Limited Phase II Environmental Investigation Report

401, 402, & 430 Buffalo Avenue Site Niagara Falls, New York

November 2013

0271-013-001

Prepared For:

Slater Law Firm, PLLC

Prepared By:

2558 Hamburg Turnpike, Suite 300, Buffalo, New York | phone: (716) 856-0635 | fax: (716) 856-0583

LIMITED PHASE II ENVIRONMENTAL INVESTIGATION REPORT

401, 402 & 430 Buffalo Avenue Site Niagara Falls, New York

November 2013

0271-013-001

Prepared for:

The Slater Law Firm, PLLC

LIMITED PHASE II ENVIRONMENTAL INVESTIGATION REPORT 401, 402, & 430 Buffalo Avenue Site Niagara Falls, New York Table of Contents

1.0	INT	RODUCTION	.1
	1.1	Background and Site Description	1
2.0	Sub	SURFACE SOIL/FILL INVESTIGATION	. 2
	2.1	Soil Borings	2
	2.2	Test Pits	2
	2.3	Laboratory Analysis	2
3.0	Inv	estigation Findings	
	3.1	Qualitative Soil Screening	3
	3.2	Site Geology/Hydrogeology	3
	3.3	Soil Analytical Results	4
4.0	Cor	NCLUSIONS AND RECOMMENDATIONS	5
5.0	Lim	ITATIONS	6

i

LIMITED PHASE II ENVIRONMENTAL INVESTIGATION REPORT 401, 402, & 430 Buffalo Avenue Site Niagara Falls, New York Table of Contents

LIST OF TABLES

Table 1Summary of Soil Analytical Results

LIST OF FIGURES

Figure 1 Site Location and Vicinity Map

Figure 2 Site Plan

APPENDICES

Appendix A Soil Boring and Test Pit Logs

Appendix B Laboratory Analytical Data Summary Package

1.0 INTRODUCTION

1.1 Background and Site Description

TurnKey Environmental Restoration, LLC (TurnKey) performed a Limited Phase II Environmental Investigation on behalf of The Slater Law Firm at 401,402, & 430 Buffalo Avenue, City of Niagara Falls, Niagara County, New York (Site; see Figure 1). This investigation was performed to assess the condition of subsurface soil at the Site.

The subject property is located in a highly developed commercial and residential area of Niagara Falls, New York. The subject Site, addressed at 401, 402, & 430 Buffalo Ave, is also identified as Tax ID Nos. 159.13-2-9, 159.54-1-46, 159.54-1-47, and 159.54-1-45. The Site, totaling approximately 6.21-acres, is bordered by commercial and residential properties to the north, Robert Moses Parkway to the south, residential properties to the east, and vacant and residential properties to the west. The Site is improved with one multi-story hotel building on the 401 Buffalo Ave Parcel.

This Limited Phase II investigation included completion of a soil investigation to assess potential environmental impacts from chemical constituents of concern, including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and Resource Conservation and Recovery Act (RCRA) metals.

2.0 SUBSURFACE SOIL/FILL INVESTIGATION

2.1 Soil Borings

On October 3rd, DDS Companies (DDS) utilized a track-mounted drill rig to complete three soil borings, identified as SB-1 through SB-3 at various locations across the Site (see Figure 2), which were observed by TurnKey. Soil samples were generally collected within each borehole continuously from the ground surface until boring terminus. Any down-hole equipment was decontaminated between boreholes with an Alconox/water wash followed by a tap water rinse. The cutting shoes were decontaminated in a similar manner between the collections of each sample. Soil samples were collected for laboratory analysis from SB-1 and SB-2. Boring logs are presented in Appendix A.

2.2 Test Pits

On October 4th, 2013, TurnKey mobilized a track-mounted excavator to the Site and excavated eight test pits, identified as TP-1 through TP-8, at various locations across the Site. Test pit locations are shown on Figure 2. Soil samples were collected for laboratory analytical analysis from TP-1 and TP-3 through TP-7. Test pit logs are presented in Appendix A. Soil descriptions were completed in the field via visual characterization of excavated soils and test pit excavation faces using the Unified Soil Classification System (USCS), and scanned for total volatile organic vapors with a calibrated MiniRae 2000 PID equipped with a 10.6 eV lamp.

2.3 Laboratory Analysis

Soil samples collected from soil borings and test pits were placed in pre-cleaned, laboratory provided sample bottles using dedicated stainless steel sampling tools, and cooled to 4° C in the field. The samples were transported under chain-of-custody command to Alpha Analytical of Westborough, MA for analysis. Soil boring samples SB-1 and SB-2 were analyzed for of Target Compound List (TCL) volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and Resource Conservation and Recovery Act (RCRA) metals. TP-1 and TP-3 through TP-7 were analyzed for PAHs, while TP-1, TP-3, TP-5, and TP-7 were also analyzed for RCRA metals and polychlorinated biphenyls (PCBs).

TURNKEY

3.0 INVESTIGATION FINDINGS

Three soil borings (SB-1 through SB-3) and eight test pits (TP-1 through TP-10) were completed and eight soil/fill samples were collected for analysis. Table 1 presents a summary of the soil sample results. Each compound that was analyzed and detected above the laboratory reporting limit is listed on the table with its associated result to provide a complete data summary. For comparison purposes, Table 1 presents soil cleanup objectives (SCOs) for each of the detected parameters as published in 6 NYCRR Part 375 Soil Cleanup Objectives dated May 2010. Appendix B contains a copy of the laboratory analytical data package.

3.1 Qualitative Soil Screening

Soil samples were screened via headspace for VOCs using a MiniRae 2000 PID. PID measurements ranged from 0 ppm (most locations) to 46.2 ppm in SB-1 and 22.3 ppm in SB-2. Fill material was noted at varying thickness across the Site, generally consisting of sand, brick and concrete. Refer to soil boring and test pit logs in Appendix A for a summary of soil classification for each sample interval, field observations, and PID measurements.

3.2 Site Geology/Hydrogeology

The subsurface soil/fill for the 401 Buffalo Avenue parcel of the Site observed in SB-1 through SB-3 was typically characterized as asphalt overlying poorly graded sand. Soil/fill observed in TP-1 through TP-8 on the 430 Buffalo Avenue parcel was characterized as gravel sub-base with varying amounts and depths of fill material (i.e., brick, concrete) overlying a sandy lean clay layer in test pits TP-2, TP-4, TP-6, and TP-7. Equipment refusal was encountered at TP-1 (6 fbgs), TP-3 (4.5 fbgs), TP-5 (3 fbgs) and TP-8 (3 fbgs).

The property is located within the Erie-Ontario lake plain physiographic province, which is typified by little topographic relief, except in the immediate vicinity of major drainage ways. Surface soils are generally characterized as urban land with level to gently sloping land in which 80 percent or more of the soil surface is covered by asphalt, concrete, buildings, or other impervious structures typical of an urban environment. In addition, the presence of overburden fill material is widespread and common throughout the City of Niagara Falls.

Groundwater flow direction likely follows regional topography in the vicinity of the subject property and is to the south toward the Niagara River. Local groundwater flows, however, may be influenced by subsurface features, such as excavations, utilities, and localized fill-conditions. Groundwater was encountered between approximately four and ten fbgs during soil borings; groundwater was not encountered during test pit excavations. Test pit and soil boring logs are presented in Appendix A.

3.3 Soil Analytical Results

Soil samples from SB-1, SB-2, TP-1 and TP-3 through and TP-7 were analyzed for PAHs. Soil samples from soil borings SB-1 and SB-2 were also analyzed for TCL VOCs and RCRA metals. Test pits TP-1, TP-3, TP-5 and TP-7 were also analyzed for RCRA metals and PCBs. As indicated on Table 1, the analytical data results indicate several PAHs, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene, were detected above their respective Unrestricted, Restricted-Residential and/or Commercial Use SCOs in TP-1, TP-3 and TP-5. Two RCRA metals (barium and lead) were detected above their respective Unrestricted, Restricted-Residential and/or Commercial Use SCOs in SB-1, TP-1, TP-3, TP-5 and TP-7.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of this Limited Phase II Environmental Investigation at the Site, TurnKey offers the following conclusions and recommendations:

- Elevated PID readings indicative of VOCs impactes were observed in SB-1 and SB-2;
- Several PAHs, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene, were detected above their respective Unrestricted, Restricted-Residential and/or Commercial Use SCOs in TP-1, TP-3 and TP-5;
- Two RCRA metals, barium and lead, were detected above their respective Unrestricted, Restricted-Residential and/or Commercial Use SCOs in SB-1, TP-1, TP-3, TP-5 and TP-7.
- Based on the findings of this investigation, additional Site investigation and remediation appears warranted prior to Site redevelopment. We understand that your client is considering redeveloping the property; based on environmental impacts noted during this investigation, the Site may be eligible for the New York Brownfield Cleanup Program.

5.0 LIMITATIONS

This report has been prepared for the exclusive use of The Slater Law Firm, PLLC. The contents of this report are limited to information available at the time of the site investigation activities and to data referenced herein, and assume all referenced historic information sources to be true and accurate. The findings herein may be relied upon only at the discretion of The Slater Law Firm, PLLC. Use of or reliance on this report or its findings by any other person or entity is prohibited without written permission of TurnKey Environmental Restoration, LLC.

TABLES

TABLE 1

SUMMARY OF SOIL ANALYTICAL RESULTS

401, 402, 430 BUFFALO AVENUE SITE

NIAGARA FALLS, NY

						S	ample Location	าร			
Parameter ¹	Unrestricted Use SCOs ²	Restricted Residential SCOs ²	Commercial Use SCOs ²	SB-1 (0-2)	SB-2 (6-8)	TP-1 (1-6)	TP-3 (1-4.5)	TP-4 (1-2)	TP-5 (1-3)	TP-6 (2-4)	TP-7 (2-4)
		2		10/3/2013	10/3/2013	10/4/2013	10/4/2013	10/4/2013	10/4/2013	10/4/2013	10/4/2013
Semi-Volatile Organic Compounds (SVOCs) - mg/Kg ³											
2-Methylnaphthalene				0.2 J	ND	ND	0.69 J	ND	ND	ND	ND
Acenaphthene	20	100	500	ND	ND	0.35	1.4	ND	2.2	0.046 J	0.052 J
Acenaphthylene	100	100	500	ND	ND	0.14 J	0.31 J	ND	2.2	ND	ND
Anthracene	100	100	500	0.042 J	ND	0.96	3.1	ND	9.8	ND	0.2
Benzo(a)anthracene	1	1	5.6	0.21	ND	3.3	5.9	0.1 J	31	0.14	0.47
Benzo(a)pyrene	1	1	1	0.19	ND	2.9	5.1	0.087 J	30	0.12 J	0.41
Benzo(b)fluoranthene	1	1	5.6	0.31	ND	3.8	6.3	0.12	38	0.16	0.53
Benzo(g,h,i)perylene	100	100	500	0.14 J	ND	1.8	3.1	ND	18	0.077 J	0.22
Benzo(k)fluoranthene	0.8	3.9	56	0.095 J	ND	1.4	2.5	0.05 J	14	0.06 J	0.23
Chrysene	1	3.9	56	0.31	ND	3.2	5.7	ND	31	0.15	0.47
Dibenzo(a,h)anthracene	0.33	0.33	0.56	ND	ND	0.49	0.82	ND	5	ND	0.069 J
Fluoranthene	100	100	500	0.63	ND	6.8	12	0.18	68	0.27	0.93
Fluorene	30	100	500	ND	ND	0.4	1.4	ND	2.8	ND	0.061 J
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	0.13	ND	1.9	3.2	0.059 J	19	0.082 J	0.24
Naphthalene	12	100	500	0.11 J	ND	0.16 J	1.9	ND	0.92 J	ND	ND
Phenanthrene	100	100	500	0.52	ND	4	11	0.094 J	29	0.17	0.65
Pyrene	100	100	500	0.5	ND	5.6	10	0.16	56	0.23	0.75
Total PCBs - mg/Kg ³											
Aroclor 1260	0.1	3.2	1			ND	ND		0.0284 J		ND
Total Metals - mg/Kg											
Arsenic	13	16	16	7.2	1.1	9.6	8.9		6		6.3
Barium	350	820	400	64	12	950	1000		970		59
Cadmium	2.5	7.5	9.3	0.72	0.92	2.1	2.1		1.8		0.78
Chromium	30	180	1500	7.6	3	27	19		8.9		9.6
Lead	63	450	1000	100	23	2700	6200		2100		130
Silver	2	8.3	1500	0.12 J	ND	0.2 J	0.24 J		0.22		ND
Mercury	0.18	0.73	2.8	ND	ND	0.05 J	0.03 J		0.17 J		0.09

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. Values per 6NYCRR Part 375 Soil Cleanup Objectives (December 2006).

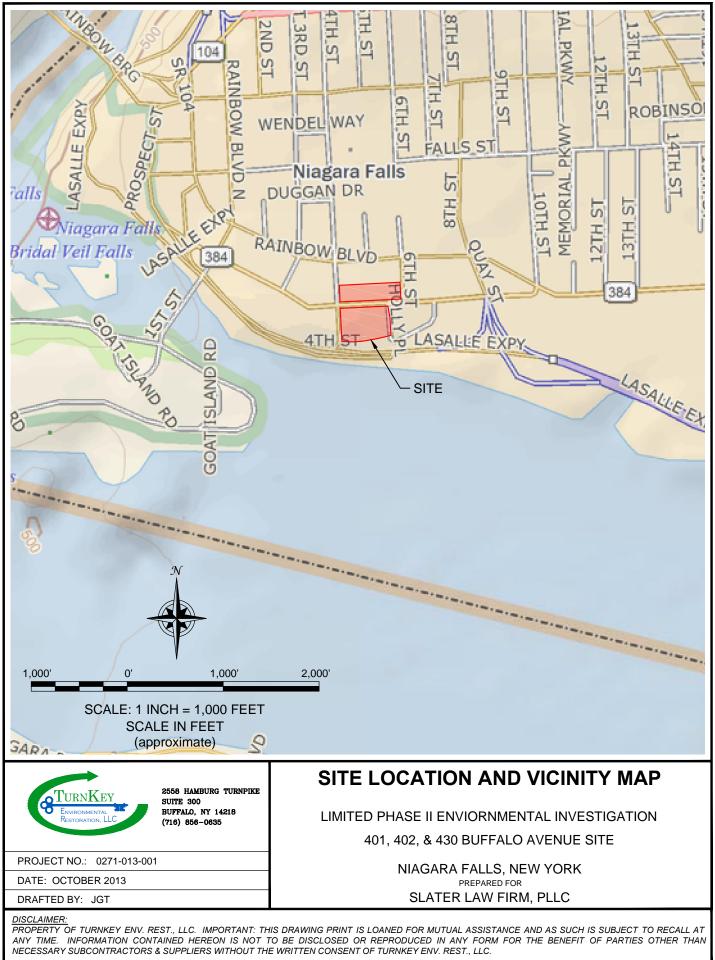
3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparison to SCOs.

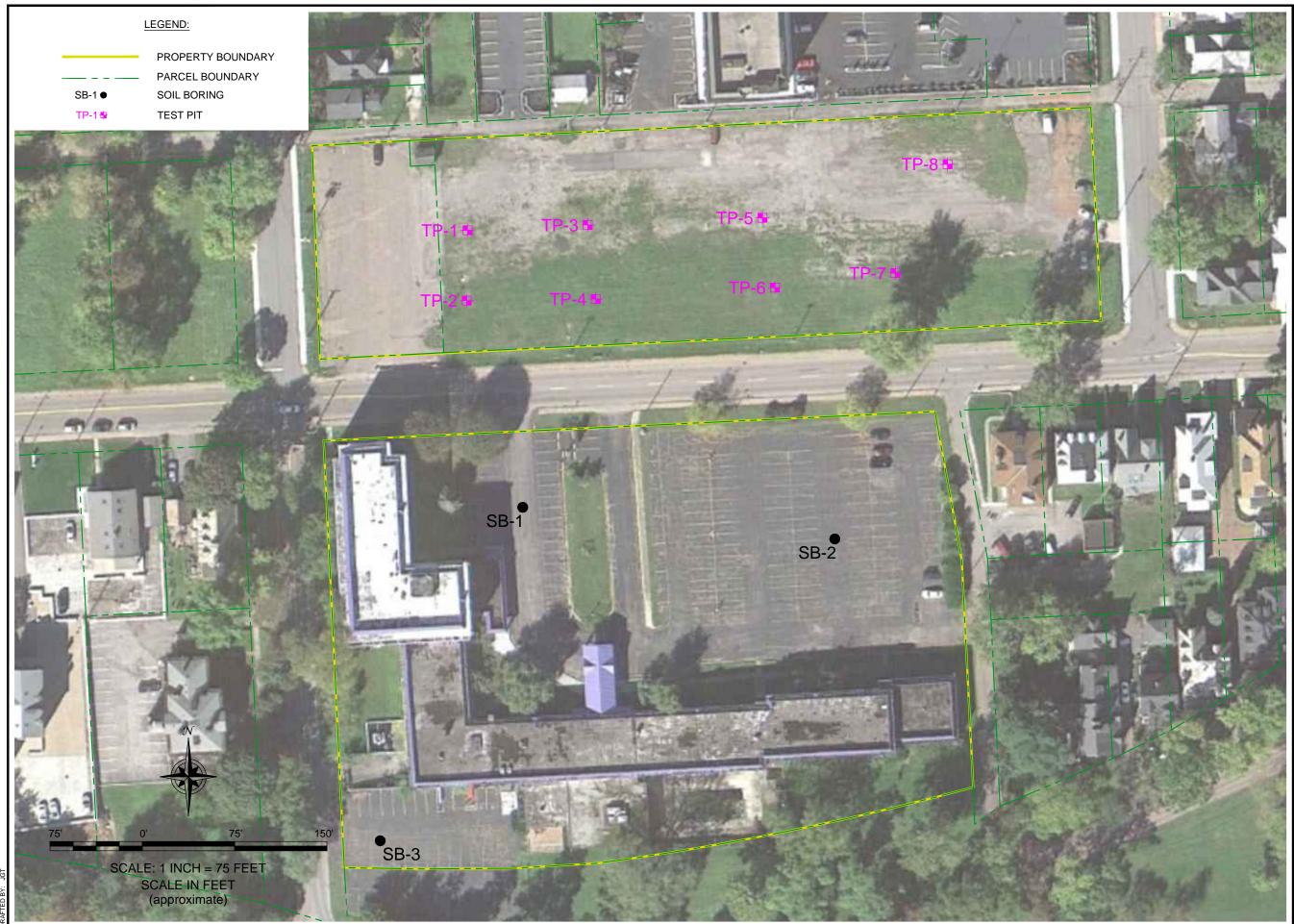
4. Samples SB-1 and SB-2 was also analysed for TCL VOCs; all reported as non-detect.

Definitions:

ND = Parameter not detected above laboratory detection limit.

"--" = Sample not analyzed for parameter or no SCO available for the parameter.


J = Estimated value; result is less than the sample quantitation limit but greater than zero.


BOLD	= Result exceeds Part 375 Unrestricted Use SCOs.
BOLD	= Result exceeds Part 375 Restricted Residential Use SCOs.
BOLD	= Result exceeds Part 375 Commercial Use SCOs.

FIGURES

FIGURE 1

DATE: OCTOBER 201

APPENDIX A

SOIL BORING AND TEST PIT LOGS

Project No: 0271-013-001

Borehole Number: SB-01

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300

Buffalo, NY 14218

(716) 856-0635

Project: Limited Phase II Environmental Investigation

Client: The Slater Law Firm, PLLC

A.K.A.:

Site Location: 401, 402 and 430 Buffalo Avenue, Niagara Falls

Logged By: PWW

Checked By: BCH

		SUBSURFACE PROFILE	S	SAM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs 0 25 50	Lab Sample	Well Completion Details or Remarks
0.0	<u>0.0</u> <u>-1.0</u> 1.0	Ground Surface Ashphalt Poorly Graded Sand Blackish brown, moist, mostly fine sand, trace non- plastic fines, loose when disturbed, no odors Poorlyl Graded Sand with Silt Brown, moist to wet (3.5'), mostly fine sand, few non- plastic fines, loose when disturbed, no odors	S-1	NA	3.0		46.2 12.2 6.3	Sampled (0-2')	1 DTW = 4 fbgs
5.0	-4.0 4.0 -8.0 8.0	As above, wet No odors	S-2	NA	4.0		10.6 20.2		
10.0	8.0 -12.0 12.0	As above	S-3	NA	4.0		4.7		
	- <u>16.0</u> 16.0	As above	S-4	NA	4.0		4.0 2.8		
	16.0	End of Borehole							

Drilled By: DDS Companies Drill Rig Type: 66 DT Geoprobe Track Mounted Rig Drill Method: Direct Push with 4' Macro-core Comments: Drill Date(s): 10-3-13

Hole Size: 3" Stick-up: NA Datum: Mean Sea Level

Project No: 0271-013-001

Borehole Number: SB-02

TurnKey Environmental Restoration, LLC

2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218

(716) 856-0635

Project: Limited Phase II Environmental Investigation

Client: The Slater Law Firm, PLLC

A.K.A.:

Site Location: 401, 402 and 430 Buffalo Avenue, Niagara Falls

Logged By: PWW Checked By: BCH

SUBSURFACE PROFILE SAMPLE Well Completion PID SPT N-Value Details Œ VOCs Lab Description Sample No. Depth Elev. Recovery Sample or (ASTM D2488: Visual-Manual Procedure) Symbol (fbgs) /Depth Remarks ppm 12.5 25 Ground Surface 0.0 0.0 Ashphalt 13.1 Silt with Sand 6.4 Brown, moist, mostly non-plastic fines with little fine sand, low dry strength, low toughness, very dense massive S-1 NA 2.2 4.9 -4.0 As above 10.9 5.0 NA 4.0 S-2 No odors 22.3 Sampled (6-8') -8.0 8.0 As above, moist to wet (10.5') 6.2 ||V|| DTW = 10.5 fbgs10.0 S-3 NA 4.0 10.0 -12.0 12.0 End of Borehole 15.0

Drilled By: DDS Companies Drill Rig Type: 66 DT Geoprobe Track Mounted Rig Drill Method: Direct Push with 4' Macro-core Comments: Drill Date(s): 10-3-13

Hole Size: 3" Stick-up: NA Datum: Mean Sea Level

Project No: 0271-013-001

Borehole Number: SB-03

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300

Buffalo, NY 14218

(716) 856-0635

Project: Limited Phase II Environmental Investigation

Client: The Slater Law Firm, PLLC

A.K.A.:

Site Location: 401, 402 and 430 Buffalo Avenue, Niagara Falls

Logged By: PWW

Checked By: BCH

		SUBSURFACE PROFILE	S	6AM	PLE	Ξ			
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs 0 12.5 25	Lab Sample	Well Completion Details or Remarks
0.0	0.0 0.0 -1.0 1.0	Ground Surface Ashphalt Poorly Graded Sand Blackish brown, moist, mostly fine sand, trace non- plastic fines, loose when disturbed Poorly Graded Sand with Silt Brown, moist, mostly fine sand, few non-plastic fines, loose when disturbed, no odors	S-1	NA	3.0		0.0 0.0 0.0		.4.5 fbgs
	-4.0 4.0 -8.0	As above, moist to wet (4.5')	S-2	NA	4.0		0.0		ul▲ DTW = 4.5 fbgs
	- <u>8.0</u> 8.0 -12.0	As above, wet	S-3	NA	4.0		0.0		
	12.0	End of Borehole							

Drilled By: DDS Companies Drill Rig Type: 66 DT Geoprobe Track Mounted Rig Drill Method: Direct Push with 4' Macro-core Comments: Drill Date(s): 10-3-13

Hole Size: 3" Stick-up: NA Datum: Mean Sea Level

Project No: 0271-013-001

Client: The Slater Law Firm, PLLC

Test Pit I.D.: TP-01 Logged By: PWW

Project: Limited Phase II Environmental Investigation

Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Site Location: 401, 402 & 430 Buffalo Avenue, Niagara Falls

		SUBSURFACE PROFILE			_				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	0	VC PI	pm	75 100	Lab Sample	Remarks
0.0-	0.0 0.0	Ground Surface							
0.0-	0.0	Gravel Sub-base	2022 202 2022 2	0.0					
5.0	- <u>1.0</u> 1.0 - <u>6.0</u> 6.0	Fill Reddish brown, moist, mostly red and yellow brick, concrete, little fine sand, loose when disturbed, refusal on suspected concrete @ 6 fbgs End of Test Pit		0.0				Sampled (1-6')	

Excavated By: Turnkey Environmental RestorationLength: 9'Excavator Type: Bobcat Excavator ZHS430Width: 2.5'Excavation Date(s): 10-4-13Depth: 6'Comments:Comments:

Project No: 0271-013-001

Client: The Slater Law Firm, PLLC

Test Pit I.D.: TP-02 Logged By: PWW

Project: Limited Phase II Environmental Investigation

Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Site Location: 401, 402 & 430 Buffalo Avenue, Niagara Falls

		SUBSURFACE PROFILE			,				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	0 :	V	PID 'OCs ^{ppm} 50	75 100	Lab Sample	Remarks
0.0-	0.0	Ground Surface							
0.0 —		Gravel Sub-base	$\begin{array}{c} \mathcal{C}_{0} \mathcal{C}_$	0.0					
	-1.0 1.0		000,000,000,000	0.0					
	1.0 -2.0 2.0	Fill Brown, moist, mostly non-plastic fines with brick, loose when disturbed							
_	2.0	Sandy Lean Clay Reddish brown, moist, mostly medium plasticity fines, some fine sand, stiff, massive		0.0					
_									
5.0 —				0.0					
_				0.0					
_	- <u>9.0</u> 9.0			0.0					
10.0 —	9.0	End of Test Pit							

Excavated By: Turnkey Environmental RestorationLength: 9'Excavator Type: Bobcat Excavator ZHS430Width: 2.5'Excavation Date(s): 10-4-13Depth: 9'Comments:Comments:

Project No: 0271-013-001

Client: The Slater Law Firm, PLLC

Test Pit I.D.: TP-03 Logged By: PWW

Project: Limited Phase II Environmental Investigation

Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Site Location: 401, 402 & 430 Buffalo Avenue, Niagara Falls

		SUBSURFACE PROFILE										
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	0	VOCs		ppm		VOCs		le ^F	Remarks
0.0	0.0	Ground Surface	0	1				_				
0.0	0.0	Gravel Sub-base	2018 2018 2018 2018 2018 2018 2018 2018	0.0								
-	-1.0 1.0	Fill Reddish brown, moist, mostly red and yellow brick, concrete, little fine sand, loose when disturbed,		0.0				- Samplec (1-4.5')				
	-4.5 4.5	refusal on suspected concrete @ 4.5 fbgs							_			
5.0 —	.	End of Test Pit										
		Bv: Turnkey Environmental Restoration Length: 9'	Depth to V									

Excavated By: Turnkey Environmental RestorationLength: 9'Excavator Type: Bobcat Excavator ZHS430Width: 2.5'Excavation Date(s): 10-4-13Depth: 4.5'Comments:Comments:

Depth to Water: None Visual Impacts: None Olfactory Observations: None

Project No: 0271-013-001

Test Pit I.D.: TP-04

Project: Limited Phase II Environmental Investigation

Client: The Slater Law Firm, PLLC

Logged By: PWW Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Site Location: 401, 402 & 430 Buffalo Avenue, Niagara Falls

		SUBSURFACE PROFILE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0 0.0	Ground Surface				
0.0		Gravel Sub-base	\mathcal{A}_{0}^{α}	0.0		
	-1.0 1.0 -2.0 2.0	<i>Fill</i> Brown, moist, mostly non-plastic fines with brick, loose when disturbed			Sampled (1-2')	
_	2.0	Sandy Lean Clay Reddish brown, moist, mostly medium plasticity fines, some fine sand, stiff, massive		0.0		
5.0 —				0.0		
_				0.0		
_	-9.0 9.0			0.0		
10.0	5.0	End of Test Pit				

Excavated By: Turnkey Environmental RestorationLength: 9'Excavator Type: Bobcat Excavator ZHS430Width: 2.5'Excavation Date(s): 10-4-13Depth: 9'Comments:Comments:

Project No: 0271-013-001

Client: The Slater Law Firm, PLLC

Test Pit I.D.: TP-05 Logged By: PWW

Project: Limited Phase II Environmental Investigation

Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Site Location: 401, 402 & 430 Buffalo Avenue, Niagara Falls

		SUBSURFACE PROFILE								
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	0	25	PIE VOC	n N	Lat Samp →		Remarks
0.0	0.0	Ground Surface								
0.0		Gravel Sub-base	200, 200, 200, 200, 200, 200, 200, 200,							
-	-1.0 1.0	Fill Reddish brown, moist, mostly red and yellow brick, concrete, little fine sand, loose when disturbed,						Sampl (1-3')	led	
	-3.0 3.0	refusal on suspected concrete @ 3 fbgs End of Test Pit		× 						

Excavated By: Turnkey Environmental RestorationLength: 9'Excavator Type: Bobcat Excavator ZHS430Width: 2.5'Excavation Date(s): 10-4-13Depth: 3'Comments:Comments:

Project No: 0271-013-001

Client: The Slater Law Firm, PLLC

Test Pit I.D.: TP-06 Logged By: PWW

Project: Limited Phase II Environmental Investigation

Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Site Location: 401, 402 & 430 Buffalo Avenue, Niagara Falls

		SUBSURFACE PROFILE											
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	VOCs		ppm		VOCs		VOCs		Lab Sample	Remarks
0.0	0.0	Ground Surface		L		 							
0.0		Gravel Sub-base	\mathcal{A}_{0}	0.0									
	-1.0 1.0 -2.0 2.0	<i>Fill</i> Brown, moist, mostly non-plastic fines with brick, loose when disturbed											
-	2.0	Sandy Lean Clay Reddish brown, moist, mostly medium plasticity fines, some fine sand, stiff, massive		0.0		 	Sampled (2-4')						
5.0 —				0.0		 							
_				0.0		 							
_	-9.0 9.0		 	0.0									
10.0		End of Test Pit											

Excavated By: Turnkey Environmental RestorationLength: 9'Excavator Type: Bobcat Excavator ZHS430Width: 2.5'Excavation Date(s): 10-4-13Depth: 9'Comments:Comments:

Project No: 0271-013-001

Test Pit I.D.: TP-07

Project: Limited Phase II Environmental Investigation

Client: The Slater Law Firm, PLLC

Logged By: PWW Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Site Location: 401, 402 & 430 Buffalo Avenue, Niagara Falls

		SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	0 2	VC PI	PID DCs pm 50 75 100	Lab Sample	Remarks
0.0	0.0 0.0	Ground Surface						
0.0		Gravel Sub-base	2022 2022 2022 2022 2022 2022 2022 202	0.0				
	-1.0 1.0 -2.0 2.0	Fill Brown, moist, mostly non-plastic fines with brick, loose when disturbed					Sampled	
_	2.0	Sandy Lean Clay Reddish brown, moist, mostly medium plasticity fines, some fine sand, stiff, massive		0.0			(1-3')	
_				- - - 				
5.0 —				0.0				
_				0.0				
_	-9.0 9.0			0.0				
10.0 —	9.0	End of Test Pit						

Excavated By: Turnkey Environmental RestorationLength: 9'Excavator Type: Bobcat Excavator ZHS430Width: 2.5'Excavation Date(s): 10-4-13Depth: 9'Comments:Comments:

Project No: 0271-013-001

Client: The Slater Law Firm, PLLC

Test Pit I.D.: TP-08 Logged By: PWW

Project: Limited Phase II Environmental Investigation

Checked By: BCH

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

Site Location: 401, 402 & 430 Buffalo Avenue, Niagara Falls

SUBSURFACE PROFILE						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Lithologic Symbol	PID VOCs 0 25 50 75 100	Lab Sample	Remarks
0.0	0.0	Ground Surface				
0.0		Gravel Sub-base		0.0		
-	- <u>1.0</u> 1.0 - <u>3.0</u> 3.0	Fill Reddish brown, moist, mostly red and yellow brick, concrete, little fine sand, loose when disturbed, refusal on suspected concrete @ 3 fbgs End of Test Pit		0.0		
5.0 —						

Excavated By: Turnkey Environmental RestorationLength: 9'Excavator Type: Bobcat Excavator ZHS430Width: 2.5'Excavation Date(s): 10-4-13Depth: 3'Comments:Comments:

Depth to Water: None Visual Impacts: None Olfactory Observations: None