |
| n-Propylbenzene             | U        | U        | U                 | U              | U                     | U                                               | U                                      | 5            | -                |
| 2-Chlorotoluene             | U        | U        | U                 | U              | U                     | U                                               | U                                      | 5            | 1 -              |
| 1,3,5-Trimethylbenzene      | 1 J      | U        | U                 | 3 J            | U                     | U                                               | 3 J                                    | 5            | -                |
| 4-Chiorotoluene             | U        | U        | U U               | U              | U                     | U                                               | U                                      | 5            | -                |
| tert-Butylbenzene           | U        | U        | U                 | U              | U                     | U                                               | . υ                                    | 5            | -                |
| 1,2,4-Trimethylbenzene      | 3 J      | 2 J      | 2 J               | 7              | 1 J                   | 2 J                                             | 5 J                                    | 5            | -                |
| sec-Butyibenzene            | U        | U        | U                 | . U ]          | U                     | U                                               | 2 J                                    | 5            | -                |
| 4-Isopropyitoluene          | U        | U        | U                 | U              | U                     | U                                               | U                                      | 5            | -                |
| 1,3-Dichlorobenzene         | U        | U        | U                 | U              | U                     | U                                               | U                                      | 5            | 1600             |
| 1,4-Dichlorobenzene         | U        | U        | U                 | U              | U                     | U                                               | U                                      | 5            | 8500             |
| n-Butylbenzene              | 1 J      | U I      | U                 | U              | U                     | U                                               | 1 J                                    | 5            |                  |
| 1,2-Dichlorobenzene         | 1 J      | U        | U                 | U              | U                     | U                                               | U                                      | 5            | 7900             |
| 1,2-Dibromo-3-chloropropane | U J      | U I      | U                 | U.             | U                     | U                                               | U                                      | 5            | -                |
| 1,2,4-Trichlorobenzene      | 2 J      | U        | · U               | U              | U                     | Ű                                               | U                                      | 5            | 3400             |
| Hexachiorobutadiene         | U        | U U      | <u> </u>          | U              | U                     |                                                 | Ŭ                                      | 5            |                  |
| Naphthalene                 | 7        | 11       | 8                 | 25             | 160                   | 7                                               | 160                                    | 5            | 13000            |
| 1,2,3-Trichlorobenzene      | 3 J      | U        | U                 | U              | U                     | U                                               | U                                      | 5            | -                |
| Totals VOCs                 | 67       | 118      | 95                | 95             | 211                   | 268                                             | 258                                    |              |                  |
| QUALIFIERS:                 |          |          |                   | NOT            | ES:                   |                                                 |                                        |              |                  |

# QUALIFIERS:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

--: Not applicable.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

~.

B: Compound was also detected in the associated Method Blank.

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

# SURFACE AND SUBSURFACE SOIL - VOLATILE ORGANIC COMPOUNDS (VOCs)

| <b>[</b>                                    |                     |                           | SUBSURF    |                 |                |                                            |     |              |                  |
|---------------------------------------------|---------------------|---------------------------|------------|-----------------|----------------|--------------------------------------------|-----|--------------|------------------|
| Uller ( Markel Harris and Andrews           |                     |                           |            | netho, televite |                | ور این |     |              |                  |
| SAMPLE ID                                   | IPSB-25             | IPS8-21                   | IP\$8-21   | IPSB-21         | IP88-21        | IP88-21                                    |     |              |                  |
| SAMPLE DEPTH<br>DATE OF COLLECTION          | (2-4 FT)<br>1/29/03 | (10-12 FT)<br>1/29/03     | (12-14 FT) | (14-16 FT)      | (16-18 FT)     | (18-20 FT)                                 |     | LABORATORY   | NYSDEC TAGM      |
| DILUTION FACTOR                             | 1/28/03             | 1/28/03                   | 1/29/03    | 1/29/03         | 1/29/03        | 1/29/03                                    | ł   | QUANTITATION | 4046 Recommended |
| PERCENT SOLIDS                              | 77.0                | 32.0                      | 33.0       | 48.0            | 89.0           | 85.0                                       | i i | LIMITS       | Soil Cleanup     |
| UNITS                                       | (ug/kg)             | (ug/kg)                   | (ug/kg)    | 48.0<br>(ug/kg) | (ug/kg)        | (ug/kg)                                    |     | (ug/Kg)      | Objective        |
| Dichlorodifluoromethane                     | U                   | ( <u>ag</u> , <u>ng</u> ) |            | U               | <u>(ug/kg)</u> |                                            |     |              | (ug/Kg)          |
| Chloromethane                               | ·Ŭ                  | Ŭ                         | ŭ          | ŭ               | ັ້ນ            | U U                                        | l I | 5            | -                |
| Vinyi Chloride                              | ŭ                   | ŭ                         | ŭ i        | ŭ               | <u>ម</u>       | ບ<br>ບ                                     | l i | 5            | 200              |
| Bromomethane                                | U U                 | ŭ                         | u U        | U<br>U          | Ŭ              | ບ<br>ບ                                     |     | 5            | 200              |
| Chloroethane                                | ŭ                   | ŭ                         | ŭ          | ŭ               | Ŭ              | ບ<br>ບ                                     | ļ : | 5            | 1900             |
| Trichlorofluoromethane                      | Ŭ                   | Ŭ                         | Ŭ          | ŭ               | ŭ              | ม<br>บ                                     |     | 5            |                  |
| 1,1-Dichloroethene                          | Ū                   | Ů                         | Ŭ          | ŭ               | Ŭ              | Ű                                          | i i | 5            | 400              |
| Acetone                                     | 17                  | 130                       | 240        | 280             | 31             | 55                                         |     | 5            | 200              |
| Idomethane                                  | U                   | U                         | U          | Ú               | U              | U                                          | 1   | 5            |                  |
| Carbone Disulfide                           | Ū                   | 18                        | 18         | 28              | 7              | 31                                         |     | 5            | 2700             |
| Methylene Chloride                          | 15 B                | 45 B                      | 110        | 110             | 3 J            | 38                                         |     | 5            | 100              |
| trans-1,2-Dichloroethene                    | U                   | U                         |            | U               | U              | U                                          |     | 5            | 300              |
| Methyl tert-butyl ether                     | U                   | U U                       | U          | U               | U              | U                                          |     | 5            | -                |
| 1,1-Dichloroethane                          | U                   | 3 J                       | 5 J        | U.              | U I            | U                                          |     | 5            | 200              |
| Vinyi acetate                               | U U                 | U                         | U          | U               | U              | U                                          |     | 5            | -                |
| 2-Butanone                                  | υ                   | 24                        | 31         | 9 J             | U              | 4 J                                        | l I | 5            | 300              |
| cis-1,2-Dichloroethene                      | U                   | υ                         | U          | υ               | U              | U                                          | l I | 5            | - 1              |
| 2,2-Dichloropropane                         | U                   | U                         | U          | U               | U              | U                                          | [   | 5            | - 1              |
| Bromochloromethane                          | U                   | U                         | U          | U               | U              | U                                          | [   | 5            | -                |
| Chloroform                                  | U                   | U                         | U          | U               | U              | U                                          | l   | 5            | 300              |
| 1,1,1-Trichloroethane                       | U I                 | U                         | υ          | υ               | U              | U                                          |     | 5            | 800              |
| 1,1-Dichloropropene<br>Carbon Tetrachloride | U                   | U                         | U          | υ               | U              | U                                          | l i | 5            | -                |
| 1.2-Dichlorcethane                          | U U                 | U                         | U          | U U             | U              | U                                          |     | 5            | 600              |
| 1,2-Dichlorcethane                          |                     | U                         | U          | U               | ບ<br>ນ         | υ                                          |     | 5            | 100              |
| Trichlorcethene                             |                     | U                         |            | U               | U<br>3 J       | บ<br>ม                                     |     | 5            | 60               |
| 1,2-Dichloropropane                         | U U                 | U                         | U U        | U U             | 3 J<br>U       | บ<br>บ                                     | 2   | 5            | 700              |
| Dibromomethane                              |                     | U U                       | U U        | u u             | U U            | U U                                        | 1   | 5            |                  |
| Bromodichloromethane                        | ŭ                   |                           | U U        | U U U           | U<br>U         | U U                                        | ·   | 5            | -                |
| cis-1,3-Dichloropropane                     | ŭ                   |                           |            |                 | ŭ              | u U                                        | 1   | 5            | -                |
| 4-Methyl-2-pentanone                        | ŭ                   | i i i                     | ŭ          | ŭ               | ŭ              | U U                                        | l   | 5            | 1000             |
| Toluene                                     | Ŭ                   | 14 J                      | U U        | 8 J             | Ŭ              | ŭ                                          | 1   | 5            | 1500             |
| trans-1,3-Dichloropropene                   | Ŭ                   | Ŭ                         | Ŭ          | Ŭ               | Ŭ              | Ŭ                                          |     | 5            |                  |
| 1,1,2-Trichloroethane                       | Ŭ                   | Ŭ                         | Ŭ          | Ŭ               | Ŭ              | Ŭ                                          |     | 5            | - 1              |

QUALIFIERS:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

B: Compound was also detected in the associated Method Blank.

. . . . . .

D: Compound concentration was obtained from a diluted analysis.

-: Not applicable.

NOTES:

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

#### SURFACE AND SUBSURFACE SOIL - VOLATILE ORGANIC COMPOUNDS (VOCs)

|                                       |               |            | SUBSURF    | ACE SOIL    |            |            |  |              | ·                |
|---------------------------------------|---------------|------------|------------|-------------|------------|------------|--|--------------|------------------|
| Talle distriction of the second state | Contraction - |            |            | (FURTED SCI |            |            |  |              |                  |
| SAMPLE ID                             | IP8B-25       | IPSB-21    | IPSB-21    | IPSB-21     | IPSB-21    | IPSB-21    |  | 1            |                  |
| SAMPLE DEPTH                          | (2-4 FT)      | (10-12 FT) | (12-14 FT) | (14-16 FT)  | (16-18 FT) | (18-20 FT) |  | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION                    | 1/29/03       | 1/29/03    | 1/29/03    | 1/29/03     | 1/29/03    | 1/29/03    |  | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR                       | 1             | 1          | 1          | 1           | 1          | 1          |  | LIMITS       | Soli Cleanup     |
| PERCENT SOLIDS                        | 77.0          | 32.0       | 33.0       | 48.0        | 89.0       | 85.0       |  | ĺ            | Objective        |
| UNITS                                 | (ug/kg)       | (ug/kg)    | (ug/kg)    | (ug/kg)     | (ug/kg)    | (ug/kg)    |  | (ug/Kg)      | (ug/Kg)          |
| 1,3-Dichloropropane                   | Ų             | U - U      |            | U           | U          | υ          |  | 5            | 300              |
| Tetrachloroethene                     | U             | U (        | U          | U           | U          | U          |  | 5            | 1400             |
| 2-Hexanone                            | U             | U          | υ          | U           | U          | U          |  | 5            | i - j            |
| Dibromochloromethane                  | U             | U          | υ          | U           | U          | U          |  | 5            | -                |
| 1,2-Dibromoethane                     | υ             | υ          | U          | υ           | U          | U          |  | 5            | -                |
| Chlorobenzene                         | U             | U          | U          | U           | U          | U          |  | 5            | 1700             |
| 1,1,1,2-Tetrachioroethane             | U             | U          | U          | U           | U          | U          |  | 5            | - 1              |
| Ethylbenzene                          | U             | 10 J       | 8 J        | 10 J        | υ          | U          |  | 5            | 5500             |
| m,p-Xylene                            | U             | ļ V (      | U          | U           | U          | U          |  | 5            | -                |
| o-Xylene                              | U             | U 1        | U          | U           | υ          | U          |  | 5            | -                |
| Xylene (total)                        | U             | U          | υ          | U           | U          | U          |  | 5            | 1200             |
| Styrene                               | U             | U          | U          | υ           | U          | U          |  | 5            | -                |
| Bromoform                             | U             | U          | U          | U           | U          | υ          |  | 5            | - 1              |
| isopropylbenzene                      | U             | U          | U          | U           | U          | U          |  | 5            | -                |
| 1,1,2,2-Tetrachloroethane             | U             | υ          | υ          | Ų           | U          | ί υ        |  | 5            | 600              |
| Bromobenzene                          | U             | U          | υ          | U           | U          | ) U        |  | 5            |                  |
| 1,2,3-Trichloropropane                | U             | U          | U          | U           | U          | U          |  | 5            | 400              |
| n-Propylbenzene                       | U             | U          | U          | U           | U          | U          |  | 5            |                  |
| 2-Chiorotoluene                       | U U           | U          | U          | U           | U          | U          |  | 5            |                  |
| 1,3,5-Trimethylbenzene                | U             | U          | U          | U           | U          | U          |  | 5            |                  |
| 4-Chiorotoluene                       | U             | U          | U          | U           | U          | U          |  | 5            | -                |
| tert-Butylbenzene                     | U             | U          | U          | . U         | U          | U          |  | 5            | -                |
| 1,2,4-Trimethylbenzene                | U             | U          | U          | U           | U          | U          |  | 5            | -                |
| sec-Butylbenzene                      | U             | U          | U          | U           | U          | U          |  | 5            | -                |
| 4-isopropyitoluene                    | U             | U          | U          | U           | U          | U          |  | 5            | -                |
| 1,3-Dichlorobenzene                   | U             | U          | U          | U           | U          | U          |  | 5            | 1600             |
| 1,4-Dichlorobenzene                   | υ             | υ          | υ          | U           | U          | U          |  | 5            | 8500             |
| n-Butylbenzene                        | U             | U          | U          | U           | U          | U          |  | 5            |                  |
| 1,2-Dichlorobenzene                   | U             | U U        | U          | U           | U          | U          |  | 5            | 7900             |
| 1,2-Dibromo-3-chloropropane           | U             | 4 J        | υ          | U           | U          | U          |  | 5            | - 1              |
| 1,2,4-Trichlorobenzene                | U             | U U        | U          | U           | U          | U          |  | 5            | 3400             |
| Hexachlorobutadiene                   | υ             | U          | υ          | U           | U          | U          |  | 5            | -                |
| Naphthalene                           | 3 J           | 15 J       | U          | U           | U          | U          |  | 5            | 13000            |
| 1,2,3-Trichlorobenzene                | U             | 8 J        | U          | U           | U          | U          |  | 5            | -                |
| T-4-15-1/000                          | 35            | 271        | 410        | 446         | 44         | 128        |  |              |                  |
| Totals VOCs                           | 30            |            | 410        | 440         |            | 120        |  | ·            |                  |

#### QUALIFIERS:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

B: Compound was also detected in the associated Method Blank.

----

D: Compound concentration was obtained from a diluted analysis.

NOTES: --: Not applicable.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

the same the second

Second Second

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

# SURFACE AND SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCS)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | SURFAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ESOIL                                                                                                           |                    | SU                                       | BSURFACE SC                           |          |              |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------|---------------------------------------|----------|--------------|------------------|
| Physical Contractions and the second s |          | and the second sec | and the state of the | Engle to the State | n an |                                       |          |              |                  |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IPSB-22  | IPSB-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IPSB-24                                                                                                         | IPSB-25            | IPSB-22                                  | IPSB-23                               | IPSB-24  |              |                  |
| SAMPLE DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0-2 IN) | (0-2 IN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0-2 IN)                                                                                                        | (0-2 IN)           | (2-4 FT)                                 | (2-4 FT)                              | (2-4 FT) | LABORATORY   | NYSDEC TAGM      |
| DATE OF COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/29/03  | 1/29/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/29/03                                                                                                         | 1/29/03            | 1/29/03                                  | 1/29/03                               | 1/29/03  | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                               | 1                  | 1 1                                      | 1                                     | 10       | LIMITS       | Soll Cleanup     |
| PERCENT SOLIDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87.0     | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89.0                                                                                                            | 85.0               | 89.0                                     | 73.0                                  | 83.0     |              | Objective        |
| UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ug/kg)  | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ug/kg)                                                                                                         | (ug/kg)            | (ug/kg)                                  | (ug/kg)                               | (ug/kg)  | (ug/Kg)      | (ug/Kg)          |
| Phanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U        | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | υ                                                                                                               | U                  | υ                                        | U                                     | υ        | 330          | 30               |
| bis(2-Chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | υ Ŭ                | Ŭ                                        | Ŭ                                     | Ŭ        | 330          | 50               |
| 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | บั       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | ນ ນ                | Ŭ                                        | Ŭ                                     | Ŭ        | 330          | 800              |
| 1.3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | บั       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | υŬ                                                                                                              | Ű                  | U U                                      | Ŭ                                     | U U      | 330          | 800              |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ŭ        | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | υ                                                                                                               | U U                | Ŭ                                        | U                                     | U U      | 330          | -                |
| 1.2-Dichlorobenzena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ່ ບໍ່                                                                                                           | ບ<br>ບ             | υ                                        | U<br>U                                | U<br>U   | 330          | -                |
| 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | บ<br>บ             | υ                                        | υ                                     | υ<br>υ   | 330          | 100              |
| 2,2'-oxybis (1-chloropropane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | υ                  | υ                                        | υ                                     | υ        | 330          | 100              |
| 4-Methyiphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ŭ                                                                                                               | ี่ บ               | υ<br>υ                                   | υ<br>υ                                | υ<br>υ   | 330          | 900              |
| N-Nitroso-di-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | บ<br>บ             | ม มี<br>บ                                | υ<br>υ                                | υ<br>υ   | 330          |                  |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | ม<br>บ             | Ŭ                                        | υ                                     | υ        | 330          | -                |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ŭ        | ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ŭ                                                                                                               | Ū                  | ŭ                                        | Ŭ                                     | Ŭ        | 330          | 200              |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ŭ                                                                                                               | Ű                  | Ŭ                                        | Ŭ                                     | Ŭ        | 330          | 4,400            |
| 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | . ŭ                | Ŭ                                        | Ŭ                                     | Ŭ        | 330          | 330              |
| 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ũ                                                                                                               | ŭ                  | Ŭ                                        | ŭ                                     | U<br>U   | 330          | 550              |
| 2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ū        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | u u                | Ŭ                                        | u u                                   | Ŭ        | 330          | 400              |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ        | ů ů                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ŭ                                                                                                               | Ŭ                  | Ŭ                                        | ŭ                                     | Ŭ        | 330          | 400              |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ŭ        | 60 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ŭ                                                                                                               | ŭ                  | 790                                      | 72 J                                  | 2300 J   | 330          | 13,000           |
| 4-Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | Ŭ                  | U , SU                                   | , , , , , , , , , , , , , , , , , , , | u little | 330          | 220              |
| bis(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ŭ Ŭ      | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | Ŭ                  | Ŭ                                        | Ŭ                                     | U U      | 330          | 220              |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | ŭ                  | Ŭ                                        | Ŭ                                     | ŭ        | 330          | -                |
| 4-Chioro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | Ŭ                  | Ŭ                                        | Ŭ                                     | U U      | 330          | 240              |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ŭ        | 48 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ŭ                                                                                                               | Ŭ                  | 350 J                                    | 74 J                                  | 840 J    | 330          | 36,400           |
| Hexachiorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | Ŭ                  | Ű                                        | Ű                                     | U        | 330          |                  |
| 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | Ū                  | Ŭ                                        | Ŭ                                     | Ŭ        | 330          | _                |
| 2,4,5-Trichiorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | Ū                  | Ŭ                                        | Ŭ                                     | Ŭ        | 660          | 100              |
| 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | Ŭ                  | Ŭ                                        | Ŭ                                     | Ŭ        | 330          |                  |
| 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | Ŭ                  | Ŭ                                        | Ŭ                                     | Ŭ        | 660          | 430              |
| Dimethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | Ū                  | Ŭ                                        | Ŭ                                     | Ŭ        | 330          | 2,000            |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ŭ        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | Ŭ                  | Ŭ                                        | Ŭ                                     | Ŭ        | 330          | 41,000           |
| 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ        | υŬ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ŭ                                                                                                               | υ<br>υ             | U U                                      | Ŭ                                     | Ŭ        | 330          | 1,000            |
| 3-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ŭ        | ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                               | Ŭ                  | Ŭ                                        | U U                                   | U U      | 660          | 500              |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ŭ        | 100 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ Ŭ                                                                                                             | Ŭ                  | 720                                      | 190 J                                 | 5700     | 330          | 50,000           |
| OLIAL FIERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 100 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U U                                                                                                             | 0                  | 140                                      | <u>180 1</u>                          | 0/00     |              | 50,000           |

QUALIFIERS:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

NOTES: — : Not applicable.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

.....

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

#### SURFACE AND SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

|                            |                  | SURFAC                                                                                                         | ESOIL                                               |               | <u>su</u>                         | <b>BSURFACE SC</b>                                                                                              |              |              | ·                |
|----------------------------|------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|--------------|------------------|
| ALCENTRACIALES CONTRACTOR  | a gran a strange | and a second | n an a' guar an | a montar      | wana ngoo portona ilayo<br>Aliana | an a service and a service of the se |              |              |                  |
| SAMPLE ID                  | P8B-22           | IPSB-23                                                                                                        | IP\$B-24                                            | IP88-25       | IP\$8-22                          | IP88-23                                                                                                         | IP58-24      |              | ĺ                |
| SAMPLE DEPTH               | (0-2 IN)         | (0-2 IN)                                                                                                       | (0-2 IN)                                            | (0-2 IN)      | (2-4 FT)                          | (2-4 FT)                                                                                                        | (2-4 FT)     | LABORATORY   | NYSDEC TAGM      |
| ATE OF COLLECTION          | 1/29/03          | 1/29/03                                                                                                        | 1/29/03                                             | 1/29/03       | 1/29/03                           | 1/29/03                                                                                                         | 1/29/03      | QUANTITATION | 4046 Recommended |
| DILUTION FACTOR            | 1 1              | 1                                                                                                              | 1                                                   | 1             | 1                                 | 1                                                                                                               | 10           | LIMITS       | Soll Cleanup     |
| PERCENT SOLIDS             | 87.0             | 90.0                                                                                                           | 89.0                                                | 85.0          | 89.0                              | 73.0                                                                                                            | 83.0         |              | Objective        |
|                            | (ug/kg)          | (ug/kg)                                                                                                        | (ug/kg)                                             | (ug/kg)       | (ug/kg)                           | (ug/kg)                                                                                                         | (ug/kg)      | (ug/Kg)      | (ug/Kg)          |
| .4-Dinitrophenol           | U.               | U U                                                                                                            | υ                                                   | U             | U                                 | U                                                                                                               | U            | 660          | 200              |
| -Nitrophenol               | U U              | Ŭ                                                                                                              | ŭ                                                   | ŭ             | ŭ                                 | Ŭ                                                                                                               | U U          | 660          | 100              |
|                            | U U              | 57 J                                                                                                           | Ŭ                                                   | U<br>U        | 550                               | 110 J                                                                                                           | 4000         |              |                  |
| Dibenzofuran               |                  |                                                                                                                | -                                                   | -             |                                   |                                                                                                                 |              | 330          | 6,200            |
| 2,4-Dinitrotoluene         | U                | U                                                                                                              | U                                                   | U             | U                                 | U                                                                                                               | U            | 330          | -                |
| Diethylphthalate           | U U              | U I                                                                                                            | U                                                   | U             | U U                               | U                                                                                                               | U I          | 330          | 7,100            |
| -Chlorophenyl-phenylether  | U.               | U                                                                                                              | U.                                                  | U             | U                                 | U                                                                                                               | U Constant   | 330          |                  |
| fluorene                   | U                | 150 J                                                                                                          | U                                                   | U             | 840                               | 190 J                                                                                                           | 6900         | 330          | 50,000           |
| I-Nitroanlline             | U                | U                                                                                                              | U                                                   | U             | U                                 | U                                                                                                               | U            | 330          | -                |
| i,6-Dinitro-2-methylphenol | U                | U                                                                                                              | U                                                   | U             | U U                               | U                                                                                                               | U            | 330          |                  |
| N-Nitrosodiphenylamine     | U                | U                                                                                                              | U                                                   | Ų             | U U                               | U                                                                                                               | U            | 330          | -                |
| I-Bromophenyl-phenylether  | U                | U                                                                                                              | U                                                   | U             | U U                               | U                                                                                                               | U            | 330          |                  |
| lexachiorobenzene          | U U              | U                                                                                                              | U                                                   | U             | U                                 | U                                                                                                               | U            | 330          | 410              |
| Pentachlorophenol          | U                | U                                                                                                              | U                                                   | U             | U V                               | U                                                                                                               | U            | 660          | 1,000            |
| Phenanthrene               | 79 J             | 1400                                                                                                           | 160 J                                               | 160 J         | 4600                              | 2600                                                                                                            | 48000        | 330          | 50,000           |
| Anthracene                 | U U              | 490                                                                                                            | υ                                                   | 50 J          | 1200                              | 680                                                                                                             | 15000        | 330          | 50,000           |
| Carbazole                  | i u              | 53 J                                                                                                           | U                                                   | υ             | 420                               | 210 J                                                                                                           | 4500         | 330          | _                |
| Di-n-butyiphthalate        | Ú                | Ū                                                                                                              | υ                                                   | U             | U U                               | U                                                                                                               | U            | 330          | 8,100            |
| Fluoranthene               | 140 J            | 1800                                                                                                           | 230 J                                               | 210 J         | 3500                              | 3800                                                                                                            | 49000        | 330          | 50,000           |
| Pyrene                     | 170 J            | 1700                                                                                                           | 280 J                                               | 230 J         | 3800                              | 3200                                                                                                            | 53000        | 330          | 50.000           |
| Butylbenzylphthalate       | Ŭ                | U                                                                                                              | Ŭ                                                   | U             | U U                               | U                                                                                                               | U            | 330          | 50,000           |
| 3.3'-Dichlorobenzidine     | Ŭ Ŭ              | ŭ                                                                                                              | ŭ                                                   | Ŭ             | Ŭ                                 | ŭ                                                                                                               | ŭl           | 330          |                  |
| Benzo(a)anthracene         | L 69             | 880                                                                                                            | 130 J                                               | 120 J         | 1400                              | 1700                                                                                                            | 23000        | 330          | 224              |
| Chrysene                   | 76 J             | 800                                                                                                            | 130 J                                               | 140 J         | 1400                              | 1900                                                                                                            | 21000        | 330          | 400              |
| bis(2-Ethylhexyl)phthalate | 38 J             | 000                                                                                                            | ,30 U                                               | 40 J          | 1400<br>59 J                      | 47 J                                                                                                            | <u>21000</u> | 330          | 50,000           |
|                            | 30 J<br>U        | U U                                                                                                            | U<br>U                                              | 47 J<br>U     | 1 U 39 J                          | 47 J<br>U                                                                                                       | Ŭ            | 330          | 50,000           |
| Di-n-octylphthalate        | -                | •                                                                                                              |                                                     | -             | 1700                              | 2400                                                                                                            | 27000        |              |                  |
| Benzo(b)fluoranthene       | 100 J            | 1100                                                                                                           | 180 J                                               | 180 J         |                                   |                                                                                                                 |              | 330          | 1,100            |
| Benzo(k)fluoranthene       | 40 J<br>63 J     | 450                                                                                                            | 75 J<br>120 J                                       | 89 J<br>110 J | 780                               | 950                                                                                                             | 20000        | 330<br>330   | 1,100<br>61      |
| Senzo(a)pyrene             |                  | 250 J                                                                                                          | 120_J                                               |               | 450                               | 580                                                                                                             | 7600         | 330          | •                |
| ndeno(1,2,3-cd)pyrene      |                  |                                                                                                                |                                                     |               |                                   |                                                                                                                 |              |              | 3,200            |
| Dibenz(a,h)anthracene      | U                | 69 J                                                                                                           | U                                                   | U             | <u>130_J</u>                      | 170 J                                                                                                           | 2100 J       | 330          | 14               |
| Benzo(g,h,i)perylene       | U                | 210 J                                                                                                          | 55 J                                                | 55 J          | 390                               | 500                                                                                                             | 6600         | 330          | 50,000           |
| Total PAHs                 | 737              | 10,284                                                                                                         | 1,408                                               | 1,392         | 21,940                            | 20,380                                                                                                          | 297200       |              | 100,000          |
| Total CaPAHs               | 348              | 4,269                                                                                                          | 683                                                 | 687           | 7,060                             | 9,300                                                                                                           | 114700       | -            | 10.000           |
| Total SVOCs                | 775              | 10,337                                                                                                         | 1,408                                               | 1.439         | 24,279                            | 20,973                                                                                                          | 310,540      | _            | 500,000          |
| UALIFIERS:                 |                  |                                                                                                                |                                                     |               | TES:                              |                                                                                                                 |              |              |                  |

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

- : Not applicable.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

# SURFACE AND SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

|                                  |          |            | SUBSURF    |                  |            |                                          | 1   |                    |                  |
|----------------------------------|----------|------------|------------|------------------|------------|------------------------------------------|-----|--------------------|------------------|
| allestriktanenka)terneten singer | A MICHAR |            |            | (Tollin and 200) |            | an a |     |                    |                  |
| SAMPLE ID                        | IP88-25  | IP88-21    | IP88-21    | IP88-21          | IP88-21    | IP88-21                                  | 1   |                    |                  |
| SAMPLE DEPTH                     | (2-4 FT) | (10-12 FT) | (12-14 FT) | (14-16 FT)       | (16-18 FT) | (18-20 FT)                               |     | LABORATORY         | NYSDEC TAGM      |
| DATE OF COLLECTION               | 1/29/03  | 1/29/03    | 1/29/03    | 1/29/03          | 1/29/03    | 1/29/03                                  |     | QUANTITATION       | 4046 Recommended |
| DILUTION FACTOR                  | 1        | 2          | 1          | 1                | 1          | 1                                        | 4   | LIMITS             | Soli Cleanup     |
| PERCENT SOLIDS                   | 77.0     | 32.0       | 33.0       | 48.0             | 89.0       | 85.0                                     | l I |                    | Objective        |
|                                  | (ug/kg)  | (ug/kg)    | (ug/kg)    | (ug/kg)          | (ug/kg)    | (ug/kg)                                  |     | (ug/Kg)            | (ug/Kg)          |
| hanol                            | U        | υ υ        | U          | υ                | 350 J      | υ                                        |     | 330                | 30               |
| is(2-Chloroethyl)ether           | l ũ      | Ŭ          | Ū          | Ŭ                | <u>_</u>   | Ŭ                                        |     | 330                | 50               |
| -Chlorophenol                    | U U      | Ŭ          | Ŭ          | l ŭ              | ŭ          | υ                                        |     | 330                | 800              |
| ,3-Dichlorobenzene               | υ        | ιŭ         | Ŭ          | l ŭ              | υ          | l ŭ                                      |     | 330                |                  |
| I,4-Dichlorobenzene              | l ŭ      | υ          | Ŭ          | Ŭ                | υ          | υŬ                                       |     | 330                |                  |
| .2-Dichlorobenzene               | l ŭ      | Ŭ          | ບັ         | Ŭ                | Ŭ          | υ                                        | {   | 330                | -                |
| 2-Methylphenol                   | U U      | U U        | ບ ບ        | Ŭ                | ม ม        | U U                                      | (   | 330                | 100              |
| 2,2-oxybis (1-chloropropane)     | U U      | l ŭ        | u u        | U U              | U U        |                                          |     | 330                | 100              |
| -Methylphenol                    | ບ<br>ບ   | ) Ŭ        | Ŭ          | U U              | 48 J       |                                          |     | 330                | 900              |
| Nitroso-di-n-propylamine         | i ŭ      | ί Ŭ        | υ          | U U              | 40 J<br>U  |                                          |     | 330                | 900              |
| iexachioroethane                 | ι ŭ      | υ          | Ŭ          | Ŭ                | Ŭ          |                                          |     | 330                | -                |
| litrobenzene                     |          | υ          | ບ ບັ       | υ                | υ<br>υ     | υ                                        |     | 330                | 200              |
| sophorone                        | l ŭ      | U U        | U U        | U U              | -          | -                                        |     |                    |                  |
| -Nitrophenol                     |          | -          |            | -                | U U        | U                                        |     | 330                | 4,400            |
| 2,4-Dimethylphenol               |          | U          | -          | U                | U U        | U                                        |     | 330                | 330              |
| 2,4-Dimethylphenot               |          | U U        | [ ປ<br>ປ   | U<br>U           | U U U      | U U                                      |     | 330                | 400              |
| .2.4-Trichlorobenzene            | ŭ        |            | ບ<br>ບ     | υ<br>υ           |            | U                                        |     | 330<br><b>33</b> 0 | 400              |
| Naphthalene                      | Ŭ        | U          | U U        | . U              | [ ]        | U U U                                    | 1   | 330                | 13.000           |
| -Chloroaniline                   | Ŭ        | i ü        |            | U U              |            |                                          |     |                    |                  |
| is(2-Chloroethoxy)methane        | U U      |            | U U        | U U              |            | U U                                      |     | 330<br>330         | 220              |
| iexachiorobutadiene              | υ        |            | U U        | U U              |            |                                          |     | 330                | -                |
| -Chloro-3-methylphenol           | Ŭ        | υ υ        | υ          | ບ<br>ບ           | U U        | υ                                        | (   | 330                | 240              |
| -Methyinaphthalene               | l ŭ      | l ŭ        | Ŭ          | Ŭ                | U U        | Ŭ                                        |     | 330                | 36,400           |
| lexachiorocyclopentadiene        | Ŭ        | Ŭ          | U U        | U U              | l ŭ        | U U                                      |     | 330                | 36,400           |
| ,4,6-Trichlorophenol             | l ŭ      |            | U U        | ່ບ               |            | ΙŬ                                       | }   | 330                | _                |
| ,4,5-Trichlorophenoj             | Ŭ        | Ŭ          | U U        | U U              | i ŭ        | Ŭ                                        |     | 660                | 100              |
| -Chloronaphthalene               | u u      | ໄ ບັ       | ບ<br>ບ     | U U              | ບ<br>1 ບ   | ί υ                                      |     | 330                |                  |
| -Nitroaniline                    | ŭ        | l ŭ        | Ŭ          | l ŭ              | U U        | Ŭ                                        |     | 660                | 430              |
| limethylphthalate                | Ŭ        | l ŭ        | U U        | U U              | l ŭ        |                                          |     |                    |                  |
| cenaphthylene                    | ι υ      |            | U U        | U U              | ι υ<br>υ   |                                          |     | 330                | 2,000            |
| ,6-Dinitrotoluene                |          |            | , v        | -                | U U        | U                                        |     | 330                | 41,000           |
| -Nitroaniline                    |          |            | U U        | ບ<br>ບ           | ι υ<br>Ι υ | U                                        |     | 330                | 1,000            |
| cenaphthene                      | 83 J     | 2300       | 420 J      | ม<br>เ           | ្រ ប<br>ប  | บ<br>บ                                   | 1   | 660<br>330         | 500              |
| UALIFIERS:                       |          | <u> </u>   | 420 J      | NO               |            | U                                        | L   | 330                | 50,000           |

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

t

- : Not applicable.

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

#### SURFACE AND SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     | SUBSURF                                                                                                                                                                                                         |                                                          |                                                                                             |                                                          |                                                                    | ·                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|
| UIONSTRUCTUR<br>SAMPLE ID<br>SAMPLE DEPTH<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>IP\$B-25</b><br>(2-4 FT)<br>1/29/03<br>1<br>77.0<br>(ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IPSB-21<br>(10-12 FT)<br>1/29/03<br>2<br>32.0<br>(ug/kg)                                                                                                                                                                                            | IPSB-21<br>(12-14 FT)<br>1/29/03<br>1<br>33.0<br>(ug/kg)                                                                                                                                                        | IPSB-21<br>(14-16 FT)<br>1/29/03<br>1<br>48.0<br>(ug/kg) | <b>IPSB-21</b><br>(16-18 FT)<br>1/29/03<br>1<br>89.0<br>(ug/kg)                             | IPSB-21<br>(18-20 FT)<br>1/29/03<br>1<br>85.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/Kg)                    | NYSDEC TAGM<br>4046 Recommended<br>Soil Cleanup<br>Objective<br>(ug/Kg) |
| 2,4-Dinitrophenol<br>4-Nitrophenol<br>Dibenzofuran<br>2,4-Dinitrotoluene<br>Diethyiphthalate<br>4-Chlorophenyi-phenylether<br>Fluorene<br>4-Nitroaniline<br>4,8-Dinitro-2-methylphenol<br>N-Nitrosodiphenylamine<br>4-Bromophenyl-phenylether<br>Hexachlorobenzene<br>Pentachlorophenol<br>Phenanthrene<br>Anthracene<br>Carbazole<br>Di-n-butyiphthalate<br>Fluoranthene<br>Pyrene<br>Butylbenzyiphthalate<br>3,3-Dichlorobenzidine<br>Benzo(a)anthracene<br>Chrysene<br>bis(2-Ethylhexyl)phthalate<br>Di-n-octyiphthalate<br>Benzo(b)fluoranthene<br>Benzo(a)pyrene<br>Indeno(1,2,3-cd)pyrene<br>Dibenz(a,h)anthracene<br>Benzo(a,h)perylene | 47 J<br>47 J<br>U<br>U<br>U<br>87 J<br>U<br>U<br>870<br>170 J<br>840<br>170 J<br>8470<br>170 J<br>8470<br>190 J<br>190 J<br>1 | U<br>550 J<br>U<br>U<br>1400 J<br>U<br>U<br>U<br>U<br>U<br>12000<br>3700<br>1200 J<br>U<br>18000<br>19000<br>19000<br>U<br>U<br>U<br>8700<br>8700<br>8700<br>0<br>0<br>U<br>U<br>U<br>U<br>U<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | U<br>100 J<br>U<br>270 J<br>U<br>270 J<br>U<br>U<br>2400<br>750 J<br>260 J<br>U<br>U<br>3900<br>3800<br>U<br>U<br>1800<br>1900<br>U<br>U<br>2400<br>1900<br>0<br>U<br>U<br>U<br>1800<br>610 J<br>170 J<br>550 J | <ul> <li>כככ כ כ כ כ כ כ כ כ כ כ כ כ כ כ כ כ כ</li></ul> | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | U U U U U U U U U U U U U U U U U U U                    | 660<br>660<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330 | 200<br>100<br>6,200<br>                                                 |
| Total PAHs<br>Total CaPAHs<br>Total SVOCs<br>QUALIFIERS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,986<br>1,990<br>5,260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103,750<br>44,200<br>104,950                                                                                                                                                                                                                        | 2 <b>2,</b> 070<br>9,880<br>22,330                                                                                                                                                                              | 0<br>0<br>0<br>NO                                        | 126<br>0<br>174                                                                             | 0                                                        |                                                                    | 100,000<br>10,000<br>500,000                                            |

QUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

<u>NOTES:</u> \_--\_: Not applicable.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

λ,

ţ

# ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD UNDERGROUND INJECTION CONTROL INVESTIGATION

# SURFACE AND SUBSURFACE SOIL - TOTAL PETROLEUM HYDROCARBONS (TPH)

| ·                                                                                     |                                                   | SURFA                                             | CE SOIL                                           |                                                   | SU                                                | OIL I                                  |                                                   |                                              |
|---------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------------|
| DICEMENT<br>SAMPLE ID<br>SAMPLE DEPTH<br>DATE OF COLLECTION<br>PERCENT SOLID<br>UNITS | IPSB-22<br>(0-2 IN)<br>1/29/03<br>87.0<br>(mg/kg) | IPSB-23<br>(0-2 IN)<br>1/29/03<br>90.0<br>(mg/kg) | IPSB-24<br>(0-2 IN)<br>1/29/03<br>89.0<br>(mg/kg) | IPSB-25<br>(0-2 IN)<br>1/29/03<br>85.0<br>(mg/kg) | IPSB-22<br>(2-4 FT)<br>1/29/03<br>89.0<br>(mg/kg) | (2-4 FT)<br>1/29/03<br>73.0<br>(mg/kg) | IPSB-24<br>(2-4 FT)<br>1/29/03<br>83.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(mg/kg) |
| Total Petroleum Hydrocarbons                                                          | 260                                               | 150                                               | 810                                               | 69                                                | 40                                                | 49                                     | 1600                                              | 12.0                                         |

|                                                                           |                                                          |                                                     | SUBSURF                                             | ACE SOIL                                            |                                                     |                                                             | <br>                                         |
|---------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|
| DIGRAFT DE CONTRA                                                         | f sign strikes                                           | the states of the                                   | et in de la set                                     | training and the second                             | Ne gui per el                                       | n an ann an ann an ann an an<br>Stallachan Albana an Stalla |                                              |
| SAMPLE ID<br>SAMPLE DEPTH<br>DATE OF COLLECTION<br>PERCENT SOLID<br>UNITS | <b>IPSB-25</b><br>(2-4 FT)<br>1/29/03<br>77.0<br>(mg/kg) | IPSB-21<br>(10-12 FT)<br>1/29/03<br>32.0<br>(mg/kg) | IPSB-21<br>(12-14 FT)<br>1/29/03<br>33.0<br>(mg/kg) | IPSB-21<br>(14-16 FT)<br>1/29/03<br>48.0<br>(mg/kg) | IPSB-21<br>(16-18 FT)<br>1/29/03<br>89.0<br>(mg/kg) | IPSB-21<br>(18-20 FT)<br>1/29/03<br>85.0<br>(mg/kg)         | INSTRUMENT<br>DETECTION<br>LIMITS<br>(mg/kg) |
| Total Petroleum Hydrocarbons                                              | 140                                                      | 330                                                 | 250                                                 | ND                                                  | 23                                                  | ND                                                          |                                              |

Notes: ND: Not Detected

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

# GROUNDWATER - TARGET ANALYTE LIST METALS (TAL Metals)

| SAMPLE ID          | IPGP-01    | IPGP-01  | IPGP-02    | IPGP-02      | IPGP-03    | IPGP-03  | IPTP-03    | IPTP-03  | INSTRUMENT | NY STATE CLASS GA |
|--------------------|------------|----------|------------|--------------|------------|----------|------------|----------|------------|-------------------|
|                    | Unfiltered | Filtered | Unfiltered | Filtered     | Unfiltered | Filtered | Unfiltered | Filtered | DETECTION  | GROUNDWATER       |
| DATE OF COLLECTION | 1/30/03    | 1/30/03  | 1/30/03    | 1/30/03      | 1/30/03    | 1/30/03  | 1/22/03    | 1/22/03  | LIMIT      | STANDARDS/        |
| DILUTION FACTOR    |            | 1        | 1          | 1            | 1          | 1        | 1          | 1        | (IDL)      | GUIDELINES        |
| UNITS              | (ug/L)     | (ug/L)   | (ug/L)     | (ug/L)       | (ug/L)     | (ug/L)   | (ug/L)     | (ug/L)   | (ug/L)     | (ug/L)            |
| Aluminum           | 8950       | ່ ບ      | 3310       | Ū            | 64600      | 35.8 B   | NA         | NA       | 12         |                   |
| Antimony           | 4.6 B      | 3.3 B    | 4,4 B      | ບ            | 3.2 B      | 4.1 B    | NA         | NA       | 3          | 3 ST              |
| Arsenic            | 11.8 8     |          | 4.7 B      | U            | 66.8       | 3.2 B    | 60,4       | 20.1     | 3          | 25 ST             |
| Barium             | 78.1 8     | 34.3 B   | 90.7 B     | 60.8 B       | 273        | 50.1 B   | 179 B      | 67.9 B   | 3          | 1,000 ST          |
| Beryllium          | 0.53 B     | Ū        | U          | U            | 4 B        | U        | NA         | NA       | 2          | 3 GV              |
| Cadmium            | 0.71 B     | U        | U          | ບ            | 7.3        | U        | υ          | υ        | 2          | 5 ST              |
| Calcium            | 110000     | 109000   | 67800      | 66200        | 66300      | 61500    | NA         | NA       | 76         | . !               |
| Chromium           | 74.8       | 2.5 B    | 34.1 B     | . u <b>l</b> | 130        | U        | 28.8       | υ        | 3          | 50 ST             |
| Cobait             | 5.5 B      | Ū        | 1.8 B      | Ŭ            | 43.6 B     | 1.9 B    | NA         | NA       | 3          |                   |
| Copper             | 96.7 B     | Ū        | 27.6 B     | Ū            | 242        | Ū        | NA         | NA       | 2          | 200 GA            |
| Iron               | 34000      | 1370     | 5480       | 39.6 B       | 118000     | 757      | NA         | NA       | 35         | 300 ST*           |
| Lead               | 96.1       | U        | 59.7       | υ U          | 181        |          | 74.2       | U        | 1          | 25 ST             |
| Magnesium          | 26300      | 24100    | 10500 B    | 10200 B      | 23100      | 14000 B  | NA         | NA       | 23         | 35,000 GV         |
| Manganese          | 508        | 339      | 136        | 82.5         | 1010       | 275      | NA         | NA       | 2          | 300 ST*           |
| Mercury            | 0.17 B     | U        | 0.16 B     | U            | 0.64 B     | U        | 0.19 B     | U        | 0.1        | 0.7 ST            |
| Nickel             | 37.8 B     | 1.7 B    | 18 B       | 1.6 8        | 117 B      | 6.5 B    | NA         | NA       | 1          | 100 ST            |
| Potassium          | 23800      | 22100    | 32700      | 34300        | 45200      | 40000    | NA         | NA       | 89         | [ ]               |
| Selenium           | U U        | U        | υ          | U            | U          | U        | l ul       | U        | 8          | 10 ST             |
| Silver             | 4.1 B      | υ        | 11.2 B     | U            | Ŭ          | U        | Ι υ        | U        | 2          | 50 ST             |
| Sodium             | 82800      | 81600    | 35700      | 36600        | 37100      | 32400    | NA         | NA       | 118        | 20,000 ST         |
| Thallium           | 6.3 B      | 5.2 B    | U          | 5.3 B        | U          | 4.2 B    | NA         | NA       | 4          | 0.5 GV            |
| Vanadium           | 39.2 B     | 5.6 B    | 10 B       | 3.1 B        | 154 B      | 3 B      | NA         | NA       | 3          | - I               |
| Zinc               | 235 B      | 9 B      | 57.2 B     | 9.2 B        | 4050       | 50.7 B   | NA         | NA       | 8          | 2,000 GV          |

# QUALIFIERS:

U: Compound analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL. NA: Not Analyzed for

# NOTES:

: Not applicable.

ST : New York State Ambient Water Quality Standards

GV : New York State Ambient Water Quality Guidance Values

ST\*\_\_: Standard for the sum of iron and manganese is 500 ug/l

: Value exceeds Standard/Guideline.

and the second second

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

#### GROUNDWATER - VOLATILE ORGANIC COMPOUNDS (VOCs)

| SAMPLE ID                 | IPGP-01 | (PGP-02 | (PGP-03    | IPTP-03 | LABORATORY   | NY STATE CLASS GA      |
|---------------------------|---------|---------|------------|---------|--------------|------------------------|
| DATE OF COLLECTION        | 1/30/03 | 1/30/03 | 1/30/03    | 1/22/03 | QUANTITATION | GROUNDWATER STANDARDS/ |
| DILUTION FACTOR           | 1 {     | 1       | 1          | 1       | LIMITS       | GUIDELINES             |
| UNITS                     | (ug/l)  | (ug/l)  | (ug/l)     | (ug/l)  | (ug/L)       | (ug/L)                 |
| Dichlorodifluoromethane   |         |         | U          | U       | 5            | 5 ST                   |
| Chloromethane             | U ·     | υ       | U          | ) Ú     | 1 5          |                        |
| Vinyi Chioride            | υ       | Ŭ       | Ū          | ) , Ū   | 1 5          | 2 ST                   |
| Bromomethane              | υ       | Ŭ       | Ū          | Ū       | 5            | 5 ST                   |
| Chloroethane              | U       | Ú       | Ū          | U       | 5            | 5 ST                   |
| Trichlorofluoromethane    | U       | U       | U          | ! U     | 5            | 5 ST                   |
| 1,1-Dichloroethene        | U       | U       | U          | U       | 5            | 5 ST                   |
| Acetone                   | U       | U       | U U        | U       | 5            | 50 GV                  |
| Idomethane                | U I     | U       | រ ប        | ט !     | 5            |                        |
| Carbone Disulfide         | 1 J     | Ŭ       | Ū          | Ū Ū     | 5            | -                      |
| Methylene Chloride        | U       | υ       | Ū          | ) Ū     | 5            | 5 ST                   |
| trans-1,2-Dichloroethene  | U       | υ       | ن (        | ł ŭ     | 5            | 5 ST                   |
| Methyl tert-butyl ether   | 5       | 2 J     | 6          | Ŭ Ŭ     | 5            | 10 GV*                 |
| 1,1-Dichloroethane        | U•      | Ū       | ) U        | Î Û     | 5            | 5 ST                   |
| Vinyl acetate             | Ū       | Ū       | ) Ū        | ł ū     | 5            | _                      |
| 2-Butanone                | Ū       | Ū       | ιŪ         | lŪ      | 5            | -                      |
| cis-1,2-Dichloroethene    | υ       | Ú       | l Ū        | l ū     | 5            | 5 ST                   |
| 2,2-Dichloropropane       | U       | U       | Ŭ          | ( U     | 5            | 5 ST                   |
| Bromochioromethane        | U       | U       | Ú Ú        | l Ū     | 5            | 5 ST                   |
| Chloroform                | υĮ      | U       | Ū          | i u     | 5            | 7 ST                   |
| 1,1,1-Trichloroethane     | U l     | Ű       | Ū          | t ū     | 5            | 5 ST                   |
| 1,1-Dichloropropana       | Ū       | Ū       | i ŭ        | ) Ū     | 5            | 5 ST                   |
| Carbon Tetrachloride      | U       | Û       | Ū Ū        | ) Ū     | 5            | 5 ST                   |
| 1,2-Dichloroethane        | U       | υ       | U          | U       | 5            | 0.6 ST                 |
| Benzene                   | U       | U       | U          | ) U     | 5            | 1 ST                   |
| Trichloroethene           | υ I     | U       | U          | ι υ     | 5            | 5 ST                   |
| 1,2-Dichloropropane       | υĺ      | U       | l u        | L U     | 5            | 1 ST                   |
| Dibromomethane            | Ū       | Ŭ       | l ū        | Ū       | 5            | 5 ST                   |
| Bromodichloromethane      | Ū       | Ũ       | l ũ        | Ū       | 5            | 50 GV                  |
| cis-1,3-Dichloropropane   | U       | Ú       | l ú        | Ū       | 5            | -                      |
| 4-Methyl-2-pentanone      | υĮ      | U       | Ú          | l Ú     | 5            |                        |
| Toluene                   | U       | Ú       | ί <u>υ</u> | i ŭ     | 5            | 5 ST                   |
| trans-1,3-Dichloropropene | Ū       | บ       | Ū          | 1 Ū     | 5            | 0.4 ST                 |
| 1,1,2-Trichloroethane     | Ū Į     | Ū       | l ū        | 1 Ū     | 5            | 1 ST                   |

#### QUALIFIERS:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

U\*: Compound qualified as non-detect due to validation criteria,

# NOTES:

: Not applicable.

: Draft Guidance Value

: New York State Ambient Water Quality Standards



Value exceeds the referenced criteria.

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

#### GROUNDWATER - VOLATILE ORGANIC COMPOUNDS (VOCs)

| SAMPLEID                    | IPGP-01 | IPGP-02 | IPGP-03 | IPTP-03    | LABORATORY   | NY STATE CLASS GA      |
|-----------------------------|---------|---------|---------|------------|--------------|------------------------|
| DATE OF COLLECTION          | 1/30/03 | 1/30/03 | 1/30/03 | 1/22/03    | QUANTITATION | GROUNDWATER STANDARDS/ |
| DILUTION FACTOR             | 1       | 1 1     | 1       | 1 1        | LIMITS       | GUIDELINES             |
| UNITS                       | (ug/l)  | (ug/l)  | (ug/l)  | (ug/l)     | (ug/L)       | (ug/L)                 |
| 1,3-Dichloropropane         |         | 0       | 0       |            | 5            | 551                    |
| Tetrachloroethene           | U       | JU      | U       | ) U        | 5            | ) 5 ST                 |
| 2-Hexanone                  | U       | U       | U       | U          | 5            | 50 GV                  |
| Dibromochloromethane        | U       | U       | U       | U          | 5            | 50 GV                  |
| 1,2-Dibromoethane           | U       | U       | U       | ι U        | 5            | -                      |
| Chiorobenzene               | U       | ( U I   | U       | [ ບ        | 5            | 5 ST                   |
| 1,1,1,2-Tetrachloroethene   | υ       | U       | U       | ່ ບ        | 5            | 5 ST                   |
| Ethylbenzene                | υ       | U       | U       | ] <b>ບ</b> | 5            | 5 ST                   |
| m,p-Xylane                  | υ       | U       | U       | ) U        | 5            |                        |
| o-Xylene                    | U ·     | U U     | U       | ί υ        | 5            | -                      |
| Xylene (total)              | U       | U U     | U       | U          | 5            | 5 ST                   |
| Styrene                     | U       | U       | U       | U          | 5            | 5 ST                   |
| Bromoform                   | U       | U       | U       | l U        | 5            | 50 GV                  |
| Isopropyibenzene            | U       | U       | U       | ί υ        | 5            | 5 ST                   |
| 1,1,2,2-Tetrachloroethane   | U       | ) U     | U       | U          | 5            | 5 ST                   |
| Bromobenzene                | υ       | U       | U       | U U        | 5            | 5 ST                   |
| 1,2,3-Trichloropropane      | υ       | U       | U       | U U        | 5            | 0.04 ST                |
| n-Propylbenzene             | U       | U U     | U       | U U        | 5            | 5 ST                   |
| 2-Chlorotoluene             | U       | U U     | U       | ί υ        | 5            | 5 ST                   |
| 1,3,5-Trimethylbenzene      | υ       | U       | U       | ) U        | 5            | 5 ST                   |
| 4-Chlorotokiene             | U       | U       | U       | U          | 5            | 5 ST                   |
| tert-Butylbenzene           | U       | U       | U       | U          | 5            | 5 ST                   |
| 1,2,4-Trimethylbenzene      | U       | U U     | U       | U U        | 5            | 5 ST                   |
| sec-Butylbenzane            | U       | U       | U       | U          | 5            | 5 ST                   |
| 4-isopropyltoluene          | ប       | U       | 1 J     | U          | 5            | 5 ST                   |
| 1,3-Dichlorobenzene         | U       | U       | U       | υ          | 5            | 3 ST                   |
| 1,4-Dichlorobenzene         | U       | U       | U       | ) υ        | 5            | 3 ST                   |
| n-Butylbenzene              | υ       | ) U     | U       | j u        | 5            | 5 ST                   |
| 1,2-Dichlorobenzene         | υ       | 1 U     | U       | l u        | 5            | 3 ST -                 |
| 1,2-Dibromo-3-chioropropane | U       | U U     | U       | U          | 5            | 0.04 ST                |
| 1,2,4-Trichlorobenzene      | U       | U U     | U       | U U        | 5            | 5 ST                   |
| Hexachlorobutadiene         | U       | ( U     | U       | ໄ <u>ບ</u> | 5            | 0.5 ST                 |
| Naphthaiene                 | U       | 18      | U .     | Ι υ        | 5            | 10 GV                  |
| 1,2,3-Trichlorobenzene      | Ŭ       |         | Ū       | l ū        | 5            | 5 ST                   |

QUALIFIERS: U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

U": Compound qualified as non-detect due to validation criteria.

#### NOTES: -

: Not applicable.

. : Draft Guidance Value ST

: New York State Ambient Water Quality Standards G٧

: New York State Ambient Water Quality Guidance Values

: Value exceeds the referenced criteria.

ł.

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

#### GROUNDWATER - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs) 1 IPGP-02 NY STATE CLASS GA SAMPLE ID IPOP-01 IPGP-03 IPTP-03 LABORATORY DATE OF COLLECTION 1/30/03 1/30/03 1/30/03 1/22/03 QUANTITATION GROUNDWATER STANDARDS/ DILUTION FACTOR LIMITS GUIDELINES 1 1 1 1 UNITS (ug/l) (ug/l) (ug/i) (ua/L) (ug/i) (ua/L) 1 ST\* Phenol u U1 U. u 10 bis(2-Chloroethyl)ether u 11 11 u 10 ----2-Chlorophenol u υ υ U 10 \_ 1,3-Dichlorobenzene U Ú U 10 3 ST υ U 1.4-Dichlorobenzene υ υ U 10 3 ST 1.2-Dichlorobenzens U υ U υ 10 3 ST 2-Methylphenol ú υ Ù υ 10 ----2.2'-oxybis (1-chloropropane) u υ υ υ 10 -U U 4-Methylphenol υ υ 10 -N-Nitroso-di-n-propylamine u U υ U 10 ----Hexachloroethane u U υ U 5 ST 10 Nitrobenzene u υ υ U 10 0.4 ST Ū Isophorone U ΰ. U 10 50 GV 2-Nitrophenol U υ υ U 10 -Û 50 GV 2,4-Dimethylphenol u U υ 10 2.4-Dichlorophenoi Ū U υ υ 10 5 ST 1.2.4-Trichlorobenzene U U U U 10 5 ST Naphthalene U 52 υ 10 10 GV 8 J 4-Chloroaniline U 5 ST U υ U 10 bis(2-Chloroethoxy)methane U υ υ υ 10 ---Hexachlorobutadiene U U บ υ 10 0.5 ST 4-Chloro-3-methylphenol U U 10 U u -2-Methylnephthalene U ũ IJ. 10 8 J -Hexachiorocyclopentadiene U U υ 5 ST U 10

# Acenaphthene

3-Nitroaniline

2-Nitroaniline

Dimethylphthalate

Acenaphthylene

2,6-Dinitrotoluene

2,4,6-Trichlorophenol

2.4.5-Trichlorophenol

2-Chloronaphthalene

NOTES:

U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection lim

υ

U

U

Ū

υ

U

U

U

U

and the second second

\*\*

G٧

: Not applicable. : Applies to the sum of all Phenois

lim \* : Applies to the ST : New York St

28

U

U

U

U

U

U

U

U

: New York State Ambient Water Quality Standards

: New York State Ambient Water Quality Guidance Values

: Result exceeds NYS Class GA Standard/Guideline

E:2015 (LIRR ) Subs Del Phase II)'S Subs Deta\Island Park\Data Tables for Report/Table 45 REV

υ

υ

U

U

U

U

U

U

9 J

υ

υ

υ

υ

υ

U

U

U

U

10

20

10

20

10

10

10

20

10

---

10 GV

5 ST

50 GV

---

5 ST

5 ST

20 GV

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

#### GROUNDWATER - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                  | IPGP-01  | IPGP-02  | IPGP-03 | IPTP-03  | LABORATORY   | NY STATE CLASS GA      |
|----------------------------|----------|----------|---------|----------|--------------|------------------------|
| DATE OF COLLECTION         | 1/30/03  | 1/30/03  | 1/30/03 | 1/22/03  | QUANTITATION | GROUNDWATER STANDARDS/ |
| DILUTION FACTOR            | 1        |          | 1       | 1 1      | LIMITS       | GUIDELINES             |
| UNITS                      | (ug/l)   | (ug/l)   | (ug/l)  | (ug/l)   | (ug/L)       | (ug/L)                 |
| 2,4-Dinitrophenol          | U        | υ        | υ       | υ        | 20           | 10 GV                  |
| 4-Nitrophenol              | ũ        | ł Ū      | Ŭ       | U        | 20           | -                      |
| Dibenzofuran               | Ũ        | 10       | 4 J     | Ū        | 10           | _                      |
| 2.4-Dinitrotoluene         | Ŭ        | U        | U       | U        | 10           | 5 ST                   |
| Diethylphthalate           | Ŭ        | U        | Ű       | ່        | 10           | 50 GV                  |
| 4-Chlorophenyl-phenylether | ŭ        | Ū        | 4 J     | Ū        | 10           |                        |
| Fluorene                   | ŭ        | 12       | ŭ       | ŭ        | 10           | 50                     |
| 4-Nitroanline              | ŭ        | U        | ŭ       | Ū        | 20           | 5 ST                   |
| 4,6-Dinitro-2-methylphenol | ŭ        | Ŭ        | ŭ       | Ū        | 20           | -                      |
| N-Nitrosodiphenylamine     | Ŭ        | 1 Ū      | Ŭ       | Ū        | 10           | 50 GV                  |
| 4-Bromophenyi-phenyiether  | Ŭ        | l u      | Ŭ       | υ        | 10           | -                      |
| Hexachlorobenzene          | Ŭ        | Ū.       | ย์      | Ŭ        | 10           | 0.04 ST                |
| Pentachlorophenol          | ŭ        | l ŭ      | ŭ       | Ŭ Ŭ      | 20           | 1 ST                   |
| Phenanthrene               | ŭ        | 31       | ธมั     | l ŭ      | 10           | 50 GV                  |
| Anthracene                 | ŭ        | 6 J      | 1 J     | Ŭ        | 10           | 50 GV                  |
| Carbazole                  | Ŭ        | 16       | Ū       | Ū        | 10           | -                      |
| Di-n-butylphthalate        | U        | ່ ບ      | U       | U        | 10           | -                      |
| Fluoranthene               | Ŭ        | 20       | 2 J     | U        | 10           | 50 GV                  |
| Pyrene                     | Ŭ        | 14       | Ū       | l ū      | 10           | 50 GV                  |
| Butylbenzylphthalate       | Ŭ        | l U      | Ŭ       | Ū        | 10           | 50 GV                  |
| 3.3'-Dichlorobenzidine     | Ū        | - U      | Ū       | Ū        | 10           | 5 ST                   |
| Benzo(a)anthracene         | Ŭ        | 7 J      | U       | U        | 10           | -                      |
| Chrysene                   | U        | 7 J      | U       | ί υ      | 10           | 0.002 GV               |
| bis(2-Ethylhexyl)phthalate | Ŭ        | l        | U       | υ        | 10           | -                      |
| Di-n-octylphthalate        | Ŭ        | ŰŬ       | Ŭ       | Ū        | 10           | 50 GV                  |
| Benzo(b)fluoranthene       | ŭ        | 8 J      | ū       | l ŭ      | 10           | 0.002 GV               |
| Benzo(k)fluoranthene       | บ้       | 4 J      | บ้      | ĪŪ       | 10           | 0.002 GV               |
| Benzo(a)pyrene             | ŭ        | 5 J      |         | l ŭ      | 10           | NDST                   |
|                            |          | 3 J      | 8       | l ñ      | 10           | 0.002 GV               |
| Indeno(1,2,3-cd)pyrene     | 0        |          |         |          |              | 0.002 GV               |
| Dibenzo(a,h)anthracene     | U        | U<br>L E | 0       |          | 10<br>10     | -                      |
| Banzo(g,h,i)perylene       | <u> </u> | <u> </u> | U       | <u>U</u> | 10           | ~                      |

QUALIFIERS: U: Compound analyzed for but not detected.

NOTES:

-

ST

G٧

J: Compound found at a concentration below the detection lim

: Not applicable.

: New York State Ambient Water Quality Standards : New York State Ambient Water Quality Guidance Values : Result exceeds NYS Class GA Standard/Guideline

1.1

S

.

Sec. A

J

### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD GROUNDWATER ASSESSMENT

# GROUNDWATER - POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>UNITS | IPGP-01<br>1/30/03<br>1<br>(ug/I) | IPGP-02<br>1/30/03<br>1<br>(ug/i) | IPGP-03<br>1/30/03<br>1<br>(ug/l) | IPTP-03<br>1/22/03<br>1<br>(ug/l) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/L) | NY STATE CLASS GA<br>GROUNDWATER<br>STANDARDS/<br>(ug/L) |
|-------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------------------|----------------------------------------------------------|
| Arocior- 1016                                               | U                                 | U                                 | 1)                                | υ                                 | 1                                              |                                                          |
| Aroclor- 1221                                               | Ū I                               | Ŭ                                 | ũ l                               | Ŭ                                 | 1                                              |                                                          |
| Aroclor- 1232                                               | Ū                                 | Ū                                 | Ū                                 | Ŭ                                 | 1                                              |                                                          |
| Arocior- 1242                                               | υ                                 | U                                 | υ                                 | U                                 | 1                                              |                                                          |
| Aroclor- 1248                                               | υ                                 | υ                                 | υ                                 | U                                 | ) 1                                            | -                                                        |
| Aroclor- 1254                                               | U                                 | U                                 | U                                 | υ                                 | 1                                              |                                                          |
| Aroclor- 1260                                               | U                                 | U                                 | U                                 | Ų                                 | 1                                              | -                                                        |
| TOTAL PCBs                                                  | 0                                 | 0                                 | 0                                 | 0                                 | -                                              | 0.09 ST                                                  |

QUALIFIERS:

NOTES:

ST

U: Compound analyzed for but not detected.

: Not applicable.

: New York State Ambient Water Quality Standards

-

# ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

## SUBSURFACE SOIL - RCRA METALS

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | IP\$BX-01<br>(4-6)<br>1/27/03<br>73.0<br>(mg/kg) | IPSBX-01<br>(6-8)<br>1/27/03<br>24.0<br>(mg/kg) | iPSBX-01<br>(8-10)<br>1/27/03<br>31.0<br>(mg/kg) | IPSBX-01<br>(10-12)<br>1/27/03<br>27.0<br>(mg/kg) | IPSBX-01<br>(12-14)<br>1/27/03<br>25.0<br>(mg/kg) | IP\$BX-01<br>(14-16)<br>1/27/03<br>44.0<br>(mg/kg) | IPSBX-01<br>(16-18)<br>1/27/03<br>60.0<br>(mg/kg) | IPSBX-01<br>(18-20)<br>1/27/03<br>92.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/I) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Araenic<br>Barium                                                               | 2.6<br>19.9                                      | 5.8<br>29.6 B                                   | 5.6<br>29.2                                      | 7.6<br>30.3 B                                     | 5.5<br>24.9 B                                     | 13.7<br>26.3                                       | 5.2<br>8.3 B                                      | 2.6<br>1.3 B                                      | 3.0<br>3.0                                  | 7.5 or SB<br>300 or SB                                               |
| Cadmium<br>Chromium<br>Lead                                                     | 0.21 B<br>6.4<br>14.1                            | 0.55 B<br>29.8<br>6 B                           | 0.43 B<br>35.5<br>9.8                            | 0.68 B<br>40.3<br>9.1                             | 0.6 B<br>34<br>7                                  | 0.69<br>25.3<br>15,5                               | 0.27 B<br>9.5<br>6.5                              | 3.2<br>1.3 B                                      | 2.0<br>3.0<br>1.0                           | 10*<br>50*<br>SB**                                                   |
| Mercury<br>Selenium                                                             | 0.036 B                                          | 0 B<br>U                                        | 9.8<br>U                                         | 9.1<br>U                                          | ໌ ບ                                               | 0.044 B                                            | 6.5<br>U                                          | 1.3 B<br>U                                        | 0.1                                         | 0.1                                                                  |
| Silver                                                                          | U                                                | 0.93 B                                          | 0.9 B                                            | 1.3 B                                             | 0.99 B                                            | 1.1_B                                              | 0.6 B                                             | 0.2 B                                             | 8.0<br>2.0                                  | 2 or SB<br>SB                                                        |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | IPSBX-02<br>(6-8)<br>1/28/03<br>68.0<br>(mg/kg) | IP\$8X-02<br>(8-10)<br>1/28/03<br>39.0<br>(mg/kg) | (10-12)<br>1/28/03<br>81.0<br>(mg/kg) | IPSBX-02<br>(12-14)<br>1/28/03<br>47.0<br>(mg/kg) | iPSBX-02<br>(14-16)<br>1/28/03<br>42.0<br>(mg/kg) | iPSBX-02<br>(16-18)<br>1/28/03<br>83.0<br>(mg/kg) | IPSBX-02<br>(18-20)<br>1/28/03<br>58.0<br>(mg/kg) | IPSBX-03<br>(6-8)<br>1/28/03<br>81.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Arsenic<br>Barium                                                               | 8.2<br>33.9                                     | 11.7                                              | 1.4<br>4.1 B                          | 6.6<br>15.3 B                                     | <u>8.7</u><br>25.9                                | 2.5<br>5.6 B                                      | 3.3<br>13.1 B                                     | 1.6<br>5.2 B                                    | 3.0<br>3.0                                  | 7.5 or SB<br>300 or SB                                               |
| Cadmium                                                                         | 0.66<br>20.4                                    | 0.64<br>28.8                                      | ັບ<br>3.8                             | 0.41 B<br>16.8                                    | 0.76<br>33.9                                      | Ū                                                 | 0.25 B<br>12.8                                    | 4.1                                             | 2.0<br>3.0                                  | 10*<br>50*                                                           |
| Lead                                                                            | 15.3                                            | 14.8                                              | 1,6 B                                 | 6.5                                               | 7.4                                               | 2 B                                               | 4.2                                               | 3                                               | 1.0                                         | SB**                                                                 |
| Mercury                                                                         | 0.043 B                                         | 0.12 B                                            | U                                     | U                                                 | U                                                 | U                                                 | U                                                 | U                                               | 0.1                                         | 0.1                                                                  |
| Selenium<br>Sliver                                                              | ບ<br>ບ                                          | 18                                                | 0.25 B                                | 0.83 B                                            | U<br>1.4 B                                        | 0.31 B                                            | 0.58 B                                            | 0.35 B                                          | 8.0<br>2.0                                  | 2 or SB<br>SB                                                        |

QUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

#### Notes:

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

2

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

#### **ISLAND PARK SUBSTATION** LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - RCRA METALS

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | (8-10)<br>(8-10)<br>1/28/03<br>85.0<br>(mg/kg) | IPSBX-03<br>(10-12)<br>1/28/03<br>81.0<br>(mg/kg) | IPSBX-03<br>(12-14)<br>1/28/03<br>44.0<br>(mg/kg) | IPSBX-03<br>(14-16)<br>1/28/03<br>81.0<br>(mg/kg) | IPSBX-03<br>(16-18)<br>1/28/03<br>53.0<br>(mg/kg) | IPSBX-03<br>(18-20)<br>1/28/03<br>76.0<br>(mg/kg) | (PS8X-04<br>(4-6)<br>1/28/03<br>56.0<br>(mg/kg) | (6-8)<br>(6-8)<br>1/28/03<br>61.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Arsenic                                                                         | 1,2                                            | 1.4                                               | 5.9                                               | 1.7                                               | 5.9                                               | 2.5                                               | 16.2                                            | 9.2                                          | 3.0                                         | 7.5 or SB                                                            |
| Barlum                                                                          | 6.2 B                                          | 6 B                                               | 24.7                                              | 5 B                                               | 19.7                                              | 6 B                                               | 29.7                                            | 18.4                                         | 3.0                                         | 300 or SB                                                            |
| Cadmium                                                                         | U                                              | U                                                 | 0.8                                               | U                                                 | 0.52                                              | 0.14 B                                            | 1.1                                             | 0.74                                         | 2.0                                         | 10*                                                                  |
| Chromium                                                                        | 4.5                                            | 4.4                                               | 27.3                                              | 4.9                                               | 18.6                                              | 8.4                                               | 31.5                                            | 21.5                                         | 3.0                                         | 50*                                                                  |
| Lead                                                                            | 1.7 B                                          | 2 B                                               | 8                                                 | 5.7                                               | 36                                                | 2.7                                               | 15.4                                            | 8                                            | 1.0                                         | SB**                                                                 |
| Mercury                                                                         | U                                              | U                                                 | U                                                 | U                                                 | 0.25                                              | U                                                 | U                                               | U [                                          | 0.1                                         | 0.1                                                                  |
| Selenium                                                                        | U                                              | U                                                 | υ                                                 | υ                                                 | <u> </u>                                          | υ                                                 | U                                               | υ                                            | 8.0                                         | 2 or SB                                                              |
| Sliver                                                                          | 0.3 B                                          | 0.3_8                                             | 1.4 B                                             | _0.31_B                                           | 0.93 B                                            | 0.38 B                                            | 1.3 B                                           | 1.2 B                                        | 2.0                                         | SB                                                                   |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | (8-10)<br>1/28/03<br>40.0<br>(mg/kg) | IPSBX-04<br>(10-12)<br>1/28/03<br>75.0<br>(mg/kg) | (12-14)<br>1/28/03<br>65.0<br>(mg/kg) | (14-16)<br>1/28/03<br>78.0<br>(mg/kg) | IPSBX-04<br>(16-18)<br>1/28/03<br>80.0<br>(mg/kg) | (18-20)<br>1/28/03<br>52.0<br>(mg/kg) | IPSBX-05<br>(10-12)<br>1/23/03<br>52.0<br>(mg/kg) | IPSBX-05<br>(12-14)<br>1/23/03<br>78.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------------------|---------------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------|----------------------------------------------------------------------|
| Arsenic                                                                         | 6.2                                  | 1.4                                               | 5.6                                   | 3                                     | 1.8                                               | 3.5                                   | 4                                                 | 2.6                                               | 3.0                               | 7.5 or SB                                                            |
| Barium                                                                          | 27.3                                 | 5.9 B                                             | 15.4                                  | 4.6 B                                 | 5.9 B                                             | 12.4 B                                | 24.9                                              | 4.5 B                                             | 3.0                               | 300 or SB                                                            |
| Cadmium                                                                         | 1                                    | U                                                 | 0.42                                  | 0.16 B                                | U                                                 | 0.25 B                                | 0.48                                              | U                                                 | 2.0                               | 10*                                                                  |
| Chromlum                                                                        | 33.6                                 | 4.7                                               | 15.5                                  | 5.9                                   | 7.2                                               | 12.4                                  | 33.2                                              | 6.8                                               | 3.0                               | 50*                                                                  |
| Lead                                                                            | 9.5                                  | 8.5                                               | 5.6                                   | 2.4 B                                 | 2.3 B                                             | 5                                     | 7.7                                               | 2.7                                               | 1.0                               | SB**                                                                 |
| Mercury                                                                         | U                                    | ų                                                 | U                                     | U                                     | U                                                 | υ                                     | U                                                 | U U                                               | 0.1                               | 0.1                                                                  |
| Selenium                                                                        | U                                    | Ú                                                 | U                                     | U (                                   | U                                                 | U ]                                   | U                                                 | U                                                 | 8.0                               | 2 or SB                                                              |
| Silver                                                                          | 1.6 B                                | 0.28 B                                            | <u>1.1 B</u>                          | 0.37_B                                | 0. <u>34</u> B                                    | <u>0.61</u> B                         | 0.33 B                                            | 0.12 B                                            | 2.0                               | SB                                                                   |

OUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

# Notes:

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

....

· · · · ·

f

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - RCRA METALS

IPSBX-05 IPSBX-06 IPSBX-06 SAMPLE ID IP\$8X-05 IPSBX-05 IPSBX-06 IPSBX-06 IPSBX-06 INSTRUMENT NYSDEC TAGM 4046 SAMPLE DEPTH (FT) (14-16)(16-18) (18-20) (4-6) (14-16) DETECTION (6-8) (8-10) (12-14) 1/23/03 1/23/03 1/23/03 1/27/03 1/27/03 1/27/03 1/27/03 1/27/03 LIMITS **Recommended Soli** DATE OF COLLECTION PERCENT SOLIDS 88.0 86.0 88.0 88.0 68.0 53.0 66.0 0.98 Cleanup Objective UNITS (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (ug/l) (mg/kg) 7.5 or SB 2.4 3.0 Arsenic 3.1 3.1 2.5 3.2 6.3 12.5 1.7 Barium 2.5 B 1.8 B 2 B 12.8 29.6 30.7 7.8 B 2.2 B 3.0 300 or SB Cadmium 0.27 B 2.0 10\* U 0.54 1.2 0.14 B υ U U 5.2 13.7 16.9 35.6 7.6 3.2 3.0 50\* Chromium 3.1 2.8 S8\*\* 18 12.3 12.3 1.9 B 1 B 1.0 Lead 2.4 1.2 1.1 0.1 Mercury U U U 0.019 B 0.037 B 0.041 B U. 11 0.1 U Selenium U υ υ 1 B U. U U 8.0 2 or SB Silver 0.13 B 0.11 B υ υ U 1.7 B 0.45 B 0.25 B 2.0 SB

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | <b>iPSBX-06</b><br>(16-18)<br>1/27/03<br>69.0<br>(mg/kg) | iPSBX-06<br>(18-20)<br>1/27/03<br>53.0<br>(mg/kg) | (4-8)<br>1/27/03<br>87.0<br>(mg/kg) | IPSBX-07<br>(6-8)<br>1/27/03<br>69.0<br>(mg/kg) | (PSBX-07<br>(8-10)<br>1/27/03<br>54.0<br>(mg/kg) | (10-12)<br>1/27/03<br>83.0<br>(mg/kg) | IPSBX-07<br>(12-14)<br>1/27/03<br>54.0<br>(mg/kg) | IPSBX-07<br>(14-16)<br>1/27/03<br>47.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/I) | NYSDEC TAGM 4048<br>Recommended Soll<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|-------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Arsenic                                                                         | 4.7                                                      | 4.3                                               | 2                                   | 10.2                                            | 17.2                                             | 1.4                                   | 6.1                                               | 5.9                                               | 3.0                                         | 7.5 or SB                                                            |
| Barium                                                                          | 10.3 B                                                   | 13.1 B                                            | 28.6                                | 18.4                                            | 30.4                                             | 5.5 B                                 | 18.3                                              | 24.5                                              | 3.0                                         | 300 or SB                                                            |
| Cadmium                                                                         | 0.26 B                                                   | 0.38 B                                            | 0.46                                | 0.68                                            | 1.5                                              | 0.12 B                                | 0.48                                              | 0.47 B                                            | 2.0                                         | 10*                                                                  |
| Chromium                                                                        | 13.2                                                     | 14.2                                              | 12                                  | 19.5                                            | 38.2                                             | 5.5                                   | 19.3                                              | 29,3                                              | 3.0                                         | 50*                                                                  |
| Lead                                                                            | 3.5                                                      | 4                                                 | 7.3                                 | 6.2                                             | 13.3                                             | 3.7                                   | 6.1                                               | 8.7                                               | 1.0                                         | SB**                                                                 |
| Mercury                                                                         | U                                                        | υ                                                 | U                                   | U                                               | 0.038 B                                          | U                                     | U                                                 | U                                                 | 0.1                                         | 0.1                                                                  |
| Selenium                                                                        | υ                                                        | υ                                                 | Ű                                   | υ                                               | l u                                              | U                                     | U                                                 | U                                                 | 8.0                                         | 2 or SB                                                              |
| Silver                                                                          | 0.55 B                                                   | 0.88 B                                            | Ū                                   | 18                                              | 1.6 B                                            | 0.27 B                                | 0.95 B                                            | 0.83 B                                            | 2.0                                         | SB                                                                   |

QUALIFIERS:

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

مور الأحاد والارتجا

. ..

## Notes:

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm. : Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

1

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - RCRA METALS

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | IPSBX-07<br>(16-18)<br>1/27/03<br>64.0<br>(mg/kg) | IPSBX-07<br>(18-20)<br>1/27/03<br>41.0<br>(mg/kg) | 1PSBX-08<br>(4-6)<br>1/28/03<br>77.0<br>(mg/kg) | IPSBX-08<br>(6-8)<br>1/28/03<br>72.0<br>(mg/kg) | IPSBX-08<br>(8-10)<br>1/28/03<br>66.0<br>(mg/kg) | IPSBX-08<br>(10-12)<br>1/28/03<br>60.0<br>(mg/kg) | (PSBX-08<br>(12-14)<br>1/28/03<br>78.0<br>(mg/kg) | IPSBX-08<br>(14-16)<br>1/28/03<br>76.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Arsenic                                                                         | 5.2                                               | 8.6                                               | 5.9                                             | 9.2                                             | 13.8                                             | 2.3                                               | 2.2                                               | 2.1                                               | 3.0                                         | 7.5 or SB                                                            |
| Barlum                                                                          | 14.5 B                                            | 25.6                                              | 6.9 B                                           | 16.4                                            | 31.1                                             | 17.4                                              | 11.1 B                                            | 9.2 B                                             | 3.0                                         | 300 or SB                                                            |
| Cadmium                                                                         | 0.4                                               | 0.81                                              | 0.26 B                                          | 0.63                                            | 1.1                                              | 0.2 B                                             | 0.17 B                                            | 0.16 B                                            | 2.0                                         | 10*                                                                  |
| Chromium                                                                        | 14,6                                              | 32.5                                              | 7.1                                             | 16.5                                            | 30.7                                             | 7.2                                               | 7.9                                               | 7.3                                               | 3.0                                         | 50*                                                                  |
| Lead                                                                            | 5.6                                               | 10.3                                              | 2.6                                             | 6.9                                             | 10.8                                             | 3.3                                               | 2 B                                               | 2.4 B                                             | 1.0                                         | SB**                                                                 |
| Mercury                                                                         | U                                                 | U                                                 | U                                               | U                                               | 0.025 B                                          | U                                                 | U                                                 | U U                                               | 0.1                                         | 0.1                                                                  |
| Selenium                                                                        | U                                                 | υ                                                 | υ                                               | υ                                               | U                                                | U                                                 | υ                                                 | U                                                 | 8.0                                         | 2 or SB                                                              |
| Silver                                                                          | 0. <u>75</u> B                                    | 1.3 B                                             | 0.4 <u>8</u> B                                  | 0. <u>99_</u> B                                 | 1.4_B                                            | 0.5 B                                             | 0.48 B                                            | 0.4 B                                             | 2.0                                         | SB                                                                   |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | IP\$BX-08<br>(16-18)<br>1/28/03<br>48.0<br>(mg/kg) | iP\$8X-08<br>(18-20)<br>1/28/03<br>90.0<br>(mg/kg) | IPSBX-09<br>(4-6)<br>1/29/03<br>84.0<br>(mg/kg) | IPSBX-09<br>(6-8)<br>1/29/03<br>65.0<br>(mg/kg) | IPSBX-09<br>(8-10)<br>1/29/03<br>52.0<br>(mg/kg) | (10-12)<br>(10-12)<br>1/29/03<br>69.0<br>(mg/kg) | IPSBX-09<br>(12-14)<br>1/29/03<br>46.0<br>(mg/kg) | (14-16)<br>(14-16)<br>1/29/03<br>89.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/i) | NYSDEC TAGM 4048<br>Recommended Soll<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Arsenic                                                                         | 2.6                                                | 1.6                                                | 4.3                                             | 11.7                                            | 23.1                                             | 2                                                | 5.2                                               | 2.3                                              | 3.0                                         | 7.5 or SB                                                            |
| Barium                                                                          | 15 B                                               | 2.7 B                                              | 19.4                                            | 23.1                                            | 29.9                                             | 7 B                                              | 18.7                                              | 1.6 B                                            | 3.0                                         | 300 or SB                                                            |
| Cadmlum                                                                         | 0.25 B                                             | υ                                                  | U                                               | 0.2 B                                           | 0.36 B                                           | υ                                                | U                                                 | U                                                | 2.0                                         | 10*                                                                  |
| Chromium                                                                        | 9.5                                                | 3.2                                                | 9.8                                             | 27                                              | 38.9                                             | 8.3                                              | 24                                                | 3.4                                              | 3.0                                         | 50*                                                                  |
| Lead                                                                            | 2.9 B                                              | 1.3 B                                              | 14.9                                            | 11.2                                            | 17,7                                             | 2.2 B                                            | 7.5                                               | 1.4 B                                            | 1.0                                         | SB**                                                                 |
| Mercury                                                                         | U                                                  | U                                                  | υ (                                             | υ                                               | υ                                                | U                                                | U (                                               | U                                                | 0.1                                         | 0.1                                                                  |
| Selenium                                                                        | U.                                                 | U                                                  | υ                                               | υ                                               | U                                                | υ                                                | υ                                                 | ט                                                | 8.0                                         | 2 or SB                                                              |
| Silver                                                                          | _0.65 B                                            | 0.21 B                                             | U                                               | U                                               | ບ                                                | U                                                | ື້                                                | U                                                | 2.0                                         | SB                                                                   |

# QUALIFIERS:

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

# Notes:

SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm.

: Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

Page 4 of 6

and the second second

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

# SUBSURFACE SOIL - RCRA METALS

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | IPSBX-09<br>(18-16)<br>1/29/03<br>43.0<br>(mg/kg) | IPSBX-09<br>(18-20)<br>1/29/03<br>77.0<br>(mg/kg) | IPSBX-10<br>(8-10)<br>1/23/03<br>50.0<br>(mg/kg) | IPSBX-10<br>(10-12)<br>1/23/03<br>72.0<br>(mg/kg) | IPSBX-10<br>(12-14)<br>1/23/03<br>86.0<br>(mg/kg) | IPSBX-10<br>(14-16)<br>1/23/03<br>80.0<br>(mg/kg) | IPSBX-10<br>(16-16)<br>1/23/03<br>82.0<br>(mg/kg) | IPSBX-11<br>(4-6)<br>1/27/03<br>76.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Arsenic<br>Barium                                                               | 7.6<br>21.2 B                                     | 2<br>5.5 B                                        | 4.2<br>21.2                                      | 5.6<br>9.6 B                                      | 1.9<br>2.4 B                                      | 2.6<br>4.2 B                                      | 3<br>1.5 B                                        | 8.5<br>26.5                                     | 3.0<br>3.0                                  | 7.5 or SB<br>300 or SB                                               |
| Cadmium                                                                         | 0.14 B                                            | U [                                               | 0.29 B                                           | 0.21 B                                            | 2.4 U                                             |                                                   | 1.5 B<br>U                                        | 0.44                                            | 2.0                                         | 10*                                                                  |
| Chromium                                                                        | 27.9                                              | 5.8                                               | 25.8                                             | 11,7                                              | 3                                                 | 6,4                                               | 3.2                                               | 4.7                                             | 3.0                                         | 50*                                                                  |
| Lead                                                                            | 9.6                                               | 2.5                                               | 7.3                                              | 3.8                                               | 1,5                                               | 2.9                                               | 1.3                                               | 23.2                                            | 1.0                                         | SB**                                                                 |
| Mercury                                                                         | υ                                                 | U                                                 | U                                                | U                                                 | U .                                               | U                                                 | υ                                                 | U                                               | 0.1                                         | 0.1                                                                  |
| Selenium                                                                        | U                                                 | U                                                 | U                                                | U                                                 | U                                                 | U                                                 | υ                                                 | υ                                               | 8.0                                         | 2 or SB                                                              |
| Silver                                                                          | U                                                 | U                                                 | 0.27 B                                           | 0.22 B                                            | <u> </u>                                          | 0.16 B                                            | υ                                                 | <u> </u>                                        | 2.0                                         | SB                                                                   |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | IPSBX-11<br>(6-8)<br>1/27/03<br>83.0<br>(mg/kg) | iPSBX-11<br>(8-10)<br>1/27/03<br>43.0<br>(mg/kg) | (PSBX-11<br>(10-12)<br>1/27/03<br>82.0<br>(mg/kg) | IPSBX-11<br>(12-14)<br>1/27/03<br>92.0<br>(mg/kg) | (P\$BX-11<br>(14-16)<br>1/27/03<br>87.0<br>(mg/kg) | IPSBX-11<br>(16-18)<br>1/27/03<br>82.0<br>(mg/kg) | IPSBX-11<br>(18-20)<br>1/27/03<br>83.0<br>(mg/kg) | IPSBX-12<br>(4-8)<br>1/23/03<br>65.0<br>(mg/kg) | INSTRUMENT<br>DETECTION<br>LIMITS<br>(ug/l) | NYSDEC TAGM 4046<br>Recommended Soil<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Arsenic                                                                         | 0.49 B                                          | 3.8                                              | 2.9                                               | 1.6                                               | 1.5                                                | 3                                                 | 2.9                                               | 25.7                                            | 3.0                                         | 7.5 or SB                                                            |
| Barium                                                                          | 3.4 B                                           | 27.7                                             | 2.4 B                                             | 1.2 B                                             | 1.2 B                                              | 1.9 B                                             | 1.6 B                                             | 125                                             | 3.0                                         | 300 or SB                                                            |
| Cadmium                                                                         | U                                               | 0.65                                             | 0.12 B                                            | U                                                 | U                                                  | U                                                 | U                                                 | 0.7                                             | 2.0                                         | 10"                                                                  |
| Chromium                                                                        | 1.6 B                                           | 31.5                                             | 3.7                                               | 2.5                                               | 2.4                                                | 3.5                                               | 3.1                                               | 9.1                                             | 3.0                                         | 50"                                                                  |
| Lead                                                                            | 0.81 B                                          | 10                                               | 1.9 B                                             | 0.96 B                                            | 0.91 B                                             | 1.4 B                                             | 1.1 B                                             | 13.7                                            | 1.0                                         | SB**                                                                 |
| Mercury                                                                         | U                                               | 0.06 B                                           | U                                                 | U                                                 | U                                                  | U                                                 | U                                                 | 0.14                                            | 0.1                                         | 0.1                                                                  |
| Selenium                                                                        | U                                               | U                                                | U                                                 | U                                                 | U                                                  | U                                                 | U                                                 | U                                               | 8.0                                         | 2 or SB                                                              |
| Silver                                                                          | 0.13 B                                          | 0.85 B                                           | 0.3 B                                             | 0.19 B                                            | 0.13 B                                             | 0.25 B                                            | 0.24 B                                            | 0.32 B                                          | 2.0                                         | SB                                                                   |

<u>OUALIFIERS;</u> U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

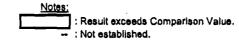
Notes: SB: Site Background

\*: As per proposed 4/95 NSDEC TAGM

\*\*: Average background levels in metropolitan or surburban areas or near highways range from 200-500 ppm. : Result exceeds NYSDEC TAGM Recommended Soil Cleanup Objective

.

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION


#### SUBSURFACE SOIL - RCRA METALS

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | IPSBX-12<br>(6-8)<br>1/23/03<br>82.0<br>(mg/kg) | IP\$BX-12<br>(8-10)<br>1/23/03<br>87.0<br>(mg/kg) | IPSBX-12<br>(10-12)<br>1/23/03<br>87.0<br>(mg/kg) | IP\$BX-12<br>(12-14)<br>1/23/03<br>90.0<br>(mg/kg) | IPSBX-12<br>(14-16)<br>1/23/03<br>89.0<br>(mg/kg) | iPSBX-12<br>(16-18)<br>1/23/03<br>80.0<br>(mg/kg) | IPSBX-12<br>(18-20)<br>1/23/03<br>86.0<br>(mg/kg) |   | INSTRUMENT<br>DETECTION<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soli<br>Cleanup Objective<br>(mg/kg) |
|---------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---|-----------------------------------|----------------------------------------------------------------------|
| Arsenic                                                                         | 0.93 B                                          | 0.85 B                                            | 4                                                 | 1.6                                                | 1.8                                               | 2.3                                               | 2,1                                               |   | 3.0                               | 7.5 or SB                                                            |
| Barlum                                                                          | 5.8 B                                           | 5.9 B                                             | 1.1 B                                             | 0.9 B                                              | 1.5 B                                             | 3.2 B                                             | 0.86 B                                            |   | 3.0                               | 300 or SB                                                            |
| Cadmium                                                                         | υ                                               | υ                                                 | 0.13 B                                            | U                                                  | U U                                               | U                                                 | U U                                               |   | 2.0                               | 10*                                                                  |
| Chromium                                                                        | 2.8                                             | 2.8                                               | 2.5                                               | 1.7                                                | 3.4                                               | 4.7                                               | 3.2                                               |   | 3.0                               | 50*                                                                  |
| Lead                                                                            | 2.1                                             | 1.6                                               | 1.8                                               | 0.8                                                | 1.1                                               | 1.8                                               | 0.62                                              | ł | 1.0                               | SB**                                                                 |
| Mercury                                                                         | υ                                               | υ                                                 | υ                                                 | υ                                                  | U                                                 | υ                                                 | υ                                                 |   | 0.1                               | 0,1                                                                  |
| Selenium                                                                        | υ                                               | U U                                               | υ                                                 | υ                                                  | υ                                                 | U                                                 | U U                                               | 1 | 8.0                               | 2 or SB                                                              |
| Silver                                                                          | υ                                               | υ                                                 | 0.14 B                                            | U                                                  | U                                                 | U                                                 | U                                                 |   | 2.0                               | SB                                                                   |

Page 6 of 6

QUALIFIERS: U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.



· .

"`\

ł

and the second second

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

# SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLEID                     | IPSBX-01   | IPSBX-01   |              |              |
|------------------------------|----------|----------|----------|----------|----------|----------|------------|------------|--------------|--------------|
| SAMPLE DEPTH (FT)            | (4-6)    | (6-8)    | (8-10)   | (10-12)  | (12-14)  | (14-16)  | (16-18)    | (18-20)    | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION           | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03    | 1/27/03    | QUANTITATION | Recommended  |
| DILUTION FACTOR              | 1        | 1        | 3        | 2        | 2        | 2        | 1          | 1          | LIMITS       | Soli Cleanup |
| PERCENT SOLIDS               | 73.0     | 24.0     | 31.0     | 27.0     | 25.0     | 44.0     | 60.0       | 92.0       | Lintro       | Objective    |
| UNITS                        | (ug/kg)    | (ug/kg)    | (ug/kg)      | (ug/kg)      |
|                              |          |          |          | (-9. 9)  |          | (+8,     |            | (•9,9)     |              |              |
| Phenoi                       | U        | υ        | υ        | U U      | U        | U        | י <u>ט</u> | υ          | 330          | 30           |
| bis(2-Chloroethyl)ether      | י י      | ) U      | U        | U        | U -      | Ú        | บ          | บั         | 330          |              |
| 2-Chlorophenol               | U        | U        | U        | י ט      | U        | Ū        | Ū          | Ū          | 330          | 800          |
| 1,3-Dichlorobenzene          | U        | U U I    | Ú        | Ú        | U        | Ū        | Ū          | υŬ         | 330          |              |
| 1,4-Dichlorobenzene          | U        | ) U      | U        | υ        | U        | Ū        | Ū          | Ū          | 330          |              |
| 1,2-Dichlorobenzene          | U        | U U      | U        | U        | U U      | U        | ( บ        | υ          | 330          |              |
| 2-Mathylphanol               | U U      | U        | U        | U        | 3300     | 240 J    | 510 J      | Ŭ          | 330          | 100          |
| 2,2-oxybia (1-chloropropane) | U.       | U        | U        | υ        | υ        | U        | U          | υ          | 330          |              |
| 4-Methylphenol               | υ        | U U      | Ŭ        | Ŭ        | Ú        | Ū        | Ŭ          | Ū          | 330          | 900          |
| N-Nitroso-di-n-propylamine   | ບ        | U        | Ŭ        | Ū        | Ŭ        | Ŭ        | Ū          | Ū          | 330          |              |
| Hexachloroethane             | U        | U        | Ŭ        | Ú        | Ŭ        | Ú Ú      | Ū          | Ŭ Ŭ        | 330          |              |
| Nitrobenzene                 | U        | U        | U        | υ        | υ        | Ŭ        | Ū          | Ŭ          | 330          | 200          |
| Isophorone                   | l u      | U        | Ŭ        | Ŭ        | Ū.       | Ŭ        | Ū.         | Ŭ          | 330          | 4,400        |
| 2-Nitrophenol                | Ū        | Ū        | υ        | Ŭ.       |          | Ŭ        | U U        | Ŭ Ŭ        | 330          | 330          |
| 2,4-Dimethylphenol           | Ŭ        | Ŭ        | υ        | 13000    | 29000    | 2700     | 4400       | 36 J       | 330          |              |
| 2,4-Dichlorophenol           | Ū        | Ŭ        | Ŭ        | υ        | U        | 2,00     | 1 100      | 1 <u> </u> | 330          | 400          |
| 1,2,4-Trichiorobenzene       | Ū        | Ū        | Ū        | υ        | i Ŭ      | Ŭ Ŭ      | Ŭ Ŭ        | i ŭ        | 330          |              |
| Naphthaiene                  | 3000     | 43000 D  | 42000    | 36000    | 24000    | 12000    | 8000       | 130 J      | 330          | 13,000       |
| 4-Chiorogniline              | U        | Ū        | <u> </u> | U        |          | U        |            |            | 330          | 220          |
| bis(2-Chloroethoxy)methane   | Ŭ        | Ŭ        | υ υ υ    | υŬ       | ŭ        | Ŭ        | ŭ          | Ŭ          | 330          |              |
| Hexachlorobutadiene          | Ŭ        | υ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | ŭ          | Ŭ          | 330          |              |
| 4-Chloro-3-methylphenol      | Ū        | Ū υ      | Ŭ        | Ŭ        | Ū        | Ŭ        | ) Ŭ        | Ŭ          | 330          | 240          |
| 2-Methylnaphthalene          | 1000     | 1300 J   | Ū        | U U      | Ū        | 380 J    | 700        | 52 J       | 330          | 36,400       |
| Hexachlorocyclopentadiene    | υ        | Ū        | Ū        | Ū        | Ū        | U U      | l u        | u u        | 330          |              |
| 2,4,6-Trichlorophenol        | Ŭ        | Ŭ        | Ū        | Ŭ        | ŭ        | Ū        | Ŭ          | Ŭ          | 330          |              |
| 2,4,5-Trichlorophenol        | บั       | Ū        | i ŭ      | Ŭ        | l Ŭ      | Ŭ        | Ŭ          | Ŭ          | 330          | 100          |
| 2-Chloronaphthalene          | U        | Ú        | Ū        | Ū        | Ŭ        | Ŭ        | Ŭ          | Ŭ          | 330          | ~~~          |
| 2-Nitroaniline               | Ū        | Ū        | Ū Ū      | Ŭ        | Ŭ        | Ŭ        | Ŭ          | Ŭ          | 330          | 430          |
| Dimethylphthelate            | Ŭ        | Ū        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ          | Ŭ          | 330          | 2.000        |
| Acenaphthylene               | Ŭ        | Ŭ        | Ŭ        | Ŭ Ŭ      | ŭ        | Ŭ        | ŭ          | U U        | 330          | 41,000       |
| 2,6-Dinitrotoluene           | Ŭ        | Ŭ        | U U      | U U      | U U      | Ŭ        | l ŭ l      | U U        | 330          | 1,000        |
| 3-Nitroaniline               | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | ŭ        | l ŭ        | U U        | 330          | 500          |
| Acanaphthene                 | 4100     | 2900     | Ŭ        | U U      | ŭ.       | 1200 J   | 280 J      | 50 J       | 330          | 50,000       |

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

# SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                         | IPSBX-01 |              |              |
|-----------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------|
| SAMPLE DEPTH (FT)                 | . (4-6)  | (6-8)    | (8-10)   | (10-12)  | (12-14)  | (14-16)  | (16-18)  | (18-20)  | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION                | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | QUANTITATION | Recommended  |
| DILUTION FACTOR                   | 1        | 1        | 3        | 2        | 2        | 2        | 1        | 1        | LIMITS       | Soll Cleanup |
| PERCENT SOLIDS                    | 73.0     | 24.0     | 31.0     | 27.0     | 25.0     | 44.0     | 60.0     | 92.0     |              | Objective    |
| UNITS                             | (ug/kg)      | (ug/kg)      |
|                                   | 1-3-1-01 | (        | <u> </u> |          |          |          |          |          |              |              |
| 2.4-Dinitrophenoi                 | ט (      | υ        | U        | U        | U        | U U      | υ        | U        | 330          | 200          |
| 4-Nitrophenol                     | υ υ      | U        | U        | U        | U        | U        | Ι υ      | U        | 330          | 100          |
| Dibenzofuran                      | 2900     | 1100 J   | U        | U        | U        | 820 J    | 200 J    | 67 J     | 330          | 6,200        |
| 2,4-Dinitrotoluene                | U        | U U      | U        | U        | U        | U        | U        | υ        | 330          |              |
| Diethylphthalate                  | υ 1      | U        | U        | Ų        | U        | U        | υ υ      | ί υ      | 330          | 7,100        |
| 4-Chlorophenyl-phenylether        | U U      | U        | U        | Ú        | υ        | Ú        | U (      | U        | 330          |              |
| Fluorene                          | 3000     | 1000 J   | Ū        | U        | U        | 860 J    | 140 J    | 52 J     | 330          | 50,000       |
| 4-Nitroaniline                    | U        | U        | U        | Ū        | Ū        | Ū        | Ū        | U        | 330          |              |
| 4,6-Dinitro-2-methylphenol        | U U      | U        | U        | U        | U        | U        | } U      | U U      | 330          |              |
| N-Nitrosodiphenylamine            | U        | U        | U        | U U      | U        | U        | U U      | U        | 330          |              |
| 4-Bromophanyl-phenylether         | i U      | υ        | U        | U        | U        | U        | Ι υ      | υ        | 330          |              |
| Hexachlorobenzene                 | υ        | υ        | U        | U        | U U      | U        | U υ      | υ        | 330          | 410          |
| Pentachlorophenol                 | υ 1      | υ        | U        | U        | υ υ      | U        | υ        | U U      | 330          | 1,000        |
| Phenanthrene                      | 6000     | 670 J    | U        | U U      | υ        | 2700     | 230 J    | 110 J    | 330          | 50,000       |
| Anthracene                        | 1000     | U        | U        | υ        | U        | 490 J    | ) U      | U        | 330          | 50,000       |
| Carbazole                         | 760      | 280 J    | U        | U        | U        | U        | U U      | 41 J     | 330          |              |
| Di-n-butylphthalate               | ί υ      | U        | U        | U        | U        | U        | Ι υ      | U        | 330          | 8,100        |
| Fluoranthene                      | 1700     | U        | U U      | U        | U        | 1100 J   | 140 J    | U        | 330          | 50,000       |
| Pyrane                            | 1400     | υ        | U        | U        | U        | 790 J    | 110 J    | U        | 330          | 50,000       |
| Butylbenzylphthalate              | U U      | U        | U        | U        | U        | U        | U U      | U .      | 330          | 50,000       |
| 3,3-Dichlorobenzidine             | <u> </u> | U U      | U        | U        | U        | U        | JU       | U        | 330          |              |
| Benzo(a)anthracene                | 500      | U        | U        | U        | U        | 320 J    | ) ປ      | U        | 330          | 224          |
| Chrysene                          | 530      | υ        | U        | U        | U        | 320 J    | 1 υ      | υ        | 330          | 400          |
| bis(2-Ethylhexyl)phthalate        | 50 J     | 170 J    | U        | υ        | Ū        | U        | U U      | 64 J     | 330          | 50,000       |
| Di-n-octylphthalats               | Ū        | Ū        | Ū        | Ū        | Ŭ        | Ū        | ) Ū      | U        | 330          | 50,000       |
| Benzo(b)fluoranthene              | 610      | U        | U        | U        | U        | U        | U U      | U U      | 330          | 1,100        |
| Benzo(k)fluoranthene              | 300 J    | υ        | U        | U        | U        | U        | υ        | U U      | 330          | 1,100        |
| Benzo(a)pyrene                    | 400 J    | υ        | U        | U        | ι υ      | U        | ט        | U        | 330          | 61           |
| Indeno(1,2,3-cd)pyrane            | 120 J    | Ū        | υ        | Ū        | Ū        | Ū        | Ū        | י ט      | 330          | 3,200        |
| Dibenzo(a,h)anthracene            | Ū        | Ū        | Ū        | Ū        | υ        | Ŭ        | ΙŬ       | Ū        | 330          | 14           |
| Benzo(g,h,i)perylene              | 110 J    | Ŭ        | ม        | Ŭ        | Ũ        | Ŭ.       | Ū        | Ū        | 330          | 50,000       |
| (g,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          | -        |          |          |          |          |          |          |              |              |
| Total PAHs                        | 22,770   | 47,570   | 42,000   | 36,000   | 24,000   | 19,780   | 8,900    | 342      |              | 100,000      |
| Total CaPAHs                      | 2,460    | 0        | 0        | 0        | 0        | 640      | 0        | 0        | -            | 10,000       |
| Total SVOCs                       | 27,480   | 50,420   | 42,000   | 49,000   | 56,300   | 23,920   | 14,710   | 602      |              | 500,000      |

<u>QUALIFIERS:</u> U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

NOTES: : Not applicable.

---

Concentration exceeds NYSDEC TAGM 4046 Recommended Soil Cleanup Objective

E:12015 (LIRR 3 Subs Del Phase II)13 Subs Data laland Park Data Tables for Report Table 48 rev

· 1

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

# SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                    | IPSBX-02 | IPSBX-02 | IPSBX-02 | IPSBX-02 | IPSBX-02 | IPSBX-02 | IP\$BX-02 | IPSBX-03   |              |              |
|------------------------------|----------|----------|----------|----------|----------|----------|-----------|------------|--------------|--------------|
| SAMPLE DEPTH (FT)            | (6-8)    | (8-10)   | (10-12)  | (12-14)  | (14-16)  | (16-18)  | (18-20)   | (6-8)      | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION           | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03   | 1/28/03    | QUANTITATION | Recommended  |
| DILUTION FACTOR              | 1        | 1        | 1        | 1        | 1        | 1        | 1         | 1          | LIMITS       | Soll Cleanup |
| PERCENT SOLIDS               | 68.0     | 39.0     | 81.0     | 47.0     | 42.0     | 83.0     | 58.0      | 81.0       |              | Objective    |
| UNITS                        | (ug/kg)   | (ug/kg)    | (ug/kg)      | (ug/kg)      |
|                              |          |          |          |          |          |          |           |            |              |              |
| Phenol                       | U        | υ        | U        | υ        | 650 J    | U        | U         | U          | 330          | 30           |
| bis(2-Chloroethyl)ether      | U        | υ        | υ        | υ        | U_       | U        | ) U       | U          | 330          |              |
| 2-Chlorophenol               | U        | U        | U        | U        | U        | υ        | U         | U          | 330          | 800          |
| 1,3-Dichlorobenzene          | U (      | U        | U        | U        | U        | U        | <b>υ</b>  | ່ <b>ບ</b> | 330          |              |
| 1,4-Dichlorobenzene          | U        | Ų        | U        | U        | U        | U        | υ         | υ          | 330          |              |
| 1,2-Dichlorobenzene          | U        | U        | U        | U        | υJ       | U        | υ         | U          | 330          |              |
| 2-Methylphenol               | U        | U        | U        | Ū        | Ū        | Ū        | Ŭ         | Ű          | 330          | 100          |
| 2,2-oxybis (1-chloropropane) | U        | ' U      | U        | U        | U        | U        | U U       | U          | 330          |              |
| 4-Methylphenol               | ט ו      | U        | U        | U        | 220 J    | U        | U U       | U          | 330          | 900          |
| N-Nitroso-di-n-propylamine   | υ        | U )      | U        | U        | U        | U        | i ul      | U          | 330          |              |
| Hexachloroethane             | U        | U        | U        | U        | Ū        | Ŭ        | ÌŪ        | Ŭ          | 330          |              |
| Nitrobenzene                 | U U      | ່ນ       | U        | Ū        | Ū        | Ū        | Ú Ú       | Ū          | 330          | 200          |
| Isophorone                   | U        | <u>ป</u> | υ        | υ        | U        | Ú        | Ŭ         | Ũ          | 330          | 4,400        |
| 2-Nitrophanoi                | U        | U        | U U      | U        | υ        | υ        | υ         | U          | 330          | 330          |
| 2,4-Dimethylphenol           | U        | U        | U        | U        | U        | U        | U U       | υ          | 330          |              |
| 2,4-Dichlorophenol           | ן ט      | U        | U        | U        | U        | U 1      | υ         | υ          | 330          | 400          |
| 1,2,4-Trichiorobenzene       | U        | U U I    | U        | U        | U        | U        | U         | υ          | 330          |              |
| Naphthalene                  | 130 J    | Ú        | U        | Ŭ        | Ū        | ŭ        | Ū         | Ū          | 330          | 13,000       |
| 4-Chioroaniline              | U U      | U        | Ú        | Ū.       | Ū        | Ũ        | l ũ       | Ŭ          | 330          | 220          |
| bis(2-Chloroethoxy)methane   | υ        | U        | U        | U        | U        | Ŭ        | Ũ         | Ū          | 330          |              |
| Hexachlorobutadiene          | U        | υ        | U        | υ        | Ű        | U        | Ú Ú       | ũ          | 330          |              |
| 4-Chloro-3-methylphenol      | U        | ט ו      | Ŭ        | Ū        | Ů        | Ŭ        | Ŭ         | ū          | 330          | 240          |
| 2-Methylnaphthalene          | 170 J    | υ        | U        | Ŭ        | Ů        | Ŭ        | Ŭ Ŭ       | Ŭ          | 330          | 36,400       |
| Hexachlorocyclopentadiene    | U        | บั       | Ŭ        | Ū        | Ŭ        | Ŭ        | Ŭ         | Ŭ          | 330          |              |
| 2,4,6-Trichlorophenol        | Ú L      | Ū        | Ū        | Ū        | Ū        | Ŭ        | Ŭ         | Ũ          | 330          |              |
| 2,4,5-Trichlorophenol        | U        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | υŬ        | บ          | 330          | 100          |
| 2-Chloronaphthalene          | U 1      | Ŭ        | Ū        | Ŭ        | ŭ        | Ŭ        | Ŭ         | Ū          | 330          |              |
| 2-Nitroaniline               | U        | Ŭ        | Ŭ        | Ŭ        | Ŭ.       | Ŭ        | Ŭ         | Ŭ          | 330          | 430          |
| Dimethylphthalate            | ט ו      | Ŭ        | Ū        | Ū        | Ŭ l      | ŭ        | Ŭ         | Ŭ          | 330          | 2,000        |
| Acenaphthylene               | U 1      | Ū        | Ū        | Ũ        | Ũ        | ŭ        | Ŭ         | Ū          | 330          | 41,000       |
| 2,6-Dinitrotoluene           | U        | Ŭ        | Ū        | Ŭ        | ŭ        | Ŭ        | Ū         | Ŭ          | 330          | 1,000        |
| 3-Nitroaniline               | Ŭ        | Ŭ        | Ŭ        | Ŭ        | ŭ        | ŭ        | Ŭ         | Ŭ          | 330          | 500          |
| Acenaphthene                 | Ū        | υŬ       | Ŭ        | Ŭ        | ່ ນັ່    | Ŭ        | Ŭ         | Ŭ          | 330          | 50,000       |

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | IP\$BX-02<br>(6-8)<br>1/28/03<br>1<br>68.0<br>(ug/kg) | IPSBX-02<br>(8-10)<br>1/28/03<br>1<br>39.0<br>(ug/kg) | IPSBX-02<br>(10-12)<br>1/28/03<br>1<br>81.0<br>(ug/kg) | IPSBX-02<br>(12-14)<br>1/28/03<br>1<br>47.0<br>(ug/kg) | IPSBX-02<br>(14-16)<br>1/28/03<br>1<br>42.0<br>(ug/kg) | (PSBX-02<br>(16-18)<br>1/28/03<br>1<br>83.0<br>(ug/kg) | IP\$BX-02<br>(18-20)<br>1/28/03<br>1<br>58.0<br>(ug/kg) | IPSBX-03<br>(6-8)<br>1/28/03<br>1<br>81.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC TAGM<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|
|                                                                                                    |                                                       | (                                                     | (- <u>a</u> /                                          |                                                        | <u></u>                                                |                                                        | (- <u>3</u> , <u>3</u> /                                | (+997                                                |                                                 |                                                                    |
| 2,4-Dinitrophenol                                                                                  | U U                                                   | ນ                                                     | U                                                      | U                                                      | U                                                      | U                                                      | ) U                                                     | U                                                    | 330                                             | 200                                                                |
| 4-Nitrophenol                                                                                      | U                                                     | U                                                     | U                                                      | U                                                      | U                                                      | U                                                      | U (                                                     | U                                                    | 330                                             | 100                                                                |
| Dibenzofuran                                                                                       | 56 J                                                  | U                                                     | U                                                      | U                                                      | U                                                      | U U                                                    | U                                                       | U                                                    | 330                                             | 6,200                                                              |
| 2,4-Dinitrotoluene                                                                                 | U                                                     | U                                                     | U                                                      | U                                                      | U                                                      | υ                                                      | U                                                       | U                                                    | 330                                             |                                                                    |
| Diethylphthalate                                                                                   | U U                                                   | U                                                     | U                                                      | U                                                      | U                                                      | υ                                                      | υ                                                       | U                                                    | 330                                             | 7,100                                                              |
| 4-Chlorophenyl-phenylether                                                                         | ) U                                                   | U                                                     | U                                                      | U                                                      | U                                                      | ប                                                      | U U                                                     | U U                                                  | 330                                             |                                                                    |
| Fluorene                                                                                           | U U                                                   | U                                                     | U                                                      | U                                                      | U                                                      | U                                                      | U                                                       | U                                                    | 330                                             | 50,000                                                             |
| 4-Nitroaniline                                                                                     | ) U                                                   | U                                                     | U                                                      | U                                                      | U                                                      | U                                                      | U                                                       | U U                                                  | 330                                             |                                                                    |
| 4,6-Dinitro-2-methylphenol                                                                         | U                                                     | U                                                     | U                                                      | U                                                      | U                                                      | U U                                                    | U                                                       | U U                                                  | 330                                             |                                                                    |
| N-Nitrosodiphenylamine                                                                             | ) U                                                   | U                                                     | U                                                      | U                                                      | U                                                      | U                                                      | U                                                       | U U                                                  | 330                                             |                                                                    |
| 4-Bromophenyl-phenylether                                                                          | U                                                     | U                                                     | U                                                      | U                                                      | υ                                                      | U                                                      | ί υ                                                     | U                                                    | 330                                             |                                                                    |
| Hexachlorobenzene                                                                                  | υ (                                                   | U                                                     | U (                                                    | U                                                      | U                                                      | U                                                      | U                                                       | U                                                    | 330                                             | 410                                                                |
| Pentachiorophenol                                                                                  | U U                                                   | U                                                     | U                                                      | U                                                      | U                                                      | U                                                      | U U                                                     | ט (                                                  | 330                                             | 1,000                                                              |
| Phenanthrene                                                                                       | 300 J                                                 | U U                                                   | U 1                                                    | U                                                      | U                                                      | U                                                      | U                                                       | U U                                                  | 330                                             | 50,000                                                             |
| Anthracene                                                                                         | 68 J                                                  | U                                                     | U                                                      | U                                                      | U                                                      | י <u>י</u>                                             | ט ו                                                     | υ                                                    | 330                                             | 50,000                                                             |
| Carbazole                                                                                          | U 1                                                   | υ                                                     | υ                                                      | U                                                      | U                                                      | U                                                      | ] υ                                                     | U U                                                  | 330                                             |                                                                    |
| Di-n-but/iphthalate                                                                                | U U                                                   | U                                                     | U                                                      | U                                                      | U                                                      | U                                                      | ίυ                                                      | U                                                    | 330                                             | 8,100                                                              |
| Fluoranthene                                                                                       | 270 J                                                 | U                                                     | U                                                      | U                                                      | U                                                      | U                                                      | U                                                       | 52 J                                                 | 330                                             | 50,000                                                             |
| Pyrena                                                                                             | 250 J                                                 | U                                                     | U                                                      | U .                                                    | U                                                      | U                                                      | U                                                       | 47 J                                                 | 330                                             | 50,000                                                             |
| Butylbenzylphthalate                                                                               | υ υ                                                   | U                                                     | υ                                                      | U                                                      | U                                                      | U                                                      | ) U                                                     | υ                                                    | 330                                             | 50,000                                                             |
| 3.3-Dichlorobenzidine                                                                              | U U                                                   | U                                                     | U                                                      | U                                                      | U                                                      | U                                                      | i U                                                     | U                                                    | 330                                             |                                                                    |
| Benzo(a)anthracene                                                                                 | 140 J                                                 | Ū                                                     | Ū                                                      | Ū                                                      | Ū                                                      | Ū                                                      | Ū                                                       | υ .                                                  | 330                                             | 224                                                                |
| Chrysene                                                                                           | 140 J                                                 | Ū                                                     | Ū                                                      | Ú                                                      | U                                                      | U                                                      | ίυ                                                      | ี ป                                                  | 330                                             | 400                                                                |
| bis(2-Ethylhaxyi)phthalata                                                                         | 140 J                                                 | Ū                                                     | Ū                                                      | Ū                                                      | Ū                                                      | 68 J                                                   | 500 J                                                   | Ū                                                    | 330                                             | 50,000                                                             |
| Di-n-octyiphthalate                                                                                | Ŭ                                                     | Ŭ                                                     | Ū                                                      | Ŭ                                                      | Ŭ                                                      | Ŭ                                                      | Ū                                                       | Ū                                                    | 330                                             | 50,000                                                             |
| Benzo(b)fluoranthene                                                                               | 200 J                                                 | Ŭ                                                     | Ū                                                      | Ū                                                      | Ŭ                                                      | Ū                                                      | ΙŪ                                                      | Ū                                                    | 330                                             | 1,100                                                              |
| Benzo(k)fluoranthene                                                                               | 81 J                                                  | Ŭ                                                     | Ŭ                                                      | Ū                                                      | Ū                                                      | Ū                                                      | ΙŬ                                                      | Ŭ                                                    | 330                                             | 1,100                                                              |
| Benzo(a)pyrene                                                                                     | 130 J                                                 | Ŭ                                                     | Ŭ                                                      | Ŭ                                                      | Ŭ                                                      | Ū                                                      | Ū.                                                      | Ū                                                    | 330                                             | 61                                                                 |
| Indeno(1,2,3-cd)pyrena                                                                             |                                                       | Ū                                                     | Ŭ                                                      | Ŭ                                                      | Ū                                                      | Ŭ                                                      | l ŭ                                                     | Ŭ                                                    | 330                                             | 3,200                                                              |
| Dibenzo(a,h)anthracene                                                                             |                                                       | บั                                                    | i ŭ                                                    | ŭ                                                      | Ŭ                                                      | Ŭ                                                      | ΙŬ                                                      | Ŭ                                                    | 330                                             | 14                                                                 |
| Benzo(g,h,i)perylene                                                                               | Ŭ Ŭ                                                   | U U                                                   | U U                                                    | Ŭ                                                      | .Ŭ                                                     | ŭ                                                      | Ιŭ                                                      | Ŭ                                                    | 330                                             | 50,000                                                             |
| Dauzo(8'u'i)hei Naua                                                                               |                                                       | U                                                     |                                                        | 5                                                      | 0                                                      | U U                                                    |                                                         |                                                      | 000                                             | 00,000                                                             |
| Total PAHs                                                                                         | 1,709                                                 | 0                                                     | 0                                                      | 0                                                      | 0                                                      | 0                                                      | 0                                                       | 99                                                   |                                                 | 100,000                                                            |
| Total CaPAHs                                                                                       | 691                                                   | 0                                                     | 0                                                      | 0                                                      | 0                                                      | 0                                                      | 0                                                       | 0                                                    |                                                 | 10,000                                                             |
| Total SVOCs                                                                                        | 2,075                                                 | 0                                                     | 0                                                      | 0                                                      | 870                                                    | 68                                                     | 500                                                     | 99                                                   | -                                               | 500,000                                                            |

# **QUALIFIERS:**

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

NOTES: -- : Not applicable.

: Concentration exceeds NYSDEC TAGM 4046 Recommended Soil Cleanup Objective

a construction of the second second

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLEID                     | IPSBX-03                      | IPSBX-03 | IPSBX-03 | IPSBX-03 | IPSBX-03 | IPSBX-03 | IPSBX-04 | IPSBX-04 |              |              |
|------------------------------|-------------------------------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------|
| SAMPLE DEPTH (FT)            | (8-10)                        | (10-12)  | (12-14)  | (14-16)  | (16-18)  | (18-20)  | (4-6)    | (6-8)    | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION           | 1/28/03                       | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | QUANTITATION | Recommended  |
| DILUTION FACTOR              | 1                             | 1        | 1        | 1        | 1        | 1        | 1        | 1        | LIMITS       | Soli Cleanup |
| PERCENT SOLIDS               | 85.0                          | 81.0     | 44.0     | 81.0     | 53.0     | 76.0     | 56.0     | 61.0     |              | Objective    |
| UNITS                        | (ug/kg)                       | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)      | (ug/kg)      |
|                              | ي معنينا المنوالي بالمرود بين |          |          |          |          |          |          |          |              |              |
| Phenoi                       | υ                             | U U      | 110 J    | U        | 110 J    | 240 J    | U        | U        | 330          | 30           |
| bis(2-Chloroethyl)ether      | U                             | U        | U        | U I      | U - U    | U        | U        | U        | 330          |              |
| 2-Chlorophenol               | U                             | U        | υ        | υ        | υ        | U        | Ú        | U        | 330          | 800          |
| 1,3-Dichlorobenzene          | U                             | U        | υ        | UI       | υ        | U        | Ú Ú      | Ū        | 330          |              |
| 1,4-Dichlorobenzene          | υ                             | υ        | υ        | υ        | Ú        | U        | U        | Ú        | 330          |              |
| 1,2-Dichlorobenzene          | υ                             | υ        | υ        | U        | บั       | Ū        | Ū        | Ū        | 330          |              |
| 2-Methylphenol               | υ                             | U        | υ        | U        | U        | U        | Ŭ        | Ŭ        | 330          | 100          |
| 2,2-oxybia (1-chloropropane) | υ                             | U        | υ        | U        | U        | U        | Ú        | Ú Ú      | 330          |              |
| 4-Methylphenol               | υ                             | U        | י ט      | Ŭ        | ט ו      | Ŭ        | Ú        | Ŭ        | 330          | 900          |
| N-Nitroso-di-n-propylamine   | υ                             | υ        | Ú        | Ū.       | Ŭ        | Ū        | l ŭ      | Ū        | 330          |              |
| Hexachioroethane             | ΰ                             | Ŭ        | Ú        | Ŭ        | Ū        | Ū        | l ů      | Ū        | 330          |              |
| Nitrobenzene                 | υ                             | υ        | Ú        | U        | Ŭ        | Ū        | Ŭ        | l ũ      | 330          | 200          |
| Isophorone                   | υ                             | U        | Ú        | U        | Ú Ú      | Ū        | Ŭ        | Ŭ        | 330          | 4,400        |
| 2-Nitrophenol                | ບ                             | υ        | Ú Ú      | Ŭ.       | Ŭ        | Ū        | Ŭ        | Ū        | 330          | 330          |
| 2,4-Dimethylphenol           | υ                             | U        | Ú        | Ŭ        | Ŭ        | Ū        | ΙŬ       | Ū        | 330          |              |
| 2,4-Dichlorophenol           | Ū                             | Ŭ        | Ŭ        | Ũ        | Ŭ        | l ŭ      | Ū        | Ŭ        | 330          | 400          |
| 1,2,4-Trichlorobenzene       | Ŭ                             | Ŭ        | Ŭ        | Ū        | Ū        | l ŭ      | Ŭ.       | l ũ      | 330          |              |
| Naphthalene                  | Ŭ                             | Ŭ        | Ũ        | Ŭ        | Ŭ        | l ŭ      | ĴŪ.      | Ŭ        | 330          | 13,000       |
| 4-Chioroaniline              | Ŭ                             | Ū        | Ũ        | Ŭ        | ιŪ       | Ŭ        | Ŭ        | Ů        | 330          | 220          |
| bis(2-Chloroethoxy)methane   | U                             | U        | Ú        | Ŭ        | Ū        | Ū        | Ŭ        | Ū        | 330          |              |
| Hexachiorobutadiene          | Ŭ                             | υ        | Ŭ        | Ū        | Ū        | Ū        | Ŭ        | Ŭ        | 330          |              |
| 4-Chloro-3-methylphenol      | U                             | U        | U        | U        | υ        | Ú        | Ŭ.       | Ŭ        | 330          | 240          |
| 2-Methylnaphthalene          | U                             | υ        | U U      | υ        | U        | Ú        | U        | Ŭ        | 330          | 36,400       |
| Hexachlorocyclopentadiene    | U                             | υ        | U        | υ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | 330          |              |
| 2,4,6-Trichlorophenol        | . U                           | Ū        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | ) Ŭ      | Ũ        | 330          |              |
| 2,4,5-Trichlorophenol        | Ŭ                             | Ŭ        | Ū        | Ū        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | 330          | 100          |
| 2-Chloronaphthalene          | Ŭ                             | Ŭ        | Ŭ        | Ŭ        | Ū        | Ŭ        | Ŭ        | Ŭ        | 330          |              |
| 2-Nitroaniline               | Ŭ                             | Ŭ        | Ŭ        | Ŭ        | i Ŭ      | Ŭ        | Ŭ        | Ŭ        | 330          | 430          |
| Dimethylphthalate            | Ũ                             | Ŭ        | Ŭ        | Ŭ        | ι Ŭ      | ŭ        | Ŭ        | Ŭ        | 330          | 2,000        |
| Acenaphthylene               | ΰI                            | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | 330          | 41,000       |
| 2,6-Dinitrotoluene           | Ũ                             | Ŭ        | ี บั     | ū        | i ŭ      | Ŭ        | Ŭ        | Ŭ        | 330          | 1,000        |
| 3-Nitroaniline               | Ú I                           | Ŭ        | Ŭ        | Ŭ        | Ŭ        | ŭ        | Ŭ        | Ŭ        | 330          | 500          |
| Acenaphthene                 | Ŭ                             | υŪ       | Ŭ        | Ŭ        | ı ü      | Ŭ        | ŭ        | Ŭ        | 330          | 50,000       |

ł

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCa)

| SAMPLE ID<br>SAMPLE DEPTH (FT) | (8-10)  | IPSBX-03<br>(10-12) | IPSBX-03<br>(12-14) | IPS8X-03<br>(14-16) | IPSBX-03<br>(16-18) | IPSBX-03<br>(18-20) | IPSBX-04<br>(4-6) | IPSBX-04<br>(6-8) | LABORATORY   | NYSDEC TAGM  |
|--------------------------------|---------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------------|-------------------|--------------|--------------|
| DATE OF COLLECTION             | 1/28/03 | 1/28/03             | 1/28/03             | 1/28/03             | 1/28/03             | 1/28/03             | 1/28/03           | 1/28/03           | QUANTITATION | Recommended  |
| DILUTION FACTOR                | 1 1     | 1                   | 1                   | 1                   | 1                   | 1                   | 1                 | 1                 | LIMITS       | Soll Cleanup |
| PERCENT SOLIDS                 | 85.0    | 81.0                | 44.0                | 81.0                | 53.0                | 76.0                | 56.0              | 61.0              |              | Objective    |
| UNITS                          | (ug/kg) | (ug/kg)             | (ug/kg)             | (ug/kg)             | (ug/kg)             | (ug/kg)             | (ug/kg)           | (ug/kg)           | (ug/kg)      | (ug/kg)      |
| 2,4-Dinitrophenol              | U U     | υ                   | U                   | υ                   | U                   | <u> </u>            | U                 | U                 | 330          | 200          |
|                                | Ŭ       | Ų                   | Ŭ                   | Ŭ                   | 0                   | Ŭ                   | ໄ ບັ              | Ŭ                 | 330          | 100          |
| 4-Nitrophenol<br>Dibenzofuran  | U U     | Ŭ                   | Ŭ Ū                 | Ŭ                   |                     | U U                 | Ŭ                 | U U               | 330          | 6,200        |
| 2.4-Dinitrotoluene             | U U     | U U                 | ı Ŭ                 | U<br>U              |                     | Ŭ                   |                   | U U               | 330          | 8,200        |
| _,                             | Ŭ       | Ŭ                   |                     | υ                   | Ŭ                   | U U                 |                   | U U               | 330          | 7,100        |
| Diethylphthalate               | U U     | Ŭ                   | Y I                 | -                   | . U                 | ı Ü                 |                   | U U               | 330          |              |
| 4-Chiorophenyl-phenylether     | U U     | U                   | U                   | Ų<br>U              |                     | -                   |                   |                   |              |              |
| Fluorene                       | -       | U                   | U                   | U                   | <u>v</u>            | <b>ບ</b><br>ບ       | U U               | -                 | 330          | 50,000       |
| 4-Nitroaniline                 |         | -                   | U                   | •                   | U                   | -                   | U U               | U                 | 330          | -            |
| 4,6-Dinitro-2-methylphenol     | U U     | U                   | U                   | U                   | U                   | U                   | U U               | U                 | 330          |              |
| N-Nitrosodiphenylamine         |         | U                   | U I                 | Ų                   | U                   | U                   | ) U               | U U               | 330          |              |
| 4-Bromophenyl-phenylether      | U       | U                   | U U                 | U                   | U                   | U                   | U                 | U                 | 330          |              |
| Hexachlorobenzene              | U       | U                   | U                   | U                   | U                   | U                   | U U               | U                 | 330          | 410          |
| Pentachlorophenol              | U       | U                   | U                   | U                   | U                   | U                   | U                 | U                 | 330          | 1,000        |
| Phenanthrene                   | U       | U                   | U                   | U                   | 73 J                | U                   | U                 | U                 | 330          | 50,000       |
| Anthracene                     | U U     | U                   | U                   | U                   | U                   | U                   | U                 | U                 | 330          | 50,000       |
| Carbazole                      | U       | U                   | U                   | U                   | U                   | U                   | U                 | U                 | 330          |              |
| Di-n-butyiphthalate            | U       | U                   | U U                 | U                   | U.                  | U                   | U U               | U                 | 330          | 8,100        |
| Fluoranthene                   | ) U     | U                   | U                   | U                   | 190 J               | U                   | U                 | U                 | 330          | 50,000       |
| Pyrene                         | U U     | U                   | U                   | U                   | 160 J               | U U                 | j U               | U                 | 330          | 50,000       |
| Butylbenzylphtheiste           | U       | U                   | U                   | U                   | U                   | U                   | ) U               | U                 | 330          | 50,000       |
| 3,3-Dichlorobenzidine          | U       | U                   | U                   | U                   | U U                 | U                   | U                 | U                 | 330          |              |
| Benzo(a)anthracene             | U U     | U                   | U                   | U                   | 63 J                | U                   | U                 | U                 | 330          | 224          |
| Chrysene                       | U       | U                   | U                   | U                   | 81 J                | Ų                   | U                 | U                 | 330          | 400          |
| bis(2-Ethylhexyl)phthalate     | U       | U                   | U                   | U                   | U                   | U                   | 120 J             | U                 | 330          | 50,000       |
| Di-n-octyiphthalate            | U       | U                   | U                   | U                   | U                   | U                   | U U               | U                 | 330          | 50,000       |
| Benzo(b)fluoranthene           | U       | U                   | U                   | U                   | 87 J                | U                   | U                 | U                 | 330          | 1,100        |
| Benzo(k)fluoranthene           | U U     | U                   | U                   | U                   | U                   | U                   | U U               | U                 | 330          | 1,100        |
| Benzo(a)pyrene                 | U U     | U                   | U U                 | U                   | U                   | U                   | U U               | U                 | 330          | 61           |
| Indeno(1,2,3-cd)pyrene         | U       | U                   | U (                 | υ                   | U                   | U                   | U                 | U                 | 330          | 3,200        |
| Dibenzo(a,h)anthracene         | U       | U                   | U                   | U                   | U                   | U                   | U U               | U                 | 330          | 14           |
| Benzo(g,h,i)perylene           | U       | U                   | U                   | U                   | U                   | U                   | ί U               | U                 | 330          | 50,000       |
| Tetal DALLA                    | o       | 0                   | 0                   | 0                   | 654                 | 0                   | 0                 | o                 | _            | 100,000      |
| Total PAHs                     |         | 0                   | 0                   | ŏ                   | 231                 | 0                   | 0                 | ŏ                 | -            | 10,000       |
| Total CaPAHs                   | 0       | 0                   | 110                 | 0                   | 764                 | 240                 | 120               |                   |              |              |
| Total SVOCs                    | 0       | U                   |                     |                     | /04                 | 240                 |                   | <u> </u>          |              | 500,000      |

<u>QUALIFIERS:</u> U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

NOTES: : Not applicable. ---

: Concentration exceeds NYSDEC TAGM 4046 Recommended Soil Cleanup Objective

١

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLEID                     | IPSBX-04 | IPSBX-04 | IPSBX-04 | IPSBX-04   | IPSBX-04 | IPSBX-04 | IPSBX-05 | IPSBX-05 |              |              |
|------------------------------|----------|----------|----------|------------|----------|----------|----------|----------|--------------|--------------|
| SAMPLE DEPTH (FT)            | (8-10)   | (10-12)  | (12-14)  | (14-16)    | (16-18)  | (18-20)  | (10-12)  | (12-14)  | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION           | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03    | 1/28/03  | 1/28/03  | 1/23/03  | 1/23/03  | QUANTITATION | Recommended  |
| DILUTION FACTOR              | 1        | 1        | 1        | 1          | 1        | 1        | 1        | 1        | LIMITS       | Soll Cleanup |
| PERCENT SOLIDS               | 40.0     | 75.0     | 65.0     | 76.0       | 80.0     | 52.0     | 52.0     | 78.0     |              | Objective    |
| UNITS                        | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)    | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)      | (ug/kg)      |
| Phenol                       | 100 J    | υ        | υ        | 180 J      | 130 J    | 340 J    | 2600     | U        | 330          |              |
| bis(2-Chloroethyi)ether      | 100 5    | U .      | -        |            |          |          |          | -        |              | 30           |
| 2-Chlorophenol               |          | -        | U        | UUU        | U        | . U      | U        | U        | 330          | -            |
| 1,3-Dichlorobenzene          |          | U<br>U   | U<br>U   | -          | U        | U        | U U      | U        | 330          | 800          |
| 1,4-Dichlorobenzene          |          | U U      | -        | U          | U        | U        | U        | U        | 330          |              |
| 1,2-Dichlorobenzene          |          | -        | U        | <b>v</b> 1 | U        | U        | U U      | U        | 330          |              |
| 2-Methylphenol               |          | U        | Ų        | U          | U        | U        | U        | U        | 330          |              |
|                              |          | U U      | U        | U          | U        | U        | U        | U        | 330          | 100          |
| 2,2-oxybis (1-chloropropane) | U        | U        | U        | U          | · U      | U        | U        | U        | 330          |              |
| 4-Methylphenol               | U        | U        | U        | U          | U        | U        | 420 J    | U        | 330          | 900          |
| N-Nitroso-di-n-propylamine   |          | U        | U        | U          | U        | U        | U        | U        | 330          |              |
| Hexachloroethane             | U        | U        | U        | U          | U        | U        | U U      | U        | 330          |              |
| Nitrobenzene                 | U        | U        | U        | U          | U        | U        | U        | U        | 330          | 200          |
| laophorone                   | U        | U        | U        | U          | U        | U        | U U      | U        | 330          | 4,400        |
| 2-Nitrophenol                | ויט      | U        | U        | U          | U        | U        | , u      | U        | 330          | 330          |
| 2,4-Dimethylphenol           | U        | U        | U        | U          | U        | U        | ) U      | U        | 330          |              |
| 2,4-Dichlorophenol           | U        | U        | U        | U          | U        | U        | U        | U        | 330          | 400          |
| 1,2,4-Trichlorobenzene       | U        | U        | U        | U          | U        | U        | U        | U        | 330          |              |
| Naphthalene                  |          | U        | U        | U.         | U        | U        | U U      | U        | 330          | 13,000       |
| 4-Chloroaniline              | U        | U        | Ų        | U          | U        | U        | U        | U        | 330          | 220          |
| bis(2-Chloroethoxy)methane   | U        | Ų        | U        | U          | U        | U        | l U      | U        | 330          | - 1          |
| Hexachiorobutadiene          | U        | U        | U        | U          | U        | U        | U        | U        | 330          |              |
| 4-Chloro-3-methylphenol      | U        | Ų        | U        | U          | U        | U        | υ        | U        | 330          | 240          |
| 2-Methyinaphthalene          | U        | U U      | U        | U          | U        | U        | [ U      | U        | 330          | 36,400       |
| Hexachiorocyciopentadiene    | U        | U        | U        | U          | U        | U        | U        | [ U      | 330          |              |
| 2,4,8-Trichlorophanol        | U        | U        | U U      | U.         | U        | U        | U        | U        | 330          |              |
| 2,4,5-Trichlorophenol        | U        | U        | U        | U          | U        | U        | U        | U        | 330          | 100          |
| 2-Chioronaphthalene          | U        | Ų        | U        | U          | U        | Ų        | ( U      | U        | 330          | -            |
| 2-Nitroaniline               | ן ט      | υ        | U        | U          | U        | U        | U U      | U .      | 330          | 430          |
| Dimethylphthalate            | U        | U        | U        | U          | U        | U        | Į U      | ( U      | 330          | 2,000        |
| Acenaphthylane               | υ        | U        | U        | U          | U        | U        | l u      | U        | 330          | 41,000       |
| 2,6-Dinitrotoluane           | υ        | U        | U        | U          | U        | U        | U        | U U      | 330          | 1,000        |
| 3-Nitroaniline               | υ        | υ        | U        | U          | U        | U        | [ ປ      | U        | 330          | 500          |
| Acenaphthene                 | ບ        | ບ        | U        | U          | U        | U        | Ú        | U        | 330          | 50,000       |

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                  | IPSBX-04 | IPSBX-04 | IPSBX-04 | IPSBX-04 | IPSBX-04 | IPSBX-04 | IPSBX-05 | IPSBX-05 |              |              |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------|
| SAMPLE DEPTH (FT)          | (8-10)   | (10-12)  | (12-14)  | (14-16)  | (16-18)  | (18-20)  | (10-12)  | (12-14)  | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION         | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/23/03  | 1/23/03  | QUANTITATION | Recommended  |
| DILUTION FACTOR            | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        | LIMITS       | Soil Cleanup |
| PERCENT SOLIDS             | 40.0     | 75.0     | 65.0     | 78.0     | 80.0     | 52.0     | 52.0     | 78.0     |              | Objective    |
| UNITS                      | (ug/kg)      | (ug/kg)      |
|                            |          |          |          |          |          |          |          |          |              |              |
| 2,4-Dinltrophenol          | U        | U        | υj       | U        | U        | Ų        | U        | U        | 330          | 200          |
| 4-Nitrophenol              | j U      | U        | U        | U        | U        | U        | ) U      | U        | 330          | 100          |
| Dibenzofuran               | U        | U        | U        | U        | U '      | U        | U        | U U      | 330          | 6,200        |
| 2,4-Dinitrotoluene         | U U      | U        | U        | U        | U        | U        | U        | U        | 330          |              |
| Diethylphthalate           | U U      | U        | U        | U        | U        | U        | U        | U        | 330          | 7,100        |
| 4-Chlorophenyl-phenylether | U        | U        | U        | U        | U        | U        | U        | U        | 330          |              |
| Fluorene                   | U U      | U        | U        | U        | U        | U        | U        | U        | 330          | 50,000       |
| 4-Nitroaniiine             | U        | U        | U        | U        | Ų        | U        | U        | U        | 330          |              |
| 4,6-Dinitro-2-methylphenol | U        | U        | U        | U        | U        | U,       | U U      | U        | 330          |              |
| N-Nitrosodiphenylamine     | U        | Ų        | U        | U        | U        | U        | U U      | U        | 330          |              |
| 4-Bromophenyl-phenylether  | U        | U        | U        | U        | U        | U        | U        | U        | 330          |              |
| Hexachlorobenzene          | U        | U        | υI       | U        | U        | U        | U        | U        | 330          | 410          |
| Pentachlorophenol          | U        | Ų        | U (      | U        | U        | U        | U U      | U        | 330          | 1,000        |
| Phenanthrene               | U        | Ų        | U        | U        | U        | U        | U U      | U        | 330          | 50,000       |
| Anthracene                 | U U      | U        | U        | U        | U        | U        | U U      | U        | 330          | 50,000       |
| Carbazole                  |          | U        | U        | U        | U        | U        | U        | U        | 330          |              |
| Di-n-butyiphthalate        | U        | U        | U        | U        | U        | U        | U U      | ) U      | 330          | 8,100        |
| Fluoranthene               | U        | U        | U        | Ų        | U        | U        | U        | U        | 330          | 50,000       |
| Pyrene                     | U U      | U        | U        | U        | U        | U        | U U      | U U      | 330          | 50,000       |
| Butylbenzylphthalate       | U        | U        | U        | U        | U        | U        | U U      | U        | 330          | 50,000       |
| 3,3-Dichlorobenzidine      | U        | Ŭ        | U        | U        | Ų        | Ų        | Ų Ų      | U        | 330          |              |
| Benzo(a)anthracene         | U        | Ų        | U        | U        | U        | U        | U        | U        | 330          | 224          |
| Chrysene                   | U        | U        | Ŭ        | U        | U        | U        | U        | U        | 330          | 400          |
| bis(2-Ethylhexyl)phthalate | U        | Ų        | U        | U        | 160 J    | 290 J    | 110 J    | 61 J     | 330          | 50,000       |
| Di-n-octyiphthalate        | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 50,000       |
| Benzo(b)fluoranthene       | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 1,100        |
| Benzo(k)fluoranthene       | U        | U        | U U      | U        | U        | U        | U U      | U        | 330          | 1,100        |
| Benzo(a)pyrene             | U        | U        | U        | U        | Ų.       | U        | U.       | U        | 330          | 61           |
| Indeno(1,2,3-cd)pyrene     | U        | Ų.       | U I      | U        | U        | U        | U U      | · U      | 330          | 3,200        |
| Dibenzo(a,h)anthracene     | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 14           |
| Benzo(g,h,i)perylene       | U        | U        | U        | U        | Ų        | Ų        | U        | U        | 330          | 50,000       |
| ]<br> Total PAHs           | 0        | 0        | o        | 0        | 0        | 0        | 0        | 0        |              | 100,000      |
|                            |          | 0        | ŏ        | ŏ        | õ        | 0        | ň        | ŏ        |              | 10,000       |
| Total CaPAHs               | 100      | ů<br>0   | o J      | 180      | 290      | 630      | 3,130    | 61       |              | 500.000      |
| Total SVOCs                | 100      | UU       | U        |          | 280      | 030      | 3,130    | 01       | -            | 500,000      |

<u>QUALIFIERS:</u> U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

NOTES: : Not applicable.

--

Concentration exceeds NYSDEC TAGM 4046 Recommended Soil Cleanup Objective

2

1

12/21/04

and the second second

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLEID                     | IPSBX-05 | IPSBX-05 | IPSBX-05 | IPSBX-06 | IP\$BX-06 | IPSBX-06 | IPSBX-06 | IPSBX-06 |              |              |
|------------------------------|----------|----------|----------|----------|-----------|----------|----------|----------|--------------|--------------|
| SAMPLE DEPTH (FT)            | (14-16)  | (16-18)  | (18-20)  | (4-6)    | (6-8)     | (8-10)   | (12-14)  | (14-16)  | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION           | 1/23/03  | 1/23/03  | 1/23/03  | 1/27/03  | 1/27/03   | 1/27/03  | 1/27/03  | 1/27/03  | QUANTITATION | Recommended  |
| DILUTION FACTOR              | 1        | 1        | 1        | 1        | 1         | 1        | 1        | 1        | LIMITS       | Soil Cleanup |
| PERCENT SOLIDS               | 86.0     | 86.0     | 88.0     | 88.0     | 68.0      | 53.0     | 66.0     | 89.0     |              | Objective    |
| UNITS                        | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)   | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)      | (ug/kg)      |
|                              |          |          |          |          |           |          |          |          |              |              |
| Phenol                       | U        | υ        | υ        | υ        | υ         | U        | U        | U        | 330          | 30           |
| bis(2-Chloroethyl)ether      | U        | υ        | υ        | υ        | υ         | U        | U        | U        | 330          |              |
| 2-Chlorophenol               | U        | υ        | υ        | υ        | ບ         | U        | U        | U        | 330          | 800          |
| 1,3-Dichlorobenzene          | U        | υ        | υ        | U        | U         | U        | ) U      | U        | 330          |              |
| 1,4-Dichlorobenzene          | U        | U        | U        | υ        | . υ       | U        | U        | U        | 330          |              |
| 1,2-Dichlorobenzene          | U        | U        | U U      | υ        | υ         | U        | υ        | U        | 330          |              |
| 2-Methylphenol               | U        | U U      | υ        | υ        | υ         | υ        | Ū        | Ú        | 330          | 100          |
| 2,2-oxybis (1-chloropropane) | U        | υ        | υ        | υ        | υ         | υ        | υ        | U        | 330          |              |
| 4-Methylphenol               | U        | υ        | ט ו      | υ        | υ         | U        | υ        | Ú        | 330          | 900          |
| N-Nitroso-dl-n-propylamine   | U        | U        | υ        | ບ        | υ         | Ú        | l Ū      | Ū        | 330          |              |
| Hexachloroethane             | U        | Ú        | Ū        | บ        | υ         | Ŭ        | Ū        | Ũ        | 330          |              |
| Nitrobenzene                 | U        | U        | υ        | Ŭ        | Ū         | Ŭ        | Ū        | Ŭ        | 330          | 200          |
| isophorone                   | U        | Ŭ        | Ū Ū      | Ū Ū      | Ŭ         | Ŭ        | Ŭ Ŭ      | Ŭ        | 330          | 4,400        |
| 2-Nitrophenol                | Ú Ú      | ี่ บั    | Ū        | Ŭ        | Ŭ         | Ŭ        | l ŭ      | Ŭ        | 330          | 330          |
| 2.4-Dimethylphenol           | Ū.       | υ        | Ŭ        | ι Ŭ      | υ         | ່ ບໍ່    | ιŬ       | Ŭ        | 330          |              |
| 2,4-Dichlorophenol           | Ū        | Ŭ        | Ŭ        | Ŭ        | บั        | រ ប័     | ιŭ       | υŬ       | 330          | 400          |
| 1,2,4-Trichlorobenzene       | Ŭ        | l. Ū     | Ū        | Ŭ        | Ŭ         | ່ ບໍ     | { Ŭ      | Ũ        | 330          |              |
| Naphthalene                  | υ        | Ū Ū      | Ú        | 110 J    | Ŭ         | Ū        | ίŪ       | υŪ       | 330          | 13.000       |
| 4-Chloroaniline              | Ŭ        | Ū        | Ŭ        | Ŭ        | Ū.        | ម ម      | l ŭ      | ŭ        | 330          | 220          |
| bis(2-Chloroethoxy)methane   | Ū.       | Ū Ū      | Ŭ        | Ŭ.       | Ŭ         | υ        | υ        | υ υ i    | 330          |              |
| Hexachlorobutadiene          | Ŭ        | Ŭ        | Ŭ        | Ŭ        | · ŭ       | ບ ບ      | Ŭ        | บั       | 330          |              |
| 4-Chioro-3-methylphenol      | Ŭ        | Ŭ        | Ū        | L Ŭ      | ี่ นี้    | Ŭ        | Ŭ        | Ŭ        | 330          | 240          |
| 2-Methylnaphthalene          | Ŭ        | Ŭ        | Ū        | 120 J    | L Ŭ       | Ŭ        | Ŭ.       | Ŭ        | 330          | 38,400       |
| Hexachlorocyclopentadiene    | Ú        | Ŭ        | l ú      | Ŭ        | Ū         | Ŭ        | Ŭ        | Ŭ        | 330          |              |
| 2,4,6-Trichlorophenol        | Ů        | Ŭ        | Ŭ        | Ŭ        | Ŭ         | Ŭ        | ιŭ       | Ū        | 330          |              |
| 2,4,5-Trichiorophenol        | Ŭ        | Ŭ        | Ū        | ŭ        | Ū         | ιŭ       | l ŭ      | ŭ        | 330          | 100          |
| 2-Chioronaphthalene          | Ŭ        | Ŭ        | Ŭ        | ŭ        | ŭ         | Ŭ        | Ŭ Ŭ      | Ŭ        | 330          |              |
| 2-Nitroaniline               | Ŭ        | ŬŬ       | Ŭ        | ŭ        | Ū         | Ŭ        | i ŭ      | Ŭ        | 330          | 430          |
| Dimethylphthalate            | Ŭ        | ŬŬ       | Ŭ        | ŭ        | Ŭ         | Ŭ        | ι ŭ      | Ŭ        | 330          | 2,000        |
| Acenaphthylene               | Ŭ        | Ŭ        | ŭ        | 140 J    | ŭ         | Ŭ        | i ŭ      | Ŭ        | 330          | 41,000       |
| 2.6-Dinitrotoluene           | Ŭ        | Ŭ        | Ŭ        | U 140 5  | l ŭ       | l ñ      | l ŭ      | Ŭ        | 330          | 1,000        |
| 3-Nitroaniline               | Ŭ        | Ŭ        | Ŭ        |          | ไ บ้      | Ŭ Ŭ      | Ŭ        | Ŭ        | 330          | 500          |
| Acenaphthene                 | Ŭ        | i i      | Ŭ        | 450      | U U       | l ü      | l ŭ      | U U      | 330          | 50,000       |

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                  | IPSBX-05 | IPSBX-05 | IPSBX-05 | IPSBX-06 | IPSBX-06 | IPSBX-06 | IPSBX-06 | IPSBX-06 |              |              |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------|
| SAMPLE DEPTH (FT)          | (14-16)  | (16-18)  | (18-20)  | (4-6)    | (6-8)    | (8-10)   | (12-14)  | (14-16)  | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION         | 1/23/03  | 1/23/03  | 1/23/03  | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | QUANTITATION | Recommended  |
| DILUTION FACTOR            | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        | LIMITS       | Soil Cleanup |
| PERCENT SOLIDS             | 86.0     | 86.0     | 88.0     | 88.0     | 68.0     | 53.0     | 66.0     | 89.0     |              | Objective    |
|                            | (ug/kg)      | (ug/kg)      |
| 2,4-Dinitrophenoi          | υ        | υ        | U        | υ        | υ        | U        | υ        | υ        | 330          | 200          |
| 4-Nitrophanol              | U U      | . U      | U        | U        | U        | U        | U U      | U        | 330          | 100          |
| Dibenzofuran               | 1 U      | U        | U        | 280 J    | Ų        | U        | U U      | U        | 330          | 6,200        |
| 2,4-Dinitrotoluene         | U        | U        | υ        | U        | U        | U        | U U      | U        | 330          |              |
| Diethylphthalate           | U U      | U        | U        | Ų        | U U      | U        | ι υ      | U        | 330          | 7,100        |
| 4-Chiorophenyl-phenylether | Ų Ų      | U        | U        | U        | U        | U        | U U      | U        | 330          |              |
| Fluorene                   | . U      | U        | U        | 540      | U        | U        | U        | U        | 330          | 50,000       |
| 4-Nitroanliine             | U        | U        | U        | U        | U        | U        | U        | U        | 330          |              |
| 4,6-Dinitro-2-methylphenol | ) U      | U        | U        | U        | Ų        | U        | ) U      | U        | 330          |              |
| N-Nitrosodiphenylamine     | U        |          | U        | U        | U        | U        | l U      | U        | 330          |              |
| 4-Bromophenyl-phenylether  | U U      | U        | U        | U        | U        | U        | U U      | U        | 330          |              |
| Hexachlorobenzene          | υ        | U        | U        | U        | U        | U        | U        | U        | 330          | 410          |
| Pentachlorophenol          | ļ U      | U        | U        | U        | U        | U        | U        | U        | 330          | 1,000        |
| Phenanthrene               | U U      | U        | U        | 1400     | U        | U        | U        | U        | 330          | 50,000       |
| Anthracene                 | U U      | U        | U (      | 230 J    | U U      | U        | U U      | U        | 330          | 50,000       |
| Carbazole                  | U U      | Ų        | U        | U        | U U      | U        | U        | U        | 330          |              |
| Di-n-butyiphthalate        | ι υ      | υ [      | υ .      | U        | U        | U U      | ) U      | U        | 330          | 8,100        |
| Fluoranthene               | U        | U        | U        | 110 J    | U        | ) U      | U        | U        | 330          | 50,000       |
| Pyrene                     | U        | U        | U        | 280 J    | U        | U        | U        | U        | 330          | 50,000       |
| Butylbenzylphthalate       | U U      | U        | U U      | U        | U        | U        | U        | U        | 330          | 50,000       |
| 3.3-Dichlorobenzidine      | U U      | U        | U        | U        | U        | U        | U        | U        | 330          |              |
| Benzo(a)anthracene         | U U      | υ        | U        | 52 J     | U        | U        | U        | U        | 330          | 224          |
| Chrysene                   | U U      | U        | U U      | 81 J     | U        | U        | U        | U        | 330          | 400          |
| bis(2-Ethylhexyl)phthalate | 61 J     | 56 J     | 56 J     | 99 J     | 89 J     | 76 J     | 53 J     | U        | 330          | 50,000       |
| Di-n-octyiphthalate        | U        | U        | U        | U        | · U      | U        | U        | U        | 330          | 50,000       |
| Benzo(b)fluoranthene       | U U      | U        | U        | 85 J     | Ų        | U        | U U      | U        | 330          | 1,100        |
| Benzo(k)fluoranthene       | U U      | U        | υ        | U        | U        | U        | U        | U        | 330          | 1,100        |
| Benzo(a)pyrene             | U        | U        | U        | 43 J     | 86 J     | U        | U        | U        | 330          | 61           |
| Indeno(1,2,3-cd)pyrene     | U        | υ        | U        | υ        | Ų –      | υ        | U        | U        | 330          | 3,200        |
| Dibenzo(a,h)anthracene     | Ŭ        | U        | U        | Ŭ        | Ú        | Ú        | υ        | Ū        | 330          | 14           |
| Benzo(g,h,i)perviene       | U        | U        | υ        | U        | Ų        | U        | U        | U        | 330          | 50,000       |
| Total PAHs                 | 0        | 0        | 0        | 3,521    | 86       | 0        | o        | 0        | -            | 100,000      |
| Total CaPAHs               | 0        | Q        | 0        | 261      | 86       | 0        | 0        | 0        |              | 10,000       |
| Total SVOCs                | 61       | 56       | 56       | 4,020    | 175      | 76       | 53       | 0        | -            | 500,000      |

### **OUALIFIERS:**

U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

NOTES: : Not applicable.

--

: Concentration exceeds NYSDEC TAGM 4048 Recommended Soil Cleanup Objective

Page 10 of 22

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                    | IPSBX-06 | IPSBX-06 | IPSBX-07 | IPSBX-07 | IPSBX-07 | IPSBX-07 | IPSBX-07 | IPSBX-07 |              |              |
|------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------|
| SAMPLE DEPTH (FT)            | (16-18)  | (18-20)  | (4-6)    | (6-8)    | (8-10)   | (10-12)  | (12-14)  | (14-16)  | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION           | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | 1/27/03  | QUANTITATION | Recommended  |
| DILUTION FACTOR              | 1        | 1        | 10       | 1        | 1        | 1        | 1        | 1        | LIMITS       | Soll Cleanup |
| PERCENT SOLIDS               | 69.0     | 53.0     | 87.0     | 69.0     | 54.0     | 83.0     | 54.0     | 47.0     |              | Objective    |
| UNITS                        | (ug/kg)      | (ug/kg)      |
| Phenol                       | 640      | 870      | U        | U        | υ        | υ        | υ        | 910      | 330          | 20           |
| bis(2-Chloroethyl)ether      | <u> </u> | <u> </u> |          | U U      | -        | -        | 1 -      |          |              | 30           |
| 2-Chlorophenol               |          | υ        | U        | Ŭ        | UU       | U        | U        | U U      | 330          |              |
| 1,3-Dichlorobenzene          |          | U U      | U<br>U   | U        | - 1      | U        | l ü      |          | 330          | 800          |
| 1,4-Dichlorobenzene          |          | U U      | U U      | U        | U        | U        | u u      | U U      | 330          |              |
| 1,2-Dichiorobenzene          |          | U U      | U        | U U      | U        | U        | U        | U U      | 330          |              |
| 2-Methylphenol               |          |          | U        | U<br>U   | U        | U        | U U      | U U      | 330          |              |
| 2,2-oxybis (1-chloropropane) |          | Ŭ        | UU       | -        | U        | U        | <u>ບ</u> |          | 330          | 100          |
| 4-Methylphenoi               | l ŭ      | U<br>U   | U        | U<br>U   | ບ<br>ບ   | ບ<br>ບ   |          | U<br>U   | 330<br>330   | 900          |
| N-Nitroso-di-n-propylamine   |          | U U      | ี U      | ບ<br>ບ   | υ        | Ŭ        | ບ<br>ບ   | U U      | 330          |              |
| Hexachloroethane             | U U      | บ<br>บ   | υ        | U        | U        | Ŭ        | U U      | U U      | 330          |              |
| Nitrobanzena                 |          | υ        | U        | -        |          | -        | f –      | 1 -      |              |              |
| Isophorone                   | -        |          | _        | U        | U        | U        | U        | U        | 330          | 200          |
|                              | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 4,400        |
| 2-Nitrophenol                | U        | U.       | U        | U        | U        | U        | U U      | U        | 330          | 330          |
| 2,4-Dimethylphenol           | U        |          | U        | U        | U        | υ        | υ        | U        | 330          |              |
| 2,4-Dichlorophenol           | · U      | U        | U        | U        | υ        | U        | ן ט      | U        | 330          | 400          |
| 1,2,4-Trichlorobenzene       | U        | U        | υ        | υ        | U        | U        | U        | U        | 330          | ***          |
| Naphthalene                  | U        | υ        | U U      | U        | U.       | U        | U        | U U      | 330          | 13,000       |
| 4-Chloroaniline              | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 220          |
| bis(2-Chloroethoxy)methane   | l V      | U        | U        | U        | U        | U        | U        | U        | 330          |              |
| Hexachlorobutadiene          | U U      | U        | U        | U        | U        | U        | U        | υ        | 330          |              |
| 4-Chloro-3-methylphenol      | U        | U        | U        | U        | U        | U        | U        | υ        | 330          | 240          |
| 2-Methylnaphthalene          | U        | U        | U        | U        | U        | U        | ) υ      | ) U      | 330          | 36,400       |
| Hexachlorocyclopentadiene    | U        | Ų        | U        | U        | υ        | U        | U        | U        | 330          |              |
| 2,4,6-Trichlorophenol        | U        | U        | U        | υ        | U        | U        | U        | U        | 330          |              |
| 2,4,5-Trichlorophenol        | U        | U        | ບ        | U        | U        | U        | U U      | U        | 330          | 100          |
| 2-Chloronaphthalene          | U        | U        | U        | บ        | U        | U        | U        | U        | 330          |              |
| 2-Nitroaniline               | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 430          |
| Dimethylphthalate            | υ        | U        | U        | U        | U        | U        | ļ υ      | U        | 330          | 2,000        |
| Acenaphthylene               | U        | U        | U        | U        | U        | U        | U        | υ        | 330          | 41,000       |
| 2,5-Dinitrotoluene           | U        | U        | U        | U        | U        | U        | υ        | U        | 330          | 1,000        |
| 3-Nitroaniline               | , U      | Ų Ų      | U        | U        | υ        | υ        | U U      | υ        | 330          | 500          |
| Acenaphthene                 | U        | U        | U        | υ        | U        | U        | U        | U        | 330          | 50,000       |

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT) | (PSBX-06<br>(16-18) | IPSBX-06<br>(18-20) | IP\$BX-07<br>(4-6) | IPSBX-07<br>(6-8) | IPSBX-07<br>(8-10) | IPSBX-07<br>(10-12) | IPSBX-07<br>(12-14) | IPSBX-07<br>(14-16) | LABORATORY   | NYSDEC TAGM  |
|--------------------------------|---------------------|---------------------|--------------------|-------------------|--------------------|---------------------|---------------------|---------------------|--------------|--------------|
| DATE OF COLLECTION             | 1/27/03             | 1/27/03             | 1/27/03            | 1/27/03           | 1/27/03            | 1/27/03             | 1/27/03             | 1/27/03             | QUANTITATION | Recommended  |
| DILUTION FACTOR                | 1                   | 1                   | 10                 | 1                 | 1                  | 1                   | 1                   | 1                   | LIMITS       | Soil Cleanup |
| PERCENT SOLIDS                 | 69.0                | 53.0                | 87.0               | 69.0              | 54.0               | 83.0                | 54.0                | 47.0                | Funt of      | Objective    |
| UNITS                          | (ug/kg)             | (ug/kg)             | (ug/kg)            | (ug/kg)           | (ug/kg)            | (ug/kg)             | (ug/kg)             | (ug/kg)             | (ug/kg)      | (ug/kg)      |
|                                | (09/19/             |                     | (09.19)            | (00,00)           | (-9/9/             | (                   | (                   | <u>\-aa/</u>        |              | (09/19)      |
| 2,4-Dinitrophenoi              | U                   | U                   | U                  | υ                 | U                  | U                   | U                   | U                   | 330          | 200          |
| 4-Nitrophenol                  | U                   | U                   | U                  | U                 | U                  | U                   | { U                 | U                   | 330          | 100          |
| Dibenzofuran                   | U U                 | U                   | U                  | U U               | Ų                  | U                   | ) V                 | υ                   | 330          | 6,200        |
| 2,4-Dinitrotoluene             | U                   | U                   | U                  | U                 | Ŭ                  | υ                   | ) Ú                 | U                   | 330          | - 1          |
| Diethylphthalate               | ) U                 | U                   | U                  | U                 | U                  | U                   | U U                 | U                   | 330          | 7,100        |
| 4-Chlorophenyl-phenylether     | U                   | U                   | U                  | U                 | U                  | U                   | U U                 | U                   | 330          |              |
| Fluorene                       | U                   | U                   | U                  | U                 | U                  | U                   | U                   | U                   | 330          | 50,000       |
| 4-Nitroanlline                 | ( U                 | U                   | U                  | V                 | U                  | U                   | U                   | U                   | 330          | - (          |
| 4,6-Dinitro-2-methylphenol     | ן ט                 | Ų                   | U U                | U                 | U                  | U                   | U                   | U                   | 330          |              |
| N-Nitrosodiphenylamine         | U                   | U                   | U                  | U                 | U                  | Ų                   | U U                 | U                   | 330          | -            |
| 4-Bromophenyl-phenylether      | U                   | υ.                  | U                  | U                 | U                  | U                   | U                   | U                   | 330          |              |
| Hexachlorobenzene              | . U                 | U                   | U U                | U                 | U                  | U                   | ן ט                 | U                   | 330          | 410          |
| Pentachlorophenol              | U U                 | U                   | Ų                  | U                 | U                  | U                   | Į Ų                 | U                   | 330          | 1,000        |
| Phenanthrane                   | U U                 | U                   | Ų                  | U                 | U                  | U                   | U                   | U                   | 330          | 50,000       |
| Anthracene                     | ί υ                 | U                   | Ų                  | U                 | U                  | U                   | U                   | U                   | 330          | 50,000       |
| Carbazole                      | U                   | U                   | ) U                | U U               | · U                | U                   | ן ט                 | U                   | 330          |              |
| Di-n-butyiphthalate            | U                   | ) U                 | U U                | U                 | U                  | U                   | U U                 | U                   | 330          | 8,100        |
| Fluoranthene                   | U                   | U                   | U                  | U                 | U                  | U                   | 95 J                | U                   | 330          | 50,000       |
| Pyrene                         | ) U                 | U                   | U                  | U                 | U                  | U                   | 84 J                | U                   | 330          | 50,000       |
| Butylbenzylphthalate           | ן ט                 | U                   | U                  | U                 | U                  | Ų                   | υ.                  | U                   | 330          | 50,000       |
| 3,3-Dichlorobenzidine          | U                   | U                   | Ų V                | Ų                 | U                  | Ų                   | ]. U                | U                   | 330          |              |
| Benzo(a)anthracene             | U                   | U                   | U                  | U                 | U                  | U                   | U U                 | U                   | 330          | 224          |
| Chrysene                       | U U                 | U                   | U                  | Ų V               | υ                  | U                   | L U                 | U                   | 330          | 400          |
| bis(2-Ethylhexyl)phthalate     | 62 J                | 65 J                | U                  | U                 | U,                 | U                   | U U                 | U                   | 330          | 50,000       |
| Di-n-octylphthalate            | U U                 | U                   | U                  | U                 | U                  | U U                 | ( U                 | U                   | 330          | 50,000       |
| Benzo(b)fluoranthene           | ) U                 | U                   | U                  | U                 | U                  | U                   | 76 J                | U                   | 330          | 1,100        |
| Benzo(k)fluoranthene           | U U                 | U                   | U                  | U                 | U                  | U                   | U                   | U                   | 330          | 1,100        |
| Benzo(a)pyrene                 | U                   | U U                 | U                  | U                 | Ų                  | U                   | ι υ                 | U                   | 330          | 61           |
| Indeno(1,2,3-cd)pyrene         | U U                 | Ų                   | U                  | U                 | U                  | U                   | ) U                 | U                   | 330          | 3,200        |
| Dibenzo(a,h)anthracene         | U U                 | U                   | U                  | U                 | U                  | U                   | U U                 | U                   | 330          | 14           |
| Benzo(g,h,i)perviene           | U                   | U                   | U                  | U                 | U                  | U                   | Ŭ                   | U                   | 330          | 50,000       |
|                                |                     |                     |                    |                   |                    |                     | ĺ                   |                     |              |              |
| Total PAHs                     | 0                   | 0                   | 0                  | 0                 | 0                  | 0                   | 255                 | 0                   |              | 100,000      |
| Total CaPAHs                   | 0                   | 0                   | 0                  | 0                 | 0                  | 0                   | 76                  | 0                   |              | 10,000       |
| Total SVOCs                    | 702                 | 935                 | 0                  | 0                 | 0                  | 0                   | 255                 | 910                 |              | 500,000      |

QUALIFIERS: U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

NOTES: : Not applicable. ----

1

: Concentration exceeds NYSDEC TAGM 4046 Recommended Soil Cleanup Objective

12/21/04

٦

. a

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                    | IPSBX-07 | IPSBX-07 | IPSBX-08 | IPSBX-08 | IPSBX-08 | IPSBX-08 | IPSBX-08 | IPSBX-08 |              |              |
|------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------|
| SAMPLE DEPTH (FT)            | (16-18)  | (18-20)  | (4-6)    | (6-8)    | (8-10)   | (10-12)  | (12-14)  | (14-16)  | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION           | 1/27/03  | 1/27/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | QUANTITATION | Recommended  |
| DILUTION FACTOR              | 1        | 1        | 1        | 1        | 1/20/03  | 1 1      | 1        | 1/20/03  | LIMITS       | Soil Cleanup |
| PERCENT SOLIDS               | 64.0     | 41.0     | 77.0     | 72.0     | 66.0     | 80.0     | 78.0     | 76.0     | Canas 1 G    | Objective    |
| UNITS                        | (ug/kg)      | (ug/kg)      |
|                              |          | (*9.19/  | (09/119) |          | (09,49)  | (09/107) | (09/10)  | (29/29)  | (Ug/kg/      | (ug/kg)      |
| Phenol                       | U U      | 2500     | U I      | U        | u        | U        | U        | U        | 330          | 30           |
| bis(2-Chloroethyl)ether      | i i      |          | Ŭ        | ŭ        | ŭ        | . บั     | Ŭ        | ŭ        | 330          |              |
| 2-Chlorophenol               | i i i    | i ŭ i    | ŭ        | ŭ        | Ű        | U U      | ບັ       | Ŭ        | 330          | 800          |
| 1,3-Dichlorobenzene          | 1 . ŭ l  | Ŭ Ŭ      | ŭ        | U U      | Ŭ        | υ υ      | Ŭ        | Ŭ        | 330          | 000          |
| 1,4-Dichlorobenzene          | 1 ŭ )    | ŭ        | ŭ        | Ŭ        | Ŭ        | U U      | ບັ       | Ŭ        | 330          |              |
| 1,2-Dichlorobenzene          | 1 1      | ŭ        | ŭ        | ม<br>ม   | υ        | ບັ       | U U      | U U      | 330          |              |
| 2-Methylphenol               | l ŭ l    | l ŭ l    | Ŭ        | . Ŭ      | υ<br>υ   | ່ ນັ     | Ŭ        | Ŭ        | 330          | 100          |
| 2,2-oxybis (1-chloropropane) | l ŭ l    | l ŭ l    | Ŭ        | ម        | ů        | U U      | U U      | Ŭ        | 330          |              |
| 4-Methylphenol               | l ŭ l    | 110 J    | Ŭ        | บั       | ບັ       | Ŭ        | Ŭ        | Ŭ        | 330          | 900          |
| N-Nitroso-di-n-propylamine   | l ŭ !    | Ŭ        | Ŭ        | ំ បំ     | U U      | Ŭ Ŭ      | Ŭ        | Ŭ        | 330          |              |
| Hexachloroethane             | l ŭ l    | l ŭ l    | Ŭ        | υ        | ນັ       | Ŭ        | Ŭ        | Ŭ        | 330          |              |
| Nitrobenzana                 | l ũ l    | i i i    | ນັ       | . Ŭ      | ŭ        | Ŭ        | Ŭ        | Ŭ        | 330          | 200          |
| Isophorone                   | l ŭ      | Ŭ Ŭ      | υŬ       | U U      | Ŭ        | Ŭ        | U U      | Ŭ        | 330          | 4,400        |
| 2-Nitrophenol                | Ŭ        | Ŭ        | Ŭ        | ŭ        | Ŭ        | U U      | Ŭ        | Ŭ        | 330          | 330          |
| 2,4-Dimethylphenol           | ι ŭ      | Ŭ Ŭ      | ŭ        | . Ŭ      | Ŭ        | ŭ        | Ŭ        | Ŭ        | 330          |              |
| 2,4-Dichlorophenol           | ίŨ       | υŬ       | Ū Ū      | ı Ŭ      | i ŭ      | Ŭ        | Ŭ        | Ŭ        | 330          | 400          |
| 1,2,4-Trichlorobenzene       | ū        | Ū        | Ŭ        | ŭ        | U U      | Ŭ        | Ŭ        | Ū        | 330          |              |
| Naphthalene                  | l ũ l    | Ũ        | Ū        | Ū Ū      | ŭ        | Ŭ Ū      | l ŭ      | Ŭ        | 330          | 13,000       |
| 4-Chloroaniline              | Ŭ        | ιŭ       | ŭ        | มี มี    | l Ŭ      | Ŭ        | Į Ŭ.     | Ŭ        | 330          | 220          |
| bis(2-Chioroethoxy)methane   | l Ū      | Ŭ        | ŭ        | Ŭ        | Ū        | Ū        | l ŭ      | Ŭ        | 330          |              |
| Hexachlorobutadiene          | Ú Ú      | Ű        | Ŭ        | Ũ        | Ū        | Ū        | l ŭ      | Ū        | 330          |              |
| 4-Chloro-3-methylphenol      | l úl     | Ú        | Ů        | Ū        | Ū        | Ū        | l ŭ      | Ū        | 330          | 240          |
| 2-Methyinaphthalene          | י ט ו    | ן ט      | U U      | U        | U        | l ū      | U .      | บั       | 330          | 36,400       |
| Hexachlorocyclopentadiene    | l U      | Ú Ú      | Ŭ        | ان ا     | Ū        | Ū        | Ŭ        | Ū        | 330          |              |
| 2,4,6-Trichlorophenol        | (Ú)      | Ű        | υĺ       | Ū        | Ū        | Ŭ        | บั       | υŪ       | 330          |              |
| 2,4,5-Trichlorophenoi        | u        | Ū        | Ũ        | Ū        | Ŭ        | Ŭ        | Ū        | Ū        | 330          | 100          |
| 2-Chloronaphthaiene          | U        | Ú        | Ū        | Ū        | Ŭ        | Ŭ        | Ŭ        | Ū        | 330          | —            |
| 2-Nitroaniline               | ( U      | Ŭ        | ύl       | Ů        | Ū        | Ū        | Ū        | Ū        | 330          | 430          |
| Dimethylphthalate            | ( U      | Ŭ        | Ū        | U        | Ŭ        | Ū        | Ū        | Ū        | 330          | 2,000        |
| Acenaphthylene               | U U      | U        | U        | U        | U        | υ        | Ū        | Ū        | 330          | 41,000       |
| 2,6-Dinitrotoluene           | U U      | U        | Ų        | U        | ບ        | Ū        | U        | Ū        | 330          | 1,000        |
| 3-Nitroaniline               | Ú        | U        | Ů        | Ŭ        | Ū        | Ū        | . Ŭ      | Ū        | 330          | 500          |
| Acenaphthene                 | U        | U        | U        | บ        | 260 J    | Ū        | 130 J    | Ũ        | 330          | 50,000       |

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                  | IPSBX-07 | IPSBX-07 | IPSBX-08 | IPSBX-08 | IPSBX-08 | IPSBX-08 | IPSBX-08 | IPSBX-08 |              |                |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|----------------|
| SAMPLE DEPTH (FT)          | (16-18)  | (18-20)  | (4-6)    | (6-8)    | (8-10) - | (10-12)  | (12-14)  | (14-16)  | LABORATORY   | NYSDEC TAGM    |
| DATE OF COLLECTION         | 1/27/03  | 1/27/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | 1/28/03  | QUANTITATION | Recommended    |
| DILUTION FACTOR            | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        | LIMITS       | Soll Cleanup   |
| PERCENT SOLIDS             | 64.0     | 41.0     | 77.0     | 72.0     | 66.0     | 80.0     | 78.0     | 76.0     |              | Objective      |
| UNITS                      | (ug/kg)      | (ug/kg)        |
|                            | (        | (        |          |          |          | (-9/1.9/ |          |          |              |                |
| 2,4-Dinitrophenol          | U        | , U      | U        | υ        | U        | U        | υ.       | U        | 330          | 200            |
| 4-Nitrophenol              | ) U      | U        | U        | U        | U        | U        | U U      | U        | 330          | 100            |
| Dibenzofuran               | U        | U        | U        | U        | U        | U        | [ υ      | U        | 330          | 6,200          |
| 2,4-Dinitrotoluene         | U        | U        | U        | U        | U        | ט        | U U      | U        | 330          |                |
| Diethylphthalate           | U        | U        | υ        | U        | U        | U U      | U U      | U        | 330          | 7,100          |
| 4-Chlorophenyl-phenylether | U        | U        | U        | U        | U        | U        | ( U      | U        | 330          |                |
| Fluorene                   | U        | . U      | U        | U        | 88 J     | U        | 100 J    | U        | 330          | 50,000         |
| 4-Nitroaniline             | U        | U        | U        | U        | U        | Ŭ        | U U      | U        | 330          | -              |
| 4,6-Dinitro-2-methylphenol | U        | υ        | U        | U        | Ú        | U        | ( U      | U        | 330          |                |
| N-Nitrosodiphenylamine     | U U      | U U      | U        | υ        | U        | U        | ι υ      | U        | 330          |                |
| 4-Bromophenyl-phenylether  | U U      | U U      | U U      | U        | U        | U        | U U      | · U      | 330          |                |
| Hexachlorobenzene          | U        | U        | υ        | U        | U        | U        | υ υ      | U        | 330          | 410            |
| Pentachlorophenol          | υ υ      | υ        | Ú        | U        | U        | U        | υ        | U        | 330          | 1,000          |
| Phenanthrene               | U        | υ        | U        | U        | U        | υ        | ן ט      | U        | 330          | 50,000         |
| Anthracene                 | Ū        | L Ū      | Ū        | Ŭ        | Ū        | Ū        | Ū        | Ŭ        | 330          | 50,000         |
| Carbazole                  | υ.       | U        | U        | U        | U        | U        | υ        | U        | 330          |                |
| Di-n-butyiphthalate        | U        | U        | U        | U        | U        | U        | U U      | U        | 330          | 8,100          |
| Fluoranthene               | 74 J     | U        | U        | U        | U        | U        | U        | U        | 330          | 50,000         |
| Pyrene                     | 66 J     | υ        | U        | U        | U        | U        | י ט ו    | U        | 330          | 50,000         |
| Butylbenzylphthaiate       | . U      | υ        | U        | U        | U        | U        | ) υ      | U        | 330          | 50,000         |
| 3,3-Dichlorobenzidine      | ( U      | U U      | U        | υ        | · U      | U        | υ.       | U        | 330          |                |
| Benzo(a)anthracene         | U U      | U        | U        | U        | U        | U        | U        | U        | 330          | 224            |
| Chrysene                   | U U      | U        | IJ       | U        | U        | U        | U        | U        | 330          | 400            |
| bis(2-Ethylhexyl)phthalate | 320 J    | 1300     | U        | U        | U        | ี ป      | U U      | 270 J    | 330          | 50,000         |
| Di-n-oct/iphthalate        | i U      | U        | U        | U        | U        | U        | ט        | U        | 330          | 50,000         |
| Benzo(b)fluoranthene       | 60 J     | υ        | U        | υ        | U        | U        | l U      | . U      | 330          | 1,100          |
| Benzo(k)fluoranthene       | U U      | U U      | U        | U        | U        | U        | U U      | U        | 330          | 1,100          |
| Benzo(a)pyrene             | Ι U      | υ υ      | U        | U        | υ        | U        | ប        | U        | 330          | 61             |
| Indeno(1,2,3-cd)pyrene     | U        | U        | U        | U        | Ų        | U        | ί υ      | U        | 330          | 3,200          |
| Dibenzo(a,h)anthracene     | Ū        | Ū        | Ŭ        | Ű        | Ú        | Ú        | U        | U        | 330          | 14             |
| Benzo(g,h,i)perylene       | Ū        | Ŭ        | Ū        | Ū        | Ū        | Ŭ        | υ        | Ú        | 330          | 50,000         |
|                            |          |          |          |          |          |          |          |          |              |                |
| Total PAHs                 | 200      | 0        | 0        | 0        | 348      | 0        | 230      | 0        |              | 100,000        |
| Total CaPAHs               | 60       | 0        | 0        | 0        | 0        | 0        | 0        | 0        |              | 10,000         |
| Total SVOCs                | 520      | 3,910    | 0        | 0        | 348      | 0        | 230      | 270      | <b></b>      | <u>500,000</u> |

<u>QUALIFIERS:</u> U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

NOTES: --

: Not applicable.

: Concentration exceeds NYSDEC TAGM 4046 Recommended Soil Cleanup Objective

x

I.

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                    | IPSBX-08 | IPSBX-08   | IPSBX-09 | IPSBX-09 | IPSBX-09 | IPSBX-09 | IPSBX-09 | IPSBX-09  |              |              |
|------------------------------|----------|------------|----------|----------|----------|----------|----------|-----------|--------------|--------------|
| SAMPLE DEPTH (FT)            | (16-18)  | (18-20)    | (4-6)    | (6-8)    | (8-10)   | (10-12)  | (12-14)  | (14-16)   | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION           | 1/28/03  | 1/28/03    | 1/29/03  | 1/29/03  | 1/29/03  | 1/29/03  | 1/29/03  | 1/29/03   | QUANTITATION | Recommended  |
| DILUTION FACTOR              | 1        | 1          | 1        | 1        | 1        | -1       | 1        | 1         | LIMITS       | Soil Cleanup |
| PERCENT SOLIDS               | 48.0     | 90.0       | 84.0     | 65.0     | 52.0     | 69.0     | 46.0     | 89.0      | East 1 C     | Objective    |
| UNITS                        | (ug/kg)  | (ug/kg)    | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)   | (ug/kg)      | (ug/kg)      |
|                              |          | (- 0 - 0 / | (*991    | (        | (,)      | (-3/18/  | (*3***3/ | (******** |              |              |
| Phenoi                       | υ υ      | υ          | υ        | U        | บ        | υ        | 78 J     | U         | 330          | 30           |
| bls(2-Chloroethyl)ether      | ט ו      | บ          | Ū        | U        | Ū        | Ū        | <u> </u> | Ŭ         | 330          | -            |
| 2-Chlorophenol               | U        | Ū          | Ū        | Ū        | Ŭ        | Ū        | Ŭ        | Ū         | 330          | 800          |
| 1,3-Dichlorobenzene          | υ        | Ū          | Ū        | Ū        | Ū        | Ũ        | ไ บั     | Ŭ         | 330          |              |
| 1,4-Dichlorobenzene          | υ        | U          | Ū        | Ū        | Ŭ        | ŭ        | Ŭ        | Ŭ         | 330          |              |
| 1,2-Dichlorobenzene          | Ū        | Ū          | Ū        | Ū        | Ū        | Ŭ        | Ŭ        | Ŭ         | 330          |              |
| 2-Methylphenol               | Ū        | Ŭ          | Ŭ        | Ū        | Ŭ        | Ŭ        | ີ ບ      | Ŭ         | 330          | 100          |
| 2,2-oxybis (1-chloropropane) | Ū        | Ŭ          | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ         | 330          |              |
| 4-Methylphenol               | ļ Ū      | Ű          | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ū        | Ŭ         | 330          | 900          |
| N-Nitroso-di-n-propylamine   | υ υ      | U          | Ŭ        | Ū        | Ū        | Ū        | i ŭ      | Ŭ         | 330          |              |
| Hexachloroethane             | U        | U          | U        | Ū        | Ū        | ū        | Ū        | Ŭ         | 330          |              |
| Nitrobenzene                 | Ū        | Ū          | ŭ        | Ū        | ũ l      | Ŭ        | Ŭ        | Ŭ         | 330          | 200          |
| Isophorona                   | Ū        | Ŭ          | Ŭ        | Ŭ        | บั       | Ŭ        | Ŭ        | Ŭ         | 330          | 4,400        |
| 2-Nitrophenol                | Ŭ        | Ū          | Ū        | Ŭ        | ū        | ŭ        | Ū        | Ŭ         | 330          | 330          |
| 2,4-Dimethylphenol           | υ (      | Ŭ          | Ū        | Ŭ        | Ū        | Ŭ        | Ū        | Ŭ         | 330          |              |
| 2,4-Dichlorophenol           | υ        | υ          | U        | Ū        | U U      | ū        | Ū        | Ŭ         | 330          | 400          |
| 1,2,4-Trichlorobenzene       | U U      | U          | υ        | Ú        | ŭ        | . มั     | Ŭ        | Ū         | 330          |              |
| Naphthalene                  | Ŭ        | Ū          | Ū        | Ŭ        | ŭ        | Ŭ        | Ŭ        | Ŭ         | 330          | 13,000       |
| 4-Chloroaniline              | Ū        | Ū          | Ū        | Ū        | Ŭ        | Ŭ        | Ŭ        | Ŭ         | 330          | 220          |
| bis(2-Chloroethoxy)methane   | U U      | U          | Ū        | Ū        | Ū        | Ŭ        | Ū        | Ŭ         | 330          |              |
| Hexachlorobutadiene          | U        | U          | U        | Ú        | Ū        | Ū        | Ū        | Ŭ         | 330          |              |
| 4-Chioro-3-methylphenol      | ) U      | U          | υ        | U        | Ū        | Ū        | Ū        | Ū         | 330          | 240          |
| 2-Methylnaphthalene          | U U      | υ          | Ú        | Ű        | Ū        | Ū        | Ū        | Ŭ         | 330          | 36,400       |
| Hexachlorocyclopentadiene    | Ū        | Ū          | Ū        | Ŭ        | ŭ        | ม        | Ŭ        | Ū         | 330          |              |
| 2,4,8-Trichlorophenol        | Ŭ        | Ū          | Ū        | Ū        | Ū        | Ŭ        | Ŭ        | Ŭ         | 330          |              |
| 2,4,5-Trichlorophenol        | U U      | U          | U        | U        | U        | U        | U        | Ū         | 330          | 100          |
| 2-Chloronaphthalene          | U        | U          | U        | U        | U        | บ        | Ū        | Ū         | 330          |              |
| 2-Nitroaniline               | ) U      | υ          | υ        | U        | Ū        | U        | Ū        | Ū         | 330          | 430          |
| Dimethylphthalate            | U U      | U          | Ū        | U        | υl       | Ū        | Ŭ        | Ū         | 330          | 2,000        |
| Acenaphthylene               | U U      | Ū          | Ū        | Ū        | Ū        | Ū        | Ū        | Ū         | 330          | 41,000       |
| 2,6-Dinitrotoluene           | U U      | Ū          | Ū        | Ū        | Ū        | Ū        | Ŭ        | Ū         | 330          | 1,000        |
| 3-Nitroaniline               | U U      | U          | Ú        | U        | Ū        | Ū        | Ū        | Ū         | 330          | 500          |
| Acenaphthene                 | U        | U          | - U -    | ປ        | U        | U        | U        | U         | 330          | 50,000       |

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLEID                   | IPSBX-08 | IPSBX-08 | IPSBX-09 | IPSBX-09 | IPSBX-09 | IPSBX-09 | IPSBX-09 | IPSBX-09 |              |              |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------|
| SAMPLE DEPTH (FT)          | (16-18)  | (18-20)  | (4-6)    | (6-8)    | (8-10)   | (10-12)  | (12-14)  | (14-16)  | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION         | 1/28/03  | 1/28/03  | 1/29/03  | 1/29/03  | 1/29/03  | 1/29/03  | 1/29/03  | 1/29/03  | QUANTITATION | Recommended  |
| DILUTION FACTOR            | · 1      | 1        | 1        | 1        | 1        | 1        | 1        | 1        | LIMITS       | Soil Cleanup |
| PERCENT SOLIDS             | 48.0     | 90.0     | 84.0     | 65.0     | 52.0     | 69.0     | 46.0     | 89.0     |              | Objective    |
| UNITS                      | (ug/kg)      | (ug/kg)      |
|                            |          |          |          |          |          |          |          |          |              |              |
| 2,4-Dinitrophenol          | U        | U        | U        | U        | U        | ບ        | U        | U        | 330          | 200          |
| 4-Nitrophenol              | U U      | U        | U        | U        | U        | U        | U U      | U        | 330          | 100          |
| Dibenzofuran               | U        | U        | U        | U        | U        | U        | U U      | U        | 330          | 6,200        |
| 2,4-Dinitrotoluene         | U        | U        | υ        | U        | U        | U        | U        | U        | 330          |              |
| Diethylphthalate           | U        | U        | U        | U        | U        | U        | υ        | υ        | 330          | 7,100        |
| 4-Chlorophenyl-phenylether | ) U      | U        | U        | U        | U        | U        | U U      | U        | 330          |              |
| Fluorene                   | U        | U        | U        | U        | U        | U        | ) U      | U        | 330          | 50,000       |
| 4-Nitroanillne             | U        | U        | U        | U        | U        | υ        | U        | U        | 330          |              |
| 4,6-Dinitro-2-methylphenol | U -      | U        | U        | U        | U        | U        | U U      | U        | 330          |              |
| N-Nitrosodiphenyiamine     | U        | U        | U        | U        | U        | U        | U        | υ        | 330          |              |
| 4-Bromophenyi-phenylether  | U        | υ.       | U        | U        | U        | U        | ( U      | U        | 330          |              |
| Hexachiorobenzene          | U        | U        | U        | U        | · U      | U        | U        | U        | 330          | 410          |
| Pentachlorophenol          | ) U      | U        | U        | υ        | U        | U        | U U      | U        | 330          | 1,000        |
| Phenanthrene               | U U      | U        | U        | U        | U        | U        | ) U      | U        | 330          | 50,000       |
| Anthracene                 | U        | U        | U        | U        | U        | U        | U U      | U        | 330          | 50,000       |
| Carbazole                  | U        | υ        | U        | U        | U        | U        | i U      | U        | 330          |              |
| Di-n-butylphthalate        | U        | U        | U        | U        | U        | U        | ່ ບ      | U        | 330          | 8,100        |
| Fluoranthene               | 73 J     | U        | U        | U        | U        | U U      | l U      | · U      | 330          | 50,000       |
| Pyrene                     | U        | U        | U        | U        | U        | Ų        | U U      | Ų        | 330          | 50,000       |
| Butylbenzylphthalate       | ) U      | Ų        | U        | U        | U        | U        | U        | U        | 330          | 50,000       |
| 3,3-Dichlorobenzidine      | U        | Ų        | Ų.       | U        | U        | Ų        | U        | U        | 330          |              |
| Benzo(a)anthracene         | Ų        | U        | Û        | Ų        | Ų        | υ        | U        | U        | 330          | 224          |
| Chrysene                   | U        | U        | U        | U        | U        | U        | } U      | U        | 330          | 400          |
| bis(2-Ethylhexyl)phthalate | 120 J    | 60 J     | 82 J     | 50 J     | U        | · U      | U U      | U        | 330          | 50,000       |
| Di-n-octylphthalate        | U        | U        | U        | Ų        | U        | U        | ļ U      | U        | 330          | 50,000       |
| Benzo(b)fluoranthene       | U U      | U        | U        | U        | U        | U        | U        | U        | 330          | 1,100        |
| Benzo(k)fluoranthene       | U        | U        | U.       | U        | U        | U        | U U      | U        | 330          | 1,100        |
| Benzo(a)pyrene             | U        | U        | U        | U        | U        | U        | ) U      | U        | 330          | 61           |
| Indeno(1,2,3-cd)pyrene     | U U      | U        | U        | U        | U        | U        | U U      | U        | 330          | 3,200        |
| Dibenzo(a,h)anthracene     | U        | U        | U        | U        | U        | U        | U        | U        | 330          | 14           |
| Benzo(g,h,i)perviene       | U        | U        | Ų        | Ų        | U        | Ų        | U        | U        | 330          | 50,000       |
| Total PAHs                 | 73       | o        | 0        | 0        | 0        | 0        | o        | 0        | -            | 100.000      |
| Total CaPAHs               | 0        | o i      | ō        | Õ.       | Ō        | ŏ        | ŏ        | ŏ        |              | 10,000       |
| Total SVOCs                | 193      | 60       | 82       | 50       | ŏ        | Ō        | 78       | ŏ        | -            | 500,000      |

<u>QUALIFIERS:</u> U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

NOTES: ---

: Not applicable.

: Concentration exceeds NYSDEC TAGM 4046 Recommended Soil Cleanup Objective

3

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                    | IPSBX-09 | IPSBX-09 | IPSBX-10 | IPSBX-10 | IPSBX-10 | IPSBX-10 | IPSBX-10 | IPSBX-11           |              |              |
|------------------------------|----------|----------|----------|----------|----------|----------|----------|--------------------|--------------|--------------|
| SAMPLE DEPTH (FT)            | (16-18)  | (18-20)  | (8-10)   | (10-12)  | (12-14)  | (14-16)  | (16-18)  | (4-6)              | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION           | 1/29/03  | 1/29/03  | 1/23/03  | 1/23/03  | 1/23/03  | 1/23/03  | 1/23/03  | 1/27/03            | QUANTITATION | Recommended  |
| DILUTION FACTOR              | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1                  | LIMITS       | Soll Cleanup |
| PERCENT SOLIDS               | 43.0     | 77.0     | 50.0     | 72,0     | 86.0     | 80.0     | 82.0     | 7 <b>6</b> .0      |              | Objective    |
|                              | (ug/kg)            | (ug/kg)      | (ug/kg)      |
|                              |          |          |          |          |          |          |          |                    |              |              |
| Phenol                       | 190_J    | U        | U        | U        | υĮ       | · U      | U        | U                  | 330          | 30           |
| bis(2-Chloroethyl)ether      | U U      | U        | υ        | · U      | U        | U        | U        | U                  | 330          |              |
| 2-Chlorophenol               | U        | U U      | U        | U        | υ        | U        | U        | U                  | 330          | 800          |
| 1,3-Dichlorobenzene          | U U      | U        | U        | U        | U        | U        | U        | υ                  | 330          |              |
| 1,4-Dichlorobenzene          | [ U ]    | U        | υ        | U        | υ        | υ        | U        | U                  | 330          |              |
| 1,2-Dichlorobenzene          | U U      | U        | U        | Ų        | υ        | U        | U        | Ú                  | 330          |              |
| 2-Methylphenol               | U .      | U        | Ū        | Ú        | Ŭ        | Ũ        | Ŭ        | Ŭ                  | 330          | 100          |
| 2,2-oxybis (1-chloropropane) | U        | U        | U U      | Ų        | U        | Ú        | Ŭ        | Ū                  | 330          |              |
| 4-Methylphenol               | U U      | U        | Ù        | Ú        | υl       | Ũ        | Ŭ        | Ū                  | 330          | 900          |
| N-Nitroso-dl-n-propylamine   | ן ט      | υ        | U        | U        | Ū        | Ŭ        | Ū        | Ū                  | 330          |              |
| Hexachloroethane             | Ű        | Ů        | Ū        | ı ŭ l    | ŭ        | ŭ        | Ŭ Ŭ      | ŭ                  | 330          |              |
| Nitrobenzene                 | Ú        | Ū        | Ũ        | Ũ        | Ŭ        | ŭ        | บั       | Ŭ                  | 330          | 200          |
| Isophorone                   | U U      | Ŭ        | Ũ        | Ŭ        | Ū Ū      | Ŭ        | Ŭ        | ιŭι                | 330          | 4,400        |
| 2-Nitrophenol                | Ú        | υ        | U        | Ú        | Ů        | Ŭ        | Ŭ        | Ū                  | 330          | 330          |
| 2,4-Dimethylphenol           | ן ט      | U        | υ        | υΙ       | υÌ       | Ū        | Ŭ        | Ŭ                  | 330          |              |
| 2,4-Dichlorophenol           | υ        | Ŭ        | Ũ        | Ū Ū      | - ŭ      | ŭ        | Ŭ Ŭ      | u ŭ                | 330          | 400          |
| 1,2,4-Trichlorobenzene       | Ú        | Ŭ        | Ū        | Ŭ        | ŭ        | ŭ        | Ŭ        | Ŭ                  | 330          | 400          |
| Naphthalene                  | Ú        | Ũ        | Ũ        | Ũ        | ū l      | ม้       | Ŭ        | 73 J               | 330          | 13,000       |
| 4-Chloroaniline              | υ        | Ũ        | Ŭ        | Ū Ū      | Ũ        | Ŭ        | Ŭ        | Ŭ                  | 330          | 220          |
| bis(2-Chloroethoxy)methane   | U        | U)       | Ų        | υ        | U        | Ŭ        | Ú        | Ŭ                  | 330          |              |
| Hexachlorobutadiene          | U        | U U      | υ        | Ú        | Ú Í      | Ū.       | Ū        | Ŭ                  | 330          |              |
| 4-Chloro-3-methylphenol      | υ Ι      | U        | Ū        | Ū        | ū        | Ŭ        | Ŭ        | ŭ                  | 330          | 240          |
| 2-Methyinaphthalene          | ีย บิไ   | Ũ        | Ŭ        | υŪ       | Ŭ        | ŭ        | Ŭ        | 140 J              | 330          | 36,400       |
| Hexachlorocyclopentadlene    | Ů        | Ŭ        | Ũ        | Ŭ        | ŭ        | ŭ        | l ŭ      | 1 <sup>140</sup> U | 330          | 00,400       |
| 2,4,6-Trichlorophenol        | Ū        | Ŭ        | Ŭ        | ũ        | Ū        | Ŭ        | Ŭ        | Ŭ                  | 330          |              |
| 2,4,5-Trichlorophenoi        | Ű        | Ũ        | Ŭ        | Ů        | Ŭ l      | บั       | Ŭ        | Ŭ                  | 330          | 100          |
| 2-Chloronaphthaiene          | Ū        | Ŭ        | Ū        | Ŭ        | ŭ        | Ŭ        | Ŭ.       | ັ້                 | 330          | 100          |
| 2-Nitroaniline               | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ Ŭ      | Ŭ                  | 330          | 430          |
| Dimethylphthalate            | Ũ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ                  | 330          | 2.000        |
| Acenaphthylene               | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ                  | 330          | 41,000       |
| 2,6-Dinitrotoiuene           | Ū        | Ű        | Ŭ        | Ű Ű      | ŭ l      | Ŭ        | Ŭ Ŭ      | Ŭ                  | 330          | 1,000        |
| 3-Nitroaniline               | Ū        | Ū        | Ū        | ī ūl     | บั       | ũ        | U U      | ŭ                  | 330          | 500          |
| Acenaphthene                 | บั       | ŭ        | ŭ        | Ŭ        | ŭ        | Ŭ        | រ បំ     | ŭ                  | 330          | 50,000       |

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                  | IPSBX-09 | PSBX-09 | PSBX-10 | IPSBX-10 | IPSBX-10 | IPSBX-10 | IPSBX-10 | IPSBX-11 |              |              |
|----------------------------|----------|---------|---------|----------|----------|----------|----------|----------|--------------|--------------|
| SAMPLE DEPTH (FT)          | (16-18)  | (18-20) | (8-10)  | (10-12)  | (12-14)  | (14-18)  | (16-18)  | (4-8)    | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION         | 1/29/03  | 1/29/03 | 1/23/03 | 1/23/03  | 1/23/03  | 1/23/03  | 1/23/03  | 1/27/03  | QUANTITATION | Recommended  |
| DILUTION FACTOR            | 1 1      | 1       | 1       | 1        | 1        | 1        | 1        | 1        | LIMITS       | Soll Cleanup |
| PERCENT SOLIDS             | 43.0     | 77.0    | 50.0    | 72.0     | 86.0     | 80.0     | 82.0     | 76.0     |              | Objective    |
| UNITS                      | (ug/kg)  | (ug/kg) | (ug/kg) | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)  | (ug/kg)      | (ug/kg)      |
|                            |          |         |         |          |          |          |          |          |              |              |
| 2,4-Dinitrophenol          | υ        | U       | U       | U        | U        | U        | ļυ       | U        | 330          | 200          |
| 4-Nitrophanol              | U U      | U       | U       | U        | U        | U        | ( U      | U        | 330          | 100          |
| Dibenzofuran               | U U      | U       | Ψ       | U        | U        | U        | U U      | U        | 330          | 6,200        |
| 2,4-Dinitrotoluene         | ) U      | υ       | U       | U        | U        | U        | U U      | U        | 330          |              |
| Diethylphthalate           | U        | U       | U       | U        | U        | U        | U        | U        | 330          | 7,100        |
| 4-Chlorophenyl-phenylether | U        | U       | U       | U        | U        | U        | U U      | U        | 330          |              |
| Fluorene                   | U        | U       | U       | υ        | U        | U        | U U      | U        | 330          | 50,000       |
| 4-Nitroaniline             | U        | U       | U U     | U        | U        | U        | U        | U        | 330          |              |
| 4,6-Dinitro-2-methylphenol | U        | U       | U       | U        | U        | U        | l U      | U        | 330          |              |
| N-Nitrosodiphenyiamine     | U        | U       | U       | U        | ບ        | U        | υ        | U        | 330          |              |
| 4-Bromophenyl-phenylether  | U        | ບ       | U       | U        | U        | U        | υ υ      | U        | 330          |              |
| Hexachlorobenzene          | U        | υ       | U       | U        | U        | U        | υ        | U        | 330          | 410          |
| Pentachiorophenoi          | U        | υ       | U       | U        | U        | U        | U        | U        | 330          | 1,000        |
| Phenanthrène               | U U      | U       | U       | U        | U        | U        | U U      | 130 J    | 330          | 50,000       |
| Anthracene                 | <u>υ</u> | U       | U       | U        | U        | U        | Ι υ      | U        | 330          | 50,000       |
| Carbazole                  | U        | U       | Ų       | U        | U        | U        | U        | U        | 330          |              |
| DI-n-butyiphthalate        | U U      | U       | U       | U        | U        | U        | U U      | U        | 330          | 8,100        |
| Fluoranthene               | U U      | U       | U       | U        | U        | U        | U U      | 120 J    | 330          | 50,000       |
| Pyrene                     | U        | U       | U       | U        | U        | U        | U U      | 130 J    | 330          | 50,000       |
| Butylbenzylphthalate       | U        | U       | U       | U        | U        | U        | J U      | U        | 330          | 50,000       |
| 3,3-Dichlorobenzidine      | U U      | U       | U       | U        | U        | U        | U U      | U        | 330          |              |
| Benzo(a)anthracene         | U        | U       | Ų       | U        | U        | U        | U        | 69 J     | 330          | 224          |
| Chrysene                   | U        | U       | U       | U        | U        | U        | ) V      | 92 J     | 330          | 400          |
| bis(2-Ethylhexyl)phthalate | U        | U       | 96 J    | 69 J     | U        | 54 J     | 46 J     | 100 J    | 330          | 50,000       |
| Di-n-octyiphthalate        | U        | υ       | U       | U        | U        | U        | l u      | U        | 330          | 50,000       |
| Benzo(b)fluoranthene       | U        | U       | U       | U        | U        | U        | U        | 100 J    | 330          | 1,100        |
| Senzo(k)fluoranthene       | U        | U       | U       | U        | U        | U        | U        | U        | 330          | 1,100        |
| Benzo(a)pyrene             | U        | U       | U       | U        | U        | U        | U U      | 56 J     | 330          | 61           |
| Indeno(1,2,3-cd)pyrene     | U        | U       | U       | U        | U        | U        | U        | U        | 330          | 3,200        |
| Dibenzo(a,h)anthracene     | Ų        | U       | U       | U        | U        | U        | ) U      | U        | 330          | 14           |
| Benzo(g,h,i)perylene       | U        | U       | U       | U        | U        | U        | U        | U        | 330          | 50,000       |
| Total PAHs                 | 0        | 0       | o       | o        | 0 -      | 0        | 0        | 770      | -            | 100.000      |
| Total CaPAHs               | ŏ        | Ō       | Ō       | Ō        | Ó        | Ō        | Ō        | 317      |              | 10,000       |
| Total SVOCs                | 190      | Ŭ       | 96      | 69       | 0        | 54       | 46       | 1,010    |              | 500,000      |

QUALIFIERS: U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

NOTES: ---

: Not applicable.

: Concentration exceeds NYSDEC TAGM 4046 Recommended Soil Cleanup Objective

• •

ş

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)        | IPSBX-11<br>(6-8) | (PSBX-11<br>(8-10) | IPSBX-11<br>(10-12) | IPSBX-11<br>(12-14) | IPSBX-11<br>(14-16) | IPSBX-11<br>(16-18) | IPSBX-11<br>(18-20) | IP\$BX-12<br>(4-6) | LABORATORY   | NYSDEC TAGM          |
|---------------------------------------|-------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|--------------|----------------------|
| DATE OF COLLECTION<br>DILUTION FACTOR | 1/27/03           | 1/27/03<br>1       | 1/27/03             | 1/27/03             | 1/27/03             | 1/27/03             | 1/27/03             | 1/23/03            | QUANTITATION | Recommended          |
| PERCENT SOLIDS                        | 83.0              | 43.0               | 82.0                | 92.0                | 87.0                | 82.0                | 83.0                | 65.0               | LIMIT\$      | Soil Cleanup         |
| UNITS                                 | (ug/kg)           | (ug/kg)            | (ug/kg)             | (ug/kg)             | (ug/kg)             | (ug/kg)             | (ug/kg)             | (ug/kg)            | (ug/kg)      | Objective<br>(ug/kg) |
|                                       |                   |                    | (08/18/             | (09/19/             | (49/19)             | (dy/ky)             |                     | _(09/69/           |              |                      |
| Phenol                                | ט                 | υ                  | U U                 | υ                   | U                   | υ                   | υ                   | U U                | 330          | 30                   |
| bis(2-Chloroethyl)ether               | U                 | υ                  | U                   | U                   | U                   | Ŭ                   | ΙŪ                  | Ŭ                  | 330          |                      |
| 2-Chlorophenol                        | U                 | υ                  | U                   | U                   | U                   | U                   | Ú                   | υ                  | 330          | 800                  |
| 1,3-Dichlorobenzene                   | U                 | υ                  | U                   | ΰ                   | Ú                   | Ŭ                   | l Ū                 | Ū                  | 330          |                      |
| 1,4-Dichlorobenzene                   | Ú                 | U                  | Ú                   | Ŭ                   | i Ū                 | Ŭ                   | Ū                   | Ū                  | 330          |                      |
| 1,2-Dichlorobenzene                   | υ                 | U                  | U                   | U                   | Ú                   | Ŭ                   | Ū                   | Ū                  | 330          |                      |
| 2-Methylphenol                        | U U               | U                  | U                   | U                   | Ŭ                   | Ŭ                   | Ū                   | Ŭ                  | 330          | 100                  |
| 2,2-oxybis (1-chloropropane)          | ບ                 | U                  | U                   | U                   | U (                 | υ                   | U                   | U                  | 330          |                      |
| 4-Methylphenol                        | Ų                 | U                  | U U                 | U U                 | ່ ບ                 | U                   | U                   | U                  | 330          | 900                  |
| N-Nitroso-di-n-propylamine            | U U               | υ                  | Ŭ                   | U                   | U                   | υ                   | U                   | U                  | 330          |                      |
| Hexachloroethane                      | υ                 | Ú                  | Ú                   | Ú                   | Ū                   | Ŭ                   | Ū                   | Ŭ                  | 330          |                      |
| Nitrobenzene                          | υ                 | U                  | υ                   | Ű                   | Ū                   | Ú                   | ) Ŭ                 | Ū                  | 330          | 200                  |
| Isophorone                            | U                 | U                  | Ú                   | U                   | υ (                 | Ŭ                   | U                   | U                  | 330          | 4,400                |
| 2-Nitrophenol                         | U                 | Ų                  | υ                   | U                   | υ                   | U                   | υ                   | U                  | 330          | 330                  |
| 2,4-Dimethylphenol                    | ) U               | U                  | U                   | υ                   | U                   | U                   | U                   | U                  | 330          |                      |
| 2,4-Dichiorophenol                    | U                 | U                  | U                   | U                   | U                   | U                   | υ                   | υ                  | 330          | 400                  |
| 1,2,4-Trichlorobenzene                | U                 | U                  | U                   | U                   | U U                 | U                   | U                   | υ υ                | 330          |                      |
| Naphthalene                           | U                 | U                  | U                   | U                   | Ú                   | U                   | υ –                 | 140 J              | 330          | 13,000               |
| 4-Chioroaniline                       | U                 | U                  | U                   | U                   | U                   | U                   | U                   | ) U                | 330          | 220                  |
| bis(2-Chloroethoxy)methane            | U                 | U                  | U                   | U                   | U                   | U                   | U                   | U                  | 330          |                      |
| Hexachlorobutadiene                   | ປ                 | U                  | U                   | Ų                   | U                   | U                   | U U                 | U                  | 330          |                      |
| 4-Chloro-3-methylphenoi               | U                 | U                  | U                   | U                   | U U                 | U                   | υ                   | U                  | 330          | 240                  |
| 2-Methylnaphthalene                   | U                 | U                  | Ų                   | U                   | U                   | U                   | U                   | 150 J              | 330          | 36,400               |
| Hexachiorocyclopentadiene             | U                 | U                  | U                   | U                   | [ U                 | U                   | U                   | U                  | 330          |                      |
| 2,4,6-Trichlorophenol                 | U                 | U                  | U                   | ן ט                 | U U                 | U                   | U U                 | U                  | 330          |                      |
| 2,4,5-Trichlorophenol                 | U                 | υ                  | U                   | U                   | U                   | U                   | U (                 | U                  | 330          | 100                  |
| 2-Chloronaphthalene                   | U                 | U                  | U                   | U                   | U                   | U                   | U                   | U                  | 330          |                      |
| 2-Nitroaniline                        | U                 | U                  | U                   | U                   | U                   | U                   | U                   | U                  | 330          | 430                  |
| Dimethylphthalate                     |                   | U                  | U                   | U                   | U                   | U                   | U                   | U                  | 330          | 2,000                |
| Acenaphthylene                        | U U               | U                  | U                   | U                   | U                   | U                   | ) U                 | υ                  | 330          | 41,000               |
| 2,6-Dinitrotoluene                    | U                 | U                  | U                   | U                   | U                   | U                   | U                   | U                  | 330          | 1,000                |
| 3-Nitroaniline                        | U                 | υ                  | υ                   | U                   | υ                   | U                   | U                   | υ                  | 330          | 500                  |
| Acenaphthene                          | UU                | U                  | <u> </u>            | U                   | UU                  | U                   | U                   | U                  | 330          | 50,000               |

and the second second

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                                                                                                                                                                                                                                                                        | IPSBX-11<br>(6-8)<br>1/27/03<br>1<br>83.0<br>(ug/kg) | IPSBX-11<br>(8-10)<br>1/27/03<br>1<br>43.0<br>(ug/kg) | IPSBX-11<br>(10-12)<br>1/27/03<br>1<br>62.0<br>(ug/kg) | IPSBX-11<br>(12-14)<br>1/27/03<br>1<br>92.0<br>(ug/kg) | IPSBX-11<br>(14-16)<br>1/27/03<br>1<br>87.0<br>(ug/kg) | IPSBX-11<br>(16-18)<br>1/27/03<br>1<br>82.0<br>(ug/kg)             | IPSBX-11<br>(18-20)<br>1/27/03<br>1<br>83.0<br>(ug/kg)                                            | (PSBX-12<br>(4-8)<br>1/23/03<br>1<br>65.0<br>(ug/kg)                                | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg)                    | NYSDEC TAGM<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg)                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 2,4-Dinitrophenol<br>4-Nitrophenol<br>Dibenzofuran<br>2,4-Dinitrotoluene<br>Diethylphthalate<br>4-Chlorophenyl-phenylether<br>Fluorene<br>4-Nitroanlilne<br>4,8-Dinitro-2-methylphenol<br>N-Nitrosodiphenylamine<br>4-Bromophenyl-phenylether<br>Hexachlorobenzene<br>Pentachlorophenol<br>Phenanthrene<br>Anthracene<br>Carbazole<br>Di-n-butylphthalate<br>Fluoranthene |                                                      |                                                       |                                                        |                                                        |                                                        |                                                                    |                                                                                                   | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>76 J                         | 330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330 | 200<br>100<br>6,200<br>                                                                                            |
| Pyrene<br>Butylbenzylphthalate<br>3,3-Dichlorobenzidine<br>Benzo(a)anthracene<br>Chrysene<br>bis(2-Ethylhexyl)phthalate<br>Di-n-octylphthalate<br>Benzo(b)fluoranthene<br>Benzo(b)fluoranthene<br>Benzo(a)pyrene<br>Indeno(1,2,3-cd)pyrene<br>Dibenzo(a,h)anthracene<br>Benzo(g,h,i)perylene<br>Total PAHs                                                                | 0 0000000000000000000000000000000000000              | 0 2222222                                             | o ccccccccc                                            | 0<br>0<br>0                                            | o ccc c c c c c c c c c c c c c c c c c                | 0<br>0<br>0<br>4<br>4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>48<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 66 J<br>U<br>56 J<br>220 J<br>91 J<br>U<br>100 J<br>U<br>83 J<br>U<br>U<br>U<br>921 | 330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330 | 50,000<br>50,000<br><br>224<br>400<br>50,000<br>50,000<br>1,100<br>1,100<br>61<br>3,200<br>14<br>50,000<br>100,000 |
| Total CaPAHs<br>Total SVOCs                                                                                                                                                                                                                                                                                                                                               | 0                                                    | 0                                                     | 0                                                      | 0                                                      | 0                                                      | 0<br>44                                                            | 0<br>48                                                                                           | 459<br>1,16 <u>2</u>                                                                |                                                                    | 10,000<br>500,000                                                                                                  |

NOTES: --

<u>QUALIFIERS:</u> U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

D: Compound concentration was obtained from a diluted analysis.

: Not applicable.

: Concentration exceeds NYSDEC TAGM 4046 Recommended Soll Cleanup Objective

and the second second

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

## SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                    | IPSBX-12 |  |              |              |
|------------------------------|----------|----------|----------|----------|----------|----------|----------|--|--------------|--------------|
| SAMPLE DEPTH (FT)            | (6-8)    | (8-10)   | (10-12)  | (12-14)  | (14-16)  | (16-18)  | (18-20)  |  | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION           | 1/23/03  | 1/23/03  | 1/23/03  | 1/23/03  | 1/23/03  | 1/23/03  | 1/23/03  |  | QUANTITATION | Recommended  |
| DILUTION FACTOR              | 1        | 1        | 1        | 1        | 1        | 1        | 1        |  | LIMITS       | Soil Cleanup |
| PERCENT SOLIDS               | 83.0     | 87.0     | 87.0     | 90.0     | 89.0     | 80.0     | 86.0     |  | Enter o      | Objective    |
| UNITS                        | (ug/kg)  |  | (ug/kg)      | (ug/kg)      |
|                              |          |          |          |          |          |          |          |  | (99/09/      |              |
| Phenol                       | υ        | υ        | υ        | υ        | U        | U (      | υ        |  | 330          | 30           |
| bis(2-Chloroethyl)ether      | i U      | υ        | U        | Ű        | Ū        | Ū        | Ū        |  | 330          |              |
| 2-Chlorophenol               | U U      | Ū        | Ŭ        | Ū        | Ū        | Ŭ        | l ŭ      |  | 330          | 800          |
| 1,3-Dichiorobenzene          | Ū        | Ŭ        | Ū        | Ū        | Ū.       | l Ŭ      | l ŭ      |  | 330          |              |
| 1,4-Dichlorobenzene          | ) U      | υ        | U        | U        | Ū        | Ŭ        | ł ŭ      |  | 330          |              |
| 1,2-Dichlorobenzene          | U U      | Ū        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        |  | 330          |              |
| 2-Methylphenol               | l ŭ      | Ū Ū      | Ŭ        | Ŭ        | Ŭ Ŭ      | U U      | Ŭ        |  | 330          | 100          |
| 2,2-oxybis (1-chloropropane) | l ū      | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ű        | Ŭ        |  | 330          |              |
| 4-Methylphenol               | l ŭ      | U U      | Ŭ        | Ŭ        | Ŭ        | U U      | l ŭ      |  | 330          | 900          |
| N-Nitroso-di-n-propylamine   | t ŭ l    | ) มี     | Ŭ        | ŭ        | ŭ        | υ        | ŭ        |  | 330          |              |
| Hexachloroethane             | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | i i      |  | 330          |              |
| Nitrobenzene                 | i ŭ      | l ŭ      | บั       | Ŭ        | Ŭ        | u U      | l ŭ      |  | 330          | 200          |
| Isophorone                   | l ñ      | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | i ŭ      |  | 330          | 4.400        |
| 2-Nitrophenoi                | I III    | l. ŭ     | Ŭ        | ŭ        | Ŭ        | Ŭ        | l ŭ      |  | 330          | 330          |
| 2,4-Dimethylphenol           | ŭ        | l ŭ      | U U      | Ŭ        | U U      | Ŭ        | l ŭ      |  | 330          |              |
| 2.4-Dichlorophanol           | ιŭ       | ŭ        | Ŭ        | ŭ        | ŭ        | Ŭ        | l ŭ      |  | 330          | 400          |
| 1.2.4-Trichiorobenzene       | l ŭ      | l ŭ      | Ŭ        | ŭ        | ŭ        | ŭ        | łŭ       |  | 330          | +00          |
| Naphthalene                  | 160 J    | Ŭ.       | Ŭ        | Ŭ        | Ŭ        | l ŭ      | l ŭ      |  | 330          | 13,000       |
| 4-Chloroaniline              | i u      | Ŭ Ŭ      | Ŭ        | Ŭ        | Ŭ        | Ŭ        | l ŭ      |  | 330          | 220          |
| bis(2-Chloroethoxy)methane   | l ŭ      | Ŭ        | Ŭ        | U .      | ŭ        | Ŭ        | l ŭ      |  | 330          |              |
| Hexachlorobutadiene          | ł ŭ      | i ŭ      | Ŭ        | Ŭ        | ŭ        | Ŭ        | l ŭ      |  | 330          |              |
| 4-Chloro-3-methylphenol      | i ŭ      | i i      | Ŭ        | Ŭ        | Ŭ        | Ŭ        | l ŭ      |  | 330          | 240          |
| 2-Methylnaphthalene          | 100 J    | ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | U U      |  | 330          | 36,400       |
| Hexachlorocyclopentadiene    |          | ŭ        | Ŭ        | U<br>U   | Ŭ        | ŭ        | l ŭ      |  | 330          | 30,400       |
| 2,4,6-Trichlorophenol        | ΪŬ       | Ŭ        | Ŭ        | ŭ        | Ŭ        | Ŭ        | l ŭ      |  | 330          |              |
| 2,4,5-Trichlorophenoi        | Ū        | Ŭ        | Ū        | Ŭ        | Ū        | Ŭ        | ΙŬ       |  | 330          | 100          |
| 2-Chloronaphthalene          | Ū        | Ū        | Ū        | Ū        | Ū        | Ū        | Ŭ        |  | 330          |              |
| 2-Nitroaniline               | Ū        | Ū        | Ū        | Ŭ        | Ū        | Ŭ        | Ŭ        |  | 330          | 430          |
| Dimethylphthalate            | Î Ŭ      | Ŭ        | Ŭ        | Ŭ        | Ū        | Ŭ        | l ŭ      |  | 330          | 2.000        |
| Acenaphthylene               | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        |  | 330          | 41,000       |
| 2,6-Dinitrotoluene           | Ŭ        | Ŭ        | Ŭ        | Ŭ        | ŭ        | Ŭ        | Ŭ        |  | 330          | 1,000        |
| 3-Nitroaniline               | Ū        | Ŭ        | Ŭ        | Ū        | Ŭ        | ΙŪ       | Ŭ        |  | 330          | 500          |
| Acenaphthene                 | 53 J     | Ū        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | ΙŬ       |  | 330          | 50.000       |

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL - SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

| SAMPLE ID                  | IPSBX-12 | <br>         |              |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------|
| SAMPLE DEPTH (FT)          | (6-6)    | (8-10)   | (10-12)  | (12-14)  | (14-16)  | (16-18)  | (18-20)  | LABORATORY   | NYSDEC TAGM  |
| DATE OF COLLECTION         | 1/23/03  | 1/23/03  | 1/23/03  | 1/23/03  | 1/23/03  | 1/23/03  | 1/23/03  | QUANTITATION | Recommended  |
| DILUTION FACTOR            | 1        | 1        | 1        | 1        | 1        | 1        | 1        | LIMITS       | Soli Cleanup |
| PERCENT SOLIDS             | 83.0     | 87.0     | 87.0     | 90.0     | 89.0     | 80.0     | 86.0     |              | Objective    |
| UNITS                      | (ug/kg)      | (ug/kg)      |
|                            | (09/109/ | (09/19/  | (09/19)  | (09/19/  | (09/19/  | (49/19/  |          |              |              |
| 2,4-Dinitrophenol          | υ        | υ        | υ        | υ        | U        | U        | ט        | 330          | 200          |
| 4-Nitrophenol              | U U      | U        | υ        | υ        | U        | ປ        | υ        | 330          | 100          |
| Dibenzofuran               | 78 J     | U        | υ        | U        | U        | U        | υ        | 330          | 6,200        |
| 2,4-Dinitrotoluene         | υ υ      | U        | U        | υ        | U        | υ        | υ        | 330          |              |
| Diethylphthalate           | ບ 🛛      | υ        | υ        | υ        | υ        | υ        | ן ט      | 330          | 7,100        |
| 4-Chlorophenyl-phenylether | υ υ      | υ        | υ        | υ        | υ        | U        | Ú        | 330          |              |
| Fluorene                   | 120 J    | 95 J     | ΰ        | Ū        | Ŭ        | Ŭ        | Ŭ        | 330          | 50,000       |
| 4-Nitroanline              | ່ ປ      | υ        | υ        | υ        | U        | υ        | Ú        | 330          |              |
| 4,6-Dinitro-2-methylphenol | υ υ      | U        | υ        | υ        | U        | Ŭ        | Ú Ú      | 330          |              |
| N-Nitrosodiphenylamine     | Ú Ú      | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ŭ        | Ú Ú      | 330          |              |
| 4-Bromophenyl-phanylether  | υ υ      | Ú        | U        | Ŭ        | Ū        | ΰ        | Ú        | 330          |              |
| Hexachlorobenzene          | ן ט      | υ        | U        | υ        | υ        | U        | υ        | 330          | 410          |
| Pentachlorophenol          | ן ט      | υ        | υ        | υ        | υ        | Ű        | υ        | 330          | 1,000        |
| Phenanthrene               | 180 J    | 150 J    | U        | U        | U        | Ŭ        | ן ט      | 330          | 50,000       |
| Anthracene                 | 58 J     | 54 J     | υ        | U        | υ        | U        | Ι υ Ι    | 330          | 50,000       |
| Carbazole                  | 110 J    | 120 J    | υ        | υ        | υ        | Ú        | ן ט      | 330          |              |
| Di-n-butylphthalate        | Ú        | υ        | Ú        | υ        | Ŭ        | บ        | l ŭ l    | 330          | 8,100        |
| Fluoranthene               | 380 J    | 110 J    | υ        | Ű        | Ŭ        | บ        | Ŭ        | 330          | 50,000       |
| Pyrene                     | 370 J    | 85 J     | υ        | U        | Ŭ        | υ        | Ú        | 330          | 50,000       |
| Butylbenzylphthalate       | ט ו      | U        | υ        | U        | U        | U        | υ        | 330          | 50,000       |
| 3,3-Dichlorobenzidine      | υ        | υ        | U        | ບ        | υ        | U        | ບ 🛛      | 330          |              |
| Benzo(a)anthracene         | 95 J     | υ        | Ų        | υ        | U        | υ        | U U      | 330          | 224          |
| Chrysene                   | 170 J    | U        | ບ 🗸      | ປ        | υ        | ບ        | υ        | 330          | 400          |
| bis(2-Ethylhexyl)phthalate | 71 J     | 49 J     | 58 J     | 60 J     | 54 J     | 270 J    | 470      | 330          | 50,000       |
| Di-n-octylphthalate        | ບ 🛛      | υ        | υ        | υ        | U        | ບ        | ן ט      | 330          | 50,000       |
| Benzo(b)fluoranthene       | 130 J    | υ        | υ        | Ų        | U        | Ų        | ן ט      | 330          | 1,100        |
| Benzo(k)fluoranthene       | 57 J     | U        | U        | Ú        | υ        | Ú        | U        | 330          | 1,100        |
| Benzo(a)pyrene             | 82 J     | U        | υ        | υ        | υ        | Ų        | U        | 330          | 61           |
| Indeno(1,2,3-cd)pyrana     | 42 J     | Ū        | Ű        | Ų        | Ű        | Ů        | Ú        | 330          | 3,200        |
| Dibenzo(a,h)anthracene     | Ū Ū      | Ū        | Ŭ        | Ű        | Ū        | Ŭ        | Ŭ        | 330          | 14           |
| Benzo(g,h,i)perylene       | 46 J     | U        | U        | U        | Ŭ        | Ū        | Ŭ        | 330          | 50,000       |
|                            |          |          |          |          |          |          |          |              |              |
| Total PAHs                 | 1,943    | 494      | 0        | 0        | 0        | 0        | 0        |              | 100,000      |
| Total CaPAHs               | 576      | 0        | 0        | 0        | 0        | 0        | 0        | <br>-        | 10,000       |
| Total SVOCs                | 2,302    | 663      | 58       | 60       | 54       | 270      | 470      | <br>         | 500,000      |

<u>QUALIFIERS:</u> U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit. D: Compound concentration was obtained from a diluted analysis.

· · · · ·

: Concentration exceeds NYSDEC TAGM 4046 Recommended Soli Cleanup Objective

12/21/04

. .

i.

### TABLE 49

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                  | IPSBX-01<br>(4-6)<br>1/27/03<br>1<br>73.0<br>(ug/kg) | IP\$BX-01<br>(6-8)<br>1/27/03<br>1<br>24.0<br>(ug/kg)         | IPSBX-01<br>(8-10)<br>1/27/03<br>1<br>31.0<br>(ug/kg)                                       | IPSBX-01<br>(10-12)<br>1/27/03<br>1<br>27.0<br>(ug/kg) | IP\$BX-01<br>(12-14)<br>1/27/03<br>1<br>25.0<br>(ug/kg) | IP\$BX-01<br>(14-16)<br>1/27/03<br>1<br>44.0<br>(ug/kg) | IPSBX-01<br>(16-18)<br>1/27/03<br>1<br>60.0<br>(ug/kg) | IPSBX-01<br>(18-20)<br>1/27/03<br>1<br>92.0<br>(ug/kg)      | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soll Cleanup<br>Objective<br>(ug/kg) |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Arocior- 1016<br>Arocior- 1221<br>Arocior- 1232<br>Arocior- 1242<br>Arocior- 1248<br>Arocior- 1254<br>Arocior- 1254 | σσσσσσ                                               | 000000000000000000000000000000000000000                       |                                                                                             | כככככ                                                  | כככככ                                                   |                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                   | σσσσσσ                                                      | 34<br>34<br>34<br>34<br>34<br>34<br>34<br>34    |                                                                            |
|                                                                                                                     | 0                                                    | 0                                                             | 0                                                                                           | 0                                                      | 00                                                      | 00                                                      | 0                                                      | 0                                                           | u                                               | 1,000/10,000*                                                              |
| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                  | (6-8)<br>(6-8)<br>1/28/03<br>1<br>68.0<br>(ug/kg)    | ( <b>PSBX-02</b><br>(8-10)<br>1/28/03<br>1<br>39.0<br>(ug/kg) | IPSBX-02<br>(10-12)<br>1/28/03<br>1<br>81.0<br>(ug/kg)                                      | IPSBX-02<br>(12-14)<br>1/28/03<br>1<br>47.0<br>(ug/kg) | IPSBX-02<br>(14-16)<br>1/28/03<br>1<br>42.0<br>(ug/kg)  | IP\$BX-02<br>(16-18)<br>1/28/03<br>1<br>83.0<br>(ug/kg) | 12802<br>(18-20)<br>1/28/03<br>1<br>58.0<br>(ug/kg)    | <b>IPSBX-03</b><br>(6-8)<br>1/28/03<br>1<br>81.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
| Arocior- 1016<br>Arocior- 1221<br>Arocior- 1232<br>Arocior- 1242<br>Arocior- 1248<br>Arocior- 1254<br>Arocior- 1254 | ccccc                                                | 0000000                                                       | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ | σσσσσσ                                                 | σσσσσ                                                   | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ                    | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ              |                                                             | 34<br>34<br>34<br>34<br>34<br>34<br>34<br>34    |                                                                            |
| TOTAL PCBs                                                                                                          | 0                                                    | 0                                                             | 0                                                                                           | 0                                                      | 0                                                       | 0                                                       | 0                                                      | 0                                                           |                                                 | 1,000/10,000*                                                              |

QUALIFIERS:

NOTES:

- : Not applicable.

: According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0'-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

U: Compound analyzed for but not detected.

ł

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                  | IP\$BX-03<br>(8-10)<br>1/28/03<br>1<br>85.0<br>(ug/kg) | IPSBX-03<br>(10-12)<br>1/28/03<br>1<br>81.0<br>(ug/kg)  | (PSBX-03<br>(12-14)<br>1/28/03<br>1<br>44.0<br>(ug/kg) | IP\$BX-03<br>(14-16)<br>1/28/03<br>1<br>81.0<br>(ug/kg) | IPSBX-03<br>(16-18)<br>1/28/03<br>1<br>53.0<br>(ug/kg) | IPSBX-03<br>(18-20)<br>1/28/03<br>1<br>76.0<br>(ug/kg) | IP\$BX-04<br>(4-8)<br>1/28/03<br>1<br>56.0<br>(ug/kg)  | iP\$8X-04<br>(6-8)<br>1/28/03<br>1<br>61.0<br>(ug/kg)   | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4048<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Arocior- 1016<br>Arocior- 1221<br>Arocior- 1232<br>Arocior- 1242<br>Arocior- 1248<br>Arocior- 1254<br>Arocior- 1254 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                  | CCCCC                                                   |                                                        | 00000                                                   |                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                  |                                                         | 34<br>34<br>34<br>34<br>34<br>34<br>34          |                                                                            |
| TOTAL PCB3                                                                                                          | 0                                                      | 0                                                       | 0                                                      | 0                                                       | 0                                                      | 0                                                      | 0                                                      | 0                                                       |                                                 | 1,000/10,000*                                                              |
| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                  | IP\$BX-04<br>(8-10)<br>1/28/03<br>1<br>40.0<br>(ug/kg) | (P\$BX-04<br>(10-12)<br>1/28/03<br>1<br>75.0<br>(ug/kg) | iPSBX-04<br>(12-14)<br>1/28/03<br>1<br>65.0<br>(ug/kg) | IPSBX-04<br>(14-16)<br>1/28/03<br>1<br>78.0<br>(ug/kg)  | IPSBX-04<br>(16-18)<br>1/28/03<br>1<br>80.0<br>(ug/kg) | IPSBX-04<br>(18-20)<br>1/28/03<br>1<br>52.0<br>(ug/kg) | IPSBX-05<br>(10-12)<br>1/23/03<br>1<br>52.0<br>(ug/kg) | IP\$BX-05<br>(12-14)<br>1/23/03<br>1<br>78.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
| Arocior- 1018<br>Arocior- 1221<br>Arocior- 1232<br>Arocior- 1242<br>Arocior- 1248<br>Arocior- 1254<br>Arocior- 1254 | 000000                                                 | 000000                                                  | 000000000000000000000000000000000000000                | CCCCC                                                   | ccccc                                                  |                                                        | ccccc                                                  |                                                         | 34<br>34<br>34<br>34<br>34<br>34<br>34<br>34    |                                                                            |
|                                                                                                                     | 0                                                      | 0                                                       | 0                                                      | 0                                                       | 0                                                      | 0                                                      | 0                                                      | 0                                                       | -                                               | 1,000/10,000*                                                              |

QUALIFIERS: U: Compound analyzed for but not detected.

## NOTES:

: Not applicable. -٠

: According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0'-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                  | IPSBX-05<br>(14-16)<br>1/23/03<br>1<br>86.0<br>(ug/kg) | (16-18)<br>(16-18)<br>1/23/03<br>1<br>86.0<br>(ug/kg) | IP\$BX-05<br>(18-20)<br>1/23/03<br>1<br>88.0<br>(ug/kg) | iP\$BX-06<br>(4-6)<br>1/27/03<br>1<br>88.0<br>(ug/kg) | (PSBX-06<br>(6-8)<br>1/27/03<br>1<br>68.0<br>(ug/kg) | IPSBX-06<br>(8-10)<br>1/27/03<br>1<br>53.0<br>(ug/kg)    | IPSBX-06<br>(12-14)<br>1/27/03<br>1<br>66.0<br>(ug/kg) | (PSBX-06<br>(14-16)<br>1/27/03<br>1<br>89.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4048<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Aroclor- 1016<br>Aroclor- 1221<br>Aroclor- 1232<br>Aroclor- 1242<br>Aroclor- 1248<br>Aroclor- 1254<br>Aroclor- 1260 |                                                        | υ<br>υ<br>υ<br>υ<br>υ<br>υ                            | υ<br>υ<br>υ<br>υ                                        | 0<br>0<br>0<br>0<br>0<br>0                            |                                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ                        |                                                        | 34<br>34<br>34<br>34<br>34<br>34<br>34          |                                                                            |
|                                                                                                                     | o                                                      | o                                                     | 0                                                       | 0                                                     | 0_                                                   | 0_                                                       | 0                                                      | 0                                                      |                                                 | 1,000/10,000*                                                              |

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | IPSBX-06<br>(16-18)<br>1/27/03<br>1<br>69.0<br>(ug/kg) | IPSBX-06<br>(18-20)<br>1/27/03<br>1<br>53.0<br>(ug/kg) | IPSBX-07<br>(4-6)<br>1/27/03<br>1<br>87.0<br>(ug/kg) | IPSBX-07<br>(6-8)<br>1/27/03<br>1<br>69.0<br>(ug/kg) | (8-10)<br>(8-10)<br>1/27/03<br>1<br>54.0<br>(ug/kg) | IPSBX-07<br>(10-12)<br>1/27/03<br>1<br>83.0<br>_(ug/kg)_ | IPSBX-07<br>(12-14)<br>1/27/03<br>1<br>54.0<br>(ug/kg) | IP\$BX-07<br>(14-16)<br>1/27/03<br>1<br>47.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS | NYSDEC<br>TAGM 4048<br>Recommended<br>Soli Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|
| Aroclor- 1016                                                                                      | U                                                      |                                                        |                                                      |                                                      |                                                     |                                                          |                                                        |                                                         | 34                                   |                                                                            |
| Arocior- 1221                                                                                      | l · ŭ                                                  | l ŭ                                                    | Ŭ                                                    | Ŭ,                                                   | U U                                                 | Ŭ                                                        | l ŭ                                                    | Ŭ                                                       | 34                                   |                                                                            |
| Aroclor- 1232                                                                                      | Ū                                                      | Ū                                                      | Ŭ                                                    | Ū                                                    | Ŭ                                                   | Ū                                                        | ΙŪ                                                     | Ū                                                       | 34                                   | •                                                                          |
| Aroclor- 1242                                                                                      | U                                                      | υ                                                      | Ū                                                    | U                                                    | Ū                                                   | U                                                        | U U                                                    | U                                                       | 34                                   |                                                                            |
| Aroclor- 1248                                                                                      | υ                                                      | l Ū                                                    | Ū                                                    | Ū                                                    | Ū                                                   | Ū                                                        | l Ū                                                    | ) Ū                                                     | 34                                   |                                                                            |
| Arocior- 1254                                                                                      | Ū                                                      | Ĵ Ū                                                    | Ū                                                    | Ū                                                    | Ū                                                   | Ū                                                        | Ū                                                      | Ū                                                       | 34                                   |                                                                            |
| Aroclor- 1260                                                                                      | U                                                      | U                                                      | U                                                    | U                                                    | U                                                   | Ú                                                        | U                                                      | U                                                       | 34                                   | -                                                                          |
|                                                                                                    | 0                                                      | 0                                                      | 0                                                    | 0                                                    | 0                                                   | 0                                                        | 0                                                      | 0                                                       | -                                    | 1,000/10,000*                                                              |

<u>QUALIFIERS:</u> U; Compound analyzed for but not detected.

NOTES: : Not applicable. -

: According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | IP\$BX-07<br>(16-18)<br>1/27/03<br>1<br>64.0<br>(ug/kg) | IPSBX-07<br>(18-20)<br>1/27/03<br>1<br>41.0<br>(ug/kg) | IP\$BX-08<br>(4-6)<br>1/28/03<br>1<br>77.0<br>(ug/kg) | IPSBX-08<br>(6-8)<br>1/28/03<br>1<br>72.0<br>(ug/kg) | IPSBX-08<br>(8-10)<br>1/28/03<br>1<br>66.0<br>(ug/kg) | IP\$BX-08<br>(10-12)<br>1/28/03<br>1<br>80.0<br>(ug/kg) | IPSBX-08<br>(12-14)<br>1/28/03<br>1<br>78.0<br>(ug/kg) | (14-16)<br>(14-16)<br>1/28/03<br>1<br>76.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soli Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Aroclor- 1016                                                                                      | )<br>U                                                  | U U                                                    | U                                                     | U                                                    | u                                                     | U                                                       | υ                                                      | υ                                                     | 34                                              |                                                                            |
| Arocior- 1221                                                                                      | l Ŭ                                                     | Ŭ                                                      | Ū                                                     | Ŭ                                                    | Ŭ                                                     | l ŭ                                                     | l ŭ                                                    | Ū                                                     | 34                                              |                                                                            |
| Aroclor- 1232                                                                                      | Ū                                                       | Ū                                                      | Ŭ                                                     | U                                                    | Ū Ū                                                   | l ū                                                     | ĪŪ                                                     | l Ū                                                   | 34                                              |                                                                            |
| Aroclor- 1242                                                                                      | U                                                       | U                                                      | U                                                     | υ                                                    | Ū                                                     | Ū                                                       | υ (                                                    | υ                                                     | 34                                              |                                                                            |
| Aroclor- 1248                                                                                      | ) U                                                     | υ (                                                    | υ                                                     | U                                                    | υ                                                     | ( U                                                     | U U                                                    | U                                                     | 34                                              |                                                                            |
| Aroclor- 1254                                                                                      | U U                                                     | U                                                      | U U                                                   | U                                                    | U -                                                   | υ                                                       | υ                                                      | U                                                     | 34                                              |                                                                            |
| Aroclor- 1260                                                                                      | U                                                       | U                                                      | U                                                     | U                                                    | U                                                     | U                                                       | υ                                                      | υ                                                     | 34                                              |                                                                            |
| TOTAL PCBs                                                                                         | 0                                                       | 0                                                      | 0                                                     | 0                                                    | 0                                                     | 0                                                       | 0                                                      | 0                                                     |                                                 | 1,000/10,000*                                                              |
|                                                                                                    |                                                         | IPSBX-08                                               | IPSBX-09                                              | IPŚBX-09                                             | IPSBX-09                                              | IPSBX-09                                                | IPSBX-09                                               | IPSBX-09                                              | LABORATORY                                      | NYSDEC                                                                     |
| SAMPLE DEPTH (FT)                                                                                  | (16-18)                                                 | (18-20)                                                | (4-6)                                                 | (6-8)                                                | (8-10)                                                | (10-12)                                                 | (12-14)                                                | (14-16)                                               | QUANTITATION                                    | TAGM 4046                                                                  |
| DATE OF COLLECTION                                                                                 | 1/28/03                                                 | 1/28/03                                                | 1/29/03                                               | 1/29/03                                              | 1/29/03                                               | 1/29/03                                                 | 1/29/03                                                | 1/29/03                                               | LIMITS                                          | Recommended                                                                |
| DILUTION FACTOR                                                                                    | 1                                                       | 1                                                      | 1                                                     | 1                                                    | 1                                                     | 1                                                       | 1                                                      | 1                                                     |                                                 | Soil Cleanup                                                               |
|                                                                                                    | 40.0                                                    |                                                        |                                                       | 85.0                                                 | 600                                                   |                                                         | 40.0                                                   | 80.0                                                  |                                                 | 0.5.1                                                                      |

| SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | (16-18)<br>1/28/03<br>1<br>48.0<br>(ug/kg) | (18-20)<br>1/28/03<br>1<br>90.0<br>(ug/kg) | (4-6)<br>1/29/03<br>1<br>84.0<br>(ug/kg) | (6-8)<br>1/29/03<br>1<br>85.0<br>(ug/kg) | (8-10)<br>1/29/03<br>1<br>52.0<br>(ug/kg) | (10-12)<br>1/29/03<br>1<br>69.0<br>(ug/kg) | (12-14)<br>1/29/03<br>1<br>48.0<br>(ug/kg) | (14-16)<br>1/29/03<br>1<br>89.0<br>(ug/kg) | QUANTITATION<br>LIMITS<br>(ug/kg) | TAGM 4046<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
|---------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------|------------------------------------------------------------------|
| Aroclor- 1016                                                                         |                                            |                                            | 11                                       |                                          |                                           | U                                          |                                            | U                                          | 34                                |                                                                  |
|                                                                                       |                                            | ŭ                                          | U U                                      | i i                                      |                                           | U U                                        |                                            | l ü                                        |                                   | ****                                                             |
| Arocior- 1221                                                                         |                                            | U                                          | U                                        |                                          | U U                                       | U                                          | ) <u> </u>                                 | 0                                          | 34                                |                                                                  |
| Arocior- 1232                                                                         | U U                                        | U                                          | U                                        | U                                        | U                                         | U                                          | U                                          | U                                          | 34                                | ****                                                             |
| Aroclor- 1242                                                                         | U                                          | U                                          | U                                        | U                                        | ) U                                       | U                                          | ) U                                        | U                                          | 34                                |                                                                  |
| Aroclor- 1248                                                                         | υ                                          | U                                          | U                                        | U                                        | U                                         | U                                          | Ι υ                                        | U                                          | 34                                | ****                                                             |
| Arocior- 1254                                                                         | υ                                          | U                                          | U                                        | U                                        | υ                                         | U                                          | l u                                        | U                                          | 34                                |                                                                  |
| Aroclor- 1260                                                                         | U                                          | U                                          | U                                        | U                                        | U                                         | Ū                                          | Ū                                          | U                                          | 34                                |                                                                  |
| TOTAL PCB:                                                                            | 0                                          | 0                                          | 0                                        | 0                                        | 0                                         | 0                                          | 0                                          | 0                                          |                                   | 1,000/10,000*                                                    |

QUALIFIERS: U: Compound analyzed for but not detected.

## NOTES:

: Not applicable. ... .

: According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0'-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

#### SUBSURFACE SOIL POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                  | IPSBX-09<br>(16-18)<br>1/29/03<br>1<br>43.0<br>(ug/kg)                                      | <b>IPSBX-09</b><br>(18-20)<br>1/29/03<br>1<br>77.0<br>(ug/kg) | IPSBX-10<br>(8-10)<br>1/23/03<br>1<br>50.0<br>(ug/kg)  | IPSBX-10<br>(10-12)<br>1/23/03<br>1<br>72.0<br>(ug/kg) | iPSBX-10<br>(12-14)<br>1/23/03<br>1<br>86.0<br>(ug/kg) | IPSBX-10<br>(14-16)<br>1/23/03<br>1<br>80.0<br>(ug/kg)             | IP\$BX-10<br>(16-18)<br>1/23/03<br>1<br>82.0<br>(ug/kg)                                     | IPSBX-11<br>(4-6)<br>1/27/03<br>1<br>76.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Aracior- 1018<br>Arocior- 1221<br>Arocior- 1232<br>Arocior- 1242<br>Arocior- 1248<br>Arocior- 1254<br>Arocior- 1260 | υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ                                         | ນ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ           | υυυυ<br>υυυυυ                                          | υυυυ                                                   |                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט | υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ            | 34<br>34<br>34<br>34<br>34<br>34<br>34          |                                                                            |
| TOTAL PCBs                                                                                                          | 0                                                                                           | 0                                                             | 0                                                      | 0                                                      | 0                                                      | 0                                                                  | 0                                                                                           | 0                                                    | *=                                              | 1,000/10,000*                                                              |
| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS                  | IPSBX-11<br>(6-8)<br>1/27/03<br>1<br>83.0<br>(ug/kg)                                        | (PSBX-11<br>(8-10)<br>1/27/03<br>1<br>43.0<br>(ug/kg)         | iPSBX-11<br>(10-12)<br>1/27/03<br>1<br>82.0<br>(ug/kg) | IPSBX-11<br>(12-14)<br>1/27/03<br>1<br>92.0<br>(ug/kg) | iPSBX-11<br>(14-16)<br>1/27/03<br>1<br>87.0<br>(ug/kg) | IPSBX-11<br>(16-18)<br>1/27/03<br>1<br>82.0<br>(ug/kg)             | iPSBX-11<br>(18-20)<br>1/27/03<br>1<br>83.0<br>(ug/kg)                                      | IPSBX-12<br>(4-8)<br>1/23/03<br>1<br>65.0<br>(ug/kg) | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soli Cleanup<br>Objective<br>(ug/kg) |
| Aroclor- 1016<br>Aroclor- 1221<br>Aroclor- 1232<br>Aroclor- 1242<br>Aroclor- 1248<br>Aroclor- 1254<br>Aroclor- 1260 | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0    | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ              | ט<br>ככי<br>כ                                          | ນ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ                                    | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ                                                                  | υ<br>υ<br>υ<br>υ<br>υ                                | 34<br>34<br>34<br>34<br>34<br>34<br>34<br>34    |                                                                            |
| TOTAL PCBs                                                                                                          | a                                                                                           | 0                                                             | 0                                                      | 0                                                      | 0                                                      | 0                                                                  | 0                                                                                           | 0                                                    |                                                 | 1,000/10,000*                                                              |

<u>QUALIFIERS:</u> U: Compound analyzed for but not detected.

and the second second

## NOTES:

٠

: Not applicable. ---

: According to NYSDEC TAGM 4048 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0'-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

#### ISLAND PARK SUBSTATION LONG ISLAND RAIL ROAD CONSTRUCTION EXCAVATION INVESTIGATION

### SUBSURFACE SOIL POLYCHLORINATED BIPHENYLS (PCBs)

| SAMPLE ID<br>SAMPLE DEPTH (FT)<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS<br>UNITS | IPSBX-12<br>(6-8)<br>1/23/03<br>1<br>82.0<br>(ug/kg) | (PSBX-12<br>(8-10)<br>1/23/03<br>1<br>87.0<br>(ug/kg) | IPSBX-12<br>(10-12)<br>1/23/03<br>1<br>87.0<br>(ug/kg) | IP\$BX-12<br>(12-14)<br>1/23/03<br>1<br>90.0<br>(ug/kg) | IP\$BX-12<br>(14-16)<br>1/23/03<br>1<br>89.0<br>(ug/kg) | IPSBX-12<br>(16-18)<br>1/23/03<br>1<br>80.0<br>(ug/kg) | IPSBX-12<br>(18-20)<br>1/23/03<br>1<br>86.0<br>(ug/kg) |   | LABORATORY<br>QUANTITATION<br>LIMITS<br>(ug/kg) | NYSDEC<br>TAGM 4046<br>Recommended<br>Soil Cleanup<br>Objective<br>(ug/kg) |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---|-------------------------------------------------|----------------------------------------------------------------------------|
| Aroclor- 1016                                                                                      |                                                      |                                                       |                                                        | 11                                                      | · · · -                                                 |                                                        |                                                        |   | 34                                              |                                                                            |
| Arocior- 1221                                                                                      | i i                                                  |                                                       | U .                                                    | U U                                                     | ŭ                                                       | 0                                                      |                                                        |   | 34                                              |                                                                            |
| Aroclor- 1232                                                                                      | i ŭ                                                  | Ŭ Ŭ                                                   | Ŭ                                                      | Ŭ                                                       | Ŭ                                                       | Ŭ                                                      | Ŭ                                                      |   | 34                                              |                                                                            |
| Aroclor- 1242                                                                                      | Ů                                                    | Ŭ                                                     | Ŭ                                                      | υŬ                                                      | Ŭ                                                       | บั                                                     | Ŭ                                                      |   | 34                                              | ****                                                                       |
| Aroclor- 1248                                                                                      | ĴŪ                                                   | Ū                                                     | Ŭ                                                      | Ŭ                                                       | Ŭ                                                       | Ŭ                                                      | Ŭ                                                      | 1 | 34                                              |                                                                            |
| Arocior- 1254                                                                                      | Ŭ                                                    | υ                                                     | · U                                                    | Ŭ                                                       | Ŭ                                                       | Ŭ                                                      | Ū                                                      |   | 34                                              |                                                                            |
| Arocior- 1260                                                                                      | Ű                                                    | Ŭ                                                     | Ŭ                                                      | Ŭ                                                       | Ū                                                       | Ŭ                                                      | Ū                                                      |   | 34                                              |                                                                            |
|                                                                                                    | 0                                                    | 0                                                     | 0                                                      | 0                                                       | 0                                                       | 0                                                      | 0                                                      |   |                                                 | 1,000/10,000*                                                              |

QUALIFIERS:

NOTES:

U: Compound analyzed for but not detected.

: Not applicable.

: According to NYSDEC TAGM 4046 Recommended Soil Cleanup Objective, 1,000 ug/kg is utilized for surface soil [0'-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

5

Appendix F

## **APPENDIX F**

# OCTOBER 4, 2004 LETTER REPORT ENTITLED, "REMOVAL OF STAGED SOIL AT THE LONG ISLAND RAIL ROAD MANHASSET SUBSTATION"

Jamaica Station Jamaica, NY 11435-4380 718-558-7711 Kenneth J. Bauer President



October 4, 2004

Ms. Tara L. Diaz New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Eastern Remedial Action 625 Broadway, 11th Floor Albany, NY 12233-7015

Re: Removal of Staged Soil at the Long Island Rail Road Manhasset Substation D&B No. 2015

Dear Ms. King:

The purpose of this correspondence is to document the soil removal activities which were conducted at the Long Island Rail Road (LIRR) Manhasset Substation in June of 2004, and to present the New York State Department of Environmental Conservation (NYSDEC) with the analytical results associated with the post-removal sampling activities. The following provides a brief review of background information concerning the deposition of soil at this site, a summary of the soil removal activities and post-removal sampling activities, as well as an evaluation of the post-removal analytical data.

## Background

While undertaking a drainage improvement program at the LIRR Manhasset Train Station, located approximately 1,800 feet east of the Manhasset Substation site, the LIRR Capital Program Management Department (LIRR CPM) excavated soil from an area of the train station that historically received storm water runoff from both on-site and off-site properties. In order to complete the project, the LIRR CPM temporarily staged the excavated soil along with miscellaneous construction debris at the LIRR Manhasset Substation site.

Immediately upon notification that the LIRR CPM had temporarily staged soil at the Manhasset Substation site, the LIRR's System Safety Department along with representatives of Dvirka and Bartilucci Consulting Engineers (D&B) conducted site inspections of the substation and train station. At that time, it was agreed to collect several grab and composite soil samples to assess the nature and extent of the staged soil and to determine if the soil had been staged in areas of known mercury contamination as identified by the ongoing site investigation program.

Seven piles of soil were identified at the Manhasset Substation site and one pile of soil was identified at the Manhasset Train Station. As mentioned above, several soil samples were collected to characterize the staged soil. D&B collected a total of nine grab samples and nine composite soil

samples. In addition, one grab and one composite background sample was collected from a random, undisturbed area 200 feet east of the eastern border of the Manhasset Substation site. The results of this sampling effort were presented in the December 10, 2003, letter report provided to the NYSDEC.

As presented in the December 10, 2003, letter report, the soil samples collected at that time exhibited polycyclic aromatic hydrocarbons (PAHs) at relatively low concentrations but above respective NYSDEC soil cleanup objectives, including benzo(a)anthracene, chrysene, benzo(b) fluoranthene, benzo(a)pyrene and dibenzo(a,h)anthracene. In addition, several TAL metals, including arsenic, beryllium, copper, mercury, nickel, selenium and zinc were also detected above respective NYSDEC soil cleanup objectives. In general, however, many of the metal and PAHs detected in the samples collected from the staged soil were at concentrations that were comparable to that of the background samples. Furthermore, as explained in the December 10, 2003, letter report, the staged soil was originally excavated from an area of the Manhasset Train Station that had historically received storm water runoff from off-site commercial and industrial properties. USEPA studies have demonstrated that the PAHs and metals detected in the soil samples are commonly found at similar concentrations in soil that has been subjected to this type of runoff (USEPA Ref. Document 600/SR-94/051).

Based on the findings of the site inspections and sampling program, the following recommendations were made:

- All stockpiled soil north of the Port Washington rail line be removed and transported offsite for disposal.
- Upon removal of the staged soil at the Manhasset Substation site, a post-removal endpoint sampling program be undertaken to ensure all material has been successfully removed.
- Soil stockpiled at the Manhasset Train Station should be removed for off-site disposal.

A post-soil removal sampling plan was prepared by D&B and approved by the NYSDEC via e-mail on January 21, 2004. This plan called for the collection of 54 surface soil samples throughout the area in which soil had been staged. As had been recommended by the NYSDEC, approximately half of the samples were to be analyzed for TAL metals and PAHs. The remainder of the samples were to be analyzed solely for mercury.

## Soil Removal and Post-Removal Endpoint Sampling

The staged soil at the Manhasset Substation and Manhasset Train Station sites was removed by the LIRR on June 5 through June 7 of 2004. Two mini "bobcat"-style loaders were utilized to move the soil to the site's western gate where a full-sized front-end loader was employed to load the soil onto

triaxle dump trucks for disposal. As recommended in the December 10, 2003, letter report, all soil staged to the north of the Port Washington rail line, including Piles I through 4, "West Pile" and any soil spread at grade, was removed from the Manhasset Substation site for disposal. A figure depicting the former location of each soil pile is presented in Attachment 1. In addition, the soil stockpiled adjacent to the residential area at the Manhasset Train Station was removed for disposal. In total, 335.30 tons of nonhazardous soil was transported off-site for disposal. A copy of the nonhazardous waste manifests are included as Attachment 2 of this correspondence. Photographs which depict the condition of the Manhasset substation site prior to soil removal are included as Attachment 3. Photographs which depict the site after the soil had been removed are provided as Attachment 4.

After completing the soil removal activities, surface soil samples were collected between 0 and 2 inches below ground surface throughout the area in which the soil had been staged in accordance with the NYSDEC-approved sampling plan. A total of 48 post-removal samples were collected. It should be noted that, due to minor variation between the estimated and actual areal extent of the site which contained staged soil, six fewer samples were required to sufficiently cover the staged soil area with a grid-like sample pattern than had been prescribed in the approved sampling plan. Of the 48 samples collected, 25 were analyzed for TAL metals and PAHs and 23 were analyzed solely for mercury. The location of each post-removal sample is depicted on the figure provided as Attachment 1 of this letter. Analytical summary tables are provided in Attachment 5.

## Evaluation of Post-Removal Soil Data

The following presents a discussion of the analytical results of the post-removal samples:

• Polycyclic Aromatic Hydrocarbons (PAHs)

In general, PAHs were found at relatively low concentrations with several individual PAHs detected in excess of their respective NYSDEC soil cleanup objectives. However, none of the samples were found to exceed the NYSDEC TAGM 4046 Recommended Soil Cleanup Objective for total PAHs of 100,000 ug/kg, and only 1 of the 25 samples contained total CaPAHs at a concentration which exceeded the NYSDEC CaPAH cleanup objective of 10,000 ug/kg. Individual PAHs which exceeded the NYSDEC cleanup objectives include the following:

- Benzo(a)anthracene
- Chrysene
- Benzo(b)fluoranthene
- Benzo(a)pyrene
- Dibenzo(a,h)anthracene

It is important to note that the PAHs listed above were also detected in background samples collected and analyzed as part of this project. PAHs are common byproducts of the partial combustion of fossil fuels such as coal and diesel fuel, both of which have been used historically on the Port Washington rail line. Furthermore, as discussed above, the temporarily staged soil that was originally excavated from an area of the Manhasset Train Station historically received storm water runoff from the LIRR right-of-way, as well as off-site commercial and industrial properties. Numerous studies have demonstrated that storm water draining from industrial and commercial properties contains a wide range of contaminants including metals and PAHs (USEPA Ref. Document 600/SR-94/051).

• TAL Metals

Several metals, including arsenic, beryllium, copper, mercury, nickel, selenium, and zinc were detected in excess of the NYSDEC soil cleanup objectives in the majority of the 25 samples for which TAL metals were analyzed.

It is important to note that beryllium, copper, selenium, mercury and zinc were also observed in background samples collected as part of this project and are commonly encountered in surficial soil associated with or adjacent to railroad operations and/or various industrial activities for an extended period of time. For example, arsenic is known to have been historically used in the manufacture of herbicides that may have been applied to LIRR property as part of routine maintenance and is also historically a major constituent of wood preservative formulations. Furthermore, similar to PAHs, the abovelisted metals have been shown to be present in storm water runoff (USEPA Ref. Document 600/SR-94/051).

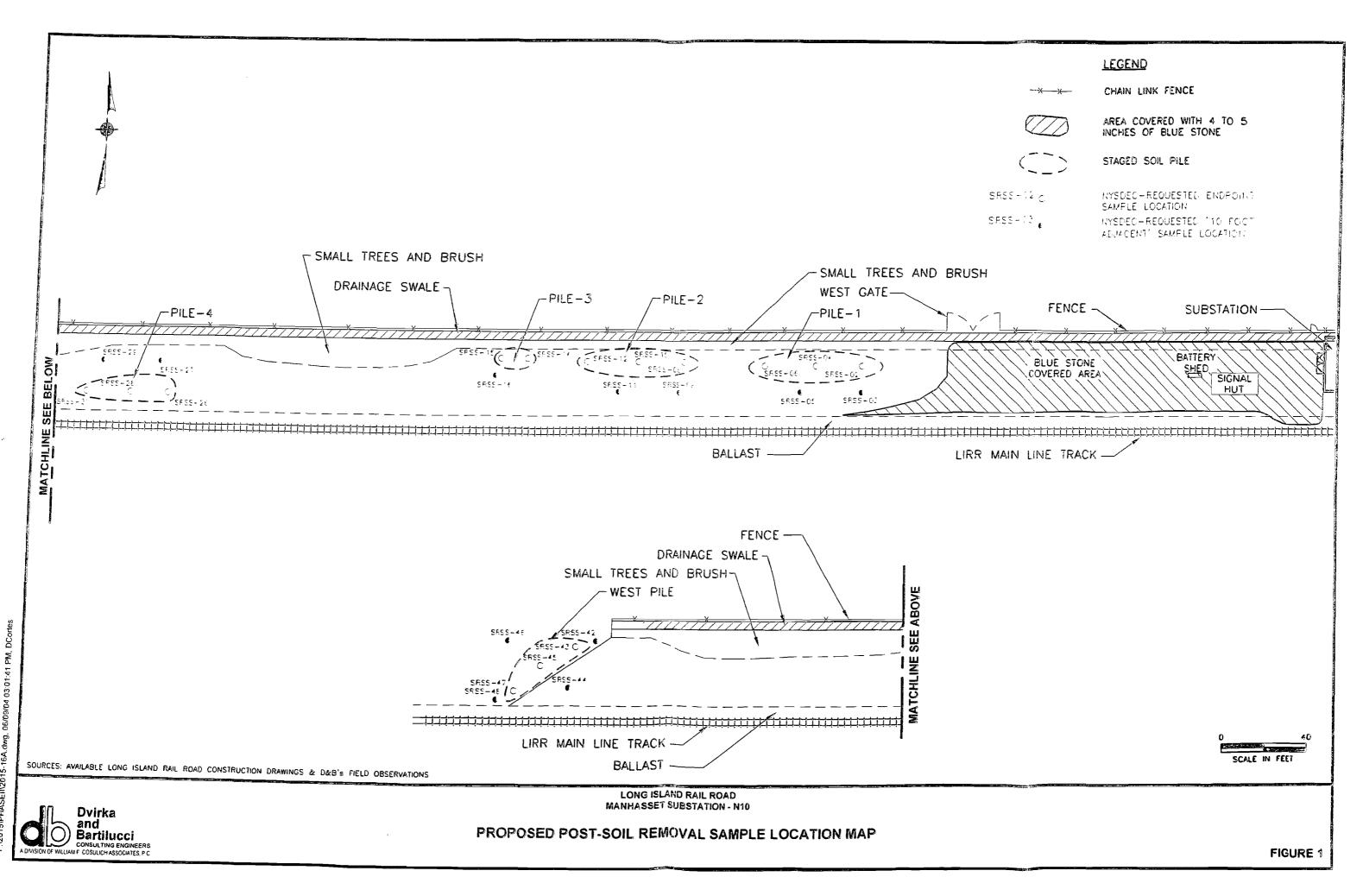
As discussed above, 23 samples were collected solely for analysis of mercury. The samples were collected in a grid like pattern traversing the entire area where soil had been staged. Based on the analytical results, 21 out of the 23 samples exceeded the NYSDEC soil cleanup objective of 0.1 mg/kg for mercury. However, of these samples, 14 did not exceed a concentration of 1 mg/kg.

While mercury was detected in a number of soil samples above the NYSDEC soil cleanup objective, the objective of the post-soil removal sampling program within this area was to confirm that surface soil from the adjacent mercury-impacted drainage swale was not dispersed from this area as the result of the soil staging activities. Based on the above results, and in consideration of the fact that samples within the swale typically have been found to contain mercury up to concentrations of 10 mg/kg, it is apparent that soil from the swale had not been disturbed during the soil staging activities.

## Conclusions and Recommendations

Soil recommended for off-site transportation and disposal has been successfully removed from the Manhasset Substation and Train Station sites by the LIRR, and properly disposed. In addition, an aggressive post-removal endpoint sampling program was completed in accordance with the NYSDEC-approved sampling plan. The findings of the post-removal sampling program show that surface soil at the site contains concentrations of PAHs and TAL metals typical of background conditions for railroad rights-of-way. Furthermore, based on the analytical results, there is no indication that mercury-impacted surface soil within the drainage swale at the site has been disturbed and/or dispersed to adjacent areas as a result of the soil staging activities. As a result, it can be concluded that all appropriate actions have been completed and no further action is warranted with regard to this matter.

If you have any questions or comments, please do not hesitate to contact me at (718) 558-3252.


Very muly yours.

Lewis D. Wunderlich Environmental Engineer

LDW/ASA(t)/abj Attachments cc: G. Bobersky (NYSDEC) R. Mitchell (NYSDOH) C. Channer (MTA) W. Keenan (LIRR) C. Komandis (LIRR) R. Walka (D&B) T. Fox (D&B) • 2015LDW07084TLK.doc(R07) **ATTACHMENT 1** 

SOIL PILE AND SAMPLE LOCATION MAP

+2015\LDW07084TLK.doc(R03)



06/09/04 \2015-16A.dwg, 1201

ATTACHMENT 2

NONHAZARDOUS WASTE MANIFESTS

-

•2015\LDW07084TLK.doc(R03)

| G. PENZA & SONS, INC.                                                          | DATE: Sept.9, 2004      | JOB NO: |  |  |
|--------------------------------------------------------------------------------|-------------------------|---------|--|--|
| 457 Brook Avenue • Deer Park, NY 11729<br>Tel. 631-242-5115 • Fax 631-242-4146 | ATTENTION: Paul Dietlin |         |  |  |
|                                                                                | RE: LIRR Contrac        | t# 5840 |  |  |
| TO: Long Island Rail Road                                                      | Drainage Improvements   |         |  |  |
| 90-27 Sutphin Blvd.                                                            |                         |         |  |  |
| Jamaica, NY 11435                                                              |                         |         |  |  |
|                                                                                |                         |         |  |  |

## GENTLEMEN:

| WE ARE SENDING YOU | C Attached | Under separate | cover via | _the following items: |
|--------------------|------------|----------------|-----------|-----------------------|
| □ Shop Drawings    | Prints     | Plans          | □ Samples | Specifications        |
| Copy of Letter     | 🗆 Change   | Order 🛛 Manife | sts       |                       |

| COPIES | DATE | NO. | DESCRIPTION                               |  |
|--------|------|-----|-------------------------------------------|--|
| 2      |      |     | Material Manifests (Manhasset Substation) |  |
|        | _    |     |                                           |  |
|        |      |     |                                           |  |
|        |      |     |                                           |  |
|        |      |     |                                           |  |

## THESE ARE TRANSMITTED as checked below:

| <ul> <li>For approval</li> <li>For your use</li> <li>As requested</li> <li>For review and comment</li> </ul> | <ul> <li>Approved as submitted</li> <li>Approved as noted</li> <li>Returned for corrections</li> </ul> |                | copies for approval copies for distribution corrected prints |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------|
| G FOR BIDS DUE                                                                                               |                                                                                                        | JRNED AFTER LO | DAN TO US                                                    |
| REMARKS:                                                                                                     |                                                                                                        |                |                                                              |
|                                                                                                              |                                                                                                        |                |                                                              |

\_\_\_\_\_

\_\_\_\_\_

COPY TO:\_\_\_\_\_

SIGNED: Michael Esopa





# Letter of Transmittal

| From:         | Paul Dietlin           |               |                                         | Date:                         | 09/13/2004       | Job No.:                                   |  |  |
|---------------|------------------------|---------------|-----------------------------------------|-------------------------------|------------------|--------------------------------------------|--|--|
|               | Project Manage         | er, Capital   | Program Management                      | Attn.:                        | Lew Wunde        | rlich                                      |  |  |
| To:           | Lew Wunderlic          |               |                                         | Re:                           | PN-36 ROW        | / Drainage                                 |  |  |
|               | Environmental          | Engineer -    | System Safety                           |                               | Manhasset        | Substation Soil                            |  |  |
|               | Mailcode 3147          |               |                                         | _                             |                  |                                            |  |  |
|               |                        |               |                                         |                               |                  |                                            |  |  |
| Transm        | itted Herewith:        |               | X Attached:                             | Under                         | a Separate C     | ov <b>er Via</b> :                         |  |  |
|               | Shop Drawi             | ngs           | Change Order                            | 90% Design                    |                  |                                            |  |  |
|               | Copy of Lett           | er            | Plans                                   | 🔲 30 % D                      | esign            | 100% Design                                |  |  |
|               | Prints                 |               | Samples                                 | 60% De                        | esign            | Other <u>Manifest / Certs.</u>             |  |  |
| Copie         | s Date                 | No.           |                                         | De                            | scription        |                                            |  |  |
| 1 set         |                        |               | Material Manifests - Manha              | sset Substation               |                  |                                            |  |  |
| 1 set         |                        |               | Manhasset Soil Recycling Co             | ertificates                   |                  |                                            |  |  |
|               |                        |               |                                         |                               |                  |                                            |  |  |
|               |                        |               |                                         | <b>-</b>                      |                  |                                            |  |  |
|               |                        |               |                                         | <u>_</u>                      |                  |                                            |  |  |
|               |                        |               |                                         | <u> </u>                      | <u>_</u> _       |                                            |  |  |
|               |                        |               |                                         | _                             |                  |                                            |  |  |
| L             |                        |               |                                         |                               |                  |                                            |  |  |
| <u>Transm</u> | <u>uittal Purpose:</u> |               |                                         |                               |                  |                                            |  |  |
|               | For Approva            | al            | Approved                                | Resubr                        | nitCopie         | s f <b>or Ap</b> proval                    |  |  |
|               | For Review &           | Comment       | Approved As Noted                       | SubmitCopies for Distribution |                  |                                            |  |  |
|               | As Requeste            | eđ            | Revise & Resubmit                       | Return Corrected Copies       |                  |                                            |  |  |
|               | X For Your Us          | e             | As Information                          |                               |                  |                                            |  |  |
|               | For Bids Du            |               | —                                       | Returni                       | ing Borrowed     | Prints                                     |  |  |
| Romarl        | cs / Comments          | Should you    | have any questions please               | contact me o                  | r Ted Dogonni    | ick 631-261-5395                           |  |  |
|               | <u>807-0755.</u>       |               |                                         |                               |                  |                                            |  |  |
|               |                        |               |                                         |                               |                  |                                            |  |  |
|               |                        |               |                                         |                               |                  |                                            |  |  |
|               |                        |               |                                         |                               |                  |                                            |  |  |
|               |                        |               |                                         |                               | $\overline{}$    |                                            |  |  |
| Convil        | o: C. Komandi          | s (Transmit   |                                         |                               | -1               | Λ                                          |  |  |
| Copy I        | W. Keenan              | o ( riai onin | (), (), (), (), (), (), (), (), (), (), | Signed:                       | 1ª               |                                            |  |  |
|               | File                   |               |                                         | v                             | - <del>f</del>   | Paul Dietlin                               |  |  |
| MTA Lor       | ng Island Rail Road i  | is an agency  | of the Metropolitan Transportati        | ion Authority, S              | tate of New York | ROWTransmittalmanhassetsoil.XLS<br>MFS/mfs |  |  |

## G. PENZA & SONS, INC.

•

457 Brook Avenue Deer Park, NY 11729 (631) 242-5115 • Fax (631) 242-4146

## FAX TRANSMITTAL

| Fax:261-5396                                                                                                                                             | Date:        | 9-10-04                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------|--|
| From:       Michael Esopa         Pages including this cover sheet:       3         Comments:       3         RE: Contract # 5840; Drainage improvements | To:          | LIRR                             |  |
| From:       Michael Esopa         Pages including this cover sheet:       3         Comments:       3         RE: Contract # 5840; Drainage improvements | Attn:        | Paul Dietlin                     |  |
| Comments:<br>RE: Contract # 5840; Drainage improvements                                                                                                  | Fax:         | 261-5396                         |  |
| Comments:<br>RE: Contract # 5840; Drainage improvements                                                                                                  | From:        | Michael Esopa                    |  |
| RE: Contract # 5840; Drainage improvements                                                                                                               | Pages includ | g this cover sheet: <u>3</u>     |  |
|                                                                                                                                                          | RE: Con      | ct # 5840; Drainage improvements |  |

Should there be any problem with this transmission or should you have any questions, please call the above telephone number. Thank you.

Cloan Earth of Castoret, Inc. 24 Middleson Avenue, Carboret, NI

:

ì



Phone: 732-541-890) Fax: 732-541-810;5

#### Clean Earth of Carteret, Inc. 24 Middlesex Avenue Carteret, NJ 07008 (732) 541-8909 Certificate of Recycling

This is to certify that the soil delivered to Clean Earth of Carteret from the site described in the contaminated soil profile sheet that was issued the Approval Number listed below, has been duly treated and rendered safe for beneficial reuse in accordance with the permit to operate issued to Clean Earth of Carteret, Inc. by the New Jersey Department of Environmental Protection.

Authorized Signature

C. David Morse, Technical Operations Manager 10 September 2004

Approval #: Generator: Site Location:

Total Tons This Certificate: Total Tickets This Certificate: Treatment Date or Dates: 240521 Long Island Railroad Manhasset Substation Manhasset, NY

243.58 8 6/3/04

b' 05

Clean Earth of Carteret, Inc.

24 Middlesex Avonue, Carteret, NJ

1



Phone: 732-541-890! Fax: 732-541-810!

#### Clean Earth of Carteret, Inc. 24 Middlesex Avenue Carteret, NJ 07008 (732) 541-8909 Certificate of Recycling

This is to certify that the soil delivered to Clean Earth of Carteret from the site described in the contaminated soil profile sheet that was issued the Approval Number listed below, has been duly treated and rendered safe for beneficial reuse in accordance with the permit to operate issued to Clean Earth of Carteret, Inc. by the New Jersey Department of Environmental Protection.

Authorized Signature

C. David Morse, Technical Operations Manager 10 September 2004

Approval #: Generator: Site Location:

Total Tons This Certificate: Total Tickets This Certificate: Treatment Date or Dates: 240521 Long Island Railroad Manhasse: Substation Manhasset, NY

91.72 4 6/4/04

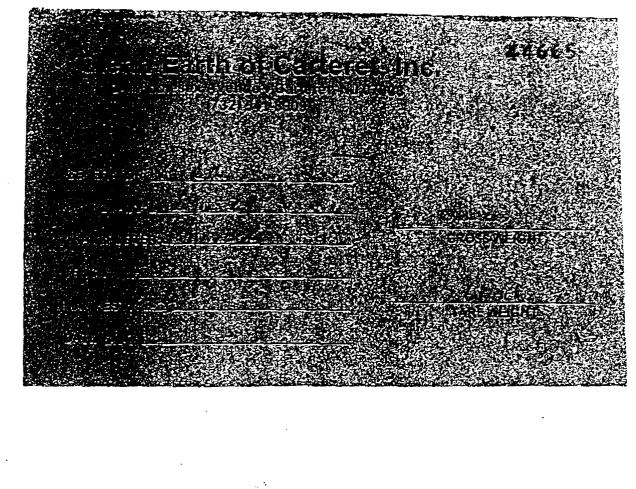
b' 63

FAX NO.

SEP-10-2004 FRI 11:41 AM

\$

É




Middlesex Avenue Carteret, NJ 07008 (732) 541-8909

# TREATMENT INVOICE LOAD LIST

| invoice#  | A-11123 |  |
|-----------|---------|--|
| Approval# | 240521  |  |
| Generator | LIRR    |  |
|           |         |  |

| 4+6+9 $45826$ $6/3/04$ 1 $28.98$ N/A $4+667$ $45842$ $6/3/04$ 3 $33.15$ N/A $4+667$ $45844$ $6/3/04$ 3 $31.00$ N/A $4+658$ $45851$ $6/3/04$ 2 $31.25$ N/A $4+658$ $45851$ $6/3/04$ 2 $31.25$ N/A $4+674$ $45857$ $6/3/04$ 4 $30.82$ N/A $4+674$ $45861$ $6/3/04$ 6 $27.75$ N/A $4+714$ $45926$ $6/4/04$ 7 $29.38$ N/A $4+7474$ $45926$ $6/4/04$ 7 $29.38$ N/A $4+7474$ $45927$ $6/4/04$ 8 $22.65$ N/A $4+7477$ $45931$ $6/4/04$ 9 $22.80$ N/A | TICKET #                                        | Load# | Rec. Date B/L | <u>Manifest#</u> | Net Tons Si | urcharge |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------|---------------|------------------|-------------|----------|
| 4+469 $45844$ $6/3/04$ $3$ $31.00$ $N/A$ $4+658$ $45851$ $6/3/04$ $2$ $31.25$ $N/A$ $4+674$ $45857$ $6/3/04$ $4$ $30.82$ $N/A$ $4+674$ $45857$ $6/3/04$ $4$ $30.82$ $N/A$ $4+674$ $45861$ $6/3/04$ $5$ $31.25$ $N/A$ $4+674$ $45888$ $6/3/04$ $6$ $27.75$ $N/A$ $4+774$ $45926$ $6/4/04$ $7$ $29.38$ $N/A$ $4+748$ $45927$ $6/4/04$ $8$ $22.65$ $N/A$                                                                                         | 44649                                           | 45826 | 6/3/04        | 1                | 28.98       | N/A      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                         | 44665                                           | 45842 | 6/3/04        | 3                | 33.15       | N/A      |
| 41030 $45857$ $6/3/04$ $4$ $30.82$ $N/A$ $44676$ $45861$ $6/3/04$ $5$ $31.25$ $N/A$ $44714$ $45888$ $6/3/04$ $6$ $27.75$ $N/A$ $44714$ $45926$ $6/4/04$ $7$ $29.38$ $N/A$ $44714$ $45927$ $6/4/04$ $8$ $22.65$ $N/A$                                                                                                                                                                                                                          | 4469                                            | 45844 | 6/3/04        | 3                | 31.00       | N/A      |
| 14676     45861     6/3/04     5     31.25     N/A       14676     45888     6/3/04     6     27.75     N/A       14771     45926     6/4/04     7     29.38     N/A       14771     45926     6/4/04     7     29.38     N/A       14774     45927     6/4/04     8     22.65     N/A                                                                                                                                                        | 44658                                           | 45851 | 6/3/04        | 2                | 31.25       | N/A      |
| 140 10     45888     6/3/04     6     27.75     N/A       140 10 1     45926     6/4/04     7     29.38     N/A       140 10 1     45927     6/4/04     8     22.65     N/A                                                                                                                                                                                                                                                                   | 44671                                           | 45857 | 6/3/04        | 4                | 30.82       | N/A      |
| 44711         45888         6/3/04         6         27.75         N/A           44743         45926         6/4/04         7         29.38         N/A           44743         45927         6/4/04         8         22.65         N/A                                                                                                                                                                                                      | 44626                                           | 45861 | ر 6/3/04      | 5                | 31.25       | N/A      |
| 44747 45926 6/4/04 7 29.38 N/A<br>44748 45927 6/4/04 8 22.65 N/A                                                                                                                                                                                                                                                                                                                                                                              | and the second state of the second state of the | 45888 | 6/3/04        | 6                | 27.75       | N/A      |
| 45927 6/4/04 8 22.65 N/A                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 | 45926 | 6/4/04        | 7                | 29.38       | N/Ã      |
| 4441(7 45931 6/4/04 9 22.80 N/A                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | 45927 | 6/4/04        | 8                | 22.65       | N/A      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44772                                           | 45931 | 6/4/04        | 9                | 22.80       | N/A      |
| 44754 45933 6/4/04 9 30.22 N/A                                                                                                                                                                                                                                                                                                                                                                                                                | 44454                                           | 45933 | 6/4/04        | 9                | 30.22       | N/A      |
| 44760 45939 6/4/04 10 16.05 N/A                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | 45939 | 6/4/04        | 10 ?             | 16.05       | N/A      |



· · ·

· · ·

• • •

·

| ALLIEU ENVIKUNMENTAL G                                                                                   | ROUP. INC. 2                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2163 MERRICK AVE., MERRICK, NY 11568 • TEL: 1-800-969-E                                                  | DIRT • FAX: 516-867-6480                                                                                                                                        |
| NON-HAZARDOUS MATERIA                                                                                    | AL MANIFEST                                                                                                                                                     |
| GEN                                                                                                      | IERATOR                                                                                                                                                         |
| Generator Name L.T. R.R. Manhausel Substation                                                            | Shipping Location Same                                                                                                                                          |
| Address                                                                                                  | Address                                                                                                                                                         |
| Harahausel, NX                                                                                           |                                                                                                                                                                 |
| Phone No                                                                                                 |                                                                                                                                                                 |
| Description of Material                                                                                  | Codes Gross Weight                                                                                                                                              |
| Approval<br>Number<br>240,521 Destined For Recycling                                                     | Tare Weight Net Weight (Tons)                                                                                                                                   |
| 24052/ Veslined For Recycling                                                                            | 9 Net Weight                                                                                                                                                    |
| and accurately described above, classified, packaged<br>applicable regulations.                          | CFR Part 172 or any applicable state law, has been fully<br>and is in proper condition for transportation according to<br><u>Shipment Date</u><br>Shipment Date |
| Transporter Name Rainbow                                                                                 | Driver Name (Print) Leonardo ArisTizaba/                                                                                                                        |
| Address Network NJ                                                                                       | Vehicle License No./State AH 471 R                                                                                                                              |
|                                                                                                          | Truck Number 804                                                                                                                                                |
| State Permit #                                                                                           |                                                                                                                                                                 |
| I hereby certify that the above named material was<br>picked up at the generator site listed above.<br>Λ | I hereby certify that the above named material was delivered without incident to the destination listed below.                                                  |
| Leonardo Arilighe 6-3-04<br>Driver Signature Shipment Date                                               | florende Dreifeit 6-3-04<br>Driver Signature Delivery Date                                                                                                      |
|                                                                                                          | TINATION                                                                                                                                                        |
| Site Name <u>Clean Earth of CarTerel</u><br>24 Middlesex Ave<br>Address <u>CarTerel</u> MI               | Phone No.<br>1201-96<br>State-Permit # 0001-2                                                                                                                   |
| I hereby certify that the above named material has been<br>is true and accurate.                         | accepted and to the best of my knowledge the foregoing                                                                                                          |
| • • • • • • • • • • • • • • • • • • • •                                                                  | nators Receipt Date                                                                                                                                             |

| GENERATOR  | LIRR  |   |            |             |
|------------|-------|---|------------|-------------|
| APPROVAL # |       | } | 596501b an | 955<br>-    |
| TRANSPORTE | •     |   | GROSS      | WEIGHT /    |
| TRUGR #: A | 10    |   | 265        |             |
| DATE:      | 1/1-1 |   | 16.06      | $  \Delta $ |
|            | •<br> | : | 16.00      | 3.4.        |

:

|                                                                                                  |                                                  | Log N                                                       | umber (                                                                                                                       | 516 |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----|
| ALLIED ENVIRONMENTAL G                                                                           |                                                  | · ·                                                         | 10                                                                                                                            |     |
| NON-HAZARDOUS MATERIA                                                                            |                                                  |                                                             | IN: 7:00.                                                                                                                     |     |
| GEN                                                                                              | ERATO                                            | DR                                                          | DUT: 9:15                                                                                                                     |     |
| Generator Name IT RR MANHASSET                                                                   | _ Shippin                                        | g Location                                                  | 001 - 7                                                                                                                       |     |
| Address SUB STATION                                                                              |                                                  |                                                             |                                                                                                                               |     |
|                                                                                                  | -                                                | SAM                                                         | £                                                                                                                             |     |
| Phone No                                                                                         | _ Phone I                                        | No                                                          | 1 Flurie.                                                                                                                     |     |
|                                                                                                  | Codes                                            | Gross Weight                                                | ]                                                                                                                             |     |
| Approval<br>Number Non HAZAHONS PER                                                              | ROL                                              |                                                             | Net Maishe (Toro)                                                                                                             |     |
| CONTRATION SOL                                                                                   |                                                  | Tare Weight                                                 | Net Weight (Tons)                                                                                                             |     |
| 24052 DESTINED FOR                                                                               |                                                  | Net Weight                                                  |                                                                                                                               |     |
| I hereby certify that the above named material does i                                            |                                                  |                                                             |                                                                                                                               |     |
|                                                                                                  | and is i<br>grature<br>NSPOR<br>Driver<br>Vehici | In proper condition for tr<br>4//<br>Shi<br>TER             | anaportation according to<br><u> <u> <u> </u> <u> </u></u></u> |     |
| I hereby certify that the above named material was picked up at the generator site listed above. |                                                  | aby certify that the above i<br>and without incident to the |                                                                                                                               |     |
| Driver Signature Shipment Date                                                                   | • .                                              | r signature<br>ON                                           | 6-4/04<br>Delivery Date                                                                                                       | •   |
| Address CARTERET NJ                                                                              |                                                  |                                                             | 201-96-0001-                                                                                                                  | 2   |
| I hereby certify that the above named material has been<br>is true and accurate.                 |                                                  | ) –                                                         | · · · · · ·                                                                                                                   |     |
| Name of Authorized Agent Sig                                                                     | neture<br>COMPAN                                 | n NAT                                                       | Recsipt Date                                                                                                                  |     |
|                                                                                                  |                                                  |                                                             |                                                                                                                               |     |

.

.....

•

| 24 Middlesex                 | th of Cart<br>Avenue + Cartere<br>(732) 541-8909 | t, NJ 07008  |               |
|------------------------------|--------------------------------------------------|--------------|---------------|
|                              | KR<br>10521                                      |              | 1905010 arity |
| TRANSPORTER: 12A             |                                                  |              | GROSS WEIGHT  |
| MANIFEST #:<br>DATE: 1.14/04 |                                                  |              | TARE WEIGHT   |
|                              | ·                                                | مانغسون وري. |               |
|                              | ÷                                                |              |               |

ļ

· .

.

.

|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 | Log Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALLIED E                                                                                                                                                                                                                                                                                    | INVIRONM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IENTAL GR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oup, inc.                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2163 MEARICK AVE                                                                                                                                                                                                                                                                            | ., MERRICK, NY 1156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 • TEL: 1-800-969-DIRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • FAX: 516-887-6480                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NOI                                                                                                                                                                                                                                                                                         | N-HAZARDOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | US MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MANIFEST                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATOR                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                             | linns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| aenerator Name                                                                                                                                                                                                                                                                              | MANNINSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>ration</u> Sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hipping Location                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ddress/                                                                                                                                                                                                                                                                                     | MANHINSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T NY Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Idress                                                                                                                                                                                                                                                          | SAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| hone No                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | none No                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                             | Description of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Approval<br>Number                                                                                                                                                                                                                                                                          | Nonthay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Anors PETROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tare Weight                                                                                                                                                                                                                                                     | ÍNe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t Weight (Tons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INATED SOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [ [                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 240521                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Net Weight                                                                                                                                                                                                                                                      | <b></b> [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                             | f • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + YCLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| haveby motion the                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | contain free ilquid as                                                                                                                                                                                                                                          | defined by 40 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CER Rast 260 10 ~-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| pplicable regulat                                                                                                                                                                                                                                                                           | ONNIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Signal<br>Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d is in proper conditi<br>                                                                                                                                                                                                                                      | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tation according to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Fransporter Name                                                                                                                                                                                                                                                                            | lons.<br>DNNIVLK<br>ed Agent Name<br>Rambow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TRANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d is in proper conditi<br>fure<br>PORTER                                                                                                                                                                                                                        | on for transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tation according to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Fransporter Name                                                                                                                                                                                                                                                                            | lons.<br><i>DNNIVEK</i><br>ed Agent Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d is in proper conditi<br>ture<br>PORTER<br>Driver Name (Print)                                                                                                                                                                                                 | on for transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tation according to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Fransporter Name                                                                                                                                                                                                                                                                            | lons.<br>DNNIVLK<br>ed Agent Name<br>Rambow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TRANSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d is in proper conditi<br>Summer<br>fure<br>PORTER<br>Driver Name (Print)                                                                                                                                                                                       | on for transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tation according to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Generator Authorize                                                                                                                                                                                                                                                                         | lons.<br>DNNIVLK<br>ed Agent Name<br>Rambow<br>Kestowu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRANSI<br>Signa<br>TRANSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d is in proper conditi<br>Some conditions<br>fure<br>PORTER<br>Driver Name (Print)<br>Vehicle License No./St<br>Truck Number                                                                                                                                    | on for transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tation according to<br>-c2004<br>Data<br>Guiltennn<br>-2004<br>Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Transporter Name                                                                                                                                                                                                                                                                            | lons.<br>DNNIVLK<br>ed Agent Name<br>Rambow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TRANSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d is in proper conditi<br>ture<br>PORTER<br>Driver Name (Print)                                                                                                                                                                                                 | on for transport<br>$\frac{4}{3}$ $\frac{4}{3}$ $\frac{1}{3}$ $\frac{1}{3$ | naterial was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Transporter Name                                                                                                                                                                                                                                                                            | lons.<br><i>DNNIVLK</i><br>ed Agent Name<br>Nambow<br>Kestoww<br>the above named                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRANSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d is in proper conditi<br>Source<br>PORTER<br>Driver Name (Print)<br>Vehicle License No./St<br>Truck Number<br>I hereby certify that the                                                                                                                        | on for transport<br>$\frac{4}{3}$ $\frac{4}{3}$ $\frac{1}{3}$ $\frac{1}{3$ | naterial was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Transporter Name                                                                                                                                                                                                                                                                            | lons.<br><i>DNNIVLK</i><br>ed Agent Name<br>Nambow<br>Kestoww<br>the above named                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRANSI<br>Signa<br>TRANSI<br>UN<br>UN<br>UN<br>UN<br>UN<br>UN<br>UN<br>UN<br>UN<br>UN<br>UN<br>UN<br>UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d is in proper conditi<br>Source<br>PORTER<br>Driver Name (Print)<br>Vehicle License No./St<br>Truck Number<br>I hereby certify that the                                                                                                                        | on for transport<br>$\frac{4}{3}$ $\frac{4}{3}$ $\frac{1}{3}$ $\frac{1}{3$ | naterial was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| State Permit #                                                                                                                                                                                                                                                                              | lons.<br><i>DNNIVLK</i><br>ed Agent Name<br><i>Nambow</i><br><i>Kestowo</i><br><i>kestowo</i><br><i>kestowo</i><br><i>kestowo</i><br><i>kestowo</i><br><i>kestowo</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | material was above.<br>$6 - t - 0 \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d is in proper conditi<br>Summary<br>PORTER<br>Driver Name (Print)<br>Vehicle License No./Stu<br>Truck Number<br>I hereby certify that the<br>delivered without incide<br>Driver Signature                                                                      | on for transport<br>$\frac{4}{3}$ $\frac{4}{3}$ $\frac{1}{3}$ $\frac{1}{3$ | naterial was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| State Permit #                                                                                                                                                                                                                                                                              | lons.<br><i>DNNIVLK</i><br>ed Agent Name<br><i>Nambow</i><br><i>Kestowo</i><br><i>kestowo</i><br><i>kestowo</i><br><i>kestowo</i><br><i>kestowo</i><br><i>kestowo</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | material was above.<br>$6 - t - 0 \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d is in proper conditi<br>Summary<br>PORTER<br>Driver Name (Print)<br>Vehicle License No./Stu<br>Truck Number<br>I hereby certify that the<br>delivered without incide<br>Driver Signature                                                                      | on for transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tation according to<br>-2200 A<br>Date<br>Guiltenne<br>ADD N<br>ADD |
| State Permit #                                                                                                                                                                                                                                                                              | lons.<br><i>DNNIVLK</i><br>ed Agent Name<br><i>Nambow</i><br><i>Kestowo</i><br><i>kestowo</i><br><i>kestowo</i><br><i>kestowo</i><br><i>kestowo</i><br><i>kestowo</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | material was above.<br>$6 - t - 0 \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d is in proper conditi<br>Summary<br>PORTER<br>Driver Name (Print)<br>Vehicle License No./Stu<br>Truck Number<br>I hereby certify that the<br>delivered without incide<br>Driver Signature                                                                      | on for transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tation according to<br>-2200 A<br>Date<br>Guiltenne<br>ADD N<br>ADD |
| Address                                                                                                                                                                                                                                                                                     | lons.<br><i>NNIVLK</i><br>ed Agent Name<br>Nambow<br>Kestoww<br>the above named<br>enerator site listed a<br><i>con</i> Earth<br><i>i</i> ter t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{49}{5}$ Signal<br>TRANSI<br>$\frac{1}{5}$ TRANSI<br>$\frac{1}{5}$ TRANSI<br>$\frac$ | d is in proper conditi<br>Sommer<br>PORTER<br>Driver Name (Print)<br>Vehicle Licanse No./Sti<br>Truck Number<br>I hereby certify that the<br>delivered without incide<br>Driver Signature<br>IATION<br>State Pen                                                | on for transport<br>$\frac{4  /  /  /  }{3  h  }$ Shipment E<br>Caluel<br>ato $AF - 5$<br>BLO<br>a above named in<br>ent to the destination<br>mit # 1201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tation according to<br>-22004<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>1ate<br>0ate<br>1ate<br>1ate<br>0ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Address                                                                                                                                                                                                                                                                                     | lons.<br><u>NNIVLK</u><br>ed Agent Name<br><u>Nambow</u><br><u>Nambow</u><br><u>Nestoww</u><br><u>the above named</u><br><u>con Eart</u><br><u>iter it</u><br>it the above named                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{49}{5}$ Signal<br>TRANSI<br>$\frac{1}{5}$ TRANSI<br>$\frac{1}{5}$ TRANSI<br>$\frac$ | d is in proper conditi<br>Summary<br>PORTER<br>Driver Name (Print)<br>Vehicle License No./Stu<br>Truck Number<br>I hereby certify that the<br>delivered without incide<br>Driver Signature                                                                      | on for transport<br>$\frac{4  /  /  /  }{3  h  }$ Shipment E<br>Caluel<br>ato $AF - 5$<br>BLO<br>a above named in<br>ent to the destination<br>mit # 1201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tation according to<br>-22004<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>1ate<br>0ate<br>1ate<br>1ate<br>0ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Address<br>bereby certify that<br>bereby certify that | lons.<br><u>NNIVLK</u><br>ed Agent Name<br><u>Nambow</u><br><u>Nambow</u><br><u>Nestoww</u><br><u>the above named</u><br><u>con Eart</u><br><u>iter it</u><br>it the above named                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{49}{5}$ Signal<br>TRANSI<br>$\frac{1}{5}$ TRANSI<br>$\frac{1}{5}$ TRANSI<br>$\frac$ | d is in proper conditi<br>Sommer<br>PORTER<br>Driver Name (Print)<br>Vehicle Licanse No./Sti<br>Truck Number<br>I hereby certify that the<br>delivered without incide<br>Driver Signature<br>IATION<br>State Pen                                                | on for transport<br>$\frac{4  /  /  /  }{3  h  }$ Shipment E<br>Caluel<br>ato $AF - 5$<br>BLO<br>a above named in<br>ent to the destination<br>mit # 1201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tation according to<br>-22004<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>1ate<br>0ate<br>1ate<br>1ate<br>0ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Address<br>bereby certify that<br>bereby certify that | lons.<br><u>NNIVER</u><br>ed Agent Name<br><u>Nambow</u><br><u>Nambow</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestow</u><br><u>Kestow</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kestoww</u><br><u>Kest</u> | $\frac{49}{5}$ Signal<br>TRANSI<br>$\frac{1}{5}$ TRANSI<br>$\frac{1}{5}$ TRANSI<br>$\frac$ | d is in proper conditi<br>Sommary<br>PORTER<br>Driver Name (Print)<br>Vehicle Licanse No./Sta<br>Truck Number<br>I hereby certify that the<br>delivered without incide<br>Driver Signature<br>IATION<br>Phone No.<br>State Pen<br>cepted and to the best<br>dre | on for transport<br>$\frac{4  /  /  /  }{3  h  }$ Shipment E<br>Caluel<br>ato $AF - 5$<br>BLO<br>a above named in<br>ent to the destination<br>mit # 1201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tation according to<br>-22004<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>0ate<br>1ate<br>1ate<br>0ate<br>1ate<br>1ate<br>0ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate<br>1ate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

. . . . . . .

1 1 1

÷į

| 24 Middlesex Avenue + Carte<br>(732) 541-8909 | ret, NJ 07008                 |
|-----------------------------------------------|-------------------------------|
| GENERATOR: LILL                               |                               |
| APPROVAL #: 240521                            | 1475016 STOSE<br>GROSS WEIGHT |
| TRUCK : KI SII                                | ·                             |
| MANIFEST #:                                   |                               |

• .

-

•

|                                         | ,                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                              |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                                         |                                                                                                                                                                                                                                                     | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RDOUS MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · ·                                   | · · · · · · · · · · · · · · · · · · ·                                                                        |
| •                                       |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GENERAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | ۰.                                                                                                           |
|                                         |                                                                                                                                                                                                                                                     | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | · ·                                                                                                          |
|                                         | Generator Name_                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1                                   |                                                                                                              |
|                                         | Address                                                                                                                                                                                                                                             | MANI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HAGGET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Addres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FAME                                  |                                                                                                              |
|                                         |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                                                              |
|                                         | Phone No                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                                                                                              |
|                                         |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gross Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                                                                              |
|                                         | Approval                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion of Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                                                              |
|                                         | Number                                                                                                                                                                                                                                              | 1 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HASANO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tare Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ק                                     | Net Weight (Tons)                                                                                            |
|                                         | 74n(2)                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or Coira                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | •                                                                                                            |
|                                         |                                                                                                                                                                                                                                                     | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DESTIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ED FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Net Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                              |
|                                         | . : •                                                                                                                                                                                                                                               | RX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CYCLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | -<br>-<br>-<br>-                                                                                             |
| •                                       |                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 132.11.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | At I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 -0                                  | Torrad                                                                                                       |
| 東京の小道                                   | Generator Authori                                                                                                                                                                                                                                   | 060N/<br>ized Agent Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WIJCK<br>ame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Signature<br>TRANSPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Admin of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shipment                              | Data                                                                                                         |
| 東京となる                                   |                                                                                                                                                                                                                                                     | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRANSPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                                                              |
| 第二 くち 藩                                 | Transporter Name                                                                                                                                                                                                                                    | Raint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Du C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRANSPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RTER<br>er Name (Print) 🟒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VIS P.                                |                                                                                                              |
| 第二日 うから著                                | Transporter Name<br>Address/67                                                                                                                                                                                                                      | Raine<br>State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DONC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRANSPOR           1         Drive           K         12D         Vehick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RTER<br>or Name (Print) <u>/</u><br>cie License No./Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>vis P.</u><br>104686               | alaco 2                                                                                                      |
| 第二次を工業                                  | Transporter Name<br>Address <u>167</u><br>Hacks                                                                                                                                                                                                     | Roine<br>Stretze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DONC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRANSPOR           1         Drive           K         12D         Vehick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RTER<br>er Name (Print) 🟒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>vis P.</u><br>104686               | alaco 2                                                                                                      |
| 「「「「」」 「「」」 「「」」 「」」 「」」 「」」 「」」 「」」 「」 | Transporter Name<br>Address/67                                                                                                                                                                                                                      | $\frac{72 \circ n!}{58 l_{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | named material v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TRANSPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RTER<br>or Name (Print) <u>/</u><br>cle License No./Sta<br>& Number <u>8</u> /<br>reby certify that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uts P.<br>te <u>A680</u>              | alaco 2<br>246 113                                                                                           |
|                                         | Transporter Name<br>Address <u>167</u><br><u>Hart</u><br>State Permit #<br>I hereby certify the<br>picked up at the g                                                                                                                               | $\frac{12p:n!}{54m+3m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | named material v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TRANSPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RTER<br>or Name (Print) //<br>cie License No./Sta<br>k Number //<br>eby certify that the<br>ered without incide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{\sqrt{15}}{1} \frac{P_{c}}{2}$ | A C 1M-7<br>24 C 1M-7<br>I material was<br>nation listed below.                                              |
|                                         | Transporter Name<br>Address <u>167</u><br><u>Hart</u><br>State Permit #<br>I hereby certify the<br>picked up at the g                                                                                                                               | $\frac{12p:n!}{54m+3m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | named material v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TRANSPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RTER<br>or Name (Print) //<br>cie License No./Sta<br>k Number //<br>eby certify that the<br>ered without incide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{\sqrt{15}}{1} \frac{P_{c}}{2}$ | a (a c - 2<br>24 C 1M3                                                                                       |
|                                         | Transporter Name<br>Address <u>167</u><br><u>Hart</u><br>State Permit #<br>I hereby certify the<br>picked up at the g                                                                                                                               | $\frac{12 \circ 10}{54 m^{2} + 54 \circ 10}$ $\frac{14 + 54 \circ 10}{58 - 54 \circ 10}$ at the above generator site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Der C.<br>Der J. P.<br>Der M.<br>Der M.<br>Der M.<br>Der M.<br>Der M.<br>Shipme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TRANSPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RTER<br>or Name (Print) //<br>cle License No./Sta<br>k Number <u>8/</u><br>reby certify that the<br>ered without incide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{\sqrt{15}}{1} \frac{P}{1}$     | $\frac{24 \times 2}{24 \times 2}$ I material was<br>mation listed below.<br>$\frac{26 - 24 - 01}{2}$         |
|                                         | Transporter Name<br>Address <u>167</u><br><u>Marker</u><br>State Permit # <u>1</u><br>I hereby certify the<br>picked up at the g<br><u>C. M. 19</u><br>Driver Signature<br>Site Name <u>Gree</u>                                                    | AN FAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Der Constant<br>Der Constant<br>De | TRANSPOR<br>TRANSPOR<br>Drive<br>L 12D Vehic<br>S Vehic<br>Truck<br>Truck<br>Truck<br>Truck<br>DESTINAT<br>RTERST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RTER<br>or Name (Print) <u>/</u><br>cle License No./Sta<br>k Number <u>8</u><br>reby certify that the<br>ered without incide<br><u>7</u><br>or Signature<br>HON<br>Phone No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{\sqrt{15}}{1} \frac{P}{1}$     | $\frac{24 \ C \ M^2}{24 \ C \ M^2}$ I material was<br>nation listed below.<br>$\frac{06 - 04 - 01}{2000}$    |
|                                         | Transporter Name<br>Address <u>167</u><br><u>Marker</u><br>State Permit # <u>1</u><br>I hereby certify the<br>picked up at the g<br><u>C. M. 19</u><br>Driver Signature<br>Site Name <u>Gree</u>                                                    | AN FAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Der Constant<br>Der Constant<br>De | TRANSPOR<br>TRANSPOR<br>Drive<br>L 12D Vehic<br>S Vehic<br>Truck<br>Truck<br>Truck<br>Truck<br>DESTINAT<br>RTERST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RTER<br>or Name (Print) <u>/</u><br>cle License No./Sta<br>k Number <u>8</u><br>reby certify that the<br>ered without incide<br><u>7</u><br>or Signature<br>HON<br>Phone No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{\sqrt{15}}{1} \frac{P}{1}$     | $\frac{24 \times 2}{24 \times 2}$ I material was<br>mation listed below.<br>$\frac{26 - 24 - 01}{2}$         |
|                                         | Transporter Name<br>Address <u>167</u><br><u>How IK</u><br>State Permit # <u>C</u><br>I hereby certify the<br>picked up at the <u>C</u><br><u>C</u><br>Driver Signature<br>Site Name <u>CLE</u><br>Address <u>CA</u>                                | $\frac{72 \circ 10}{54 m^{3} + 5}$ $\frac{54 m^{3} + 5}{58}$ $\frac{58}{5}$ $58$   | Deve C.<br>Deve Market<br>named material v<br>listed above.<br>C.G J<br>Shipman<br>TH OK CA<br>TH OK CA<br>TH OK CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRANSPOR<br>TRANSPOR<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Tru | RTER<br>or Name (Print) <u>/</u><br>cle License No./Sta<br>k Number <u>8</u><br>reby certify that the<br>ered without incide<br><u>7</u><br>or Signature<br>HON<br>Phone No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{\sqrt{15}}{1} \frac{P}{1}$     | $\frac{24 \ C \ M^{-1}}{2}$ I material was<br>nation listed below.<br>$\frac{06 - 04 - 01}{2}$ Delivery Date |
|                                         | Transporter Name<br>Address <u>/ 6</u> 7 <u>1</u><br><u>Harch</u><br>State Permit # <u>C</u><br>I hereby certify the<br>picked up at the g<br><u>C</u><br>Driver Signature<br>Site Name <u>C</u><br><u>Address <u>C</u><br/>I hereby certify th</u> | $\frac{72 \circ 10}{54 m^{3} + 5 + 5}$ $\frac{54 m^{3} + 5 + 5}{58}$ $\frac{58}{5}$ $\frac{58}{5$ | Deve C.<br>Deve Market<br>named material v<br>listed above.<br>C.G J<br>Shipman<br>TH OK CA<br>TH OK CA<br>TH OK CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRANSPOR<br>TRANSPOR<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Truck<br>Tru | TER<br>In Name (Print) //<br>cle License No/Sta<br>k Number<br>reby certify that the<br>reby certify that the<br>red without incide<br><br>Incide<br><br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide<br>Incide | $\frac{\sqrt{15}}{1} \frac{P}{1}$     | $\frac{24 \ C \ M^{-1}}{2}$ I material was<br>nation listed below.<br>$\frac{06 - 04 - 01}{2}$ Delivery Date |

|              |            |                 | 1 P 2 Q . 37 |
|--------------|------------|-----------------|--------------|
| GENERATOR:   | IRR        | <br><del></del> | X2 10        |
| APPROVAL #:  | 240521     |                 | BODib gross  |
|              | Anderstein |                 | GROSS WEIGHT |
| TRUCK # RB   | 812        |                 |              |
| MANIFEST #   |            | •               | $273cc \leq$ |
| PATE 10/4/04 | -          | <br>-           |              |
|              | · ·        |                 |              |

|                                                                                                                                                              |                                                                                                                                      | MENTAL G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |                                                                                                                                                        |                                                                         | 7 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                              |                                                                                                                                      | 566 • TEL: 1-800-969-DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                          |                                                                                                                                                        | L                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                              | JN-NAZAND                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |                                                                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                              | 11.2                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ERATO                                                                    |                                                                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Generator Name_                                                                                                                                              | LIKR MAND                                                                                                                            | 4055557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Shipping                                                                 | Location                                                                                                                                               |                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Address <u>Sv</u>                                                                                                                                            | BITATION                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Address                                                                  |                                                                                                                                                        | SAM                                                                     | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |                                                                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                              | ·                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dhona M                                                                  | 0.                                                                                                                                                     |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phone No                                                                                                                                                     | ·                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | Gross Weight                                                                                                                                           |                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                              | Description of                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Codes                                                                    | Cicos Maigir                                                                                                                                           | L                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approval<br>Number                                                                                                                                           |                                                                                                                                      | ZARDAUS PET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rel                                                                      | Tare Weight                                                                                                                                            |                                                                         | Net Weight (Tons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| , Humber                                                                                                                                                     | 1 Course                                                                                                                             | WINHTED SU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                              | 1 1                                                                                                                                  | EO FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ' -                                                                      | Net Weight                                                                                                                                             |                                                                         | ۲ L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| L                                                                                                                                                            |                                                                                                                                      | icinke.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ł                                                                        | -                                                                                                                                                      |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| l harabu éartifu l                                                                                                                                           |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i                                                                        | the tould                                                                                                                                              | a defined                                                               | <b>by 40 CFR Part 260.10</b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                              | ized Agent Name                                                                                                                      | K T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19-9-                                                                    | mit                                                                                                                                                    | <u>4()</u><br>Shir                                                      | ment Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                              |                                                                                                                                      | Sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | monure<br>ISPORT                                                         | ER                                                                                                                                                     | <u> </u>                                                                | ment Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Generator Author                                                                                                                                             | ized Agent Name                                                                                                                      | si<br>Tran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SPORT                                                                    |                                                                                                                                                        | Ship                                                                    | ment Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Generator Author<br>Transporter Nam                                                                                                                          | ized Agent Name<br>e <u>Rain(500</u>                                                                                                 | si<br>Tran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Driver                                                                   | Name (Print)                                                                                                                                           | Ship<br>Alwarz                                                          | ment Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Generator Author<br>Transporter Nam                                                                                                                          | ized Agent Name                                                                                                                      | si<br>Tran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Driver  <br>Vehicle                                                      | Name (Print)<br>License No./S                                                                                                                          | Ship<br>Alward<br>State_AG                                              | (abrzdzz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Generator Author<br>Transporter Nam<br>Address                                                                                                               | ized Agent Name<br>e <u>Rain(500</u>                                                                                                 | si<br>Tran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Driver  <br>Vehicle                                                      | Name (Print)                                                                                                                                           | Ship<br>Alwarz                                                          | (abrzdzz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Generator Author<br>Transporter Nam<br>Address<br>State Permit #                                                                                             | ized Agent Name<br>e <u>Rain(500</u><br>etcon i N                                                                                    | sk<br>TRAN<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ISPORT<br>Driver I<br>Vehicle<br>Truck I                                 | Name (Print)<br>I License No./S<br>Number                                                                                                              | Ship<br>Alwari<br>State_AG<br>817                                       | $\frac{1}{2} \frac{(abnzdz)}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Generator Author<br>Transporter Nam<br>Address<br>State Permit #<br>I hereby certify th                                                                      | ized Agent Name<br>e <u>Rain(500</u>                                                                                                 | Sig<br>TRAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ISPORT<br>Driver I<br>Vehicle<br>Truck I                                 | Name (Print)<br>License No./<br>Number                                                                                                                 | Ship<br>Alwarz<br>State <u>AG</u><br>817<br>the above n                 | (abrzdzz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Generator Author<br>Transporter Nam<br>Address<br>State Permit #<br>I hereby certify th                                                                      | ized Agent Name<br>e <u>Rain(500</u><br>2+ <u>con</u> N<br>nat the above name<br>generator site listed                               | Site<br>TRAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ISPORT<br>Driver I<br>Vehicle<br>Truck I                                 | Name (Print)<br>License No./<br>Number                                                                                                                 | Ship<br>Alwarz<br>State <u>AG</u><br>817<br>the above n                 | emed material was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Generator Author<br>Transporter Nam<br>Address<br>State Permit #<br>I hereby certify th                                                                      | ized Agent Name<br>e <u>Rain(500</u><br>2+ <u>con</u> N<br>nat the above name<br>generator site listed                               | Sig<br>TRAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ISPORT<br>Driver I<br>Vehicle<br>Truck I<br>I heret<br>deliver           | Name (Print)<br>License No./<br>Number                                                                                                                 | Ship<br>Alwarz<br>State <u>AG</u><br>817<br>the above n                 | emed material was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Generator Author<br>Transporter Nam<br>Address<br>State Permit #<br>I hereby certify the<br>picked up at the<br><br>Driver Signature                         | ized Agent Name<br>e <u>Rain(500</u><br><u>stcon</u> N<br>nat the above name<br>generator site listed                                | Signature for the second seco | ISPORT<br>Driver I<br>Vehicle<br>Truck I<br>I heret<br>deliver<br>Driver | Name (Print)<br>License No./S<br>Number<br>by certify that t<br>ed without incl<br>Magazine<br>Signature                                               | Ship<br>Alwarz<br>State_AG<br>817<br>the above n<br>ident to the        | vment Date<br>(60n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n |
| Generator Author<br>Transporter Nam<br>Address<br>State Permit #<br>I hereby certify the<br>picked up at the<br><br>Driver Signature                         | ized Agent Name<br>e <u>Rain(500</u><br><u>stcon</u> N<br>nat the above name<br>generator site listed                                | Signature for the second seco | ISPORT<br>Driver I<br>Vehicle<br>Truck I<br>I heret<br>deliver<br>Driver | Name (Print)<br>License No./S<br>Number<br>by certify that t<br>ed without incl<br>Magazine<br>Signature                                               | Ship<br>Alwarz<br>State_AG<br>817<br>the above n<br>ident to the        | vment Date<br>(60n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n |
| Generator Author<br>Transporter Nam<br>Address<br>State Permit #<br>I hereby certify the<br>picked up at the<br><br>Driver Signature                         | ized Agent Name<br>e <u>Rain(500</u><br><u>stcon</u> N<br>nat the above name<br>generator site listed                                | Signature for the second seco | ISPORT<br>Driver I<br>Vehicle<br>Truck I<br>I heret<br>deliver<br>Driver | Name (Print)<br>License No./S<br>Number<br>by certify that t<br>ed without incl<br>Magazine<br>Signature                                               | Ship<br>Alwarz<br>State_AG<br>817<br>the above n<br>ident to the        | vment Date<br>(60n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n |
| Generator Author<br>Transporter Nam<br>Address<br>State Permit #<br>I hereby certify the<br>picked up at the<br>Driver Signature<br>Site Name<br>Address     | EVAN EARCT                                                                                                                           | Sh<br>TRAN<br>TRAN<br>TRAN<br>TRAN<br>Comparison<br>Shipment Data<br>DEST<br>HOF CANTER<br>TANK CAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I heret<br>deliver                                                       | Name (Print)<br>License No./S<br>Number<br>by certify that the<br>d without include<br>Signature<br>IN<br>Phone N<br>\$\begin{pmatrix}     State Print | Ship<br>Alvari<br>State_AG<br>8172<br>the above n<br>Ident to the<br>No | the mention base $\frac{2}{2} \frac{(60n2dt2)}{(50n2dt2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Generator Author<br>Transporter Nam<br>Address<br>State Permit #<br>I hereby certify the<br>picked up at the<br>Driver Signature<br>Site Name<br>Address     | EVAN EARCT<br>4 MIDOLFSA<br>hat the above name                                                                                       | Sh<br>TRAN<br>TRAN<br>TRAN<br>TRAN<br>Comparison<br>Shipment Data<br>DEST<br>HOF CANTER<br>TANK CAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I heret<br>deliver                                                       | Name (Print)<br>License No./S<br>Number<br>by certify that the<br>d without include<br>Signature<br>IN<br>Phone N<br>\$\begin{pmatrix}     State Print | Ship<br>Alvari<br>State_AG<br>8172<br>the above n<br>Ident to the<br>No | when t Date<br>(60n 2dt 2)<br>(50n 2 |
| Generator Author<br>Transporter Nam<br>Address<br>State Permit #<br>I hereby certify the<br>Driver Signature<br>Site Name<br>Address<br>I hereby certify the | ized Agent Name<br>$e \underline{Rain(bounds)}$<br>$e \underline{Rain(bounds)}$<br>a + con i not | Sh<br>TRAN<br>TRAN<br>TRAN<br>TRAN<br>Shipment Data<br>DEST<br>HOF CANTER<br>AND<br>Shipment Data<br>DEST<br>HOF CANTER<br>Shipment Data<br>DEST<br>HOF CANTER<br>Shipment Data<br>DEST<br>HOF CANTER<br>Shipment Data<br>DEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I heret<br>deliver                                                       | Name (Print)<br>License No./S<br>Number<br>by certify that the<br>d without include<br>Signature<br>IN<br>Phone N<br>\$\begin{pmatrix}     State Print | Ship<br>Alvari<br>State_AG<br>8172<br>the above n<br>Ident to the<br>No | the present Date<br>(60n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)<br>(50n2dt2)   |

and the second process of the second process of the second process of the second process of the second process

.....

i

|     | Clean Earth of Carteret, I<br>24 Middlesex Avenue + Carteret, NJ 07008<br>(732) 541-8909 | nc. 44748                             |
|-----|------------------------------------------------------------------------------------------|---------------------------------------|
|     |                                                                                          | TN                                    |
|     | GENERATOR: LIKK                                                                          | Les marker &                          |
|     | APPROVAL #: 240521                                                                       | 7125011: 37/65                        |
|     | TRANSPORTER: KHINGOL                                                                     | GROSS WEIGHT                          |
|     | TRUCK # ES FIL                                                                           | · · · · · · · · · · · · · · · · · · · |
|     | MANIFEST #:                                                                              | ZS755                                 |
| · . | DATE: 6/4/04                                                                             |                                       |
|     |                                                                                          |                                       |
|     |                                                                                          | · · · ·                               |
|     |                                                                                          |                                       |
|     |                                                                                          |                                       |

Log Number ALLIED ENVIRONMENTAL GROUP. INC. F 2163 MERRICK AVE., MERRICK, NY 11566 • TEL: 1-800-969-DIRT • FAX: 518-867-5480 NON-HAZARDOUS MATERIAL MANIFEST GENERATOR Generator Name LIRR SUBSTATION Shipping Location AME MANHASSET Address Address : } •• Phone No. Phone No. Gross Weight Codes Description of Material Approval Non HAZARDUUS PERCU Number Net Weight (Tons) Tare Weight CONTANISATO SAIL 4052 DESTING FOR Net Weight YLLIN I hereby certify that the above named material does not contain free liquid as defined by 40 CFR Part 250.10 or any applicable state law, is not a hazardous waste as defined by 40 CFR Part 261 or any applicable state law, is not a DOT hazardous substance as defined by 49 CFR Part 172 or any applicable state law, has been fully and accurately described above, classified, packaged and is in proper condition for transportation according to applicable regulations SGONNINCK Generator Authorized Agent Name Signature Shipment Date TRANSPORTER face Briver Name (Print) NG r TW Transporter Name 2 te Address 167 Vehicle License No./State\_\_\_ 431/a Truck Number State Permit # 🧹 I hereby certify that the above named material was I hereby certify that the above named material was picked up at the generator site listed above. delivered without incident to the destination listed below Driver Signatute -Driver Signature Shioment Date **Delivery** Date DESTINATION · Site Name CLEAN EARTH OF CONTENET Phone No. State Permit # 1201-#-96-0001-7 100 ASAIN Address I hereby certify that the above named material has been accepted and to the best of my knowledge the foregoing is true and accurate. Name of Authorized Agent Signature lecélot Date TRUCKING COMPANY -..-.

| APPROVAL #: 240524 915016 store<br>TRANSPORTER: BALA 2014 GROSS WEIGHT<br>TRUGK#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | Clean Earth of Carteret, In<br>24 Middlesex Avenue • Carteret, NJ 07008<br>(732) 541-8909                        |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------|---------------|
| MANIFEST #: 2<br>MANIFEST #: 2<br>DATE: 6/3/11<br>BATE: 6/3/11 |     | APPROVAL #: 140 TZ1                                                                                              | 9115016 aross |
| MANIFEST #: 2<br>DATE: $\frac{2965}{7}$<br>DATE: $\frac{13}{11}$<br>DATE: $\frac{13}{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | TRANSPORTER: SHIN 2014                                                                                           | GROSS WEIGHT  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | MANIFEST #:                                                                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | and the second | <u> </u>      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : - |                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                  |               |

| Clean Earth of Cartere<br>24 Middlesex Avenue • Carteret, NJ. 0<br>(732) 541-8909 |                |
|-----------------------------------------------------------------------------------|----------------|
| GENERATOR: LIKIL<br>APPROVAL #: 240521                                            | 265//6:        |
| TRANSPORTER: RHIGHLICH                                                            | GROSS WEIGHT   |
| MANTFEST # 3<br>DATE: 6/3/04                                                      | TARE WEIGHT UU |

# ALLIED ENVIRONMENTAL GROUP, INC.

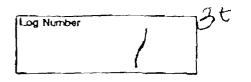
2163 MERRICK AVE., MERRICK, NY 11568 . TEL: 1-800-969-DIRT . FAX: 518-867-8480

## NON-HAZARDOUS MATERIAL MANIFEST

### GENERATOR

| Generator Name LIRR MANHASSAT SUBSTATIO                                                                                                                                                                                                               | -Shioping              | Location                                                        |                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                                                                                       |                        | SAME                                                            |                                                      |
| MANHASSET NY                                                                                                                                                                                                                                          | -                      |                                                                 |                                                      |
| Phone No.                                                                                                                                                                                                                                             | _ Phone N              | lo                                                              |                                                      |
| Description of Material                                                                                                                                                                                                                               | Codes                  | Gross Weight                                                    |                                                      |
| Approval .<br>Number<br>2110521 Contaning So.                                                                                                                                                                                                         | 12                     | Tare Weight                                                     | Net Weight (Tons)                                    |
| 24052 DESTINGO FOR RECYCL                                                                                                                                                                                                                             | ume                    | Net Weight                                                      | L                                                    |
| I hereby certify that the above named material does a<br>any applicable state law, is not a hazardous waste a<br>is not a DOT hazardous substance as defined by 49<br>and accurately described above, classified, packaged<br>applicable regulations. | is defined<br>CFR Pai  | by 40 CFR Part 261 or an<br>t 172 or any applicable at          | ny applicable state law,<br>late law, has been fully |
| Generator Authorized Agent Name                                                                                                                                                                                                                       | 20-7-                  | and 36                                                          | and 2000                                             |
| Generator Authorized Agent Name                                                                                                                                                                                                                       | Ignature               | Shipm                                                           | ent Date                                             |
| Transporter Name RAIMbow<br>Address Net Cung NO                                                                                                                                                                                                       | Vehicle                | Name (Print)AAH444)<br>License No/StateH411                     | l CiciA<br>MP                                        |
| State Permit #                                                                                                                                                                                                                                        | Truck                  | Number 70-P                                                     |                                                      |
| I hereby certify that the above named material was<br>picked up at the generator site listed above.                                                                                                                                                   |                        | by certily that the above name<br>ad without incident to the de |                                                      |
| Alli- 6/3/01                                                                                                                                                                                                                                          | Ar                     | 1                                                               | 6/3/01                                               |
| Driver Signature Shipment Date                                                                                                                                                                                                                        |                        | Signature                                                       | / Delivery Uate                                      |
| Site Name CLEAN EARTH OF CALIFORNES                                                                                                                                                                                                                   |                        | Phone No                                                        |                                                      |
| Address 29 Minoplaser Are Constant N                                                                                                                                                                                                                  | $\left  \cdot \right $ |                                                                 | 1-96<br>0001-\$2                                     |
| I hereby certify that the above named material has been<br>is true and accurate.                                                                                                                                                                      | accepted               | and to the best of my know                                      | viedge the foregoing                                 |
|                                                                                                                                                                                                                                                       | raturé<br>CILITY       | <del>'U</del>                                                   | Receipt Date                                         |

14


| Clean Earth of Carteret<br>24 Middlesex Avenue • Carteret, NJ 07<br>(732) 541-8909 | 44676         |
|------------------------------------------------------------------------------------|---------------|
| GENERATOR: LIKA                                                                    |               |
| APPROVAL # 240521                                                                  | 3001010 gross |
| TRANSPORTER: Spin Pow                                                              | GROSS WEIGHT  |
| NAMITEST #                                                                         | 27500         |
| DATE: 6/3/04                                                                       | TARE WEIGHT   |
|                                                                                    |               |

.

•

| GENERATOR: LIK 2  |              |
|-------------------|--------------|
| APPROVAL #: 24072 | Stevel aross |
| TRUCK # BT SHOL   | GROSS WEIGHT |
| MANIFEST #:       | TARE WEIGHT  |
| DATE: 6/3/07      |              |

# ALLIED ENVIRONMENTAL GROUP, INC.



2163 MERRICK AVE., MERRICK, NY 11566 . TEL: 1-800-969-DIRT . FAX: 516-867-6480

### NON-HAZARDOUS MATERIAL MANIFEST

#### GENERATOR

| Generator Name LIAR Manhasset Supplation                                                                                                                                                      | Shipping Location                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address Thompson Shore Rd                                                                                                                                                                     | AddressGAMe                                                                                                                                                                                                                                       |
| MANhasset New York                                                                                                                                                                            |                                                                                                                                                                                                                                                   |
| Phone No                                                                                                                                                                                      | Phone No                                                                                                                                                                                                                                          |
| •                                                                                                                                                                                             | Codes Gross Weight                                                                                                                                                                                                                                |
| Description of Material                                                                                                                                                                       |                                                                                                                                                                                                                                                   |
| Approval<br>Number   Nou HAZARdous Retzol<br>Contaninated Goll                                                                                                                                | Tare Weight Net Weight (Tons)                                                                                                                                                                                                                     |
| 240521 Destined for Recycling                                                                                                                                                                 |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                               | Net Weight                                                                                                                                                                                                                                        |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |
| any applicable state law, is not a hazardoue waste as<br>is not a DOT hazardous substance as defined by 49<br>and accurately described above, classified, packaged<br>applicable regulations. | ot contain free liquid as defined by 40 CFR Part 260.10 or<br>a defined by 40 CFR Part 261 or any applicable state law,<br>CFR Part 172 or any applicable state law, has been fully<br>and is in proper condition for transportation according to |
| <u>FREESCHOL</u> Agent Name LIRR 7<br>Generator Authorized Agent Name Sig                                                                                                                     | -DOGONNICK 3 VINE2009                                                                                                                                                                                                                             |
|                                                                                                                                                                                               | Inature Shipment Date                                                                                                                                                                                                                             |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |
| Transporter Name Bulk Transport Express                                                                                                                                                       |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                               | Vehicle License No./State AHIZLEL New Jepsey                                                                                                                                                                                                      |
| Nelcong, New Jessy                                                                                                                                                                            | Truck Number 602 4151                                                                                                                                                                                                                             |
| State Permit #                                                                                                                                                                                |                                                                                                                                                                                                                                                   |
| I hereby certify that the above named material was picked up at the generator site listed above.                                                                                              | I hereby certify that the above named material was delivered without incident to the destination listed below.                                                                                                                                    |
| Jul Sol 6/3/04                                                                                                                                                                                | La PCL 6/3/04                                                                                                                                                                                                                                     |
| Drive/Signature Shipment Date                                                                                                                                                                 | Driver Signature Delivery Date                                                                                                                                                                                                                    |
| site Name (KAN) FARTH of CARTERCE                                                                                                                                                             | Phone No. 1201-96                                                                                                                                                                                                                                 |
| Address IH Middleser Acome Carteret, New                                                                                                                                                      | Jessey State Permit # 0001-2_                                                                                                                                                                                                                     |
| I hereby certify that the above named material has been is true and accurate.                                                                                                                 | accepted and to the best of my knowledge the foregoing                                                                                                                                                                                            |
|                                                                                                                                                                                               | all lable                                                                                                                                                                                                                                         |
|                                                                                                                                                                                               | nature Receipt Date                                                                                                                                                                                                                               |
| / FX                                                                                                                                                                                          | XUIX                                                                                                                                                                                                                                              |

| Flass Fouth of Conta              | 44671         |
|-----------------------------------|---------------|
| 24 Middlesex Avenue + Carteret, I |               |
| (732) 541-8909                    |               |
|                                   |               |
| GENERATOR: LILL                   | _             |
| APPROVAL #:                       | 999501b 3ross |
| TRANSPORTER: RAINICL              | GROSS WEIGHT  |
| TRUCK # 1ST 235                   | _             |
| MANIFEST #:                       | 2.7200        |
|                                   | TARE WEIGHT   |
| OATE: 613/64                      |               |

۰ ،

| NON-HAZARDOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S'MATERIAL MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ANIFEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                                            |                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GENERAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              | <del>.</del>                                  |
| enerator Name LIRR Manhas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of Substation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ion Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAME                                                                                                                                         |                                               |
| The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Addre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |                                               |
| Manhesset N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |                                               |
| none No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ······                                                                                                                                       | <b></b>                                       |
| Description of Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gross Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                               |
| Approval<br>Number<br>Contaminates<br>restinal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ors Petrol.<br>I soil<br>for recycling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tare Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Net Weigh                                                                                                                                    | t (Tons)                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Net Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              | •                                             |
| T. Doconniucic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T. Hogo<br>Signatur<br>TRANSPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 June                                                                                                                                       | (172)                                         |
| A accurately described above, class<br>oplicable regulations.<br>T. Doctowninclic<br>enerator Authorized Agent Name<br>ansporter Name <u>BTExpress</u><br>Metcong N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T. Horso<br>Signatur<br>TRANSPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 June<br>Shipmont Date                                                                                                                      | 2012)                                         |
| enerator Authorized Agent Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRANSPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 June<br>Shipmont Date                                                                                                                      | 2012)                                         |
| ansporter Name <u>BTExpress</u><br>ansporter Name <u>BTExpress</u><br>dress <u>VEtcong</u><br>ate Permit #<br>ereby certify that the above named model<br>ate Details at the generator site listed above<br>Details at the g | TRANSPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRTER<br>Per Name (Print)<br>Pricle License No./State<br>ck Number<br>Preby certify that the at<br>ivered without incident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 June<br>Shipmont Date<br>Man Totaru<br>AH HOOR                                                                                             | Kas                                           |
| ansporter Name <u>BTExpfess</u><br>ansporter Name <u>BTExpfess</u><br>dress <u>Netcong</u> N<br>ate Permit #<br>wereby certify that the above named m<br>cked up at the generator site listed above<br>there Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TRANSPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRTER<br>Per Name (Print)<br>Note: License No./State<br>ck Number<br>Preby certify that the ak<br>ivered without incident<br><br>ver Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 June<br>Shipmont Date<br>Man Totaru<br>AH HOOR                                                                                             | Kas                                           |
| ansporter Name <u>BTExpfess</u><br>ansporter Name <u>BTExpfess</u><br>dress <u>Netcong</u> N<br>ate Permit #<br>rereby certify that the above named m<br>cked up at the generator site listed above<br>there Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TRANSPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRTER<br>Per Name (Print)<br>Note: License No./State<br>ck Number<br>Preby certify that the ak<br>ivered without incident<br><br>ver Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 June<br>Shipment Date<br>Gan Terro<br>AH-470R                                                                                              | was<br>$4 \frac{3}{04}$                       |
| ansporter Name <u>BIExpress</u><br>ansporter Name <u>BIExpress</u><br>dress <u>Netcong</u><br>ate Permit #<br>mereby certify that the above named m<br>cked up at the generator site listed above<br>the Name <u>Clem Employer</u><br>24 Middleser Am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TRANSPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRTER<br>Per Name (Print)<br>Name (Print)<br>Previous No./State<br>Ck Number<br>State<br>Ck Number<br>State | 3 June<br>Shipment Date<br>Gan To Faro<br>AH-HOOR<br>hove named material<br>to the destination list                                          | Was<br>bed below.<br>6/3/04)<br>Delivery Date |
| policable regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{1}{1} \frac{1}{1} \frac{1}$ | PRTER<br>Per Name (Print)<br>sicle License No./State<br>ck Number<br>preby certify that the at<br>ivered without incident<br>//or Signature<br>TKON<br>Phone No<br>State Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 June<br>Shipment Date<br><u>Cian ToTario</u><br><u>AH HOOR</u><br>Nove named material<br>to the destination list<br><u>a</u> - 1201<br>000 | Was<br>bed below.<br>6/3/04)<br>Delivery Date |

: . .

•

## ATTACHMENT 3

### PRE-SOIL REMOVAL PHOTOGRAPHS

+2015\LDW07084TLK.doc(R03)



Pile 1 (looking northwest).



Eastern side of Pile 2 (looking north).



Western side of Pile 2 (looking northwest).



Pile 3 (looking northwest).



Eastern side of Pile 4 (looking southwest).



Western side of Pile 4 (looking west southwest).



7

Soil and miscellaneous debris spread over grade (looking east northeast).

Miscellaneously strewn soil in the foreground and Pile 4 in the background (looking west).





9 Soil which was spread on top of grade at the extreme western side of the site (looking northwest).

### **ATTACHMENT 4**

-

-

L

#### **POST-SOIL REMOVAL PHOTOGRAPHS**


2015\LDW07084TLK.doc(R03)





Former location of Piles 1 and 2 (looking west).





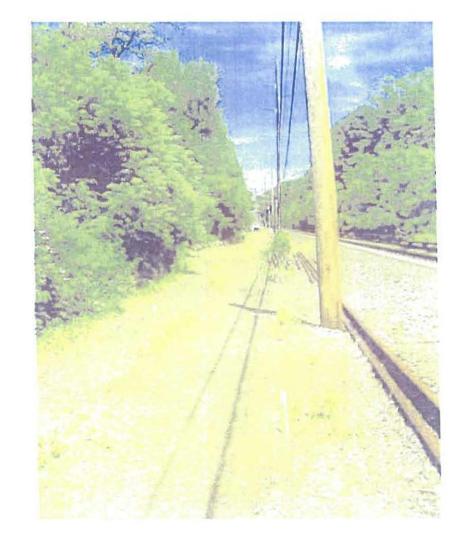
2

Former location of Piles 3 and 4 (looking west).





Former location of Piles 1, 2, and 3 (looking east).






Former location of Pile 4 and miscellaneous soil spread at grade (looking west).

4





Former location of Pile 4 (in foreground) and Piles 1, 2 and 3 (in background) (looking east).

5

# **ATTACHMENT 5**

# ANALYTICAL SUMMARY TABLES

• . .

### TABLE 1

#### LONG ISLAND RAIL ROAD MANHASSET SUBSTATION SOIL REMOVAL ACTIVITIES SURFACE SOIL SAMPLING RESULTS

#### MERCURY SAMPLING

| SAMPLE ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS | SRSS-01<br>(0-2)<br>6/7/04<br>87.0 | SRSS-07<br>(0-2)<br>6/7/04<br>96.0 | SRSSS-13<br>(0-2)<br>6/7/04<br>88.0 | SRSS-17<br>(0-2)<br>6/7/04<br>86.0 | SRSS-18<br>(0-2)<br>6/7/04<br>89.0 | SRSS-19<br>(0-2)<br>6/7/04<br>84.0 | SRSS-20<br>(0-2)<br>6/7/04<br>85.0 | SRSS-21<br>(0-2)<br>6/7/04<br>85.0 | instrument<br>Detection<br>Limits | NYSDEC TAGM<br>4046 Appendix A<br>Comparison Criteria | Background<br>Concentration<br>Range | Background<br>Average<br>Concentration |
|------------------------------------------------------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|-------------------------------------------------------|--------------------------------------|----------------------------------------|
| UNITS                                                                  | (mg/kg)                            | (mg/kg)                            | (mg/kg)                             | (mg/kg)                            | (mg/kg)                            | (mg/kg)                            | (mg/kg)                            | (mg/kg)                            | (ug/l)                            | mg/kg                                                 | (mg/kg)                              | (mg/kg)                                |
| Mercury                                                                | 1.2                                | 0.073                              | 1.1                                 | 0.44                               | 0.89                               | 1.4                                | 0.077                              | 0.85                               | 0.1                               | 0.1                                                   | 0.026 - 0.031                        | 0.0285                                 |

| SAMPLÉ ID<br>SAMPLE DEPTH (IN)<br>DATE OF COLLECTION<br>PERCENT SOLIDS | SR\$S-22<br>(0-2)<br>6/7/04<br>83.0 | SRSS-23<br>(0-2)<br>6/7/04<br>87,0 | 8R8\$-24<br>(0-2)<br>6/7/04<br>83.0 | \$R\$8-25<br>(0-2)<br>6/7/04<br>88.0 | \$R\$8-31<br>(0-2)<br>6/7/04<br>81.0 | SRSS-32<br>(0-2)<br>6/7/04<br>63.0 | SRS\$-33<br>(0-2)<br>6/7/04<br>83.0 | SRS\$-34<br>(0-2)<br>6/7/04<br>84.0 | Instrument<br>Detection<br>Limits | NYSDEC TAGM<br>4046 Appendix A<br>Comparison Criteria | Background<br>Concentration<br>Range | Background<br>Average<br>Concentration |
|------------------------------------------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|-------------------------------------------------------|--------------------------------------|----------------------------------------|
| UNITS                                                                  | (mg/kg)                             | (mg/kg)                            | (mg/kg)                             | (mg/kg)                              | (mg/kg)                              | (mg/kg)                            | (mg/kg)                             | (mg/kg)                             | (ug/l)                            | mg/kg                                                 | (mg/kg)                              | (mg/kg)                                |
| Mercury                                                                | 1.3                                 | 1.1                                | 0.24                                | 0.97                                 | 7.5                                  | 3.3                                | 0.50                                | 0.42                                | 0.1                               | 0.1                                                   | 0.026 - 0.031                        | 0.0285                                 |

|            |          | (0-2)<br>//7/04<br>83.0 | (0-2)<br>6/7/04<br>82.0 | (0-2)<br>6/7/04<br>75.0 | (0-2)<br>6/7/04<br>79.0 | (0-2)<br>6/7/04<br>89.0 | (0-2)<br>6/7/04<br>85.0 | Detection<br>Limits | NYSDEC TAGM<br>4046 Appendix A<br>Comparison Criteria | Concentration<br>Range | Average<br>Concentration |
|------------|----------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------|-------------------------------------------------------|------------------------|--------------------------|
| UNITS (mg  | g/kg) (n | ng/kg) (                | (mg/kg)                 | (mg/kg)                 | (mg/kg)                 | (mg/kg)                 | (mg/kg)                 | (ug/l)              | mg/kg                                                 | (mg/kg)                | (mg/kg)                  |
| Mercury 0. | 0.29     | 0.22                    | 0.17                    | 0.45                    | 0.36                    | 0.43                    | 0.13                    | 0.1                 | 0.1                                                   | 0.026 - 0.031          | 0.0285                   |

.

.

Notes:

: Result exceeds Comparison Value.

• •

#### TABLE 2

#### LONG ISLAND RAILROAD MANHASSET SUBSTATION SOIL REMOVAL ACTIVITIES SURFACE SOIL SAMPLING RESULTS

#### TARGET ANALYTE LIST (TAL) METALS

.

.

.

| SAMPLE ID          | SRSS-02 | SRSS-03 | SRSS-04 | SRSS-05 | SRSS-06 | SRSS-08 | SRSS-09 | SRSS-10 | SRSS-11 | SRSS-12 | Instrument | NYSDEC TAGM     | Background      | Background    |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------------|-----------------|-----------------|---------------|
| DATE OF COLLECTION | 6/7/04  | 6/7/04  | 6/7/04  | 6/7/04  | 6/7/04  | 6/7/04  | 6/7/04  | 6/7/04  | 6/7/04  | 6/7/04  | Detection  | 4046 Appendix A | Concentration   | Average       |
| PERCENT SOLIDS     | 87.0    | 90.0    | 86.0    | 93.0    | 89.0    | 84.0    | 87.0    | 89.0    | 84.0    | 88.0    | Limits     | Criteria        | Range           | Concentration |
| UNITS              | (mg/kg) | ug/l       | (mg/kg)         | (mg/kg)         | (mg/kg)       |
| Aluminum           | 6560    | 3320    | 6600    | 1820    | 6220    | 5990    | 7810    | 6860    | 8390    | 8490    | 13         | SB              | 1,790 - 2,620   | 1,705.0       |
| Antimony           | υ       | U       | U       | U       | U       | υ       | U       | U       | U       | U       | 8          | SB              | 0.52 - 0.57     | 0.540         |
| Arsenic            | 41.0    | 11.4    | 29.2    | 4.7     | 35.0    | 17.2    | 20.0    | 20.4    | 35.4    | 24.4    | 3          | 7.5 or SB       | 3.4 - 3.6       | 3.5           |
| Barium             | 43.3    | 20.5    | 42.6    | 10.3    | 40.6    | 50.4    | 48.8    | 53.4    | 67.5    | 54.3    | 1          | 300 or SB       | 10.9 - 20.5     | 15.7          |
| Beryllium          | 0.54    | 0.27 B  | 0.52    | 0.13 B  | 0.48    | 0.46    | 0.56    | 0.52    | 0.66    | 0.62    | 1          | 0.16 or SB      | 0.072 - 0.15    | 0.111         |
| Cadmium            | υ       | U       | U       | υ       | U       | U       | Ų       | U       | 0.046 U | 0.042 U | 1          | 10*             | U               | U             |
| Calcium            | 1810    | 1110    | 1520    | 345     | 1300    | 3880    | 2660    | 2020    | 3270    | 2850    | 8          | SB              | 184 - 225       | 204.5         |
| Chromium           | 13.4    | 5.7     | 12.4    | 2.9     | 12.3    | 12.2    | 14.8    | 19.0    | 13.2    | 14.8    | 1          | 50*             | 7.2 - 11        | 9.1           |
| Cobalt             | 5.5     | 2.6     | 5.4     | 1.4 B   | 5.2     | 5.0     | 5.7     | 5.4     | 8.4     | 6.3     | 2          | 30 or SB        | 1.7 - 2.8       | 30.0          |
| Copper             | 84.8    | 25.9    | 63.2    | 12.9    | 63.6    | 72.7    | 63.5    | 63.5    | 93.4    | 78.3    | 1          | 25 or SB        | 81.7 - 155      | 118.4         |
| Iron               | 24000   | 8400    | 16400   | 3870    | 18700   | 15100   | 19800   | 16800   | 23300   | 20300   | 20         | 2,000 or SB     | 10,900 - 14,200 | 12,550.0      |
| Lead               | 72.4    | 25.2    | 67.6    | 17.1    | 62.5    | 87.7    | 87.1    | 86.8    | 82.4    | 96.3    | 2          | 400             | 39.7 - 47.5     | 43.6          |
| Magnesium          | 1710    | 1140    | 1740    | 552     | 1700    | 1950    | 2330    | 1800    | 2570    | 2250    | 8          | SB              | 536 - 616       | 576.0         |
| Manganese          | 284     | 112     | 250     | 63.3    | 227     | 256     | 285     | 322     | 432     | 310     | 4          | SB              | 95.4 - 114      | 104.7         |
| Mercury            | 0.60    | 0.14    | 0.40    | 0.069   | 0.37    | 3.9     | 0.61    | 0.35    | 0.63    | 0.83    | 0.2        | 0.1             | 0.026 - 0.031   | 0.0285        |
| Nickel             | 14.8    | 6.4     | 13.4    | 2.9     | 12.3    | 12.6    | 14.4    | 12.4    | 14.6    | 14.8    | 2          | 13 or SB        | 7.5 - 8.3       | 7.9           |
| Potassium          | 670     | 343     | 702     | 178     | 697     | 761     | 716     | 633     | 814     | 784     | 20         | SB              | 231 - 325       | 278.0         |
| Selenium           | 1.6 B   | 1.1 B   | 1.1 B   | U       | 1.3 B   | 1.4 B   | 1.5 B   | 1.6     | 1.5 B   | 1.4 B   | 4          | 2 or SB         | 1.9 - 2.1       | 2.0           |
| Silver             | 2.5     | 1.1 B   | 1.8     | 0.52 B  | 1.7     | 1.5 B   | 1.7     | 1.8     | 2.0     | 1.8     | 1          | SB              | 1.4 - 1.7       | 1.6           |
| Sodium             | 62.8    | 64.4    | 62.3    | 23.5 B  | 55.9    | 146     | 99.0    | 73.2    | 162     | 94.1    | 9          | SB              | 11.8 - 15.9     | 13.9          |
| Thallium           | 1.4     | 1.2     | 1.9     | 0.50 B  | 1.9     | 1.8     | 1.2     | 1.6     | 1.5     | 1.8     | 5          | SB              | U               | υ             |
| Vanadium           | 21.0    | 11.4    | 19.4    | 5.4     | 18.6    | 21.8    | 23.0    | 22.0    | 26.2    | 24.7    | 1          | 150 or SB       | 11.7 - 15.2     | 150.0         |
| Zine               | 86.2    | 32.7    | 85.2    | 24.1    | 72.3    | 125     | 117     | 111     | 108     | 124     | 1          | 20 or SB        | 23.5 - 25.9     | 24.7          |

#### OUALIFIERS: U: Compound analyzed for but not detected

#### NOTES: SB: Site background

B: Compound concentration is less than the CRDL

but greater than the IDL.

----; not established

\*: as per proposed 4/95 NYSDEC TAGM

Indicates value exceeds the NYSDEC TAGM 4046 Comparison Criteria

#### TABLE 2 (continued)

#### LONG ISLAND RAILROAD MANHASSET SUBSTATION SOIL REMOVAL ACTIVITIES SURFACE SOIL SAMPLING RESULTS

#### TARGET ANALYTE LIST (TAL) METALS

| SAMPLE ID          | SRSS-14 | SRSS-15 | SRSS-16      | SRSS-26 | SRSS-27 | SRSS-28 | SRSS-29 | SRSS-30 | SRSS-42 | SRSS-43 | Instrument | NYSDEC TAGM     | Background      | Background    |
|--------------------|---------|---------|--------------|---------|---------|---------|---------|---------|---------|---------|------------|-----------------|-----------------|---------------|
| DATE OF COLLECTION | 6/7/04  | 6/7/04  | 6/7/04       | 6/7/04  | 6/7/04  | 6/7/04  | 6/7/04  | 6/7/04  | 6/7/04  | 6/7/04  | Detection  | 4046 Appendix A | Concentration   | Average       |
| PERCENT SOLIDS     | 89.0    | 87.0    | <b>89</b> .0 | 81.0    | 87.0    | 88.0    | 86.0    | 85.0    | 86.0    | 86.0    | Limits     | Criteria        | Range           | Concentration |
| UNITS              | (mg/kg) | (mg/kg) | (mg/kg)      | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | ug/l       | (mg/kg)         | (mg/kg)         | (mg/kg)       |
| Aluminum           | 8600    | 10400   | 7590         | 6130    | 6160    | 4930    | 7420    | 5110    | 6440    | 5060    | 13         | SB              | 1,790 - 2,620   | 1,705.0       |
| Antimony           | 0.33 B  | U       | U            | 0.59 B  | 0.16 B  | 0.52 B  | 0.58 B  | 0.44 B  | 0.33 B  | 0.34 B  | 8          | 8B              | 0.52 - 0.57     | 0.540         |
| Arsenic            | 24.4    | 20.6    | 20.7         | 72.0    | 58.9    | 36.0    | 50.2    | 36.4    | 26.3    | 30.8    | 3          | 7.5 or SB       | 3.4 - 3.6       | 3.5           |
| Barium             | 50.1    | 69.6    | 48.1         | 49.8    | 48.5    | 44.1    | 51.8    | 48.0    | 54.9    | 39.2    | 1          | 300 or SB       | 10.9 - 20.5     | 15.7          |
| Beryllium          | 0.60    | 0.74    | 0.54         | 0.66    | 0.66    | 0.58    | 0.72    | 0.58    | 0.61    | 0.50    | 1          | 0.16 or SB      | 0.072 - 0.15    | 0.111         |
| Cadmium            | U       | U       | U            | U       | U       | υ       |         | U       | 0.041 U | 0.043 U | 1          | 10*             | U               | υ             |
| Calcium            | 2450    | 2040    | 2110         | 2220    | 1670    | 1340    | 2570    | 1440    | 2740    | 2420    | 8          | SB              | 184 - 225       | 204.5         |
| Chromium           | 14.0    | 18.4    | 13.8         | 19.9    | 14.9    | 16.0    | 16.9    | 16.3    | 15.4    | 13,3    | 1          | 50*             | 7.2 - 11        | 9.1           |
| Cobalt             | 6.2     | 7.4     | 5.6          | 6.9     | 6.1     | 5.0     | 7.2     | 5.5     | 6.5     | 5.0     | 2          | 30 or SB        | 1.7 - 2.8       | 30.0          |
| Copper             | 67.4    | 66.1    | 62.4         | 159     | 105     | 101     | 104     | 133     | 83.2    | 79.9    | 1          | 25 or SB        | 81.7 - 155      | 118.4         |
| Iron               | 19700   | 21600   | 17900        | 27600   | 27900   | 20900   | 27600   | 24900   | 22000   | 18400   | 20         | 2,000 or SB     | 10,900 - 14,200 | 12,550.0      |
| Lead               | 84.1    | 80.7    | 68.8         | 120     | 73.8    | 88.3    | 84.7    | 105     | 92.8    | 102     | 2          | 400             | 39.7 - 47.5     | 43.6          |
| Magnesium          | 2300    | 2520    | 2150         | 1900    | 1660    | 1240    | 2250    | 1080    | 2390    | 1550    | 8          | SB              | 536 - 616       | 576.0         |
| Manganese          | 298     | 340     | 264          | 346     | 268     | 200     | 297     | 222     | 249     | 205     | 4          | SB              | 95.4 - 114      | 104.7         |
| Mercury            | 0.89    | 0.75    | 0.44         | 1.3     | 0.36    | 0.36    | 0.84    | 0.68    | 1.4     | 0.97    | 0.2        | 0.1             | 0.026 - 0.031   | 0.0285        |
| Nickel             | 14.5    | 16,7    | 12.8         | 17.4    | 14.3    | 12.7    | 15.6    | 14.8    | 15.4    | 11.7    | 2          | 13 or SB        | 7.5 - 8.3       | 7.9           |
| Potassium          | 791     | 1020    | 772          | 957     | 956     | 811     | 1010    | 570     | 1430    | 738     | 20         | SB              | 231 - 325       | 276.0         |
| Selenium           | 1.6 B   | 0.72 B  | 1.1 B        | 2.3     | 2.7     | 2.3     | 1.8     | 2.4     | 2.3     | 1.8     | 4          | 2 or SB         | 1.9 - 2.1       | 2.0           |
| Silver             | 1,9     | 1.7     | 1.5 B        | U       | U       | U       | U       | U       | 0.10 U  | 0.11 U  | 1          | SB              | 1.4 - 1.7       | 1.6           |
| Sodium             | 71.8    | 97.4    | 70.3         | 115     | 60.4    | 80.1    | 77.9    | 87.5    | 92.2    | 76.1    | 9          | SB              | 11.8 - 15.9     | 13.9          |
| Thallium           | 2       | 2.5     | 2.0          | 1.2     | 1.3     | 1.1     | 1.1 B   | 1.1     | 1.1     | 0.82 B  | 5          | SB              | U               | υ             |
| Vanadium           | 24.4    | 27.7    | 21.6         | 26.9    | 23.1    | 22.5    | 27.6    | 24.6    | 24.1    | 19.8    | 1          | 150 or SB       | 11.7 - 15.2     | 150.0         |
| Zinc               | 127     | 133     | 106          | 124     | 81.0    | 68.8    | 85.2    | 80.4    | 124     | 112     | 1          | 20 or SB        | 23.5 - 25.9     | 24.7          |

#### OUALIFIERS: U: Compound analyzed for but not detected

but greater than the IDL.

B: Compound concentration is less than the CRDL

#### <u>NOTES:</u> SB: Site background

----: not established

\*: as per proposed 4/95 NYSDEC TAGM

Indicates value exceeds the NYSDEC TAGM 4046 Comparison Criteria

#### TABLE 2 (continued)

#### LONG ISLAND RAILROAD MANHASSET SUBSTATION SOIL REMOVAL ACTIVITIES SURFACE SOIL SAMPLING RESULTS

#### TARGET ANALYTE LIST (TAL) METALS

| SAMPLE ID          | SRSS-44 | SRSS-45      | SRSS-46 | SRSS-47 | SRSS-48  |      | · · · · · · |   | Instrument | NYSDEC TAGM     | Background      | Background    |
|--------------------|---------|--------------|---------|---------|----------|------|-------------|---|------------|-----------------|-----------------|---------------|
| DATE OF COLLECTION | 6/7/04  | 6/7/04       | 6/7/04  | 6/7/04  | 6/7/04   |      |             |   | Detection  | 4046 Appendix A | Concentration   | Average       |
| PERCENT SOLIDS     | 88.0    | 86.0         | 83.0    | 85.0    | 82.0     |      |             | ) | Limits     | Criteria        | Range           | Concentration |
| UNITS              | (mg/kg) | (mg/kg)      | (mg/kg) | (mg/kg) | (mg/kg)  |      |             |   | ug/i       | (mg/kg)         | (mg/kg)         | (mg/kg)       |
| Aluminum           | 7690    | 5750         | 7230    | 8710    | 8520     | <br> |             |   | 13         | ŚB              | 1,790 - 2,620   | 1,705.0       |
| Antimony           | 0.57 B  | 0.53 B       | 0.32 B  | 0.73 B  | 0.23 B   |      |             | 1 | 8          | SB              | 0.52 - 0.57     | 0.540         |
| Arsenic            | 38.5    | 36.2         | 27.1    | 48.6    | 7.9      |      |             |   | 3          | 7.5 or SB       | 3.4 - 3.6       | 3.5           |
| Barium             | 50.6    | 39.5         | 54.4    | 55.2    | 59.9     |      |             |   | 1          | 300 or SB       | 10.9 - 20.5     | 15.7          |
| Beryllium          | 0.75    | 0.60         | 0.69    | 0.85    | 0.88     |      | ]           |   | 1          | 0.16 or SB      | 0.072 - 0.15    | 0.111         |
| Cadmium            | υ       | - U          | U       | U       | <u> </u> |      |             |   | 1          | 10*             | υ               | U             |
| Calcium            | 5640    | 1940         | 2190    | 2110    | 2900     |      |             |   | 8          | SB              | 184 - 225       | 204.5         |
| Chromium           | 20.4    | 14.1         | 17.0    | 20.9    | 23.3     |      | •           |   | 1          | 50°             | 7.2 - 11        | 9.1           |
| Cobalt             | 8.5     | 5.5          | 5.6     | 8.3     | 5.1      |      |             | ì | 2          | 30 or SB        | 1.7 - 2.8       | 30.0          |
| Copper             | 107     | 69,3         | 65.4    | 99.7    | 57.5     |      |             |   | 1          | 25 or SB        | 81.7 - 155      | 118.4         |
| Iron               | 32200   | 21500        | 17100   | 30300   | 14700    |      |             |   | 20         | 2,000 or SB     | 10,900 - 14,200 | 12,550.0      |
| Lead               | 95.9    | 59.2         | 66.7    | 85.2    | 81.5     |      | i           |   | 2          | 400             | 39.7 - 47.5     | 43.6          |
| Magnesium          | 3740    | 1840         | 1910    | 2440    | 1940     |      |             |   | 6          | SB              | 536 - 616       | 576.0         |
| Manganese          | 298     | 229          | 218     | 328     | 162      |      |             |   | 4          | SB              | 95.4 - 114      | 104.7         |
| Mercury            | 0.48    | 0.44         | 0.45    | 1.0     | 0.11     |      | 1           |   | 0.2        | 0.1             | 0.026 - 0.031   | 0.0285        |
| Nickel             | 18.2    | 12.1         | 12.9    | 17.1    | 16.2     |      |             |   | 2          | 13 or SB        | 7.5 - 8.3       | 7.9           |
| Potassium          | 1060    | 885          | 912     | 1430    | 676      |      |             |   | 20         | SB              | 231 - 325       | 278.0         |
| Seienium           | 2.4     | 2.0          | 1.9     | 2.5     | 1.7 B    |      | 1           |   | 4          | 2 or SB         | 1.9 - 2.1       | 2.0           |
| Silver             | υ       | U            | U       | U       | υ        |      |             |   | 1          | SB              | 1.4 - 1.7       | 1.6           |
| Sodium             | 172     | 53.2 B       | 59.4    | 87.6    | 53.0 B   |      |             |   | 9          | SB              | 11.8 - 15.9     | 13.9          |
| Thallium           | 1.4     | 1.0 <b>B</b> | 0.81 8  | 1.3     | 0.62 B   |      |             | 1 | 5          | SB              | U               | U             |
| Vanadium           | 30.8    | 20.5         | 23.2    | 27,9    | 24.5     |      |             | l | 1 1        | 150 or SB       | 11.7 - 15.2     | 150.0         |
| Zinc               | 110     | 67.7         | 78.8    | 101     | 125      |      | I           |   | 1          | 20 or SB        | 23.5 - 25.9     | 24.7          |

#### **OUALIFIERS**: U: Compound analyzed for but not detected

NOTES:

B: Compound concentration is less than the CRDL

but greater than the IDL.

#### SB: Site background

----: not established

\*: as per proposed 4/95 NYSDEC TAGM

Indicates value exceeds the NYSDEC TAGM 4046 Comparison Criteria

.

#### TABLE 3

# LONG ISLAND RAIL ROAD MANHASSET SUBSTATION SOIL REMOVAL ACTIVITIES SURFACE SOIL SAMPLING RESULTS

.

.

#### POLYCYCLIC AEROMATIC HYDROCARBONS (PAHs)

| SAMPLE ID<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS | SRSS-02<br>6/7/04<br>1<br>87,0 | SRSS-03<br>6/7/04<br>1<br>90.0 | SRSS-04<br>6/7/04<br>1<br>86.0 | SRSS-05<br>6/7/04<br>1<br>93.0 | SRSS-06<br>6/7/04<br>1<br>89.0 | SRSS-08<br>6/7/04<br>1<br>84,0 | SRSS-09<br>6/7/04<br>1<br>87.0 | SRSS-10<br>6/7/04<br>1<br>89,0 | SRSS-11<br>6/7/04<br>1<br>84.0 | LABORATORY<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soil Cleanup<br>Objectives |                 | Background Average<br>Concentration |
|----------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------|------------------------------------------------------------|-----------------|-------------------------------------|
| UNITS                                                                | (ug/kg)                        | (ug/kg)              | (ug/kg)                                                    | (ug/kg)         | (ug/kg)                             |
| Phanol                                                               | υ                              | υ                              | U                              | U                              | υ                              | U                              | U                              | υ                              | U                              | 330                  | 30                                                         | U               | υ                                   |
| Naphthalene                                                          | Ŭ                              | U                              | U                              | U                              | Ū                              | U                              | Ū                              | U                              | Ū                              | 330                  | 13,000                                                     | υ               | U                                   |
| 2-Methyinaphthalene                                                  | U                              | υ                              | υ                              | υ                              | υ                              | U                              | υ                              | U                              | U                              | 330                  | 36,400                                                     | U               | U                                   |
| Acenaphthylene                                                       | 140 J                          | Ų                              | 100 J                          | U                              | 110 J                          | 230 J                          | 170 J                          | 120 J                          | 120 J                          | 330                  | 41,000                                                     | 210 - 290       | 250                                 |
| Acenaphthene                                                         | ) U                            | Ŭ                              | υ                              | U                              | υ                              | υ                              | υ                              | υ                              | U                              | 330                  | 50,000                                                     | υ               | U                                   |
| Dibenzofuran                                                         | . ບ                            | υ                              | υ                              | υ                              | U                              | υ                              | υ                              | U                              | υ                              | 330                  | 6,200                                                      | υ               | U                                   |
| Fluorena                                                             | U                              | υ                              | υ                              | U                              | υ                              | 50 J                           | 50 J                           | 38 J                           | U                              | 330                  | 50,000                                                     | U               | U                                   |
| Pentachiorophenol                                                    | U                              | U                              | U                              | U                              | U                              | U                              | U                              | U                              | U                              | 330                  | 1,000                                                      | υ               | U                                   |
| Phenanthrene                                                         | 300 J                          | 120 J                          | 300 J                          | 120 J                          | 290 J                          | 490                            | 900                            | 440                            | 380 J                          | 330                  | 50,000                                                     | 1,400 - 2,600   | 2,000                               |
| Anthracene                                                           | 210 J                          | 63 J                           | 150 J                          | 37 J                           | 200 J                          | 370 J                          | 350 J                          | 230 J                          | 200 J                          | 330                  | . 50,000                                                   | 220 - 310       | 265                                 |
| Fluorenthene                                                         | \$00                           | 290 J                          | 720                            | U                              | 740                            | 1,400                          | 2,200                          | 1,100                          | 970                            | 330                  | \$0,000                                                    | 4,100 - 5,600   | 4,850                               |
| Pyrene                                                               | 820                            | 280 J                          | 680                            | V                              | 710                            | 1300                           | 2000                           | 950                            | 980                            | 330                  | \$0,000                                                    | 2,800 - 4,200   | 4,000                               |
| Benzo(a)enthracene                                                   | 430                            | 140 J                          | 410                            | V                              | 440                            | 750                            | 760                            | 610                            | 530                            | 330                  | 224                                                        | 330 - 650       | 490                                 |
| Chrysene                                                             | 890                            | 310 J                          | 820                            | υ                              | 760                            | 1400                           | 1700                           | 1100                           | 970                            | 330                  | 400                                                        | 1,400 - 2,200   | 1,800                               |
| Benzo(b)fluoranthene                                                 | 1,000                          | 310 J                          | 760                            | 150 J                          | 730                            | 1,400                          | 1,400                          | 1,200                          | 1,100                          | 330                  | 1,100                                                      | 1,500 - 2,500   | 2,000                               |
| Benzo(k)fluoranthene                                                 | 350 J                          | 110 J                          | 370 J                          | 71 J                           | 350 J                          | 590                            | 680                            | 470                            | 360 J                          | 330                  | 1,100                                                      | 590 - 920       | 755                                 |
| Banzo(a)pyrana                                                       | 550                            | 180 J                          | 480                            | υ                              | 460                            | 870                            | 880                            | 750                            | 640                            | 330                  | 61                                                         | 350 - 550       | 450                                 |
| Indeno(1,2,3-cd)pyrene                                               | 420                            | 130 J                          | 350 J                          | 61 J                           | 330 J                          | 620                            | 680                            | 490                            | 440                            | 330                  | 3,200                                                      | 250 - 390       | 320                                 |
| Dibenzo(a,h)anthracene                                               | 140 J                          | 39 J                           | 110 J                          | U                              | 100 J                          | 200 J                          | 200 J                          | 170 J                          | 150 J                          | 330                  | 14                                                         | U U             | υ                                   |
| Benzo(g,h,i)perylene                                                 | 460                            | 140 J                          | 380 J                          | 68 J                           | 370 J                          | 680                            | 700                            | 530                            | 490                            | 330                  | 50,000                                                     | 210 - 330       | 270                                 |
|                                                                      |                                |                                |                                |                                |                                |                                |                                |                                |                                |                      |                                                            |                 |                                     |
| Total PAHs                                                           | 6510                           | 2112                           | 5630                           | 507                            | 5590                           | 10350                          | 12670                          | 8198                           | 7330                           |                      | 100,000                                                    | 14,560 - 19,340 | 17,450                              |
| Total CaPAHs                                                         | 3780                           | 1219                           | 3300                           | 282                            | 3170                           | 5830                           | 6300                           | 4790                           | 4190                           |                      | 10,000                                                     | 4,420 - 7,210   | 5,815                               |

OUALIFIERS: U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

NOTES: : Not Available ---

: Concentration exceeds NYSDEC TAGM 4046 Appendix A Criteria.

#### TABLE 3 (Continued)

# LONG ISLAND RAIL ROAD MANHASSET SUBSTATION SOIL REMOVAL ACTIVITIES SURFACE SOIL SAMPLING RESULTS

#### POLYCYCLIC AEROMATIC HYDROCARBONS (PAHs)

| SAMPLE ID<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS | SRSS-12<br>6/7/04<br>1<br>88.0 | SRSS-14<br>6/7/04<br>1<br>89.0 | SRSS-15<br>6/7/04<br>1<br>87.0 | SRSS-16<br>6/7/04<br>1<br>89.0 | SRSS-26<br>6/7/04<br>1<br>81.0 | SRSS-27<br>6/7/04<br>1<br>87.0 | SRSS-28<br>6/7/04<br>1<br>88.0 | SRSS-29<br>6/7/04<br>1<br>86.0 | SRSS-30<br>6/7/04<br>1<br>85.0 | LABORATORY<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soil Cleanup<br>Objectives | Background<br>Concentration Range | Background Average<br>Concentration |
|----------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------|------------------------------------------------------------|-----------------------------------|-------------------------------------|
| UNITS                                                                | (ug/kg)                        | (ug/kg)              | (ug/kg)                                                    | (ug/kg)                           | (ug/kg)                             |
| Phenol                                                               | U                              | U                              | U                              | U                              | U                              | U                              | U                              | Ū                              | U                              | 330                  | 30                                                         | U                                 | U                                   |
| Naphthalene                                                          | U                              | U                              | υ                              | U                              | U                              | U U                            | υ                              | υ                              | υ                              | 330                  | 13,000                                                     | U                                 | U                                   |
| 2-Methylnaphthalene                                                  | υ                              | Ū                              | U                              | U                              | U                              | υ                              | 39 J                           | υ                              | Ι υ                            | 330                  | 36,400                                                     | υ                                 | U U                                 |
| Acenaphthylene                                                       | 140 J                          | Ú                              | L                              | 110 J                          | 170 J                          | Ĵ                              | 150 J                          | Ū                              | 130 J                          | 330                  | 41,000                                                     | 210 - 290                         | 250                                 |
| Acenaphthene                                                         | U                              | Ŭ,                             | U                              | 68 J                           | U                              | U U                            | U                              | υ                              | U U                            | 330                  | 50,000                                                     | U                                 | U                                   |
| Dibenzofuran                                                         | υ                              | U                              | U U                            | 81 J                           | U                              | U U                            | U                              | υ [                            | U U                            | 330                  | 6,200                                                      | υ                                 | υ                                   |
| Fluorene                                                             | 52 J                           | 38 J                           | U U                            | 85 J                           | U                              | U U                            | 42 J                           | υ                              | U                              | 330                  | 50,000                                                     | U                                 | U U                                 |
| Pentachtorophenol                                                    | υ                              | V                              | U U                            | U                              | U                              | U U                            | U                              | U                              | 790 U                          | <b>3</b> 30          | 1,000                                                      | U                                 | U U                                 |
| Phenanthrene                                                         | 670                            | 480                            | 410                            | 1500                           | 370 J                          | 280 J                          | 820                            | 210 J                          | 250 J                          | 330                  | 50,000                                                     | 1,400 - 2,600                     | 2,000                               |
| Anthracene                                                           | 330 J                          | 200 J                          | 200 J                          | 220 J                          | 320 J                          | 200 J                          | 400                            | 150 J                          | 240 J                          | 330                  | 50,000                                                     | 220 - 310                         | 265                                 |
| Fluoranthene                                                         | 1,500                          | 1000                           | 1000                           | 1800                           | 1000                           | 610                            | 1400                           | 580                            | 800                            | 330                  | 50,000                                                     | 4,100 - 5,600                     | 4,850                               |
| Pyrene                                                               | 1500                           | 1100                           | 980                            | 1500                           | 1000                           | 610                            | 1500                           | 580                            | 800                            | 330                  | 50,000                                                     | 2,800 - 4,200                     | 4,000                               |
| Benzo(a)anthracene                                                   | 780                            | 570                            | 500                            | \$70                           | 540                            | 330 J                          | 790                            | 310 J                          | 350 J                          | 330                  | 224                                                        | 330 - 650                         | 490                                 |
| Chrysene                                                             | 1400                           | 1000                           | 1100                           | 1200                           | 1200                           | 710                            | 1500                           | 620                            | 1100                           | 330                  | 400                                                        | 1,400 - 2,200                     | 1,800                               |
| Benzo(b)fluoranthene                                                 | 1500                           | 1000                           | 1100                           | 1200                           | 1300                           | 710                            | 1500                           | 690                            | 1200                           | 330                  | 1,100                                                      | 1,500 - 2,500                     | 2,000                               |
| Benzo(k)fluoranthene                                                 | 540                            | 470                            | 420                            | 400                            | 610                            | 290 J                          | 500                            | 230 J                          | 410                            | 330                  | 1,100                                                      | 590 - 920                         | 755                                 |
| Benzo(a)pyrene                                                       | 900                            | 660                            | 680                            | 690                            | 610                            | 400                            | 770                            | 400                            | 400                            | 330                  | . 61                                                       | 350 - 550                         | 450                                 |
| Indeno(1,2,3-cd)pyrene                                               | 630                            | 450                            | 460                            | 490                            | 480                            | 360 J                          | 530                            | 280 J                          | 350 J                          | 330                  | 3,200                                                      | 250 - 390                         | 320                                 |
| Dibenzo(a,h)anthracene                                               | 210 J                          | 150 J                          | 160 J                          | 150 J                          | 160 J                          | 130 J                          | 190 J                          | 90 J                           | 120 J                          | 330                  | 14                                                         | U                                 | U U                                 |
| Benzo(g,h,i)perylene                                                 | 690                            | 510                            | 520                            | 530                            | 490                            | 350 J                          | 560                            | 300 J                          | 350 J                          | 330                  | 50,000                                                     | 210 - 330                         | 270                                 |
| Total PAHs                                                           | 10842                          | 7628                           | 7530                           | 10594                          | 8250                           | 4960                           | 10691                          | 4440                           | 6500                           |                      | 100,000                                                    | 14,560 - 19,340                   | 17,450                              |
| Total CaPAHs                                                         | 5960                           | 4300                           | 4420                           | 4700                           | 4900                           | 2930                           | 5780                           | 2620                           | 3930                           |                      | 10,000                                                     | 4,420 - 7,210                     | 5,815                               |

NOTES:

OUALIFIERS: U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

: Not Available : Concentration exceeds NYSDEC TAGM 4046 Appendix A Criteria.

eng: 2015 (LIRR 3 Subs Del Phase II) Manhasset Soli Removal Data/Soli Removal PAH xis

#### TABLE 3 (Continued)

# LONG ISLAND RAIL ROAD MANHASSET SUBSTATION SOIL REMOVAL ACTIVITIES SURFACE SOIL SAMPLING RESULTS

#### POLYCYCLIC AEROMATIC HYDROCARBONS (PAHs)

| SAMPLE ID<br>DATE OF COLLECTION<br>DILUTION FACTOR<br>PERCENT SOLIDS | SRSS-42<br>6/7/04<br>1<br>86.0 | SRSS-43<br>6/7/04<br>1<br>86.0 | SRSS-44<br>6/7/04<br>1<br>88.0 | SRSS-45<br>6/7/04<br>1<br>86.0 | SRSS-46<br>6/7/04<br>1<br>83,0 | SRSS-47<br>6/7/04<br>1<br>85.0 | SRSS-48<br>6/7/04<br>I<br>82.0 |   |   | LABORATORY<br>LIMITS | NYSDEC TAGM 4046<br>Recommended Soli Cleanup<br>Objectives | Background<br>Concentration Range | Background Average<br>Concentration |
|----------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---|---|----------------------|------------------------------------------------------------|-----------------------------------|-------------------------------------|
| UNITS                                                                | (ug/kg)                        |   |   | (ug/kg)              | (ug/kg)                                                    | (ug/kg)                           | (ug/kg)                             |
| Phanol                                                               | U U                            | U                              | U                              | U                              | U U                            | U                              | Ų V                            |   |   | 330                  | 30                                                         | Ŭ                                 | U                                   |
| Naphthelene                                                          | U U                            | υ                              | U                              | υ                              | U                              | U                              | U                              |   | ļ | 330                  | 13,000                                                     | U                                 | υ                                   |
| 2-Methylnaphthelena                                                  | ) U                            | υ                              | υ                              | ບ                              | υ                              | υ                              | U                              |   |   | 330                  | 36,400                                                     | U                                 | U                                   |
| Acenaphthylene                                                       | 93 J                           | 110 J                          | 140 J                          | 68 J                           | 87 J                           | 160 J                          | 140 J                          |   |   | 330                  | 41,000                                                     | 210 - 290                         | 250                                 |
| Acenaphthene                                                         | U U                            | U                              | U                              | U                              | U U                            | U                              | [ U                            |   |   | 330                  | \$0,000                                                    | U                                 | U                                   |
| Dibenzofuran                                                         | U U                            | U U                            | ן ט                            | U                              | U U                            | U U                            | U                              |   |   | 330                  | 6,200                                                      | U                                 | U                                   |
| Fluorene                                                             | υ                              | 71 J                           | U U                            | υ                              | U                              | U U                            | 56 J                           |   | 1 | 330                  | 50,000                                                     | υ                                 | U                                   |
| Pentachlorophenol                                                    | U                              | U U                            | U U                            | υ                              | U                              | U U                            | ) U                            |   |   | 330                  | 1,000                                                      | υ                                 | υ                                   |
| Phenanthrene                                                         | 420                            | 800                            | 450                            | 260 J                          | 270 J                          | 350 J                          | 690                            |   |   | 330                  | 50,000                                                     | 1,400 - 2,600                     | 2,000                               |
| Anthracene                                                           | 160 J                          | 3200                           | 210 J                          | 99 J                           | 120 J                          | 250 J                          | 260 J                          |   |   | 330                  | 50,000                                                     | 220 - 310                         | 265                                 |
| Fluoranthene                                                         | 1400                           | 5300                           | 1500                           | 880                            | 780                            | 990                            | 1300                           |   | Í | 330                  | 50,000                                                     | 4,100 - 5,600                     | 4,850                               |
| Pyrene                                                               | 1 <u>600</u>                   | 5300                           | 1800                           | 820                            | 1000                           | 1000                           | 1300                           |   |   | 330                  | 50,000                                                     | 2,800 - 4,200                     | 4,000                               |
| Benzo(a)anthracene                                                   | 700                            | 2000                           | 870                            | 390                            | 520                            | 580                            | 750                            |   |   | 330                  | 224                                                        | 330 - 650                         | 490                                 |
| Chrysene                                                             | 1600                           | 3200                           | 1800                           | 730                            | 910                            | 970                            | 1100                           |   |   | 330                  | 400                                                        | 1,400 - 2,200                     | 1,800                               |
| Benzo(b)fluoranthene                                                 | 1500                           | 2300                           | 2000                           | 870                            | 1000                           | 1100                           | 1200                           |   |   | 330                  | 1,100                                                      | 1,500 - 2,500                     | 2,000                               |
| Benzo(k)fluorenthene                                                 | 800                            | 1100                           | 960                            | 320 J                          | 840                            | 430_                           | 450                            |   |   | 330                  | 1,100                                                      | 590 - 920                         | 755                                 |
| Benzo(s)pyrene                                                       | 880                            | 1200                           | 1100                           | 440                            | 590                            | 660                            | 790                            |   |   | 330                  | 61                                                         | 350 - 550                         | 450                                 |
| Indeno(1,2,3-cd)pyrene                                               | 460                            | 560                            | 600                            | 260 J                          | 360 J                          | 480                            | 490                            |   |   | 330                  | 3,200                                                      | 250 - 390                         | 320                                 |
| Dibenzo(a,h)anthracene                                               | 160 J                          | 190 J                          | 190 J                          |                                | 120 J                          | 160 J                          | 150 J                          | 1 | í | 330                  | 14                                                         | U                                 | U                                   |
| Benzo(g.h,l)perviens                                                 | 540                            | 600                            | 650                            | 290 J                          | 410                            | 510                            | 510                            |   |   | 330                  | \$0,000                                                    | 210 - 330                         | 270                                 |
| Total PAHs                                                           | 10313                          | 25931                          | 12270                          | 5315                           | 7007                           | 7640                           | 9186                           |   |   |                      | 100,000                                                    | 14,560 - 19,340                   | 17,450                              |
| Total CaPAHs                                                         | 6100                           | 10550                          | 7520                           | 3098                           | 4340                           | 4380                           | 4930                           |   |   |                      | 10,000                                                     | 4,420 - 7,210                     | 5,815                               |

NOTES:

OUALIFIERS: U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

# : Not Available

; Concentration exceeds NYSDEC TAGM 4046 Appendix A Criteria.

Appendix G

# APPENDIX G

# LONG ISLAND RAIL ROAD PROCEDURE/INSTRUCTION EE03-001, EXCAVATING SOILS AT RAILROAD LOCATIONS

◆2015\AA1103406.doc(R01)



# Procedure/Instruction: EE03-001 EXCAVATING SOILS AT RAILROAD LOCATIONS

# Effective DATE: August 11, 2003

# A. Introduction:

At existing railroad shops, yards, substations, right-of-ways and other locations, past operations may have resulted in the chance of soils containing very low levels of chemical substances. Examples may include; trace levels of metals around old painted structures, oils and greases around train yards and repair locations, greasy or sooty compounds left from coal ash ("clinker").

This Procedure/Instruction has been prepared to eliminate any risk that may be posed to LIRR workers who must dig in these locations. It is to be applied on a case by case basis, with any questions referred to Department Management and System Safety.

# B. Required Steps/Actions:

- The first step of any LIRR excavation, regarding the soil composition and possible presence of contaminates, is to review the current System Safety Environmental Audit Map. This map includes all LIRR sites with documented soil contaminates. If your site appears on the map in red it may have soil concerns that could affect your project, contact System Safety before proceeding. If your site is not shown or is shown in black (does not have soil concerns) proceed to Step 2 as follows;
- 2. When digging at an existing railroad facility, the recommended procedures include:
  - a. Wherever possible excavate with mechanical means, such as backhoes, ditch-witches or excavators.
  - b. Wash facilities must be available for use by workers at the end of the task, before breaks, before meals, or at the end-of-shift. For field operations, wet-wipes are acceptable for fulfilling this requirement.
  - c. Where hand digging must be used, workers must be instructed to brush soil from clothing and shoes. Disposable coveralls, shoe coverings and gloves should be made available upon workers request. Work clothing should be laundered.
  - d. All equipment should be cleaned before leaving the worksite. The preferred method is hosing down with water, removing any clumps of dirt and soil. If water is not available equipment should be brushed clean of any dirt and soil using a broom or stiff brush. Disposable items can be placed in the trash, no special disposal is necessary.
- 3. Where evidence of soil contamination is found, such as an odor, a stain or visible contaminant, the soil feels greasy, or results from laboratory analysis indicate a contaminant;
  - a. Stop any excavation work or only excavate by mechanical means and
  - b. Immediately Contact System Safety (information below) to assess the situation.
- C. Regulations or Policy References: LIRR Corporate Environmental Policy; Section IV, B, 5

| D. System Safety Contacts: | Environmental Engineer;<br>Environmental Field Engineer; | 718-558-3252<br>718-558-3081 |
|----------------------------|----------------------------------------------------------|------------------------------|
|                            |                                                          |                              |

E. Forms & Attachments: None.

Appendix H

APPENDIX H

# MERCURY VAPOR RESULTS FOR SURFACE SOIL SAMPLES

# Table H-1

# Long Island Rail Road Delineation Phase 2 Site Assessment Mercury Vapor Measurement Results at Surface Soil Sample Locations Manhasset Substation - N10

|             | Surface Soil Sample | Sample Depth | Mercury Vapor Analyzer         |
|-------------|---------------------|--------------|--------------------------------|
| Sample Date | D .                 | (inches)     | Reading (mg/m <sup>3</sup> Hg) |
| 1/15/2003   | MHSS-14             | 0 to 2       | NA                             |
| 1/15/2003   | MHSS-15             | 0 to 2       | NA                             |
| 1/15/2003   | MHSS-16             | 0 to 2       | NA                             |
| 1/15/2003   | MHSS-17             | 0 to 2       | 0.014                          |
| 1/15/2003   | MHSS-18             | 0 to 2       | 0.007                          |
| 1/16/2003   | MHSS-19             | 0 to 2       | 0.005                          |
| 1/16/2003   | MHSS-20             | 0 to 2       | 0.005                          |
| 1/16/2003   | MHSS-20<br>MHSS-21  | 0 to 2       | 0.003                          |
| 1/16/2003   | MHSS-22             | 0 to 2       | 0.000                          |
| 1/16/2003   | MHSS-22<br>MHSS-23  | 0 to 2       | 0.003                          |
| 1/16/2003   | MHSS-24             | 0 to 2       | 0.000                          |
|             |                     | 0 to 2       | 0.000                          |
| 1/16/2003   | MHSS-25             |              |                                |
| 1/16/2003   | MHSS-26             | 0 to 2       | 0.000                          |
| 1/16/2003   | MHSS-27             | 0 to 2       | 0.094                          |
| 1/16/2003   | MHSS-28             | 0 to 2       | 0.000                          |
| 1/16/2003   | MHSS-29             | 0 to 2       | 0.006                          |
| 1/16/2003   | MHSS-30             | 0 to 2       | 0.008                          |
| 1/16/2003   | MHSS-31             | 0 to 2       | 0.006                          |
| 8/12/2004   | MHSS-32             | 0 to 2       | 0.000                          |
| 8/12/2004   | MHSS-33             | 0 to 2       | 0.000                          |
| 8/12/2004   | MHSS-34             | 0 to 2       | 0.000                          |
| 8/12/2004   | MHSS-35             | 0 to 2       | 0.000                          |
| 8/12/2004   | MHSS-36             | 0 to 2       | 0.074                          |
| 8/12/2004   | MHSS-37             | 0 to 2       | 0.039                          |
| 8/12/2004   | MHSS-38             | 0 to 2       | 0.057                          |
| 8/12/2004   | MHSS-39             | 0 to 2       | 0.009                          |
| 8/12/2004   | MHSS-40             | 0 to 2       | 0.000                          |
| 8/12/2004   | MHSS-41             | 0 to 2       | 0.000                          |
| 8/12/2004   | MHSS-42             | 0 to 2       | 0.012                          |
| 8/12/2004   | MHSS-43             | 0 to 2       | 0.000                          |
| 8/11/2004   | MHSS-44             | 0 to 2       | 0.000                          |
| 8/16/2004   | MHSS-44             | 2 to 12      | 0.000                          |
| 8/11/2004   | MHSS-45             | 0 to 2       | 0.000                          |
| 8/16/2004   | MHSS-45             | 2 to 12      | 0.000                          |
| 8/11/2004   | MHSS-46             | 0 to 2       | 0.000                          |
| 8/16/2004   | MHSS-46             | 2 to 12      | 0.000                          |
| 8/11/2004   | MHSS-47             | 0 to 2       | 0.000                          |
| 8/16/2004   | MHSS-47             | 2 to 12      | 0.000                          |
| 8/11/2004   | MHSS-48             | 0 to 2       | 0.000                          |
| 8/16/2004   | MHSS-48             | 2 to 12      | 0.000                          |
| 8/11/2004   | MHSS-49             | 0 to 2       | 0.000                          |
| 8/16/2004   | MHSS-49             | 2 to 12      | 0.000                          |
| 8/11/2004   | MHSS-50             | 0 to 2       | 0.000                          |
| 8/16/2004   | MHSS-50             | 2 to 12      | 0.000                          |
| 8/11/2004   | MHSS-51             | 0 to 2       | 0.000                          |
| 8/16/2004   | MHSS-51             | 2 to 12      | 0.000                          |
| 8/11/2004   | MHSS-52             | 0 to 2       | 0.000                          |
| 8/16/2004   | MHSS-52             | 2 to 12      | 0.000                          |

.

# Table H-1 (continued)Long Island Rail RoadDelineation Phase 2 Site AssessmentMercury Vapor Measurement Results at Surface Soil Sample LocationsManhasset Substation - N10

|             | Surface Soil Sample | Sample Depth      | Mercury Vapor Analyzer         |
|-------------|---------------------|-------------------|--------------------------------|
| Sample Date | D                   | (inches)          | Reading (mg/m <sup>3</sup> Hg) |
| 8/11/2004   | MHSS-53             | 0 to 2            | 0.000                          |
| 8/16/2004   | MHSS-53             | 2 to 12           | 0.000                          |
| 8/11/2004   | MHSS-54             | 0 to 2            | 0.000                          |
| 8/16/2004   | MHSS-54<br>MHSS-54  | 2 to 12           | 0.000                          |
| 8/11/2004   | MHSS-54<br>MHSS-55  | 0 to 2            | 0.000                          |
| 8/16/2004   | MHSS-55<br>MHSS-55  | 2 to 12           | 0.000                          |
| 8/11/2004   | MHSS-56             | 0 to 2            | 0.000                          |
| 8/16/2004   | MHSS-56             | 2 to 12           | 0.000                          |
| 8/11/2004   | MHSS-50<br>MHSS-57  | 0 to 2            | 0.000                          |
| 8/16/2004   | MHSS-57<br>MHSS-57  | 2 to 12           | 0.000                          |
| 8/11/2004   | MHSS-58             | 0 to 2            | 0.000                          |
| 8/16/2004   | MHSS-58<br>MHSS-58  | 2 to 12           | 0.000                          |
|             |                     | 0 to 2            | 0.000                          |
| 8/19/2004   | MHSS-59             | 2 to 12           | 0.000                          |
| 8/16/2004   | MHSS-59             | 0 to 2            |                                |
| 8/19/2004   | MHSS-60             |                   | 0.000                          |
| 8/16/2004   | MHSS-60             | 2 to 12           | 0.000                          |
| 8/16/2004   | MHSS-61             | 0 to 2            | 0.000                          |
| 8/16/2004   | MHSS-61             | 2 to 12<br>0 to 2 | 0.000                          |
| 8/16/2004   | MHSS-62             |                   | 0.000                          |
| 8/16/2004   | MHSS-62             | 2 to 12           | 0.000                          |
| 8/16/2004   | MHSS-63             | 0 to 2            | 0.000                          |
| 8/16/2004   | MHSS-63             | 2 to 12           | 0.000                          |
| 8/16/2004   | MHSS-64             | 0 to 2            | 0.000                          |
| 8/16/2004   | MHSS-64             | 2 to 12           | 0.000                          |
| 8/13/2004   | MHSS-65             | 0 to 2            | 0.000                          |
| 8/13/2004   | MHSS-65             | 2 to 12           | 0.000                          |
| 8/13/2004   | MHSS-66             | 0 to 2            | 0.000                          |
| 8/13/2004   | MHSS-66             | 2 to 12           | 0.000                          |
| 8/13/2004   | MHSS-67             | 0 to 2            | 0.000                          |
| 8/13/2004   | MHSS-67             | 2 to 12           | 0.000                          |
| 8/13/2004   | MHSS-68             | 0 to 2            | 0.000                          |
| 8/13/2004   | MHSS-68             | 2 to 12           | 0.000                          |
| 8/13/2004   | MHSS-69             | 0 to 2            | 0.000                          |
| 8/13/2004   | MHSS-69             | 2 to 12           | 0.000                          |
| 8/13/2004   | MHSS-70             | 0 to 2            | 0.000                          |
| 8/13/2004   | MHSS-70             | <u>2 to 12</u>    | 0.000                          |
| 8/13/2004   | MHSS-71             | 0 to 2            | 0.000                          |
| 8/13/2004   | MHSS-71             | 2 to 12           | 0.000                          |
| 8/13/2004   | MHSS-72             | 0 to 2            | 0.000                          |
| 8/13/2004   | MHSS-72             | 2 to 12           | 0.000                          |
| 8/16/2004   | MHSS-73             | 0 to 2            | 0.005                          |
| 8/16/2004   | MHSS-73             | 2 to 12           | 0.000                          |
| 8/16/2004   | MHSS-74             | 0 to 2            | 0.000                          |
| 8/16/2004   | MHSS-74             | 2 to 12           | 0.005                          |
| 8/16/2004   | MHSS-75             | 0 to 2            | 0.004                          |
| 8/16/2004   | MHSS-76             | 0 to 2            | 0.000                          |
| 8/16/2004   | MHSS-77             | 0 to 2            | 0.003                          |
| 8/16/2004   | MHSS-78             | 0 to 2            | 0.000                          |

# Table H-1 (continued)Long Island Rail RoadDelineation Phase 2 Site AssessmentMercury Vapor Measurement Results at Surface Soil Sample LocationsManhasset Substation - N10

| Sample Date | Surface Soil Sample<br>ID | Sample Depth<br>(inches) | Mercury Vapor Analyzer<br>Reading (mg/m <sup>3</sup> Hg) |
|-------------|---------------------------|--------------------------|----------------------------------------------------------|
| 8/16/2004   | MHSS-79                   | 0 to 2                   | 0.004                                                    |
| 8/16/2004   | MHSS-80                   | 0 to 2                   | 0.000                                                    |
| 1/15/2003   | MHSB-13                   | 0 to 2                   | 0.010                                                    |
| 1/15/2003   | MHSB-14                   | 0 to 2                   | 0.000                                                    |
| 1/15/2003   | MHSB-15                   | 0 to 2                   | 0.000                                                    |
| 1/15/2003   | MHSB-16                   | 0 to 2                   | 0.000                                                    |
| 1/16/2003   | MHSB-17                   | 0 to 2                   | 0.006                                                    |
| 1/16/2003   | MHSB-18                   | 0 to 2                   | 0.004                                                    |
| 1/16/2003   | MHSB-19                   | 0 to 2                   | 0.009                                                    |

Notes:

NA : Not available due to equipment malfunction.

# Table H-2

# Long Island Rail Road Delineation Phase 2 Site Assessment Mercury Vapor Measurement Results at Surface Soil Sample Locations Massapequa Substation - S15

|             | Surface Soil Sample | Sample Depth | Mercury Vapor Analyzer         |
|-------------|---------------------|--------------|--------------------------------|
| Sample Date | ID                  | (inches)     | Reading (mg/m <sup>3</sup> Hg) |
| 8/10/2004   | MSSS-07A            | 0 to 2       | 0.000                          |
| 8/10/2004   | MSSS-08             | 0 to 2       | 0.009                          |
| 8/10/2004   | MSSS-09             | 0 to 2       | 0.000                          |
| 8/10/2004   | MSSS-10             | 0 to 2       | 0.000                          |
| 8/10/2004   | MSSS-11             | 0 to 2       | 0.000                          |
| 8/10/2004   | MSSS-12             | 0 to 2       | 0.000                          |
| 8/10/2004   | MSSS-13             | 0 to 2       | 0.000                          |
| 8/10/2004   | MSSS-14             | 0 to 2       | 0.000                          |
| 8/10/2004   | MSSS-15             | 0 to 2       | 0.000                          |
| 8/10/2004   | MSSS-16             | 0 to 2       | 0.000                          |
| 8/10/2004   | MSSS-17             | 0 to 2       | 0.003                          |
| 8/10/2004   | MSSS-18             | 0 to 2       | 0.000                          |
| 8/10/2004   | MSSS-19             | 0 to 2       | 0.000                          |
| 8/10/2004   | MSSS-20             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-06A            | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-09             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-10             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-11             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-12             | 0 to 2       | 0.000                          |
| 2/3/2003    | MSSB-13             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-14             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-15             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-16             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-17             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-18             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-19             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-20             | 0 to 2       | 0.000                          |
| 2/3/2003    | MSSB-21             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-22             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-23             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-24             | 0 to 2       | 0.000                          |
| 2/3/2003    | MSSB-25             | 0 to 2       | 0.006                          |
| 2/3/2003    | MSSB-26             | 0 to 2       | 0.000                          |
| 2/3/2003    | MSSB-27             | 0 to 2       | 0.000                          |
| 2/3/2003    | MSSB-28             | 0 to 2       | 0.004                          |
| 2/3/2003    | MSSB-29             | 0 to 2       | 0.003                          |
| 2/4/2003    | MSSB-30             | 0 to 2       | 0.000                          |
| 2/3/2003    | MSSB-31             | 0 to 2       | 0.003                          |
| 2/4/2003    | MSSB-32             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-33             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-34             | 0 to 2       | 0.000                          |
| 2/3/2003    | MSSB-38             | 0 to 2       | 0.000                          |
| 2/4/2003    | MSSB-39             | 0 to 2       | 0.000                          |

.

.

# Table H-3

# Long Island Rail Road Delineation Phase 2 Site Assessment Mercury Vapor Measurement Results at Surface Soil Sample Locations Island Park Substation - L03

|             | Surface Soil Sample | Sample Depth | Mercury Vapor Analyzer         |
|-------------|---------------------|--------------|--------------------------------|
| Sample Date | ID -                | (inches)     | Reading (mg/m <sup>3</sup> Hg) |
| 1/28/2003   | IPSS-05             | 0 to 2       | 0.000                          |
| 1/28/2003   | IPSS-06             | 0 to 2       | 0.003                          |
| 1/27/2003   | IPSB-12             | 0 to 2       | 0.008                          |
| 1/29/2003   | IPSB-13             | 0 to 2       | 0.025                          |
| 1/29/2003   | IPSB-14             | 0 to 2       | 0.010                          |
| 1/29/2003   | IPSB-15             | 0 to 2       | 0.014                          |
| 1/30/2003   | IPSB-18             | 0 to 2       | 0.008                          |
| 1/27/2003   | IPSB-19             | 0 to 2       | 0.005                          |
| 1/29/2003   | IPSB-22             | 0 to 2       | 0.005                          |
| 1/29/2003   | IPSB-23             | 0 to 2       | 0.021                          |
| 1/29/2003   | IPSB-24             | 0 to 2       | 0.024                          |
| 1/29/2003   | IPSB-25             | 0 to 2       | 0.210                          |
| 1/30/2003   | IPSB-26             | 0 to 2       | 0.008                          |
| 1/30/2003   | IPSB-27             | 0 to 2       | 0.008                          |
| 1/30/2003   | IPSB-28             | 0 to 2       | 0.013                          |
| 1/28/2003   | IPSB-29             | 0 to 2       | 0.000                          |

# **APPENDIX I**

# DATA VALIDATOR RESUME

· · · ·

# **ROBBIN A. PETRELLA**

# **QUALITY ASSURANCE OFFICER**

# **EDUCATION**

SUNY at Buffalo, B.S. (Chemical Engineering) - 1986

# **PROFESSIONAL EXPERIENCE**

Ms. Petrella's professional quality assurance/quality control (QA/QC) experience spans 18 years. During this time, she served as a Sample and Data Analyst for two large environmental laboratories. Ms. Petrella was responsible, as Data Review Group Leader, for supervision of data validation and QA/QC coordination between the laboratory and its clients. Her technical experience includes both the analysis and review of environmental samples using numerous protocols, including those developed by the United States Environmental Protection Agency (USEPA), New York State Department of Environmental Conservation (NYSDEC), and New Jersey Department of Environmental Protection (NJDEP).

Since joining the firm, Ms. Petrella has been responsible for preparing Quality Assurance/Quality Control Plans and Waste Analysis Plans for a number of large private sector clients. These include Chemical Waste Disposal Corporation, the International Business Machines Corporation and Northrop Grumman Corporation. She also has prepared overall QA/QC programs for Northrop Grumman's on-site laboratories.

Ms. Petrella has prepared QA/QC Plans and data validation/usability reports for remedial investigation and feasibility studies conducted at numerous New York State Registry Sites, including those in the Towns of Cheektowaga, Schodack, and North Tonawanda, as well as the Villages of Croton-on-Hudson and Brentwood, New York. These tasks involved evaluation of the laboratory data to determine compliance with NYSDEC Analytical Services Protocols (ASP), as well as to determine the usability of the data particularly if it was not consistent with ASP requirements.

Ms. Petrella has assisted in the preparation and performance of air sampling programs for remedial investigation/feasibility studies (RI/FS) conducted at landfill/Superfund sites in Wallkill, New York and East Northport, New York. She has also performed water supply sampling for an RI/FS in Rensselaer County, New York, and a surface and subsurface water and soil sampling program as part of an RI/FS in Elmira, New York.

Ms. Petrella has acted as the QA/QC officer, and prepared and performed field audits for Superfund site investigations in Tonawanda, New York; Owego, New York; Brookhaven, New York; and Hornell, New York, and for a major railroad facility in New York City. She also has assisted in the preparation of laboratory contracts for analytical services for hazardous waste studies in Schodack, New York; Jamaica, New York; and the New York State Superfund Standby contract.

Ms. Petrella is responsible for performing laboratory audits on all laboratories having contracts with the firm as part of the New York State Superfund Program. She has been certified by the USEPA in both organic and inorganic data validation by successfully completing courses authorized by the USEPA. These certifications have also been accepted by the NYSDEC.

Ms. Petrella is responsible for the data validation of all data packages from ongoing hydrogeologic investigation and landfill closure investigations in Brookhaven and Hauppauge, New York. She also is responsible

A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

# **DVIRKA AND BARTILUCCI**

# **ROBBIN A. PETRELLA**

for validation of all data collected during field investigations for a large aerospace corporation, a major utility on Long Island, and manufactured gas plants across Long Island.

Ms. Petrella has acted as Project Manager for a standby project with the NYSDEC and a groundwater treatment project located in New Jersey.

Ms. Petrella has been instrumental in the design and implementation of the firm's GIS/Key Database system. In that role, she is responsible for the maintenance of the system and training of personnel in its use. She also is responsible for all updates to the GIS/Key program and communicates on a regular basis with the GIS/Key venders with regard to system improvements and network administration. Currently, there are seven ongoing projects that use GIS/Key, five of which are MGP sites. Ms. Petrella is responsible for entering and reporting of all chemistry data from GIS/Key.

Ms. Petrella also has conducted indoor and outdoor air sampling programs as part of MGP site field investigations. She has conducted interviews with homeowners as part of the air sampling program. She also is responsible for data validation of all the data from the air sampling programs.

Ms. Petrella has performed multimedia compliance audits for several hospitals in both New York and New Jersey. She also has prepared audit reports and EPA disclosure reports based on the compliance audits

Ms. Petrella presently is the Quality Assurance/Quality Control officer for the firm and responsible for reviewing all work relating to Quality Assurance/Quality Control for hazardous waste, hazardous substance, manufactured gas plant and solid waste projects undertaken by the firm. She also is responsible for preparation and maintenance of the Corporate Quality Assurance Manual, and for inventory and maintenance of the firm's field/sampling and monitoring equipment. As the QA/QC Officer, she reports directly to the Principal-in-Charge of the Environmental Remediation Division.

DVIRKA AND BARTILUCCI

APPENDIX J

# **REVISED/QUALIFIED DATA SUMMARY SHEETS**

.

## EPA SAMPLE NO.

Q

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

SB221820 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: B0076 Matrix: (soil/water) SOIL Lab Sample ID: B0076-02B Sample wt/vol: 5.1 (g/mL) G Lab File ID: V1F2047 Level: (low/med) LOW Date Received: 01/15/03 % Moisture: not dec. 0 Date Analyzed: 01/21/03 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: \_\_\_\_\_(uL) Soil Extract Volume: \_\_\_\_(mL) CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/KG

|   |                                     |        |    | r           |
|---|-------------------------------------|--------|----|-------------|
|   | 75-71-8Dichlorodifluoromethane      |        | ប  |             |
| ł | 74-87-3Chloromethane                |        | ប  |             |
|   | 75-01-4Vinyl Chloride               |        | ប  |             |
| 1 | 74-83-9Bromomethane                 | 5      | υ  |             |
| ł | 75-00-3Chloroethane                 | 5      | υ  |             |
| I | 75-69-4Trichlorofluoromethane       | 5<br>5 | U  | l           |
| I | 75-35-41,1-Dichloroethene           | 5      | U  | 1           |
| I | 67-64-1Acetone                      | 11     |    |             |
|   | 74-88-4Iodomethane                  | 5      | U  | . 1         |
|   | 75-15-0Carbon Disulfide             | 5      | n. | IPP         |
|   | 75-09-2Methylene Chloride           | 5      | BU | <i> </i> ~' |
|   | 156-60-5trans-1,2-Dichloroethene    | 5      | บ  |             |
| Į | 1634-04-4Methyl tert-butyl ether    | 5<br>5 | U  |             |
|   | 75-34-31,1-Dichloroethane           | 5      | U  | 1           |
|   | 108-05-4Vinyl acetate               |        | U  |             |
|   | 78-93-32-Butanone                   |        | U  |             |
|   | 156-59-2cis-1,2-Dichloroethene      | 5      | υ  |             |
|   | 590-20-72,2-Dichloropropane         | . 5    | U  |             |
|   | 74-97-5Bromochloromethane           | . 5    | υ  |             |
|   | 67-66-3Chloroform                   | 5      | U  |             |
|   | 71-55-61,1,1-Trichloroethane        | 5      | U  |             |
|   | 563-58-61,1-Dichloropropene         | 5      | U  | ļ           |
| ł | 56-23-5Carbon Tetrachloride         | 5      | U  |             |
|   | 107-06-21,2-Dichloroethane          | 5      | U  |             |
|   | 71-43-2Benzene                      | 5      | U  |             |
|   | 79-01-6Trichloroethene              | 2      | J  |             |
|   | 78-87-51, 2-Dichloropropane         | 5      | U  |             |
|   | 74-95-3Dibromomethane               | 5      | υ  |             |
|   | 75-27-4Bromodichloromethane         | 5      | U  |             |
|   | 10061-01-5cis-1,3-Dichloropropene   | 5      | U  |             |
|   | 108-10-14-Methyl-2-pentanone        | 5      | υ  | 1           |
|   | 108-88-3Toluene                     | 5      | υ  |             |
|   | 10061-02-6trans-1,3-Dichloropropene | 5      | U  |             |
|   | 79-00-51,1,2-Trichloroethane        | 5      | Ū  |             |
|   | ·····                               |        |    | 1           |
|   |                                     |        | 1  |             |

OLM03.0

#### 1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

SB221820 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: B0076 Matrix: (soil/water) SOIL Lab Sample ID: B0076-02B Sample wt/vol: 5.1 (g/mL) G Lab File ID: V1F2047 Level: (low/med) LOW Date Received: 01/15/03 % Moisture: not dec. 0 Date Analyzed: 01/21/03 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: (uL) Soil Extract Volume: \_\_\_\_\_ (mL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

| 142,20,0,1,2 Dichloropropos         | F           | Ū      |
|-------------------------------------|-------------|--------|
| 142-28-91,3-Dichloropropane         | 5           |        |
| 591-78-62-Hexanone                  | 5           | U      |
|                                     | 5           | U      |
| 124-48-1Dibromochloromethane        | 5           |        |
| 106-93-41,2-Dibromoethane           | 5           |        |
| 108-90-7Chlorobenzene               | 5           |        |
| 630-20-61,1,1,2-Tetrachloroethane   | 5           |        |
| 100-41-4Ethylbenzene                | 5           |        |
| m,p-Xylene                          | 5           | U      |
| 95-47-6o-Xylene                     | 5           | U      |
| 1330-20-7Xylene (Total)             | 5           | U      |
| 100-42-5Styrene                     | 5           | U      |
| 75-25-2Bromoform                    | 5           | U      |
| 98-82-8Isopropylbenzene             | 5<br>5<br>5 | U      |
| 79-34-51,1,2,2-Tetrachloroethane    | 5           | υ      |
| 108-86-1Bromobenzene                | 5           | U      |
| 96-18-41,2,3-Trichloropropane       | 5           | U      |
| 103-65-1n-Propylbenzene             | 5           | U      |
| 95-49-82-Chlorotoluene              | 5           | U      |
| 108-67-81,3,5-Trimethylbenzene      | 5           | U      |
| 106-43-44-Chlorotoluene             | 5           | U      |
| 98-06-6tert-Butylbenzene            | 5           | υ      |
| 95-63-61,2,4-Trimethylbenzene       | 1           | J      |
| 135-98-8sec-Butylbenzene            | 5           | Ū      |
| 99-87-64-Isopropyltoluene           | 5           | Ū      |
| 541-73-11,3-Dichlorobenzene         | 5           | Ū      |
| 106-46-71,4-Dichlorobenzene         | 5           | υ      |
| 104-51-8n-Butylbenzene              | 5           | U      |
| 95-50-11,2-Dichlorobenzene          | 5           | Ū      |
| 96-12-81, 2-Dibromo-3-chloropropane | 5           | Π      |
| 120-82-11,2,4-Trichlorobenzene      | 5           | U      |
| 87-68-3Hexachlorobutadiene          | 5           | U      |
|                                     | 2           | J      |
| 91-20-3Naphthalene                  | 5           | U<br>U |
| 87-61-61,2,3-Trichlorobenzene       | 5           | 10     |
|                                     | l           | I      |

FORM I VOA

OLM03.0

## 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Number TICs found: 0

| Lab Name: MITKEM CORPORATION      | Contract: SB221820        |
|-----------------------------------|---------------------------|
| Lab Code: MITKEM Case No.:        | SAS No.: SDG No.: B0076   |
| Matrix: (soil/water) SOIL         | Lab Sample ID: B0076-02B  |
| Sample wt/vol: 5.1 (g/mL)         | G Lab File ID: V1F2047    |
| Level: (low/med) LOW              | Date Received: 01/15/03   |
| <pre>% Moisture: not dec. 0</pre> | Date Analyzed: 01/21/03   |
| GC Column: DB-624 ID: 0.25 (mm    | n) Dilution Factor: 1.0   |
| Soil Extract Volume: (mL)         | Soil Aliquot Volume: (uL) |

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/Kg

EPA SAMPLE NO.

| CAS NUMBER | COMPOUND NAME | RT | EST. CONC.                             |  |
|------------|---------------|----|----------------------------------------|--|
| 1.         |               |    |                                        |  |
| 6.         |               |    |                                        |  |
| J          |               |    |                                        |  |
| <b>エ</b> ・ |               |    |                                        |  |
| 5          |               |    |                                        |  |
| 6          |               |    | ·                                      |  |
| 7.         |               |    |                                        |  |
| 8.         |               |    |                                        |  |
| 9.         |               |    |                                        |  |
| 10.        |               |    |                                        |  |
| 11         |               |    |                                        |  |
| 12         | •             |    |                                        |  |
| 13         |               |    |                                        |  |
| 14         |               |    | i                                      |  |
| 15<br>16   |               | l  |                                        |  |
| 17.        |               |    |                                        |  |
| 18         |               |    |                                        |  |
| 19         |               |    | ) ———————————————————————————————————— |  |
| 20         |               |    |                                        |  |
| 21         |               |    |                                        |  |
| 22         |               |    |                                        |  |
| 23         | ······        |    |                                        |  |
| 24.        |               |    | <u> </u>                               |  |
| 25.        |               |    |                                        |  |
| 20.        |               |    |                                        |  |
| 21.        |               |    |                                        |  |
| 28.        |               |    |                                        |  |
| 29         |               |    |                                        |  |
| 30         |               |    |                                        |  |
|            |               |    |                                        |  |

1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET SB222426 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM SAS No.: SDG No.: B0076 Case No.: Matrix: (soil/water) SOIL Lab Sample ID: B0076-03B Sample wt/vol: 5.1 (g/mL) G Lab File ID: V1F2048 Level: (low/med)LOW Date Received: 01/15/03 % Moisture: not dec. 2 Date Analyzed: 01/21/03 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: (uL) Soil Extract Volume: \_\_\_\_(mL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 0 75-71-8-----Dichlorodifluoromethane 5 U 74-87-3----Chloromethane 5 U 75-01-4----Vinyl Chloride 5 U 74-83-9----Bromomethane 5 U 5 75-00-3-----Chloroethane U | 5 U 5 U 5 U 5 U 5 U 5 U 75-69-4-----Trichlorofluoromethane 75-35-4----1,1-Dichloroethene 67-64-1-----Acetone RF 74-88-4----Iodomethane 75-15-0----Carbon Disulfide 75-09-2-----Methylene Chloride Æ 4 5 156-60-5-----trans-1,2-Dichloroethene U 1634-04-4-----Methyl tert-butyl ether 75-34-3----1,1-Dichloroethane 108-05-4-----Vinyl acetate 78-93-3----2-Butanone 156-59-2----cis-1,2-Dichloroethene 590-20-7-----2, 2-Dichloropropane 74-97-5-----Bromochloromethane 67-66-3-----Chloroform 71-55-6-----1,1,1-Trichloroethane 563-58-6-----1,1-Dichloropropene 56-23-5-----Carbon Tetrachloride 107-06-2----1,2-Dichloroethane 71-43-2----Benzene 79-01-6-----Trichloroethene 78-87-5-----1,2-Dichloropropane 74-95-3-----Dibromomethane 75-27-4-----Bromodichloromethane 10061-01-5----cis-1,3-Dichloropropene 108-10-1-----4-Methyl-2-pentanone 5 108-88-3-----Toluene U

10061-02-6----trans-1, 3-Dichloropropene

79-00-5-----1,1,2-Trichloroethane

OLM03.0

5 0

5 U

EPA SAMPLE NO.

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

SB222426

Q

| Lab Name: MITKEM CORPORATION      | Contract:                |
|-----------------------------------|--------------------------|
| Lab Code: MITKEM Case No.:        | SAS No.: SDG No.: B0076  |
| Matrix: (soil/water) SOIL         | Lab Sample ID: B0076-03B |
| Sample wt/vol: 5.1 (g/mL) G       | Lab File ID: V1F2048     |
| Level: (low/med) LOW              | Date Received: 01/15/03  |
| <pre>% Moisture: not dec. 2</pre> | Date Analyzed: 01/21/03  |
| GC Column: DB-624 ID: 0.25 (mm)   | Dilution Factor: 1.0     |
| Soil Extract Volume:(mL)          | Soil Aliquot Volume:(uL) |
|                                   |                          |

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

FORM I VOA

OLM03.0

## 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Number TICs found: 0

SB222426 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: B0076 Matrix: (soil/water) SOIL Lab Sample ID: B0076-03B Sample wt/vol: 5.1 (g/mL) G Lab File ID: V1F2048 Level: (low/med) LOW Date Received: 01/15/03 % Moisture: not dec. 2 Date Analyzed: 01/21/03 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: \_\_\_\_\_(uL) Soil Extract Volume: \_\_\_\_(mL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/Kg

EPA SAMPLE NO.

| CAS NUMBER  | COMPOUND NAME | RT  | EST. CONC.  | Q        |
|-------------|---------------|-----|-------------|----------|
| 1.          |               |     |             |          |
| 2.          |               |     |             |          |
| 3           |               |     | ·           |          |
| 4           |               |     |             |          |
| 5           |               |     |             |          |
| 6           |               |     |             |          |
| 7           |               |     |             |          |
| 8           |               |     |             |          |
| 9.          |               |     | ····· _···· | []       |
| 10          |               |     |             |          |
| <u>+</u> +• |               |     |             |          |
| 12          |               |     |             |          |
| 13          |               |     |             |          |
| 14          |               |     |             |          |
| 15          |               |     |             | <u> </u> |
| 16.         |               |     |             | i        |
| 17          |               |     |             | I        |
| 18.         |               |     |             |          |
| 19          |               |     |             |          |
| 20          | ·····         |     |             |          |
| 21          |               |     |             |          |
| 22.         |               |     |             |          |
| 23          |               |     |             | ↓\       |
| 24          |               |     |             |          |
| 25.         |               |     |             |          |
| 26          |               | ·   |             |          |
| 26          |               | · [ |             |          |
| 28          |               | ·   |             |          |
| 29.         |               |     |             | 1        |
| 30.         |               | ·   | <u> </u>    |          |
|             |               | ·   |             | I        |

FORM I VOA-TIC

OLM03.0

#### 1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

SB22810 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM SDG No.: B0076 Case No.: SAS No.: Matrix: (soil/water) SOIL Lab Sample ID: B0076-01B Sample wt/vol: 5.2 (g/mL) G Lab File ID: V1F2046 Level: (low/med) LOW Date Received: 01/15/03 % Moisture: not dec. 11 Date Analyzed: 01/21/03 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (mL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 1 . .

|          | Dichlorodifluoromethane   | 5      | U   |    |
|----------|---------------------------|--------|-----|----|
| 74-87-3  | Chloromethane             |        | υ   |    |
| 75-01-4  | Vinyl Chloride            |        | ប   |    |
| 74-83-9  | Bromomethane              |        | U   |    |
| 75-00-3  | Chloroethane              | 5      | Ū   |    |
| 75-69-4  | Trichlorofluoromethane    | 5      |     |    |
| 75-35-4  | 1,1-Dichloroethene        | 5      | υ   |    |
| 67-64-1  | Acetone                   | 5      | Ū I | ~  |
| 74-88-4  |                           | 5<br>5 | π   | of |
|          | Carbon Disulfide          | 5      |     | P  |
|          | Methylene Chloride        | 5      |     | ·  |
| 156-60-5 | trans-1,2-Dichloroethene  | 5      | U   |    |
|          | Methyl tert-butyl ether   | 5      | υ   |    |
|          | 1,1-Dichloroethane        | 5      | Ŭ   |    |
|          | Vinyl acetate             | 5      | υ   |    |
| 78-93-3  |                           | 5      |     |    |
|          | cis-1,2-Dichloroethene    | 5      |     |    |
| 590-20-7 | 2,2-Dichloropropane       | 5      |     |    |
| 74-97-5  | Bromochloromethane        | 5      |     |    |
| 67-66-3  |                           | 5      |     |    |
| 71-55-6  | 1,1,1-Trichloroethane     | 5      |     |    |
| 563-58-6 | 1,1-Dichloropropene       | 5      | υ   |    |
| 56-23-5  | Carbon Tetrachloride      | 5      | Ŭ   |    |
|          | 1,2-Dichloroethane        | 5      | Ŭ.  |    |
| 71-43-2  |                           | 5      | Ū   |    |
|          | Trichloroethene           | 5      | υ   |    |
|          | 1,2-Dichloropropane       | 5      | Ŭ   |    |
| 74-95-3  | Dibromomethane            | 5      | Ŭ   |    |
|          | Bromodichloromethane      | 5      |     |    |
|          | cis-1,3-Dichloropropene   | 5      |     |    |
|          | 4-Methyl-2-pentanone      | 5      | υ   |    |
| 108-88-3 |                           | 5      | -   |    |
|          | trans-1,3-Dichloropropene | 5      | σ   |    |
|          | 1,1,2-Trichloroethane     | 5      | U U | l  |
|          |                           | 5      | Ĭ   |    |
| ١        |                           | I      | I   | I  |

#### 1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

SB22810 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: B0076 Matrix: (soil/water) SOIL Lab Sample ID: B0076-01B Sample wt/vol: 5.2 (g/mL) G Lab File ID: V1F2046 Level: (low/med)LOW Date Received: 01/15/03 % Moisture: not dec. 11 Date Analyzed: 01/21/03 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: \_\_\_\_(mL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

| 142-28-91,3-Dichloropropane         | 5      | U      |
|-------------------------------------|--------|--------|
| 127-18-4Tetrachloroethene           |        | Ŭ      |
| 591-78-62-Hexanone                  | 5      | -      |
| 124-48-1Dibromochloromethane        | 5      | Ŭ      |
| 106-93-41,2-Dibromoethane           | 5      | Ŭ      |
| 108-90-7Chlorobenzene               | 5      | Ŭ      |
| 630-20-61,1,1,2-Tetrachloroethane   |        | Ŭ      |
| 100-41-4Ethylbenzene                | 5<br>5 | Ŭ      |
| m,p-Xylene                          | 5      | ΰ      |
| 95-47-6o-Xylene                     | 5      | Ŭ      |
| 1330-20-7Xylene (Total)             | 5      |        |
| 100-42-5Styrene                     | 5      |        |
| 75-25-2Bromoform                    | 5      |        |
| 98-82-8Isopropylbenzene             | 5      | U<br>U |
| 79-34-51,1,2,2-Tetrachloroethane    | 5      | Ŭ      |
| 108-86-1Bromobenzene                | 5      | Ŭ      |
| 96-18-41,2,3-Trichloropropane       | 5      | Ŭ      |
| 103-65-1n-Propylbenzene             | 5      | Ŭ      |
| 95-49-82-Chlorotoluene              | 5      | Ū      |
| 108-67-81,3,5-Trimethylbenzene      | 5      | Ŭ      |
| 106-43-44-Chlorotoluene             | 5      | Ū      |
| 98-06-6tert-Butylbenzene            | 5      | Ū      |
| 95-63-61,2,4-Trimethylbenzene       | 5      | Ŭ      |
| 135-98-8sec-Butylbenzene            | 5      | Ŭ      |
| 99-87-64-Isopropyltoluene           | 5      | Ŭ      |
| 541-73-11, 3-Dichlorobenzene        | 5      | Ū      |
| 106-46-71, 4-Dichlorobenzene        | 5      | Ŭ      |
| 104-51-8n-Butylbenzene              | 5      | Ŭ      |
| 95-50-11,2-Dichlorobenzene          | 5      | Ŭ      |
| 96-12-81, 2-Dibromo-3-chloropropane | 5      | Ū      |
| 120-82-11,2,4-Trichlorobenzene      | 5      | U      |
| 87-68-3Hexachlorobutadiene          | 5      | Ū      |
| 91-20-3Naphthalene                  | 5      | Ū      |
| 87-61-61,2,3-Trichlorobenzene       | 5      | σ      |
|                                     |        | -      |
|                                     | I      | I      |

FORM I VOA

OLM03.0

|                                    | SB22810                                       |
|------------------------------------|-----------------------------------------------|
| Lab Name: MITKEM CORPORATION       | Contract:                                     |
| Lab Code: MITKEM Case No.:         | SAS No.: SDG No.: B0076                       |
| Matrix: (soil/water) SOIL          | Lab Sample ID: B0076-01B                      |
| Sample wt/vol: 5.2 (g/mL) G        | Lab File ID: V1F2046                          |
| Level: (low/med) LOW               | Date Received: 01/15/03                       |
| <pre>% Moisture: not dec. 11</pre> | Date Analyzed: 01/21/03                       |
| GC Column: DB-624 ID: 0.25 (mm)    | Dilution Factor: 1.0                          |
| Soil Extract Volume:(mL)           | Soil Aliquot Volume:(uL)                      |
| Number TICs found: 0               | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) ug/Kg |
| CAS NUMBER COMPOUND N              | IAME RT EST. CONC. Q                          |
| 1                                  |                                               |

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| ======================================= |     |            | ************ | ===== |
|-----------------------------------------|-----|------------|--------------|-------|
| 1                                       |     |            |              |       |
| 2.                                      |     |            |              |       |
| 3.                                      |     |            |              |       |
| 4.                                      |     |            |              |       |
| 5                                       |     |            |              |       |
| 6.                                      |     |            |              |       |
| 7                                       |     |            |              |       |
| 8                                       |     |            |              |       |
| 9                                       |     |            |              | · '   |
| 10                                      |     |            |              |       |
| 11                                      |     | ·          |              |       |
| 12                                      |     |            |              |       |
| 13.                                     |     |            |              |       |
| 14.                                     |     | ·          |              |       |
| 15                                      |     | <u>-</u> - |              |       |
| 15<br>16                                |     | ·          |              |       |
| 17.                                     |     |            | ·            |       |
| 18.                                     | ĺ   |            |              |       |
|                                         |     |            |              |       |
| 19                                      | i   |            |              |       |
| 20                                      |     |            |              |       |
| 21                                      |     |            |              |       |
| 22.                                     |     |            | . <u> </u>   |       |
| 23.                                     |     |            |              |       |
| 24.                                     |     | I          |              |       |
| 25                                      |     |            |              |       |
| 26.                                     |     |            |              |       |
| 27.                                     |     |            |              |       |
| 28                                      |     |            |              |       |
| 29.                                     |     |            |              |       |
| 30.                                     |     |            |              |       |
|                                         |     |            |              |       |
| 1                                       | · / | ·          | ·            | ·     |

OLM03.0

EPA SAMPLE NO.

| 1A<br>VOLATILE ORGANICS ANALYSIS DATA SHEET |          | EPA SAMPLE NO. |           |                |
|---------------------------------------------|----------|----------------|-----------|----------------|
| Lab Name                                    | : MITKEM | CORPORATION    | Contract: | SB211012       |
| Lab Code                                    | : MITKEM | Case No.:      | SAS No.:  | SDG No.: B0082 |

Matrix: (soil/water) SOIL

Sample wt/vol: 5.1 (g/mL) G

Level: (low/med) LOW

% Moisture: not dec. 9

GC Column: DB-624 ID: 0.25 (mm)

Soil Extract Volume:\_\_\_\_(mL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Lab File ID:

| 19:  |  |
|------|--|
| G/KG |  |

Q

Soil Aliquot Volume: \_\_\_\_\_(uL)

V1F2052

Lab Sample ID: B0082-04B

Date Received: 01/16/03

Date Analyzed: 01/21/03

Dilution Factor: 1.0

| 75-71-8    | Dichlorodifluoromethane    | 5                               | U   |     |
|------------|----------------------------|---------------------------------|-----|-----|
|            | Chloromethane              | 5                               | U   |     |
|            | Vinyl Chloride             | 5                               | U   |     |
|            | Bromomethane               | 5                               | U   |     |
|            | Chloroethane               | 5                               | U   |     |
| 75~69-4    | Trichlorofluoromethane     | 5                               | υ   |     |
| 75-35-4    | 1,1-Dichloroethene         |                                 | U   |     |
|            | Acetone                    | 5<br>5<br>5<br>5                | σ   | 0   |
|            | Iodomethane                | 5                               | υ   | OP  |
| 75-15-0    | Carbon Disulfide           | 5                               | BU  | μ   |
| 75-09-2    | Methylene Chloride         | 7                               | BUC |     |
|            | trans-1,2-Dichloroethene   | .5                              | U   |     |
| 1634-04-4- | Methyl tert-butyl ether    | 5                               | U   |     |
| 75-34-3    | 1,1-Dichloroethane         |                                 | U   |     |
| 108-05-4   | Vinyl acetate              | 5                               | U   |     |
| 78-93-3    | 2-Butanone                 | 5                               | ש   |     |
| 156-59-2   | cis-1,2-Dichloroethene     | 5                               | U   |     |
|            | 2,2-Dichloropropane        | 5                               | U   |     |
| 74-97-5    | Bromochloromethane         | 5<br>5<br>5<br>5<br>5<br>5<br>5 | U   | 1   |
| 67-66-3    | Chloroform                 | 5                               | U   |     |
| 71-55-6    | 1,1,1-Trichloroethane      | 5                               | σ   |     |
| 563-58-6   | 1,1-Dichloropropene        | 5                               | U   |     |
| 56-23-5    | Carbon Tetrachloride       | 5                               | σ   | (   |
| 107-06-2   | 1,2-Dichloroethane         | 5                               | U   |     |
| 71-43-2    | Benzene                    | 5                               | U   |     |
| 79-01-6    | Trichloroethene            | 5                               | U   |     |
| 78-87-5    | 1,2-Dichloropropane        | 5                               | U   | ļ – |
| 74-95-3    | Dibromomethane             | 5                               | U   |     |
| 75-27-4    | Bromodichloromethane       | 5                               | U   |     |
| 10061-01-5 | cis-1, 3-Dichloropropene   | 5                               | U   |     |
|            | 4-Methyl-2-pentanone       | 5                               | U   | ļ   |
|            | Toluene                    | 5                               | U   |     |
|            | trans-1, 3-Dichloropropene | 5                               | U   |     |
|            | 1,1,2-Trichloroethane      | 5                               | U   |     |
| ļ          | · · ·                      |                                 |     |     |
| I          |                            | I                               | 1   | 1   |

0 12

### 1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

SB211012 Lab Name: MITKEM CORPORATION Contract: SDG No.: B0082 Lab Code: MITKEM Case No.: SAS No.: Matrix: (soil/water) SOIL Lab Sample ID: B0082-04B Sample wt/vol: 5.1 (g/mL) G Lab File ID: V1F2052 Level: (low/med) LOW Date Received: 01/16/03 % Moisture: not dec. 9 Date Analyzed: 01/21/03 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: (uL) Soil Extract Volume: \_\_\_\_(mL) CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/KG

Q

| 142-28-91,3-Dichloropropane        | 5           | บ  |
|------------------------------------|-------------|----|
| 127-18-4Tetrachloroethene          | 5           | υ  |
| 591-78-62-Hexanone                 | 5           | U  |
| 124-48-1Dibromochloromethane       | 5<br>5      | υ  |
| 106-93-41,2-Dibromoethane          |             | -  |
|                                    | 5           | ប  |
| 108-90-7Chlorobenzene              | 5           | U  |
| 630-20-61,1,1,2-Tetrachloroethane  | 5           | U  |
| 100-41-4Ethylbenzene               | 5           | υ  |
| m,p-Xylene                         | 5           | U  |
| 95-47-6o-Xylene                    | 5<br>5      | U  |
| 1330-20-7Xylene (Total)            | 5           | U  |
| 100-42-5Styrene                    | 5           | U  |
| 75-25-2Bromoform                   | 5<br>5<br>5 | U  |
| 98-82-8Isopropylbenzene            |             | U  |
| 79-34-51,1,2,2-Tetrachloroethane   | 5           | U  |
| 108-86-1Bromobenzene               | 5           | U  |
| 96-18-41,2,3-Trichloropropane      | 5           | U  |
| 103-65-1n-Propylbenzene            | 5           | U  |
| 95-49-82-Chlorotoluene             | 5           | υ  |
| 108-67-81,3,5-Trimethylbenzene     | 5           | σ  |
| 106-43-44-Chlorotoluene            | 5           | σ  |
| 98-06-6tert-Butylbenzene           | 5           | U  |
| 95-63-61,2,4-Trimethylbenzene      | 5.          | U  |
| 135-98-8sec-Butylbenzene           | 5           | U  |
| 99-87-64-Isopropyltoluene          | 5           | U  |
| 541-73-11, 3-Dichlorobenzene       | 5           | U  |
| 106-46-71, 4-Dichlorobenzene       | 5           | Ū  |
| 104-51-8n-Butylbenzene             | 5           | Ū  |
| 95-50-11, 2-Dichlorobenzene        | 5           | Ū  |
| 96-12-81,2-Dibromo-3-chloropropane | 5           | Ŭ  |
| 120-82-11,2,4-Trichlorobenzene     | 5           | Ŭ  |
| 87-68-3Hexachlorobutadiene         | 5           | υ  |
| 91-20-3Naphthalene                 | 5           | UU |
|                                    |             | U  |
| 87-61-61,2,3-Trichlorobenzene      | 5           | 0  |
|                                    | l           | ·  |

FORM I VOA

## 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| Lab Name: MITKEM CORPORATION      | Contract:                   |
|-----------------------------------|-----------------------------|
| Lab Code: MITKEM Case No.:        | SAS No.: SDG No.: B0082     |
| Matrix: (soil/water) SOIL         | Lab Sample ID: B0082-04B    |
| Sample wt/vol: 5.1 (g/mL) G       | Lab File ID: V1F2052        |
| Level: (low/med) LOW              | Date Received: 01/16/03     |
| <pre>% Moisture: not dec. 9</pre> | Date Analyzed: 01/21/03     |
| GC Column: DB-624 ID: 0.25 (mm)   | Dilution Factor: 1.0        |
| Soil Extract Volume:(mL)          | Soil Aliquot Volume:(uL)    |
|                                   | CONCERNMENT DELCON TRAILERO |

Number TICs found: 0

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/Kg

EPA SAMPLE NO.

| CAS NUMBER | COMPOUND NAME                          | RT | EST. CONC. | Q       |
|------------|----------------------------------------|----|------------|---------|
| 1          |                                        |    |            |         |
| 2.         |                                        |    |            |         |
| 3          |                                        |    |            |         |
|            | ······································ |    |            |         |
| 5          | · · · · · · · · · · · · · · · · · · ·  |    |            |         |
| 0.         |                                        |    |            |         |
| /.         |                                        |    | ·          |         |
| 0.         |                                        |    |            |         |
| 9.         |                                        |    |            |         |
| 10.        |                                        |    |            |         |
| 11.        |                                        |    |            |         |
| 12.        |                                        |    |            |         |
| 13.        | · · · · · · · · · · · · · · · · · · ·  |    |            |         |
|            |                                        |    |            |         |
| 15.        |                                        |    |            |         |
| 16.        |                                        |    |            |         |
| 17.        | · · · · · · · · · · · · · · · · · · ·  |    |            |         |
| 18. 1      |                                        |    |            | <u></u> |
| 19.        |                                        |    |            |         |
| 27.        |                                        |    |            |         |
| 21.        |                                        |    |            |         |
| 22.        |                                        |    |            |         |
| 23         |                                        |    |            |         |
| 24         |                                        |    |            |         |
| 45.        |                                        |    |            |         |
| 20.        |                                        |    |            |         |
| 27.        |                                        |    |            |         |
| 28.        |                                        |    |            |         |
| 29.        |                                        |    |            |         |
| 30         |                                        |    |            |         |
|            |                                        | l  |            | 1       |

### 1**A**

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET SB2124 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: B0082 Lab Sample ID: B0082-01B Matrix: (soil/water) SOIL 5.1 (g/mL) G Sample wt/vol: Lab File ID: V1F2049 Date Received: 01/16/03 Level: (low/med) LOW % Moisture: not dec. 9 Date Analyzed: 01/21/03 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (mL) Soil Aliquot Volume: \_\_\_\_\_(uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 75-71-8-----Dichlorodifluoromethane 74-87-3-----Chloromethane 75-01-4-----Vinyl Chloride 74-83-9----Bromomethane 75-00-3-----Chloroethane 75-69-4-----Trichlorofluoromethane 75-35-4-----1,1-Dichloroethene 67-64-1-----Acetone in u pt 74-88-4----Iodomethane 75-15-0-----Carbon Disulfide 75-09-2-----Methylene Chloride 156-60-5-----trans-1,2-Dichloroethene 1634-04-4-----Methyl tert-butyl ether 75-34-3-----1, 1-Dichloroethane 108-05-4-----Vinyl acetate 5 U 78-93-3----2-Butanone 5 U 156-59-2----cis-1,2-Dichloroethene 5 590-20-7-----2,2-Dichloropropane U 5 74-97-5-----Bromochloromethane U 5 67-66-3-----Chloroform U 5 71-55-6-----1,1,1-Trichloroethane U 5 5 563-58-6-----1, 1-Dichloropropene U 56-23-5-----Carbon Tetrachloride υ 5 107-06-2----1, 2-Dichloroethane U 5 71-43-2----Benzene U 5 79-01-6----Trichloroethene υ

78-87-5-----1,2-Dichloropropane 74-95-3----Dibromomethane 75-27-4-----Bromodichloromethane 10061-01-5----cis-1, 3-Dichloropropene 108-10-1-----4-Methyl-2-pentanone 108-88-3----Toluene 10061-02-6----trans-1, 3-Dichloropropene 79-00-5-----1,1,2-Trichloroethane

FORM I VOA

OLM03.0

5 U 5

5 υ 5 υ

5

5 υ

5 U

U

U 5

υ

EPA SAMPLE NO.

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

SB2124

| Lab Name: MITKEM CORPORATION                                                                                                                                                                                                                                                                                                                                                           | Contract:                                       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|
| Lab Code: MITKEM Case No.:                                                                                                                                                                                                                                                                                                                                                             | SAS No.: SDG No.: B0082                         |  |
| Matrix: (soil/water) SOIL                                                                                                                                                                                                                                                                                                                                                              | Lab Sample ID: B0082-01B                        |  |
| Sample wt/vol: 5.1 (g/mL) G                                                                                                                                                                                                                                                                                                                                                            | Lab File ID: V1F2049                            |  |
| Level: (low/med) LOW                                                                                                                                                                                                                                                                                                                                                                   | Date Received: 01/16/03                         |  |
| <pre>% Moisture: not dec. 9</pre>                                                                                                                                                                                                                                                                                                                                                      | Date Analyzed: 01/21/03                         |  |
| GC Column: DB-624 ID: 0.25 (mm)                                                                                                                                                                                                                                                                                                                                                        | Dilution Factor: 1.0                            |  |
| Soil Extract Volume:(mL)                                                                                                                                                                                                                                                                                                                                                               | Soil Aliquot Volume:(uL)                        |  |
| CAS NO. COMPOUND                                                                                                                                                                                                                                                                                                                                                                       | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/KG Q |  |
| 142-28-91,3-Dichloropropane5       5         127-18-4Tetrachloroethene5       5         591-78-62-Hexanone5       5         124-48-1Dibromochloromethane5       5         106-93-41,2-Dibromoethane5       5         108-90-7Chlorobenzene       5         630-20-61,1,1,2-Tetrachloroethane5       5         100-41-4Bthylbenzene5       5        m,p-Xylene5       5         95-47-6 |                                                 |  |

| I | 630-20-61,1,1,2-Tetrachloroethane  | 5 | U |
|---|------------------------------------|---|---|
| I | 100-41-4Ethylbenzene               | 5 | U |
|   | m,p-Xylene                         | 5 | U |
|   | 95-47-6o-Xylene                    | 5 | U |
|   | 1330-20-7Xylene (Total)            | 5 | U |
|   | 100-42-5Styrene                    | 5 | U |
|   | 75-25-2Bromoform                   | 5 | U |
| 1 | 98-82-8Isopropylbenzene            | 5 | U |
|   | 79-34-51,1,2,2-Tetrachloroethane   | 5 | U |
|   | 108-86-1Bromobenzene               | 5 | U |
| ł | 96-18-41,2,3-Trichloropropane      | 5 | U |
|   | 103-65-1n-Propylbenzene            | 5 | U |
|   | 95-49-82-Chlorotoluene             | 5 |   |
|   | 108-67-81,3,5-Trimethylbenzene     | 5 | U |
|   | 106-43-44-Chlorotoluene            | 5 | - |
|   | 98-06-6tert-Butylbenzene           | 5 |   |
|   | 95-63-61,2,4-Trlmethylbenzene      | 5 |   |
|   | 135-98-8sec-Butylbenzene           | - | U |
|   | 99-87-64-Isopropyltoluene          |   | U |
|   | 541-73-11,3-Dichlorobenzene        | 5 |   |
|   | 106-46-71,4-Dichlorobenzene        | 5 |   |
|   | 104-51-8n-Butylbenzene             | 5 | U |
|   | 95-50-11,2-Dichlorobenzene         | - |   |
|   | 96-12-81,2-Dibromo-3-chloropropane |   | U |
|   | 120-82-11,2,4-Trichlorobenzene     | 5 |   |
|   | 87-68-3Hexachlorobutadiene         | 5 |   |
|   | 91-20-3Naphthalene                 | 5 |   |
|   | 87-61-61,2,3-Trichlorobenzene      | 5 | U |
|   |                                    |   |   |

FORM I VOA

T

### 1E

|     | 3      |     |
|-----|--------|-----|
| EPA | SAMPLE | NO. |

. . . . \_\_\_\_

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| TENTATIVELY IDENTIFIE             |                          |
|-----------------------------------|--------------------------|
| Lab Name: MITKEM CORPORATION      | Contract:                |
| Lab Code: MITKEM Case No.:        | SAS No.: SDG No.: B0082  |
| Matrix: (soil/water) SOIL         | Lab Sample ID: B0082-01B |
| Sample wt/vol: 5.1 (g/mL) G       | Lab File ID: V1F2049     |
| Level: (low/med) LOW              | Date Received: 01/16/03  |
| <pre>% Moisture: not dec. 9</pre> | Date Analyzed: 01/21/03  |
| GC Column: DB-624 ID: 0.25 (mm)   | Dilution Factor: 1.0     |
| Soil Extract Volume:(mL)          | Soil Aliquot Volume (uL) |

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/Kg

COMPOUND NAME CAS NUMBER  $\mathbf{RT}$ EST. CONC. Q \_\_\_\_\_\_\_\_\_ ===== 1.\_ 2.\_\_\_\_ 3.\_\_\_\_ 4.\_\_\_\_ 5.\_\_\_\_ 6.\_\_\_\_ 7.\_\_\_\_ 8.\_\_\_\_ 9.\_\_\_\_ 10.\_\_\_\_ 11.\_\_\_\_ 12.\_\_\_\_ 13.\_\_\_\_ 14.\_\_\_\_ 15.\_\_\_\_ 16.\_\_\_\_ 17.\_\_\_\_\_ 18.\_\_\_\_\_ • 19.\_\_\_\_ 20. 21.\_\_\_\_ 22.\_\_\_\_ 23.\_\_\_\_ 24.\_\_\_\_ 25.\_\_\_\_ 26.\_\_\_\_ 27.\_\_\_\_ 28.\_\_\_ 29.\_\_\_\_\_ 30.\_\_\_\_\_

Number TICs found: 0

| VOLATILE O                        | 1A<br>DRGANICS ANALYSIS | DATA SHEET                               | EPA SAMPLE NO. |
|-----------------------------------|-------------------------|------------------------------------------|----------------|
| Lab Name: MITKEM CORPO            | RATION C                | ontract:                                 | SB2146         |
| Lab Code: MITKEM Ca               | se No.:                 | SAS No.: SD                              | G NO.: B0082   |
| Matrix: (soil/water) S            | OIL                     | Lab Sample I                             | D: B0082-02B   |
| Sample wt/vol:                    | 5.0 (g/mL) G            | Lab File ID:                             | V1F2050        |
| Level: (low/med) L                | WO.                     | Date Receive                             | d: 01/16/03    |
| <pre>% Moisture: not dec. 1</pre> | .3                      | Date Analyze                             | d: 01/21/03    |
| GC Column: DB-624 I               | D: 0.25 (mm)            | Dilution Fac                             | tor: 1.0 🕈     |
| Soil Extract Volume:              | (mL)                    | Soil Aliquot                             | Volume:(uL)    |
| CAS NO.                           | COMPOUND                | CONCENTRATION UNIT<br>(ug/L or ug/Kg) UG |                |

75-71-8-----Dichlorodifluoromethane 6 U 74-87-3-----Chloromethane 6 U 6 75-01-4-----Vinyl Chloride U 6 74-83-9----Bromomethane U 999999 75-00-3-----Chloroethane U 75-69-4-----Trichlorofluoromethane U U 75-35-4-----1, 1-Dichloroethene U 67-64-1-----Acetone el U 74-88-4-----Iodomethane U 75-15-0-----Carbon Disulfide 7 B 75-09-2-----Methylene Chloride 156-60-5-----trans-1, 2-Dichloroethene 6 U 6 U 1634-04-4-----Methyl tert-butyl ether 6 75-34-3-----1,1-Dichloroethane U 108-05-4-----Vinyl acetate 6 U 78-93-3----2-Butanone 6 U 156-59-2----cis-1,2-Dichloroethene 6 U 590-20-7-----2,2-Dichloropropane 6 U 74-97-5-----Bromochloromethane 6 U 67-66-3-----Chloroform 6 U 71-55-6-----1,1,1-Trichloroethane б U 563-58-6-----1,1-Dichloropropene 6 U 56-23-5-----Carbon Tetrachloride 6 U U 107-06-2-----1,2-Dichloroethane 6 U 71-43-2----Benzene 6 υ 79-01-6-----Trichloroethene 6 U 6 78-87-5-----1,2-Dichloropropane U 6 74-95-3----Dibromomethane U 6 75-27-4----Bromodichloromethane U 10061-01-5----cis-1, 3-Dichloropropene 6 U 6 108-10-1-----4-Methyl-2-pentanone 108-88-3----Toluene 6 U 10061-02-6----trans-1, 3-Dichloropropene U 6

FORM I VOA

79-00-5-----1,1,2-Trichloroethane

OLM03.0

6 U

# 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

- 1

| VOLATILE ORGANICS ANALYSIS DATA SHEET |                                                 |   |
|---------------------------------------|-------------------------------------------------|---|
| Lab Name: MITKEM CORPORATION          | SB2146                                          |   |
| Lab Code: MITKEM Case No.:            | SAS No.: SDG No.: B0082                         |   |
| Matrix: (soil/water) SOIL             | Lab Sample ID: B0082-02B                        |   |
| Sample wt/vol: 5.0 (g/mL) G           | Lab File ID: V1F2050                            |   |
| Level: (low/med) LOW                  | Date Received: 01/16/03                         |   |
| % Moisture: not dec. 13               | Date Analyzed: 01/21/03                         |   |
| GC Column: DB-624 ID: 0.25 (mm)       | Dilution Factor: 1.0                            |   |
| Soil Extract Volume:(mL)              | Soil Aliquot Volume:(uL)                        | ) |
| CAS NO. COMPOUND                      | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/KG Q |   |

| 142-28-91,3-Dichloropropane        | 6 | υ   |
|------------------------------------|---|-----|
| 127-18-4Tetrachloroethene          | 6 | ט ט |
| 591-78-62-Hexanone                 | 6 | U   |
| 124-48-1Dibromochloromethane       | 6 | U   |
| 106-93-41,2-Dibromoethane          | 6 | U   |
| 108-90-7Chlorobenzene              | 6 | U   |
| 630-20-61,1,1,2-Tetrachloroethane  | 6 | U I |
| 100-41-4Ethylbenzene               | 6 | U   |
| m,p-Xylene                         | 6 | ט ו |
| 95-47-6                            | 6 | U   |
| 1330-20-7Xylene (Total)            | 6 | U   |
| 100-42-5Styrene                    | 6 | U   |
| 75-25-2Bromoform                   | 6 | U U |
| 98-82-8Isopropylbenzene            | 6 | U U |
| 79-34-51,1,2,2-Tetrachloroethane   | 6 | U   |
| 108-86-1Bromobenzene               | 6 |     |
| 96-18-41,2,3-Trichloropropane      | 6 | U   |
| 103-65-1n-Propylbenzene            |   | ט ו |
| 95-49-82-Chlorotoluene             | 6 | U   |
| 108-67-81,3,5-Trimethylbenzene     | 6 | U U |
| 106-43-44-Chlorotoluene            | 6 | ש I |
| 98-06-6tert-Butylbenzene           | 6 | ប   |
| 95-63-61,2,4-Trimethylbenzene      | 6 | U   |
| 135-98-8sec-Butylbenzene           | - | 0   |
| 99-87-64-Isopropyltoluene          | - | ט   |
| 541-73-11,3-Dichlorobenzene        |   | ט   |
| 106-46-71,4-Dichlorobenzene        |   | U   |
| 104-51-8n-Butylbenzene             |   | U   |
| 95-50-11,2-Dichlorobenzene         | 6 | ប   |
| 96-12-81,2-Dibromo-3-chloropropane | 6 | U   |
| 120-82-11,2,4-Trichlorobenzene     | 6 | U . |
| 87-68-3Hexachlorobutadiene         | 6 | U   |
| 91-20-3Naphthalene                 | 6 | ប   |
| 87-61-61,2,3-Trichlorobenzene      | 6 | U . |
|                                    |   |     |
|                                    |   |     |

FORM I VOA

| 1E                         |       |       |
|----------------------------|-------|-------|
| VOLATILE ORGANICS ANALYSIS | DATA  | SHEET |
| TENTATIVELY IDENTIFIED     | COMPO | JUNDS |

Number TICs found: 0

EPA SAMPLE NO.

| TENTATIVELY IDENTIFIE           |                          |
|---------------------------------|--------------------------|
| Lab Name: MITKEM CORPORATION    | Contract:                |
| Lab Code: MITKEM Case No.:      | SAS No.: SDG No.: B0082  |
| Matrix: (soil/water) SOIL       | Lab Sample ID: B0082-02B |
| Sample wt/vol: 5.0 (g/mL) G     | Lab File ID: V1F2050     |
| Level: (low/med) LOW            | Date Received: 01/16/03  |
| % Moisture: not dec. 13         | Date Analyzed: 01/21/03  |
| GC Column: DB-624 ID: 0.25 (mm) | Dilution Factor: 1.0     |
| Soil Extract Volume:(mL)        | Soil Aliquot Volume:(uL) |

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

| CAS NUMBER                                     | COMPOUND NAME | RT | EST. CONC. | Q        |
|------------------------------------------------|---------------|----|------------|----------|
| 1.                                             |               |    |            | =====    |
|                                                |               |    |            |          |
| 5.                                             |               |    |            |          |
| <b>4</b> .                                     |               |    |            |          |
| 5                                              |               |    |            |          |
| 6                                              |               |    |            |          |
| 7                                              |               |    |            |          |
| V. 1                                           |               | _  |            |          |
|                                                |               |    |            |          |
| TA:                                            |               |    | <u> </u>   |          |
| 11.                                            |               |    |            | <u> </u> |
| 12                                             |               |    | <u> </u>   |          |
| 73.                                            |               |    |            |          |
|                                                |               |    |            |          |
|                                                |               |    |            |          |
| 10.                                            |               |    |            | í        |
|                                                |               |    |            |          |
| 18                                             |               |    |            |          |
| 19                                             |               |    |            |          |
| 20.                                            |               |    |            |          |
| <i>6</i> , , , , , , , , , , , , , , , , , , , |               |    |            |          |
| 44.                                            |               |    |            |          |
| 23.                                            |               |    |            |          |
| 24                                             |               |    |            |          |
| 25                                             |               |    |            | I        |
| 26                                             |               |    |            |          |
| 27.                                            |               |    |            | I        |
| 28.                                            |               |    | [          |          |
| 29                                             |               |    | ·          |          |
| 30.                                            |               |    |            |          |

FORM I VOA-TIC

### 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB2168

SDG No.: B0082

Soil Aliquot Volume: (uL)

Q

V1F2051

Lab Sample ID: B0082-03B

Date Received: 01/16/03

Date Analyzed: 01/21/03

Dilution Factor: 1.0

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.:

SAS No.:

de: MIREN Case No.:

Matrix: (soil/water) SOIL

Sample wt/vol: 5.0 (g/mL) G

Level: (low/med) LOW

% Moisture: not dec. 8

GC Column: DB-624 ID: 0.25 (mm)

Soil Extract Volume: \_\_\_\_(mL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Lab File ID:

75-71-8-----Dichlorodifluoromethane 5 U 74-87-3-----Chloromethane 5 U 75-01-4-----Vinyl Chloride 5 U 74-83-9-----Bromomethane 5 U 75-00-3-----Chloroethane 5 U 5 75-69-4-----Trichlorofluoromethane U 5 75-35-4-----1, 1-Dichloroethene U 5 67-64-1-----Acetone U pp 74-88-4-----Iodomethane 5 U IJB U 5 75-15-0-----Carbon Disulfide 75-09-2-----Methylene Chloride 4 156-60-5-----trans-1,2-Dichloroethene 5 U 1634-04-4-----Methyl tert-butyl ether 5 U 75-34-3-----1,1-Dichloroethane 5 U 108-05-4-----Vinyl acetate 5 U 78-93-3-----2-Butanone 5 U 156-59-2----cis-1,2-Dichloroethene 5 υ 590-20-7-----2,2-Dichloropropane 5 U 74-97-5-----Bromochloromethane 5 U 67-66-3-----Chloroform 5 U 71-55-6-----1,1,1-Trichloroethane 5 υ 563-58-6-----1,1-Dichloropropene 5 U 56-23-5-----Carbon Tetrachloride 5 U 107-06-2-----1,2-Dichloroethane 5 υ 71-43-2----Benzene 5 U 79-01-6-----Trichloroethene 5 U 78-87-5-----1,2-Dichloropropane 5 υ 74-95-3-----Dibromomethane 5 σ 75-27-4-----Bromodichloromethane 5 υ 10061-01-5----cis-1, 3-Dichloropropene 5 U 108-10-1-----4-Methyl-2-pentanone 5 U 108-88-3----Toluene 5 บ 10061-02-6----trans-1, 3-Dichloropropene 5 U

79-00-5-----1,1,2-Trichloroethane

5 U

0 21

Ŋ

### 1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET SB2168 Lab Name: MITKEM CORPORATION Contract: SDG No.: B0082 Lab Code: MITKEM Case No.: SAS No.: Matrix: (soil/water) SOIL Lab Sample ID: B0082-03B 5.0 (g/mL) G Sample wt/vol: Lab File ID: V1F2051 (low/med)Date Received: 01/16/03 Level: LOW Date Analyzed: 01/21/03 % Moisture: not dec. 8 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: \_\_\_\_\_(mL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 0 142-28-9-----1, 3-Dichloropropane 5 U 127-18-4-----Tetrachloroethene 5 U 591-78-6----2-Hexanone 5 U 124-48-1-----Dibromochloromethane 5 U 5 U 106-93-4----1,2-Dibromoethane 5 U 108-90-7----Chlorobenzene 630-20-6-----1,1,1,2-Tetrachloroethane 5 U 100-41-4----Ethylbenzene 5 U -----m,p-Xylene 5 U 95-47-6----o-Xylene 1330-20-7-----Xylene (Total)\_ 100-42-5----Styrene 75-25-2----Bromoform 98-82-8-----Isopropylbenzene 79-34-5-----1,1,2,2-Tetrachloroethane 108-86-1----Bromobenzene 96-18-4-----1,2,3-Trichloropropane 103-65-1----n-Propylbenzene . 95-49-8-----2-Chlorotoluene 108-67-8-----1,3,5-Trimethylbenzene 106-43-4----4-Chlorotoluene 98-06-6-----tert-Butylbenzene U 95-63-6-----1,2,4-Trimethylbenzene 5 U 135-98-8----sec-Butylbenzene 5 U 99-87-6-----4-Isopropyltoluene 5 541-73-1-----1,3-Dichlorobenzene U 5 106-46-7-----1,4-Dichlorobenzene U 5 104-51-8----n-Butylbenzene U 5 95-50-1-----1,2-Dichlorobenzene ΰ 5 96-12-8-----1, 2-Dibromo-3-chloropropane U 5 U 120-82-1-----1,2,4-Trichlorobenzene 5 87-68-3-----Hexachlorobutadiene U 5 91-20-3-----Naphthalene U 87-61-6-----1,2,3-Trichlorobenzene 5 U

FORM I VOA

### 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Number TICs found: 0

EPA SAMPLE NO.

SB2168

| Lab Name: MITKEM CORPORATION    | Contract:                |
|---------------------------------|--------------------------|
| Lab Code: MITKEM Case No.:      | SAS No.: SDG No.: B0082  |
| Matrix: (soil/water) SOIL       | Lab Sample ID: B0082-03B |
| Sample wt/vol: 5.0 (g/mL) G     | Lab File ID: V1F2051     |
| Level: (low/med) LOW            | Date Received: 01/16/03  |
| % Moisture: not dec. 8          | Date Analyzed: 01/21/03  |
| GC Column: DB-624 ID: 0.25 (mm) | Dilution Factor: 1.0     |
| Soil Extract Volume:(mL)        | Soil Aliquot Volume:(uL) |
|                                 |                          |

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER RT EST. CONC. COMPOUND NAME Q 1. 2.\_\_ 3. 4. 5. 6. 7.\_ 8.\_ 9.\_ 10.\_\_\_\_ 11.\_ 12. 13.\_\_ 14.\_\_ 15. 16.\_\_ 17. 18.\_\_\_ 19. 20.\_ 21.\_ 22. 23. 24.\_\_\_ 25. 26. 27. 28. 29.\_\_ 30.

.

1

FORM I VOA-TIC

# 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

|                        |                   | ·····                    |
|------------------------|-------------------|--------------------------|
| Lab Name: MITKEM CORPO | RATION Contract:  | SB211012                 |
| Lab Code: MITKEM Ca    | se No.: SAS No.:  | SDG No.: B0082           |
| Lab coue. MITALM Ca    |                   | 5103 NO D0082            |
| Matrix: (soil/water) S | OIL               | Lab Sample ID: B0082-04A |
| Sample wt/vol:         | 30.3 (g/mL) G     | Lab File ID: S2D1424     |
| Level: (low/med) L     | ,OW               | Date Received: 01/16/03  |
| * Moisture: 9 d        | lecanted: (Y/N) N | Date Extracted:01/17/03  |
| Concentrated Extract V | olume: 1000(uL)   | Date Analyzed: 01/29/03  |
| Injection Volume:      | 1.0(uL)           | Dilution Factor: 1.0     |
| GPC Cleanup: (Y/N) N   | рн:               |                          |
|                        |                   |                          |

CAS NO.

COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

Q

|                                      |     | I   |
|--------------------------------------|-----|-----|
| 108-95-2Phenol                       | 360 | U I |
| 111-44-4bis(2-Chloroethyl)Ether      | 360 | -   |
| 95-57-82-Chlorophenol                | 360 | U   |
| 541-73-11, 3-Dichlorobenzene         | 360 | Ū   |
| 106-46-71, 4-Dichlorobenzene         | 360 | Ū I |
| 95-50-11, 2-Dichlorobenzene          | 360 | Ū I |
| 95-48-72-Methylphenol                | 360 | Ū   |
| 108-60-12,2'-oxybis(1-Chloropropane) | 360 | U   |
| 106-44-54-Methylphenol               | 360 | U   |
| 621-64-7N-Nitroso-di-n-propylamine   | 360 | υ   |
| 67-72-1Hexachloroethane              | 360 | ប   |
| 98-95-3Nitrobenzene                  | 360 | σ   |
| 78-59-1Isophorone                    | 360 | U   |
| 88-75-52-Nitrophenol                 | 360 | U   |
| 105-67-92,4-Dimethylphenol           | 360 | υ   |
| 120-83-22, 4-Dichlorophenol          | 360 | υ   |
| 120-82-11,2,4-Trichlorobenzene       | 360 | U   |
| 91-20-3Naphthalene                   | 360 | υ   |
| 106-47-84-Chloroaniline              | 360 | U   |
| 111-91-1bis(2-Chloroethoxy)methane   | 360 | U   |
| 87-68-3Hexachlorobutadiene           | 360 | U   |
| 59-50-74-Chloro-3-Methylphenol       | 360 | U   |
| 91-57-62-Methylnaphthalene           | 360 | U   |
| 77-47-4Hexachlorocyclopentadiene     | 360 | U I |
| 88-06-22,4,6-Trichlorophenol         | 360 | U   |
| 95-95-42,4,5-Trichlorophenol         | 730 | U   |
| 91-58-72-Chloronaphthalene           | 360 | U   |
| 88-74-42-Nitroaniline                | 730 | U   |
| 131-11-3Dimethylphthalate            | 360 | U   |
| 208-96-8Acenaphthylene               | 360 | U   |
| 606-20-22,6-Dinitrotoluene           | 360 | U   |
| 99-09-23-Nitroaniline                | 730 | U   |
| 83-32-9Acenaphthene                  | 360 | υ   |

# FORM I SV-1

OLM03.0

0 - 28

### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

|                                      | TRUCKOTO DITTT | UNDUX .        |            |
|--------------------------------------|----------------|----------------|------------|
| Lab Name: MITKEM CORPORATION         | Contract:      |                | SB211012   |
|                                      |                | •              |            |
| Lab Code: MITKEM Case No.:           | SAS No.:       | SDG            | No.: B0082 |
| Matrix: (soil/water) SOIL            |                | Lab Sample ID: | B0082-04A  |
| Sample wt/vol: 30.3 (g/mL            | ı) G           | Lab File ID:   | S2D1424    |
| Level: (low/med) LOW                 |                | Date Received: | 01/16/03   |
| <pre>% Moisture: 9 decanted: (</pre> | Y/N) N         | Date Extracted | l:01/17/03 |
| Concentrated Extract Volume:         | 1000 (uL)      | Date Analyzed: | 01/29/03   |
| Injection Volume: 1.0(uL)            |                | Dilution Facto | or: 1.0    |
| GPC Cleanup: (Y/N) N pH              | I:             |                |            |
|                                      |                |                |            |

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

|          |                            |     | r—— |
|----------|----------------------------|-----|-----|
| 51-28-5  | 2,4-Dinitrophenol          | 730 | U   |
| 100-02-7 | 4-Nitrophenol              | 730 | U   |
| 132-64-9 | Dibenzofuran               | 360 | U   |
|          | 2,4-Dinitrotoluene         | 360 | U   |
|          | Diethylphthalate           | 360 | U   |
|          | 4-Chlorophenyl-phenylether | 360 | Ū   |
| 86-73-7  |                            | 360 |     |
|          | 4-Nitroaniline             | 730 | Ū   |
|          | 4,6-Dinitro-2-methylphenol | 730 | Ū   |
|          | N-Nitrosodiphenylamine (1) | 360 | Ū   |
|          | 4-Bromophenyl-phenylether  | 360 | Ū   |
|          | Hexachlorobenzene          | 360 | Ū   |
|          | Pentachlorophenol          | 730 | Ū   |
|          | Phenanthrene               | 360 | Ū   |
| 120-12-7 | Anthracene                 | 360 | Ū   |
|          | Carbazole                  | 360 | U   |
| 84-74-2  | Di-n-butylphthalate        | 360 |     |
| 206-44-0 | Fluoranthene               | 360 |     |
| 129-00-0 |                            | 360 | 1   |
|          | Butylbenzylphthalate       | 360 | Ū   |
|          | 3,3'-Dichlorobenzidine     | 360 | Ū   |
|          | Benzo(a)anthracene         | 360 | U   |
|          | Chrysene                   | 360 | Ū   |
|          | bis(2-Ethylhexyl)phthalate | 360 |     |
|          | Di-n-octylphthalate        | 360 | Ū   |
|          | Benzo(b)fluoranthene       | 360 | -   |
|          | Benzo(k)fluoranthene       | 360 | -   |
|          | Benzo (a) pyrene           | 360 | _   |
|          | Indeno(1,2,3-cd)pyrene     | 360 | -   |
|          | Dibenzo(a,h)anthracene     | 360 | _   |
| 191-24-2 | Benzo(g,h,i)perylene       | 360 | -   |
|          |                            |     |     |
|          |                            |     |     |

(1) - Cannot be separated from Diphenylamine

EPA SAMPLE NO.

.

### 1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| 1 EJN 17                 | ALLVELI IDENLIFIE | ED COMPOUNDS      | SB211012     |
|--------------------------|-------------------|-------------------|--------------|
| Lab Name: MITKEM CORI    | PORATION          | Contract:         | 56211012     |
| Lab Code: MITKEM (       | Case No.:         | SAS No.: SD       | G No.: B0082 |
| Matrix: (soil/water)     | SOIL              | Lab Sample I      | D: B0082-04A |
| Sample wt/vol:           | 30.3 (g/mL) G     | Lab File ID:      | S2D1424      |
| Level: (low/med)         | LOW               | Date Receive      | d: 01/16/03  |
| <pre>% Moisture: 9</pre> | decanted: (Y/N)   | N Date Extract    | ed:01/17/03  |
| Concentrated Extract     | Volume: 1000      | (uL) Date Analyze | d: 01/29/03  |
| Injection Volume:        | 1.0 (uL)          | Dilution Fac      | tor: 1.0:    |
| GPC Cleanup: (Y/N)       | N pH:             |                   |              |

Number TICs found: 1

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/Kg

| CAS NUMBER  | COMPOUND NAME | RT   | EST. CONC. |   |
|-------------|---------------|------|------------|---|
| 1.          | UNKNOWN       | 8.60 | 940        |   |
| 2           |               |      |            |   |
| 3           |               |      |            |   |
| <b>.</b>    |               |      |            |   |
| 5.          |               |      |            |   |
| 0.          |               |      |            |   |
| 1.          |               |      |            |   |
| σ.          |               |      |            |   |
| J.          |               |      |            |   |
| 10.         |               |      |            |   |
| 11.         |               |      |            |   |
| 12.         |               |      |            |   |
| 11.         |               |      |            |   |
| 14.         |               |      |            |   |
| 15          |               |      | ·          |   |
| <b>TO .</b> |               |      |            |   |
| 1/.         |               |      |            |   |
| 18.         |               |      |            |   |
| 19          |               |      |            |   |
| 20.         |               |      |            |   |
|             |               |      |            |   |
| 44.         |               |      |            |   |
| 23.         |               |      |            |   |
| 24.         |               |      |            |   |
| 25.         |               |      |            |   |
| 26.         |               |      |            |   |
|             |               |      |            |   |
| 28.         |               |      |            |   |
| 29.         |               |      | <b>_</b>   |   |
| 30          |               |      |            |   |
|             |               |      |            | • |

FORM I SV-TIC

EPA SAMPLE NO.

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SB2124 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: B0082 Matrix: (soil/water) SOIL Lab Sample ID: B0082-01A Sample wt/vol: 30.2 (g/mL) G Lab File ID: S2D1425 Date Received: 01/16/03 Level: (low/med) LOW % Moisture: 13 decanted: (Y/N) N Date Extracted:01/17/03 Concentrated Extract Volume: 1000(uL) Date Analyzed: 01/29/03 Dilution Factor: 1.0 Injection Volume: 1.0(uL) GPC Cleanup: (Y/N) N рН: \_\_\_

CAS NO. COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

Q

| 108-95-2 | -Phenol                       | 380 | U  |
|----------|-------------------------------|-----|----|
| 111-44-4 | -bis(2-Chloroethyl)Ether      | 380 | U  |
| 95-57-8  | -2-Chlorophenol               | 380 | υ  |
|          | -1,3-Dichlorobenzene          | 380 | U  |
| 106-46-7 | -1,4-Dichlorobenzene          | 380 | U  |
| 95-50-1  | -1,2-Dichlorobenzene          | 380 | U  |
| 95-48-7  | -2-Methylphenol               | 380 | U  |
| 108-60-1 | -2,2'-oxybis(1-Chloropropane) | 380 | υ  |
| 106-44-5 | -4-Methylphenol               | 380 | U  |
| 621-64-7 | -N-Nitroso-di-n-propylamine   | 380 | U  |
|          | -Hexachloroethane             | 380 | U  |
| 98-95-3  |                               | 380 | U  |
| 78-59-1  | -Isophorone                   | 380 | U  |
| 88-75-5  | -2-Nitrophenol                | 380 | U  |
| 105-67-9 | -2,4-Dimethylphenol           | 380 |    |
|          | -2,4-Dichlorophenol           | 380 |    |
| 120-82-1 | -1,2,4-Trichlorobenzene       | 380 | U  |
| 91-20-3  | -Naphthalene                  | 380 | U  |
|          | -4-Chloroaniline              | 380 | U  |
| 111-91-1 | -bis(2-Chloroethoxy)methane   | 380 | U  |
|          | -Hexachlorobutadiene          | 380 | U  |
|          | -4-Chloro-3-Methylphenol      | 380 | U  |
| 91-57-6  | -2-Methylnaphthalene          | 380 | ប  |
| 77-47-4  | -Hexachlorocyclopentadiene    | 380 | U  |
| 88-06-2  | -2,4,6-Trichlorophenol        | 380 | U  |
| 95-95-4  | -2,4,5-Trichlorophenol        | 760 | U  |
| 91-58-7  | -2-Chloronaphthalene          | 380 | U. |
| 88-74-4  | -2-Nitroaniline               | 760 | U  |
| 131-11-3 | -Dimethylphthalate            | 380 | U  |
| 208-96-8 | -Acenaphthylene               | 160 | J  |
|          | -2,6-Dinitrotoluene           | 380 | U  |
|          | -3-Nitroaniline               | 760 | U  |
| 83-32-9  | -Acenaphthene                 | 78  | J  |

# FORM I SV-1

#### EPA SAMPLE NO. 1CSEMIVOLATILE ORGANICS ANALYSIS DATA SHEET SB2124 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: B0082 Lab Sample ID: B0082-01A Matrix: (soil/water) SOIL Lab File ID: Sample wt/vol: 30.2 (g/mL) G S2D1425 Level: (low/med)LOW Date Received: 01/16/03 % Moisture: 13 decanted: (Y/N) N Date Extracted:01/17/03 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/29/03 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N рН: \_\_\_\_

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/KG

(

Q

CONCENTRATION UNITS:

| · · · · · · · · · · · · · · · · · · · |       | <b></b> | 1     |
|---------------------------------------|-------|---------|-------|
| 51-28-52,4-Dinitrophenol              | 760   | U       |       |
| 100-02-74-Nitrophenol                 | 760   | U       |       |
| 132-64-9Dibenzofuran                  | 380   | U       |       |
| 121-14-22,4-Dinitrotoluene            | 380   | lu      |       |
| 84-66-2Diethylphthalate               | 380   | Ū       |       |
| 7005-72-34-Chlorophenyl-phenylether   | 380   | Ū       |       |
| 86-73-7Fluorene                       | 78    |         |       |
| 100-01-64-Nitroaniline                | 220   | J       | ]     |
| 534-52-14,6-Dinitro-2-methylphenol    | 760   |         |       |
| 86-30-6N-Nitrosodiphenylamine (1)     | 380   | -       |       |
| 101-55-34-Bromophenyl-phenylether     | 380   |         |       |
| 118-74-1Hexachlorobenzene             | 380   |         |       |
| 87-86-5Pentachlorophenol              | 760   |         |       |
| 85-01-8Phenanthrene                   | 5500  |         |       |
| 120-12-7Anthracene                    | 960   |         | 00    |
| 86-74-8Carbazole                      | 72    | J       |       |
| 84-74-2Di-n-butylphthalate            | 380   |         | 1     |
| 206-44-0Fluoranthene                  | 5600  | · ·     |       |
| 129-00-0Pyrene                        | 9400  | E-12    | 000 D |
| 85-68-7Butylbenzylphthalate           | 380   | υ       |       |
| 91-94-13,3'-Dichlorobenzidine         | 380   | Ū       |       |
| 56-55-3Benzo(a) anthracene            | 6100  |         |       |
| 218-01-9Chrysene                      | 7000  | E-72    | 100 D |
| 117-81-7bis(2-Ethylhexyl)phthalate    | 320   |         | ·     |
| 117-84-0Di-n-octylphthalate           | 460   |         |       |
| 205-99-2Benzo (b) fluoranthene        | _6300 | EUS     | bo D  |
| 207-08-9Benzo(k) fluoranthene         | 2800  | · · · - | -     |
| 50-32-8Benzo (a) pyrene               | 5000  |         | 1     |
| 193-39-5Indeno (1, 2, 3-cd) pyrene    | 1200  |         |       |
| 53-70-3Dibenzo (a, h) anthracene      | 440   |         |       |
| 191-24-2Benzo(q, h, i) perylene       | 1300  |         |       |
|                                       | -     |         |       |
|                                       |       |         |       |

(1) - Cannot be separated from Diphenylamine

1

## 1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| Lab Name: MITKEM CORPORATI | CON Contract | SB2124                   |
|----------------------------|--------------|--------------------------|
| Lab Code: MITKEM Case N    | IO.: SAS NO. | SDG No.: B0082           |
| Matrix: (soil/water) SOIL  |              | Lab Sample ID: B0082-01A |
| Sample wt/vol: 30.2        | : (g/mL) G   | Lab File ID: S2D1425     |
| Level: (low/med) LOW       |              | Date Received: 01/16/03  |
| % Moisture: 13 decar       | ted: (Y/N) N | Date Extracted:01/17/03  |
| Concentrated Extract Volum | e: 1000 (uL) | Date Analyzed: 01/29/03  |
| Injection Volume: 1.0      | uL)          | Dilution Factor: 1.0     |
| GPC Cleanup: (Y/N) N       | рн:          |                          |

Number TICs found: 17

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

| 1.       UNKNOWN         2. 610-48-0       ANTHRACENE, 1-METHYL-         3. 613-12-7       ANTHRACENE, 2-METHYL-         4.       UNKNOWN         5. 610-48-0       ANTHRACENE, 1-METHYL-         6. 84-65-1       9,10-ANTHRACENE, 1-METHYL-         7. 3674-65-5       PHENANTHRENE, 2,3-DIMETHYL-         8. 5737-13-3       CYCLOPENTA (DEF) PHENANTHRENON         9. 2381-21-7       PYRENE, 1-METHYL-         10. 2381-21-7       PYRENE, 1-METHYL-         11. 2381-21-7       PYRENE, 1-METHYL-         12. 3353-12-6       PYRENE, 1-METHYL-         13. 2381-21-7       PYRENE, 1-METHYL-         14. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         15. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         16. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         17. 3351-28-8       CHRYSENE, 1-METHYL- | 13.54<br>19.29<br>19.35<br>19.52<br>19.57 | 2700<br>2000 | J         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------|-----------|
| 3. 613-12-7       ANTHRACENE, 2-METHYL-         4.       UNKNOWN         5. 610-48-0       ANTHRACENE, 1-METHYL-         6. 84-65-1       9,10-ANTHRACENEDIONE         7. 3674-65-5       PHENANTHRENE, 2,3-DIMETHYL-         8. 5737-13-3       CYCLOPENTA (DEF) PHENANTHRENON         9. 2381-21-7       PYRENE, 1-METHYL-         10. 2381-21-7       PYRENE, 1-METHYL-         11. 2381-21-7       PYRENE, 1-METHYL-         12. 3353-12-6       PYRENE, 1-METHYL-         13. 2381-21-7       PYRENE, 1-METHYL-         14. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         15. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         16. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         17. 3351-28-8       CHRYSENE, 1-METHYL-                                                                                | 19.29<br>19.35<br>19.52                   | 2000         | -         |
| 3. 613-12-7       ANTHRACENE, 2-METHYL-         4.       UNKNOWN         5. 610-48-0       ANTHRACENE, 1-METHYL-         6. 84-65-1       9,10-ANTHRACENEDIONE         7. 3674-65-5       PHENANTHRENE, 2,3-DIMETHYL-         8. 5737-13-3       CYCLOPENTA (DEF) PHENANTHRENON         9. 2381-21-7       PYRENE, 1-METHYL-         10. 2381-21-7       PYRENE, 1-METHYL-         11. 2381-21-7       PYRENE, 1-METHYL-         12. 3353-12-6       PYRENE, 1-METHYL-         13. 2381-21-7       PYRENE, 1-METHYL-         14. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         15. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         16. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         17. 3351-28-8       CHRYSENE, 1-METHYL-                                                                                | 19.35<br>19.52                            |              |           |
| 4.       UNKNOWN         5. 610-48-0       ANTHRACENE, 1-METHYL-         6. 84-65-1       9,10-ANTHRACENEDIONE         7. 3674-65-5       PHENANTHRENE, 2,3-DIMETHYL-         8. 5737-13-3       CYCLOPENTA (DEF) PHENANTHRENON         9. 2381-21-7       PYRENE, 1-METHYL-         10. 2381-21-7       PYRENE, 1-METHYL-         11. 2381-21-7       PYRENE, 1-METHYL-         12. 3353-12-6       PYRENE, 1-METHYL-         13. 2381-21-7       PYRENE, 4-METHYL-         14. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         15. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         16. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         17. 3351-28-8       CHRYSENE, 1-METHYL-                                                                                                                                | 19.52                                     |              | ŊĴ        |
| 6. 84-65-1       9,10-ANTHRACENEDIONE         7. 3674-65-5       PHENANTHRENE, 2,3-DIMETHYL-         8. 5737-13-3       CYCLOPENTA (DEF) PHENANTHRENON         9. 2381-21-7       PYRENE, 1-METHYL-         10. 2381-21-7       PYRENE, 1-METHYL-         11. 2381-21-7       PYRENE, 1-METHYL-         12. 3353-12-6       PYRENE, 1-METHYL-         13. 2381-21-7       PYRENE, 1-METHYL-         14. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         15. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         16. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         17. 3351-28-8       CHRYSENE, 1-METHYL-                                                                                                                                                                                                         | 10 57                                     | 2300         | J         |
| 7. 3674-65-5       PHENANTHRENE, 2,3-DIMETHYL-         8. 5737-13-3       CYCLOPENTA (DEF) PHENANTHRENON         9. 2381-21-7       PYRENE, 1-METHYL-         10. 2381-21-7       PYRENE, 1-METHYL-         11. 2381-21-7       PYRENE, 1-METHYL-         12. 3353-12-6       PYRENE, 4-METHYL-         13. 2381-21-7       PYRENE, 1-METHYL-         14. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         15. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         16. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         17. 3351-28-8       CHRYSENE, 1-METHYL-                                                                                                                                                                                                                                                       | /                                         | 2000         | NJ        |
| 8. 5737-13-3 CYCLOPENTA (DEF) PHENANTHRENON<br>9. 2381-21-7 PYRENE, 1-METHYL-<br>10. 2381-21-7 PYRENE, 1-METHYL-<br>11. 2381-21-7 PYRENE, 1-METHYL-<br>12. 3353-12-6 PYRENE, 1-METHYL-<br>13. 2381-21-7 PYRENE, 1-METHYL-<br>14. 82-05-3 7H-BENZ [DE] ANTHRACEN-7-ONE<br>15. 82-05-3 7H-BENZ [DE] ANTHRACEN-7-ONE<br>16. 82-05-3 7H-BENZ [DE] ANTHRACEN-7-ONE<br>17. 3351-28-8 CHRYSENE, 1-METHYL-                                                                                                                                                                                                                                                                                                                                                                                                                       | 19.95                                     | 2600         | NJ        |
| 8. 5737-13-3 CYCLOPENTA (DEF) PHENANTHRENON<br>9. 2381-21-7 PYRENE, 1-METHYL-<br>10. 2381-21-7 PYRENE, 1-METHYL-<br>11. 2381-21-7 PYRENE, 1-METHYL-<br>12. 3353-12-6 PYRENE, 1-METHYL-<br>13. 2381-21-7 PYRENE, 1-METHYL-<br>14. 82-05-3 7H-BENZ [DE] ANTHRACEN-7-ONE<br>15. 82-05-3 7H-BENZ [DE] ANTHRACEN-7-ONE<br>16. 82-05-3 7H-BENZ [DE] ANTHRACEN-7-ONE<br>17. 3351-28-8 CHRYSENE, 1-METHYL-                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.43                                     | 2100         | ŊJ        |
| 10. 2381-21-7       PYRENE, 1-METHYL-         11. 2381-21-7       PYRENE, 1-METHYL-         12. 3353-12-6       PYRENE, 4-METHYL-         13. 2381-21-7       PYRENE, 1-METHYL-         14. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         15. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         16. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         17. 3351-28-8       CHRYSENE, 1-METHYL-                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.60                                     | 1800         | NJ        |
| 11. 2381-21-7       PYRENE, 1-METHYL-         12. 3353-12-6       PYRENE, 4-METHYL-         13. 2381-21-7       PYRENE, 1-METHYL-         14. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         15. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         16. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         17. 3351-28-8       CHRYSENE, 1-METHYL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.69                                     | 480          | ŊJ        |
| 12. 3353-12-6       PYRENE, 4-METHYL-         13. 2381-21-7       PYRENE, 1-METHYL-         14. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         15. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         16. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         17. 3351-28-8       CHRYSENE, 1-METHYL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.86                                     | 740          |           |
| 13. 2381-21-7       PYRENE, 1-METHYL-         14. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         15. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         16. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         17. 3351-28-8       CHRYSENE, 1-METHYL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.13                                     | 580          | ŊJ        |
| 14. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         15. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         16. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         17. 3351-28-8       CHRYSENE, 1-METHYL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.32                                     | 470          | NJ        |
| 15. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         16. 82-05-3       7H-BENZ [DE] ANTHRACEN-7-ONE         17. 3351-28-8       CHRYSENE, 1-METHYL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.38                                     | 460          |           |
| 16. 82-05-3 7H-BENZ [DE] ANTHRACEN-7-ONE<br>17. 3351-28-8 CHRYSENE, 1-METHYL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.96                                     | 620          |           |
| 17. 3351-28-8 CHRYSENE, 1-METHYL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.18                                     | 570          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.40                                     | 500          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.54                                     | 510          | NJ        |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |              |           |
| 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |           |
| 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | <u> </u>     | . <u></u> |
| 21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |           |
| 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |           |
| 23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |           |
| 24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |           |
| 25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |           |
| 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |           |
| 41.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |           |
| 28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |           |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |              |           |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |              |           |

FORM I SV-TIC

### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB2146 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: B0082 Matrix: (soil/water) SOIL Lab Sample ID: B0082-02A Sample wt/vol: 30.4 (g/mL) G Lab File ID: S2D1426 Level: (low/med) LOW Date Received: 01/16/03 % Moisture: 13 decanted: (Y/N) N Date Extracted:01/17/03 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/29/03 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:

COMPOUND

CAS NO.

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

Q

| 108-95-2Phenol                         | 81  | J              |
|----------------------------------------|-----|----------------|
| 111-44-4bis (2-Chloroethyl) Ether      | 370 | υ              |
| 95-57-82-Chlorophenol                  | 370 |                |
| 541-73-11,3-Dichlorobenzene            | 370 | υ              |
| 106-46-71, 4-Dichlorobenzene           | 370 |                |
| 95-50-11,2-Dichlorobenzene             | 370 | υ              |
| 95-48-72-Methylphenol                  | 370 | Ū              |
| 108-60-12, 2'-oxybis (1-Chloropropane) | 370 | U              |
| 106-44-54-Methylphenol                 | 370 | Ū              |
| 621-64-7N-Nitroso-di-n-propylamine     | 370 |                |
| 67-72-1Hexachloroethane                | 370 | Ū              |
| 98-95-3Nitrobenzene                    | 370 |                |
| 78-59-1Isophorone                      | 370 | Ū              |
| 88-75-52-Nitrophenol                   | 370 | Ū              |
| 105-67-92,4-Dimethylphenol             | 370 | Ū              |
| 120-83-22, 4-Dichlorophenol            | 370 | U              |
| 120-82-11,2,4-Trichlorobenzene         | 370 | U              |
| 91-20-3Naphthalene                     | 370 | Ū              |
| 106-47-84-Chloroaniline                | 370 | -              |
| 111-91-1bis (2-Chloroethoxy) methane   | 370 | Ū              |
| 87-68-3Hexachlorobutadiene             | 370 | -              |
| 59-50-74-Chloro-3-Methylphenol         | 370 | Ū              |
| 91-57-62-Methylnaphthalene             | 370 | Ū              |
| 17-47-4Hexachlorocyclopentadiene       | 370 | Ū              |
| 88-06-22,4,6-Trichlorophenol           | 370 | l <del>õ</del> |
| 95-95-42,4,5-Trichlorophenol           | 760 | Ŭ              |
| 91-58-72-Chloronaphthalene             | 370 | -              |
| 88-74-42-Nitroaniline                  | 760 | -              |
| 131-11-3Dimethylphthalate              | 370 | -              |
| 208-96-8Acenaphthylene                 | 160 | -              |
| 606-20-22,6-Dinitrotoluene             | 370 |                |
| 99-09-23-Nitroaniline                  | 760 |                |
| 83-32-9Acenaphthene                    | 81  | -              |

FORM I SV-1

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

SB2146 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM SAS No.: SDG No.: B0082 Case No.: Lab Sample ID: B0082-02A Matrix: (soil/water) SOIL Lab File ID: Sample wt/vol: 30.4 (g/mL) G S2D1426 Date Received: 01/16/03 Level: (1ow/med)LOW % Moisture: 13 decanted: (Y/N) N Date Extracted:01/17/03 Date Analyzed: 01/29/03 Concentrated Extract Volume: 1000(uL) Injection Volume: Dilution Factor: 1.0 1.0(uL) GPC Cleanup: (Y/N) N рН: \_\_\_\_ CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG CAS NO. COMPOUND Q 51-28-5-----2,4-Dinitrophenol\_ 100-02-7-----4-Nitrophenol\_ 760 U 760 U

|     | 100-02-7                                 | ,00   |      |          |
|-----|------------------------------------------|-------|------|----------|
|     | 132-64-9Dibenzofuran                     | 370   | U    |          |
|     | 121-14-22,4-Dinitrotoluene               | 370   | ប    |          |
|     | 84-66-2Diethylphthalate                  | 370   | υ    |          |
|     | 7005-72-34-Chlorophenyl-phenylether      | 370   | U    |          |
|     | 86-73-7Fluorene                          | 68    | J    |          |
| i   | 100-01-64-Nitroaniline                   | 600   | J    |          |
|     | 534-52-14, 6-Dinitro-2-methylphenol      | 760   | U    |          |
|     | 86-30-6N-Nitrosodiphenylamine (1)        | 370   | U    |          |
|     | 101-55-34-Bromophenyl-phenylether        | 370   | U    |          |
|     | 118-74-1Hexachlorobenzene                | 370   | U    |          |
|     | 87-86-5Pentachlorophenol                 | 760   | ប    |          |
|     | 85-01-8Phenanthrene                      | 3100  |      | -        |
|     | 120-12-7Anthracene                       | 700   |      | $\neg l$ |
|     | 86-74-8Carbazole                         | 58    | J    | E        |
|     | 84-74-2Di-n-butylphthalate               | 370   | υ    | ,        |
| 1   | 206-44-0Fluoranthene                     | 4300  | 0    | TO N     |
|     | 129-00-0Pyrene                           | 7.600 | E 73 | DO D     |
|     | 85-68-7Butylbenzylphthalate              | 370   | υ    |          |
|     | 91-94-13,3'-Dichlorobenzidine            | 370   | U    |          |
| - [ | 56-55-3Benzo(a) anthracene               | 5200  | :    |          |
|     | 218-01-9Chrysene                         | 5600  |      |          |
|     | 117-81-7bis(2-Ethylhexyl)phthalate       | 230   | J    |          |
|     | 117-84-0Di-n-octylphthalate              | 330   | J    |          |
|     | 205-99-2Benzo(b) fluoranthene            | 5500  |      |          |
|     | 207-08-9Benzo(k) fluoranthene            | 2300  |      |          |
|     | 50-32-8Benzo (a) pyrene                  | 4000  |      |          |
|     | 193-39-5Indeno(1,2,3-cd)pyrene           | 1000  |      |          |
| l   | 53-70-3Dibenzo(a,h)anthracene            | 370   | J    |          |
|     | 191-24-2Benzo(q,h,i)perylene             | 1000  |      |          |
|     |                                          |       |      |          |
| (1  | - Cannot be separated from Diphenylamine | ·     | •    | -        |

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

. • • •

### 1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: B0082 Lab Sample ID: B0082-02A Matrix: (soil/water) SOIL Sample wt/vol: 30.4 (g/mL) G Lab File ID: S2D1426 Level: (low/med) LOW Date Received: 01/16/03 % Moisture: 13 decanted: (Y/N) N Date Extracted:01/17/03 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 01/29/03 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: \_\_\_\_

Number TICs found: 17

# CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER COMPOUND NAME RT EST. CONC. 0 \_\_\_\_\_\_ ======= ========================= 13.77 1. UNKNOWN 2600 J 2. 610-48-0 3. 613-12-7 ANTHRACENE, 1-METHYL-ANTHRACENE, 2-METHYL-19.29 1400 NJ 19.35 2100 NJ 4. UNKNOWN 19.51 2000 J 5. 613-12-7 6. 84-65-1 7. 3674-66-6 8. 57-11-4 9. 238-84-6 10. 2381-21-7 ANTHRACENE, 2-METHYL-19.56 1300 NJ 1600 NJ 9,10-ANTHRACENEDIONE 19.94 PHENANTHRENE, 2,5-DIMETHYL-OCTADECANOIC ACID 20.43 21.00 1400 NJ 1800 NJ 1600 NJ 11H-BENZO [A] FLUORENE 21.68 PYRENE, 1-METHYL-PYRENE, 1-METHYL-2500 NJ 21.86 11. 2381-21-7 22.12 2000 NJ PYRENE, 4-METHYL-PYRENE, 1-METHYL-12. 3353-12-6 1400 NJ 22.32 13. 2381-21-7 22.38 1600 NJ 2100 NJ 14. 3351-28-8 CHRYSENE, 1-METHYL-22.96 15. UNKNOWN 23.18 2100 J 16. 82-05-3 7H-BENZ [DE] ANTHRACEN-7-ONE 1600 NJ 23.39 5200 J 17. UNKNOWN 24.85 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

# FORM I SV-TIC

OLM03.0

### EPA SAMPLE NO.

SB2146

EPA SAMPLE NO.

 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

 Lab Name: MITKEM CORPORATION
 Contract:

 Lab Code: MITKEM Case No.:
 SAS No.:
 SDG No.: B0076

 Matrix: (soil/water) SOIL
 Lab Sample ID: B0076-02ARE

 Sample wt/vol:
 30.0 (g/mL) G
 Lab File ID: S2D1565

Level: (low/med) LOW % Moisture: 0 decanted: (Y/N) N

Concentrated Extract Volume: 1000(uL)

COMPOUND

Injection Volume: 1.0(uL)

CAS NO.

GPC Cleanup: (Y/N) N pH: \_\_\_\_

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

Date Received: 01/15/03

Date Extracted:02/01/03

Date Analyzed: 02/05/03

Dilution Factor: 1.0

Q

| 108-95-2Phenol                 | 330          | U |
|--------------------------------|--------------|---|
| 111-44-4bis(2-Chloroethyl)Et   | ther 330     | U |
| 95-57-82-Chlorophenol          | 330          | U |
| 541-73-11,3-Dichlorobenzene    | 330          | U |
| 106-46-71, 4-Dichlorobenzene   | 330          | U |
| 95-50-11, 2-Dichlorobenzene    | 330          | U |
| 95-48-72-Methylphenol          | 330          | U |
| 108-60-12, 2'-oxybis (1-Chlore | propane) 330 | U |
| 106-44-54-Methylphenol         | 330          | U |
| 621-64-7N-Nitroso-di-n-propy   | vlamine 330  | U |
| 67-72-1Hexachloroethane        | 330          | υ |
| 98-95-3Nitrobenzene            | 330          | U |
| 78-59-1Isophorone              | 330          | υ |
| 88-75-52-Nitrophenol           | 330          | υ |
| 105-67-92, 4-Dimethylphenol    | 330          | U |
| 120-83-22,4-Dichlorophenol     | 330          | υ |
| 120-82-11,2,4-Trichlorobenze   | ene 330      | U |
| 91-20-3Naphthalene             | 88           | J |
| 106-47-84-Chloroaniline        | 330          | U |
| 111-91-1bis(2-Chloroethoxy)    | methane 330  | U |
| 87-68-3Hexachlorobutadiene     | 330          | U |
| 59-50-74-Chloro-3-Methylph     | enol 330     | U |
| 91-57-62-Methylnaphthalene     | 140          | J |
| 77-47-4Hexachlorocyclopenta    |              | U |
| 88-06-22,4,6-Trichlorophene    |              | U |
| 95-95-42,4,5-Trichlorophene    | 670          | υ |
| 91-58-72-Chloronaphthalene     | 330          | U |
| 88-74-42-Nitroaniline          | 670          | U |
| 131-11-3Dimethylphthalate      | 330          | U |
| 208-96-8Acenaphthylene         | 160          | J |
| 606-20-22,6-Dinitrotoluene     | 330          | U |
| 99-09-23-Nitroaniline          | 670          | 1 |
| 83-32-9Acenaphthene            | 400          |   |

FORM I SV-1

1C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SB221820 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: B0076 Matrix: (soil/water) SOIL Lab Sample ID: B0076-02ARE Sample wt/vol: 30.0 (g/mL) G Lab File ID: S2D1565 Level: (low/med) LOW Date Received: 01/15/03 % Moisture: 0 decanted: (Y/N) N Date Extracted:02/01/03 Concentrated Extract Volume: Date Analyzed: 02/05/03 1000 (uL) Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

|          |                            | <u> </u> |          |                          |
|----------|----------------------------|----------|----------|--------------------------|
| 51-28-5  | 2,4-Dinitrophenol          | 670      | <u>บ</u> |                          |
|          | 4-Nitrophenol              | 670      | -        |                          |
|          | Dibenzofuran               | 74       |          |                          |
|          | 2,4-Dinitrotoluene         | 330      | Ū        |                          |
|          | Diethylphthalate           | 330      |          |                          |
|          | 4-Chlorophenyl-phenylether | 330      | -        |                          |
|          | Fluorene                   | 410      | -        |                          |
|          | 4-Nitroaniline             | 670      | U        |                          |
|          | 4,6-Dinitro-2-methylphenol | 670      | U        | $\cap$                   |
|          | N-Nitrosodiphenylamine (1) | 330      | Ū        | I NY                     |
|          | 4-Bromophenyl-phenylether  | 330      |          | R I                      |
|          | Hexachlorobenzene          | 330      | -        |                          |
|          | Pentachlorophenol          | 670      | 1        | ( )                      |
|          | Phenanthrene               | 5400     |          | $\mathcal{O}\mathcal{L}$ |
|          | Anthracene                 | 1400     | '        |                          |
| 86-74-8  | Carbazole                  | 160      | J        |                          |
| 84-74-2  | Di-n-butylphthalate        | 330      | υ,       |                          |
|          | Fluoranthene               | 5800     | E 46     | boD                      |
| 129-00-0 |                            | 10000    | E 90     | TOO D                    |
|          | Butylbenzylphthalate       | 330      |          |                          |
| 91-94-1  | 3,3'-Dichlorobenzidine     | 330      | τ        |                          |
|          | Benzo(a) anthracene        | 6000     | E 45     | po D                     |
|          | Chrysene                   | 5600     | E-46     | 00 D                     |
|          | bis(2-Ethylhexyl)phthalate | 330      |          |                          |
| 117-84-0 | Di-n-octylphthalate        |          |          | 6                        |
|          | Benzo(b)fluoranthene       | 5400     | U 37     | po D                     |
|          | Benzo(k)fluoranthene       | 2500     |          |                          |
|          | Benzo (a) pyrene           | 4400     |          |                          |
|          | Indeno(1,2,3-cd)pyrene     | 1300     |          |                          |
| 53-70-3  | Dibenzo (a, h) anthracene  | 390      | ·        |                          |
|          | Benzo(q,h,i)perylene       | 1100     |          |                          |
|          |                            |          |          |                          |
|          |                            |          | 1        | 1                        |

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

OLM03.0

1F

EPA SAMPLE NO.

1

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| Lab Name: MITKEM CORPORATION           | Contract: SB221820RE         |
|----------------------------------------|------------------------------|
| Lab Code: MITKEM Case No.:             | SAS No.: SDG No.: B0076      |
| Matrix: (soil/water) SOIL              | Lab Sample ID: B0076-02ARE   |
| Sample wt/vol: 30.0 (g/mL) G           | Lab File ID: S2D1565         |
| Level: (low/med) LOW                   | Date Received: 01/15/03      |
| <pre>% Moisture: decanted: (Y/N)</pre> | Date Extracted:02/01/03      |
| Concentrated Extract Volume: 1000      | (uL) Date Analyzed: 02/05/03 |
| Injection Volume: 1.0(uL)              | Dilution Factor: 1.0         |
| GPC Cleanup: (Y/N) N pH:               |                              |

Number TICs found: 19

# CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

| CAS NUMBER    | COMPOUND NAME                     | RT    | EST. CONC. | ~  |
|---------------|-----------------------------------|-------|------------|----|
| 1. 779-02-2   | ANTHRACENE, 9-METHYL-             | 19.03 | 1000       |    |
| 2. 613-12-7   | ANTHRACENE, 2-METHYL-             | 19.10 |            |    |
| 3.            | UNKNOWN                           | 19.27 |            |    |
| 4. 613-12-7   | ANTHRACENE, 2-METHYL-             | 19.31 |            |    |
| 5. 35465-71-5 | 2-PHENYLNAPHTHALENE               | 19.65 |            |    |
| 6.84-65-1     | 9,10-ANTHRACENEDIONE              | 19.70 | 1100       | ŊJ |
| 7. 5737-13-3  | CYCLOPENTA (DEF) PHENANTHRENON    | 20.35 | 600        | NJ |
| 8. 781-73-7   | 2-ACETYLFLUORENE                  | 20.79 | 190        | NJ |
| 9. 243-17-4   | 11H-BENZO [B] FLUORENE            | 21.43 | 270        | NJ |
| 10. 243-17-4  | 11H-BENZO [B] FLUORENE            | 21.61 | 190        | NJ |
| 11. 243-17-4  | 11H-BENZO [B] FLUORENE            | 21.66 | 440        | NJ |
| 12. 243-17-4  | 11H-BENZO [B] FLUORENE            | 21.80 | 180        | NJ |
| 13. 2381-21-7 | PYRENE, 1-METHYL-                 | 21.87 | 460        | NJ |
| 14. 2381-21-7 | PYRENE, 1-METHYL-                 | 22.07 | 220        |    |
| 15. 243-17-4  | 11H-BENZO [B] FLUORENE            | 22.12 | 340        | NJ |
| 16. 82-05-3   | 7H-BENZ [DE] ANTHRACEN-7-ONE      | 22.70 | 230        | NJ |
| 17. 239-35-0  | BENZO [B] NAPHTHO [2, 1-D] THIOPH | 22.93 | 280        | NJ |
| 18. 195-19-7  | BENZO [C] PHENANTHRENE            | 23.00 | 190        | NJ |
| 19. 82-05-3   | 7H-BENZ [DE] ANTHRACEN-7-ONE      | 23.14 | 260        | NJ |
| 20            |                                   |       |            |    |
| 21.           |                                   |       |            |    |
| 22.           |                                   |       |            |    |
| 23.           |                                   |       |            |    |
| 24.           |                                   |       |            |    |
| 1 25.         |                                   |       |            |    |
| 1 26.         |                                   |       |            |    |
| 41.           |                                   |       |            |    |
| 20.           |                                   |       |            |    |
| 29.           |                                   |       |            |    |
| 30            |                                   |       |            |    |
|               |                                   |       |            |    |

FORM I SV-TIC

### **1B** SEMIVOLATILE ORGANICS ANALYSIS DATA SHKET

EPA SAMPLE NO.

SDG No.: B0220



Lab Name: MITKEM CORPORATION

Lab Code: MITKEM Case No.:

Matrix: (soil/water) SOIL

Sample wt/vol: 30.2 (g/mL) G

Level: (low/med) LOW

**% Moisture:** 15 decanted: (Y/N) N

Concentrated Extract Volume: 1000(uL)

Injection Volume: 1.0(uL)

GPC Cleanup: (Y/N) Nрн: \_\_\_\_

SAS No.:

Lab Sample ID: B0220-37ARE

Lab File ID: S2D2114

Date Received: 02/07/03

Date Extracted: 02/25/03

Date Analyzed: 02/27/03

Dilution Factor: 1.0

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

|                                      | <b>,</b> |    |
|--------------------------------------|----------|----|
| 108-95-2Phenol                       | 380      | lu |
| 111-44-4bis(2-Chloroethyl)Ether      | 380      | Ū  |
| 95-57-82-Chlorophenol                | 380      | U  |
| 541-73-11,3-Dichlorobenzene          | 380      | U  |
| 106-46-71, 4-Dichlorobenzene         | 380      | U  |
| 95-50-11, 2-Dichlorobenzene          | 380      | U  |
| 95-48-72-Methylphenol                | 380      | U  |
| 108-60-12,2'-oxybis(1-Chloropropane) | 380      | U  |
| 106-44-54-Methylphenol               | 380      | U  |
| 621-64-7N-Nitroso-di-n-propylamine   | 380      | ט  |
| 67-72-1Hexachloroethane              | 380      | U  |
| 98-95-3Nitrobenzene                  | 380      | U  |
| 78-59-1Isophorone                    | 380      | υ  |
| 88-75-52-Nitrophenol                 | 380      | ប  |
| 105-67-92,4-Dimethylphenol           | 380      | υ  |
| 120-83-22,4-Dichlorophenol           | 380      | U  |
| 120-82-11,2,4-Trichlorobenzene       | 380      | U  |
| 91-20-3Naphthalene                   | 380      | U  |
| 106-47-84-Chloroaniline              | 380      | -  |
| 111-91-1bis(2-Chloroethoxy)methane   | 380      | -  |
| 87-68-3Hexachlorobutadiene           | 380      | -  |
| 59-50-74-Chloro-3-Methylphenol       | 380      | -  |
| 91-57-62-Methylnaphthalene           | 380      |    |
| 77-47-4Hexachlorocyclopentadiene     | 380      | -  |
| 88-06-22,4,6-Trichlorophenol         | 380      | U  |
| 95-95-42,4,5-Trichlorophenol         | 780      | U  |
| 91-58-72-Chloronaphthalene           | 380      | υ  |
| 88-74-42-Nitroaniline                | 780      | ប  |
| 131-11-3Dimethylphthalate            | 380      | U  |
| 208-96-8Acenaphthylene               | 380      | ប  |
| 606-20-22,6-Dinitrotoluene           | 380      | υ  |
| 99-09-23-Nitroaniline                | 780      | U  |
| 83-32-9Acenaphthene                  | 380      | U  |
|                                      |          |    |
|                                      |          |    |

FORM I SV-1

EPA SAMPLE NO.

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

BX011214R Lab Name: MITKEM CORPORATION Contract: SDG No.: B0220 Lab Code: MITKEM Case No.: SAS No.: Lab Sample ID: B0220-37ARE Matrix: (soil/water) SOIL Sample wt/vol: 30.2 (g/mL) G Lab File ID: S2D2114 Date Received: 02/07/03 Level: (low/med) LOW Date Extracted:02/25/03 % Moisture: 15 decanted: (Y/N) N Concentrated Extract Volume: 1000(uL) Date Analyzed: 02/27/03 Injection Volume: Dilution Factor: 1.0 1.0(uL)GPC Cleanup: (Y/N) N рН: \_\_\_\_

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

|                                      |       | 1  |
|--------------------------------------|-------|----|
| 51-28-52,4-Dinitrophenol             | 780   | U  |
| 100-02-74-Nitrophenol                |       | U  |
| 132-64-9Dibenzofuran                 |       | ່ປ |
| 121-14-22,4-Dinitrotoluene           |       | U  |
| 84-66-2Diethylphthalate              | 380   | U  |
| 7005-72-34-Chlorophenyl-phenylether  |       |    |
| 86-73-7Fluorene                      |       | U  |
| 100-01-64-Nitroaniline               | 780   | U  |
| 534-52-14,6-Dinitro-2-methylphenol   |       | υ  |
| 86-30-6N-Nitrosodiphenylamine_(1)    |       | U  |
| 101-55-34-Bromophenyl-phenylether    |       | U  |
| 118-74-1Hexachlorobenzene            | 380   | U  |
| 87-86-5Pentachlorophenol             | 780   | U  |
| 85-01-8Phenanthrene                  | 380   | U  |
| 120-12-7Anthracene                   |       | U  |
| 86-74-8Carbazole                     |       | U  |
| 84-74-2Di-n-butylphthalate           |       | U  |
| 206-44-0Fluoranthene                 |       | U  |
| 129-00-0Pyrene                       | 380   | U  |
| 85-68-7Butylbenzylphthalate          |       | U  |
| 91-94-13,3'-Dichlorobenzidine        | 380   |    |
| 56-55-3Benzo(a) anthracene           |       | U  |
| 218-01-9Chrysene                     | 380   | U  |
| 117-81-7bis (2-Ethylhexyl) phthalate | 380   | U  |
| 117-84-0Di-n-octylphthalate          | 380   | υ  |
| 205-99-2Benzo(b)fluoranthene         | 380   | U  |
| 207-08-9Benzo(k)fluoranthene         | 380   | U  |
| 50-32-8Benzo (a) pyrene              | 380   |    |
| 193-39-5Indeno(1,2,3-cd)pyrene       | - 380 | υ  |
| 53-70-3Dibenzo(a,h)anthracene        | 380   |    |
| 191-24-2Benzo(g,h,i)perylene         | 380   |    |

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

### 1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: Matrix: (soil/water) SOIL Sample wt/vol: 30.2 (q/mL) G Level: (1ow/med)LOW % Moisture: 15 decanted: (Y/N) NConcentrated Extract Volume: 1000(uL) Injection Volume: 1.0(uL) GPC Cleanup: (Y/N) N рн: \_\_\_\_

BX011214RE BX011214RE SDG No.: B0220 Lab Sample ID: B0220-37ARE Lab File ID: S2D2114 Date Received: 02/07/03 Date Extracted:02/25/03 Date Analyzed: 02/27/03 Dilution Factor: 1.0

Number TICs found: 1

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER COMPOUND NAME RT EST. CONC. 0 \_\_\_\_\_\_ \_\_\_\_\_\_ \_\_\_\_\_\_ \_\_\_\_\_ ===== 1. 310 J UNKNOWN 23.68 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

FORM I SV-TIC

EPA SAMPLE NO.

EPA SAMPLE NO. **1B** SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET BX0268R Lab Name: MITKEM CORPORATION Contract: SAS No.: SDG No.: B0220 Lab Code: MITKEM Case No.: Matrix: (soil/water) SOIL Lab Sample ID: B0220-23ARE Sample wt/vol: 30.3 (g/mL) G Lab File ID: S2D2113 Date Received: 02/07/03 (low/med)Level: LOW Date Extracted: 02/25/03 decanted: (Y/N) N % Moisture: 2 Date Analyzed: 02/27/03 Concentrated Extract Volume: 1000(uL) Dilution Factor: 1.0 Injection Volume: 1.0(uL) GPC Cleanup: (Y/N) N pH: \_\_\_\_

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

| 108-95-2Phenol                       | 330 | TT |
|--------------------------------------|-----|----|
| 111-44-4bis (2-Chloroethyl) Ether    | 330 | -  |
| 95-57-82-Chlorophenol                | 330 | -  |
| 541-73-11, 3-Dichlorobenzene         | 330 | -  |
| 106-46-71,4-Dichlorobenzene          | 330 |    |
| 95-50-11,2-Dichlorobenzene           | 330 |    |
| 95-48-72-Methylphenol                | 330 | 1  |
| 108-60-12,2'-oxybis(1-Chloropropane) | 330 | -  |
| 106-44-54-Methylphenol               | 330 | -  |
| 621-64-7N-Nitroso-di-n-propylamine   | 330 | -  |
| 67-72-1Hexachloroethane              | 330 | -  |
| 98-95-3Nitrobenzene                  | 330 | -  |
| 78-59-1Isophorone                    | 330 | -  |
| 88-75-52-Nitrophenol                 | 330 | -  |
| 105-67-92,4-Dimethylphenol           | 330 | -  |
| 120-83-22,4-Dichlorophenol           | 330 | -  |
| 120-83-2                             | 330 | -  |
| 91-20-3Naphthalene                   | 330 | -  |
| 106-47-84-Chloroaniline              | 330 |    |
| 111-91-1bis (2-Chloroethoxy) methane | 330 | -  |
| 87-68-3Hexachlorobutadiene           | 330 |    |
| 59-50-74-Chloro-3-Methylphenol       | 330 | -  |
|                                      |     |    |
| 91-57-62-Methylnaphthalene           | 330 |    |
| 77-47-4Hexachlorocyclopentadiene     | 330 |    |
| 88-06-22,4,6-Trichlorophenol         | 330 | -  |
| 95-95-42,4,5-Trichlorophenol         | 680 | -  |
| 91-58-72-Chloronaphthalene           | 330 | -  |
| 88-74-42-Nitroaniline                | 680 |    |
| 131-11-3Dimethylphthalate            | 330 | -  |
| 208-96-8Acenaphthylene               | 330 | -  |
| 606-20-22,6-Dinitrotoluene           | 330 | -  |
| 99-09-23-Nitroaniline                | 680 |    |
| 83-32-9Acenaphthene                  | 330 | U  |
|                                      |     |    |
|                                      |     |    |

BPA SAMPLE NO. 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET BX0268PE Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS NO.: SDG No.: B0220 Matrix: (soil/water) SOIL Lab Sample ID: B0220-23ARE Lab File ID: S2D2113 Sample wt/vol: 30.3 (g/mL) G Date Received: 02/07/03 Level: (low/med)LOW % Moisture: 2 decanted: (Y/N) N Date Extracted: 02/25/03 Date Analyzed: 02/27/03 Concentrated Extract Volume: 1000(uL) Injection Volume: Dilution Factor: 1.0 1.0(uL)GPC Cleanup: (Y/N) N pH:

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

| 51-28-5  | 2,4-Dinitrophenol          | 680 | υ |
|----------|----------------------------|-----|---|
| 100-02-7 | 4-Nitrophenol              | 680 | U |
| 132-64-9 | Dibenzofuran               | 330 | U |
| 121-14-2 | 2,4-Dinitrotoluene         | 330 | U |
| 84~66-2  | Diethylphthalate           | 330 | U |
|          | 4-Chlorophenyl-phenylether | 330 | U |
| 86-73-7  | Fluorene                   | 330 | U |
|          | 4-Nitroaniline             | 680 | U |
| 534-52-1 | 4,6-Dinitro-2-methylphenol | 680 | U |
| 86-30-6  | N-Nitrosodiphenylamine (1) | 330 | U |
| 101-55-3 | 4-Bromophenyl-phenylether  | 330 | U |
| 118-74-1 | Hexachlorobenzene          | 330 | U |
| 87-86-5  | Pentachlorophenol          | 680 | U |
|          | Phenanthrene               | 330 | U |
|          | Anthracene                 | 330 | U |
| 86-74-8  | Carbazole                  | 330 | U |
| 84-74-2  | Di-n-butylphthalate        | 330 | U |
| 206-44-0 | Fluoranthene               | 330 | U |
| 129-00-0 | Pyrene                     | 330 | U |
| 85-68-7  | Butylbenzylphthalate       | 330 | U |
| 91-94-1  | 3,3'-Dichlorobenzidine     | 330 | U |
| 56-55-3  | Benzo (a) anthracene       | 330 | U |
| 218-01-9 | Chrysene                   | 330 | U |
| 117-81-7 | bis(2-Ethylhexyl)phthalate | 330 | U |
| 117-84-0 | Di-n-octylphthalate        | 330 | υ |
| 205-99-2 | Benzo (b) fluoranthene     | 330 | U |
| 207-08-9 | Benzo(k)fluoranthene       | 330 | U |
| 50-32-8  | Benzo(a)pyrene             | 330 | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 330 | U |
| 53-70-3  | Dibenzo(a,h)anthracene     | 330 | U |
| 191-24-2 | Benzo(g,h,i)perylene       | 330 | U |

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

|              | 11       |            |        |       |
|--------------|----------|------------|--------|-------|
| SEMIVOLATILE | ORGANICS | ANALYSIS   | DATA   | SHEET |
| TENTAT       | VELY IDE | VTIFIED CO | OMPOUN | 1DS   |

.....

| TENT.                    | ATIVELY IDENTIFIE | a compounds |             | BX0268RE    |
|--------------------------|-------------------|-------------|-------------|-------------|
| Lab Name: MITKEM COR     | PORATION          | Contract:   |             |             |
| Lab Code: MITKEM         | Case No.:         | SAS No.:    | SDG         | No.: B0220  |
| Matrix: (soil/water)     | SOIL              | Lab         | Sample ID:  | B0220-23ARE |
| Sample wt/vol:           | 30.3 (g/mL) G     | Lab         | File ID:    | S2D2113     |
| Level: (low/med)         | LOW               | Dat         | e Received: | 02/07/03    |
| <pre>% Moisture: 2</pre> | decanted: (Y/N)   | N Dat       | e Extracted | :02/25/03   |
| Concentrated Extract     | Volume: 1000(     | uL) Dat     | e Analyzed: | 02/27/03    |
| Injection Volume:        | 1.0(uL)           | Dil         | ution Facto | r: 1.0      |
| GPC Cleanup: (Y/N)       | N pH:             | _           |             |             |

Number TICs found: 1

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

| CAS NUMBER   | COMPOUND NAME | RT       | EST. CONC. |            |
|--------------|---------------|----------|------------|------------|
| 1.           | UNKNOWN       | 23.68    | 300        |            |
| 2            |               |          |            |            |
| J            | [             | <u> </u> |            |            |
| τ.           |               |          |            |            |
| 5            |               |          |            |            |
| υ.           |               | ll_      |            |            |
| 7            |               |          |            |            |
| 8            |               |          |            |            |
| 9,<br>10     |               |          |            |            |
| <b></b>      | -             | -        |            |            |
| 14.          |               |          |            | t          |
| 12.          |               |          |            |            |
| 14.          |               |          |            |            |
| ±.,          |               |          |            |            |
| <b>TO</b> .  |               | ! -      |            |            |
| ×/.          |               | -        |            |            |
| 10.          | ··· ]         |          |            |            |
| 1J.          | _             |          |            |            |
| 20           |               |          |            |            |
| 21           |               | -        | <u> </u>   |            |
| 22           |               |          |            |            |
| 24           |               |          |            | — <u> </u> |
| 4 <b>3</b> . |               |          |            |            |
| 26.          |               |          |            |            |
| 41.          |               |          |            |            |
| <u>c</u> u.  |               |          |            |            |
| 43.          | <u> </u>      |          |            |            |
| 30           |               |          |            |            |

.

EPA SAMPLE NO.

EPA SAMPLE NO.

**1B** SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET BX06688# Lab Name: MITKEM CORPORATION Contract: SDG No.: B0220 Lab Code: MITKEM Case No.: SAS No.: Matrix: (soil/water) SOIL Lab Sample ID: B0220-21ARE Lab File ID: Sample wt/vol: 30.2 (g/mL) G S2D2112 Level: (low/med) LOW Date Received: 02/07/03 % Moisture: 4 decanted: (Y/N) N Date Extracted: 02/25/03 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 02/27/03 Injection Volume: 1.0(uL)Dilution Factor: 1.0 GPC Cleanup: (Y/N) NpH: \_\_\_\_

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

| 108-95-2Phenol                       | 340 | U   |
|--------------------------------------|-----|-----|
| 111-44-4bis (2-Chloroethyl) Ether    | 340 | U   |
| 95-57-82-Chlorophenol                | 340 | U   |
| 541-73-11,3-Dichlorobenzene          | 340 | ט   |
| 106-46-71,4-Dichlorobenzene          | 340 | U   |
| 95-50-11,2-Dichlorobenzene           | 340 | U   |
| 95-48-72-Methylphenol                | 340 | U   |
| 108-60-12,2'-oxybis(1-Chloropropane) | 340 | U   |
| 106-44-54-Methylphenol               | 340 | U   |
| 621-64-7N-Nitroso-di-n-propylamine   | 340 | U   |
| 67-72-1Hexachloroethane              | 340 | U   |
| 98-95-3Nitrobenzene                  | 340 |     |
| 78-59-1Isophorone                    | 340 | U   |
| 88-75-52-Nitrophenol                 | 340 | U   |
| 105-67-92,4-Dimethylphenol           | 340 |     |
| 120-83-22,4-Dichlorophenol           | 340 | U   |
| 120-82-11,2,4-Trichlorobenzene       | 340 | U   |
| 91-20-3Naphthalene                   | 340 | U   |
| 106-47-84-Chloroaniline              | 340 | U   |
| 111-91-1bis (2-Chloroethoxy) methane | 340 | υ   |
| 87-68-3Hexachlorobutadiene           | 340 | U   |
| 59-50-74-Chloro-3-Methylphenol       | 340 | U   |
| 91-57-62-Methylnaphthalene           | 340 | U   |
| 77-47-4Hexachlorocyclopentadiene     | 340 |     |
| 88-06-22,4,6-Trichlorophenol         | 340 | U   |
| 95-95-42,4,5-Trichlorophenol         | 690 | U   |
| 91-58-72-Chloronaphthalene           | 340 | υ   |
| 88-74-42-Nitroaniline                | 690 | υ   |
| 131-11-3Dimethylphthalate            | 340 |     |
| 208-96-8Acenaphthylene               | 340 | ប   |
| 606-20-22,6-Dinitrotoluene           | 340 | · · |
| 99-09-23-Nitroaniline                | 690 |     |
| 83-32-9Acenaphthene                  | 340 | -   |

# FORM I SV-1

0108

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

1

| Lab Name: MITKEM CON | RPORATION | Contract    | :              | <b>вхо668ре</b> () |
|----------------------|-----------|-------------|----------------|--------------------|
| Lab Code: MITKEM     | Case No.: | SAS NO.     | : SDG          | No.: B0220         |
| Matrix: (soil/water) | SOIL      |             | Lab Sample ID: | B0220-21ARE        |
| Sample wt/vol:       | 30.2 (g/m | L) G        | Lab File ID:   | S2D2112            |
| Level: (low/med)     | LOW       |             | Date Received: | 02/07/03           |
| % Moisture: 4        | decanted: | (Y/N) N     | Date Extracted | l:02/25/03         |
| Concentrated Extract | : Volume: | 1000 (uL)   | Date Analyzed: | 02/27/03           |
| Injection Volume:    | 1.0(uL)   |             | Dilution Facto | or: 1.0            |
| GPC Cleanup: (Y/N)   | N p       | H:          |                |                    |
|                      |           | <b>CONT</b> |                |                    |

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

|          |                            |     | ] |
|----------|----------------------------|-----|---|
|          | 2,4-Dinitrophenol          | 690 |   |
| 100-02-7 |                            | 690 |   |
| 132-64-9 |                            | 340 |   |
| 121-14-2 | 2,4-Dinitrotoluene         | 340 | - |
| 84-66-2  | Diethylphthalate           | 340 |   |
|          | 4-Chlorophenyl-phenylether | 340 |   |
| 86-73-7  |                            | 340 | - |
| 100-01-6 |                            | 690 |   |
| 534-52-1 | 4,6-Dinitro-2-methylphenol | 690 | U |
| 86-30-6  | N-Nitrosodiphenylamine (1) | 340 | U |
| 101-55-3 | 4-Bromophenyl-phenylether  | 340 | U |
| 118-74-1 | Hexachlorobenzene          | 340 | U |
| 87-86-5  | Pentachlorophenol          | 690 | U |
| 85-01-8  | Phenanthrene               | 340 | U |
| 120-12-7 |                            | 340 | U |
| 86-74-8  |                            | 340 | U |
| 84-74-2  | Di-n-butylphthalate        | 54  | J |
| 206-44-0 | Fluoranthene               | 340 | U |
| 129-00-0 | Pyrene                     | 340 | U |
| 85-68-7  | Butylbenzylphthalate       | 340 | υ |
| 91-94-1  | 3,3'-Dichlorobenzidine     | 340 | υ |
| 56-55-3  | Benzo (a) anthracene       | 340 | U |
| 218-01-9 | Chrysene                   | 340 | U |
| 117-81-7 | bis(2-Ethylhexyl)phthalate | 340 | U |
| 117-84-0 | Di-n-octylphthalate        | 340 |   |
| 205-99-2 | Benzo(b)fluoranthene       | 340 | - |
| 207-08-9 | Benzo(k)fluoranthene       | 340 |   |
| 50-32-8  | Benzo(a) pyrene            | 340 | - |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     | 340 |   |
| 53-70-3  | Dibenzo (a, h) anthracene  | 340 |   |
| 191-24-2 | Benzo(g,h,i)perylene       | 340 | Ū |

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

### 1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| Lab Name: MITKEM COR     | PORATION          | Contract:         |             |
|--------------------------|-------------------|-------------------|-------------|
| Lab Code: MITKEM         | Case No.:         | SAS NO.: SDG      | No.: B0220  |
| Matrix: (soil/water)     | SOIL              | Lab Sample ID:    | B0220-21ARE |
| Sample wt/vol:           | 30.2 (g/mL) G     | Lab File ID:      | S2D2112     |
| Level: (low/med)         | LOW               | Date Received:    | 02/07/03    |
| <pre>% Moisture: 4</pre> | decanted: (Y/N) N | Date Extracted    | 1:02/25/03  |
| Concentrated Extract     | Volume: 1000 (u   | L) Date Analyzed: | 02/27/03    |
| Injection Volume:        | 1.0(uL)           | Dilution Facto    | or: 1.0     |
| GPC Cleanup: (Y/N)       | N pH:             |                   |             |

Number TICs found: 1

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

| CAS NUMBER  | COMPOUND NAME | RT                   | BST. CONC. |           |
|-------------|---------------|----------------------|------------|-----------|
| 1.          | UNKNOWN       | 23.68                | 260        |           |
| 2           |               |                      |            |           |
| J           |               | -                    |            |           |
| ч.          |               |                      |            | <u> </u>  |
| 5           |               |                      |            | <u> </u>  |
| 0           |               |                      |            |           |
| 7           |               | -                    |            |           |
| 8           |               |                      |            |           |
| 9.          |               | <b></b>  ·           |            |           |
| <b>I</b> U. |               | <u> </u>             |            |           |
| 11          |               | · [ ·                |            |           |
| 12          |               | //·                  |            |           |
| 13          |               | -                    |            |           |
| 14          |               | [ ] •                |            |           |
| 15<br>16    | —             |                      | <b></b>    |           |
| 17          |               | -                    |            |           |
| 17          |               |                      |            |           |
| 19          |               |                      |            |           |
| 20          |               |                      |            |           |
| 7.1 -       | [             |                      |            |           |
| 22          |               | ·                    |            |           |
| 23          |               |                      |            |           |
| 24          |               | -                    |            |           |
| 25          |               | —l——l,               |            |           |
| 26          |               |                      |            | <b></b> - |
| 27          |               | —   — — – –   -      |            |           |
| 28          |               |                      | - <u> </u> | ·         |
| 29          |               |                      |            |           |
| 30          |               | — <b> </b> — — —   - |            |           |
| ···         |               |                      |            |           |

EPA SAMPLE NO.

| BX0668PE |
|----------|
|----------|

t