SUFFOLK COUNTY FORMER BELLPORT GAS STATION 1401 MONTAUK HIGHWAY, EAST PATCHOGUE, NY SITE: #E-1-52-194

PWGC Project No. SHD0902

REMEDIAL INVESTIGATION REPORT January 2010

Submitted to:

New York State Department of Environmental Conservation

Prepared for: Suffolk County Department of Health Services Office of Pollution Control 15 Horseblock Place Farmingville, NY 11738

Prepared by:

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 New York, NY • Seattle, WA • Greensboro, NC PH 631.589.6353 • FX 631.589.8705 • zeby@pwgrosser.com • www.pwgrosser.com

TABLE OF CONTENTS

			Page
1.0	INTR	ODUCTION	
	1.1	Durpose and Seene	Δ
		Purpose and Scope Site Location and Description	
	1.2		
	1.3 1.4	Site History	
	1.4	Previous Investigations	
2.0	SCD	HS EMERGENCY IRM – DW-2 SOIL REMEDIATION	7
3.0	FIELD	D INVESTIGATION	8
	3.1	Field Investigation and Technical Approach	
		3.1.1 UIC Investigation	
		3.1.2 Surface and Subsurface Soil Sampling	
		3.1.3 Monitoring Well Installation	
		3.1.3.1 Monitoring Well Development	
		3.1.3.2 Monitoring Well Survey	
		3.1.4 Groundwater Investigation	
		3.1.4.1 Geoprobe™ Groundwater Sampling	
		3.1.4.2 Monitoring Well Sampling	
		3.1.5 Soil-Vapor Investigation	
	3.2	Quality Assurance/Quality Control	
		3.3.1 QA/QC Samples	
		3.3.2 Data Validation	
		3.3.3 Data Usability	
	3.4	Standards, Criteria and Guidance Values	
	3.5	Analytical Results	
	3.6	Waste Management	
	3.6.1		
	3.6.3		
4.0	HYD	ROGEOLOGIC ASSESSMENT AND PHYSICAL SETTING	
	4.1	Site Topography	18
	4.2	Surrounding Land Use	
	4.3	Regional Geology / Hydrogeology	
	4.4	Site Geology / Hydrogeology	
5.0	NAT	URE AND EXTENT OF CONTAMINATION	
	5.1	Identification of Source Areas	20
	5.2	Extent of Contamination in Soil	
	5.3	Extent of Contamination in Groundwater	
	5.4	Extent of Contamination in Soil Gas	
	5.5	Qualitative Exposure Assessment.	
	0.0	5.5.1 Human Health Exposure Assessment	
	5.6	Fish and Wildlife Resource Impact Assessment	
6.0	CON	ICLUSIONS AND RECOMMENDATIONS	
	6.1	Conclusions	25
	6.2	Analysis of Remedial Alternatives	
	6.3	Recommendations	
	0.0	Recommendations	······ ∠ /

7.0	REFERENCES
1.0	

TABLES

TABLE 1	GROUNDWATER / MONITORING WELL SURVEY DATA
TABLE 2	SOIL ANALYTICAL RESULTS FOR UIC SAMPLES – VOC'S BY EPA METHOD 8260
TABLE 3	soil Analytical results for uic samples – svoc's by Epa method 8270
TABLE 4	soil Analytical results for uic samples – metals by EPA method 6010
TABLE 5	SOIL ANALYTICAL RESULTS FOR SURFACE SOIL SAMPLES – VOC'S BY EPA METHOD 8260
TABLE 5A	SOIL ANALYTICA: RESULTS FOR SUBSURFACE SOIL SAMPLES – VOC'S BY EPA METHOD 8260
TABLE 6	SOIL ANALYTICAL RESULTS FOR SURFACE SOIL SAMPLES – METALS BY EPA METHOD 6010
TABLE 7	GROUNDWATER ANALYTICAL RESULTS – VOC'S BY EPA METHOD 8260
TABLE 8	GROUNDWATER ANALYTICAL RESULTS – SVOC'S BY EPA METHOD 8270
TABLE 9	GROUNDWATER ANALYTICAL RESULTS – METALS BY EPA METHOD 6010
TABLE 10	soil gas analytical results – by EPA method to-15
TABLE 11	QA/QC ANALYTICAL RESULTS – VOC'S BY EPA METHOD 8260
TABLE 12	QA/QC ANALYTICAL RESULTS – SVOC'S BY EPA METHOD 8270
TABLE 13	QA/QC ANALYTICAL RESULTS – METALS BY EPA METHOD 6010

FIGURES

FIGURE 1	VICINITY MAP
FIGURE 2	SITE PLAN
FIGURE 3	SURFACE SOIL SAMPLE LOCATIONS
FIGURE 4	SUBSURFACE SOIL SAMPLE LOCATIONS
FIGURE 5	GROUNDWATER SAMPLE LOCATIONS
FIGURE 6	GROUNDWATER CONTOUR MAP
FIGURE 7	SOIL VAPOR SAMPLE LOCATIONS

APPENDICES

APPENDIX A	SCDHS EMERGENCY IRM INFORMATION – DW-2 SOIL REMEDIATION
APPENDIX B	SOIL BORING LOGS
APPENDIX C	MONITORING WELL CONSTRUCTION LOGS
APPENDIX D	MONITORING WELL DEVELOPMENT LOGS
APPENDIX E	GROUNDWATER SAMPLING LOGS
APPENDIX F	DATA VALIDATION REPORT (On CD)
APPENDIX G	LABORATORY ANALYTICAL REPORTS (On CD)
APPENDIX H	INVESTIGATION DERIVED WASTE MANIFESTS
APPENDIX I	Comparative analysis of alternatives

1.0 INTRODUCTION

1.1 Purpose and Scope

P.W. Grosser Consulting, Inc. (PWGC) has prepared the following Remedial Investigation Report (RI) on behalf of the Suffolk County Department of Health Services (SCDHS) to document the investigation activities performed at the former Bellport Gas Station site located at 1401 Montauk Highway in East Patchogue, New York (Suffolk County Tax Map Number 200-975.8-4-20) (**Figure 1**). The property is owned by Suffolk County.

The scope of the investigation is detailed in the approved Remedial Investigation Work Plan (RIWP) prepared by PWGC in December 2008. PWGC performed the remedial investigation in accordance with the RIWP beginning in May 2009, and the results are summarized in this RI.

1.2 Site Location and Description

The area of concern is an abandoned gas station, approximately 0.3 acres in size (Figure 2). The site is located at 1401 Montauk Highway in East Patchogue, New York. The property is located on the north side of Montauk Highway and is bounded on the east by Lenox Avenue, on the north by residential properties, and on the west and south by commercial properties.

1.3 Site History

This property has been occupied by many different independent retail gasoline service stations, such as Eastern Petroleum (1983), Major Fuel (1986), National (1987), Independent (1991), and Ocean/Coastal (1991-1998).

Suffolk County acquired the property in 1999 for failure to pay property taxes.

On February 16, 1984, the SCDHS completed an inspection of this site when Gary's Auto and Truck Repair occupied the facility. This inspection revealed that there was an indoor floor drain which discharged waste liquid to a storm water drywell.

NYSDEC opened a spill number (8703461) in 1987 after an underground storage tank (UST) failed a tank test. Three (3) gasoline/diesel USTs and one (1) waste oil UST were removed from the site in 1988. The spill number was closed in 1988.

In 1994 the NYSDEC opened spill number 94-04094 after MTBE was detected in an offsite well, hydraulically down gradient of the subject property. The NYSDEC performed an in-depth off-site groundwater investigation, which delineated the extent of the offsite MTBE and BTEX impacts. The investigation concluded that impacts to private wells were eliminated through connections to public water, MTBE exposure at Dunton Lake and tidal creeks were not expected to cause adverse impacts to aquatic or terrestrial organism populations, and impacts to Bellport Bay were expected to be minimal. As a result, the off-site spill file was closed in 2008.

In May 1998, the Suffolk County Department of Health Services (SCDHS) received laboratory results from an environmental audit report completed by Tyree Bros. Environmental Services. This report documented contamination in the floor drain and two outdoor storm water drywells. The floor drain contained elevated levels of volatile organic compounds (VOCs) and metals.

Past sampling and remediation activities at the site have determined that elevated concentrations of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals are present in the soil and groundwater at the site. The extent of the contamination has not been thoroughly delineated. An application for inclusion into the New York State Environmental Restoration Program (ERP) was submitted on February 5, 2007. The site was approved for the ERP program on June 26, 2007 (Site ID#1-52-194). A State Assistance Contract (SAC) #T303811 was finalized on May 8, 2008.

1.4 Previous Investigations

In 2006, O'Brien and Gere prepared a Site Characterization Report which detailed the following:

- The groundwater at the site was found to contain elevated concentrations of metals, VOCs, and semivolatile organic compounds (SVOCs). Contamination was detected in sampling locations located downgradient of the former UST excavation.
- Surface and subsurface soils were found to have elevated concentrations of VOCs. Areas of
 contamination were located along the western property boundary, approximately 30 feet south of the
 building and in the southwest corner of the property, and within the former UST excavation collected 2024 feet below ground surface (bgs).
- Aqueous and sludge samples collected from the floor drain at the site exhibited elevated concentrations of VOCs, SVOCs, PCBs, and metals. The sample collected from storm water drywell DW-1 contained elevated concentrations of metals.
- Exterior soil gas samples and interior sub-slab soil gas samples were found to contain elevated concentrations of VOCs.

O'Brien and Gere submitted a Remedial Alternatives Report in September 2006 which proposed the following potential remedial actions for the subject site:

- Removal of subsurface soil
- Implementation of a dual phase extraction system
- Removal of the floor drain
- Removal of surface soil
- Asbestos and lead based paint (LBP) abatement.

In September 2008, the SCDHS sampled storm water drywell DW-2 at the site as part of an Emergency Action Interim Remedial Measure (IRM). Analytical results from the sediment sample indicated concentrations of

chrysene and lead above SCDHS Action Levels. Based on the results, the SCDHS proposed remediation of DW-2 as per their NYSDEC-approved IRM Work Plan. The dry well was remediated and closed on October 7, 2008. Results of the IRM is discussed in Section 2.0.

2.0 SCDHS EMERGENCY IRM – DW-2 SOIL REMEDIATION

On October 7, 2008 the SCDHS performed remediation of storm water drywell DW-2. The objective of the IRM was to remove elevated concentrations of SVOCs and lead from the structure. Remediation activities were performed using Department of Public Works (SCDPW) equipment. Liquids contained in the structure were transferred to a nearby storm water drywell (DW-1). A vacuum powered truck was then used to remove approximately five feet of sediment from the base of the structure. Remedial activities were overseen by a SCDHS representative. Following cleanout activities, an endpoint sample was collected from the base of the structure. Endpoint sample analytical results indicated that remedial activities were successful, as no VOCs, SVOCs, or metals were detected in the endpoint sample at concentrations exceeding the SCDHS Cleanup Objectives.

Following collection of endpoint samples, the structure was permanently abandoned and backfilled with clean sand provided by Roanoke Sand and Gravel. Sediments which were removed from DW-2 were placed on poly sheeting inside the building and will be disposed of in the future. Approximately five cubic yards of sediments are staged inside the building, awaiting disposal. Information regarding the IRM performed by the SCDHS, including a description of activities performed, photos, endpoint sample results, and clean fill receipts, is contained in **Appendix A**.

3.0 FIELD INVESTIGATION

PWGC began the implementation of the RIWP in May 2009. As required, ten-day notification was provided to the NYSDEC before investigation activities began. Soil, soil-vapor, and groundwater sampling activities were performed between May 15 and June 4, 2009.

3.1 Field Investigation and Technical Approach

The Scope of Work, as identified in the approved RIWP, included the following tasks:

- 1. Underground Injection Control (UIC) Investigation
- 2. Surface and Subsurface Soil Sampling
- 3. Monitoring Well Installation
- 4. Groundwater Sampling
- 5. Soil Vapor Sampling

These tasks are discussed in detail in the following sections.

3.1.1 UIC Investigation

On May 15, 2009, PWGC and their subcontractor American Environmental Assessment Corporation (AEAC) of Wyandanch, New York mobilized to the site to locate and sample existing UIC structures at the site. Previous investigations have identified the presence of an on-site sanitary system, an existing storm-water drywell, and a floor drain. The purpose of the UIC investigation was to characterize soil/sludge within the existing UIC structures.

AEAC utilized a Case 590 Super L Backhoe to locate and expose the site's sanitary system and the storm-water drywell associated with floor drain (FD-1) located within the abandoned building. A single four inch diameter Orangeburg pipe (bituminized pipe used from the 1860's to 1970's) was traced from the bathroom located at the northeast corner of the building to a leaching cesspool (CP-1) consisting of six foot diameter block pool approximately six feet deep with a brick chimney and solid concrete cover. An inspection of FD-1 identified the structure to have a solid concrete bottom with a single four inch diameter Orangeburg pipe exiting to the northeast. The pipe was traced from the northwest corner of the building to a leaching drywell (DW-3) consisting of a six foot diameter block pool approximately six feet deep with a solid concrete cover. No overflow pipes were identified in CP-1 and DW-3. Stormwater drywell DW-1 was inspected and was found to be constructed of an eight-foot diameter precast concrete ring and had a depth of approximately four feet. The location of UIC structures are identified on **Figure 2**.

Soil/sludge samples were retrieved from the base of CP-1, DW-1, and DW-3 utilizing a stainless steel hand auger. Prior to sampling, equipment was decontaminated using a laboratory-grade glassware detergent and tap water scrub to remove visual contamination; generous tap water rinse; followed by a distilled water rinse. At each UIC structure three grab samples were retrieved from the base. Grab samples were screened with a photoionization detector (PID) to detect the presence of volatile organic vapors. A volatile organic compound (VOC) sample was collected from the grab sample which had the highest PID response from each structure. The remaining samples were transferred to a stainless steel bowl and homogenized. Once the soil/sludge was homogenized, a

sample was transferred into glassware provided by Chemtech of Mountainside, New Jersey. Samples were packed in coolers with ice and shipped to Chemtech under chain-of-custody seal.

The three (3) soil/sludge samples were analyzed for the presence of:

- Volatile organic compounds by EPA Method 8260 (SCDHS List)
- Semi-volatile organic compounds by EPA Method 8270 (SCDHS List)
- Total Metals by EPA Method 6010 (SCDHS List)

3.1.2 Surface and Subsurface Soil Sampling

Surface and subsurface soil sampling was conducted to delineate the extent of two separate impacted areas identified during the O'Brien & Gere Investigation.

Surface Sampling:

Surface soil samples were collected to delineate the areal extent of VOC and metal impacted soils around two locations sampled during the O'Brien & Gere Investigation (SS-9 and SS-10). Two new samples from the original locations and four (4) from around each of the two former sampling locations were collected. Surface soil locations are identified on **Figure 3**.

Surface soils were collected from 0 to 2 inches below ground surface (bgs) or below the vegetative layer. Samples were also collected from 1.0 to 1.5 feet bgs.

Soil samples were collected from each location using stainless steel sampling equipment. Prior to sampling, equipment was decontaminated using a laboratory-grade glassware detergent and tap water scrub to remove visual contamination; generous tap water rinse; followed by a distilled water rinse. Sampling equipment was decontaminated between each interval. Soil samples were classified using the Unified Soil Classification System (USCS) and screened in the field for the presence of VOCs using a PID. Samples were then placed in precleaned, laboratory-supplied glassware provided by Chemtech. Samples were packed in coolers with ice and shipped to Chemtech under chain-of-custody seal.

Initially, the shallow surface soil samples (0-2") were analyzed, while the deeper samples (1'-1.5') samples were held pending analytical results. These samples were analyzed for VOCs according to USEPA Method 8260 and TAL metals according to USEPA Method 6010. If a soil sample showed concentrations of VOCs or metals above NYSDEC Recommended Cleanup Objectives (RSCOs), the deeper sample collected from that location (1'-1.5') was analyzed.

Subsurface Sampling:

On May 19, 2009, PWGC and their subcontractor, Land Air Water Environmental Services (LAWES), of Center Moriches, New York mobilized to the site to collect subsurface soil samples. Subsurface soil samples were collected to determine the areal extent of impact in the vicinity of the former UST area (O'Brien & Gere sampling

location GP-2). One soil boring was performed through the center of the former UST excavation and four soil borings were performed along the perimeter of the UST excavation. Soil boring locations are identified on Figure 4.

LAWES utilized a track mounted Geoprobe[™] to perform the five soil borings. At each boring location, soils were collected continuously from ground surface to 25 feet bgs in SB-4, SB-5, SB-6, & SB-7 and to 30 feet bgs in SB-8. Groundwater was encountered at approximately 19 feet bgs. Soil samples were classified using the Unified Soil Classification System (USCS) and screened in the field for the presence of VOCs using a PID. PID responses above background levels were not observed above the water table in the five borings. PID responses above background were observed in each of the five borings at a depth of 22 feet to 24 feet bgs. PID readings ranged from 78 parts per million (ppm) in SB-6 to 1,294 ppm in SB-8. PID readings above and below this interval were below background readings or near non-detect. Soil boring logs are included in **Appendix B**.

Soil samples were collected from the interval directly above the water table, 16 feet to 18 feet bgs, and from the interval exhibiting the highest PID response, 22 feet to 24 feet bgs, in each boring. Samples were placed in precleaned, laboratory-supplied glassware provided by Chemtech. Samples were packed in coolers with ice and shipped to Chemtech under chain-of-custody seal. These samples were analyzed for VOCs according to USEPA Method 8260.

3.1.3 Monitoring Well Installation

During a site inspection by PWGC on September 24, 2008, the existing monitoring wells were found not to be viable for sample collection. As a result, three monitoring wells were installed to obtain groundwater quality data for the RI and for future groundwater monitoring, as necessary. The location of MW-11 was relocated to the southwest corner of the property due to underground utilities identified in the sidewalk area. Monitoring well locations are identified on **Figure 5**.

On May 18, 2009, PWGC and their subcontractor, LAWES, mobilized to the site to install three monitoring wells (MW-9, MW-10, & MW-11). LAWES utilized a track mounted Geoprobe[™] to advance 4 ¼ inch diameter hollow stem augers to the appropriate depths. The boreholes were over drilled to a depth of 26 ½ feet bgs. At this depth, a 2 inch diameter, schedule 40 PVC monitoring well was installed through the augers. The monitoring well consisted of 10 feet of screen with 0.010 inch slot and 16 feet of solid riser. This allowed for the well screen to be set with 7 feet into and 3 feet above the water table. The well annulus was filled with #2 morie sand to two feet above the well screen. A two-foot fine sand layer, #00, was installed above the screen followed by a bentonite seal to grade. A concrete surface pad (2 feet by 2 feet by 6-inch) was installed. The wells were finished with locking j-plugs and flush mount curb boxes. Monitoring well construction logs are included in **Appendix C**.

3.1.3.1 Monitoring Well Development

On May 20, 2009 PWGC mobilized to the site to develop the newly installed monitoring wells. Monitoring wells were developed by over-pumping to restore the hydraulic properties of the aquifer. Well development continued until the turbidity of the groundwater was less than or equal to 50 Nephelometric Turbidity Units (NTUs),

or when pH, temperature, and conductivity measurements stabilized. Stabilization was considered achieved when three consecutive readings of these field parameters were within five percent of each other. Monitoring well development information is provided on the well development logs in **Appendix D**.

3.1.3.2 Monitoring Well Survey

On May 20, 2009, PWGC mobilized to the site to survey the newly installed monitoring wells. PWGC utilized a TOPCON Green Label auto level (AT-G6) to measure the elevations of the new wells. The AT-G6 is accurate to 0.01 feet. The new monitoring wells were surveyed relative to an arbitrary on-site datum. The measuring points on each well casing were marked for future measurements.

3.1.4 Groundwater Investigation

A groundwater investigation was conducted to determine the extent of groundwater impact, both on-site and off-site. Groundwater samples were collected from on-site locations and at an off-site down-gradient location. This was completed by collecting samples from on-site monitoring wells and Geoprobe[™] groundwater sampling locations (Figure 5).

3.1.4.1 Geoprobe™ Groundwater Sampling

On May 19, 2009, PWGC and their subcontractor LAWES mobilized to the site to collect three groundwater samples. One location, GW-1, was located northwest of the former UST excavation. GW-2, which was relocated to the north side of the sidewalk due to underground utilities encountered during hand clearing, was located southwest of the former UST excavation. GW-3, which was relocated to a parcel owned by Suffolk County on the south side of Montauk Highway, was located southwest of the subject site. GW-2 and GW-3 are down-gradient with respect to the local groundwater flow direction.

LAWES utilized a track mounted Geoprobe[™] unit to advance a four-foot long screen point sampler to three feet below the water table. This allowed the sampler screen to intersect the water table. Disposable polyethylene tubing was inserted through the probe rods into the water bearing zone. The end of the tubing was connected to a peristaltic pump with disposable silicone tubing. Four casing volumes of water were purged from the screen point sampler. After each well casing volume of water was removed from the well a sample was monitored for turbidity, pH, temperature, and conductivity. A sample was collected after conductivity, pH, and temperature readings adequately stabilized during the pumping. Copies of the groundwater sampling data sheets containing the field parameters recorded and purge volumes for each sampling point are attached in **Appendix E**.

Samples were poured into pre-cleaned, laboratory-supplied glassware provided by Chemtech. Samples were packed in coolers with ice and shipped to Chemtech under chain-of-custody seal. These samples were analyzed for VOCs according to USEPA Method 8260 (including trimethylbenzenes), SVOCs by EPA Method 8270 and TAL metals by EPA Method 6010 (both filtered and unfiltered).

3.1.4.2 Monitoring Well Sampling

On June 4, 2009, PWGC mobilized to the site to perform groundwater sampling of the monitoring wells. Samples were collected from the three monitoring well locations (MW-9 through MW-11) shown in **Figure 5.** MW-10 is located up-gradient, MW-9 is located side-gradient and MW-11 is located down-gradient of the site.

Groundwater monitoring of the wells consisted of collecting and recording depth to water, depth to light nonaqueous phase liquid (LNAPL), LNAPL thickness, and total well depth measurements for the three on-site groundwater monitoring wells. Water levels and LNAPL measurements were collected using a Solinist Interface Probe. LNAPL was not detected in the three monitoring wells. Water level measurements were converted into groundwater elevation data to construct a groundwater contour map and determine flow direction (**Figure 6**). Water Elevation Measurements are included in **Table 1**. Based on the calculations performed, groundwater flow is in a southwest direction.

Prior to sampling, each well was purged using a peristaltic pump. Three casing volumes of water were purged from each monitoring well. After each well casing volume of water was removed from the well a sample was monitored for turbidity, pH, temperature, and conductivity. A sample was collected following the removal of three casing volumes and after conductivity, pH, and temperature readings adequately stabilized during the pumping. Copies of the groundwater sampling data sheets containing the field parameters recorded and purge volumes for each sampling point are attached in **Appendix E**.

Samples were poured into pre-cleaned, laboratory-supplied glassware provided by Chemtech. Samples were packed in coolers with ice and shipped to Chemtech under chain-of-custody seal. These samples were analyzed for VOCs according to USEPA Method 8260 (including trimethylbenzenes), SVOCs by EPA Method 8270 and TAL metals by EPA Method 6010. Since turbidity readings were low prior to sample collection, metals analysis was performed only on unfiltered samples collected from the monitoring wells.

3.1.5 Soil-Vapor Investigation

Soil vapor samples were collected to evaluate the presence of VOC vapors identified during the O'Brien & Gere Investigation, elevated concentrations above USEPA target concentrations were identified in two sample locations on the sidewalk south of the subject property.

Based on this evaluation, PWGC installed four (4) temporary soil vapor points at the subject site with a Geoprobe[®]. The location of the soil vapor points are shown on **Figure 7**. One point was located in the vicinity of former soil vapor point SG-3 to confirm the elevated concentration of 1,3 butadiene and 1,1,1-TCA. One point was located under the site's building slab to provide vapor results indicative of what would be expected under a future site structure. A third sampling location was along the property line with the adjacent residential property to determine if impacts to adjacent residential properties are likely. The last sampling location was located across Montauk Highway, south of the site, adjacent to GW-3. An indoor air sample was also collected inside the building and an outdoor ambient air sample was collected from an upwind location at the time of sampling.

PWGC followed the procedures for these samples outlined in the New York State Department of Health (NYSDOH) guidelines found in the *Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006.*

On May 20, 2009, PWGC and their subcontractor LAWES mobilized to the site to install the soil gas probes. The soil gas probes were installed using a track mounted Geoprobe[®]. At each location, a shallow soil vapor sampling point was installed five feet beneath the surface, except at SV-1 which was installed directly beneath the building slab (no greater than 2-inches beneath the slab).

SV-2 through SV-4 were installed as follows:

- Soil gas probe with dedicated polyethylene tubing was installed at a depth of 5 feet bgs.
- #1 crushed stone was poured around the probe to create a 2 foot sampling zone.
- Soil gas probes were sealed above the sampling zone with a bentonite slurry to grade.

SV-1 was installed as follows:

- Soil gas probe with dedicated polyethylene tubing was installed to a depth so that the tubing did not extend further than 2 inches into the sub-slab material.
- #1 crushed stone was added to cover 1 inch of the probe tip.
- The soil gas probe was sealed with modeling clay.

Prior to sampling, the integrity of the seal was tested using tracer gas analysis. The environment surrounding the seal was enriched with the tracer gas, helium, as readings were collected through the sampling probe with a portable *lon Gas Check G3 Helium Detector*. Tracer gas readings were acceptable for the sample. After the initial tracer gas test was performed, one to three volumes of the implant (i.e., the volume of the tube) was purged prior to collecting the sample. In order to minimize potential outdoor air infiltration during sampling, flow rates for both purging and sample collection did not exceed 0.2 liters per minute.

In order to obtain a representative sample, the sample tubing was connected to a 6.0 L Summa[™] canister fitted with a one hour regulator. The indoor air and outdoor air samples were also fitted with one hour regulators. These samples were collected in 6.0 L Summa[™] canisters. Using the same method identified above, the seal around the sub-slab sample was reassessed for evidence of leaks at the end of the sampling period and none were detected.

Samples were collected in Summa[™] canisters provided by Chemtech. Samples were shipped to Chemtech under chain-of-custody seal. These samples were analyzed for VOCs according to USEPA Method TO-15.

3.2 Quality Assurance/Quality Control

As stated in the RIWP, the overall quality assurance/quality control (QA/QC) objective for the field investigation was to develop and implement procedures that provide data of known and documented quality. QA/QC characteristics for data include precision, accuracy, representativeness, completeness, and comparability. The purpose of the QA/QC activities developed for this site was to verify the integrity of the work performed at the site

to assure that the data collected are of the appropriate type and quality needed for the intended use.

The QA/QC program included the preparation and analysis of field QA/QC samples such as field blanks, field duplicates, and matrix spike duplicates. Third party data validation was performed on ten percent of the laboratory results of soil, soil-vapor, and groundwater samples submitted for analysis.

3.3.1 OA/OC Samples

To assess the adequacy of sample collection and decontamination procedures performed in the field, QA/QC samples were collected and analyzed throughout the field sampling program. In general, QA/QC samples confirmed that the procedures performed in the field were consistent and acceptable. Reported detections in the equipment blanks did not impact the interpretation of sample data. As specified in the RIWP, QA/QC samples collected for laboratory analysis included equipment blanks (EB), blind/field duplicates (FD), matrix spike (MS), and matrix spike duplicates (MSD). The EB samples were collected daily for each sampling method that used non-disposable equipment such as the hand auger and peristaltic pump. FD and MS/MSD samples were submitted at a minimum of one each per twenty samples.

<u>Iype</u>	Frequency
Equipment Blank	One per day per sample matrix
Blind/Field Duplicate	One per 20 samples per matrix
Matrix Spike/Matrix Spike Duplicate	One per 20 samples per matrix

During the project, a total of four equipment blanks were collected. Equipment blanks were collected by pouring laboratory-supplied deionized water over sampling equipment and collecting the water in the appropriate sample container(s). In order to evaluate the precision of the field sampling and laboratory analyses, PWGC collected two soil field duplicates and one groundwater field duplicate.

3.3.2 Data Validation

PWGC retained the services of Stone Environmental, Inc. (Stone), of Montpellier, Vermont to perform validation of data obtained during the RI. Full data validation was performed on 10% of the data or two samples from the sample delivery group for volatiles and metals in water samples. The remaining data received a summary validation. A copy of the Data Validation Report (DVR) is included as **Appendix F**.

3.3.3 Data Usability

Based on the review of the results reported by the laboratory, the overall Quality Control data provided in the laboratory reports and the case narrative; the data are representative of adequate method accuracy and precision with regard to the project objectives. As noted in the full validation report, some of the data pints were qualified as estimated (J/UJ) due to laboratory accuracy and precision outliers or potential interferences. However, the completeness level attained for the analysis of the field samples was greater than 95%. For all data, the overall quality of the data is acceptable and all results as qualified as estimated are considered usable.

3.4 Standards, Criteria and Guidance Values

Based upon the site history and previous investigations the identified contaminants of concern (COCs) at the site are VOCs, SVOCs, and metals.

Soil analytical results for the surface and subsurface investigation were compared to the restricted residential use soil cleanup objectives (RRSCOs) specified in Table 375-6.8(b) of the NYSDEC 6 NYCRR Part 375 Subparts 375-1 to 375-4 and 375-6 (Part 375, RUSCOs for the protection of public health). In the absence of an applicable clean-up objective under the Part 375 RRSCOs, the recommended soil cleanup objectives (RSCOs) from NYSDEC Technical and Administrative Guidance Memorandum (TAGM) #4046 were substituted.

Soil/sludge analytical results for the UIC investigation were compared to both the restricted RRSCOs and the Action Levels specified in the SCDHS Article 12, Standard Operation Procedure (SOP) 9-95, Pumpout and Soil Cleanup Criteria, January 7, 1999.

Groundwater analytical results were compared to the NYSDEC Ambient Water Quality Standards and Guidance Values (AWQS) for Class GA groundwater, as specified in Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values on Groundwater Effluent Limitations, June 1998.

New York State currently does not have any standards, criteria or guidance values for concentrations of compounds in soil vapor. Soil vapor sampling results are reviewed "as a whole," in conjunction with the results of other environmental sampling and the site conceptual model, to identify trends and spatial variations in the data.

3.5 Analytical Results

Analytical results for the samples collected from the underground injection control structures are summarized on **Tables 2** through **4**, soil samples are summarized in **Tables 5** through **6** and groundwater results are summarized in **Tables 7** through **9**. Laboratory analytical reports are included as **Appendix G**.

UIC Samples

VOCs were not detected above laboratory detection limits with the exception of naphthalene in each of the three samples. Concentrations of naphthalene did not exceed the RRSCO or the SCDHS Action Level in the three samples. VOC analytical data is summarized in **Table 2**.

SVOCs were detected above RRSCOs in the sample collected from CP-1. Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and ideno(1,2,3-cd)pyrene were detected at concentrations exceeding their respective RRSCOs. SVOCs were not detected above laboratory detection limits

in the samples collected from DW-1 and DW-3. SVOC analytical data is summarized in Table 3.

Several inorganic metals were detected above RRSCOs in CP-1 and DW-3. Concentrations of lead exceeded RRSCOs in both samples. Additionally, Cadmium, lead, and mercury exceeded their respective RRSCOs in CP-1. No metals were detected above RRSCOs in DW-1. TAL metal analytical data is summarized in **Table 4**.

Surface Soil

VOCs were not detected above laboratory detection limits with the exception of 2-butanone and acetone in the surface sample collected from the S-6 location. However, the concentrations of 2-butanone and acetone were detected below their RRSCO. VOC analytical data is summarized in **Table 5**.

Metals were detected above laboratory detection limits in the 10 soil samples. The detected concentrations of metals did not exceed their respective RRSCOs. Magnesium does not have a value for RRSCO and the NYSDEC RSCO is labeled as Site Background (SB). Magnesium is naturally occurring and the detections are most likely not associated with an on-site source of contamination. Metal analytical data is summarized in **Table 6**.

Sub-surface Soil

VOCs were not detected above laboratory detection limits in the five soils samples collected from directly above the water table (16 to 18 feet bgs). VOCs were detected above laboratory detection limits in three of the five soil samples collected from the 22 to 24 feet bgs range. VOC concentrations detected in the soils did not exceed the NYSDEC RRSCO's. VOC analytical data is summarized in **Table 5A**.

Groundwater

VOCs were detected above NYSDEC groundwater standards in five of the six samples. The VOCs detected above standards were ethylbenzene, isoproylbenzene, m/p xylene, and o-xylene. Concentrations in GW-1 did not exceed standards. VOC analytical data is summarized in **Table 7**.

SVOCs were detected below NYSDEC groundwater standards with the exception of Naphthalene in GW-3 and MW-9. SVOC analytical data is summarized in **Table 8**.

Metals were detected above NYSDEC groundwater standards in each of the six samples. Beryllium, chromium, iron, lead, manganese, selenium, and sodium were detected above their specific groundwater standards. Slight decreases in metal concentrations were identified in the filtered metal results from GW-1 through GW-3. Metal analytical data is summarized in **Table 9**.

Soil-Gas

VOCs were detected in the four soil gas, indoor air, and outdoor air sampling locations above laboratory detection limits. Twenty-seven different VOCs were detected throughout the site. Sixteen of the twenty-seven compounds were detected in the soil gas samples and not in the indoor or outdoor air samples. Analytical data is summarized on **Table 10**.

3.6 Waste Management

Under the direction of PWGC, AEAC removed and properly disposed of the investigation derived wastes (IDW), both solids and liquids, discussed below.

3.6.1 Investigative Derived Waste (IDW)

Three 55-gallon drums of liquid (decontamination, development, and purge water), and four 55-gallon drums of soils (drill cuttings and excess soil samples) were generated during the investigation.

3.6.3 Waste Transportation and Disposal

The 55-gallon drums of IDW were transported by AEAC (USEPA ID # NYR00000044412) to Chemical Pollution Control (CPC), USEPA ID # NYD082785429, Bay Shore, New York for treatment/disposal. Waste manifests are included in **Appendix H**.

4.0 HYDROGEOLOGIC ASSESSMENT AND PHYSICAL SETTING

The following section describes site topography, surrounding property use and regional and site geology/hydrogeology.

4.1 Site Topography

On April 22, 2009, PWGC performed a preliminary site inspection. The site is located approximately 40 feet above mean sea level. The site's topography is relatively undisturbed. No recent disturbances were observed; small trees and shrubs have almost re-vegetated the entire area north of the one story building.

No erosion of surface areas was noted. A single storm-water drywell is located near the southeast corner of the building. Precipitation recharges directly into the subsurface or the storm water drywell with no evidence of overland flow away from the site towards surface-water bodies.

The nearest surface-water body is Dunton Lake located approximately 5,000 feet to the south-southeast (Figure 1). Based upon site topography, overland flow to this surface-water body is unlikely.

4.2 Surrounding Land Use

The site is located at 1401 Montauk Highway in East Patchogue, New York. The site adjacent to and west of the site is occupied by a convenience store. Immediately east and south of the site are commercial buildings.

The nearest residential properties are located adjacent to and north of the site **(Figure 1)**. These residential areas have municipal water service provided by the Suffolk County Water Authority (SCWA).

4.3 Regional Geology / Hydrogeology

The geologic setting of Long Island is well documented and consists of crystalline bedrock composed of schist and gneiss overlain by layers of unconsolidated deposits. Immediately overlying the bedrock is the Raritan Formation, consisting of the Lloyd sand confined by the Raritan clay Member. The Lloyd sand is an aquifer and consists of discontinuous layers of gravel, sand, sandy and silty clay, and solid clay. The Raritan clay is a solid and silty clay with that is gray, red or white in color with few lenses of sand and gravel and abundant lignite and pyrite.

Above the Raritan Clay lies the Magothy Formation. The Magothy aquifer consists of layers of fine to coarse sand of moderate to high permeability, with inter-bedded lenses of silt and clay of low permeability resulting in areas of preferential horizontal flow. Therefore, this aquifer generally becomes more confined with depth. The Magothy Formation is overlain by the Upper Glacial deposits which contains the Upper Glacial aquifer. The Upper Glacial aquifer is the water-table aquifer at this location and is comprised of medium to coarse sand and gravel with occasional thin lenses of fine sand and brown clay. This aquifer extends from the water table to the top of the

Magothy and, therefore, is hydraulically connected to the Magothy aquifer.

4.4 Site Geology / Hydrogeology

The aquifer of concern at the former Bellport Gas Station site is the Upper Glacial aquifer which is an unconsolidated mixture of sand and gravel. The Upper Glacial aquifer is approximately 100 feet at the site, and has an estimated average horizontal hydraulic conductivity (permeability) of 270 feet/day and a vertical hydraulic conductivity of 27 feet/day (Franke & Cohen, 1972).

Clay layers, such as the Gardiners clay and the "20-Foot-clay," where present, may act as local confining units, separating the Upper Glacial aquifer from the underlying Magothy aquifer which is the principal source of drinking water in Suffolk County. These clay layers extend throughout much of the south shore of Long Island.

Based on data collected during monitoring well installation, depth to groundwater ranged from approximately 18.84 to 19.46 feet bgs. No confining unit (clay) was present at the monitoring well locations. Regional groundwater flow at the site is to the south. Based upon the groundwater measurements obtained from the site monitoring wells on June 6, 2009, local groundwater flow direction was determined to be to the south-southwest (Figure 6).

5.0 NATURE AND EXTENT OF CONTAMINATION

The following section describes the investigation techniques used to determine the nature and extent of contamination identified at the subject property.

5.1 Identification of Source Areas

Sampling conducted at the site identified residual VOC impacts in the smear zone in the former tank area, beneath the groundwater table. VOC contamination was not identified in the surface soils samples collected on the property. Although a previous investigation identified the presence of VOC impacted soils, these area were resampled as part of this investigation and no elevated concentrations of VOCs were detected. SVOC and metal contamination were identified in two of the three UIC structures.

5.2 Extent of Contamination in Soil

Subsurface soil samples were collected at two depths during the RI Investigation; 16-18 feet bgs and 22-24 feet bgs. Surface soil samples were collected at two depths during the RI Investigation; 0-2 inches bgs and 1-1.5 feet bgs. Soil/sludge samples were collected from the base of on-site UIC structures during the RI Investigation. Soil/sludge samples collected from the bases of the UIC structures were analyzed for VOCs, SVOCs and metals in accordance with SCDHS SOP 9-95 procedures and protocol. Surface soil samples were analyzed for the presence of VOCs and metals, while subsurface sample were analyzed for VOCs only.

None of the samples collected contained concentrations of VOCs above RRSCO's. A sample collected from one of the UIC structures (CP-1) contained concentrations of SVOCs above both the RRSCOs and the SCDHS Action Levels. In addition, samples collected from two of the UIC structures (CP-1 and DW-3) contained concentrations of metals above both the RRSCOs and the SCDHS Action Levels.

Although VOCs were detected in the subsurface soils in the vicinity of the former USTs, the concentrations were below the RRSCOs. The residual levels of VOCs detected in the smear zone may be a source of VOCs detected in the groundwater. Spread or migration of SVOCs and metals within the UIC structures should be limited as these structures (DW-3 and CP-1) are not currently receiving discharges and these compounds typically tend to adhere to soils and are not easily leached.

5.3 Extent of Contamination in Groundwater

Concentrations of VOCs slightly exceeding the NYSDEC Groundwater Standards were detected in each of the three groundwater monitoring wells and two of the three temporary Geoprobe wells. It is evident that residual VOC impact exists down gradient of the former UST area. However, an off-site source of VOC contamination may exist as slightly elevated concentrations of VOCs were detected in up-gradient and side-gradient wells.

In addition, concentrations of metals slightly exceeding the NYSDEC Groundwater Standard were detected in each of groundwater samples collected. However, many of these metals are naturally occurring and are

common in shallow groundwater. Concentrations of metals in groundwater are shown to be greatly reduced when the samples are filtered, as metals tend to adhere to sediments in turbid samples. It should be noted that elevated concentrations of metals are contained only in the samples collected from the permanent monitoring wells. The reason for the elevated concentrations of some of these metals, such as chromium and lead are unknown, as significant sources of these metals in the soils were not encountered during the Remedial Investigation. It is not believed that the metals detected in the groundwater samples are a result of an onsite source of contamination.

5.4 Extent of Contamination in Soil Gas

VOCs were detected in each of the four soil gas points at concentrations slightly above laboratory method detection limits. Several of the detected compounds are common constituents in gasoline (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, toluene, m+p-xylene, and o-xylene). Based upon the detected concentrations in the soil and in the outdoor air, these compounds are most likely attributed to subsurface VOCs. The highest concentrations were observed in the sample collected from SV-2 located near the northern property boundary. The concentrations for SV-1, SV-3, and SV-4 are similar when compared to each other. The detections in SV-1, SV-3, and SV-4 are most likely associated with the VOCs detected in the groundwater throughout the site. The higher concentrations in SV-2, may be attributed to an off-site source.

A sub-slab soil vapor sample (SV-1) and an indoor air sample were collected to evaluate soil vapor intrusion. As previously mentioned, VOCs were detected in both SV-1 and the indoor air sample. The concentrations in SV-1 were significantly higher when compared to the indoor air sample. In addition the compounds detected in the indoor air sample were also detected in the outdoor air sample at similar concentrations. Using the outdoor air sample as a comparison to the indoor air concentration versus SV-1 concentrations, VOCs do not appear to be intruding into the building.

5.5 Qualitative Exposure Assessment

The following sections discuss the qualitative exposure assessments. The qualitative exposure assessments include an evaluation of contaminant sources, potential receptors and contaminant release and transport.

5.5.1 Human Health Exposure Assessment

Contaminant Source

Soil analytical results indicate that the sediments within the leaching cesspool and drywell are contaminated with SVOC compounds benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and ideno(1,2,3-cd)pyrene, and metal compounds cadmium, lead, and mercury above their respective RRSCOs.

Benzo(a)anthracene is commonly identified as colorless to yellow-brown fluorescent flakes or powder. Dust explosion is possible if in powder or granular form. Benzo(a)anthracene can have an adverse affect on human health and can be absorbed after oral, inhalation, or dermal exposure. This substance may be carcinogenic to humans.

Benzo(a)pyrene is found in the form of pale yellow crystals. It reacts with strong oxidants causing fire and explosion hazards. The substance can be absorbed into the body by inhalation of its aerosol, through the skin and by ingestion. This substance is carcinogenic to humans.

Benzo(b)fluoranthene is found in the form of colorless crystals. Upon heating, toxic fumes are released. Benzo(b)fluoranthene can have an adverse affect on human health and can be absorbed after inhalation or dermal exposure. This substance may be carcinogenic to humans.

Benzo(k)fluoanthene is found in the form of yellow crystals. Upon heating, toxic fumes are released. The substance can be absorbed into the body by inhalation of its aerosol, through the skin and by ingestion. This substance is possibly carcinogenic to humans.

Cadmium appears as soft blue-white metal lumps or a grey powder. The substance can react with other substances and form an explosive gas. Cadmium can have an adverse affect on human health and can be absorbed after oral or inhalation exposure. Acute exposure symptoms may include headaches and respiratory irritation. Chronic exposure may cause kidney impairment and the substance is a known carcinogen.

Chrysene is found as a crystalline powder. Chysene can have an adverse affect on human health and can be absorbed after oral, inhalation, or dermal exposure. This substance may be carcinogenic to humans.

Ideno(1,2,3-cd)pyrene is found in the form of yellow crystals. Upon heating, toxic fumes are released. The substance can be absorbed into the body by inhalation of its aerosol, through the skin and by ingestion. This substance is possibly carcinogenic to humans.

Lead may appear as a bluish-white or silvery-grey solid in various forms. The substance, when heated releases toxic fumes. Lead can have an adverse affect on human health and can be absorbed after inhalation or oral exposure. Chronic exposure may have effects on the blood, bone marrow, central nervous system, resulting in anemia.

Potential Receptor Populations

The site is within an area containing a mix of both commercial and residential uses. The nearest residential properties are served by municipal water through the SCWA. The SCWA's water supply wells are located more than 0.5 miles from the site; in a hydraulically upgradient location.

Contaminant Release and Transport

SVOCs and metals were detected in two of the UIC structures at the site. These two structures are not currently in use. Therefore, the migration of these contaminants is unlikely.

Groundwater samples collected on the site, and immediately offsite, contained elevated concentrations of VOCs. The full extent of VOC impacts has been identified as part of a previous investigation. The results of this previous investigation concluded that the VOCs in groundwater are not a threat to human health. However, the migration of VOCs in groundwater is likely.

Points of Exposure

There are no plausible off-site pathways for oral, inhalation, or dermal exposure to SVOCs or metals from the contamination identified at the site. There is very little potential for exposure to SVOCs and metals, as these compounds are contained in below grade drywells, which are inaccessible.

5.6 Fish and Wildlife Resource Impact Assessment

On August 24, 2009, PWGC performed a survey to determine the ecological communities of the site and those within 0.5 miles of the site according to the classifications described in *The Ecological Communities of New York State* (Edinger et al., 2002). The site is characterized as an urban vacant lot with sparse vegetation. Several young sugar maple (Acer saccharum) trees have started to grow towards the north side of the lot. Very few shrubs were present at the site as much of the herbaceous layer was inhabited by alsike clover (Trifolium hybridium), common dandelion (Taraxacum officinale), wild carrot (Daucus carota), and long headed thimble weed (Anemone cylindrical). Trumpet-creeper (Campsis radicans) has grown across the south side of the abandoned building.

The areas surrounding the site consist of residential areas characterized as mowed lawn with trees and/or mowed roadside/pathway. Typical plant species observed included sugar maple (Acer saccharum), American crabapple (Malus coronaria), pitch pine (Pinus rigida), white oak (Quercus alba), wild carrot (Daucus carota), and tall goldenrod (Solidago altissima).

Two species of songbirds, american robin (Turdus migratorius) and brown thrasher (Toxostoma rufum), were observed on the site and adjacent properties during the field investigation. Mammals expected to utilize the site and adjacent properties may include house mouse (Mus musculus), eastern chipmunk (Tamias striatus), eastern gray squirrel (Sciurus carolinensis), eastern cottontail (Sylvilagus floridanus), raccoon (Procryon lotor) and opossum (Didelphos marsupialis)

The vegetation present on the subject property appeared to be healthy and did not show any obvious visual indications of contamination. The few species of invertebrates, birds, and mammals that inhabit the site do not appear to be adversely impacted by the contaminants.

A review of the NYSDEC environmental resource database indicates that no state-regulated freshwater wetlands are located within 0.5 mile radius of the site. The hedges creek state-regulated wetland is the nearest wetland in the down-gradient direction. Spread of contamination off-site is limited as documented during the groundwater sampling event and it is not likely to affect the hedges creek wetland.

Based on the Fish and Wildlife Resources Impact Analysis Decision Key contained in Appendix 3C of the NYSDEC DER-10 Technical Guidance for Site Investigations and Remediation, no formal fish and wildlife impact analysis is required.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The following sections discuss the conclusions and recommendations based upon the results obtained during the Remedial Investigation.

6.1 Conclusions

PWGC performed a subsurface investigation at the former Bellport Gas Station site, 1401 Montauk Highway, East Patchogue, New York. The investigation consisted of the location of two UIC structures and soil, soil/sludge, soilgas and groundwater sampling. Based upon the site history and previous investigations, the identified Contaminants of Concern (COCs) were VOCs, SVOCs and Metals.

The UIC investigation identified a single on-site cesspool and a single leaching drywell associated with the floor drain inside the service station. Soil/sludge analytical data indicated SVOCs and/or metals were detected in the on-site sanitary cesspool and the leaching storm water drywell associated with the floor drain above both the RRSCOs and the SCDHS Action Levels.

No VOCs were detected at concentrations exceeding the RRSCOs in the surface soil samples collected. Although elevated concentrations of VOCs were detected in the surface soils during a previous investigation, the more intensive sampling program performed as part of this investigation failed to identify elevated concentrations of VOCs in the surface soils.

VOC's were identified in subsurface soils within the smear zone beneath the groundwater table (in the vicinity of the former USTs); however concentrations did not exceed the RRSCOs. The residual VOCs detected in the subsurface soils may be a source of VOC impacts to site groundwater.

VOCs were detected in soil gas samples at concentrations slightly exceeding the laboratory detection limits across the site. The most common VOCs detected are associated with gasoline. While SV-1, SV-3, and SV-4 concentrations are relatively the same, SV-2 concentrations are significantly higher. The concentrations in SV-2, located away from any known source of contamination, may be due to an off-site source. The concentrations in SV-1, SV-3, and SV-4, SV-2, and SV-3 may be a result of the VOCs detected in the groundwater beneath the site.

A soil vapor intrusion analysis was performed for the abandoned building located at the site. Based upon a comparison of SV-1, indoor air, and outdoor air, soil vapor intrusion does not appear to be occurring.

A qualitative exposure assessment was completed for the site. Based upon the information collected during the RI, it was determined that there is no plausible off-site exposure scenario for the on-site soil and off-site groundwater contamination. The only possible on-site exposure pathway is by ingestion or dermal exposure by a trespasser. There is very little potential for exposure to SVOCs and metals, as these compounds are contained in below grade drywells, which are inaccessible. In addition, there is very little potential for exposure to VOCs as

these compounds are contained within groundwater, which is not used onsite. It is likely that a deed restriction, preventing groundwater use will be required for the property.

Based on the information gathered as part of the human health exposure assessment and the fish and wildlife impact assessment, it was concluded that VOCs, SVOCs, and metals at the site are not expected to have a significant adverse impact to ecological resources and that an ecological impact assessment is not warranted.

6.2 Analysis of Remedial Alternatives

In accordance with the requirement of the NYSDEC for Environmental Restoration Projects, an analysis of remedial alternatives has been prepared. In order to select the most reasonable alternative, remedial alternatives have been analyzed based upon effectiveness, implementability, and cost. In addition, potential exposure and contaminant transport were also investigated as part of the analysis of remedial alternatives.

As described above, the Remedial Investigation has determined that the following areas of impact exist on the subject property:

- SVOC and/or metals impacts in a sanitary leaching cesspool and a leaching drywell;
- VOC impacts in surface soils in two areas of the site;
- VOC impacts to soil and groundwater in the vicinity of former USTs.

A discussion of each area of impact and remedial alternatives are discussed in the sections below.

Impacts to UIC Structures

The Remedial Investigation identified concentrations of SVOCs and/or metals exceeding both the RRSCOs and the SCDHS Action Levels in two of the three UIC structures. These structures include CP-1 and DW-3 and are located on the north side of the building. These structures are not accessible via covers at grade and required the use of a backhoe to expose each structure for sampling. Following sample collection, the cover on each structure was replaced and the excavations were backfilled to existing grades. Since these structures are not accessible via covers at grade, human and ecological exposure to the contaminants within the structures is unlikely. In addition, since the drainage structures are not in use, the likely hood of transport and/or leaching of the contaminants identified within the structures is minimal.

Remedial alternatives for the impacted UIC structures include no action and the removal and disposal of impacted sediment from the base of each structure. **Appendix I** includes a table which provides a comparative analysis of remedial alternatives, the effectiveness, the reliability/implementability, and costs.

Based on the analysis performed, it is recommended that the impacted UIC structures be remediated by removing and disposing of impacted sediments from the base of each structure. This alternative will achieve both the RRSCOs and the standard and cleanup objectives specified in the SCDHS SOP-9-95. In addition, this alternative is cost effective and is easily implemented.

Residual Soil and Groundwater Impacts

The Remedial Investigation identified slightly elevated concentrations of VOCs in the soil and groundwater beneath the site. As indicated in Section 5.5, a very low potential for human exposure to these contaminants exists as the contaminants are contained at a depth of greater than 20 feet and groundwater at the site is not used. In addition, the NYSDEC has completed an extensive off-site groundwater investigation in order to determine the extent of impact. Based on information obtained during the offsite groundwater investigation, the NYSDEC concluded that impacts to private wells were eliminated through connections to public water, MTBE exposure at Dunton Lake and tidal creeks was not expected to cause adverse impacts to aquatic or terrestrial organism populations, and impacts to Bellport Bay were expected to be minimal. Based on these results, the NYSDEC closed the spill file, indicating that no further investigation or remediation was warranted. However, residual VOCs detected in the subsurface soils may be a source of VOC impacts to the groundwater beneath the site.

Remedial alternatives for the residual soil groundwater impacts include:

- Alternative 1 No action
- Alternative 2 Implementation of institutional/engineering controls (asphalt capping) to reduce potential mobility of residual impacts
- Alternative 3 Air sparge/soil vapor extraction system installation
- Alternative 4 In-situ chemical oxidation

Appendix I includes a table which provides a comparative analysis of remedial alternatives, the effectiveness, the reliability/implementability, and costs.

Based on the analysis performed, it is recommended that in-situ chemical oxidation be performed in the vicinity of the former USTs in order to reduce VOC concentrations in the soils and groundwater

6.3 Recommendations

Based upon the findings of this investigation and the analysis of remedial alternatives, PWGC recommends that the following remedial actions be performed:

- Removal and proper disposal of sediments from the bases of CP-1 and DW-3
- Cleanout and closure of the floor drain (FD-1)
- Removal and disposal of SVOC impacted sediments which are stored in the building
- In-situ chemical oxidation of VOC impact to soil and groundwater in the former UST excavation

These remedial actions will be detailed in a Remedial Work Plan (RWP), as described in the Brownfields Cleanup Program (BCP).

7.0 REFERENCES

- O'Brien and Gere Site Characterization Report; 2006.
- Franke, O.L. and Cohen, Philip, Regional Rates of Ground-Water Movement on Long Island, New York, United States Geological Survey Professional Paper 800C; 1972.
- New York State Department of Environmental Conservation (NYSDEC), 6 NYCRR Part 375 Subparts 375-1 to 375-4 & 375-6; Restricted Use Soil Cleanup Objectives (RUSCOs) for the Protection of Public Health—Residential, December 2006..
- NYSDEC, Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values; June 1998.
- NYSDEC, Technical and Administrative Guidance Memorandum (TAGM) #4046, Recommended Soil Cleanup Objectives (RSCOs); January 1994.
- NYSDEC, Draft Brownfield Cleanup Program Guide; May 2004.
- P.W. Grosser Consulting, Inc. (PWGC), Remedial Investigation Work Plan and Health and Safety Plan; December 2008.

TABLES

TABLE 1

Groundwater / Monitoring Well Survey Data

Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York

June 4, 2009

	Screened	Depth of	Reference	Depth to	
Well	Aquifer	Well	Elevation	Water	Water
Designation	Zone	(ft bmp)	(ft rad)	(ft bmp)	Elevation
MW-9	Water Table	26.30	25.22	19.46	5.76
MW-10	Water Table	26.20	25.31	19.34	5.97
MW-11	Water Table	26.45	24.51	18.84	5.67

Notes:

ft - feet bmp - below marked point rad - relative to arbitrary datum

TABLE 2 Soil Analytical Results for UIC Samples - Volatile Organic Compounds USEPA Method 8260 (SCDHS Analyte List)

Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York May 15, 2009

			IV	lay 15, 2009							
Analyte	SCDHS Action Levels ⁽¹⁾	Unrestricted Use SCO ⁽²⁾	Residential SCO ⁽³⁾	Restricted Residential SCO ⁽³⁾	Commercial SCO ⁽³⁾	Industrial SCO ⁽³⁾	CP-	1	DW-1		DW-3
Volatile Organic Compounds - USEPA Method 8260	- ug/kg										
1,1,1-Trichloroethane	1,600	680	100,000°	100,000°	500,000	1,000,000~	9.2	U	5.5	U	5 U
1,1,1,2-Tetrachloroethane	600	NS	NS	NS	NS	NS	4.5	UJ	2.7	U	2.4 U
1,1,2,2-Tetrachloroethane	1,200	NS	NS	NS	NS	NS	4.8	UJ	2.9	U	2.6 U
1,1,2-Trichloroethane	600	NS	NS	NS	NS	NS	9.4	U	5.6	U	5.1 U
1,1,2-Trichlorotrifluoroethane	NS	NS	NS	NS	NS	NS	14	U	8.3	U	7.6 U
1,1-Dichloroethane	400	270	19,000	26,000	240,000	480,000	9.8	U	5.9	U	5.3 U
1,1-Dichloroethene	800	330	100,000°	100,000	500,000	1,000,000	15	U	9.2	U	8.4 U
1,1-Dichloropropene	600	NS	NS	NS	NS	NS	4.8	U	2.9	U	2.6 U
1,2,3-Trichlorobenzene	800	NS	NS	NS	NS	NS	5.2	UJ	3.1	U	2.8 U
1,2,3-Trichloropropane	800	NS	NS	NS	NS	NS	5.1	UJ	3.1	U	2.8 U
1,2,4,5-tetramethylbenzene	15,000	NS	NS	NS	NS	NS	52	UJ	31	U	28 U
1,2,4-Trichlorobenzene	6,800	NS	NS 17.000	NS	NS 100.000	NS 380,000	7.3	UJ	4.4	U	4 U
1,2,4-Trimethylbenzene	4,800 1000	3,600	47,000 NS	52,000	190,000		5.2 9.1	UJ	3.1	U	2.8 U 4.9 U
1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane	600	NS NS	NS	NS NS	NS NS	NS NS	9.1	UJ	5.4 4	UU	4.9 U 3.6 U
	15,000	1,100	100,000"	100,000°	500,000	1,000,000				U	
1,2-Dichlorobenzene 1,2-Dichloroethane	200	20	2,300	3.100	30,000	60,000	6.5 6.7	UJ	3.9 4	U	3.5 U 3.6 U
1,2-Dichloropropane	600	NS	2,300 NS	3,100 NS	30,000 NS	NS	2.7	U	4	U	1.5 U
1,3,5-Trimethylbenzene	5,200	8,400	47,000	52,000	190,000	380,000	4.7	UJ	2.8	U	2.6 U
1,3-Dichlorobenzene	3,200	2,400	17,000	49,000	280,000	560,000	3.9	UJ	2.0	U	2.0 U
1,3-Dichloropropane	600	NS	NS	NS	NS	NS	7.7	U	4.6	U	4.2 U
1,4-Dichlorobenzene	15,000	1,800	9,800	13,000	130,000	250,000	4.3	Ű	2.6	U	2.3 U
2,2-Dichloropropane	600	NS	NS	NS	NS	NS	11	U	6.5	U	5.9 U
2-Butanone	NS	120	100,000~	100,000	500,000	1,000,000~	32	Ū	19	Ũ	18 U
2-Chlorotoluene	3,600	NS	NS	NS	NS	NS	7.7	ŪJ	4.6	Ū	4.2 U
4-Chlorotoluene	3,600	NS	NS	NS	NS	NS	6.5	UJ	3.9	U	3.5 U
4-Methyl-2-Pentanone	NS	NS	NS	NS	NS	NS	30	U	18	U	17 U
Acetone	**	50	100,000°	100,000°	500,000	1,000,000~	31	U	19	U	17 U
Benzene	120	60	2,900	4,800	44,000	89,000	4	U	2.4	U	2.2 U
Bromobenzene	1,600	NS	NS	NS	NS	NS	5.4	UJ	3.2	U	3 U
Bromochloromethane	400	NS	NS	NS	NS	NS	8.2	U	4.9	U	4.5 U
Bromodichloromethane	600	NS	NS	NS	NS	NS	6.5	U	3.9	U	3.5 U
Bromoform	1,000	NS	NS	NS	NS	NS	7.7	UJ	4.6	U	4.2 U
Carbon Tetrachloride	1,200	760	1,400	2,400	22,000	44,000	10	U	6.2	U	5.6 U
Chlorobenzene	3,400	1,100	100,000	100,000°	500,000	1,000,000~	5.2	UJ	3.1	U	2.8 U
Chloroethane	400	NS	NS	NS	NS	NS	15	UJ	8.8	UJ	8 U
Chloroform	600	370	10,000	49,000	350,000	700,000	7.7	U	4.6	U	4.2 U
cis-1,2-Dichloroethene	600	250	59,000	100,000°	500,000	1,000,000-	9.3	U	5.6	U	5.1 U
cis-1,3-Dichloropropene	600	NS	NS	NS	NS	NS	7.5	U	4.5	U	4.1 U
Dibromochloromethane	600	NS	NS	NS	NS	NS	5.6	U	3.4	U	3.1 U
Dibromomethane	400	NS	NS	NS	NS	NS	8.1	U	4.9	U	4.4 U
Dichlorodifluoromethane	600	NS	NS	NS	NS	NS	6.8	U	4.1	U	3.7 U
Ethyl Benzene	11,000	1,000	30,000	41,000	390,000	780,000	6.5	UJ	3.9	U	3.5 U
Hexachlorobutadiene	15,000	NS	NS	NS	NS	NS	8.2	UJ	4.9	U	4.5 U
Isopropylbenzene Method test bubd Ether	5,200	NS	NS (2.000	NS 100,000 ^{er}	NS 500,000	NS 1,000,000	5	UJ	3	U	2.7 U
Methyl tert-butyl Ether	1,200 200	930 50	62,000 51,000	100,000	500,000	1,000,000	10 15	U U	6 8.9	UU	5.5 U 8.1 U
Methylene Chloride	15,000	50 NS	51,000 NS	NS	NS	NS	15	J			40
Naphthalene n-Butylbenzene	6,800	NS	NS	NS	NS	NS	4.8	LU	23 2.9	J	2.6 U
n-propylbenzene	5,000	3,900	100,000	100,000	500,000	1,000,000	3.8	UJ	2.9	U	2.0 U
	7,600	3,400 NS	NS	NS	NS	NS	52	UJ	31	U	2 U
p-diethylbenzene p-ethyltoluene	3,600	NS	NS	NS	NS	NS	52	UJ	31	U	28 U
p-strykoldene	7,800	NS	NS	NS	NS	NS	3	UJ	1.8	U	1.6 U
sec-Butylbenzene	10.000	11.000	100,000	100,000	500,000	1,000,000	5.4	UJ	3.2	U	3 U
Styrene	2,000	NS	NS	NS	NS	NS	4.7	UJ	2.8	U	2.6 U
t-1,3-Dichloropropene	600	NS	NS	NS	NS	NS	8.2	U	4.9	U	4.5 U
		5,900	100,000°	100,000°	500,000	1,000,000	6.1	UJ	3.7	U	3.4 U
tert-Butylbenzene	6.800					300,000					5.7 U
tert-Butylbenzene Tetrachloroethene	6,800 2,800		5.500	19.000	150.000		11	U		U I	
Tetrachloroethene	2,800	1,300	5,500 100,000	19,000 100,000 ^{er}	150,000 500,000	1,000,000	11 6.7	U	6.3 4	U	
Tetrachloroethene Toluene	2,800 3,000	1,300 700					6.7	U	4	U	3.6 U
Tetrachloroethene Toluene Total Xylenes	2,800 3,000 2,400	1,300 700 260	100,000°	100,000°	500,000	1,000,000	6.7 15	U	4 8.8	UU	3.6 U 8 U
Tetrachloroethene Toluene Total Xylenes trans-1,2-Dichloroethene	2,800 3,000 2,400 600	1,300 700 260 190	100,000° 100,000°	100,000° 100,000° 100,000°	500,000° 500,000° 500,000°	1,000,000 ⁻ 1,000,000 ⁻	6.7	U UJ U	4 8.8 4.3	U U U	3.6 U 8 U 3.9 U
Tetrachloroethene Toluene Total Xylenes	2,800 3,000 2,400	1,300 700 260	100,000° 100,000° 100,000°	100,000° 100,000°	500,000° 500,000°	1,000,000- 1,000,000- 1,000,000-	6.7 15 7.2	U	4 8.8	UU	3.6 U 8 U 3.9 U

Notes: ¹¹Suffolk County Dept. of Health Services, Article 12 - SOP 9-95, Action Levels, July 1998. (2) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Unrestriced Use of Soil Cleanup Objective Table 375-6.8a 12/06 (3) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Restriced Use of Soil Cleanup Objective Table 375-6.8b 12/06 a - The SCO for residential, restricted residential and ecological resources use were capped at a maximum value of 1000 ppm. b - The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm. f - For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.

NS - Not specified

U - The analyte was analyzed for, but was not detected above the reported sample quantification limit. The assocaited numerical value is the sample quantitation limit.

Use analyse was analyse on, but was analyse of detected above the reported a

TABLE 3

Soil Analytical Results for UIC Samples - Semi-volatile Organic Compounds

USEPA Method 8270 (SCDHS Analyte List)

Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York May 15, 2009

Analyte	SCDHS Action Levels ⁽¹⁾	Unrestricted Use SCO ⁽²⁾	Residential SCO ⁽³⁾	Restricted Residential SCO ⁽³⁾	Commercial SCO ⁽³⁾	Industrial SCO ⁽³⁾	CP-1		DW-1		DW-3	
Semi-volatile Organic Co	ompounds - USEPA M	lethod 8270 - ug/kg										
Acenaphthene	75,000	20,000	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	200	U	120	U	210	U
Anthracene	75,000	NS	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	140	U	85	U	150	U
Benzo(a)anthracene	6,000	1,000 ^c	1,000 ^f	1,000 ^f	5,600	11,000	11,000		200	U	360	U
Benzo(a)pyrene	22,000	1,000 ^c	1,000 ^f	1,000 ^f	1,000 ^f	1,100	10,000		90	U	160	U
Benzo(b)fluoranthene	2,200	1,000 ^c	1,000 ^f	1,000 ^f	5,600	11,000	17,000		140	U	250	U
Benzo(g,h,i)perylene	75,000	100,000	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	3,600	J	170	U	310	U
Benzo(k)fluoranthene	2,200	800 ^c	1,000	3,900	56,000	110,000	6,100	J	200	U	360	U
Chrysene	800	1,000 ^c	1,000 ^f	3,900	56,000	110,000	11,000		190	U	340	U
Dibenzo(a,h)anthracene	75,000	330 ^b	330 ^c	330 ^c	560	1,100	200	U	120	U	220	U
Fluoranthene	75,000	100,000 ^a	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	8,100		83	U	150	U
Fluorene	75,000	30,000	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	260	U	160	U	290	U
Indeno(1,2,3-cd)pyrene	6,400	500 ^c	500 ^f	500 ^f	5,600	11,000	2,300	J	140	U	250	U
Phenanthrene	75,000	100,000	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	1,600	J	110	U	200	U
Pyrene	75,000	100,000	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	8,600		100	U	180	U

Notes:

⁽¹⁾Suffolk County Dept. of Health Services, Article 12 - SOP 9-95, Action Levels, July 1998.

(2) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Unrestriced Use of Soil Cleanup Objective Table 375-6.8a 12/06

(3) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Restriced Use of Soil Cleanup Objective Table 375-6.8b 12/06

a - The SCO for residential, restricted residential and ecological resources use were capped at a maximum value of 100 ppm.

b - The SCOs for commercial use were capped at a maximum value of 500 ppm.

c - The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm.

f - For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U - The analyte was analyzed for, but was not detected above the reported sample quantification limit. The assocaited numerical value is the sample quantitation limit.

Bold / Shaded text denotes concentrations exceeding NYSDEC Restricted Residential SCO

TABLE 4

Soil Analytical Results for UIC Samples - Metals

USEPA Method 6010 (SCDHS Analyte List)

Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York May 15, 2009

		Unrestricted		Restricted					
Analyte	SCDHS Action Levels (1)	Use	Residential	Residential	Commercial	Industrial	CP-1	DW-1	DW-3
	Levels	SCO ⁽²⁾	SCO ⁽³⁾	SCO ⁽³⁾	SCO ⁽³⁾	SCO ⁽³⁾			
Metals - USEPA Method 6010 - m	ng/kg			-	-	-	-		
Arsenic	25	13 ^c	16 ^f	16 ^f	16 ^f	16 ^f	5.72	0.94	13
Beryllium	8	7	14	72	590	2,700	0.16 J	0.1 J	0.11 J
Cadmium	10	2.5 ^c	2.5 ^f	4.3	9.3	60	10.3 J	0.61	3.2
Chromium	100	30 ^c	36	180	1,500	6,800	28.1	6.48	13.8
Copper	500	50	270	270	270	10,000 ^d	291	18.9	44.4
Lead	400	63 ^c	400	400	1,000	3,900	784	32.6	947
Mercury	2	0.18 ^c	0.81 ^j	0.81 ^j	2.8 ^j	5.7 ^j	2.1 J	0.013	0.094
Nickel	1,000	30	140	310	310	10,000 ^d	14	7	3.96
Silver	100	2	36	180	1,500	6,800	2.22	0.12	0.11

Notes:

⁽¹⁾Suffolk County Dept. of Health Services, Article 12 - SOP 9-95, Action Levels, July 1998.

(2) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Unrestriced Use of Soil Cleanup Objective Table 375-6.8a 12/06

(3) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Restriced Use of Soil Cleanup Objective Table 375-6.8b 12/06

a - The SCO for residential, restricted residential and ecological resources use were capped at a maximum value of 100 ppm.

b - The SCOs for commercial use were capped at a maximum value of 500 ppm.

c - The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm.

d - The SCOs for metals were capped at a maximum value of 10,000 ppm.

f - For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.

j - This SCO is the lowe of the values for mercury.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

Bold / Shaded text denotes concentrations exceeding NYSDEC Restricted Residential SCO

TABLE 5 Soil Analytical Results for Surface Soil Samples - Volatile Organic Compounds USEPA Method 8260

Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York May 15, 2009

	NYSDEC	Unrestricted		Restricted			S-1	S-2	S-3	S-4	S-5	S-6	S-6	S-7	S-8	SS-9	SS-10
Analyte	RSCO (1)	Use	Residential	Residential	Commercial	Industrial	(0 - 2")	(0 - 2")	(0 - 2")	(0 - 2")	(0 - 2")	(0 - 2")	(1-1.5')	(0 - 2")	(0 - 2")	(0 - 2")	(0 - 2")
/ indigite		SCO (2)	SCO ⁽³⁾	SCO ⁽³⁾		SCO ⁽³⁾	(0 2)	(0 2)	(0 2)	(0 2)	(0 2)	(0 2)	(1.1.0)	(0 2)	(0 2)	(0 2)	(0 2)
Volatile Organic Compounds - US	FPA Method 8260 - ug/kg	300 (2)	300	300	300	300											
1,1,1-Trichloroethane	800	680	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	5.0 U	4.8 U	5.1 U	5.1 U	5.2 U	5.1 U	4.7 U	5.5 U	4.9 U	4.8 U	4.8 U
1,1,2,2-Tetrachloroethane	600	NS	NS	NS	NS	NS	2.6 U	2.5 U	2.6 U	2.6 U	2.7 U	2.6 U	2.5 U	2.9 U	2.6 U	2.5 U	2.5 U
1,1,2-Trichlorotrifluoroethane	NS	NS	NS	NS	NS	NS	7.6 U	7.3 U	7.6 U	7.6 U	7.8 U	7.6 U	7.2 U	8.3 U	7.4 U	7.3 U	7.3 U
1,1,2 Trichloroethane	NS	NS	NS	NS	NS	NS	5.1 U	4.9 U	5.2 U	5.2 U	5.3 U	5.2 U	4.8 U	5.6 U	5.0 U	4.9 U	4.9 U
1,1 Dichloroethane	200	270	19,000	26,000	240,000	480,000	5.3 U	5.2 U	5.4 U	5.4 U	5.5 U	5.4 U	5.1 U	5.9 U	5.2 U	5.2 U	5.2 U
1,1 Dichloroethene	400	330	100,000 ^a	100,000 ^a	500,000°	1,000,000 ^c	8.4 U	8.1 U	8.4 U	8.4 U	8.6 U	8.4 U	7.9 U	9.2 U	8.2 U	8.1 U	8.1 U
1,2,4-Trichlorobenzene (v)	3,400	NS	NS	NS	NS	NS	4.0 U	3.8 U	4.0 U	4.0 U	4.1 U	4.0 U	3.8 U	4.4 U	3.9 U	3.8 U	3.8 U
1,2 Dibromo 3 chloropropane	NS	NS	NS	NS	NS	NS	4.9 U	4.7 U	4.9 U	4.9 U	4.9 U	4.9 U					
1,2 Dibromoethane	NS	NS	NS	NS	NS	NS	3.6 U	3.5 U	3.7 U	3.7 U	3.8 U	3.7 U	3.4 U	4.0 U	3.6 U	3.5 U	3.5 U
1,2 Dichlorobenzene (v)	7,900	1,100	100,000 ^a	100,000 ^a	500,000 ^D	1,000,000 ^c	3.5 U	3.4 U	3.6 U	3.6 U	3.6 U	3.6 U	3.3 U	3.9 U	3.4 U	3.4 U	3.4 U
1,2 Dichloroethane	100	20 ^c	2,300	3,100	30,000	60,000	3.6 U	3.5 U	3.7 U	3.7 U	3.8 U	3.7 U	3.4 U	4.0 U	3.6 U	3.5 U	3.5 U
1,2 Dichloropropane	NS	NS	NS	NS	NS	NS	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.4 U	1.6 U	1.4 U	1.4 U	1.4 U
1,3 Dichlorobenzene (v)	1,600	2,400	17,000	49,000	280,000	560,000	2.1 U	2.0 U	2.1 U	2.1 U	2.2 U	2.1 U	2.0 U	2.3 U	2.1 U	2.0 U	2.0 U
1,4 Dichlorobenzene (v)	8,500	1,800	9,800	13,000	130,000	250,000	2.3 U	2.3 U	2.4 U	2.4 U	2.4 U	2.4 U	2.2 U	2.6 U	2.3 U	2.3 U	2.3 U
2-Butanone	300	120	100,000 ^a	100,000 ^a	500,000 ⁰	1,000,000 ^c	18 U	17 U	18 U	18 U	18 U	240	17 U	19 U	18 U	17 U	17 U
2-Hexanone	NS	NS	NS	NS	NS	NS	22 U	22 U	23 U	23 U	23 U	23 U	21 U	24 U	22 U	22 U	22 U
4-Methyl-2-pentanone	1,000	NS	NS	NS	NS	NS	17 U	16 U	17 U	17 U	17 U	17 U	16 U	18 U	16 U	16 U	16 U
Acetone	200	50	100,000 ^a	100,000 ^a	500,000 ⁰	1,000,000 ^c	17 U	17 U	17 U	17 U	18 U	260	16 U	19 U	17 U	17 U	17 U
Benzene	60 or MDL	60	2,900	4,800	44,000	89,000	2.2 U	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	2.0 U	2.4 U	2.1 U	2.1 U	2.1 U
Bromochloromethane	NS	NS	NS	NS	NS	NS	3.5 U	3.4 U	3.6 U	3.6 U	3.6 U	3.6 U	3.3 U	3.9 U	3.4 U	3.4 U	3.4 U
Bromoform	NS	NS	NS	NS	NS	NS	4.2 U	4.1 U	4.3 U	4.3 U	4.4 U	4.3 U	4.0 U	4.6 U	4.1 U	4.1 U	4.1 U
Bromomethane	NS	NS	NS	NS	NS	NS	14 U	13 U	14 U	14 U	14 U	14 U	13 U	15 U	14 U	13 U	13 U
Carbon Disulfide	2,700	NS	NS	NS	NS	NS	6.0 U	5.8 U	6.1 U	6.1 U	6.2 U	6.1 U	5.7 U	6.6 U	5.9 U	5.8 U	5.8 U
Carbon Tetrachloride	600	760	1,400	2,400	22,000	44,000	5.6 U	5.4 U	5.7 U	5.7 U	5.8 U	5.7 U	5.3 U	6.2 U	5.5 U	5.4 U	5.4 U
Chlorobenzene	1,700	1,100	100,000 ^a	100,000 ^a	500,000 ⁰	1,000,000 ^c	2.8 U	2.7 U	2.9 U	2.9 U	2.9 U	2.9 U	2.7 U	3.1 U	2.8 U	2.7 U	2.7 U
Chloroethane	1900	NS	NS	NS	NS	NS	8.0 U	7.7 U	8.0 U	8.0 U	8.2 U	8.0 U	7.5 U	8.2 U	8.2 U	8.1 U	7.7 U
Chloroform	300	370	10,000	49,000	350,000	700,000	4.2 U	4.1 U	4.3 U	4.3 U	4.4 U	4.3 U	4.0 U	4.6 U	4.1 U	4.1 U	4.1 U
Chloromethane	NS	NS	NS	NS	NS	NS	4.9 U	4.7 U	4.9 U	4.9 U	5.1 U	4.9 U	4.6 U	5.4 U	4.8 U	4.7 U	4.7 U
Cyclohexane	NS	NS	NS	NS	NS	NS	5.7 U	5.5 U	5.8 U	5.8 U	5.9 U	5.8 U	5.4 U	6.3 U	5.6 U	5.5 U	5.5 U
c-1,2-Dichloroethene	NS	250	59,000	100,000 ^a	500,000°	1,000,000 ^c	5.1 U	4.9 U	5.1 U	5.1 U	5.2 U	5.1 U	4.8 U	5.6 U	4.9 U	4.9 U	4.9 U
c-1,3-Dichloropropene	NS	NS	NS	NS	NS	NS	4.1 U	4.0 U	4.1 U	4.1 U	4.1 U	4.5 U	3.9 U	4.1 U	4.5 U	4.0 U	4.0 U
Dibromochloromethane	NS	NS	NS	NS	NS	NS	3.1 U	3.0 U	3.1 U	3.1 U	3.2 U	3.1 U	2.9 U	3.4 U	3.0 U	3.0 U	3.0 U
Dichlordifluoromethane	NS	NS	NS	NS	NS	NS	3.7 U	3.6 U	3.7 U	3.7 U	3.8 U	3.7 U	3.5 U	4.1 U	3.6 U	3.6 U	3.6 U
Ethyl Benzene	5,500	1,000	30,000	41,000	390,000	780,000	3.5 U	3.4 U	3.6 U	3.6 U	3.6 U	3.6 U	3.3 U	3.9 U	3.4 U	3.4 U	3.4 U
Isopropylbenzene	2,300	NS	NS 100.000 ^d	NS 100.000 ^d	NS	NS	2.7 U	2.6 U	2.8 U	2.8 U	2.8 U	2.8 U	2.6 U	3.0 U	2.7 U	2.6 U	2.6 U
m + p Xylene	1,200*	260	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	4.1 U	4.0 U	4.1 U	4.1 U	4.2 U	4.1 U	3.9 U	4.5 U	4.0 U	4.0 U	4.0 U
ter.ButylMethylEther	120	930	62,000	100,000 ^a	500,000 ^b	1,000,000 ^c	5.5 U	5.3 U	5.5 U	5.5 U	5.6 U	5.5 U	5.2 U	6.0 U	5.3 U	5.3 U	5.3 U
Methyl Acetate	NS	NS	NS	NS	NS	NS	8.6 U	8.3 U	8.7 U	8.7 U	8.9 U	8.7 U	8.1 U	9.4 U	8.4 U	8.3 U	8.3 U
Methylcyclohexane	NS	NS	NS 51.000	NS	NS	NS 1.000.000 ^C	6.0 U	5.8 U	6.1 U	6.1 U	6.2 U	6.1 U	5.7 U	6.6 U	5.9 U	5.8 U	5.8 U
Methylene Chloride	100	50	51,000	100,000 ^a	500,000 ^b	1,000,000 ^c	8.1 U	7.8 U	8.2 U	8.2 U	8.4 U	8.2 U	7.6 U	8.9 U	7.9 U	7.8 U	7.8 U
o Xylene	1,200*	260	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	3.9 U	3.7 U	3.9 U	3.9 U	4.0 U	3.9 U	3.7 U	4.2 U	3.8 U	3.7 U	3.7 U
Styrene	NS	NS 1.200	NS E E OO	NS	NS	NS 200.000	2.6 U	2.5 U	2.6 U	2.6 U	2.6 U	2.6 U	2.4 U	2.8 U	2.5 U	2.5 U	2.5 U
Tetrachloroethene	1,400 1,500	1,300 700	5,500 100.000 ^a	19,000 100.000 ^a	150,000 500.000 ⁰	300,000	5.7 U	5.5 U 3.5 U	5.8 U 3.7 U	5.8 U 3.7 U	5.9 U 3.8 U	5.8 U 3.7 U	5.4 U 3.4 U	6.3 U	5.6 U	5.5 U 3.5 U	5.5 U 3.5 U
Toluene	,	190	100,000 ⁻	100,000 ⁻	500,000 [°]	1,000,000 ^c 1.000.000 ^c	3.6 U							4.0 U	3.6 U		
t-1,2-Dichloroethene	300		1	1		1 1	3.9 U	3.8 U	4.0 U	4.0 U	4.1 U	4.0 U 4.5 U	3.7 U	4.3 U	3.8 U	3.8 U	3.8 U
t-1,3-Dichloropropene	NS	NS 47	NS 10.000	NS 21.000	NS 200,000	NS 400.000	4.5 U	4.3 U	4.5 U	4.5 U	4.6 U 5.1 U	1.0 0	4.2 U	4.9 U	4.4 U	4.3 U	4.3 U
Trichloroethene	NS	47 NS	10,000	21,000	200,000	400,000	4.9 U	4.7 U	4.9 U	4.9 U		4.9 U	4.6 U	5.4 U	4.8 U	4.7 U	4.7 U
Trichlorofluoromethane	NS 200	NS 20	NS 210	NS 900	NS 13,000	NS 27.000	7.5 U 7.0 U	7.3 U 6.8 U	7.6 U	7.6 U 7.1 U	7.8 U	7.6 U	7.1 U 6.6 U	8.2 U	7.3 U 6.8 U	7.3 U 6.8 U	7.3 U 6.8 U
Vinyl Chloride	200	20	210	900	13,000	27,000	7.0 U	0.ŏ U	7.1 U	7.1 U	7.2 U	7.1 U	0.0 U	7.7 U	0.8 U	0.8 U	0.8 U

Notes:

NS - No Standard

MDL - Method Detection Limit

*-Sum of all isomers

(1) NYSDEC Recommended Soil Cleanup Objectives (RSCO), Technical and Administrative Guidance Memorandum (TAGM) #4046, 12/00

(2) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Unrestriced Use of Soil Cleanup Objective Table 375-6.8a 12/06

(3) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Restriced Use of Soil Cleanup Objective Table 375-6.8b 12/06
 (3) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Restriced Use of Soil Cleanup Objective Table 375-6.8b 12/06
 a - The SCO for residential, restricted residential and ecological resources use were capped at a maximum value of 100 ppm.
 b - The SCOs for commercial use were capped at a maximum value of 500 ppm.

c - The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm.

f - For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background concentration is used as the Track 2 SCO value for this use of the site. U - The analyte was analyzed for, but was not detected above the reported sample quantification limit. The assocaited numerical value is the sample quantitation limit.

Bold / Shaded text denotes concentrations exceeding NYSDEC Restricted Residential SCO

	NYSDEC	Unrestricted		Restricted			SB-4	SB-4	SB-5	SB-5	SB-6	SB-6	SB-7	SB-7	SB-8	SB-8
Analyte	RSCO (1)	Use	Residential	Residential	Commercial	Industrial	16-18'	22-24'	16-18'	22-24'	16-18'	22-24'	16-18'	22-24'	16-18'	22-24'
Analyte	KSCO (I)	SCO (2)	SCO ⁽³⁾	SCO ⁽³⁾	SCO ⁽³⁾	SCO ⁽³⁾	5/19/2009	5/19/2009	5/19/2009	5/19/2009	5/19/2009	5/19/2009	5/19/2009	5/19/2009	5/19/2009	5/19/2009
Volatile Organic Compounds - USEPA Method 8260 - ug	/kg	300 (2)	<u> </u>	<u> </u>	<u> </u>	300.2	3/1//2007	3/1//2007	3/1//2007	3/1//2007	3/1//2007	3/1//2007	5/1//2007	3/1//2007	3/1//2007	3/1//2007
1,1,1-Trichloroethane	800	680	100,000 ^a	100,000 ^a	500,000 ⁰	1,000,000 ^c	5.6 U	5.5 U	4.6 U	5.6 U	J 4.7 U	5.4 U	5.4 U	5.4 U	4.9 U	5.6 U
1,1,2,2-Tetrachloroethane	600	NS	NS	NS	NS	NS	2.9 U	2.9 U	2.4 U	2.9 U	J 2.4 U	2.8 U	2.8 U	2.8 U	2.6 U	2.9 U
1,1,2-Trichlorotrifluoroethane	NS	NS	NS	NS	NS	NS	5.7 U	5.6 U	4.7 U	5.8 U	1 4.8 U	5.6 U	5.6 U	5.5 U	5.1 U	5.7 U
1,1,2 Trichloroethane	NS	NS	NS	NS	NS	NS	8.4 U	8.3 U	6.9 U	8.5 U	J 7.1 U	8.2 U	8.2 U	8.1 U	7.5 U	8.4 U
1,1 Dichloroethane	200	270	19,000	26,000	240,000	480,000	5.9 U	5.9 U	4.9 U	6 U	J 5 U	5.8 U	5.8 U	5.7 U	5.3 U	5.9 U
1,1 Dichloroethene	400	330	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	9.3 U	9.2 U	7.7 U	9.4 U	J 7.8 U	9.1 U	9.1 U	9 U	8.3 U	9.3 U
1,2,4-Trichlorobenzene (v)	3,400	NS	NS	NS	NS	NS	4.4 U	4.4 U	3.6 U	4.5 U	J 3.7 U	4.3 U	4.3 U	4.3 U	3.9 U	4.4 UJ
1,2 Dibromo 3 chloropropane	NS	NS	NS	NS	NS	NS	5.5 U	5.4 U	4.5 U	5.6 U	J 4.6 U	5.4 U	5.4 U	5.3 U	4.9 U	5.5 U
1,2 Dibromoethane	NS	NS	NS	NS	NS	NS	4.1 U	4	3.3 U	4.1 U	1 <u>34</u> U	4	4	3.9 U	3.6 U	4.1 U
1,2 Dichlorobenzene (v)	7,900	1,100	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	3.9 U	3.9 U	3.2 U	4.1	J 3.3 U	3.8 U	3.8 U	3.8 U	3.5 U	3.9 U
1,2 Dichloroethane	100	20 ^c	2,300	3,100	30,000	60,000	4.1 U	3.7 U	3.3 U	4.1 U	J 3.4 U	3:0 U	3.0 U	3.9 U	3.6 U	4.1 U
1,2 Dichloropropane	NS	NS	NS	NS		NS	1.6 U	1.6 U	1.4 U	1.7 U	J 1.4 U	1.6 U	1.6 U	1.6 U	1.5 U	1.6 U
1,3 Dichlorobenzene (v)	1,600	2,400	17,000	49,000	280,000	560,000	2.3 U	2.3 U	1.4 U	2.4 U	$1 \qquad 1.4 \qquad 0$	2.3 U	2.3 U	2.3 U	2.1 U	2.3 U
1,4 Dichlorobenzene (v)	8,500	1,800	9,800	13,000	130,000	250,000		2.3 U	2.1 U	2.4 U	J 2.2 U	2.5 U	2.5 U	2.5 U	2.1 U	2.3 U
2-Butanone	300	120	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	2.6 U 20 U	2.0 U	2.1 U	2.8 U 20 U	J 2.2 U	2.5 U 19 U	2.3 U	2.5 U	2.3 U 17 U	2.0 U
								., .,					1,7	., 3		
2-Hexanone	NS	NS	NS	NS	NS	NS	25 U	24 U 18 U	20 U	25 U	J 21 U	24 U	24 U	24 U	22 U 16 U	25 U 18 U
4-Methyl-2-pentanone	1,000	NS	NS 100,000 ^a	NS 100,000 ^a	NS 500,000 ^b	NS 1,000,000 ^c	10 0	10 0	15 U	19 U	J 16 U	18 U	10 0	18 U	10 0	10 0
Acetone	200	50					19 U	19 U	16 U	19 U	J 16 U	19 U	19 U	18 0	17 U	19 U
Benzene	60 or MDL	60	2,900	4,800	44,000	89,000	2.4 U	2.4 U	2 0	2.4 U		2.3 U	2.3 U	2.3 U	2.1 U	2.4 U
Bromochloromethane	NS	NS	NS	NS	NS	NS	3.9 U	3.9 U	3.2 U	4 0	J 3.3 U	3.8 U	3.8 U	3.8 U	3.5 U	3.9 U
Bromoform	NS	NS	NS	NS	NS	NS	4.7 U	4.6 U	3.9 U	4.7 U	J 3.9 U	4.6 U	4.6 U	4.5 U	4.2 U	4.7 U
Bromomethane	NS	NS	NS	NS	NS	NS	16 U	15 U	13 U	16 U	J 13 U	15 U	15 U	15 U	14 U	16 U
Carbon Disulfide	2,700	NS	NS	NS	NS	NS	6.7 U	6.6 U	5.5 U	6.8 U	J 5.6 U	6.5 U	6.5 U	6.5 U	6 U	6.7 U
Carbon Tetrachloride	600	760	1,400	2,400	22,000	44,000	6.3 U	6.2 U	5.2 U	6.3 U	J 5.3 U	6.1 U	6.1 U	6 U	5.6 U	6.3 U
Chlorobenzene	1,700	1,100	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	3.2 U	3.1 U	2.6 U	3.2 U	J 2.7 U	3.1 U	3.1 U	3 U	2.8 U	3.2 U
Chloroethane	1900	NS	NS	NS	NS	NS	8.9 U	8.8 U	7.3 U	9 U	J 7.4 U	8.6 U	8.6 U	8.5 U	7.9 U	8.9 U
Chloroform	300	370	10,000	49,000	350,000	700,000	4.7 U	4.6 U	3.9 U	4.7 U	J 3.9 U	4.6 U	4.0 0	4.5 U	4:2 0	4.7 U
Chloromethane	NS	NS	NS	NS	NS	NS	5.4 U	5.4 U	4.5 U	5.5 U	J 4.6 U	5.3 U	5.3 U	5.2 U	4.8 U	5.4 U
Cyclohexane	NS	NS	NS	NS	NS	NS	5.6 U	5.6 U	4.6 U	5.7 U	J 4.7 U	5.5 U	5.5 U	5.4 U	5 U	5.6 U
c-1,2-Dichloroethene	NS	250	59,000	100,000 ^a	500,000 ^b	1,000,000 ^c	4.6 U	4.5 U	3.8 U	4.6 U	J 3.8 U	4.4 U	4.4 U	4.4 U	4 U	4.6 U
c-1,3-Dichloropropene	NS	NS	NS	NS	NS	NS	6.4 U	55	5.3 U	6.5 U	J 5.4 U	31	6.2 U	6.2 U	5.7 U	600
Dibromochloromethane	NS	NS	NS	NS	NS	NS	3.4 U	3.4 U	2.8 U	3.5 U	J 2.9 U	3.3 U	3.3 U	3.3 U	3 U	3.4 U
Dichlordifluoromethane	NS	NS	NS	NS	NS	NS	4.1 U	4.1 U	3.4 U	4.2 U	J 3.5 U	4 U	4 U	4 U	3.7 U	4.1 U
Ethyl Benzene	5,500	1,000	30,000	41,000	390,000	780,000	3.9 U	3.9 U	3.2 U	4 U	J 3.3 U	3.8 U	3.8 U	3.8 U	3.5 U	11,000 D
Isopropylbenzene	2,300	NS	NS	NS	NS	NS	3 U	3 U	2.5 U	3.1 U	J 2.6 U	3 U	3 U	2.9 U	2.7 U	1,100 J
m + p Xylene	1,200*	260	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	4.6 U	4.5 U	3.8 U	4.6 U	J 3.8 U	4.4 U	4.4 U	4.4 U	4 U	46,000 D
ter.ButylMethylEther	120	930	62,000	100,000 ^a	500,000 ^b	1,000,000 ^c	9.6 U	9.4 U	7.9 U	9.7 U	J 8 U	9.3 U	9.3 U	9.2 U	8.5 U	9.6 U
Methyl Acetate	NS	NS	NS	NS	NS	NS	6.1 U	6 U	5 U	6.2 U	J 5.1 U	5.9 U	5.9 U	5.9 U	5.4 U	6.1 U
Methylcyclohexane	NS	NS	NS	NS	NS	NS	6.7 U	18 J	5.5 U	6.8 U	J 5.6 U	40	6.5 U	6.5 U	6 U	1,200 J
Methylene Chloride	100	50	51,000	100,000 ^a	500,000 ^b	1,000,000 ^c	9 U	8.9 U	7.4 U	9.1 U	J 7.6 U	8.8 U	8.8 U	8.7 U	8 U	9 U
o Xylene	1,200*	260	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	4.3 U	4.2 U	3.5 U	4.4 U	J 3.6 U	4.2 U	4.2 U	4.1 U	3.8 U	23,000 D
Styrene	NS	NS	NS	NS	NS	NS	2.8 U	2.8 U	2.3 U	2.9 U	J 2.4 U	2.8 U	2.8 U	2.7 U	2.5 U	2.8 U
Tetrachloroethene	1,400	1,300	5,500	19,000	150,000	300,000	5 U	4.9 U	4.1 U	5.1 U	J 4.2 U	4.9 U	4.9 U	4.8 U	4.4 U	5 U
Toluene	1,500	700	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	6.4 U	6.3 U	5.3 U	6.5 U	J 5.4 U	6.2 U	6.2 U	6.2 U	5.7 U	6.4 U
t-1,2-Dichloroethene	300	190	100,000 ^a	100,000 ^a	500,000 ^b	1,000,000 ^c	4.1 U	4 U	3.3 U	4.1 U	J 3.4 U	4 U	4 U	3.9 U	3.6 U	4.1 U
t-1,3-Dichloropropene	NS	NS	NS	NS	NS	NS	4.4 U	4.3 U	3.6 U	4.4 U	J 3.7 U	4.3 U	4.3 U	4.2 U	3.9 U	4.4 U
Trichloroethene	NS	47	10,000	21,000	200,000	400,000	5.4 U	5.4 U	4.5 U	5.5 U	J 4.6 U	5.3 U	5.3 U	5.2 U	4.8 U	5.4 U
Trichlorofluoromethane	NS	NS	NS	NS	NS	NS	8.4 U	8.2 U	6.9 U	8.5 U	J 7 U	8.1 U	8.1 U	8 U	7.4 U	8.4 U
Vinyl Chloride	200	20	210	900	13,000	27,000	7.8 U	7.7 U	6.4 U	7.9 U	J 6.5 U	7.6 U	7.6 U	7.5 U	6.9 U	7.8 UJ

Notes:

NS - No Standard

MDL - Method Detection Limit

*-Sum of all isomers
(1) NYSDEC Recommended Soil Cleanup Objectives (RSCO), Technical and Administrative Guidance Memorandum (TAGM) #4046, 12/00
(2) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Unrestriced Use of Soil Cleanup Objective Table 375-6.8a 12/06
(3) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Restriced Use of Soil Cleanup Objective Table 375-6.8b 12/06
a - The SCO for residential, restricted residential and ecological resources use were capped at a maximum value of 100 ppm.
b - The SCOs for commercial use were capped at a maximum value of 500 ppm.

c - The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm.
f - For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.
U - The analyte was analyzed for, but was not detected above the reported sample quantification limit. The associated numerical value is the sample quantitation limit.
UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
J - The analyte was positively identified; the associated numerical value is the analyte in the sample.
D - The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
Bold / Shaded text denotes concentrations exceeding NYSDEC Restricted Residential SCO

TABLE 5A Soil Analytical Results for Subsurface Soil Samples - Volatile Organic Compounds USEPA Method 8260

Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York

TABLE 6 Soil Analytical Results for Surface Soil Samples - Metals USEPA Method 6010

Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York May 15, 2009

	NYSDEC	Eastern	Unrestricted		Restricted			S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	SS-9	SS-10
Analyte	RSCO ⁽¹⁾	USA	Use	Residential	Residential	Commercial	Industrial	(0 - 2")	(0 - 2")	(0 - 2")	(0 - 2")	(0 - 2")	(0 - 2")	(0 - 2")	(0 - 2")	(0 - 2")	(0 - 2")
		Background	SCO ⁽²⁾	SCO ⁽³⁾	SCO ⁽³⁾	SCO ⁽³⁾	SCO ⁽³⁾										
Metals by 6010 - mg/	/kg						•				•						
Aluminum as Al	SB	33,000	NS	NS	NS	NS	NS	3,440	3,350	3,420	3,290	2,760	2,690	3,480	2,140	3,820	2,240
Antimony as Sb	SB	N/A	NS	NS	NS	NS	NS	0.42	U 0.41 L	J 0.42 U	1.910	J 0.44 L	J 0.43 U	0.47 l	J 0.41	U 0.40 L	J 0.40 U
Arsenic as As	7.5 or SB	3-12**	13 ^c	16 ^f	16 ^f	16 ^f	16 ^f	2.390	2.970	2.190	1.530	1.720	1.980	4.640	1.270	2.210	1.350
Barium as Ba	300 or SB	15-600	350 ^c	350 ^f	400	400	10,000 ^d	13.6	14.7	18.6	24.5	22.4	21.9	21.3	22.9	17.8	27.2
Beryllium as Be	0.16 or SB	0-1.75	7	14	72	590	2,700	0.14	J 0.12 J	J 0.08 J	0.11 .	J 0.09	J 0.10 J	0.12	0.08	J 0.11 .	J 0.09 J
Cadmium as Cd	1 or SB	0.1-1	2.5 ^c	2.5 ^f	4.3	9.3	60	0.51	0.53	0.45	0.50	0.45	0.56	0.28	0.38	0.38	0.37
Calcium as Ca	SB	130-35,000	NS	NS	NS	NS	NS	77,400	62,700	21,400	9,670	13,500	33,400	2,570	5,930	25,200	5,360
Chromium as Cr	10 or SB	1.5-40**	30 ^c	36	180	1,500	6,800	5.960	4.490	6.090	8.740	11.8	12.6	11.3	15.4	6.330	12.2
Cobalt as Co	30 or SB	2.5-60**	NS	NS	NS	NS	NS	1.620	1.540	1.460	1.780	2.040	1.780	1.490	1.390	1.370	1.760
Copper as Cu	25 or SB	1-50	50	270	270	270	10,000 ^d	9.140	7.880	11.6	16.9	19.5	23.8	22.9	25.2	8.270	18.1
Iron as Fe	2,000 or SB	2,000-550,000	NS	NS	NS	NS	NS	5,000	4,830	6,150	6,940	6,920	7,760	7,380	7,100	5,250	13,700
Lead as Pb	500***	****	NS	NS	NS	NS	NS	57.9	40.5	81.4	87.3	51.3	36.1	36.5	32.8	67.4	57.7
Magnesium as Mg	SB	100-5,000	NS	NS	NS	NS	NS	48,600	39,800	12,600	4,400	6,520	14,300	1,370	3,220	15,400	2,060
Manganese as Mn	SB	50-5,000	1,600 ^c	2,000 ^f	2,000 ^f	10,000 ^d	10,000 ^d	95.5	71.2	72.0	87.5	68.4	93.6	68.6	65.3	60.9	80.1
Mercury as Hg	0.1	0.001-0.2	0.18 ^c	0.81 ^j	0.81 ^j	2.8 ^j	5.7 ^j	0.025	0.031	0.105	0.037	0.024	0.021	0.054	0.016	0.068	0.007 J
Nickel as Ni	13 or SB	0.5-25	30	140	310	310	10,000 ^d	5.200	3.470	3.250	6.410	5.080	5.610	4.660	5.050	3.370	6.600
Potassium as K	SB	8,500-43,000**	NS	NS	NS	NS	NS	241	197	184	322	218	236	204	187	181	152
Selenium as Se	2 or SB	0.1-3.9	3.9 ^c	36	180	1,500	6,800	0.72	J 0.63 J	J 0.91	1.080	0.99	0.72	1.120	0.80	0.79	0.82
Silver as Ag	SB	N/A	2	36	180	1,500	6,800	0.11	U 0.11 L	J 0.11 U	0.12 L	J 0.12 L	J 0.11 U	0.12 l	J 0.11	U 0.11 L	J 0.11 U
Sodium as Na	SB	6,000-8,000	NS	NS	NS	NS	NS	147	108	113	109	142	176	300	316	156	139
Thallium as Tl	SB	N/A	NS	NS	NS	NS	NS	0.20	U 0.20 L	J 0.20 U	0.21 L	J 0.21 L	J 0.21 U	0.22 l	J 0.20	U 0.20 L	J 0.19 U
Vanadium as V	150 or SB	1-3000	NS	NS	NS	NS	NS	8.670	9.280	11.0	13.0	10.9	10.7	11.2	12.2	8.770	9.240
Zinc as Zn	20 or SB	9-50	109 ^c	2,200	10,000 ^d	10,000 ^d	10,000 ^d	41.9	40.8	61.4	83.5	76.1	77.5	77.7	105	49.6	58.7

Notes:

(1) NYSDEC Recommended Soil Cleanup Objectives (RSCO), Technical and Administrative Guidance Memorandum (TAGM) #4046, 12/00

(2) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Unrestriced Use of Soil Cleanup Objective Table 375-6.8b 12/06

(3) NYSDEC 6 NYCRR Environmental Remediation Programs Part Restriced Use of Soil Cleanup Objective Table 375-6.8b 12/06

a - The SCO for residential, restricted residential and ecological resources use were capped at a maximum value of 100 ppm.

b - The SCOs for commercial use were capped at a maximum value of 500 ppm.

c - The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm.

d - The SCOs for metals were capped at a maximum value of 10,000 ppm.

f - For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.

j - This SCO is the lower of the values for mercury.

U - The analyte was analyzed for, but was not detected above the reported sample quantification limit. The assocaited numerical value is the sample quantitation limit.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

** - New York State Background

**** - Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

TABLE 7 Groundwater Analytical Results - Volatile Organic Compounds USEPA Method 8260

Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York

[]			014.0	014.0			1004.44		
Analyte	NYSDEC	GW-1	GW-2	GW-3	MW-9	MW-10	MW-11		
	Groundwater Standards**	5/19/2009	5/19/2009	5/19/2009	6/4/2009	6/4/2009	6/4/2009		
Volatile Organic Compounds b	, ,		-	-		-	-		
1,1,1-Trichloroethane	5	0.4 U		0.4 U	0.4 U	0.4 U	0.4 U		
1,1,2,2-Tetrachloroethane	5	0.31 U		0.31 U	0.31 U	0.31 U	0.31 U		
1,1,2-Trichloroethane	1	0.38 U							
1,1 Dichloroethane	4	0.45 U							
1,1 Dichloroethene	5	0.36 U							
1,1-Dichloropropene	5	0.47 U							
1,2,4-Trichlorobenzene (v)	5	0.62 U	4.6						
1,2-Dibromo-3-Chloropropane	NS	0.46 U							
1,2 Dibromoethane	NS	0.41 U							
1,2 Dichlorobenzene (v)	3	0.45 U							
1,2 Dichloroethane	0.6	0.48 U							
1,2 Dichloropropane	1	0.46 U							
1,3 Dichlorobenzene (v)	3	0.43 U							
1,4 Dichlorobenzene (v)	3	0.32 U							
2-Butanone	NS	1.3 U							
2-Hexanone	50*	1.9 U	1.9 U	1.9 U	4.8 J	1.9 U	1.9 U		
4-Methyl-2-pentanone	NS	2.1 U							
Acetone	50*	2.8 U							
Benzene	1	0.32 U							
Bromodichloromethane	50*	0.36 U							
Bromoform	50*	0.47 U							
Bromomethane	5	0.62 U							
Carbon Disulfide	60***	0.54 U 0.62 U	0.54 U 0.62 U	0.54 U 0.62 U	0.83 J	0.54 U	0.54 U		
Carbon Tetrachloride	5		0.02 0	0.01	0.62 U	0.62 U	0.62 U		
Chlorobenzene	5	0.49 U 0.66 U	0.49 U 0.66 U	0.49 U 0.66 U	0.49 U	0.49 U	0.49 U		
Chloroethane	5	0.66 U 0.34 U	0.66 U 0.34 U	0.66 U 0.34 U	3.2 J	0.66 U	0.66 U		
Chloroform	5	0.34 U 0.54 U	0.34 U 0.54 U	0.34 U 0.54 U	0.34 U	0.34 U	0.0.0		
Chloromethane cis-1,2-Dichloroethene	5	0.34 U	0.34 U	0.35 U	1.9 J	0.54 U	0.0.0		
cis-1,2-Dichloropropene	0.4	0.35 U 0.31 U	0.35 U 0.31 U	0.35 U 0.31 U	0.35 U	0.35 U 0.31 U	0.00 0		
	NS	0.31 U	43	25	0.31 U				
Cyclohexane Dibromochloromethane	NS	0.55 U 0.52 U	43 0.52 U	25 0.52 U	37 0.52 U	0.55 U 0.52 U	0.00		
Dichlorodifluoromethane	5	0.52 U	0.52 U	0.52 U	0.00 0	0.02 0	0.00 0		
Ethyl Benzene	5	0.53 U	0.53 U	140	0.55 U 7.7	0.55 U 0.53 U	0.55 U 0.53 U		
Isopropylbenzene	5	0.33 U 0.45 U	66	46	30	0.53 U	2.5		
m/p Xylene	5	0.45 U	0.95 U	40 120 D	43	9.9	2.5 10		
Methyl Acetate	NS	0.93 U	0.93 U	0.83 U			0.83 U		
ter.ButylMethylEther	10	0.83 U 0.35 U							
Methylcyclohexane	NS	11	95	50	0.35 U 94	0.35 U 0.68 U	7.6		
Methylene Chloride	5	0.41 U	95 0.41 U	0.41 U	94 0.41 U	0.68 U 0.41 U	7.6 0.41 U		
o-Xylene	5	0.41 U 0.43 U	0.41 U 0.43 U	0.41 U 81	0.41 U 7.6 J				
Styrene	5	0.43 U 0.36 U	0.43 U 0.36 U	0.36 U	0.36 U	0.43 U 0.36 U	0.43 U 0.36 U		
t-1,3-Dichloropropene	D NS	0.36 U 0.29 U							
Tetrachloroethene	NS	0.29 U 0.27 U	0.29 U 0.27 U	0.29 U 0.27 U	0.29 U 0.27 U				
Toluene	0.4 (1)	0.27 U	0.27 U	0.27 U	0.27 U 0.84 J	0.27 U 0.52 J	0.27 U 0.37 U		
trans-1,2-Dichloroethene	5	0.37 U 0.41 U	0.37 U 0.41 U	0.37 U 0.41 U					
Trichloroethene	5 NS	0.41 U 0.28 U	0.41 U 0.28 U	0.41 U 0.28 U	0.41 U				
Trichlorofluoromethane	5	0.28 U 0.35 U	0.28 U 0.35 U	0.28 U 0.35 U	0.28 U	0.28 U	0.28 U		
Vinyl Chloride	2	0.35 U 0.34 U	0.35 U 0.34 U	0.35 U 0.34 U	0.35 U	0.35 U	0.35 U		
viriyi Chionae	Z	0.34 U							

Notes:

⁽¹⁾ Applies to sum of cis and trans 1,3

* - Guidance Value

** - NYSDEC Ambient Water Quality Standards and Guidance Values 6/1998

*** - NYSDEC Ambient Water Quality Standards and Guidance Values, Addendum April 2000

NS - No Standard

D - The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

U - The analyte was analyzed for, but was not detected above the reported sample quantification limit. The assocaited numerical value is the sample quantitation limit.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

Bold/highlighted-Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 8 Groundwater Analytical Results - Semi-volatile Organic Compounds USEPA Method 8270

Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York

0 - market	NYSDEC	C11/ 1	CIV 2	CW 2	1414 0	1000 10	BANK 44
Compound	Groundwater Standards**	GW-1	GW-2	GW-3	MW-9	MW-10	MW-11
Semi-Volatile Organic Compou	nds by 8270 - ug/L						
1,1-Biphenyl	NS	0.15 U	0.15 U	0.15 U	3.4 J	0.15 U	0.15 l
2,2-oxybis(1-Chloropropane)	NS	0.18 U	0.17 l				
2,4,5-Trichlorophenol	1	0.41 U	0.4 U	0.41 U	0.4 U	0.4 U	0.4 l
2,4,6-Trichlorophenol	NS	0.58 U	0.56 U	0.57 U	0.56 U	0.56 U	0.56 l
2,4-Dichlorophenol	1	0.68 U	0.66 U	0.67 U	0.66 U	0.66 U	0.66 l
2,4-Dimethylphenol	NS	0.73 U	0.71 U	0.72 U	0.71 U	0.71 U	0.71 l
2,4-Dinitrophenol	5	2.2 U	2.1 l				
2,4-Dinitrotoluene	5	1.1 U	1 U	1.1 U	1 U	1 U	1 (
2,6-Dinitrotoluene	5	0.33 U	0.32 U	0.33 U	0.32 U	0.32 U	0.32 l
2-Chloronaphthalene	10	0.16 U	0.16 l				
2-Chlorophenol	50	0.56 U	0.54 U	0.55 U	0.54 U	0.54 U	0.54 l
2-Methylnaphthalene	NS	0.33 U	0.32 U	15	74 R	0.32 U	1.1 .
2-Methylphenol	5	0.25 U	0.24 l				
2-Nitroaniline	5	0.51 U	0.49 U	0.5 U	0.49 U	0.49 U	0.49 l
2-Nitrophenol	5	0.54 U	0.52 U	0.53 U	0.52 U	0.52 U	0.52 l
3,3'-Dichlorobenzidine	5	7.1 U	6.9 U	7.1 U	6.9 U	6.9 U	6.9 l
3+4-Methylphenols	50	0.39 U	0.38 U	0.39 U	0.38 U	0.38 U	0.38 0
3-Nitroaniline	5	1.1 U	1.1 0				
4,6-Dinitro-2-methylphenol	NS	0.76 U	0.74 U	0.76 U	0.74 U	0.74 U	0.74 0
4-Bromophenyl phenyl ether	NS	0.24 U	0.23				
4-Chloro-3-methylphenol	5	0.41 U	0.4 U	0.41 U	0.4 U	0.4 U	0.4 0
4-Chloroaniline	5	2.9 U	2.9 0				
4-Chlorophenyl phenyl ether	NS	0.22 U	0.21 0				
4-Nitroaniline	5	1.4 U					
4-Nitrophenol	5	12 U	12 1				
Acenaphthene	20	0.22 U	0.21 U	0.21 U	2 J	0.21 U	0.21
Acenaphthylene	20	0.72 U	0.7 U	0.71 U	0.7 U	0.7 U	0.7 0.1
Acetophenone	NS	0.14 U	0.14				
Anthracene	50*	0.16 U 0.41 U	0.16 U 0.4 U	0.16 U 0.41 U	0.16 U	0.16 U	0.16
Atrazine	NS				0.4 U	0.4 U	0.4
Benzaldehyde Benz(a)anthracene	NS 0.002	0.79 U 0.16 U	0.77 U 0.16 U	0.79 U 0.16 U	0.77 U 0.16 U	0.77 U 0.16 U	
Benzo(a)pyrene	ND	0.18 U	0.18 U	0.18 U	0.16 U	0.16 U 0.14 U	0.16 l 0.14 l
Benzo(b)fluoranthene	0.002	0.14 U	0.14 U 0.29 U	0.14 U	0.14 U	0.14 U	0.14
Benzo(ghi)perylene	NS	0.3 U	0.29 U	0.3 U	0.29 U	0.29 U	0.29 0
Benzo(k)fluoranthene	0.002	0.19 U	0.18 U	0.18 U	0.29 U	0.29 U	0.29 0
Bis(2-chloroethoxy)methane	5	0.57 U	0.55 U	0.56 U	0.18 U	0.18 U	0.55 0
Bis(2-chloroethyl)ether	1	0.57 U	0.55 U	0.56 U	0.55 U	0.55 U	0.55 0
Bis(2-ethylhexyl)phthalate	5	0.16 U	0.16 U	0.16 U	0.16 U	0.35 U	0.16 1
BenzylButylPhthalate	50	0.2 U	0.19 U	0.19 U	0.19 U	0.10 U	0.19 1
Caprolactam	NS	4.6 U	4.5 U	4.6 U	4.5 U	4.5 U	4.5 1
Carbazole	NS	0.23 U	0.22 1				
Chrysene	0.002	0.19 U	0.18 0				
Dibenzo(a,h)anthracene	50	0.43 U	0.42 U	0.43 U	0.42 U	0.42 U	0.42
Dibenzofuran	NS	0.25 U	0.24 U	0.24 U	1.4 J	0.24 U	0.24
Diethyl Phthalate	50	0.39 U	0.38 U	0.39 U	0.38 U	0.38 U	0.38 1
Dimethyl Phthalate	50	0.23 U	0.22				
Di-n-Butyl Phthalate	50	2.5 U	2.4 1				
Di-n-octyl Phthalate	50*	0.53 U	0.51 U	0.52 U	0.51 U	0.51 U	0.51 0
Fluoranthene	50	0.41 U	0.4 U	0.41 U	0.4 U	0.4 U	0.4
Fluorene	50	0.32 U	0.31 U	0.32 U	3.5 J	0.31 U	0.31 0
Hexachlorobenzene	0.04	0.19 U	0.18				
Hexachlorobutadiene	0.5	0.26 U	0.25 U	0.26 U	0.25 U	0.25 U	0.25 0
Hexachlorocyclopentadiene	5	0.25 U	0.24				
Hexachloroethane	5	0.26 U	0.25 U	0.26 U	0.25 U	0.25 U	0.25 l
Indeno(1,2,3-cd)pyrene	0.002	0.15 U	0.15 l				
Isophorone	50	0.31 U	0.3 U	0.31 U	0.3 U	0.3 U	0.3 l
Naphthalene(sv)	10	0.12 U	0.12 U	45	31	0.12 U	0.12 l
Nitrobenzene	0.4	0.7 U	0.68 U	0.69 U	0.68 U	0.68 U	0.68 (
N-Nitrosodi-n-propylamine	50	0.21 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 0.2
N-Nitrosodiphenylamine	50*	0.62 U	0.6 U	0.61 U	0.6 U	0.6 U	0.6
Pentachlorophenol Phenanthrene	1 50	1.8 U 0.27 U	1.7 U 0.26 U	1.8 U 0.27 U	1.7 U	1.7 U	1.7 0
		U.2/ U	U.20 U	U.27 U	4 J	0.26 U	0.26 l
Phenol	1	0.22 U	0.21 l				

Notes:

* - Guidance Value
 ** - NYSDEC Ambient Water Quality Standards and Guidance Values 6/1998
 (*) Applies to each isomer (1,2 - 1,3 and 1,4) individually

ND - Non-detect

ND - Non-detect NS - No Standard U - The analyte was analyzed for, but was not detected above the reported sample quantification limit. The assocaited numerical value is the sample quantitation limit. J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample R - The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified. The R replaces the numerical value or sample quantitation limit. In some instances (e.g., a dilution) a result may be indicated as "rejected" to avoid confusion when a

more quantitatively accurate result is available. Bold/shaded text indicates concentrations exceeding the NYSDEC Groundwater Standarc

TABLE 9 Groundwater Analytical Results - Metals USEPA Method 6010

Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York

Commonweak	NYSDEC	GV	V-1	GV	V-2	GV	V-3	MW-9	MW-10	MW-11
Compound	Groundwater Standards**	Total Dissolved		Total	Total Dissolved		Total Dissolved		Total	Total
Metals by 6010 - mg/L										
Aluminum as Al	NS	0.0545 J	0.0442 J	0.198	0.0875 J	0.0733 J	0.0643 J	40.1	59.9	15.9
Antimony as Sb	0.003	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U
Arsenic as As	0.025	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0199	0.0414	0.0164
Barium as Ba	1	0.0114 J	0.00984 J	0.0126 J	0.012 J	0.0175 J	0.0173 J	0.178	0.248	0.0647
Beryllium as Be	0.003	0.0007 U	0.0007 U	0.0007 U	0.0007 U	0.0007 U	0.0007 U	0.0022 J	0.00443	0.00128 J
Cadmium as Cd	0.005	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.002 J	0.0018 J	0.0005 U
Calcium as Ca	NS	13.8	13.8	26.4	26.4	31.8	30.8	32	14	24.7
Chromium as Cr	0.05	0.0011 U	0.0011 U	0.00189 J	0.0011 U	0.0011 U	0.0011 U	0.0785	0.0826	0.0301
Cobalt as Co	NS	0.0058 U	0.0058 U	0.0058 U	0.0058 U	0.0058 U	0.0058 U	0.0117 J	0.0285	0.00721 J
Copper as Cu	0.2	0.0066 U	0.0066 U	0.0066 U	0.0066 U	0.0066 U	0.0066 U	0.079	0.123	0.0476
Iron as Fe	0.5	1.03	0.904	3.47	2.08	2.82	1.94	57.3	83.7	33.3
Lead as Pb	0.025	0.003 J	0.0026 U	0.0027 J	0.0026 U	0.00469 J	0.00288 J	0.152	0.108	0.0836
Magnesium as Mg	35	4.74	4.7	5.28	5.16	7.27	7.15	14.6	10.9	9.14
Manganese as Mn	0.3	0.0621	0.0782	0.0468	0.0432	0.0633	0.0651	0.364	1.64	0.202
Mercury as Hg	0.0007	0.00009 U	0.00009 U	0.00009 U	0.00009 U	0.00009 U	0.00009 U	0.00038	0.00019 J	0.00012 J
Nickel as Ni	0.1	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0042 U	0.0285	0.0476	0.0117 J
Potassium as K	NS	1.6	1.55	1.77	1.73	3	3.07	6.89	6.07	3.16
Selenium as Se	0.01	0.0048 U	0.0048 U	0.0048 U	0.0048 U	0.00635 J	0.00566 J	8.82 J	0.00729 J	0.00893 J
Silver as Ag	0.05	0.0015 U	0.0015 U	0.0015 U	0.0015 U	0.0015 U	0.0015 U	0.0015 U	0.0015 U	0.0015 U
Sodium as Na	20	6.35	6.24	4.32	4.36	62.9	62.7	34.6	8.66	7.87
Thallium as Tl	0.0005	0.0024 U	0.0024 U	0.0024 U	0.0024 U	0.0024 U	0.0024 U	0.0024 U	0.0024 U	0.0024 U
Vanadium as V	NS	0.0061 U	0.0061 U	0.0061 U	0.0061 U	0.0061 U	0.0061 U	0.108	0.153	0.0768
Zinc as Zn	2	0.0274	0.0204	0.0213	0.0187 J	0.0174 J	0.0186 J	0.322	0.259	0.138

Notes:

** - NYSDEC Ambient Water Quality Standards and Guidance Values 6/1998

ND - Non-detect

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U - The analyte was analyzed for, but was not detected above the reported sample quantification limit. The assocaited numerical value is the sample quantitation limit.

* - Guidance Value

NS - No Standard

Bold/highlighted-Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 10 Soil Gas Analytical Results - Volatile Organic Compounds USEPA Method TO-15

Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York

	SV-1	SV-1 SV-2			SV-3 SV-4			Indoo	r Air	Outdoor	DUP-03		
Analyte	5/20/2009	5/20/		5/20/20	009	5/20/2		5/20/2		5/20/20		5/20/20	
Volatile Organic Compounds by TO-15	µg/m³												
1,1,1-Trichloroethane	0.22 L	0.22	U	0.22	U	0.22	J	0.22	U	0.22	U	0.22	U
1,1,2,2-Tetrachloroethane	0.69 L		U	0.69	U	0.69	U	0.69	U	0.69	U	0.69	U
1,1,2- Trichloroethane	0.44 L		U	0.44	U	0.44	U	0.44	U	0.44	U	0.44	U
1,1,2-Trichlorotrifluoroethane	0.31 L		U	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U
1,1 Dichloroethane	0.16 L		U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U
1,1 Dichloroethene	0.2 L		U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
1,2,4-Trichlorobenzene	0.3 L		U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U
1,2,4-Trimethylbenzene	4.87	18.29		4.03		4.33		0.49	U	2.21	J	0.49	U
1,2 Dibromoethane	0.54 L		U	0.54	U	0.54	U	0.54	U	0.54	U	0.54	U
1,2 Dichlorobenzene (v)	0.42 L		U	0.42	U	0.42	U	0.42	U	0.42	U	0.42	U
1,2 Dichloroethane	0.28 L		U	0.28	U	0.28	U	0.28	U	0.28	U	0.28	U
1,2 Dichloropropane	0.28 L		U	0.28	U	0.28	U	0.28	U	0.28	U	0.28	U
1,3,5-Trimethylbenzene	1.62			1.08	J	1.28	J	0.44	U	0.44	U	0.44	U
1,3 Butadiene	0.2 L		U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
1,3 Dichlorobenzene (v)	1.92 J		J	4.09		3.55		0.48	U	0.48	U	0.48	U
1,4 Dichlorobenzene (v)	0.36 L		U	0.36	U	0.36	U	0.36	U	0.36	U	0.36	U
1,4-Dioxane	0.32 L		U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U
2,2,4-Trimethylpentane	3.64	204.1		26.2		8.17		0.19	UJ	0.19	U	0.56	J
2-Butanone	109.42 E			97.03	D	87.59	D	4.25	J	0.97	J	0.8	J
2-Hexanone	0.52 L		U	0.52	U	0.52	U	0.52	U	0.52	U	0.52	U
p-Ethyltoluene	1.18		<u> </u>	0.88	J	0.98	J	0.39	U	0.39	U	0.39	U
4-Methyl-2-pentanone	2.13	1.72	J	0.94	J	0.9	J	0.25	U	0.25	U	0.25	U
Acetone	80.53 E			35.28		62.47	D	13.42	J	10.9		7.67	
Allyl Chloride	0.16 L		U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U
Benzene	2.49	55.59		5.24		8.66		0.77	J	0.67	J	0.96	J
Bromodichloromethane	0.33 L		U	0.33	U	0.33	U	0.33	U	0.33	U	0.33	U
Bromoethene	0.13 L		U	0.13	U	0.13	U U	0.13	U	0.13	U	0.13	U
Bromoform	0.52 L 0.12 L		U	0.52	U	0.52	U	0.52	U	0.52	U	0.52	U
Bromomethane Carbon disulfide	8.97	1.21	J	1.03	J	11.12	U	0.12	U	0.12	U	0.12	U
	0.38		J	0.25	J	0.25	U	0.16	J	0.16	J	0.16	J
Carbon Tetrachloride Chlorobenzene	0.38 5		U	0.25	U	0.25	U	0.44	J	0.5	J	0.5	U
	0.18		U	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U
Chloroethane Chloroform	0.18		U	0.18	U	0.18	J	0.18	U	0.18	U	0.18	U
Chloromethane	0.87	-	J	0.1	J	0.68	J	1.07	U	1.16	0	1.16	U
c-1,2-Dichloroethene	0.24		U	0.27	U	0.08	U	0.24	U	0.24	U	0.24	U
c-1,3Dichloropropene	0.24 0		U	0.24	U	0.24	U	0.24	U	0.24	U	0.24	U
Cyclohexane	197.23	-		2.68	0	1.34	J	0.27	U	0.48	J	0.27	U
Chlorodibromomethane	0.43 L	-	U	0.43	U	0.43	U	0.20	U	0.43	U	0.23	U
Dichlorodifluoromethane	2.52	2.42	J	1.78	J	1.78	J	2.13	J	2.47	J	2.47	J
Dichlorotetrafluoroethane	0.28 L		U	0.28	U	0.28	U	0.28	U	0.28	U	0.28	U
Ethyl Benzene	2.35	25.84		2.69	0	3.78	0	0.35	U	0.35	U	0.35	U
Heptane	16.31	89.34		10.49		4.02		0.25	U U	0.25	U	0.25	U
Hexachlorobutadiene	0.85 L		U	0.85	U	0.85	U	0.85	U	0.85	U	0.85	U
Hexane	4.44	143.7		17.37	0	7.44	0	0.63	J	0.81	J	1.02	J
m + p Xylene	7.99	76.97		9.38		12.08		0.48	UJ	0.48	U	0.52	J
Methyl Methacrylate	0.41 L		U	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U
ter.ButylMethylEther	0.18 L		U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U
Methylene Chloride	3.51	2.71	5	0.97	J	2.74	0	0.87	J	1.46	J	1.7	J
o Xylene	2.78	25.93	1	3.13	5	3.95		0.3	U	0.3	U	0.3	U
Styrene	0.94		J	0.3	U	2.04	J	0.3	U	0.3	U	0.3	U
t-1,3Dichloropropene	0.32 L	-	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U
tert-Butyl alcohol	8.58	3.88	-	5.18	-	3.33		0.3	U	0.3	Ū	0.3	Ū
Tetrachloroethene	3.59	1.42	J	0.68	J	5.97		0.2	U	2.92	J	0.2	Ū
Tetrahydrofuran	1.59	1.5	-	1.21	J	1.03	J	0.24	U	0.24	Ŭ	0.24	U
Toluene	12.78	256.2	6 D	20.43		18.99		1.28	J	2.56	-	1.7	J
t-1,2-Dichloroethene	0.24 L		U	0.24	U	0.24	U	0.24	U	0.24	U	0.24	U
Trichloroethene	0.21 L		J	0.21	U	0.21	U	0.21	UJ	0.21	U	0.21	J
Trichlorofluoromethane	4.66	2.08	J	1.57	J	2.25	J	1.18	J	1.46	J	1.29	J
	0.18 L		U	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U

Notes:

NS - Not Specified

D - The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U - The analyte was analyzed for, but was not detected above the reported sample quantification limit. The assocaited numerical value is the sample quantitation limit.

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

TABLE 11 QA/QC Analytical Results - Volatile Organic Compounds USEPA Method 8260

Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York

Analyte	Unrestricted Use SCO ⁽¹⁾	SCDHS Action Levels ⁽²⁾	DUP-01 (CP-01)*	DUP-02 (SB-8 (22-24'))**	Target Indoor Air Concentrations**	DUP-03 (Indoor Air) 5/20/2009	NYSDEC Groundwater Standards ⁽³⁾	DUP-04 (MW-9)	EB-01	EB-02	EB-03	EB-04	Trip Blank 5/15/2009	Trip Blank 5/19/2009	Trip Blank 6/4/2009
Volatilo Organic Compounds - USERA	Mothod 9260 ug/kg				Veletile Organic Compounds by IO	15	Volatilo Organic Compounds USER	Mothod 8260 ug/l							
Volatile Organic Compounds - USEPA 1,1,1-Trichloroethane	680	1,600	8 1	J 5.5 U	Volatile Organic Compounds by TO- 2,200	0.22 U	Volatile Organic Compounds - USEP	0.4 U		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
1,1,1,2-Tetrachloroethane	NS	600	3.9 U		0.42	0.69 U		-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	NS	1,200		J 2.9 U		-	5	0.31 U	0.31 U	0.31 U					
1,1,2 Trichloroethane	NS	600	8.2 l	J 5.6 U	1.5	0.44 U	1	0.38 U	0.38 U	0.38 U					
1,1,2-Trichlorotrifluoroethane	NS	NS	12 1			0.31 U	NS	0.45 U		0.45 U				0.45 U	
1,1 Dichloroethane	270	400	8.5 l		500	0.16 U	4	0.36 U	0.00 0	0.36 U			0.00	0.36 U	0.36 U
1,1 Dichloroethene	330	800	13 L	5 7.E 0	500	0.2 U	5	0.47 U	0.47 U	0.47 U					
1,1-Dichloropropene 1,2,3-Trichlorobenzene	NS NS	600 800	4.2 U 4.5 U	-	-	-	5	-		-			-	-	
1,2,3-Trichloropropane	NS	800	4.5 U												
1,2,4,5-tetramethylbenzene	NS	15,000		- J -	-	-	-	-		-			-	-	-
1,2,4-Trichlorobenzene (v)	NS	6,800		J 4.4 UJ	200	0.3 U	5	0.62 U	0.62 U	0.62 U					
1,2,4-Trimethylbenzene	NS	4,800	4.5 U	- U	6	0.49 U	-	-	-	-	-	-	-	-	-
1,2 Dibromo 3 chloropropane	NS	1000	7.9 L		-	-	NS	0.46 U		0.46 U	0.46 U				
1,2 Dibromoethane	NS	600	5.8 l	J 4 U	0.11	0.54 U	NS	0.41 U		0.41 U		0.41 U		0.41 U	0.41 U
1,2 Dichlorobenzene (v)	1,100	15,000		J 3.9 U		0.42 U	3	0.45 U		0.45 U	0.45 U			0.45 U	0.45 U
1,2 Dichloroethane	20 ^c NS	200 600	5.8 U 2.4 U			0.28 U 0.28 U	0.6	0.48 U 0.46 U		0.48 U 0.46 U	0.48 U 0.46 U	0.48 U 0.46 U		0.48 U 0.46 U	0.48 U 0.46 U
1,2 Dichloropropane 1,3,5-Trimethylbenzene	NS	5,200	4.1		4 6	0.28 U	-	0.46 0	0.46 0	0.46 0	0.46 0	0.46 0	0.46 0	0.46 0	0.46 0
1,3 Butadiene	NS	NS	-	-	0.087	0.2 U						-			
1,3 Dichlorobenzene (v)	2,400	3,200	3.4 Ц	LJ 2.3 U	110	0.48 U	3	0.43 U	0.43 U	0.43 U					
1,3-Dichloropropane	NS	600	6.7 U		-	-	-			-		-	-		
1,4 Dichlorobenzene (v)	1,800	15,000		IJ 2.6 U		0.36 U	3	0.32 U	0.32 U	0.32 U					
1,4-Dioxane	NS	NS		-	NS	0.32 U		-	-	-	-	-			
2,2,4-Trimethylpentane	NS	NS	-	-	NS	0.56 J	-	-	-	-	-	-	-	-	
2,2-Dichloropropane	NS 130	600 NG	9.5 L	,	-	-	-			-	-	-	-		
2-Butanone	120 NS	NS 3,600		J 19 U	1,000	L 8.0	NS	1.3 U	1.3 U	1.3 U					
2-Chlorotoluene	NS	3,600 NS	6.7 U		- NS	- 0.52 U	- 50*	- 1.9 U	- 1.9 U	- 1.9 U	- 1.9 U	- 1.9 U	- 1.9 U	- 1.9 U	- 1.9 U
2-Hexanone p-ethyltoluene	NS	3,600	- 45 L	24 U	NS	0.32 U	-	1.7 U	1.7 U	1.7 U	- U	1.7 U	1.7 U	1.7 U	1.7 U
4-Chlorotoluene	NS	3,600		J -	-	-	-			-		-	-	1.1	-
4-Methyl-2-pentanone	NS	NS	27 U		NS	0.25 U	NS	2.1 U	2.1 U	2.1 U					
Acetone	50	**	27 1	J 19 U	350	7.67 J	50*	2.8 U	2.8 U	2.8 U					
Allyl Chloride	NS	NS	-	-	NS	0.16 U	-	-	-	-	-	-	-	-	-
Benzene	60	120	3.5 l		3.1	0.96 J	1	0.32 U	0.32 U	0.32 U					
Bromobenzene	NS	1,600	4.7 U		-	-		-	-	-	-	-	-	-	-
Bromochloromethane Bromodichloromethane	NS NS	400	7.2 U 5.6 U		1.4	0.33 U	- 50*	-	- 0.36 U	- 0.36 U	-	- 0.36 U	-	- 0.36 U	-
biomodicinicitance	NS		5.6 l	J 3.9 U	- NS	- 0.13 U	50*	0.36 U	0.36 U	0.36 U					
Bromoethene Bromoform	NS	NS 1,000	6.7 U			0.13 U	50*	0.47 U	0.47 U	- 0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U
Bromomethane	NS	NS	-	15 U		0.12 U	5	0.62 U		0.62 U	0.62 U	0.62 U		0.62 U	0.62 U
Carbon Disulfide	NS	NS	-	6.6 U		0.16 U	60***	0.54 U		0.54 U				0.54 U	0.54 U
Carbon Tetrachloride	760	1,200	9 (J 6.2 U	1.6	0.5 J	5	0.62 U	0.62 U	0.62 U					
Chlorobenzene	1,100	3,400	4.5 U		÷-	0.41 U	5	0.49 U		0.49 U			0.49 U	0.49 U	0.17
Chloroethane	NS	400	13 U		10,000	0.18 U	5	0.66 UJ		0.66 U				0.66 U	0.66 U
Chloroform	370	600	6.7 l	J 4.6 U		0.1 U	7	0.34 U		0.34 U				0.34 U	0.34 U
Chloromethane	NS	NS	- 0.1	5.4 U		1.16 0.24 U	5	0.54 UJ		0.54 U		0.54 U		0.54 U 0.35 U	0.54 U
c-1,2-Dichloroethene c-1,3-Dichloropropene	250 NS	600 600	8.1 U 6.5 U			0.24 U 0.27 U	0.4	0.35 U 0.31 U		0.35 U 0.31 U		0.00 0		0.35 U 0.31 U	0.00
Cyclohexane	NS	NS	-	690	NS	0.28 U	NS	36	0.51 U	0.55 U	0.55 U	0.55 U		0.55 U	0.55 U
Chlorodibromomethane	NS	NS	-	-	1	0.43 U	-			-					-
Dibromochloromethane	NS	600	4.9 U	J 3.4 U	-	-	NS	0.52 U	0.52 U	0.52 U					
Dibromomethane	NS	400	7.1 U	J -	-	-	-	-		-		-	-	-	-
Dichlordifluoromethane	NS	600	5.9 l	J 4.1 U	200	2.47 J	5	0.55 U	0.55 U	0.55 U					
Dichlorotetrafluoroethane	NS	NS		-	NS	0.28 U	-			-	-		-	-	-
Ethyl Benzene	1,000	11,000	5.6 l	J 20,000 DR		0.35 U	5	6.8	0.53 U	0.53 U	0.53 U				
Heptane Hexachlorobutadiene	NS NS	NS 15,000	- 7.2 U	-	NS 1.1	0.25 U 0.85 U	-	-		-			-	-	
Hexane	NS	NS	7.2 U	-	200	1.02 J		-		-	-		-		
Isopropylbenzene	NS	5,200	4.4 U	IJ 2,200 DR		-	5	36	0.45 U	0.45 U	0.45 U				
m + p Xylene	260	-		86,000 DR	7,000	0.52 J	5	42	0.95 U	0.95 U		0.95 U		0.95 U	0.95 U
Methyl Methacrylate	NS	NS	-	-	700	0.41 U	-	-	-	-	-	-	-	-	-
ter.ButylMethylEther	930	1,200	8.7 L		0,000	0.18 U	10	0.35 U	0.00	0.35 U	0.00	0.00 0	0.00	0.35 U	0.35 U
Methyl Acetate	NS	NS	-	9.4 U		-	NS	0.83 U		0.83 U				0.00 0	
Methylcyclohexane	NS	NS	-	3,800 DR		-	NS	98	0.68 U	0.68 U					
Methylene Chloride Naphthalene	50 NS	200 15,000	13 U 4.1 U		52	1.7 J	5	0.41 U	0.41 U	0.41 U	1.4	1.4	0.41 U	0.41 U	0.41 U
n-Butylbenzene	NS	6,800		U -		-	· · ·	-		-	-	-	-	+ - +	-
n-propylbenzene	NS	5,000						-		-	-	-	-	+ - +	
o Xylene	260	-	-	43,000 DR	7,000	0.3 U	5	3.9 J	0.43 U	0.43 U	0.43 U				
p-diethylbenzene	NS	7,600	45 L	U -	-	-	-	· ·	-	-		-	-	· · ·	-
p-lsopropyltoluene	NS	7,800	2.6 U	J -	-	-	-	-	-	-	-	-	-	-	-
sec-Butylbenzene	NS	10,000			-	-	-	-	-	-	-	-	-		
Styrene	NS	2,000		J 2.8 U		0.3 U		0.36 U		0.36 U		0.00 0	0.36 U	0.00 0	
t-1,3-Dichloropropene	NS	600 NG	7.2 U	J 4.9 U		0.32 U	NS	0.29 U	0.29 U	0.29 U					
tert-Butyl alcohol	NS	NS 6 800	-	-	NS	0.3 U	-	-	-	-	-	-	-		
tert-Butylbenzene Tetrachloroethene	NS 1,300	6,800 2,800	5.4 L 9.2 L	J	- 8.1	- 0.2 U	- NS	- 0.27 U	- 0.27 U	- 0.27 U	- 0.27 U	- 0.27 U	- 0.27 U	- 0.27 U	- 0.27 U
Tetrahydrofuran	NS	2,800 NS	7.2		8.1 NS	0.2 U	-	U.21 U	U.21 U	U.21 U	- U.27 U	- U.27 U	- 0.27 U	0.27 U	0.21 U
	700	3,000	5.8 U			0.24 0 1.7 J	0.4 (1)	0.37 U	0.37 U	0.37 U					
		2,400	13 1		-	-	-	-	-	- 5	- 0	-	-	-	-
Toluene Total Xylenes	NS	2,400													+
Toluene	NS 190	600	6.3 L		70	0.24 U	5	0.41 U	0.41 U	0.41 U					
Toluene Total Xylenes t-1,2-Dichloroethene Trichloroethene	190 47	600 1,400	6.3 U 7.8 U	J 4.3 U J 5.4 U	0.22	0.21 J	NS	0.28 U	0.28 U	0.28 U					
Toluene Total Xylenes t-1,2-Dichloroethene	190	600	6.3 U 7.8 U 12 U	J 4.3 U	0.22 700		NS 5		0.28 U 0.35 U		0.28 U 0.35 U	0.28 U 0.35 U	0.28 U	0.28 U 0.35 U	0.28 U 0.35 U

Notes

Notes: (1) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Unrestricted Use Soil Cleanup Objectives Table 375-6.8a 12/06 ⁽²⁾Suffolk County Dept. of Health Services, Article 12 - SOP 9-95, Action Levels, July 1998. (3) - NYSDEC Ambient Water Quality Standards and Guidance Values 6/1998 * - Compared to (2) ** - Compared to (1) a - The SCO for residential, restricted residential and ecological resources use were capped at a maximum value of 100 ppm.

a - The SCO for residential, restricted residential and ecological resources use were capped at a maximum value of 100 ppm. b - The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 100 ppm. f - For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background concentration is used as the Track 2 SCO value for this use of the site. D - The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range. U - The analyte was not detected above the reported sample quantification limit. However, the reported quantification limit is approximate and may or may not represent the actual limit of quantification lemits approximate and may or may not represent the actual limit of quantification lemit. J - The analyte was not detected above the reported sample quantification limit. However, the reported quantification limit is approximate and may or may not represent the actual limit of quantification necessary to accurately and precisely measure the analyte in the sample. J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. J - The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range. R - The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified. The R replaces the numerical value or sample quantification limit. In some instances (e.g., a dilution) a result may be indicated as "rejected" to avoid confusion when a more quantificatively accurate result is available. **Boid / Shaded text denotes concentrations exceeding NYSDEC Unrestricted Use SCO**

TABLE 12 QA/QC Analytical Results - Semi-Volatile Organic Compounds USEPA Method 8270

Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York

	SCDHS					NYSDEC	50.04					
Analyte	Action Levels ⁽²⁾	DUP-01 (CP-01)		DUP-04 (MW-9)		Groundwater Standards ⁽²⁾	EB-01		EB-03		EB-04	
Semi-Volatile Organic Compounds - L	USEPA Method 8260 - ug/kg					Semi-Volatile Organic Compounds - USB	PA Method 82	260 - ug	/L			
1,1-Biphenyl	-	-		3.6	J	NS			0.17	U	0.17	U
2,2-oxybis(1-Chloropropane)	-			0.17	U	NS			0.2	U	0.2	U
2,4,5-Trichlorophenol	-				U	1			0.46	U	0.46	U
2,4,6-Trichlorophenol	-				U	NS	-		0.64	U	0.64	U
2,4-Dichlorophenol	-				U	1			0.76	U	0.76	U
2,4-Dimethylphenol	-				U	NS	-		0.82	U	0.82	U
2,4-Dinitrophenol	-				U	5	-		2.4	U	2.4	U
2,4-Dinitrotoluene	-				U	5			1.2	U	1.2	U
2,6-Dinitrotoluene	-				UU	5			0.37	U	0.37	U
2-Chloronaphthalene					U	10 50			0.18	U	0.18	U
2-Chlorophenol					R	NS			0.62	U	0.62	UU
2-Methylnaphthalene 2-Methylphenol					U	5	-		0.37	U	0.37	U
2-Nitroaniline					U	5			0.26	U	0.28	U
2-Nitrophenol				0.52	U	5			0.6	U	0.6	U
3,3'-Dichlorobenzidine	-			6.9	U	5			8	U	8	U
3+4-Methylphenols				0.38	U	50			0.44	U	0.44	U
3-Nitroaniline				1.1	U	5			1.3	U	1.3	U
4,6-Dinitro-2-methylphenol				0.74	U	NS			0.85	U	0.85	U
4-Bromophenyl phenyl ether					U	NS			0.26	U	0.26	U
4-Chloro-3-methylphenol					U	5	-		0.46	U	0.46	U
4-Chloroaniline	-				U	5			3.3	U	3.3	U
4-Chlorophenyl phenyl ether	-				U	NS			0.24	U	0.24	U
4-Nitroaniline	-	-			U	5			1.6	U	1.6	U
4-Nitrophenol	-				U	5			14	U	14	U
Acenaphthene	75,00	340	U		J	20	0.21	U	0.24	U	0.24	U
Acenaphthylene	-				U	20	-		0.8	U	0.8	U
Acetophenone	-	•			U U	NS	-		0.16	U	0.16	U
Anthracene	75,000	250	U		U	50*	0.16	U	0.18	U	0.18	U
Atrazine	-				U	NS	-		0.46	U	0.46	U
Benzaldehyde	- 6,000	- 12,000			U	NS 0.002	- 0.16	U	0.89	U	0.89	U U
Benz(a)anthracene Benzo(a)pyrene	22,000	12,000	J		U	0.002 ND	0.16	U	0.16	U	0.16	U
Benzo(b)fluoranthene	2,200	19,000	5		U	0.002	0.3	U	0.33	U	0.33	U
Benzo(ghi)perylene	75,000	4,900	J		U	NS	0.3	U	0.33	U	0.33	U
Benzo(k)fluoranthene	2,200	6,500	J	0.18	U	0.002	0.18	U	0.21	U	0.21	U
Bis(2-chloroethoxy)methane	-			0.55	U	5	-		0.63	U	0.63	U
Bis(2-chloroethyl)ether	-			0.55	U	1	-		0.63	U	0.63	U
Bis(2-ethylhexyl)phthalate	-			0.16	U	5			0.18	U	0.18	U
BenzylButylPhthalate	-			0.19	U	50			0.22	U	0.22	U
Caprolactam	-				U	NS			5.1	U	5.1	U
Carbazole	-				U	NS			0.25	U	0.25	U
Chrysene	800	13,000			U	0.002	0.18	U	0.21	U	0.21	U
Dibenzo(a,h)anthracene	75,000	350	U		U	50	0.43	U	0.48	U	0.48	U
Dibenzofuran					J	NS			0.28	U	0.28	U
Diethyl Phthalate		-			U U	50			0.44	U	0.44	U
Dimethyl Phthalate					UU	50			0.25	U	0.25	U
Di-n-Butyl Phthalate	•				UU	50			2.8	U	2.8	U
Di-n-octyl Phthalate Fluoranthene	- 75,000	9,400			U	50* 50	- 0.41	U	0.59	U	0.59	UU
Fluorantnene	75,000	460	U		J	50	0.41	U	0.46	U	0.46	U
Hexachlorobenzene	-	460	U		U	0.04	0.32	U	0.36	U	0.36	U
Hexachlorobutadiene					U	0.5			0.21	U	0.21	U
Hexachlorocyclopentadiene					U	5			0.27	U	0.27	U
Hexachloroethane					U	5			0.29	U	0.29	U
Indeno(1,2,3-cd)pyrene	6,400	3,600	J	0.15	U	0.002	0.15	U	0.17	U	0.17	U
Isophorone				0.3	U	50			0.34	U	0.34	U
Naphthalene(sv)				35		10			0.14	U	0.14	U
Nitrobenzene				0.68	U	0.4			0.78	U	0.78	U
	-				U	50					0.00	U
N-Nitrosodi-n-propylamine						50	-		0.23	U	0.23	
	-	-		0.6	U	50*			0.23	U	0.69	U
N-Nitrosodi-n-propylamine				0.6 1.7	U U		-					
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene			J	0.6 1.7 3	U U J	50* 1 50	0.27	U	0.69 2 0.3	U U U	0.69 2 0.3	U U U
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Pentachlorophenol	-	-	J	0.6 1.7 3 0.21	U U	50* 1	-	U	0.69	U U	0.69	U U

Notes:

⁽¹⁾Suffolk County Dept. of Health Services, Article 12 - SOP 9-95, Action Levels, July 1998.

(2) - NYSDEC Ambient Water Quality Standards and Guidance Values 6/1998

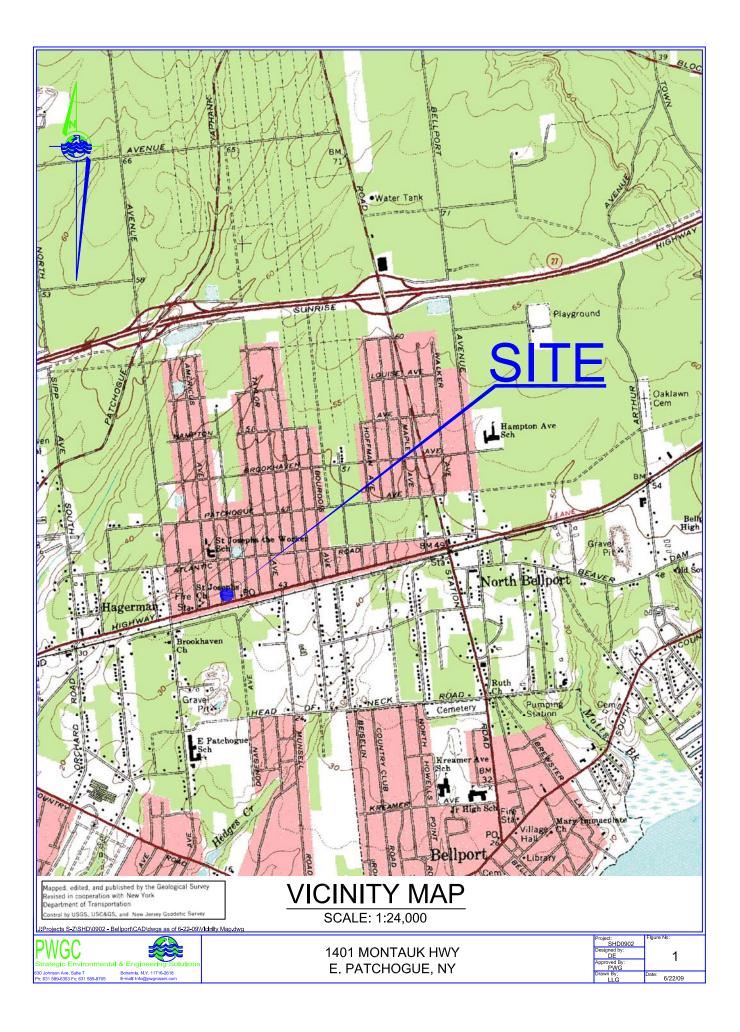
U - The analyte was analyzed for, but was not detected above the reported sample quantification limit. The associated numerical value is the sample quantitation limit. J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

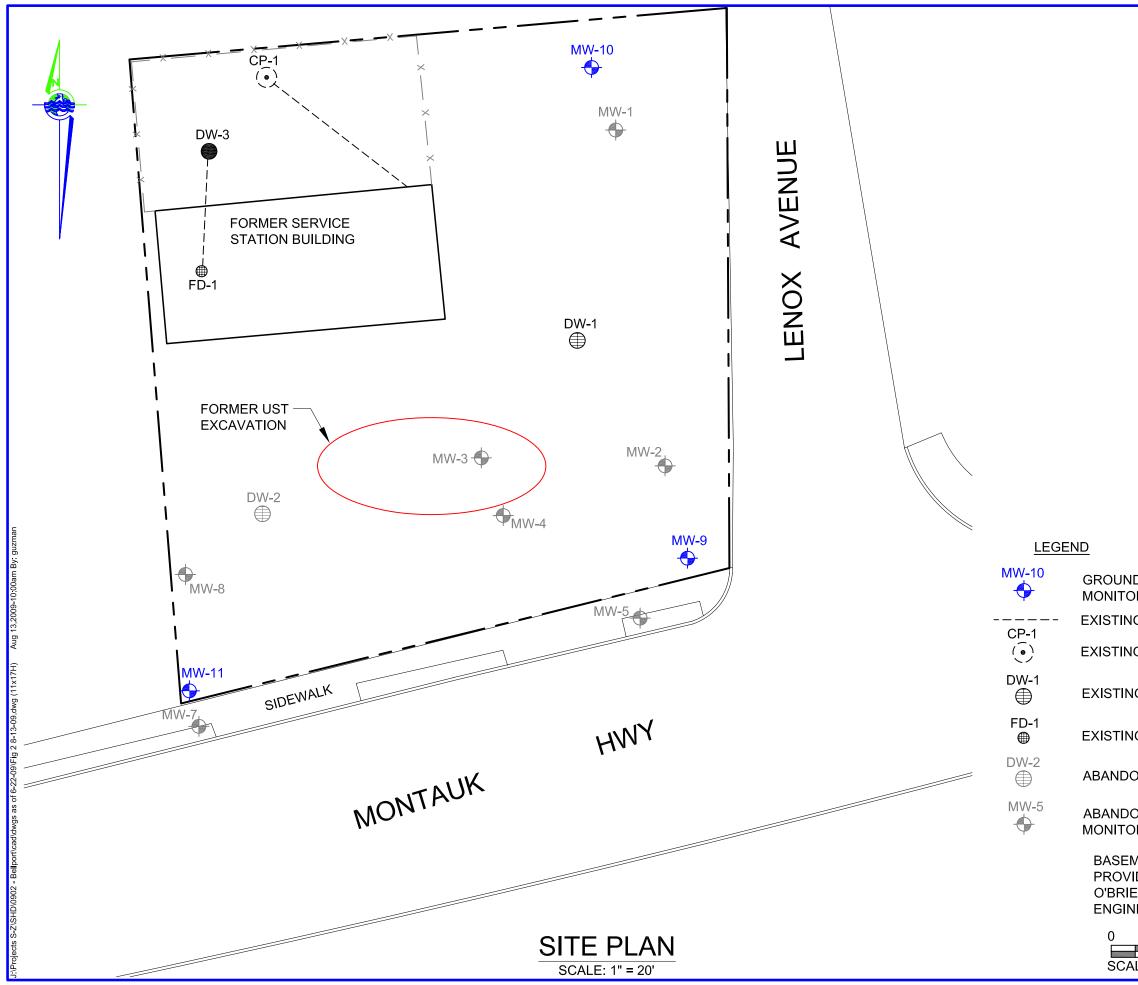
R - The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified. The R replaces the numerical value or sample quantitation limit. In some instances (e.g., a dilution) a result may be indicated as "rejected" to avoid confusion when a more quantitatively accurate result is available.

TABLE 13 QA/QC Analytical Results - Metals USEPA Method 6010

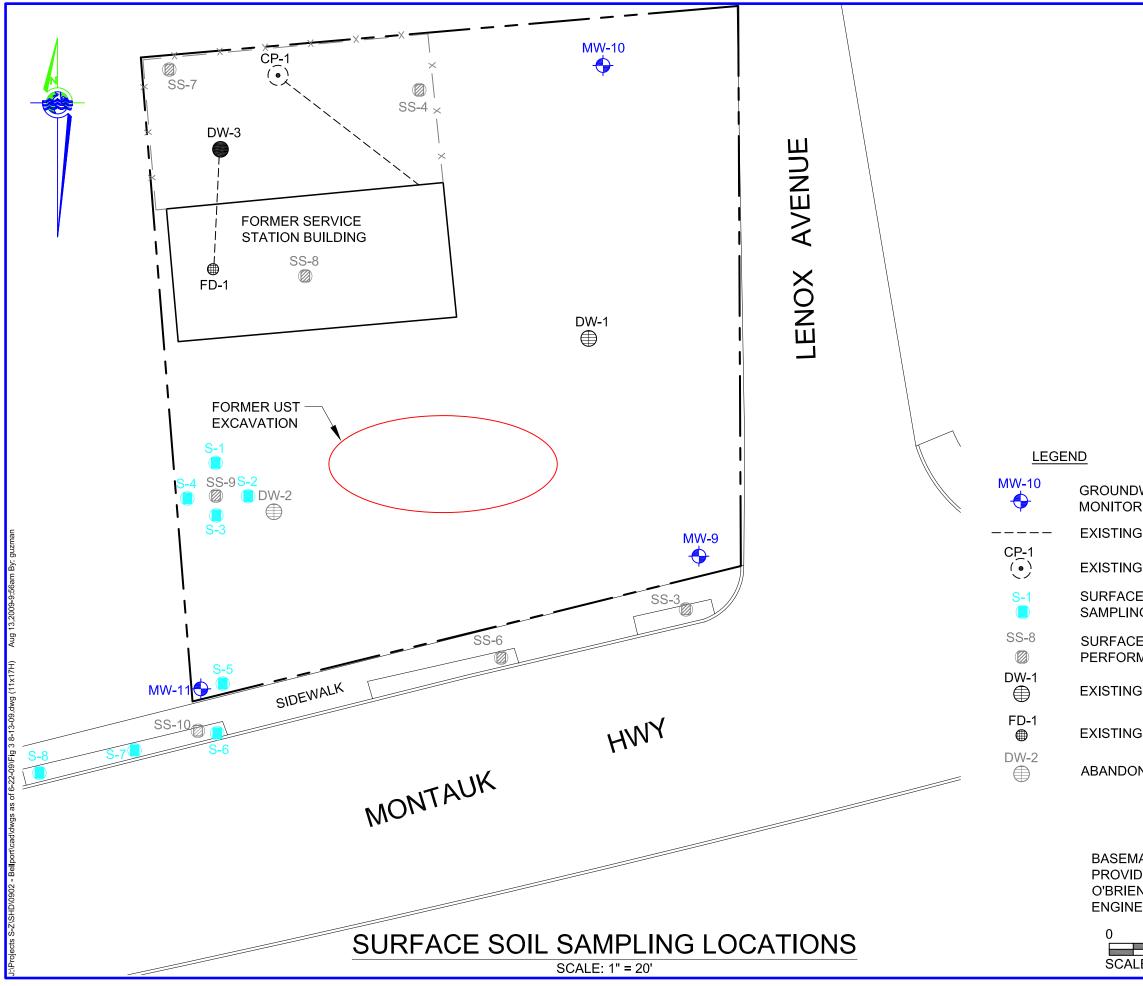
Former Bellport Gas Station - 1401 Montauk Highway - East Patchogue - New York

	SCDHS		NYSDEC		EE	3-03	EB-04				
Analyte	Action Levels ⁽²⁾	DUP-01 (CP-01)	Groundwater Standards ⁽²⁾	DUP-04 (MW-9)	Total	Dissolved	Total				
Metals - USEPA Method 6010 - mg/kg))		Metals - USEPA Method 6010 - mg/L								
Aluminum as Al	-	-	NS	34	0.0416 J	0.0413 J	0.0427 J				
Antimony as Sb	-	-	0.003	0.008 U	0.008 U	0.008 U	0.008 U				
Arsenic as As	25	6.16	0.025	0.0156	0.0042 U	0.0042 U	0.0042 U				
Barium as Ba	-	-	1	0.16	0.004 U	0.004 U	0.004 U				
Beryllium as Be	8	0.13	J 0.003	0.00158 J	0.0007 U	0.0007 U	0.0007 U				
Cadmium as Cd	10	5.41	J 0.005	0.00075 J	0.0005 U	0.0005 U	0.0005 U				
Calcium as Ca	-	-	NS	31.5	1.03	0.917 J	0.755 J				
Chromium as Cr	100	22.1	0.05	0.0663	0.0011 U	0.0011 U	0.0011 U				
Cobalt as Co	-	-	NS	0.01 J	0.0058 U	0.0058 U	0.0058 U				
Copper as Cu	500	214	0.2	0.0678	0.0066 U	0.0066 U	0.0066 U				
Iron as Fe	-	-	0.5	48.6	0.0332 J	0.0405 J	0.191				
Lead as Pb	400	773	0.025	0.128	0.0026 U	0.0026 U	0.0026 U				
Magnesium as Mg	-	-	35	14	0.0455 J	0.0792 J	0.0904 J				
Manganese as Mn	-	-	0.3	0.305	0.00192 J	0.00234 J	0.00304 J				
Mercury as Hg	2	0.687	J 0.0007	0.00031	0.00009 U	0.00009 U	0.00009 U				
Nickel as Ni	1,000	9.9	0.1	0.0238	0.0042 U	0.0042 U	0.0042 U				
Potassium as K	-	-	NS	7.02	0.345 J	0.346 J	0.293 J				
Selenium as Se	-	-	0.01	0.00731 J	0.0048 U	0.0048 U	0.0048 U				
Silver as Ag	100	2.29	0.05	0.0015 U	0.0015 U	0.0015 U	0.0015 U				
Sodium as Na	-	-	20	36.9	1.08	1.2	0.402 J				
Thallium as Tl	-	-	0.0005	0.0024 U	0.0024 U	0.0024 U	0.0024 U				
Vanadium as V	-	-	NS	0.0939	0.0061 U	0.0061 U	0.0061 U				
Zinc as Zn	-	-	2	0.265	0.00726 J	0.0153 J	0.0118 J				

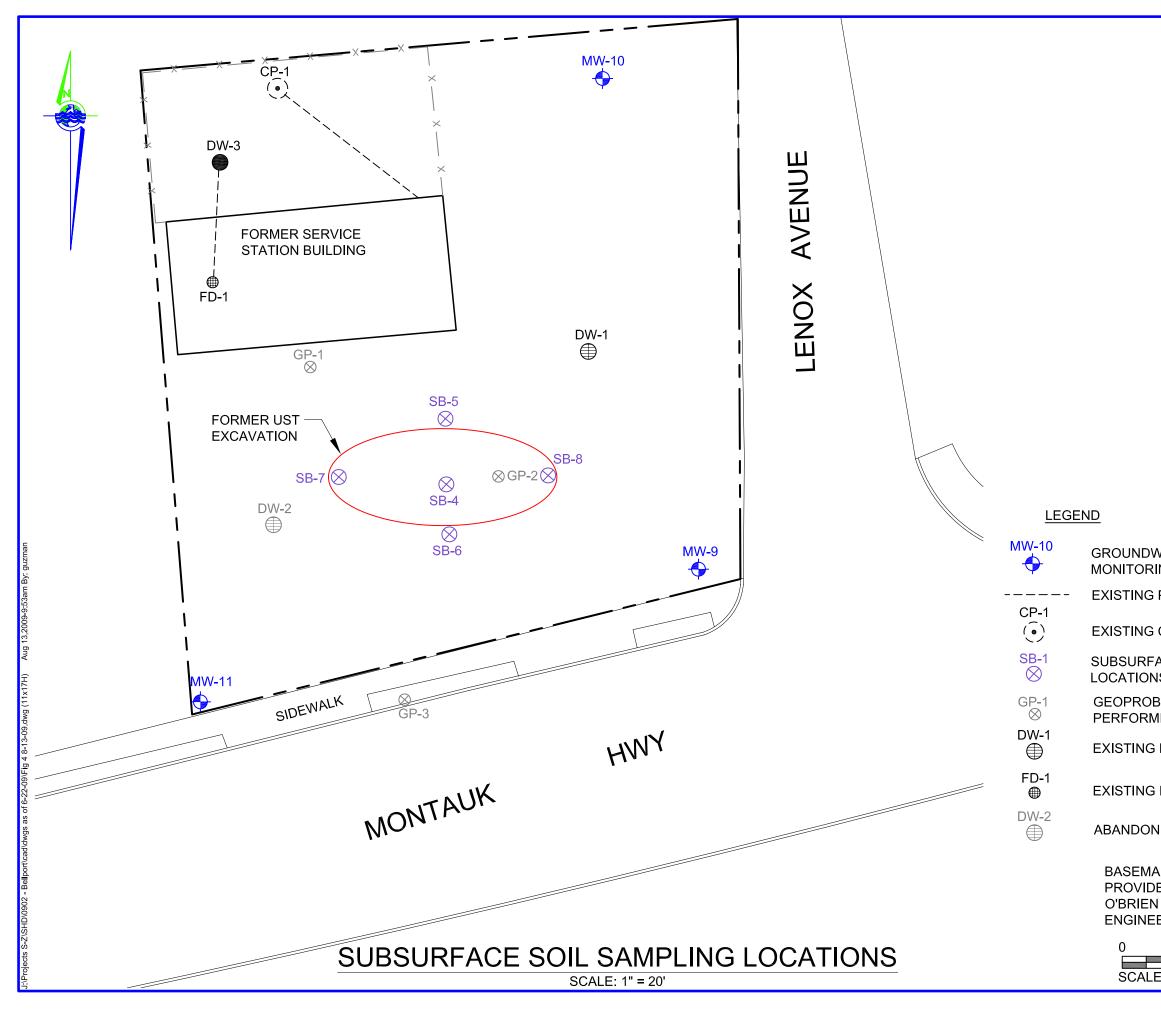

Notes:

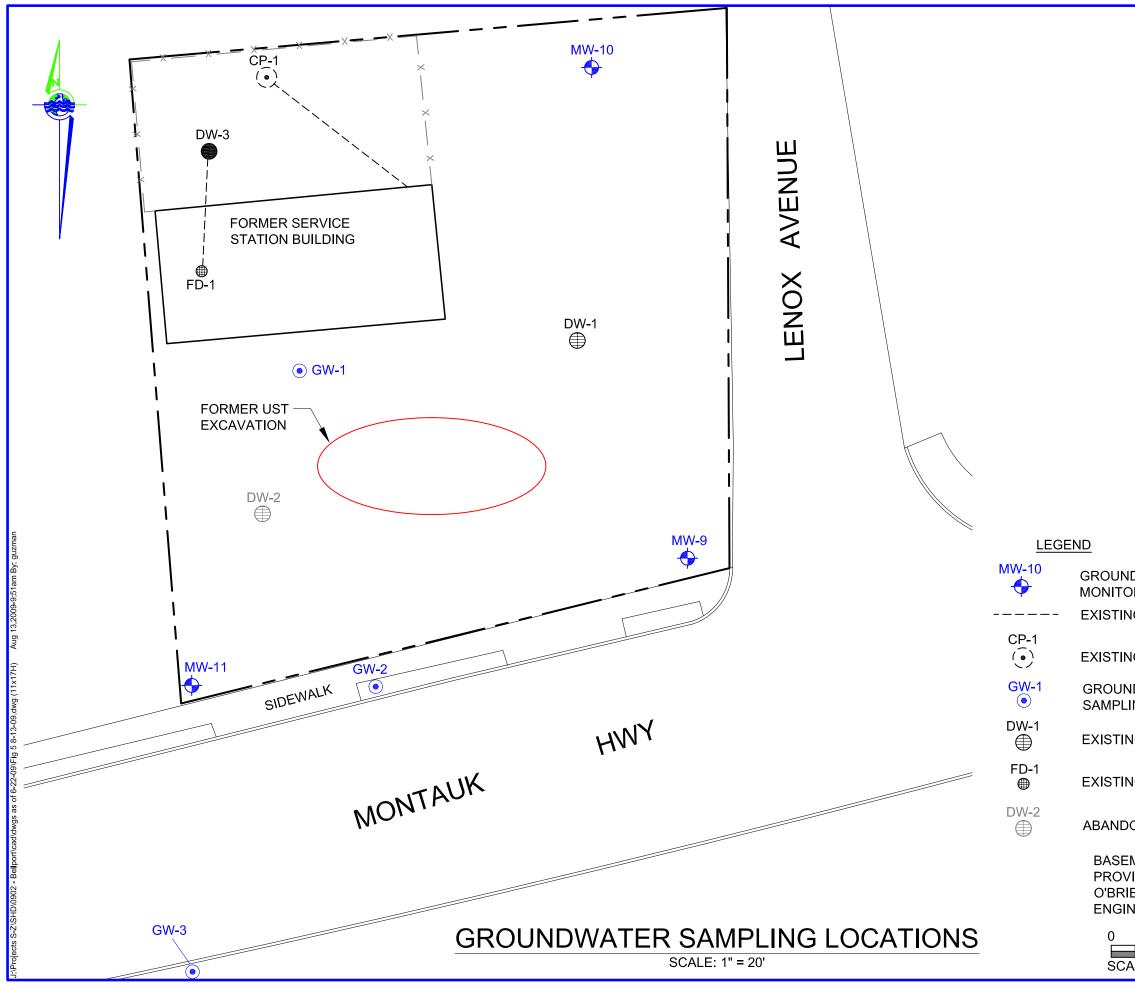

⁽¹⁾Suffolk County Dept. of Health Services, Article 12 - SOP 9-95, Action Levels, July 1998.

(2) - NYSDEC Ambient Water Quality Standards and Guidance Values 6/1998

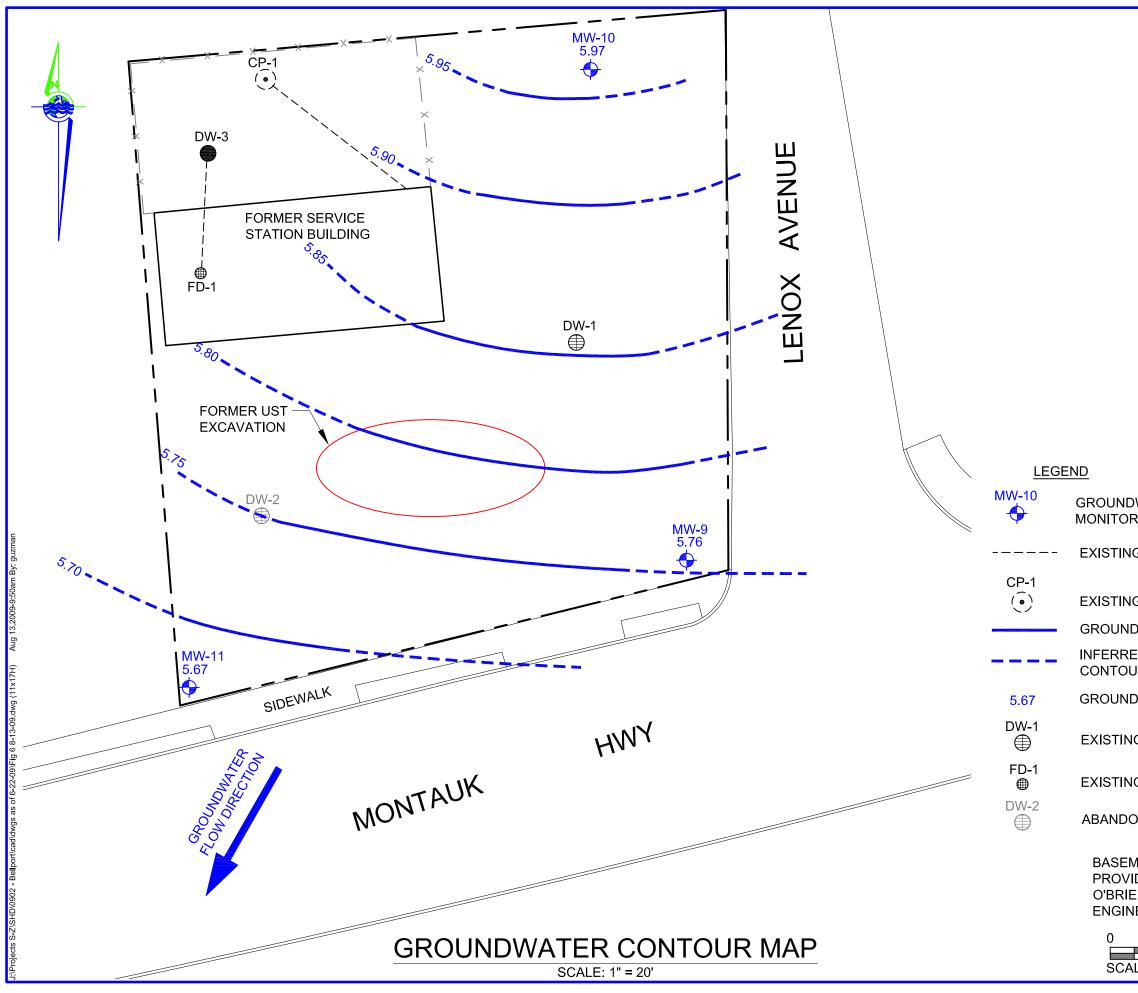

U - The analyte was not detected above the reported sample quantification limit. The associated numerical value is the sample quantitation limit.
 J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
 Bold / Shaded text denotes concentrations exceeding NYSDEC Unrestricted Use SCO

FIGURES

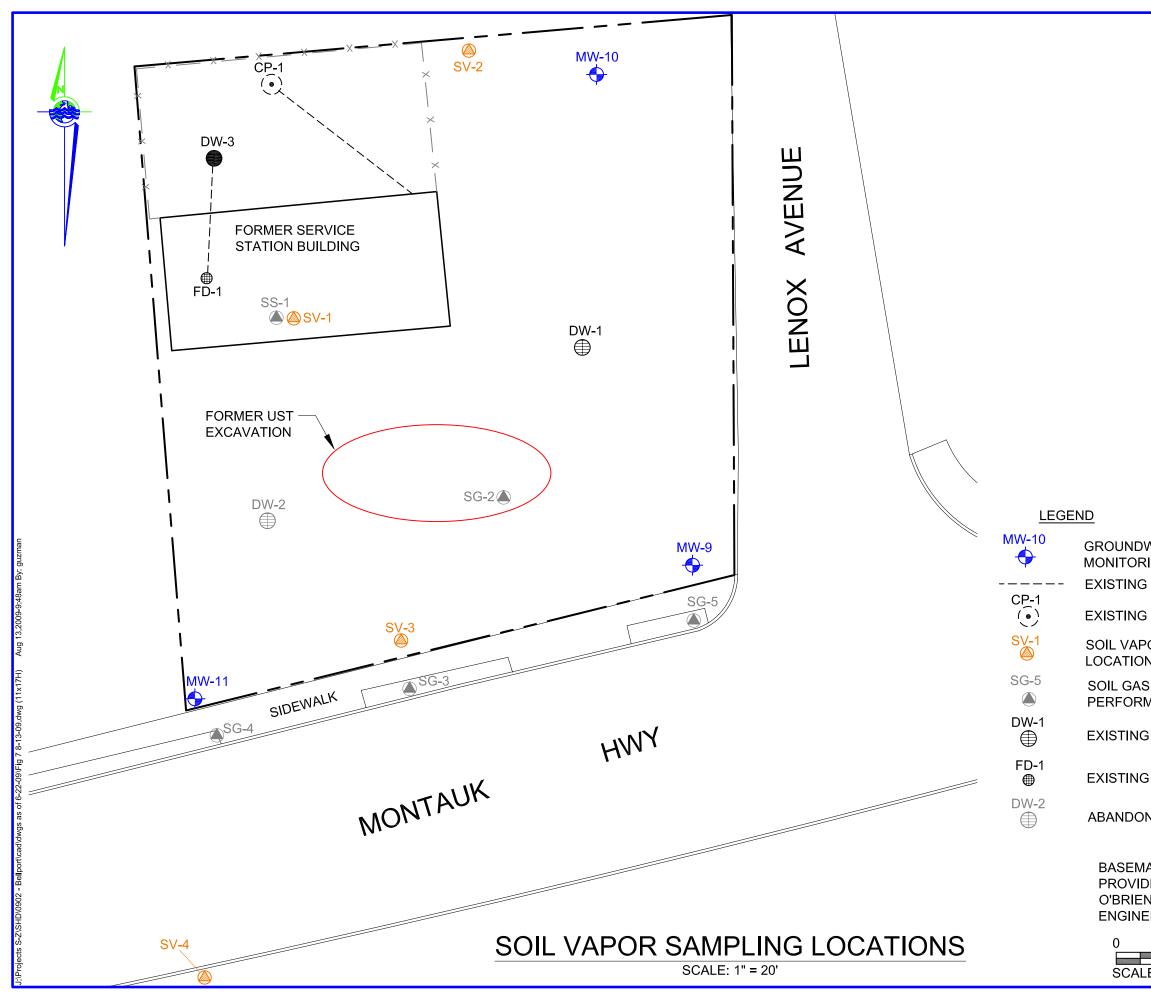



	PWGC Image: Strategic Environmental & Engineering Solutions
	630 JOHNSON AVE, + SUITE 7 BOHEMIA - NY - 11716-2618 PH: (631)589-6353 - FX: (631)589-8705 E-MAIL: INFO@PWGROSSER.COM CONSULTANTS
	UNAUTHORIZED ALTERATION OR ADDITION TO THIS DRAWING
	AND RELATED DOCUMENTS IS A VIOLATION OF SEC, 7209 OF THE N.Y.S. EDUCATION LAW DRAWINGS PREPARED FOR
DWATER DRING WELL G PIPE	
G CESSPOOL	
G DRYWELL	
IG FLOOR DRAIN	REVISION DATE INITIAL COMMENTS DRAWING INFORMATION PROJECT: SHD0902 APPROVED BY: PWG DESIGNED BY: DE DATE: 6/22/09
ONED DRYWELL	DRAWN BY: LLG SCALE: AS SHOWN SHEET TITLE
ONED GROUNDWATER DRING WELL	SITE PLAN FORMER BELLPORT GAS STATION SITE
MAP & INFORMATION IDED BY: EN & GERE	1401 MONTAUK HWY E. PATCHOGUE, NY
IEERS INC. 20 40	PIGURE NO 2
LE: 1" = 20'	SHEET OF -

	PWGCImage: Strategic Environmental & Engineering Solutions
	630 JOHNSON AVE, - SUITE 7 BOHEMIA - NY - 11716-2618 PH: (531)589-633 - FX: (631)589-8705 E-MAIL: INFO@PWGROSSER.COM CONSULTANTS
WATER RING WELL	UNAUTHORIZED ALTERATION OR ADDITION TO THIS DRAWING AND RELATED DOCUMENTS IS A VIOLATION OF SEC, 7209 OF THE VIS, EDUCATION LAW DRAWINGS PREPARED FOR
) PIPE	
CESSPOOL	
E SOIL G LOCATIONS	
E SOIL SAMPLE MED BY O'BRIAN & GERE	
B DRYWELL	Image:
FLOOR DRAIN	REVISION DATE NITIAL COMMENTS DRAWING INFORMATION PROJECT: SHD0902 APPROVED BY: PWG DESIGNED BY: pr DATE: 02000
NED DRYWELL	DRAWN BY: LLG SCALE: AS SHOWN SHEET TITLE
	SURFACE SOIL SAMPLING LOCATIONS
AP & INFORMATION DED BY:	FORMER BELLPORT GAS STATION SITE 1401 MONTAUK HWY
N & GERE EERS INC.	E. PATCHOGUE, NY
20 40	SHEET
E: 1" = 20'	OF -



	PWGC Strategic Environmental & Engineering Solutions
	630 JOHNSON AVE. • SUITE 7 BOHEMIA • NY • 11716-2618 PHI: (831)589-635 • FX: (631)589-8705 E-MAIL: INFO@PWGROSSER.COM CONSULTANTS
	UNAUTHORIZED ALTERATION OR ADDITION TO THIS DRAWING AND RELATED DOCUMENTS IS A VIOLATION OF SEC. 7289 OF THE N.Y.S. EDUCATION LAW DRAWINGS PREPARED FOR
VATER NG WELL PIPE	
CESSPOOL	
ACE SOIL SAMPLING IS	
BE SAMPLING LOCATIONS IED BY: O'BRIEN & GERE	
DRYWELL	REVISION DATE INITUAL/COMMENTS DRAWING INFORMATION PROJECT: PROJECT: PROJECT: SHD0902 APPROVED BY: DESIGNED BY: DE DATE: 6/22/09
FLOOR DRAIN	DRAWN BY: LLG SCALE: AS SHOWN SHEET TITLE
IED DRYWELL	SUBSURFACE SOIL SAMPLING LOCATIONS
AP & INFORMATION ED BY: I & GERE	FORMER BELLPORT GAS STATION SITE 1401 MONTAUK HWY E. PATCHOGUE, NY
ERS INC.	FIGURE NO 4
20 40 E: 1" = 20'	SHEET - OF -


		PH: (6	631)589 AIL: IN	9-6353	•
	CONSULT				
	UNAUTH				
			209 OF	THE N.)	
	DRAWING	S PREP/	ARED FO)R	
NDWATER					
ORING WELL					
ING PIPE					
ING CESSPOOL		<u> </u>			
INDWATER					
LING LOCATIONS	REVISION				
	DRAWING			COMME	
ING DRYWELL	PROJECT		SHD09	02	
	DESIGNE DRAWN B		DE		
	SHEET T		LLG		
ING FLOOR DRAIN					
	GRC	UN	D٧	/AT	
			LO	CA	•
DONED DRYWELL					
	F	OR	MER	BE	
EMAP & INFORMATION					
VIDED BY:		14(01 N		
RIEN & GERE		E.	PA	ГСН	(
SINEERS INC.	FIGURE N)	~		
			5		
20 40					
	SHEET		_	0	1
CALE: 1" = 20'					
					•

UNDWATER ITORING WELL	UNAU'
STING PIPE	
TING CESSPOOL	
UNDWATER CONTOUR	
RRED GROUNDWATER	
UNDWATER ELEVATION	
STING DRYWELL	REVISIO DRAWI PROJE DESIGI DRAWI
STING FLOOR DRAIN	SHEET
NDONED DRYWELL	
SEMAP & INFORMATION ROVIDED BY: BRIEN & GERE	
IGINEERS INC.	FIGURE
0 20 40 SCALE: 1" = 20'	SHEET

	PWGC Strategic Environmental & Engineering Solutions
	630 JOHNSON AVE, + SUITE 7 BOHEMIA + NY + 11716-2618 PH: (631)698-633 - FX: (631)598-8705 E-MAIL: INFO@PWGROSSER.COM CONSULTANTS
	UNAUTHORIZED ALTERATION OR ADDITION TO THIS DRAWING AND RELATED DOCUMENTS IS A VIOLATION OF SEC, 7209 OF THE N.Y.S. EDUCATION LAW DRAWINGS PREPARED FOR
VATER ING WELL PIPE	
CESSPOOL	
OR SAMPLING NS	
SAMPLE MED BY: O'BRIEN & GERE	
DRYWELL	REVISION DATE INITIAL/COMMENTS DRAWING INFORMATION PROJECT: SHD0902 APPROVED BY: PWG DESIGNED BY: pr DATE: 02000
FLOOR DRAIN	DRAWN BY: LLG SCALE: AS SHOWN SHEET TITLE
NED DRYWELL	SOIL VAPOR SAMPLING LOCATIONS
AP & INFORMATION ED BY: N & GERE ERS INC.	FORMER BELLPORT GAS STATION SITE 1401 MONTAUK HWY E. PATCHOGUE, NY
20 40 E: 1" = 20'	меет _ оғ _

APPENDIX A SCDHS EMERGENCY IRM INFORMATION DW-2 SOIL REMEDIATION

The Former Bellport Gas Station 1401 Montauk Highway, East Patchogue DEC Site Number E152194

Emergency Intermediate Remedial Action (IRM) DW-2 Soil Remediation

On October 7, 2008 between 8:30 AM and 1:30 PM, SCDPW performed an emergency IRM remedial action of DW-2. SCDHS provided oversight and obtained endpoint samples.

A supersucker was used to skim off the storm water from the recent storms. There was about 3.5 feet of storm water. The hose was measured and marked off so that sludge and soil was not yet removed (Photo #1 attached). The clean storm water (verified by past sampling) was discharged to another storm drain DW-1 on the site. This storm drain will be sampled under the workplan being prepared by the county's consultant PW Grosser. After the removal of the water, the supersucker was used to remove the solids from the bottom of the drain. Solids were removed from a depth of about 7' bgs to a depth of about 12' bgs. The approved IRM workplan called for a removal to a depth of 10'. An extra 2' of solids was removed. Endpoints samples for VOCs, SVOCs and metals were obtained by Ed Geoghegan of the SCDHS Office of Pollution Control. The endpoint sample was a clean stain free sandy material with no noticeable odors (Photo #2 attached). Samples will be analyzed for VOCs and heavy metals by the SCDHS laboratory. SVOCs will be analyzed by Long Island Analytical in Holtsville. All samples placed in cooler with ice and delivered to the labs the same day.

A double 5 mil plastic sheeting (Photo #3 attached) was spread out behind the eastern most bay door, which was removed. The solid material was dumped out the back of the supersucker onto the tarp, which is over a concrete floor. There was approx. 5 yards of solids removed from the storm drain (Photo #4 attached). The bay drain was reframed and boarded up with plywood (picture attached). The solids will be properly disposed at a later date along with other materials as per the workplan, which is being prepared by the PW Grosser.

The DW-2 storm drain was backfilled with 12 yards of "certified clean fill". The area was brought to grade and marked off with SCDPW road marker drums (Photo #5 attached)

The Former Bellport Gas Station 1401 Montauk Highway, East Patchogue DEC Site Number E152194

Photo#1

Photo #2

Photo#3

The Former Bellport Gas Station 1401 Montauk Highway, East Patchogue DEC Site Number E152194

Photo#4

Photo #5

Field#: <u>COITAOUSIOOT</u> Date Collected: <u>10.007.08</u> Time Collected: <u>11.0000</u> Collected By: <u>Geogleonu</u> Suffolk County Department Division of Environment ELAPHI Industrial Analysis Rev	Americal Quality 10-08-00143 Laborz 10-08-00143 Labworks ID: PJ00143 Labworks ID: PJ00143 Field#: 001-720-081007
(Last Name)	· · · ·
Source of	A de la construcción de la const
Sample LolMor Bellport of	149
(to appear on reports) 11/2 A. A/LArthe Line	I CAST PACHIMICO MIX 1177)
1901 MONTAULE HW	<u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>
Comments: <u>pw#2 ENdp</u>	oint
Collection Point: Sanitary Pool Septi	
□ Tank □ Kitchen □ Bathroom	Outside Tap Well Other
Samples Thermally Preserved	
Volatile Organics Semi-Volatile Organic	
Chlorinated Pesticides Herbicide Metabolites	
☐ Microextractibles ☐ Aldicarb Pesticides	□ SPC □ Inorganics (NO ₃ ,Cl, etc.) □ Enterococci □ Perchlorate
Chlorinated Acids Dacthal	
□ Total Hardness □ PCB □ PAH	
Calcium Hardness TPH TCLI	
🗖 Total Solids 👘 🗖 Cyanide	
Suspended Solids Phenols	(Tritium, Gross Alpha, Gross Beta) TP DP (Tritium, Gross Alpha, Gross Beta)
Dissolved Solids Dissolved Solids Oil & Grease	
TOC DOC Fluoride	
Histamine EP Tox Hexavalent Chromin	
* Test Well is for wells used for testing only, not for drinking w	water wens. Development wens all riveler
Additional Field Data:	· · · · · · · · · · · · · · · · · · ·
	Sample Matrix 501
Chain of Custody Requested []	
Custody Section Relinquished By:	Received By:
Name Date	Name Date
Signature Time	Signature Time
Received By:	Received By:
Name Date	Name Date
Signature Time	Signature Time
Received By:	Received By:
Name Date	Name Date
Signature Time	Signature Time

SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES DIVISION OF ENVIRONMENTAL QUALITY PUBLIC AND ENVIRONMENTAL HEALTH LABORATORY - ELAP #10528

Field Number: 001-720-081007 10/7/2008 Collection Date: 11:00:00 AM Collection Time: GEOGHEGAN Collected By:

10-08-00143 Lab Number:

10/7/2008 Submission Date: PJ00143 Sample ID: Solid Sample Type:

Source: Former Bellport Gas, 1401 Montauk Hwy, East Patchogue/DW#2 Endpoint

GC/MS Analysis indicates presence of Hydrocarbons similar to those found in a petroleum distillate.

Some surrogate standard values are not within the acceptable limits.

VOLATILE ORGANIC ANALYSIS - EPA Method 8260B

* Indicates compound is on 597 Hazardous Substance List

DB#	Analyte	Conc. (ppb)
436	*Dichlorodifluoromethane	< 40
610	*Chloromethane	< 40
306	*Vinyl chloride	< 40
611	Bromomethane	< 40
612	Chloroethane	< 40
439	*Trichlorofluoromethane	< 40
453	*Diethyl ether	< 40
320	*Freon 113	< 40
307	*1,1-Dichloroethene	< 40
618	*Acetone	< 200
455	*Carbon Disulfide	< 40
466	*Allyl chloride	< 40
305	*Methylene chloride	< 40
309	*trans-1,2-Dichloroethene	< 40
614	tert-Butyl methyl ether	< 40
456	*Acryloni#ile	< 40
323	*1,1-Dichloroethane	< 40
457	*Vinyl acetate	< 200
650	tert-Butyl ethyl ether	< 40
450	2,2-Dichloropropane	< 40
308	*cis-1,2-Dichloroethene	< 40
619	*Methyl ethyl ketone	< 200
621	*Tetrahydrofuran	< 40
290	*Bromochloromethane	< 40
300	Chloroform	< 40
321	*1,1,1-Trichloroethane	< 40
304	Carbon tetrachloride	< 40
613	3 1.1-Dichloropropene	< 40
250) *Benzene	< 40
65	tert-Amyl methyl ether	< 40
324	1 *1,2-Dichloroethane	< 40
310) *Trichloroethene	< 40

DB# Analyte	Conc.(ppb)
405 *1,2-Dichloropropane	< 40
458 Methyl methacrylate	< 40
292 *Dibromomethane	< 40
302 *Bromodichloromethane	< 40
468 *2-Nitropropane	< 200
452 *2-Chloroethyl vinyt ether	< 200
407 cis-1,3-Dichloropropene	< 40
459 *Methyl isobutyl ketone	< 200
251 *Toluene	< 40
465 *Methyl isothiocyanate	< 40
408 *trans-1,3-Dichloropropene	< 40
469 Ethyl methacrylate	< 40
322 1,1,2-Trichloroethane	< 40
311 *Tetrachloroethene	< 40
451 *1.3-Dichloropropane	< 40
474 2-Hexanone	< 200
475 *n-Butyl acetate	< 40
303 *Chlorodibromomethane	< 40
293 *1,2-Dibromoethane	< 40
258 *Chlorobenzene	< 40
259 *Ethylbenzene	< 40
409 *1,1,1,2-Tetrachloroethane	< 40
255 Total Xylene	< 40
600 *Ethenylbenzene (Styrene)	< 40
301 *Bromoform	< 40
601 *Isopropylbenzene	< 40
257 Bromobenzene	< 40
295 *1,1,2,2-Tetrachloroethane	< 40
602 n-Propylbenzene	< 40
433 1,2,3-Trichloropropane	< 40
434 p-Ethyltoluene	< 40
419 1,3,5-Trimethylbenzene	< 40

D <u>B#</u>	Analyte	Conc.(ppb)
418	1.2.4-Trimethylbenzene	< 40
265	Total Chlorotoluene	< 40
603	tert-Butylbenzene	< 40
604	sec-Butylbenzene	< 40
460	d-Limonene	< 40
605	p-Isopropyltoluene	< 40
462	*1,3-Dichlorobenzene	< 40
463	*1,4-Dichlorobenzene	< 40
432	p-Diethylbenzene	< 40
652	trans-decahydronaphthalene	< 40
606	n-Butylbenzene	< 40
412	*1,2-Dichlorobenzene	< 40
653	cis-decahydronaphthalene	< 40
435	1,2,4,5-Tetramethylbenzene	< 40
437	*1,2,4-Trichlorobenzene	< 40
607	*Hexachlorobutadiene	< 40
701	*Naphthalene	< 40
438	1,2,3-Trichlorobenzene	< 40
654	*Hexane	< 100
655	Octane	< 100
656	Nonane	< 100
657	Decane	< 100
658	Undecane	< 100

87 Components

Note: Results based on wet weight (as received).

Analyst(s):

Report Date: 10/10/2008

Comments:

SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES DIVISION OF ENVIRONMENTAL QUALITY PUBLIC AND ENVIRONMENTAL HEALTH LABORATORY - ELAP #10528

SOLID and HAZARDOUS WASTE ANALYSIS

Field#: 001-720-081007

Collector:GEOGHEGANCollection Date:10/7/2008Collection Time:11:00:00 AM

Lab#: 10-08-00143

Submission Date 10/7/2008 Submission Time 2:30:00 PM Labworks ID: PJ00143

Source Former Bellport Gas, 1401 Montauk Hwy, East Patchogue/DW#2 Endpoint

Metal Analyses on Soil - Method SW846 6010B

DB#	Analyte	Result	Units
C0132	Aluminum	221.	ug/g
C0427	Antimony	< 10	ug/g
C0120	Arsenic	< 10	ug/g
C0121	Barium	< 10	ug/g
C0426	Beryllium	< 1	ug/g
C0122	Cadmium	< 2	ug/g
C0000	Calcium	< 100	ug/g
C0104	Chromium	< 10	ug/g
C0128	Cobalt	< 10	ug/g
C0102	Copper	< 10	ug/g
C0100	Iron	< 500	ug/g
C0123	Lead	< 10	ug/g
C0000	Magnesium	< 100	ug/g
C0101	Manganese	< 10	ug/g
C0129	Molybdenum	< 10	ug/g
C0131	Nickel	< 10	ug/g
C0000	Potassium	< 100	ug/g
C0125	Selenium	< 10	ug/g
C0126	Silver	< 2	ug/g
C0106	Sodium	< 500	ug/g
C0000	Strontium	< 10	ug/g
C0425	Thallium	< 10) ug/g
C0116	Tin	< 10) ug/g
C0115	Vanadium	< 10) ug/g
C0103	Zinc	< 10) ug/g
25 Compo	onents Note: Results ba	sed on wet weight	
	% Moisture	14	4 %

Analyst(s): MAE

Remarks:

NC.	
L Mes	
5 5 1	
STAN STAN STAN STAN	
SLAND SLAND ANALY ABOR	

ANALYTICAL ANALYTICAL LABOPATIOPER MC 11	10 Colin Drive • Holbrook. New	Pg 110 Colin Drive • Holbrook. New York 11741 • Phone (631) 472-3400 • Fax (631) 472-8505 • Email· 1141 @lialine-com	• Fax (631) 472-8505 • Er	Pgofofof
し	CHAIN OF CUSTODY	/ REQUEST FOR AN	FOR ANALYSIS DOCUMEN	ENT (0)
CLIENT NAME/ADDRESS	CONTACT: PHONE:	SAMPLER (SIGNATURE) DATE TIME SAMPLE(S) SEALE GUILLIN CONTUNE SAMPLER NAME (PRINT) DATE TIME CONBLECT-CONTAINE SAMPLER NAME (PRINT) DATE TIME CONBLECT-CONTAINE	TIME SAMPLE(S) SEALED	0041060
PROJECT LOCATION: LOUNE R	Ĵ,	60wARd Geogleyun	US/1-6-M YES/NO	*0041050*
TERMS & CONDITIONS: Accounts are pay charges of 1.5% per month. Tendering of se buyer/sampler to LIAL's Standard terms		AMPLES RECEIVED AT Inces accrue service Secret by Secret by Control of the service Secret by Sec		
LABORITORY	EN ESSING STE	SAMPLE # LOCATION	1000 - 5-1-5-2 CC - 5-1-5-2 CC - 5-1-5-2	
'l		C # MO		
2				
3				
4.				
.9				
7.				
øö				
9.				
10.				
11.				Tant I
12.				MT NEU
13.				8002 V - AN
14.				U OCT LA KORKS
MATRIX: S=SOIL; SL=SLUDGE; DW=DRINKING WATER; A=AIR; W=WPE; PC=PAINT CHIPS; BM= BULK MATERIAL, O=OIL, WW=WASTE WATER TYPE: G=GRAR: C=COMPOSITE: SS=SRI IT SPOON		TURNAROUND REQUIRED: COMMENTS / INSTRUCTIONS	VSTRUCTIONS	DEPT. OF PUNNSTE UN
		BY / /	(
RELINQUISHED BY (SIGNATURE)		RECEIVED BY (SIGNATURE)	ØRE) DATE	PRINTED NAME
Caller Sul (TIME 1.35		TIME	
Call III KONSTEDBY (SPENATURE)		RECEIVED BY SAMPLE	CUSTODIAN DATE UU-	PRINTED NAME
WHITE - OFFICE / CANARY - LAI	WHITE - OFFICE / CANARY - LAB / PINK - SAMPLE CUSTODIAN / GOLDENROD - OCIEM	GOLDENROD - OCIENT NYSROH ELAP# 11693	USEPA# NY01273	AIHA# 164456 CTDOH# PH-0284

2 of 3 pages	<u>.</u>
Client: SCDEW 5	Client ID: Former Bellport Gas, Bellport (DW #2)
Date received: 10/7/08	Laboratory ID: 1165803
Date extracted: 10/7/08	Matrix: Soil
Date analyzed: 10/7/08	ELAP #: 11693

EPA METHOD 8270

Parameter	CAS No.	MDL	Results ug/kg	Flag
N-NITROSODIMETHYLAMINE	62-75-9	43 ug/kg	<43	<u>_</u>
PHENOL	108-95-2	43 ug/kg	<43	
ANILINE	62-53-3	43 ug/kg	<43	
2-CHLOROPHENOL	95-57-8	43 ug/kg	<43	
Bis(2-CHLOROETHYL)ETHER	111-44-4	43 ug/kg	<43	
1,3-DICHLOROBENZENE	541-73-1	43 ug/kg	<43	
1,4-DICHLOROBENZENE	106-46-7	43 ug/kg	<43	
BENZYL ALCOHOL	100-51-6	43 ug/kg	<43	·
1,2-DICHLOROBENZENE	95-50-1	43 ug/kg	<43	
2-METHYLPHENOL	95-48-7	43 ug/kg	<43	
Bis(2-CHLOROISOPROPYL)ETHER	108-60-1	43 ug/kg	<43	
HEXACHLOROETHANE	67-72-1	43 ug/kg	<43	
3+4-METHYLPHENOL	15831-10-4	43 ug/kg	<43	
N-NITROSODI-n-PROPYL AMINE	621-64-7	43 ug/kg	<43	
NITROBENZENE	98-95-3	43 ug/kg	<43	
ISOPHORONE	78-59-1	43 ug/kg	<43	
2-NITROPHENOL	88-75-5	43 ug/kg	<43	
2,4-DIMETHYLPHENOL	105-67-9	43 ug/kg	<43	····
BENZOIC ACID	65-80-8	43 ug/kg	<43	
Bis(2-CHLOROETHOXY)METHANE	111-91-1	43 ug/kg	<43	
2,4-DICHLOROPHENOL	102-83-2	43 ug/kg	<43	
1,2,4-TRICHLOROBENZENE	120-82-1	43 ug/kg	<43	<u> </u>
NAPHTHALENE	91-20-3	43 ug/kg	<43	
4-CHLOROANILINE	106-47-8	43 ug/kg	<43	
HEXACHLOROBUTADIENE	87-68-3	43 ug/kg	<43	
4-CHLORO-3-METHYLPHENOL	59-50-7	43 ug/kg	<43	
2-METHYLNAPHTHALENE	91-57-6	43 ug/kg	<43	
HEXACHLOROCYCLOPENTADIENE	77-47-4	43 ug/kg	<43	
2,4,6-TRICHLOROPHENOL	88-06-2	43 ug/kg	<43	
2,4,5-TRICHLOROPHENOL	95-95-4	43 ug/kg	<43	
2-CHLORONAPHTHALENE	91-58-7	43 ug/kg	<43	· · · · · · · · · · · · · · · · · · ·
2-NITROANILINE	88-74-4	43 ug/kg	<43	<u> </u>
DIMETHYLPHTHALATE	131-11-3	43 ug/kg	<43	
ACENAPHTHYLENE	208-96-8	43 ug/kg	<43	······
2,6-DINITROTOLUENE	606-20-2	43 ug/kg	<43	e.
3-NITROANILINE	99-09-2	43 ug/kg	<43	

MDL = Minimum Detection Limit.

Calculated on a dry weight basis

3 of 3 pages

Client: SCDRW SCDHS	Client ID: Former Bellport Gas, Bellport (DW #2)
Date received: 10/7/08	Laboratory ID: 1165803
Date extracted: 10/7/08	Matrix: Soil
Date analyzed: 10/7/08	ELAP #: 11693

1

EPA METHOD 8270

CAS No.	MDL	Results ua/ka	Flag
83-32-9	43 ug/kg		
51-28-5			
132-64-9			
100-02-7		· · · · · · · · · · · · · · · · · · ·	
121-14-2			
86-73-7			
84-66-2		<43	
7005-72-3			
100-01-6			
534-52-1			·· _· ···
86-30-6			
103-33-3			
101-55-3			
118-74-1			
87-86-5			
85-01-8			
120-12-7			
86-74-8			
84-74-2			
206-44-0			
129-00-0			
85-68-7			·····
56-55-3			
218-01-9			······································
91-94-1			
117-81-7	533 ug/kg		
117-84-0			
			<u> </u>
	83-32-9 51-28-5 132-64-9 100-02-7 121-14-2 86-73-7 84-66-2 7005-72-3 100-01-6 534-52-1 86-30-6 103-33-3 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7 86-74-8 84-74-2 206-44-0 129-00-0 85-68-7 56-55-3 218-01-9 91-94-1	83-32-9 43 ug/kg 51-28-5 43 ug/kg 132-64-9 43 ug/kg 100-02-7 43 ug/kg 121-14-2 43 ug/kg 86-73-7 43 ug/kg 7005-72-3 43 ug/kg 100-01-6 43 ug/kg 7005-72-3 43 ug/kg 100-01-6 43 ug/kg 534-52-1 43 ug/kg 103-33-3 43 ug/kg 101-55-3 43 ug/kg 101-55-3 43 ug/kg 101-55-3 43 ug/kg 86-30-6 43 ug/kg 101-55-3 43 ug/kg 87-86-5 43 ug/kg 87-86-5 43 ug/kg 86-74-8 43 ug/kg 86-74-8 43 ug/kg 84-74-2 533 ug/kg 206-44-0 43 ug/kg 129-00-0 43 ug/kg 129-00-0 43 ug/kg 129-01-0 43 ug/kg 129-01-0 43 ug/kg 129-01-0 43 ug/kg 129-01-0 43 ug/kg	83-32-9 $43 ug/kg$ <43 $51-28-5$ $43 ug/kg$ <43 $132-64-9$ $43 ug/kg$ <43 $100-02-7$ $43 ug/kg$ <43 $121-14-2$ $43 ug/kg$ <43 $86-73-7$ $43 ug/kg$ <43 $86-73-7$ $43 ug/kg$ <43 $86-6-2$ $43 ug/kg$ <43 $7005-72-3$ $43 ug/kg$ <43 $100-01-6$ $43 ug/kg$ <43 $534-52-1$ $43 ug/kg$ <43 $103-33-3$ $43 ug/kg$ <43 $101-55-3$ $43 ug/kg$ <43 $101-55-3$ $43 ug/kg$ <43 $118-74-1$ $43 ug/kg$ <43 $87-86-5$ $43 ug/kg$ <43 $85-01-8$ $43 ug/kg$ <43 $86-74-8$ $43 ug/kg$ <43 $86-74-8$ $43 ug/kg$ <43 $85-68-7$ $43 ug/kg$ <43 $129-00-0$ $43 ug/kg$ <43 $206-44-0$ $43 ug/kg$ <43 $85-68-7$ $43 ug/kg$ <43 $218-01-9$ $43 ug/kg$ <43 $218-01-9$ $43 ug/kg$ <43 $205-99-2$ $43 ug/kg$ <43 $205-99-2$ $43 ug/kg$ <43 $207-08-9$ $43 ug/k$

MDL = Minimum Detection Limit.

Calculated on a dry weight basis

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741Phone (631) 472-3400 • Fax (631) 472-8505 • Email: LIAL@lialinc.com "TOMORROWS ANALYTICAL SOLUTIONS TODAY"

INVENTORY= FAX NO. PAGE 01 P. 01/01

104 Rocky Point Road - Middle Island, N.Y. 11953 - (631) 924-4100 - Fax (631) 924-4705

AGGREGATE CERTIFICATION

October 3, 2008

Bove Industries 16 Hulse Road East Setauket, New York 11733

Dear Valued Customer,

Roanoke Sand & Gravel certifies that the natural sand and gravel products mined and processed at our Middle Island, NY plant conform to the standard specification for Concrete Aggregates - Designation C-33 -03 as published in the annual book of ASTM Standards, and NYSDOT Materials Item 703-07 Concrete Sand. To the best of our knowledge, our sand products are free of any hazardous materials or contamination and are clean virgin materials.

Our sand and gravel products are also currently approved by the NEW YORK STATE DEPARTMENT OF TRANSPORTATION and appear on their approved list of fine and coarse aggregates. Our current Source Number is 10-16F,G, G1: our current Sand Test Number is 08AF169; our current Screened Gravel Test Number is 06AG41, and dur current Crushed Gravel Test Number is 07AG38C.

Our mining site operates under the Environmental Conservation Law with a permit authorized by the New York State Department Of Environmental Conservation.

You may also visit us at our website : Roanokesand.com

It you require any additional technical information or assistance, please contact

Tom O'Connor @ 631 (24-4100 ext. 110.

We appreciate your business and look forward to continue supplying you with quality aggregates.

Sincerely.

Daniel Barker Roanoke Sand & Gravel Corp.

PORNoke Band & Graver Colp. PATTAL FAIR YOUND & Block Here is the Centificate for the clean Here is the Centificate for the clean Fill. Let MR KNOW if this is OK. I'm holding celivery. Hank you Stank Jou Stank Jou Stank Jou Stank Jou Stank Jou

chill mi tule

Forward to Kathy Laguardia

DIV. # :	HWY08-04.7
(P.O. #)P.D.Q :	······································
SHOP # :	

SUFFOLK COUNTY DEPARTMENT OF PUBLIC WORKS DIVISION OF

DPW REQUISITION

DATE: 10/2/2008	FUND/ORG/OBJ. 105-5110-3230
DELIVERY DATE :	SHIP TO CODE : 147
SUGGESTED VENDOR : BOVE INDUSTRIES	
<u>16 HULSE RD.</u>	Yaphank Ave. Yaphank NY 11980
EAST SETAUKET, NY 11733	CONTRACT NO. : NO
VENDOR ID # 112733094	CONTRACT EXPIRES :
CONTACT PERSON : (631)331-8500 Fax : 331-8523	BSR NO. :

JUSTIFICATION : BACKFILL STORM DRAIN AT 1401 MONTAUK HWY, NORTH BELLPORT EMERGENCY

COMM CODE	ITEM NO,	QTY.	UNIT	DESCRIPTION	UNIT	TOTAL
75077	I	12	YD\$	CLEANFILL HIVE	\$58.34	\$700.08
) 	CERTIFICATION LETTER NEED FAX to 631-852.		
				DELIVER TO 1401 MONTAUK HWY, NORTH BELLPORT		
			·		Totel :	\$700.08

Deliver Monday 10/6/03

Enic ATTENTION

Vendors, in order to expedite payment please have the following statement on each invoice and have an officer of the company sign: I hereby certify that this invoice is just and true and has not been paid.

C. Mitchell	852-4261			
RESPONSIBLE PERSON	PHONE #	DPW BUDGET APPROVAL	•	DATE
DIV. HEAD APPROVAL	DATE	DPW PURCHASING APPROVAL	•	DATE

APPENDIX B SOIL BORING LOGS

				Boring # SB-4	MW#	Page 1	of 5
P.W .	GROS	SER		PROJECT: Former E			1
CONSU	JLTING, INC).		JOB # SHD0902			
				LOGGED BY:	DE	PRJ. MNGR.:	ZY
		T Former US Excavation		DRILLING CONTRA			21
Form	ner Service		Lenox Avenue	DRILL METHOD: G			
Stati	on Building		ē		•		
		- /	∀ ×	DRILLER: Ernesto Borehole diameter/dr			1
			oue l		in bit type.	total depth	25'
		SB-4		Macrocore (2" o	diameter)	elevation	NA
				HAMMER WT: NA		DROP: NA	
		Montauk H	WV	START TIME: 9:45		DATE: 5/19/200)9
Approxir	nate boreho	le locations at	t site	COMPLETION TIME	: 10:23	DATE: 5/19/200)9
				BACKFILL TIME: 10	:25	DATE: 5/19/200)9
Sample	Advance	Recovered	Soil Desc	ription	Nataa	Casing depth:	NA
Depth	(ft)	(ft)	Unified Soil Classi	fication System	Notes	Screen depth:	NA
0-4'	4	2.5	0-2': 0.25' Asphalt. 1' Dry brown sand. (SW)	/, well graded dark	PID = 0.3 ppn	n	
0 4	7	2.5	2-4': 1.25' Dry, well grade gravel. (SW)	ed brown sand with	PID = 0.8 ppn	n	
			4-6': 1' Dry, well graded l	brown sand with	PID = 2.8 ppn	n	
4-8'	4	2	gravel. (SW) 6-8': 0.5' Dry, well graded		PID = 1.7 ppm		
			gravel. (SW) 0.5' Moist, o	clayey gray sanu.			
8-12'	4	2.5	8-10': 1.25' Dry, well grad with gravel. (SW)	-	PID = 2.0 ppn	n	
			10-12': 1.25' Dry, well grassing sand with gravel. (SW)	aded light brown	PID = 1.4 ppn	n	
			12-14': 1.25' Dry, well gra	aded light brown			
12-16'	4	2.5	sand with gravel. (SW) 14-16': 1.25' Dry, well gra	-	PID = 0.8 ppn	n	
			sand with gravel. (SW)		PID = 1.5 ppn	n	
16-20'	4	3	16-18': 1.5' Moist, well gr sand with gravel. (SW)	-	PID = 0.9 ppn	n	
10-20	4		18-20': 0.75' Moist, well of sand with gravel. (SW) of light brown sand with gravel.	.75' Wet, well graded	PID = 1.0 ppn	n	
			20-22': 1.5' Wet, well gra with gravel. (SW)	ded light brown sand	PID = 1.5 ppn	n	
20-24'	4	3	22-24': 0.75' Wet, well gr sand with gravel. (SW) 0 gray sand with gravel. (S	.75' Wet, well graded	PID = 265 ppi	m	
24-25'	1	1	24-25': 1' Wet, well grade with gravel. (SW)	ed light brown sand	PID = 5.3 ppn	n	
					Soil samples from 22-24' @	collected from 1 2 10:23.	6-18' @ 10:22

					Boring # SB-5	MW#	Page 2	of 5
P.W .	GROS	SER			PROJECT: Former E	1		
CONSU	JLTING, INC).			JOB # SHD0902			
					LOGGED BY:	DE	PRJ. MNGR.:	ZY
		Former US Excavation		0	DRILLING CONTRA		1	1
	ner Service			nue	DRILL METHOD: G			
Stati	on Building			Ave	DRILLER: Ernesto			
		• •		-enox Avenue	Borehole diameter/di		total damath	051
		K		eu '			total depth	25'
		SB-5	5		Macrocore (2" o	diameter)	elevation	NA
					HAMMER WT: NA		DROP: NA	
		Montauk H	wv		START TIME: 10:48	3	DATE: 5/19/200)9
Approxir	nate boreho	le locations at	t site		COMPLETION TIME	: 11:12	DATE: 5/19/200)9
					BACKFILL TIME: 11	:13	DATE: 5/19/200)9
Sample	Advance	Recovered		Soil Desc		Notes	Casing depth:	NA
Depth	(ft)	(ft)	<u> </u>	Unified Soil Classi	fication System	Notes	Screen depth:	NA
0-4'	4	3.5		.5' Asphalt. 1.25' D sand. (SP)	0ry, poorly graded	PID = 0.6 ppn	n	
			2-4': 1. gravel.		ed brown sand with	PID = 0.1 ppn	n.	
			4 6 4	75' Dry well grade	ad light brown cond			
4-8'	4	3.5	with ar	avel. (SW)	ed light brown sand	PID = 0.0 ppn	n.	
				avel. (SW)	ed light brown sand	PID = 0.0 ppn	n.	
			0.401					
8-12'	4	3.5	with ar	avel. (SW) 1.75' Dry, well grad 1.75' Dry, well grad	ded light brown sand.	PID = 0.0 ppn		
				vith gravel. (SW)		PID = 0.0 ppr	n.	
			10-12':	: 1.75' Dry, well gra	aded light brown	PID = 0.0 ppr	<u></u>	
12-16'	4	3.5	sand w	vith gravel. (SW) 1.75' Dry, well gra	-			
				vith gravel. (SW)		PID = 0.0 ppr	n.	
			ļ					
				: 1.75' Moist, well (vith gravel. (SW)	graded light brown	PID = 0.0 ppr	n.	
16-20'	4	3.5	with gr	: 1' Moist, well grad avel. (SW) 1' Wet, sand with gravel.		PID = 0.0 ppr	n.	
20-24'	4	3.5		: 1.75' Wet, well gr vith gravel. (SW)	aded light brown	PID = 0.2 ppr	n.	
20-24	4	5.5		: 1.75' Wet, well gr vith gravel. (SW)	aded light brown	PID = 610 pp	m.	
24-25'	1	0.5		: 0.5' Wet, well gra avel. (SW)	ded light brown sand	PID = 3.8 ppr	n.	
						Soil samples from 22-24' @	collected from 1 2 11:12.	6-18' @ 11:11

					Boring # SB-6	MW#	Page 3	of 5	
P.W .	GROS	SER	_		PROJECT: Former E				
CONSU	JLTING, INC).	3		JOB # SHD0902			Jiloguo	
					LOGGED BY:	DE	PRJ. MNGR.:	ZY	
		Former US Excavation		1	DRILLING CONTRA				
Form	ner Service	Excavation	Jue	_ <u>_</u>	DRILL METHOD: G				
Stati	on Building		ve			•			
		- /	Lenox Avenue		DRILLER: Ernesto Borehole diameter/dr			1	
			oue			in bit type.	total depth	25'	
		SB-6	Ľ		Macrocore (2" o	diameter)	elevation	NA	
					HAMMER WT: NA		DROP: NA	1	
		Montauk H	w		START TIME: 11:21		DATE: 5/19/200)9	
Approxir	nate boreho	le locations at	site		COMPLETION TIME	: 11:51	DATE: 5/19/200)9	
, approxim					BACKFILL TIME: 11	:54	DATE: 5/19/200)9	
Sample	Advance	Recovered		Soil Desc	ription	Nataa	Casing depth:	NA	
Depth	(ft)	(ft)	Unified S	oil Classif	ication System	Notes	Screen depth:	NA	
0-4'	4	3	0-2': 1.5' Dry, p (SP)	oorly grad	led dark brown sand.	PID = 0.0 ppn	n.		
			2-4': 1.5' Dry, w with gravel. (S		l reddish-brown sand	PID = 1.3 ppn	n.		
4-8'	4	3.5	gravel. (SW)	-	ed brown sand with	PID = 0.8 ppm.			
40	т	0.0	6-8': 1.75' Dry, gravel. (SW)	6-8': 1.75' Dry, well graded brown sand with gravel. (SW)			n.		
					ed brown sand with				
8-12'	4	3.5 brown sand with		vel. (SW) 1.25' Dry, well graded light wn sand with gravel. (SW)PID = 1.0 ppm12': 1.75' Dry, well graded light brownDID = 0.0 ppm					
			sand with grave		aded light brown	PID = 0.0 ppn	n.		
			10 14' 1 5' Dm	well area	ad light brown cond				
12-16'	4	3	with gravel. (SV	V)	ded light brown sand	PID = 0.4 ppn			
			sand with grave			PID = 1.3 ppm.			
16-20'	4	3	16-18': 1.5' Moi with gravel. (SV	•	aded brown sand	PID = 0.6 ppm.			
			18-20': 1.5' Wei gravel. (SW)	t, well gra	ded brown sand with	PID = 1.6 ppn	n.		
20-24'	4	3.5	20-22.5': 1.75' \ (SW)	Wet, well	graded gray sand.	PID = 42.6 pp	om.		
20 27	-r	0.0	22.5-25': 1.75' \ (SW)	Wet, well	graded gray sand.	PID = 78 ppm	l.		
			24 25' 0 5' 11-	t wall are	dod light brown cond				
24-25'	1	0.5	with gravel. (SV		ded light brown sand	PID = 15.1 pp			
						Soil samples from 22-24' @	collected from 1 2 11:51.	6-18' @ 11:50	

				Boring # SB-7	MW#	Page 4	of 5
P.W.	GROS	SER		PROJECT: Former E			1
CONSU	JLTING, INC).		JOB # SHD0902			Shogue
				LOGGED BY:	DE	PRJ. MNGR.:	ZY
		Former US		DRILLING CONTRA		1	21
Form	ner Service	Excavation	Lenox Avenue			All Water	
Stati	on Building		, er	DRILL METHOD: G			
		- /	≺ ×	DRILLER: Ernesto			
			ou	Borehole diameter/di	ili bit type.	total depth	25'
SB-7		\bigcirc	Le	Macrocore (2" o	diameter)	elevation	NA
007				HAMMER WT: NA		DROP: NA	
				START TIME: 12:50)	DATE: 5/19/200	0
		Montauk H	WV				
Approxir	nate boreho	le locations at	t site	COMPLETION TIME		DATE: 5/19/200	
				BACKFILL TIME: 13	:16	DATE: 5/19/200	
Sample	Advance	Recovered	Soil Desc		Notes	Casing depth:	NA
Depth	(ft)	(ft)	Unified Soil Classif	fication System		Screen depth:	NA
0-4'	4	2.5	0-2': 0.25' Asphalt. 1' Dry brown sand. (SP)	v, poorly graded dark	PID = 0.6 ppn	n.	
			2-4': 1.25' Dry, well grade (SW)	ed dark brown sand.	PID = 2.4 ppr	n.	
				1			
4-8'	4	3	4-6': 1.5' Dry, well graded sand. (SW) 6-8': 1.5' Dry, well graded		PID = 1.0 ppn		
			sand. (SW)		PID = 1.2 ppn	n.	
8-12'	4	3.5	8-10': 1' Moist, clayey gra Dry, well graded light bro (SW)	ey gray sand. (SC) 0.75' ht brown sand with gravel. PID = 0.4 ppm.			
			10-12': 1.75' Dry, well gra sand with gravel. (SW)	aded light brown	PID = 0.8 ppr	n.	
			12-14': 1.75' Dry, well gra	aded light brown	PID = 1.0 ppr	n	
12-16'	4	3.5	sand with gravel. (SW) 14-16': 1.75' Dry, well gra	aded light brown	PID = 0.4 ppr		
			sand with gravel. (SW)		1 ID = 0.4 ppi		
16-20'	4	3.5	16-18': 1.75' Moist, well (sand with gravel. (SW)	graded light brown	PID = 0.8 ppr	n.	
			18-20': 1.75' Wet, well gr sand with gravel. (SW)	aded light brown	PID = 0.9 ppn	n.	
				adad light burger			
20.04	A		20-22': 1.75' Wet, well gr sand with gravel. (SW)		PID = 0.6 ppr	n.	
20-24'	4	3.5	22-24': 1' Wet, well grade with gravel. (SW) 0.75' W sand with gravel. (SW)		PID = 99.4 pp	om.	
			24-25': 0.5' Wet, well gra	ded light brown sand			
24-25'	1	0.5'	with gravel. (SW)		PID = 4.8 ppr	n.	
					Soil samples from 22-24' @	collected from 1 2 13:15.	6-18' @ 13:15

				Boring # SB-8	MW#	Page 5 c	of 5
P.W.	GROS	SER	ALLA	PROJECT: Former E	1		-
CONSL	JLTING, INC).		JOB # SHD0902			guo
				LOGGED BY:	DE	PRJ. MNGR.: Z	ζΥ
		Former US Excavation		DRILLING CONTRA			
	ner Service		Avenue Prenox Avenue 8-83	DRILL METHOD: G			
Statio	on Building		Ave	DRILLER: Ernesto &			
		-	1 XC	Borehole diameter/d			
			SB-8		51	total depth	30'
			· ·	Macrocore (2" o	diameter)	elevation	NA
				HAMMER WT: NA		DROP: NA	
		Montauk H	w	START TIME: 08:50		DATE: 5/19/2009	
Approxin	nate boreho	le locations at	-	COMPLETION TIME	: 10:45	DATE: 5/19/2009	
				BACKFILL TIME: 10	:50	DATE: 5/19/2009	
Sample	Advance	Recovered	Soil Desc		Notes		١A
Depth	(ft)	(ft)	Unified Soil Classi	fication System	Tiotes	Screen depth: N	IA
0-4'	4	2.5	0-2': 0.25' Asphalt. 0.75' dark brown sand. (SW)	Moist, well graded	PID = 0.0 ppr	n	
			2-4': 1.5' Dry, well graded gravel. (SW)	d brown sand with	PID = 0.0 ppr	n	
			4-6': 1.5' Dry, well graded gravel. (SW)	d brown sand with	PID = 0.1 ppr	n	
4-8'	4	3.5	6-8': 2' Dry, well graded I gravel. (SW)	ight brown sand with	PID = 0.3 ppr	n	
			8-10': 1.5' Dry, well grade with gravel. (SW)	ed light brown sand	PID = 0.6 ppr	n	
8-12'	4	3	10-12': 1.5' Dry, well grad with gravel. (SW)	ded light brown sand	PID = 0.9 ppr	n	
12-16'	4	3.5	12-14': 1.75' Dry, well gra sand with gravel. (SW)	-	PID = 1.0 ppr	n	
			14-16': 1.75' Dry, well gra sand with gravel. (SW)	aded light brown	PID = 0.6 ppr	n	
			16-18': 1.5' Moist, well gr	aded light brown			
16-20'	4	3	sand with gravel. (SW) 18-20': 0.75' Moist, well g		PID = 1.6 ppr	n	
10 20			sand with gravel. (SW) 0 light brown sand with gra	.75' Wet, well graded	PID = 1.6 ppr	n	
			20-22': 1.75' Wet, well gr sand with gravel. (SW)	aded light brown	PID = 10.7 pp	om	
20-24'	4	3.5	22-24': 1.75' Wet, well gr gravel. (SW)	aded gray sand with	PID = 1,294 p	opm	
24-28'	4	4	24-26': 1' Wet, well grade gravel. (SW) 1' Wet, well with gravel. (SW)		PID = 2.1 ppr	n	
			26-28': 2' Wet, well grade with gravel. (SW)	ed light brown sand	PID = 1.2 ppr	n	
28-30'	2	2	28-30': 2' Wet, well grade with gravel. (SW)	ed light brown sand	PID = 0.4 ppr	n	
					Soil samples from 22-24' @	collected from 16-1 9:28.	8' @ 9:27

APPENDIX C

MONITORING WELL CONSTRUCTION LOGS

Monitoring Well

Construction Log

Protective Casing	-up We	ell No.		MW-9	
Measuring Points	Pro	oject _		SHP-0902	
Land Surface	Su	irveyor		P.W. Grosser Consulting	
	Me	easuring Point Eleva	tion	25.22	
Cement/Bentonite Gro	out Ins	stallation Date		5/18/2009	
10 ft. Well Casing		illing Contractor	Land A	Air Water Environmental Servic	xes
Material F	2 Dri	illing Method		Hollow Stem Auger	
Borehole Diameter Inch Diam.	3.25 Dri	illing Fluid		None	
Bentonite Seal	De	evelopment Techniqu	ue (s) and Date (s)	Over-Pumping / {	5/20/2009
	Flu	uid Loss During Drilli	ng	0	Gallons
Sand Seal		ater Removed During	g Development	30	Gallons
Grain Size	#00 Sand Sta	atic Depth to Water/F	Product	19.54 / NA	
	Pu	imping Depth to Wat	er	NA	
<u>14</u> ft.	Pu	Imping Duration		28 minutes	
Sand Seal					
Grain Size	#2 Sand				
<u>16</u> ft.					
<u>Well Screen</u> MaterialF	PVC We	ell Purpose		Monitoring	
Slot Size.	Hy	drogeologist		DNE	
		ompany Name	F	P.W. Grosser Consulting Inc.	
<u>Well Screen</u> Material <u>F</u> Slot Size. Inch Dia <u>m.</u>	No	otes _			
		_			
		-			
		-			
ft.		-			
<u>27</u> ft.		-			
Note: Drawing is not to scale. Depths are given in feet below land surface.		-			

Monitoring Well

Construction Log

		[Protective Casing XFlush Mount Pop-up	Well No.		MW-10	
	F		_Measuring Points	Project		SHP-0902	
		Г	_Land Surface	Surveyor		P.W. Grosser Consulting	
			-	Measuring Point Elev	ation	25.31	
			Cement/Bentonite Grout	Installation Date		5/18/2009	
		10	Well Casing	Drilling Contractor	Land A	ir Water Environmental Service	es
			Material <u>PVC</u> Inch Dia <u>m. 2</u>	Drilling Method		Hollow Stem Auger	
			Borehole Diameter Inch Diam. 3.25	Drilling Fluid		None	
		12	_Bentonite Seal _ft.	Development Technic	que (s) and Date (s)	Over-Pumping / 5	/20/2009
				Fluid Loss During Dri	lling	0	Gallons
			_Sand Seal Grain Size #00 Sand	Water Removed Duri	ng Development	28	Gallons
			Grain Size #00 Sand	Static Depth to Water	/Product	19.45 / NA	
				Pumping Depth to Wa	ater	NA	
		14	ft.	Pumping Duration		28 minutes	
			Sand Seal				
			Grain Size #2 Sand	-			
	_	16	ft.				
			<u>Well Screen</u> Material PVC	Well Purpose		Monitoring	
			Slot Size <u>. 0.01</u> Inch Dia <u>m. 2</u>	Hydrogeologist		DNE	
				Company Name	P	.W. Grosser Consulting Inc.	
				Notes			
		26	ft.				
		27	ft.				
Note: Drawing i Depths a		scale. in feet below la	nd surface.				
Bopina d							

Monitoring Well

Construction Log

		×	Protective Casing Flush Mount Pop-up	Well No.		MW-11	
			_Measuring Points	Project		SHP-0902	
		F	Land Surface	Surveyor		P.W. Grosser Consulting	
			-	Measuring Point Elev	vation	24.51	
			_Cement/Bentonite Grout	Installation Date		5/18/2009	
		10	Well Casing	Drilling Contractor	Land	Air Water Environmental Services	;
			Material PVC Inch Diam. 2	Drilling Method		Hollow Stem Auger	
			Borehole Diameter Inch Diam. 3.25	Drilling Fluid		None	
		12	_Bentonite Seal _ft.	Development Technic	que (s) and Date (s)	Over-Pumping / 5/2	0/2009
				Fluid Loss During Dri	illing	0	Gallons
			_Sand Seal	Water Removed Duri	ing Development	24	Gallons
			Grain Size #00 Sand	Static Depth to Water	r/Product	18.90 / NA	
				Pumping Depth to Wa	ater	NA	
		14	_ft.	Pumping Duration		24 minutes	
			Sand Seal				
			Grain Size #2 Sand	-			
	_	16	_ft.				
	-		Well Screen Material PVC	Well Purpose		Monitoring	
			Slot Size. 0.01	Hydrogeologist		DNE	
				Company Name		P.W. Grosser Consulting Inc.	
				Notes			
	\equiv						
		26	_ft.				
		27	 _ft.				
Note: Drawing i Depths ar		cale. n feet below lan	d surface.				
Sopulo di		55.5W Idi1					

APPENDIX D

MONITORING WELL DEVELOPMENT LOGS

Monitoring Well Development Log

		<u>SITE</u>	INFORMATION		
SITE ID/P	ROJECT NUMBER:	Former Bellport Ga	s Station, 1401 Montauk H	lighway, East Patchog	ue (SHD090
DEVELO	PMENT POINT	MW-9	DEVELC	PED BY	KER
date de	VELOPED	5/20/2009	WELL DI	AMETER (inches)	2
	VATER ELEVATION (f			VELL DEPTH (feet)	26.
SIAILC V				VELE DEFIN (leet)	20.
		DEVELOP	MENT INFORMATION		
PURGE N	/IETHOD	Submersible Pump	PURGE	TIME (Min)	28
PURGE R	ATE (GPM)	see below	GALLOI	NS	30
		DEVELOP	MENT PARAMETERS		
Time	Flow Rate	рН	Cond.	Turbidity	Temp
	(mL/min)	·	(µS/cm)	(NTU)	(°C)
10:37	3520	6.82	415	-	12.9
10:41	3520	6.82	415	-	12.5
10:45	3520	6.82	412	-	12.4
10:49	3520	6.82	399	-	12.2
10:53	3520	6.82	398	-	12.3
10:57	3520	6.82	396	-	12.3
11:01	3520	6.82	396	-	12.3
11:05	3520	6.82	396	-	12.4

Monitoring Well Development Log

		<u>SITE I</u>	NFORMATION		
SITE ID/P	ROJECT NUMBER:	Former Bellport Gas	s Station, 1401 Montauk H	lighway, East Patchog	jue (SHD090
DEVELO	PMENT POINT	MW-10	DEVELC	PED BY	KER
date de	VELOPED	5/20/2009	WELL DI	AMETER (inches)	2
STATIC W	VATER ELEVATION (f			VELL DEPTH (feet)	26.1
Sir the v					
		DEVELOPN	IENT INFORMATION		
PURGE N	/IETHOD	Submersible Pump	PURGE	TIME (Min)	28
PURGE R	ATE (GPM)	see below	GALLOI	NS	28
		DEVELOP	MENT PARAMETERS		
Time	Flow Rate	рН	Cond.	Turbidity	Temp.
	(mL/min)	·	(µS/cm)	(NTU)	(°C)
9:43	3785	6.82	148.5	-	13.6
9:47	3785	6.82	135.1	-	13.1
9:51	3785	6.82	117.8	-	12.8
9:55	3785	6.82	117.9	-	12.8
9:59	3785	6.82	120.2	-	12.9
10:03	3785	6.82	120.0	-	12.8
10:07	3785	6.82	120.9	-	12.9
10:11	3785	6.8	120.8	-	12.8
					-
					+

Monitoring Well Development Log

		SITE	INFORMATION		
SITE ID/P	ROJECT NUMBER:		s Station, 1401 Montauk F	lighway East Patchoo	
DEVELO	PMENT POINT	MW-11	DEVELC	IPED BY	KER
date de	VELOPED	5/20/2009	WELL DI	AMETER (inches)	2
STATIC V	VATER ELEVATION (f	eet) 18.9	D TOTAL V	VELL DEPTH (feet)	26.
		DEVELOPM	MENT INFORMATION		
PURGE N	METHOD	Submersible Pump	PURGE	TIME (Min)	24
PURGE F	RATE (GPM)	see below	GALLOI	NS	24
		DEVELOP	MENT PARAMETERS		
Time	Flow Rate	На	Cond.	Turbidity	Temp
	(mL/min)	·	(µS/cm)	(NTU)	(°C)
11:21	3785	6.82	240	496	13.0
11:25	3785	6.82	253	216	12.0
11:29	3785	6.82	253	72	12.0
11:33	3785	6.82	246	21	12.0
11:37	3785	6.82	246	4	11.9
11:41	3785	6.82	249	2	11.8
11:45	3785	6.82	249	2	11.9

APPENDIX E

GROUNDWATER SAMPLING LOGS

			SITE INFO	RMATION		
SITE ID/PR	OJECT NUMBER:	Form	er Bellport Gas S	itation, 1401 Mo	ntauk Hwy, Ea	ast Patchogue (SHD0902
SAMPLIN	g point	N	1W-9	SAMPLED B	Y	KER
date san	/IPLED	6/4	/2009	TIME SAMPL	ED	1245
STATIC W	ATER ELEVATION ((feet)	19.46	TOTAL WELL	DEPTH (feet)	26.3
WELL DIA	METER (inches)		2			
			Sampling in	IFORMATION		
PURGE M	ethod	Peristaltic	Pump	SAMPLE ME	THOD	Peristaltic Pump
PURGE RA	ATE (GPM)	see bel	OW	PURGE TIME	(Min)	see below
CASING	VOLUMES REMOV	ED	3	GALLONS		3.4
SAMPLE A	APPEARANCE	Lt Brow	ın (sheen)	ODORS OB	Served	Petrol
ANALYSIS	5 <u>VC</u>	DCs. SVOCs,	TAL Metals	LABORATO	RY	Chemtech
date shif	PPED	6/4/20	09	Shipping M	IETHOD	Hand delivered
			<u>Sampling</u> F	ARAMETERS		
Time	Flow Rate (Gal/min)	рН	Cond. (µS/cm)	Turbidity (NTU)	ORP (mV)	Temp. (°C)
1220	0.75	6.35	144.9	523	-102	13.3
1224	0.75	6.36	141.1	353	-132	13.1
1228	0.75	6.41	137.3	17	-144	12.9
1232	0.75	6.44	132.7	5	-142	12.9

ampling Date Samp Tatic Wat		M 6/4	er Bellport Gas S W-10 1/2009 19.34	Sampled B Time Sampl	Y .ED	t Patchogue (SHD090 KER 1125
STATIC WAT	PLED TER ELEVATION	6/4	/2009	TIME SAMPL	ED	
	TER ELEVATION					1125
		(feet)	19.34	total well		
Well Diam	ETER (inches)				_ DEPTH (feet)	26.2
			2			
			<u>Sampling in</u>	IFORMATION		
PURGE MET	HOD	Peristaltic	Pump	SAMPLE ME	THOD	Peristaltic Pump
PURGE RAT	e (GPM)	see bel	OW	PURGE TIME	E (Min)	see below
Casing VC	DLUMES REMO	/ED	3	GALLONS		3.4
Sample ap	PEARANCE	Brown/Or	ange, Turbid	ODORS OB	SERVED	None
analysis	VC	DCs, SVOCs,	TAL Metals	LABORATO	RY	Chemtech
DATE SHIPP	ED	6/4/20	09	Shipping M	1ethod	Hand delivered
			SAMPLING F	PARAMETERS		
Time	Flow Rate	рН	Cond.	Turbidity	ORP	Temp.
	(Gal/min)		(µS/cm)	(NTU)	(mV)	(°C)
1101	0.75	7.80	47.6	1000	-192	13.4
1106	0.75	6.40	52.9	86	-211	13.1
1111	0.75	6.13	56.3	17	-199	13.1
1114	0.75	6.00	59.1	3	-199	13.1

DATE SAMPLED6/4/2009TIME SAMPLED1350STATIC WATER ELEVATION (feet)18.84TOTAL WELL DEPTH (feet)26.45WELL DIAMETER (inches)22SAMPLING INFORMATIONPURGE METHODPeristaltic PumpPURGE METHODPeristaltic PumpSAMPLE METHODPURGE RATE (GPM)see belowPURGE TIME (Min)see belowPURGE RATE (GPM)see belowPURGE TIME (Min)see belowCASING VOLUMES REMOVED3GALLONS3.7SAMPLE APPEARANCELt Brown/YellowODORS OBSERVEDPetrolANALYSISVOCs, SVOCs, TAL MetalsLABORATORYChemtechDATE SHIPPED6/4/2009SHIPPING METHODHand deliveredSAMPLING PARAMETERSTimeFlow RatepHCond.TurbidityORP(Gal/min)(µS/cm)(NTU)(mV)(°C)13270.756.4894.4175-12212.913310.756.4694.664-7512.8			<u>SITE INFO</u>	RMATION		
DATE SAMPLED6/4/2009TIME SAMPLED1350STATIC WATER ELEVATION (feet)18.84TOTAL WELL DEPTH (feet)26.45WELL DIAMETER (inches)222SAMPLING INFORMATIONPURGE METHODPeristaltic PumpPURGE METHODPeristaltic PumpSAMPLE METHODPeristaltic PumpPURGE RATE (GPM)see belowPURGE TIME (Min)see belowCASING VOLUMES REMOVED3GALLONS3.7SAMPLE APPEARANCELt Brown/YellowODORS OBSERVEDPetrolANALYSISVOCs, SVOCs, TAL MetalsLABORATORYChemtechDATE SHIPPED6/4/2009SHIPPING METHODHand deliveredSAMPLING PARAMETERSTimeFlow RatepHCond.TurbidityORP(Gal/min)(µS/cm)(NTU)(mV)(°C)13270.756.4894.664-7512.813350.756.4394.810-8412.6	SITE ID/PROJECT NUMBER	Form	er Bellport Gas S	Station, 1401 Mc	ontauk Hwy, Ea	st Patchogue (SHD09
STATIC WATER ELEVATION (feet) 18.84 TOTAL WELL DEPTH (feet) 26.45 WELL DIAMETER (inches) 2 2 2 SAMPLING INFORMATION PURGE METHOD Peristaltic Pump SAMPLE METHOD Peristaltic Pump PURGE RATE (GPM) see below PURGE TIME (Min) see below CASING VOLUMES REMOVED 3 GALLONS 3.7 SAMPLE APPEARANCE Lt Brown/Yellow ODORS OBSERVED Petrol ANALYSIS VOCs, SVOCs, TAL Metals LABORATORY Chemtech DATE SHIPPED 6/4/2009 SHIPPING METHOD Hand delivered SAMPLING PARAMETERS Time Flow Rate pH Cond. Turbidity ORP Temp. (Gal/min) (µS/cm) (NTU) (mV) (°C) 1327 0.75 6.48 94.6 64 -75 12.8 1331 0.75 6.43 94.8 10 -84 12.6	Sampling Point	M	W-11	SAMPLED B	Y	KER
WELL DIAMETER (inches)2SAMPLING INFORMATIONPURGE METHOD Peristaltic PumpPURGE RATE (GPM)see belowPURGE TIME (Min)see belowCASING VOLUMES REMOVED3GALLONS3.7SAMPLE APPEARANCELt Brown/YellowODORS OBSERVEDPetrolANALYSISVOCs, SVOCs, TAL MetalsLABORATORYChemtechDATE SHIPPED $6/4/2009$ SHIPPING METHODHand deliveredImmediate Row Rate PH Cond. Turbidity ORP Temp. (Gal/min)ORP Temp. (PS/cm)13270.756.4894.4175-12212.913310.756.4694.664-7512.813350.756.4394.810-8412.6	DATE SAMPLED	6/4	/2009	TIME SAMPL	ED	1350
SAMPLING INFORMATIONPURGE METHODPeristaltic PumpSAMPLE METHODPeristaltic PumpPURGE RATE (GPM)see belowPURGE TIME (Min)see belowCASING VOLUMES REMOVED3GALLONS3.7SAMPLE APPEARANCELt Brown/YellowODORS OBSERVEDPetrolANALYSISVOCs, SVOCs, TAL MetalsLABORATORYChemtechDATE SHIPPED6/4/2009SHIPPING METHODHand deliveredImeFlow RatepHCond.TurbidityORPTemp.(Gal/min)(µS/cm)(NTU)(mV)(°C)13270.756.4894.4175-12212.913310.756.4394.810-8412.6	STATIC WATER ELEVATION	(feet)	18.84	TOTAL WELL	_ DEPTH (feet)	26.45
PURGE METHODPeristaltic PumpSAMPLE METHODPeristaltic PumpPURGE RATE (GPM)see belowPURGE TIME (Min)see belowCASING VOLUMES REMOVED3GALLONS3.7SAMPLE APPEARANCELt Brown/YellowODORS OBSERVEDPetrolANALYSISVOCs, SVOCs, TAL MetalsLABORATORYChemtechDATE SHIPPED6/4/2009SHIPPING METHODHand deliveredTimeFlow RatepHCond.TurbidityORP13270.756.4894.4175-12212.913310.756.4394.810-8412.6	WELL DIAMETER (inches)	_	2			
PURGE RATE (GPM)see belowPURGE TIME (Min)see belowCASING VOLUMES REMOVED3GALLONS3.7SAMPLE APPEARANCELt Brown/YellowODORS OBSERVEDPetrolANALYSISVOCs, SVOCs, TAL MetalsLABORATORYChemtechDATE SHIPPED6/4/2009SHIPPING METHODHand deliveredSAMPLING PARAMETERSTimeFlow RatepHCond.TurbidityORP(Gal/min)(µS/cm)(NTU)(mV)(°C)13270.756.4894.4175-12212.913310.756.4694.664-7512.813350.756.4394.810-8412.6			SAMPLING IN	NFORMATION		
CASING VOLUMES REMOVED3GALLONS3.7SAMPLE APPEARANCELt Brown/YellowODORS OBSERVEDPetrolANALYSISVOCs, SVOCs, TAL MetalsLABORATORYChemtechDATE SHIPPED6/4/2009SHIPPING METHODHand deliveredSAMPLING PARAMETERSTimeFlow RatepHCond.TurbidityORP(Gal/min)(µS/cm)(NTU)(mV)(°C)13270.756.4894.4175-12212.913310.756.4394.810-8412.6	PURGE METHOD	Peristaltic	Pump	SAMPLE ME	THOD	Peristaltic Pump
SAMPLE APPEARANCELt Brown/YellowODORS OBSERVEDPetrolANALYSISVOCs, SVOCs, TAL MetalsLABORATORYChemtechDATE SHIPPED6/4/2009SHIPPING METHODHand deliveredSAMPLING PARAMETERSTimeFlow RatepHCond.TurbidityORPTemp.(Gal/min)(µS/cm)(NTU)(mV)(°C)13270.756.4894.4175-12212.913310.756.4394.810-8412.6	PURGE RATE (GPM)	see bel	W	PURGE TIME	E (Min)	see below
ANALYSISVOCs, SVOCs, TAL MetalsLABORATORYChemtechDATE SHIPPED6/4/2009SHIPPING METHODHand deliveredSAMPLING PARAMETERSTimeFlow RatepHCond.TurbidityORPTemp.(Gal/min)(µS/cm)(NTU)(mV)(°C)13270.756.4894.4175-12212.913310.756.4694.664-7512.813350.756.4394.810-8412.6	Casing volumes remo	VED	3	GALLONS		3.7
DATE SHIPPED 6/4/2009 SHIPPING METHOD Hand delivered SAMPLING PARAMETERS Time Flow Rate (Gal/min) pH Cond. (µS/cm) Turbidity (NTU) ORP (mV) Temp. (°C) 1327 0.75 6.48 94.4 175 -122 12.9 1331 0.75 6.46 94.6 64 -75 12.8 1335 0.75 6.43 94.8 10 -84 12.6	Sample Appearance	Lt Brov	/n/Yellow	ODORS OB	SERVED	Petrol
SAMPLING PARAMETERS Time Flow Rate (Gal/min) pH Cond. (μS/cm) Turbidity (NTU) ORP (mV) Temp. (°C) 1327 0.75 6.48 94.4 175 -122 12.9 1331 0.75 6.46 94.6 64 -75 12.8 1335 0.75 6.43 94.8 10 -84 12.6	ANALYSIS VO	DCs, SVOCs,	TAL Metals	LABORATO	RY	Chemtech
Time Flow Rate (Gal/min) pH Cond. (µS/cm) Turbidity (NTU) ORP (mV) Temp. (°C) 1327 0.75 6.48 94.4 175 -122 12.9 1331 0.75 6.46 94.6 64 -75 12.8 1335 0.75 6.43 94.8 10 -84 12.6	DATE SHIPPED	6/4/20	09	Shipping M	1ethod	Hand delivered
(Gal/min) (μS/cm) (NTU) (mV) (°C) 1327 0.75 6.48 94.4 175 -122 12.9 1331 0.75 6.46 94.6 64 -75 12.8 1335 0.75 6.43 94.8 10 -84 12.6			SAMPLING I	PARAMETERS		
13310.756.4694.664-7512.813350.756.4394.810-8412.6		рН		-		•
1335 0.75 6.43 94.8 10 -84 12.6	1327 0.75	6.48	94.4	175	-122	12.9
	1331 0.75	6.46	94.6	64	-75	12.8
1339 0.75 6.39 95.1 3 -84 12.6	1335 0.75	6.43	94.8	10	-84	12.6
	1339 0.75	6.39	95.1	3	-84	12.6

			SITE INFO	RMATION		
0	SITE ID/PROJECT NUM	BER: Forme	er Bellport Gas S	Station, 1401 Mo	ontauk Hwy, Ea	st Patchogue (SHD0902)
0	SAMPLING POINT	G	W-1	SAMPLED B	3Y	DNE
I	date sampled	5/19	/2009	TIME SAMPI	LED	14:57
	STATIC WATER ELEVAT	ION (feet)	NA	TOTAL WEL	L DEPTH (feet)	18-22'
١	WELL DIAMETER (inche	es)	0.65			
			<u>Sampling in</u>	IFORMATION		
ł	PURGE METHOD	Peristaltic F	oump	sample me		Peristaltic Pump
(CASING VOLUMES REI	MOVED	4	GALLONS		1
,	ANALYSIS	VOCS / SVOC	s/Metals	LABORATO	RY	Chemtech
ĺ	DATE SHIPPED	5/19/20	09	Shipping M	METHOD	UPS
			<u>Sampling</u> F	PARAMETERS		
	Casing Volumes	рН	Cond. (µS/cm)	Turbidity (NTU)	Temp. (°C)	
_	1	7.64	252	827	18.3	
	2	7.38	148.4	56	16.8	
	3	7.27	126.1	26	16.4	
	4	7.13	110.1	13	16.2	

		<u>SITE INFO</u>	RMATION		
SITE ID/PROJECT NUM	1BER: Forme	er Bellport Gas S	Station, 1401 Mo	ontauk Hwy, E	ast Patchogue (SHD0902)
SAMPLING POINT	G	W-2	SAMPLED B	Y	DNE
DATE SAMPLED	5/19	9/2009	TIME SAMPI	LED	15:35
STATIC WATER ELEVA	TION (feet)	NA	TOTAL WELI	L DEPTH (feet)	18-22'
WELL DIAMETER (inch	es)	0.65			
		<u>Sampling in</u>	IFORMATION		
PURGE METHOD	Peristaltic F	Pump	SAMPLE ME	THOD	Peristaltic Pump
CASING VOLUMES RE	MOVED	4	GALLONS		1
ANALYSIS	VOCS / SVOC	s/Metals	LABORATO	RY	Chemtech
DATE SHIPPED	5/19/20	09	Shipping M	IETHOD	UPS
		SAMPLING	PARAMETERS		
Casing Volumes	рН	Cond.	Turbidity	Temp.	
1	(00	(µS/cm)	(NTU)	(°C)	
1	6.88	72.1	945	16.5	
2	6.82	68.6	182	15.5	
3	6.77	65.3	53	14.8	
4	6.73	60.1	36	14.5	

		SITE INFO	RMATION		
SITE ID/PROJECT NUM	1BER: Forme	er Bellport Gas S	Station, 1401 Mo	ontauk Hwy, Ea	st Patchogue (SHD0902)
SAMPLING POINT	G	W-3	SAMPLED B	Υ	DNE
DATE SAMPLED	5/19	9/2009	TIME SAMPI	LED	16:05
STATIC WATER ELEVA	TION (feet)	NA	TOTAL WEL	L DEPTH (feet)	18-22'
WELL DIAMETER (inch	es)	0.65			
		<u>Sampling in</u>	IFORMATION		
PURGE METHOD	Peristaltic F	Pump	sample me		Peristaltic Pump
CASING VOLUMES RE	MOVED	4	GALLONS		1
ANALYSIS	VOCS / SVOC	s/Metals	LABORATO	RY	Chemtech
DATE SHIPPED	5/19/20	09	Shipping M	IETHOD	UPS
		Sampling F	PARAMETERS		
Casing Volumes	рН	Cond. (µS/cm)	Turbidity (NTU)	Temp. (°C)	
1	6.81	101.7	217	14.6	
2	6.8	90.9	23	13.8	
3	6.79	90.7	12	13.7	
4	6.79	90.3	15	13.6	

APPENDIX F

DATA VALIDATION REPORT (On CD)

APPENDIX G

LABORATORY ANALYTICAL REPORTS (On CD)

APPENDIX H

INVESTIGATION DERIVED WASTE MANIFESTS

	NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Number	4	2. Page 1 of	3. Emergéncy Respons (631) 586-	e Phone 2000	4. Waste T	racking Nur	^{nber} 01066
	1401 MONTAUL	ng Address PORT Service Hywy , Beecpore	\ C	6 sc эн 3363 ч	Generator's Site Addres 630 3 <i>Somern</i> 0/e Z <i>E</i> S	s (if different SHMSSI SF MY	than mailing addr	ess)	
	Generator's Phone: 637 6. Transporter 1 Company Nam AMERICAN EN	e VIRONMENTAL A				<u>70 wase</u> ,	U.S. EPA ID	Number	044412
	7. Transporter 2 Company Nam						U.S. EPA ID	Number	
3	8. Designated Facility Name and PSC - Chiemich 120 S - Fourieth	d Site Address 12 Pércur 1022 57, BAYSHORE	Сентлос = ну 11306			<u> </u>	U.S. EPA ID		τ.
F	Facility's Phone: 631-		*		10. Cont	ainers	トン <i>くま</i> 11. Total	082	-785-429
	9. Waste Shipping Name	and Description 	·		No.	Туре	Quantity	Wt./Vol.	
	Corrier C	т, поста LOI Cutimas) 4. порт Dotto	\$\$\$\$\$\$\$\$\$\$\$	ىلىغ دىكەلىكىلىنى كىرىكى سىلىغ	XX4	3m	××jeto	P	414236-0
	2. Nons RC.21 (PURCHE + 1	4, 100 Do 7"	Requests)	LIGUID	XX3	JM	XX/S	5	414236-0
	3.								
	4.								
1	 Special Handling Instruction 	is and Additional Information						J	
14	4. GENERATOR'S CERTIFICA	TION: I certify the materials described Name	cribed above on this manife	est are not subject to Signa		eporting prop	er disposal of Ha	žardous Was	
14 G	4. GENERATOR'S CERTIFICA enerator's/Offeror's Printed/Typ	TION: I certify the materials described Name			ture	Carrow Constant	er disposal of Ha	zardous Was	
14 G 15 Tr 16	4. GENERATOR'S CERTIFICA enerator's/Offeror's Printed/Typ 5. International Shipments ransporter Signature (for exporter 3. Transporter Acknowledgment	TION: I certify the materials desided bed Name Import to U.S. is only): of Receipt of Materials		Signa	ture B. Port of en Date leav	try/exit:	er disposal of Ha	žardous Was	Month Day
14 G 15 Tr 16 Tr	4. GENERATOR'S CERTIFICA enerator's/Offeror's Printed/Typ 5. International Shipments ransporter Signature (for export 3. Transporter Acknowledgment ransporter f1 Printed/Typed[Nam	TION: I certify the materials desped Name		Signa	ture Port of en Date leav ture	try/exit:	er disposal of Ha	žārdous Was	Month Day
14 G 15 Tr 16 Tr 17	4. GENERATOR'S CERTIFICA enerator's/Offeror's Printed/Typ 5. International Shipments ransporter Signature (for export 3. Transporter Acknowledgment ransporter 1 Printed/Typed/Nar	TION: I certify the materials designed Name		Signa	ture Port of en Date leav ture	try/exit:	er disposal of Ha		Month Day $G \mid ZS \mid d$ Month Day $\partial G \mid Day$
14 G 15 Tr 16 Tr 17 17	GENERATOR'S CERTIFICA enerator's/Offéror's Printed/Typ Source Statements fansporter Signature (for export Transporter Acknowledgment ansporter 1 Printed/Typed/Nam Source Statements fansporter 2 Printed/Typed Nam Source Statements	TION: I certify the materials desibled Name	یکھر عارف کر اور اور اور اور اور اور اور اور اور او	Signa	ture Port of en Date leav tule ture			ection	Month Day
14 G 15 Tr 16 Tr 17 17 17	4. GENERATOR'S CERTIFICA enerator's/Öfferor's Printed/Typ 5. International Shipments ransporter Signature (for export 6. Transporter Acknowledgment ransporter 1 Printed/Typed/Narr 2000 2000 2000 2000 2000 ransporter 2 Printed/Typed Narr 7. Discrepancy 7. Discrepancy Indication Space	TION: I certify the materials designed Name	یکھر عارف کر اور اور اور اور اور اور اور اور اور او	Signa	ture Port of en Date leav tule ture Residue		Partial Rej	ection	Month Day
14 G 15 Tr 17 17 17 17 17 17 17	GENERATOR'S CERTIFICA enerator's/Offeror's Printed/Typ International Shipments ransporter Signature (for export Transporter Acknowledgment ransporter 2 Printed/Typed/Nam To Discrepancy ra. Discrepancy Indication Space To Alternate Facility (or Generate acility's Phone: C. Signature of Alternate Facility	TION: I certify the materials designed Name	с - <i>i - i - i</i> - т [Signa Export from U.S Signa Signa	ture Port of en Date leav ture Ture Residue Manifest Reference N		Partial Rej	ection	Month Day
14 G Tr 17 Tr 17 17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	GENERATOR'S CERTIFICA enerator's/Offeror's Printed/Typ International Shipments ransporter Signature (for export Transporter Acknowledgment ransporter 2 Printed/Typed/Nam To Discrepancy ra. Discrepancy Indication Space To Alternate Facility (or Generate acility's Phone: C. Signature of Alternate Facility	TION: I certify the materials designed Name	с - <i>i - i - i</i> - т [Signa Export from U.S Signa Signa	ture Date leav ture ture Residue Manifest Reference N noted in Item 17a		Partial Rej	ection	Month Day

APPENDIX I

TABLES - COMPARATIVE ANALYSIS OF ALTERNATIVES

APPENDIX I

TABLES - COMPARATIVE ANALYSIS OF ALTERNATIVES

Comparative Analysis of Alternatives

Former Bellport Service Station

Impacts to UIC Structures

	EFFECTIVENESS							RELIABILITY/IMPLEMENTABILITY					
ALTERNATIVE	Overall Protection of Public Health and the Environment	Compliance with Standards, Criteria & Guidance (SCG)	Compliance with Remedial Objectives	Long Term Effectiveness and Permanence	Reduction of Toxicity, Mobility, or Volume Through Treatment	Short Term Effectiveness	Technical Feasibility and Reliability	Administrative Feasibility	Availability of Services and Materials	Regulatory Acceptance	Community Acceptance	Present Worth	
Alternative 1: No Action	Provides limited protection since the impact is below grade and not easily leached	comply with	objectives	Ineffective due to contaminant stability and persistence in the environment		No short term effectiveness	No Feasibity or Reliability issues	No Feasibity issues	Not Applicable	Unlikely	Unlikely	\$0.00	
Alternative 2: Removal & Off-site Disposal				Effective due to elimination of site contaminants	reduces or	Eliminates human and environmental exposure risk	Feasibity or	No significant Feasibility issues	Readily Available	Likely	Likely	\$20,000- \$30,000*	

* - These costs assume the removal and proper disposal of impacted sediments using a vacuum truck. Costs include endpoint sample collection, analysis and remediation report preparation.

Former Bellport Service Station

Residual Soil and Groundwater Impacts

	EFFECTIVENESS							RELIABILITY/IMPLEMENTABILITY					
ALTERNATIVE	Overall Protection of Public Health and the Environment	Compliance with Standards, Criteria & Guidance (SCG)	Compliance with Remedial Objectives	Long Term Effectiveness and Permanence	Reduction of Toxicity, Mobility, or Volume Through Treatment	Short Term Effectiveness	Technical Feasibility and Reliability	Administrative Feasibility	Availability of Services and Materials	Regulatory Acceptance	Community Acceptance	Present Worth	
Alternative 1: No Action	Does not provide protection	Does not comply with NYSDEC Groundwater Standards	Does not meets remedial objectives	Effective due to attenuation processes, however impacted soil remains	Does not actively reduce toxicity, mobility or volume.	exposure risk	No Feasibity or Reliability issues	No Feasibity issues	Not Applicable		To be determined through public participation	\$0.00	
Alternative 2: Institutional Engineering Controls (asphalt capping)	Provides protection	Does not comply with NYSDEC Groundwater Standards	Does not meets remedial objectives	Effective due to attenuation processes, however impacted soil remains	Reduces mobility but does not actively reduce toxicity or volume.	Reduces human exposure risk	Feasibity or Reliability	Requires Institutional Controls, Environmental Easement	Readily Available		To be determined through public participation	\$10,000- \$20,000*	
Alternative 3: Air Sparge/SVE System Construction	Provides protection	Complies with SCGs	Meets remedial objectives	Effective due to elimination of site contaminants	Significantly reduces or eliminates toxicity, mobility and volume	Eliminates human and environmental exposure risk	•	No significant Feasibility issues	Readily Available	Likely	Likely	\$300,000- \$500,000**	
Alternative 4: In- situ Chemical Oxidation	Provides protection	Complies with SCGs	Meets remedial objectives	Effective due to destruction of contaminants via oxidation	Will reduce toxicity, mobility and volume.	Eliminates human and environmental exposure risk	Feasibity or	Remedial action requires permits	Readily Available	Likely	Likely	\$150,000 - 200,000***	

* - Includes material and maintenance costs.

** - Includes costs associated with remediation system design and construciton. Also inlcudes costs associated with 7 years of mainenance, monitoirng and reporting.
 *** - Includes costs associated with design and implementation of the injection program. Also includes costs associated with 5 years of monitoring and reporting.