THE WHITMAN COMPANIES, INC.

Setting the Standard in Environmental Engineering & Management

OM & M MANUAL

FOR

DEXTER CHEMICAL LLC 845 EDGEWATER ROAD BRONX, NEW YORK

VOLUME III
STANDARD OPERATING PROCEDURES

COMPILED BY

THE WHITMAN COMPANIES, INC.

DECEMBER 2005

116 Tices Lane, Unit B-1, East Brunswick, NJ 08816 www.whitmanco.com

OM & M MANUAL VOLUME III

DEXTER CHEMICAL LLC 845 EDGEWATER ROAD BRONX, NEW YORK

Table of Contents

PART I STANDARD OPERATING PROCEDURES

- 1.0 Standard Operating Procedures for SVE Treatment
- 2.0 Standard Operating Procedures for AS Unit
- 3.0 Standard Operating Procedures for Ground Water Treatment System

PART II RECORDS AND FORMS

- 1. Catalytic Oxidizer Technician Sheet
- 2. Carbon SVE Technician Sheet
- 3. Ground Water Recovery Technician Sheet

Ď

PART I STANDARD OPERATING PROCEDURES

OM & M MANUAL VOLUME III

DEXTER CHEMICAL LLC 845 EDGEWATER ROAD BRONX, NEW YORK

1.0 STANDARD OPERATING PROCEDURES FOR SVE TREATMENT

- 1. Upon arrival document time, temperature, and weather conditions in log book.
- 2. Check gate to ensure site is secure and that emergency contact information is visible.
- 3. Document in log book if system is running, if not trouble shoot and document why the system shut down.
- 4. Record SVE vacuum and influent/effluent temperatures (Catalytic Unit), or system influent vacuum and carbon vessel psi readings (Carbon Treatment).
- 5. Collect system effluent cfm reading (Kurz) and influent/effluent concentrations (PID).
- 6. Bail water traps.
- 7. Collect influent concentrations and individual riser concentrations (PID)
- 8. Make adjustments to manifold to maximize system mass removal rates.
- 9. Collect departure influent concentrations (PID), cfm (Kurz), vacuum readings, and psi (carbon) or temperature (catalytic) readings.
- 10. Complete system data sheet.

2.0 STANDARD OPERATING PROCEDURES FOR AS UNIT

- 1. Check AS hose integrity.
- 2. Collect psi readings from gauges at each manifold point.
- 3. Shut down compressor and remove condensate from collection jars.
- 4. Restart compressor and ensure all points are functioning (compressor is not dead heading at any point).
- 5. Complete system data sheet.

3.0 STANDARD OPERATING PROCEDURES FOR GROUND WATER TREATMENT SYSTEM

- 1. Check system for leaks.
- 2. Ensure all floats and emergency shut offs are properly working.
- 3. Check discharge outfall for water clarity and any obstructions.
- 4. Collect psi readings from prior to carbon unit one, after carbon unit 1, and after carbon unit 2. If psi readings are greater than 10 between units backwash the vessels.
- 5. Document system flow rate and total flow, and make adjustments if necessary.
- 6. Complete system data sheet.

PART II RECORDS AND FORMS

1. CATALYTIC OXIDIZER TECHNICIAN SHEETS

	Catalytic Oxidizer	
Project Name		
Project Number		D

Page 1 of 2

	Arrival	Departure
Influent Temperature		
Effluent Temperature		
System Flow (cfm)		
System Vacuum		

System Manifold Readings

Technician

Well	Valve	Vacuum	CFM	Total PID	Methane	HC PID
-						
-						
·						· · · · · · · · · · · · · · · · · · ·
			.=			
-						
					-	

Project Name	
Project Number	
Technician	

System Influent/ Effluent

	Effluent PID
1	
2	
3	
4	
5	
Avg.	
Meth.	
HC	

Percent Efficiency

Effluent	/ Influent	x 100	

Mass Removal

lbs/hr =	HC ppmv 1,000,000	X	cfm,	scf/min	100 lbs./mole 387 scf/mole		x 60 min/hr
lbs/hr =		х] x	0.258	X	60

Air Sparge

Point	on/off	psi
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Compressor PSI	
Compressor Temp.	

·.

2. CARBON SVE TECHNICIAN SHEETS

	CARBON SVE	Page 1 of 2
Project Name Project Number		Date
Technician		
Influent PSI	Arrival Departure	
Vessel 1 PSI		
Vessel 2 PSI		

System Manifold Readings

System Vacuum

Weli	Valve	Vacuum	CFM	Total PID	Methane	HC PID
	ļ					
						
						, , , , , , , , , , , , , , , , , , ,
_						
	 			<u></u>		
	· · · · · · · · · · · · · · · · · · ·					
ļ						
	<u> </u>					
···				-		
	<u> </u>	 				
						**** <u>*</u>
	<u> </u>					
	-					
L						

Project Name		
Project Number	 	
Technician		

System Influent/ Effluent

Influent PID	
1	
2	
3	
4	
5	
Average	
Methane	
HC	

Effluent PID		
1		
2		
3		
4		
5		
Avg.		
Meth.		
HC		

Mass Removal

lbs/hr =	HC ppmv 1,000,000	x	cfm,	scf/min	100 lbs./ r 387 scf/mg		x 60 min/hr
lbs/hr =		x		7 x	0.2584	х	60

Air Sparge

Point	on/off	psi
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Compressor psi	
Compressor Temp.	

3. GROUND WATER RECOVERY TECHNICIAN SHEET

Dexter Chemical, LLC. BRONX, NEW JERSEY

$\overline{}$		4.	
	-	7.4	ъ.

Time:

Whitman Personnel:

GROUND WATER RECOVERY SYSTEM

Dewatering Pump Flow Rate (gpm)	Dewatering Pump Adjusted Flow (gpm)
Dewatering Pump Flow Cycle (hrs/day)	Comments:
Pre-Carbon Bed Totalizer (gallons)	·
Carbon Bed Flow Rate (gpm)	
Carbon Bed - 1 (psi)	
Carbon Bed - 2 (psi)	
TSS Filter (psi)	
Emergency Float Switch Drum - 1	
Emergency Float Switch Drum - 2	
Heat Tape Working (yes/no)	
TSS Filter (clean/change)	
System Operational Arrival	
Departure	