# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau E 625 Broadway, 12th Floor, Albany, NY 12233-7017 P: (518) 402-9813 I F: (518) 402-9819 www.dec.ny.gov

December 28, 2015

Mr. Faisal Merani Merani Hospitality Inc. 7001 Buffalo Avenue Niagara Falls, New York 14304

> RE: 401, 402 & 430 Buffalo Avenue, Site No. C932164 Niagara Falls, Niagara County - Decision Document

Dear Mr. Merani:

The New York State Department of Environmental Conservation (NYSDEC) in cooperation with the New York State Department of Health (NYSDOH) has reviewed the revised Remedial Investigation/Interim Remedial Measures/Alternatives Analysis Report (RI/IRM/AAR) dated December 2015. The RI/IRM/AAR is approved.

Enclosed is a copy of the Department's Decision Document for the site. The remedy is to be implemented in accordance with this Decision Document. Please ensure that a copy of the Decision Document and RI/IRM/AAR are placed in the document repository.

Thank you for your cooperation in this matter. If you have any questions, please call the Project Manager, Michael Hinton, at 716-851-7220 or email him at michael.hinton@dec.ny.gov.

Sincerely,

Michael J. Cruden P.E.

Director

Remedial Bureau E

Milfel

Division of Environmental Remediation

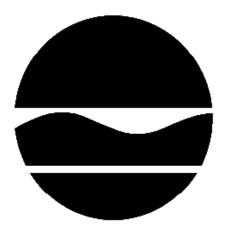
Enclosure

ec: R. Schick, DER

M. Ryan, DER

M. Hinton, Region 9

G. Sutton, Region 9


J. Dougherty, Region 9

S. Selmer, NYSDOH, Albany



# **DECISION DOCUMENT**

401,402 and 430 Buffalo Avenue Site Brownfield Cleanup Program Niagara Falls, Niagara County Site No. C932164 December 2015



Prepared by
Division of Environmental Remediation
New York State Department of Environmental Conservation

# **DECLARATION STATEMENT - DECISION DOCUMENT**

401,402 and 430 Buffalo Avenue Site Brownfield Cleanup Program Niagara Falls, Niagara County Site No. C932164 December 2015

# **Statement of Purpose and Basis**

This document presents the remedy for the 401,402 and 430 Buffalo Avenue Site, a brownfield cleanup site. The remedial program was chosen in accordance with the New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (6 NYCRR) Part 375.

This decision is based on the Administrative Record of the New York State Department of Environmental Conservation (the Department) for the 401,402 and 430 Buffalo Avenue Site and the public's input to the proposed remedy presented by the Department.

# **Description of Selected Remedy**

The elements of the selected remedy are as follows:

With the completion of the IRMs the selected remedy is a Track 2: Residential use with generic soil cleanup objectives remedy for the 401 and 402 Buffalo Ave parcels and a Track 4 Restricted Residential Use remedy is proposed for the 430 Buffalo Ave parcel.

Based on the results of the investigations at the site, the IRMs that have been performed, and the evaluation presented here, the Department is proposing No Further Action as the remedy for the site. This No Further Action proposed remedy includes the following additional elements:

# 1. Cover System

A site cover installed through an IRM, currently exists and will be maintained to allow for restricted residential use of the parcel 430Buffalo Ave. Any site redevelopment will maintain the existing site cover, which consists either of the structures such as buildings, pavement, sidewalks or soil where the upper two feet of exposed surface soil meets the applicable soil cleanup objectives (SCOs) for restricted residential use. Any fill material brought to the site will meet the requirements for the identified site use as set forth in 6NYCRR part 375-6.7(d).

#### 2. Institutional Control

Imposition of an institutional control in the form of an environmental easement for the controlled property which will:

• require the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with

- Part 375-1.8 (h)(3);
- allow the use and development of the controlled property for residential, restricted residential, residential or industrial use as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
- restrict the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County DOH;
- require compliance with the Department approved Site Management Plan.

#### Site Management Plan 3.

A Site Management Plan is required, which includes the following:

An Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to ensure the following institutional and/or engineering controls remain in place and effective:

Institutional Controls: The Environmental Easement as discussed in Paragraph 3 above. Engineering Controls: The soil cover discussed in Paragraph 2 above. This plan includes, but may not be limited to:

- an Excavation Plan which details the provisions for management of future excavations in areas of remaining contamination;
- descriptions of the provisions of the environmental easement including any land use, groundwater use restrictions;
- provisions for the management and inspection of the identified engineering controls;
- maintaining site access controls and Department notification; and
- the steps necessary for the periodic reviews and certification of the institutional and/or engineering controls.

# **Declaration**

The remedy conforms with promulgated standards and criteria that are directly applicable, or that are relevant and appropriate and takes into consideration Department guidance, as appropriate. The remedy is protective of public health and the environment.

| Michael | J |
|---------|---|
| Cruden  |   |

Digitally signed by Michael J Cruden DN: cn=Michael J Cruden, o=DER, ou=RBE, email=mjcruden@gw.dec.state.ny.us, c=US Date: 2015.12.23 09:44:31 -05'00'

| Date | Michael Cruden, Director |
|------|--------------------------|
|      | Remedial Bureau E        |

December 2015 **DECISION DOCUMENT** Page 2

# **DECISION DOCUMENT**

401,402 and 430 Buffalo Avenue Site Niagara Falls, Niagara County Site No. C932164 December 2015

# **SECTION 1: SUMMARY AND PURPOSE**

The New York State Department of Environmental Conservation (the Department), in consultation with the New York State Department of Health (NYSDOH), has selected a remedy for the above referenced site. The disposal of contaminants at the site has resulted in threats to public health and the environment that would be addressed by the remedy. The disposal or release of contaminants at this site, as more fully described in this document, has contaminated various environmental media. Contaminants include hazardous waste and/or petroleum.

The New York State Brownfield Cleanup Program (BCP) is a voluntary program. The goal of the BCP is to enhance private-sector cleanups of brownfields and to reduce development pressure on "greenfields." A brownfield site is real property, the redevelopment or reuse of which may be complicated by the presence or potential presence of a contaminant.

The Department has issued this document in accordance with the requirements of New York State Environmental Conservation Law and 6 NYCRR Part 375. This document is a summary of the information that can be found in the site-related reports and documents.

# **SECTION 2: CITIZEN PARTICIPATION**

The Department seeks input from the community on all remedies. A public comment period was held, during which the public was encouraged to submit comment on the proposed remedy. All comments on the remedy received during the comment period were considered by the Department in selecting a remedy for the site. Site-related reports and documents were made available for review by the public at the following document repository:

Niagara Falls Public Library Attn: Michelle Petrazzoulo Earl W. Brydges Building 1425 Main Street Niagara Falls, NY 14305 Phone:

# **Receive Site Citizen Participation Information By Email**

Please note that the Department's Division of Environmental Remediation (DER) is "going

DECISION DOCUMENT

December 2015

paperless" relative to citizen participation information. The ultimate goal is to distribute citizen participation information about contaminated sites electronically by way of county email listservs. Information will be distributed for all sites that are being investigated and cleaned up in a particular county under the State Superfund Program, Environmental Restoration Program, Brownfield Cleanup Program, Voluntary Cleanup Program, and Resource Conservation and Recovery Act We encourage the public to sign up for one or more county listservs at http://www.dec.ny.gov/chemical/61092.html

# **SECTION 3: SITE DESCRIPTION AND HISTORY**

Location: This BCP site is located at 401, 402 and 430 Buffalo Avenue, in Niagara Falls, Niagara County. The site is bound by 4th Street to the west, 6th Street and Holly Place to the east, a public alleyway from 4th Street and 6th Street to the north, and the Robert Moses State Parkway with the Niagara River beyond to the south. Buffalo Avenue intersects the property from east to west.

Site Features: The 401 Buffalo Avenue parcel is the location of a former hotel and conference center, parking areas and vegetated/landscaped areas. A portion of the former hotel has been demolished and work is underway on the construction of a new structure.

The 402 and 430 Buffalo Avenue parcels are currently vacant and were part of a former manufacturing facility.

Current Zoning and Land Use: The site is currently vacant located in a highly developed mixed use commercial and residential area. The site is zoned commercial and redevelopment at the site has begun.

Past Use of the Site: Use of the three properties dates back to 1901 when a biscuit plant was located on the 402 and 430 parcels. This facility was Nabisco. Operations included underground fuel oil storage tanks likely for the baking ovens. Additional operations included paper box manufacturing and printing, material handling and shipping equipment, maintenance of manufacturing equipment and vehicles, likely application of pesticides and herbicides related to raw food material and finished goods storage, and use of storage of paint, solvents, thinners, grease and lubricants common along former manufacturing operations.

In 1956, the administration building closed and was leased to Union Carbide as a research facility. In 1963, that building became the first home of Niagara County Community College. That same year, the old factory building was demolished.

Records indicate that the 401 parcel was used as a park area along the Niagara River as part of the greater manufacturing plant property. This site was later redeveloped into the former hotel facility in the early 1980's.

Geology and Hydrogeology: The Niagara Falls region is underlain by Silurian and Devonian age stratified limestone, dolomite and shale of marine origin. The primary bedrock type that forms the bedrock surface is fine to course grained Lockport Dolomite. Groundwater in the area is affected by the Niagara River. Bedrock groundwater flow generally is in a Northwesterly direction. The

DECISION DOCUMENT December 2015 401.402 and 430 Buffalo Avenue Site, Site No. C932164 Page 4 Niagara River near the Falls is a recharge zone for bedrock groundwater. Overburden groundwater flow was determined to be in a Southeasterly direction toward the Niagara River at an average depth across the site of 7 feet below ground surface. The depth to groundwater ranged from 5.3 feet to 10.6 feet below the ground surface.

A site location map is attached as Figure 1.

# **SECTION 4: LAND USE AND PHYSICAL SETTING**

The Department may consider the current, intended, and reasonably anticipated future land use of the site and its surroundings when evaluating a remedy for soil remediation. For this site, alternatives (or an alternative) that restrict(s) the use of the site to residential use (which allows for restricted-residential use, commercial use and industrial use) as described in Part 375-1.8(g) were/was evaluated in addition to an alternative which would allow for unrestricted use of the site.

A comparison of the results of the Remedial Investigation (RI) to the appropriate standards, criteria and guidance values (SCGs) for the identified land use and the unrestricted use SCGs for the site contaminants is available in the RI Report.

# **SECTION 5: ENFORCEMENT STATUS**

The Applicant(s) under the Brownfield Cleanup Agreement is a/are Volunteer(s). Applicant(s) does/do not have an obligation to address off-site contamination. However, the Department has determined that this site does not pose a significant threat to public health or the environment; accordingly, no enforcement actions are necessary.

# **SECTION 6: SITE CONTAMINATION**

#### 6.1: **Summary of the Remedial Investigation**

A remedial investigation (RI) serves as the mechanism for collecting data to:

- characterize site conditions:
- determine the nature of the contamination; and
- assess risk to human health and the environment.

The RI is intended to identify the nature (or type) of contamination which may be present at a site and the extent of that contamination in the environment on the site, or leaving the site. The RI reports on data gathered to determine if the soil, groundwater, soil vapor, indoor air, surface water or sediments may have been contaminated. Monitoring wells are installed to assess groundwater and soil borings or test pits are installed to sample soil and/or waste(s) identified. If other natural resources are present, such as surface water bodies or wetlands, the water and sediment may be sampled as well. Based on the presence of contaminants in soil and groundwater, soil vapor will also be sampled for the presence of contamination. Data collected in the RI influence the development of remedial alternatives. The RI report is available for review in the site document repository and the results are summarized in section 6.3.

DECISION DOCUMENT December 2015 401,402 and 430 Buffalo Avenue Site, Site No. C932164 Page 5 The analytical data collected on this site includes data for:

- groundwater
- soil

# 6.1.1: Standards, Criteria, and Guidance (SCGs)

The remedy must conform to promulgated standards and criteria that are directly applicable or that are relevant and appropriate. The selection of a remedy must also take into consideration guidance, as appropriate. Standards, Criteria and Guidance are hereafter called SCGs.

To determine whether the contaminants identified in various media are present at levels of concern, the data from the RI were compared to media-specific SCGs. The Department has developed SCGs for groundwater, surface water, sediments, and soil. The NYSDOH has developed SCGs for drinking water and soil vapor intrusion. For a full listing of all SCGs see: http://www.dec.ny.gov/regulations/61794.html

# **6.1.2: RI Results**

The data have identified contaminants of concern. A "contaminant of concern" is a contaminant that is sufficiently present in frequency and concentration in the environment to require evaluation for remedial action. Not all contaminants identified on the property are contaminants of concern. The nature and extent of contamination and environmental media requiring action are summarized below. Additionally, the RI Report contains a full discussion of the data. The contaminant(s) of concern identified at this site is/are:

PCB aroclor 1260 benzo(a)pyrene lead benzo(b)fluoranthene barium dibenz[a,h]anthracene indeno(1,2,3-CD)pyrene chromium 1,2,4-trimethylbenzene mercury benzo(a)anthracene

The contaminant(s) of concern exceed the applicable SCGs for:

- groundwater
- soil

#### 6.2: **Interim Remedial Measures**

An interim remedial measure (IRM) is conducted at a site when a source of contamination or exposure pathway can be effectively addressed before issuance of the Decision Document.

The following IRM(s) has/have been completed at this site based on conditions observed during the RI.

December 2015 DECISION DOCUMENT 401,402 and 430 Buffalo Avenue Site, Site No. C932164 Page 6

# Building Demolition, PCB, Radiological Material, Soil and Debris Removal

An Interim Remedial Measure Work Plan was approved in December 2014 that included the demolition and removal of a portion of the existing structure that included the removal of abandoned containers of chemicals and maintenance fluids and cleaning of sumps on the 401 parcel. The pre-demolition survey also discovered a PCB oil spill from vandalized transformers. The PCB spill was assigned Spill Number 1312160 which has been closed with the successful completion of the IRM. In addition a post demolition radiological scan indicated the presence technically enhanced naturally occurring radioactive material (TENORM) slag used as fill on site. The following IRMs were performed:

- Building demolition including the disposal of universal waste, sediments in trench drains and chemical waste found in the building;
- Excavation and off-site disposal of 1050 cy of TENORM slag found in various areas of the
- Cleanup and off-site disposal of impacted building materials in the PCB transformer room,
- Excavation and off-site disposal of petroleum impacted soil areas; and
- Excavation and off-site disposal of metals and PAH impacted soil/fill areas.

In addition, an IRM Work Plan Addendum was approved in September 2015 that included:

- Excavation and off-site disposal of TENORM at the 402 Buffalo Ave parcel that exceeded background levels, and
- Excavation and off-site disposal of soil/fill in the 430 Buffalo Ave parcel that exceeded the industrial SCOs for lead.

A cover system has also been installed on the 430 Buffalo Ave parcel which consists of soil where the upper two feet of exposed surface soil meets the applicable soil cleanup objectives (SCOs) for restricted residential use. Where the cover system extends above grade a demarcation layer has been installed.

The IRMs were satisfactorily completed and are fully described in the RI/AA/IRM Report dated December 4, 2015 and the Final Engineering Report.

#### 6.3: **Summary of Environmental Assessment**

This section summarizes the assessment of existing and potential future environmental impacts presented by the site. Environmental impacts may include existing and potential future exposure pathways to fish and wildlife receptors, wetlands, groundwater resources, and surface water. The RI report presents a detailed discussion of any existing and potential impacts from the site to fish and wildlife receptors.

Nature and Extent of Contamination:

The IRMs were successfully completed that addressed the environmental concerns on parcels at 401 and 402 Buffalo Avenue. Post IRM confirmatory sampling that residential RSOs were achieved. No off-site impacts were identified from the 401 and 402 Buffalo Ave parcels. The

DECISION DOCUMENT December 2015 Page 7 residential RSOs include analysis for volatile organic compounds, semi-volatile organic, PCB/pesticides and metals.

# 430 Buffalo Avenue Parcel:

No detections of any Volatile Organic Compounds (VOCs), Polychlorinated biphenyls (PCB), pesticide and herbicide compounds were found above the residential soil cleanup objectives (RSCO). The remaining contamination on the 430 parcel include several SVOC compounds including benzo(a)anthracene (up to 31 part per million (ppm)), benzo(b)fluoranthene (up to 38 ppm), benzo(k)fluoranthene (up to 14 ppm), chrysene (up to 31 ppm), dibenzo(a,h)anthracene (up to 5 ppm) and ideno(1,2,3-cd)pyrene (up to 19 ppm) all were detected above their respective RSCOs. Metals were also found including barium (up to 1400 ppm), lead (up to 2400 ppm) and zinc (up to 2500 ppm) again all detected above their respective RSCOs. PAH and metal contamination was detected above residential RSOs along the northern and eastern property lines adjacent the alley and 6th Street.

A radiological Site survey was also performed on all three parcels. The IRMs addressed the TENORM found on the 401 and 402 parcels. No detections of radiation above normally expected background levels were observed on the 430 parcel.

Groundwater was evaluated during the RI that included analysis for volatile organic compounds, semi-volatile organic, PCB/pesticides and metals. The RI indicated little impact to site groundwater from site contaminants. Benzene was detected in one monitoring well at 1.6 parts per billion (ppb) slightly above the groundwater standard of 1 ppb while 1,2,4-trimethylbenzene was detected in two wells at 5.3 and 7.3 ppb slightly above the groundwater standard of 5 ppb. Groundwater flow in the overburden zone was determined to be in the south easterly direction

# **6.4:** Summary of Human Exposure Pathways

This human exposure assessment identifies ways in which people may be exposed to site-related contaminants. Chemicals can enter the body through three major pathways (breathing, touching or swallowing). This is referred to as *exposure*.

People will not come in contact with contaminated sub-surface soil unless they dig below the surface materials. People are not drinking the contaminated groundwater because the area is served by a public water supply that is not affected by this contamination.

# **6.5:** Summary of the Remediation Objectives

The objectives for the remedial program have been established through the remedy selection process stated in 6 NYCRR Part 375. The goal for the remedial program is to restore the site to pre-disposal conditions to the extent feasible. At a minimum, the remedy shall eliminate or mitigate all significant threats to public health and the environment presented by the contamination identified at the site through the proper application of scientific and engineering principles.

The remedial action objectives for this site are:

# Groundwater

# **RAOs for Public Health Protection**

Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.

#### **RAOs for Environmental Protection**

Remove the source of ground or surface water contamination.

# Soil

# **RAOs for Public Health Protection**

Prevent ingestion/direct contact with contaminated soil.

# **RAOs for Environmental Protection**

Prevent migration of contaminants that would result in groundwater or surface water contamination.

# SECTION 7: ELEMENTS OF THE SELECTED REMEDY

The alternatives developed for the site and the evaluation of the remedial criteria are presented in the Alternative Analysis. The remedy is selected pursuant to the remedy selection criteria set forth in DER-10, Technical Guidance for Site Investigation and Remediation and 6 NYCRR Part 375...

The selected remedy is referred to as the Final Remedy for the 401, 402 & 430 Buffalo Ave Site. The elements of the selected remedy, as shown in Figure 2, are as follows:

With the completion of the IRMs the selected remedy is a Track 2: Residential use with generic soil cleanup objectives remedy for the 401 and 402 Buffalo Ave parcels and a Track 4 Restricted Residential Use remedy is proposed for the 430 Buffalo Ave parcel, which is the controlled property. A municipal restriction on groundwater use is in effect by the City of Niagara Falls and Niagara County for the 401 and 402 Buffalo Ave parcels that would eliminate any potential contact with or ingestion of groundwater.

Based on the results of the investigations at the site, the IRMs that have been performed, and the evaluation presented here, the Department is proposing No Further Action as the remedy for the site. This No Further Action proposed remedy includes the following additional elements:

#### 1. Cover System

A site cover installed through an IRM, currently exists and will be maintained to allow for restricted residential use of the parcel 430Buffalo Ave. Any site redevelopment will maintain the existing site cover, which consists either of the structures such as buildings, pavement, sidewalks or soil where the upper two feet of exposed surface soil meets the applicable soil cleanup objectives (SCOs) for restricted residential use. Any fill material brought to the site will meet the requirements for the identified site use as set forth in 6NYCRR part 375-6.7(d).

#### 2. **Institutional Control**

Imposition of an institutional control in the form of an environmental easement for the controlled property which will:

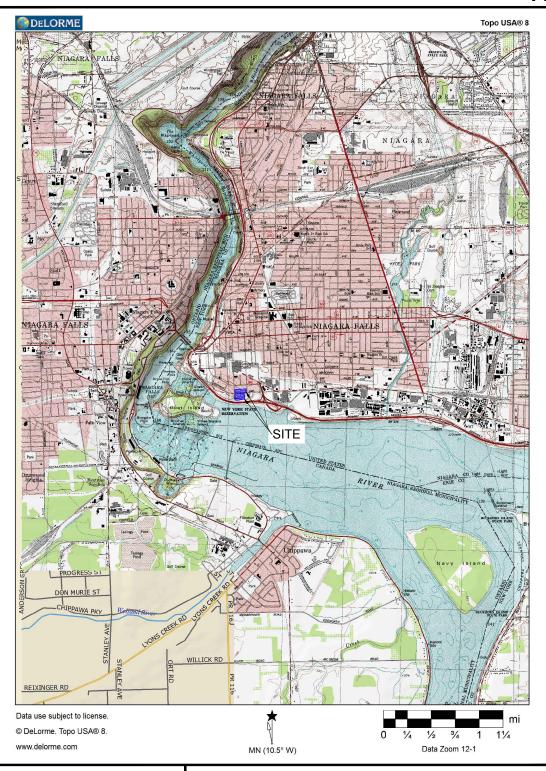
DECISION DOCUMENT December 2015 Page 9

- require the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3);
- allow the use and development of the controlled property for, restricted residential, commercial or industrial use as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
- restrict the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County DOH;
- require compliance with the Department approved Site Management Plan.

# Site Management Plan

A Site Management Plan is required, which includes the following:

An Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to ensure the following institutional and/or engineering controls remain in place and effective:


Institutional Controls: The Environmental Easement as discussed in Paragraph 3 above. Engineering Controls: The soil cover discussed in Paragraph 2 above.

This plan includes, but may not be limited to:

- an Excavation Plan which details the provisions for management of future excavations in areas of remaining contamination;
- descriptions of the provisions of the environmental easement including any land use, groundwater use restrictions;
- provisions for the management and inspection of the identified engineering controls;
- maintaining site access controls and Department notification; and
- the steps necessary for the periodic reviews and certification of the institutional and/or engineering controls.

DECISION DOCUMENT

# FIGURE 1





2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

PROJECT NO.: 0294-013-001

DATE: MARCH 2015

DRAFTED BY: BLR

# SITE LOCATION AND VICINITY MAP

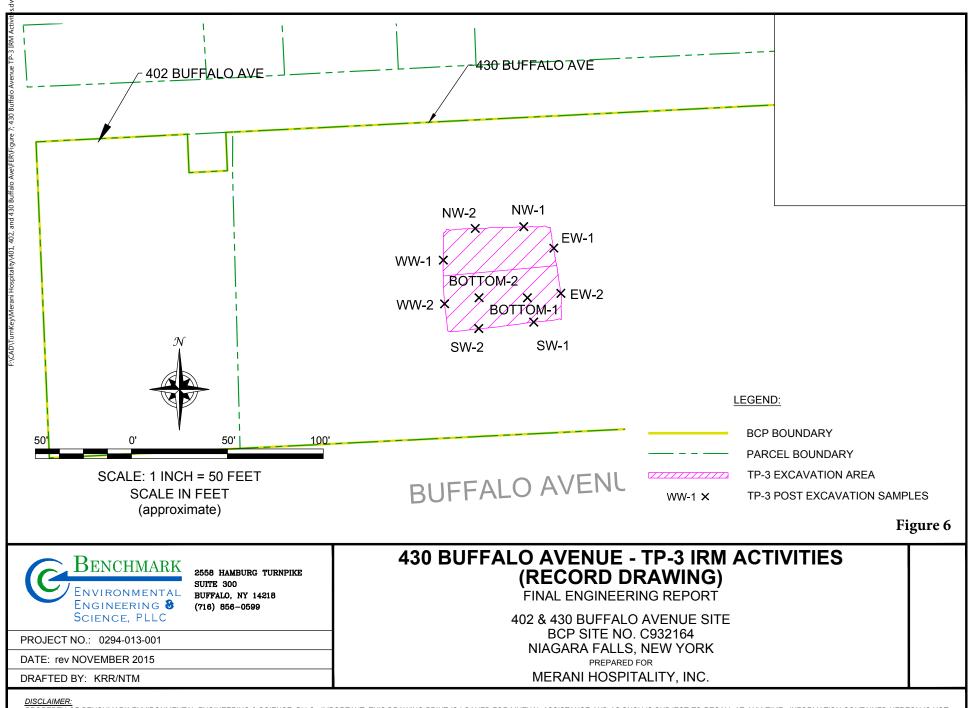
RI-IRM-AA REPORT

402 & 430 BUFFALO AVENUE SITE BCP SITE No. C932164 NIAGARA FALLS, NEW YORK

PREPARED FOR

MERANI HOSPITALITY, INC.

#### DISCLAIMER:


PROPERTY OF TURNKEY ENV. REST., LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENV. REST., LLC.

SITE PLAN (AERIAL)

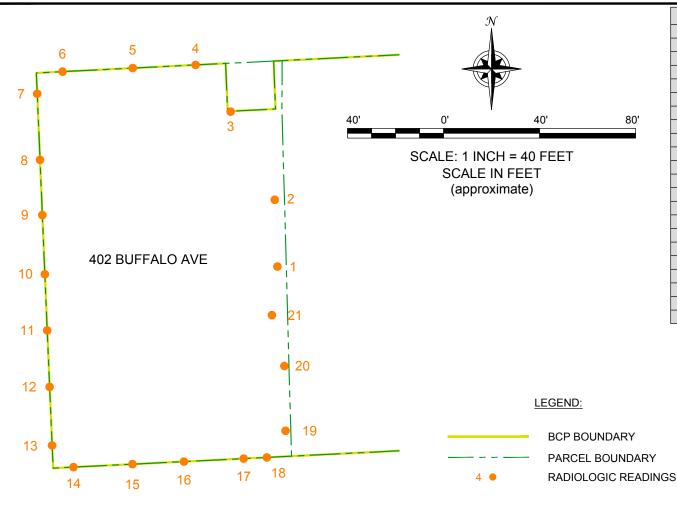

JOB NO.: 0294-013-001

Figure 1A

DISCLAIMER: PROPERTY OF TURNKEY ENV. REST., LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENV. REST., LLC.



PROPERTY OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC.



| RADIOLOGICA     | L READINGS      |
|-----------------|-----------------|
| LOCATIONS       | CPM             |
| 1               | 5393            |
| 2               | 5223            |
| 3               | 20059           |
| 4               | 20537           |
| 5               | 21565           |
| 6               | 14685           |
| 7               | 10490           |
| 8               | 8487            |
| 9               | 11732           |
| 10              | 28787           |
| 11              | 7976            |
| 12              | 11552           |
| 13              | 37155           |
| 14              | 27426           |
| 15              | 10201           |
| 16              | 8106            |
| 17              | 44441           |
| 18              | 32744           |
| 19              | 3917            |
| 20              | 4995            |
| 21              | 2410            |
| READINGS IN COL | INTS DED MINITE |

READINGS IN COUNTS PER MINUTE

Figure 8





2558 HAMBURG TURNPIKE, SUITE 300, BUFFALO, NY 14218, (716) 856-0599

PROJECT NO.: 0294-013-001

DATE: NOVEMBER 2015

DRAFTED BY: KRR

# 402 BUFFALO AVENUE - IRM ACTIVITIES POST-REMOVAL SCREENING RESULTS

FINAL ENGINERING REPORT

402 & 430 BUFFALO AVENUE SITE BCP SITE No. C932164 NIAGARA FALLS, NEW YORK PREPARED FOR

MERANI HOSPITALITY, INC.

DISCLAIMER: PROPERTY OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC. & TURNKEY ENVIRONMENTAL RESTORATION, LLC IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC & TURNKEY ENVIRONMENTAL RESTORATION, LLC.



# SUMMARY OF RI AND IRM SAMPLING AND ANALYSIS PROGRAM

# $REMEDIAL\ INVESTIGATION/INTERIM\ REMEDIAL\ MEASURES/ALTERNATIVES\ ANALYSIS\ REPORT$

# 402 and 430 BUFFALO AVENUE SITE

# NIAGARA FALLS, NEW YORK

| Surface Soil  401 Buffalo Avenue Parcel  402 and 430 Buffalo Avenue Parcels  Subsurface Soil  401 Buffalo Avenue Parcel | SS-1 SS-2 SS-3 SS-4 SS-5 SS-6 SS-7 TP-10 TP-11 TP-12 TP-13 TP-14 TP-15 TP-16 TP-17 TP-18 TP-19                                         | Data Source  Remedial Investigation | Depth<br>Sampled/<br>Screened<br>(fbgs)  0 - 0.5  0 - 0.5  0 - 0.5  0 - 0.5  0 - 0.5  2 - 16 | TCL plus CP-51 List VOCs | 1 LCLSVOC | Part 375 List Metals | PCBs | Pesticide | Herbicide | Date<br>Sampled        |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------|--------------------------|-----------|----------------------|------|-----------|-----------|------------------------|
| 401 Buffalo Avenue Parcel  402 and 430 Buffalo Avenue Parcels  Subsurface Soil                                          | SS-2<br>SS-3<br>SS-4<br>SS-5<br>SS-6<br>SS-7<br>TP-10<br>TP-11<br>TP-12<br>TP-13<br>TP-14<br>TP-15<br>TP-16<br>TP-16<br>TP-17<br>TP-18 |                                     | 0 - 0.5<br>0 - 0.5<br>0 - 0.5<br>0 - 0.5<br>0 - 0.5<br>0 - 0.5<br>0 - 0.5<br>2 - 16          |                          | 1<br>1    | 1                    |      |           |           |                        |
| 402 and 430 Buffalo Avenue Parcels  Subsurface Soil  401 Buffalo                                                        | SS-3 SS-4 SS-5 SS-6 SS-7  TP-10 TP-11 TP-12 TP-13 TP-14 TP-15 TP-16 TP-17 TP-18                                                        |                                     | 0 - 0.5<br>0 - 0.5<br>0 - 0.5<br>0 - 0.5<br>0 - 0.5<br>0 - 0.5                               |                          | 1         |                      |      |           | 1         | 2/10/2015<br>2/9/2015  |
| Avenue Parcels  Subsurface Soil  401 Buffalo                                                                            | SS-5<br>SS-6<br>SS-7<br>TP-10<br>TP-11<br>TP-12<br>TP-13<br>TP-14<br>TP-15<br>TP-16<br>TP-16<br>TP-17<br>TP-18                         | Investigation                       | 0 - 0.5<br>0 - 0.5<br>0 - 0.5<br>2 - 16                                                      |                          | 1         |                      | 1    | 1         | 1         | 2/10/2015              |
| Subsurface Soil  401 Buffalo                                                                                            | SS-7  TP-10  TP-11  TP-12  TP-13  TP-14  TP-15  TP-16  TP-17  TP-18                                                                    |                                     | 0 - 0.5<br>2 - 16                                                                            |                          | 1         | 1                    | 1    | 1         | 1         | 2/10/2015<br>2/10/2015 |
| 401 Buffalo                                                                                                             | TP-11<br>TP-12<br>TP-13<br>TP-14<br>TP-15<br>TP-16<br>TP-17<br>TP-18                                                                   |                                     |                                                                                              |                          | 1 1       | 1                    |      |           |           | 2/10/2015<br>2/10/2015 |
|                                                                                                                         | TP-12<br>TP-13<br>TP-14<br>TP-15<br>TP-16<br>TP-17<br>TP-18                                                                            |                                     | 1 0                                                                                          |                          | 1         | 1                    |      |           | 1         | 2/10/2015              |
|                                                                                                                         | TP-13<br>TP-14<br>TP-15<br>TP-16<br>TP-17<br>TP-18                                                                                     |                                     | 1 - 3<br>6 - 8                                                                               | 1                        | 1 1       | 1 1                  |      |           |           | 2/9/2015<br>2/9/2015   |
|                                                                                                                         | TP-15<br>TP-16<br>TP-17<br>TP-18                                                                                                       |                                     | 1 - 3                                                                                        | 1 1                      | 1 1       | 1 1                  | 1 1  | 1 1       | 1         | 2/9/2015               |
| Avenue Parcel                                                                                                           | TP-17<br>TP-18                                                                                                                         |                                     | 4 - 10<br>2 - 4                                                                              | 1                        | 1         | 1                    | 1    | 1         | 1         | 2/9/2015<br>2/9/2015   |
|                                                                                                                         |                                                                                                                                        |                                     | 4 - 14<br>2 - 15                                                                             | 1                        | 1 1       | 1 1                  | 1    | 1         | 1         | 2/9/2015<br>2/10/2015  |
|                                                                                                                         |                                                                                                                                        | <u></u>                             | 1 - 8<br>3 - 10                                                                              | 1                        | 1 1       | 1 1                  | 1    | 1         | 1         | 2/10/2015<br>2/9/2015  |
|                                                                                                                         | TP-20<br>TP-21                                                                                                                         |                                     | 1 - 3                                                                                        | 1                        | 1         | 1                    | 1 1  | 1         | 1         | 2/10/2015              |
|                                                                                                                         | TP-22                                                                                                                                  |                                     | 1 - 3                                                                                        |                          | 1         | 1                    |      |           |           | 2/11/2015              |
|                                                                                                                         | TP-23<br>TP-24                                                                                                                         |                                     | 1 - 16<br>1 - 4                                                                              | 1<br>1                   | 1<br>1    | 1<br>1               | 1    | 1         | 1         | 2/11/2015<br>2/11/2015 |
| 402 and 430 Buffalo<br>Avenue Parcels                                                                                   | TP-25<br>TP-26                                                                                                                         | - Remedial                          | 1 - 4<br>1 - 3                                                                               | 1                        | 1 1       | 1 1                  | 1    | 1         | 1         | 2/11/2015<br>2/10/2015 |
|                                                                                                                         | TP-27<br>TP-28                                                                                                                         | - Investigation                     | 2 - 12<br>1 - 4                                                                              | 1                        | 1         | 1                    | 1    | 1         | 1         | 2/10/2015<br>2/10/2015 |
|                                                                                                                         | TP-29<br>MW-1                                                                                                                          |                                     | 1 - 4<br>5-16                                                                                |                          | 1 1       | 1 1                  | 1    |           |           | 2/10/2015<br>2/24/2015 |
| 401 Buffalo                                                                                                             | MW-2                                                                                                                                   |                                     | 0.5-3                                                                                        | 1                        | 1         | 1                    | 1    | 1         | 1         | 2/24/2015              |
| Avenue Parcel                                                                                                           | MW-3<br>MW-4                                                                                                                           |                                     | 2-8<br>3-12                                                                                  | 1                        | 1 1       | 1 1                  | 1    | 1         | 1         | 4/15/2015<br>2/25/2015 |
|                                                                                                                         | MW-5<br>MW-6                                                                                                                           | 1                                   | 2-8                                                                                          | 1                        | 1         |                      | 1    |           |           | 4/14/2015              |
|                                                                                                                         | MW-7<br>MW-8                                                                                                                           | 1                                   | 1-7<br>4-12                                                                                  | 1 1                      | 1 1       | 1 1                  | 1    | 1 1       | 1 1       | 2/25/2015<br>2/25/2015 |
| 402 and 430 Buffalo                                                                                                     | MW-9                                                                                                                                   | =                                   | 1-8                                                                                          |                          | 1         | 1                    | -    |           |           | 2/25/2015              |
| Avenue Parcels                                                                                                          | MW-9<br>SB - 7                                                                                                                         |                                     | 13-16<br>1-5                                                                                 |                          | 1         | 1                    | 1    |           |           | 2/25/2015<br>2/25/2015 |
|                                                                                                                         | SB - 8<br>SB - 9                                                                                                                       | _                                   | 8-10                                                                                         | 1                        | 1         | 1                    | 1    | 1         | 1         | 2/25/2015              |
|                                                                                                                         | SB - 10<br>SB - 11                                                                                                                     |                                     | 1-16                                                                                         |                          | 1         | 1                    |      |           |           | 2/10/2015              |
| Groundwater                                                                                                             | MW-1                                                                                                                                   |                                     | 13'-18'                                                                                      | 1                        | 1         | 1                    | 1    | 1         | 1         | 4/16/2015              |
| 401 Buffalo                                                                                                             | MW-2                                                                                                                                   |                                     | 8'-13'                                                                                       | 1                        | 1         | 1                    | 1    | 1         | 1         | 4/16/2015 & 5/8/2015   |
| Avenue Parcel                                                                                                           | MW-3                                                                                                                                   |                                     | 9'-14'                                                                                       | 1                        | 1         | 1                    | 1    | 1         | 1         | 4/17/2015              |
|                                                                                                                         | MW-4<br>MW-5                                                                                                                           | Remedial                            | 8.5'-13.5'<br>12'-17'                                                                        | 1                        | 1         | 1                    | 1    | 1         | 1         | 4/17/2015<br>4/17/2015 |
|                                                                                                                         | MW-6                                                                                                                                   | Investigation                       | 9'-14'                                                                                       | 1                        | 1         | 1                    | 1    | 1         | 1         | 4/16/2015              |
| 402 and 430 Buffalo Avenue<br>Parcel                                                                                    | MW-7                                                                                                                                   | =                                   | 6.5'-11.5'                                                                                   | 1                        |           |                      |      |           |           | 6/10/2015              |
| 1 arcci                                                                                                                 | MW-8<br>MW-9                                                                                                                           | 1                                   | 6.5'-11.5'<br>11'-16'                                                                        | 1                        | 1         | 1                    | 1    | 1         | 1         | 4/16/2015<br>4/17/2015 |
|                                                                                                                         | MW-10                                                                                                                                  |                                     | 9'-14'                                                                                       | 1                        | 1         | 1                    | 1    | 1         | 1         | 4/17/2015              |
| Interim Remedial Measures - Post-Reme                                                                                   | edial Verification Samples  East                                                                                                       | IRM                                 |                                                                                              | 1                        | 1         |                      |      |           |           | 4/14/2015              |
| 401 Buffalo -<br>Petroleum Area                                                                                         | Middle                                                                                                                                 | IRM                                 |                                                                                              | 1                        | 1         |                      |      |           |           | 4/14/2015              |
|                                                                                                                         | West                                                                                                                                   | IRM                                 |                                                                                              | 1                        | 1         |                      |      |           |           | 4/14/2015              |
| 401 Buffalo -                                                                                                           | Bottom Comp 1  Bottom Comp 2                                                                                                           | IRM<br>IRM                          |                                                                                              |                          |           | 1                    |      |           |           | 6/3/2015<br>6/3/2015   |
| Parking Lot Area                                                                                                        | Bottom Comp 3                                                                                                                          | IRM                                 |                                                                                              |                          |           | 1                    |      |           |           | 6/3/2015               |
|                                                                                                                         | Bottom Comp 4<br>North Wall                                                                                                            | IRM                                 |                                                                                              |                          |           | 1                    |      |           |           | 6/3/2015               |
|                                                                                                                         | North Wall<br>South Wall                                                                                                               | IRM<br>IRM                          |                                                                                              |                          |           | 1                    |      |           |           | 6/4/2015<br>6/4/2015   |
| 401 Buffalo -<br>Pool Area                                                                                              | East Wall                                                                                                                              | IRM                                 |                                                                                              |                          |           | 1                    |      |           |           | 6/4/2015               |
|                                                                                                                         | West Wall<br>Bottom                                                                                                                    | IRM<br>IRM                          |                                                                                              |                          |           | 1                    |      |           |           | 6/4/2015<br>6/4/2015   |
| 401 Buffalo -<br>Southern Gas Line                                                                                      | Southern Gas Line                                                                                                                      | IRM                                 |                                                                                              |                          | 1         | 1                    |      |           |           | 6/4/2015               |
| 401 Buffalo -<br>SS-2 Area                                                                                              | SS-2 Comp.                                                                                                                             | IRM                                 |                                                                                              |                          |           | 1                    |      |           |           | 6/4/2015               |
|                                                                                                                         | A1                                                                                                                                     | IRM                                 |                                                                                              |                          |           |                      | 1    |           |           | 7/22/2015              |
|                                                                                                                         | B1<br>C1                                                                                                                               | IRM<br>IRM                          |                                                                                              |                          |           |                      | 1    |           |           | 7/22/2015<br>7/22/2015 |
| 401 Buffalo - Transformer                                                                                               | D1                                                                                                                                     | IRM                                 |                                                                                              |                          |           |                      | 1    |           |           | 7/22/2015              |
| Room Soil Post-Ex                                                                                                       | E1                                                                                                                                     | IRM                                 |                                                                                              |                          |           |                      | 1    |           |           | 7/22/2015              |
| SOH FOST-EX                                                                                                             | F1<br>G2                                                                                                                               | IRM<br>IRM                          |                                                                                              |                          |           |                      | 1    |           |           | 7/22/2015<br>7/22/2015 |
|                                                                                                                         | H2                                                                                                                                     | IRM                                 |                                                                                              |                          |           |                      | 1    |           |           | 7/22/2015              |
|                                                                                                                         | Pipe Sediment                                                                                                                          | IRM                                 |                                                                                              |                          |           |                      | 1    |           |           | 7/23/2015              |
| 401 Buffalo -                                                                                                           | South Footer<br>South Wall                                                                                                             | IRM<br>IRM                          |                                                                                              |                          |           |                      | 1    |           |           | 7/27/2015<br>7/27/2015 |
| transformer Room<br>Wipe Samples                                                                                        | West Footer                                                                                                                            | IRM                                 |                                                                                              |                          |           |                      | 1    |           |           | 7/27/2015              |
| 1 F                                                                                                                     | West Wall                                                                                                                              | IRM                                 |                                                                                              | 1                        |           |                      | 1 *  |           | 1         | and the second second  |



# SUMMARY OF TRANSFORMER ROOM PCB WIPE SAMPLE RESULTS

# REMEDIAL INVESTIGATION/INTERIM REMEDIAL MEASURES/ALTERNATIVES ANALYSIS REPORT

# 402 and 430 BUFFALO AVENUE SITE

# **NIAGARA FALLS, NEW YORK**

| Parameter <sup>1</sup>             | Wipe Sample 1 | Wipe Sample 2 | Housing 103 |
|------------------------------------|---------------|---------------|-------------|
|                                    |               | 11/11/2014    |             |
| Polychlorinated biphenyls (PCBs) - | ug/Abs        |               |             |
| Aroclor 1016                       | ND            | ND            | ND          |
| Aroclor 1221                       | ND            | ND            | ND          |
| Aroclor 1232                       | ND            | ND            | ND          |
| Aroclor 1242                       | ND            | ND            | ND          |
| Aroclor 1248                       | ND            | ND            | ND          |
| Aroclor 1254                       | ND            | ND            | ND          |
| Aroclor 1260                       | 77.6          | 276           | 322         |
| Aroclor 1262                       | ND            | ND            | ND          |
| Aroclor 1268                       | ND            | ND            | ND          |
| Total Polychlorinated Biphenyls    | 77.6          | 276           | 322         |

# Notes:

1. Sample results were reported by the laboratory in ug/Abs; equivalent to ug/100 cm<sup>2</sup>.

# Definitions:

ND = Parameter not detected above laboratory detection limit.



# SUMMARY OF HISTORIC SUBSURFACE SOIL/FILL ANALYTICAL RESULTS

# REMEDIAL INVESTIGATION / INTERIM REMEDIAL MEASURES / ALTERNATIVE ANALYSIS REPORT

# 402 and 430 BUFFALO AVENUE SITE

# **NIAGARA FALLS, NEW YORK**

|                                                        |                                       |                                                    |                                     |               |               |               |                 |                 | Sample L         | ocations       |               |                |                 |                    |                  |  |
|--------------------------------------------------------|---------------------------------------|----------------------------------------------------|-------------------------------------|---------------|---------------|---------------|-----------------|-----------------|------------------|----------------|---------------|----------------|-----------------|--------------------|------------------|--|
| Parameter <sup>1</sup>                                 | Unrestricted<br>Use SCOs <sup>2</sup> | Restricted<br>Residential<br>Use SCOs <sup>2</sup> | Commercial<br>Use SCOs <sup>2</sup> | SB-1<br>(0-2) | SB-2<br>(6-8) | TP-1<br>(1-6) | TP-3<br>(1-4.5) | TP-4<br>(1-2)   | TP-5<br>(1-3)    | TP-6<br>(2-4)  | TP-7<br>(2-4) | WEST<br>TRENCH | SOUTH<br>TRENCH | ISLAND<br>TEST PIT | POOL<br>TEST PIT |  |
| Valadila Ossania Ossania da (VOOs) sasalika            | 3                                     |                                                    |                                     | 10/3/         | 2013          |               |                 | 10/4            | /2013            |                |               | 8/26/2014      |                 |                    |                  |  |
| Volatile Organic Compounds (VOCs) - mg/Kg Total VOCs   |                                       |                                                    |                                     | ND            | ND            |               |                 |                 |                  |                | I             |                |                 | l                  |                  |  |
|                                                        |                                       |                                                    |                                     | IND           | ND            |               |                 |                 |                  |                |               |                |                 |                    |                  |  |
| Semi-Volatile Organic Compounds (SVOCs) - Acenaphthene | 20                                    | 100                                                | 500                                 | ND            | ND            | 0.35          | 1.4             | ND              | 2.2              | 0.046 J        | 0.052 J       | ND             | 8.2             | ND                 | ND               |  |
| Anthracene                                             | 100                                   | 100                                                | 500                                 | 0.042 J       | ND<br>ND      | 0.35          | 3.1             | ND<br>ND        | 9.8              | 0.046 J<br>ND  | 0.052 3       | 2.2 J          | 16              | 0.074 J            | ND<br>ND         |  |
| Benzo(a)anthracene                                     | 100                                   | 100                                                | 5.6                                 | 0.042 3       | ND<br>ND      | 3.3           | 5.9             | 0.1 J           | 9.6<br><b>31</b> | 0.14           | 0.2           | 10             | 43              | 0.074 3            | ND<br>ND         |  |
| Benzo(a)pyrene                                         | 1                                     | 1                                                  | 1                                   | 0.19          | ND            | 2.9           | 5.1             | 0.13<br>0.087 J | 30               | 0.14<br>0.12 J | 0.41          | 12             | 43              | 0.32               | ND<br>ND         |  |
| Benzo(b)fluoranthene                                   | 1                                     | 1                                                  | 5.6                                 | 0.19          | ND            | 3.8           | 6.3             | 0.007 3         | 38               | 0.12 3         | 0.53          | 25             | 57              | 0.32               | ND               |  |
| Benzo(g,h,i)perylene                                   | 100                                   | 100                                                | 500                                 | 0.14 J        | ND            | 1.8           | 3.1             | 0.061 J         | 18               | 0.077 J        | 0.22          | 14             | 29              | 0.15               | ND               |  |
| Benzo(k)fluoranthene                                   | 0.8                                   | 3.9                                                | 56                                  | 0.095 J       | ND            | 1.4           | 2.5             | 0.05 J          | 14               | 0.06 J         | 0.23          | 9.3            | 24              | 0.17               | ND ND            |  |
| Chrysene                                               | 1                                     | 3.9                                                | 56                                  | 0.31          | ND            | 3.2           | 5.7             | ND              | 31               | 0.15           | 0.47          | 21             | 46              | 0.34               | ND ND            |  |
| Dibenzo(a,h)anthracene                                 | 0.33                                  | 0.33                                               | 0.56                                | ND            | ND            | 0.49          | 0.82            | ND              | 5                | ND             | 0.069 J       | 2.3 J          | 7.3             | 0.046 J            | ND               |  |
| Fluoranthene                                           | 100                                   | 100                                                | 500                                 | 0.63          | ND            | 6.8           | 12              | 0.18            | 68               | 0.27           | 0.93          | 31             | 99              | 0.48               | ND               |  |
| Fluorene                                               | 30                                    | 100                                                | 500                                 | ND            | ND            | 0.4           | 1.4             | ND              | 2.8              | ND             | 0.061 J       | ND             | 7.3             | ND                 | ND               |  |
| Indeno(1,2,3-cd)pyrene                                 | 0.5                                   | 0.5                                                | 5.6                                 | 0.13 J        | ND            | 1.9           | 3.2             | 0.059 J         | 19               | 0.082 J        | 0.24          | 14             | 32              | 0.16               | ND               |  |
| Naphthalene                                            | 12                                    | 100                                                | 500                                 | 0.11 J        | ND            | 0.16 J        | 1.9             | ND              | 0.92 J           | ND             | ND            | ND             | 3.7 J           | ND                 | ND               |  |
| Phenanthrene                                           | 100                                   | 100                                                | 500                                 | 0.52          | ND            | 4             | 11              | 0.094 J         | 29               | 0.17           | 0.65          | 13             | 66              | 0.18               | ND               |  |
| Pyrene                                                 | 100                                   | 100                                                | 500                                 | 0.5           | ND            | 5.6           | 10              | 0.16            | 56               | 0.23           | 0.75          | 23             | 72              | 0.42               | ND               |  |
| Polychlorinated biphenyls (PCBs) - mg/Kg 3             |                                       |                                                    |                                     |               |               |               |                 |                 |                  |                |               |                |                 |                    |                  |  |
| Aroclor 1260                                           |                                       |                                                    |                                     |               |               | ND            | ND              |                 | 0.0284 J         |                | ND            |                |                 |                    |                  |  |
| Total PCBs                                             | 0.1                                   | 1                                                  | 1                                   |               |               |               |                 |                 | 0.0284 J         |                |               |                |                 |                    |                  |  |
| Metals - mg/Kg                                         |                                       |                                                    |                                     |               |               |               |                 |                 |                  |                | •             |                |                 |                    | •                |  |
| Arsenic                                                | 13                                    | 16                                                 | 16                                  | 7.2           | 1.1           | 9.6           | 8.9             |                 | 6                |                | 6.3           | 7.1            | 4.7             | 21                 | 3.6              |  |
| Barium                                                 | 350                                   | 400                                                | 400                                 | 64            | 12            | 950           | 1000            |                 | 970              |                | 59            | 160            | 150             | 84                 | 25               |  |
| Cadmium                                                | 2.5                                   | 4.3                                                | 9.3                                 | 0.72          | 0.92          | 2.1           | 2.1             |                 | 1.8              |                | 0.78          | 2.6            | 8.2             | 0.24 J             | 0.42 J           |  |
| Chromium                                               | 30                                    | 180                                                | 1500                                | 7.6           | 3             | 27            | 19              |                 | 8.9              |                | 9.6           | 32             | 98              | 9.7                | 7.6              |  |
| Lead                                                   | 63                                    | 400                                                | 1000                                | 100           | 23            | 2700          | 6200            |                 | 2100             |                | 130           | 36             | 150             | 540                | 21               |  |
| Selenium                                               | 3.9                                   | 180                                                | 1500                                | ND            | ND            | ND            | ND              |                 | ND               |                | ND            | 0.76 J         | 2 J             | 0.26 J             | ND               |  |
| Silver                                                 | 2                                     | 8.3                                                | 1500                                | 0.12 J        | ND            | 0.2 J         | 0.24 J          |                 | 0.22 J           |                | ND            | 0.68 J         | 0.39 J          | ND                 | ND               |  |
| Mercury                                                | 0.18                                  | 0.73                                               | 2.8                                 | ND            | ND            | 0.05 J        | 0.03 J          |                 | 0.17             |                | 0.09          | 0.18 J         | 1               | 0.29               | 0.03 J           |  |
|                                                        |                                       |                                                    |                                     |               |               |               |                 | •               |                  |                |               |                |                 |                    |                  |  |

401 Buffalo Ave

## Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per 6NYCRR Part 375 Soil Cleanup Objectives (December 2006).
- 3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparison to SCOs.

# Definitions:

ND = Parameter not detected above laboratory detection limit.

- "--" = No SCO available for the parameter.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.

| BOLD | = Result exceeds Part 375 Unrestricted Use SCOs.           |
|------|------------------------------------------------------------|
| BOLD | = Result exceeds Part 375 Restricted Residential Use SCOs. |
| BOLD | = Result exceeds Part 375 Commercial Use SCOs.             |

430 Buffalo Ave Cover System

401Buffalo Ave IRMs



#### SUMMARY OF SURFACE SOIL ANALYTICAL RESULTS

#### REMEDIAL INVESTIGATION / INTERIM REMEDIAL MEASURES / ALTERNATIVE ANALYSIS REPORT

#### 402 AND 430 BUFFALO AVENUE SITE

#### **NIAGARA FALLS, NEW YORK**

|                                         |                                       | Do atriata d                                       |                                                  |             |         | SAI       | MPLE LOCAT | ION      |         |         |  |  |  |  |  |
|-----------------------------------------|---------------------------------------|----------------------------------------------------|--------------------------------------------------|-------------|---------|-----------|------------|----------|---------|---------|--|--|--|--|--|
| PARAMETER <sup>1</sup>                  | Unrestricted<br>Use SCOs <sup>2</sup> | Restricted<br>Residential Use<br>SCOs <sup>2</sup> | sidential Use Commercial SS-1 SS-2 SS-3 SS-4 SS- |             | SS-5    | SS-6      | SS-7       |          |         |         |  |  |  |  |  |
|                                         |                                       | 3005                                               |                                                  | 2/9-10/2015 |         |           |            |          |         |         |  |  |  |  |  |
| Semi-Volatile Organic Compounds (SVO    | Cs) - mg/Kg <sup>3</sup>              |                                                    |                                                  |             |         |           |            |          |         |         |  |  |  |  |  |
| Anthracene                              | 100                                   | 100                                                | 500                                              | 0.082 J     | 0.076 J | ND        | ND         | ND       | 0.034 J | ND      |  |  |  |  |  |
| Benzaldehyde                            |                                       |                                                    | -                                                | ND          | ND      | ND        | ND         | 0.1 J    | ND      | 0.077 J |  |  |  |  |  |
| Benzo(a)anthracene                      | 1                                     | 1                                                  | 5.6                                              | 0.23        | 0.24    | 0.12 J    | 0.042 J    | 0.051 J  | 0.11 J  | 0.059 J |  |  |  |  |  |
| Benzo(a)pyrene                          | 1                                     | 1                                                  | 1                                                | 0.22        | 0.23    | 0.14 J    | ND         | 0.049 J  | 0.11 J  | 0.067 J |  |  |  |  |  |
| Benzo(b)fluoranthene                    | 1                                     | 1                                                  | 5.6                                              | 0.31        | 0.3     | 0.21      | 0.049 J    | 0.071 J  | 0.12    | 0.11    |  |  |  |  |  |
| Benzo(ghi)perylene                      | 100                                   | 100                                                | 500                                              | 0.13 J      | 0.13 J  | 0.093 J   | ND         | ND       | 0.062 J | 0.058 J |  |  |  |  |  |
| Benzo(k)fluoranthene                    | 0.8                                   | 3.9                                                | 56                                               | 0.13        | 0.14    | 0.091 J   | ND         | ND       | 0.055 J | 0.04 J  |  |  |  |  |  |
| Carbazole                               | -                                     | -                                                  |                                                  | 0.048 J     | 0.047 J | ND        | ND         | ND       | ND      | ND      |  |  |  |  |  |
| Chrysene                                | 1                                     | 3.9                                                | 56                                               | 0.25        | 0.24    | 0.14      | 0.037 J    | 0.054 J  | 0.1 J   | 0.067 J |  |  |  |  |  |
| Fluoranthene                            | 100                                   | 100                                                | 500                                              | 0.5         | 0.48    | 0.26      | 0.073 J    | 0.11     | 0.22    | 0.091 J |  |  |  |  |  |
| Indeno(1,2,3-cd)pyrene                  | 0.5                                   | 0.5                                                | 5.6                                              | 0.15 J      | 0.14 J  | 0.1 J     | ND         | ND       | 0.063 J | 0.061 J |  |  |  |  |  |
| Phenanthrene                            | 100                                   | 100                                                | 500                                              | 0.34        | 0.34    | 0.15      | ND         | 0.062 J  | 0.15    | 0.039 J |  |  |  |  |  |
| Phenol                                  | 100                                   | 100                                                | 500                                              | ND          | ND      | ND        | ND         | 0.3      | ND      | ND      |  |  |  |  |  |
| Pyrene                                  | 100                                   | 100                                                | 500                                              | 0.39        | 0.39    | 0.21      | 0.059 J    | 0.087 J  | 0.19    | 0.079 J |  |  |  |  |  |
| Metals - mg/Kg                          | =                                     |                                                    |                                                  |             |         |           |            |          |         |         |  |  |  |  |  |
| Arsenic                                 | 13                                    | 16                                                 | 16                                               | 9.5         | 18      | 8.9       | 4.9        | 5.6      | 12      | 2.6     |  |  |  |  |  |
| Barium                                  | 350                                   | 400                                                | 400                                              | 86          | 60      | 65        | 6.7        | 6.8      | 66      | 13      |  |  |  |  |  |
| Beryllium                               | 7.2                                   | 72                                                 | 590                                              | 0.52        | 0.32    | 0.45      | 0.07 J     | 0.06 J   | 0.31    | ND      |  |  |  |  |  |
| Cadmium                                 | 2.5                                   | 4.3                                                | 9.3                                              | 0.24 J      | 0.38 J  | 0.24 J    | 0.94       | 0.28 J   | 0.6     | 1.3     |  |  |  |  |  |
| Chromium                                | 30                                    | 180                                                | 1500                                             | 34          | 14      | 23        | 3          | 2.8      | 16      | 2.4     |  |  |  |  |  |
| Copper                                  | 50                                    | 270                                                | 270                                              | 18          | 16      | 14        | 3.5        | 3.6      | 16      | 4.2     |  |  |  |  |  |
| Lead                                    | 63                                    | 400                                                | 1000                                             | 29          | 78      | 24        | 41         | 36       | 96      | 42      |  |  |  |  |  |
| Manganese                               | 1600                                  | 2000                                               | 10000                                            | 490         | 380     | 660       | 440        | 510      | 630     | 460     |  |  |  |  |  |
| Mercury                                 | 0.18                                  | 0.81                                               | 2.8                                              | 0.17        | 0.21    | 0.14      | 0.04 J     | 0.02 J   | 0.24    | 0.06 J  |  |  |  |  |  |
| Nickel                                  | 30                                    | 310                                                | 310                                              | 17          | 21      | 12        | 3          | 2.6      | 11      | 2.6     |  |  |  |  |  |
| Selenium                                | 3.9                                   | 180                                                | 1500                                             | 0.34 J      | 0.27 J  | 0.17      | 0.24 J     | 0.22 J   | 0.29 J  | ND      |  |  |  |  |  |
| Silver                                  | 2                                     | 180                                                | 1500                                             | ND          | ND      | ND        | 0.1 J      | ND       | 0.11 J  | ND      |  |  |  |  |  |
| Zinc                                    | 109                                   | 10000                                              | 10000                                            | 85          | 99      | 77        | 280        | 82       | 200     | 410     |  |  |  |  |  |
| Polychlorinated biphenyls (PCBs) - mg/k | g <sup>3</sup>                        |                                                    |                                                  |             |         |           |            |          |         |         |  |  |  |  |  |
| Aroclor 1248                            |                                       | -                                                  |                                                  |             | ND      | ND        |            | 0.0128 J |         |         |  |  |  |  |  |
| Total PCBs                              | 0.1                                   | 1                                                  | 1                                                |             | ND      | ND        |            | 0.0128 J | -       |         |  |  |  |  |  |
| Pesticides and Herbicides - mg/Kg 3     |                                       |                                                    |                                                  |             |         |           |            |          |         |         |  |  |  |  |  |
| 4,4'-DDT                                | 0.0033                                | 7.9                                                | 47                                               |             |         | 0.00228 J |            | ND       |         |         |  |  |  |  |  |

401 Buffalo Ave

#### Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this tabe; all other compounds were reported as non-detect.
- 2. Values per 6NYCRR Part 375 Soil Cleanup Objectives (SCOs).

  3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparisons to SCOs.

#### Definitions:

ND = Parameter not detected above laboratory detection limit.
"--" = No value available for the parameter; Parameter not analysed for.
J = Estimated value; result is less than the sample quantitation limit but greater than zero.

Bold Result exceeds Unrestricted Use SCOs. = Result exceeds Restricted Residential Use SCOs. = Result exceeds Commercial Use SCOs. Bold Bold

430 Buffalo Ave



# SUMMARY OF SUBSURFACE SOIL/FILL ANALYTICAL RESULTS

# REMEDIAL INVESTIGATION / INTERIM REMEDIAL MEASURES / ALTERNATIVE ANALYSIS REPORT

### **402 AND 430 BUFFALO AVENUE SITE**

# **NIAGARA FALLS, NEW YORK**

|                                         |                   |                               |            |           |          |                    |          |          |          | SAMPL    | E LOCATION ( | (DEPTH)  |           |               |            |          |            |          |
|-----------------------------------------|-------------------|-------------------------------|------------|-----------|----------|--------------------|----------|----------|----------|----------|--------------|----------|-----------|---------------|------------|----------|------------|----------|
| PARAMETER <sup>1</sup>                  | Unrestricted      | Restricted<br>Residential Use | Commercial | TP-10     | TP-11    | TP-12              | TP-13    | TP-14    | TP-15    | TP-16    | TP-17        | TP-18    | TP-19     | TP-20         | TP-22      | TP-23    | TP-24      | TP-25    |
| PARAMETER                               | Use SCOs 2        | SCOs <sup>2</sup>             | Use SCOs 2 | (2-16')   | (1-3')   | (6-8')             | (1-3')   | (4-10')  | (2-4')   | (4-14')  | (2-15')      | (1-8')   | (1-3')    | (1-3')        | (1-3')     | (1-16')  | (1-4')     | (1-4')   |
|                                         |                   | 3005                          |            | 2/10/2015 |          | 1                  | 2/9/     | 2015     |          |          | 2/10/        | /2015    | 2/10/2015 | 2/9/2015      |            | 2/11/    | 2015       |          |
| Volatile Organic Compounds (VOCs) - mg  | g/Kg <sup>3</sup> |                               |            |           |          |                    |          |          |          |          |              |          |           |               |            |          |            |          |
| 1,2,4-Trimethylbenzene                  | 3.6               | 52                            | 190        |           | ND       |                    | ND       | ND       |          |          | ND           | ND       |           |               |            | ND       | ND         |          |
| 1,3,5-Trimethylbenzene                  | 8.4               | 52                            | 190        |           | ND       |                    | ND       | ND       |          |          | ND           | ND       |           |               | -          | ND       | ND         |          |
| Acetone                                 | 0.05              | 100                           | 500        |           | ND       |                    | 0.061 J  | 0.044 J  |          | -        | ND           | ND       |           |               | 1          | ND       | 0.011 J    |          |
| Cyclohexane                             | -                 |                               |            |           | ND       |                    | ND       | ND       |          |          | ND           | ND       |           |               | -          | ND       | ND         |          |
| Isopropylbenzene (Cumene)               | -                 |                               |            |           | ND       |                    | ND       | ND       |          |          | ND           | ND       |           |               | -          | ND       | ND         |          |
| Methylcyclohexane                       | -                 |                               |            |           | ND       |                    | ND       | ND       |          |          | ND           | ND       |           |               | -          | ND       | ND         |          |
| n-Butylbenzene                          | 12                |                               |            |           | ND       |                    | ND       | ND       |          |          | ND           | ND       |           |               | -          | ND       | ND         |          |
| n-Propylbenzene                         | 3.9               | 100                           | 500        |           | ND       |                    | ND       | ND       |          |          | ND           | ND       |           |               |            | ND       | ND         |          |
| sec-Butylbenzene                        | 11                | 100                           | 500        |           | ND       |                    | ND       | ND       |          |          | ND           | ND       |           |               | -          | ND       | ND         |          |
| Tetrachloroethene                       | 1.3               | 19                            | 150        |           | ND       |                    | ND       | ND       |          |          | ND           | ND       |           |               | -          | ND       | 0.0012     |          |
| Toluene                                 | 0.7               | 100                           | 500        |           | ND       |                    | ND       | ND       |          |          | ND           | ND       |           |               |            | ND       | 0.0011 J   |          |
| Trichloroethene                         | 0.47<br>0.26      | 21<br>100                     | 200<br>500 |           | ND<br>ND |                    | ND<br>ND | ND<br>ND |          |          | ND<br>ND     | ND<br>ND |           |               |            | ND<br>ND | 0.0012     |          |
| Total Xylenes                           |                   | 100                           | 500        |           | ND       |                    | I ND     | ND       |          |          | ND ND        | ND       |           |               |            | ND       | ND         |          |
| Semi-Volatile Organic Compounds (SVO    | 1, 0 0            |                               |            |           |          |                    | 1 115    |          |          |          |              |          | 1         | , in          |            | 1 115    |            | 2.42.1   |
| 2-Methylnaphthalene                     |                   | <br>1                         | 5.6        | ND<br>ND  | ND       | ND<br>0.05 J       | ND<br>ND | ND       | ND<br>ND | ND<br>ND | ND<br>ND     | ND<br>ND | ND<br>ND  | ND<br>ND      | 0.4 J      | ND       | ND<br>4.0  | 0.48 J   |
| Benzo(a)anthracene                      | 1                 | 1                             | 5.6        |           | ND       |                    |          | ND       |          |          |              |          |           |               | 7.7        | ND       | 1.8        | 12       |
| Benzo(b)fluoranthene                    | 1                 | 3.9                           | 5.6        | ND<br>ND  | ND<br>ND | 0.071 J<br>0.057 J | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND     | ND<br>ND | ND<br>ND  | ND<br>ND      | 8.3<br>7.1 | ND<br>ND | 2.2<br>1.6 | 15<br>12 |
| Chrysene Dibenzofuran                   | 7                 | 59                            | 350        | ND<br>ND  | ND<br>ND | 0.057 J<br>ND      | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND     | ND<br>ND | ND<br>ND  | ND<br>ND      | 0.82 J     | ND<br>ND | 0.088 J    | 1.2      |
| Fluoranthene                            | 100               | 100                           | 500        | ND<br>ND  | ND<br>ND | 0.11               | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND     | ND<br>ND | ND<br>ND  | 0.042 J       | 15         | ND<br>ND | 3.8        | 24       |
| Fluorene                                | 30                | 100                           | 500        | ND<br>ND  | ND<br>ND | ND                 | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND     | ND<br>ND | ND<br>ND  | 0.042 3<br>ND | 1.3        | ND<br>ND | ND         | 2.2      |
| Phenanthrene                            | 100               | 100                           | 500        | ND<br>ND  | ND       | 0.039 J            | ND       | ND<br>ND | ND<br>ND | ND       | ND           | ND       | ND<br>ND  | ND            | 14         | ND       | 1.8        | 17       |
| Pyrene                                  | 100               | 100                           | 500        | ND<br>ND  | ND       | 0.005 U            | ND       | ND       | ND       | ND       | ND           | ND       | ND        | ND            | 13         | ND       | 2.9        | 19       |
| Total PAHs                              |                   |                               | 500        |           |          | 0.468 J            |          |          |          |          |              |          |           | 0.042         | 93.65      |          | 21.685     | 160.2    |
| Metals - mg/Kg                          |                   |                               |            |           |          | 0.1000             |          |          |          |          |              |          |           | 0.012         | 00.00      |          | 21.000     | 100.2    |
| Arsenic                                 | 13                | 16                            | 16         | 4.6       | 5.2      | 2.9                | 6.4      | 4.3      | 4.1      | 4.3      | 4.9          | 4.3      | 5.3       | 4.9           | 10         | 3        | 9.5        | 5.1      |
| Barium                                  | 350               | 400                           | 400        | 18        | 66       | 21                 | 34       | 22       | 18       | 29       | 10           | 9.3      | 43        | 47            | 1400       | 22       | 780        | 300      |
| Beryllium                               | 7.2               | 72                            | 590        | 0.19 J    | 0.41     | 0.13 J             | 30       | 0.14 J   | 0.16 J   | 0.17 J   | 0.18 J       | 0.18 J   | 0.33      | 0.33          | 0.19 J     | 0.16 J   | 0.27       | 0.22     |
| Cadmium                                 | 2.5               | 4.3                           | 9.3        | 0.07 J    | 0.77     | 0.59               | 0.28 J   | 0.98     | 0.24 J   | 0.3 J    | 0.13 J       | 0.07 J   | 0.12 J    | 0.49 J        | 1          | 0.07 J   | 1 J        | 0.49 J   |
| Chromium                                | 30                | 180                           | 1500       | 6.5       | 11       | 36                 | 8.2      | 5.4      | 5.8      | 6.2      | 5.8          | 6        | 11        | 16            | 15         | 6.1      | 11         | 10       |
| Copper                                  | 50                | 270                           | 270        | 6.6       | 16       | 7                  | 8.8      | 8.2      | 6.2      | 7.1      | 8            | 6.8      | 9.5       | 20            | 81         | 5.6      | 28         | 14       |
| Lead                                    | 63                | 400                           | 1000       | 4.5       | 73       | 18                 | 20       | 46       | 7.4      | 11       | 11           | 3.8      | 6.9       | 23            | 2400       | 4.2      | 1100       | 320      |
| Manganese                               | 1600              | 2000                          | 10000      | 340       | 870      | 380                | 660      | 390      | 360      | 360      | 340          | 380      | 290       | 260           | 320        | 330      | 320        | 260      |
| Mercury                                 | 0.18              | 0.81                          | 2.8        | ND        | 0.1      | 0.02 J             | 0.12     | 0.03 J   | ND       | ND       | 0.02 J       | ND       | 0.02 J    | 0.16          | 0.29       | ND       | 0.2        | 0.52 J   |
| Nickel                                  | 30                | 310                           | 310        | 7.5       | 11       | 5.2                | 9.3      | 5.4      | 6.6      | 6.8      | 6.2          | 7.2      | 11        | 6.6           | 6.8        | 7.1      | 9.4        | 6.2      |
| Silver                                  | 2                 | 180                           | 1500       | ND        | ND       | ND                 | ND       | ND       | ND       | ND       | ND           | ND       | ND        | ND            | 0.14 J     | ND       | 0.13 J     | ND       |
| Zinc                                    | 109               | 10000                         | 10000      | 37        | 300      | 140                | 81       | 200      | 62       | 67       | 51           | 32       | 59        | 110           | 2500       | 36       | 1000       | 320      |
| Polychlorinated biphenyls (PCBs) - mg/K | g <sup>3</sup>    |                               |            |           |          |                    |          |          |          |          |              |          |           |               |            |          |            |          |
| Aroclor 1254                            | -                 |                               | -          |           |          | -                  | ND       | ND       |          | -        | ND           | ND       |           | ND            | 1          | ND       | ND         |          |
| Total PCBs                              | 0.1               | 1                             | 11         |           |          |                    | ND       | ND       |          |          | ND           | ND       |           | ND            |            | ND       | ND         |          |
| Pesticides and Herbicides - mg/Kg 3     |                   |                               |            |           |          |                    |          |          |          |          |              |          |           |               |            |          |            |          |
| Chlordane                               | 0.094             | 4.2                           | 24         |           |          |                    | ND       | ND       |          |          |              |          |           |               |            |          |            |          |
| cis-Chlordane                           | -                 | -                             | -          | -         |          |                    | ND       | ND       |          |          | ND           | ND       |           |               |            | ND       |            |          |
| Heptachlor epoxide                      | -                 |                               | -          | -         |          |                    | ND       | ND       |          |          | ND           | ND       |           |               |            | ND       |            |          |
| trans-Chlordane                         | -                 |                               | -          |           |          |                    | ND       | ND       |          |          | ND           | ND       |           |               |            | ND       |            |          |

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per 6NYCRR Part 375 Soil Cleanup Objectives (SCOs).
- 3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparisor sto SCOs.

# 401 Buffalo Ave

- **Definitions:**ND = Parameter not detected above laboratory detection limit.
- "--" = No value available for the parameter; Parameter not analysed for.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
  P = The RPD between the results for the two columns exceeds the method-specified criteria.
- I= The lower value for the two columns has been reported due to obvious interference.

| Bold | = Result exceeds Unrestricted Use SCOs.           |
|------|---------------------------------------------------|
| Bold | = Result exceeds Restricted Residential Use SCOs. |
| Bold | = Result exceeds Commercial Use SCOs              |

430 Buffalo Ave



# SUMMARY OF SUBSURFACE SOIL/FILL ANALYTICAL RESULTS

# REMEDIAL INVESTIGATION / INTERIM REMEDIAL MEASURES / ALTERNATIVE ANALYSIS REPORT

### **402 AND 430 BUFFALO AVENUE SITE**

# **NIAGARA FALLS, NEW YORK**

|                                                          |                       |                               |                       |              |            |            |            |            |          | S                    | AMPLE LOC  | ATION (DEPTH | 1)            |           |               |            |           |            |            |
|----------------------------------------------------------|-----------------------|-------------------------------|-----------------------|--------------|------------|------------|------------|------------|----------|----------------------|------------|--------------|---------------|-----------|---------------|------------|-----------|------------|------------|
| PARAMETER <sup>1</sup>                                   | Unrestricted          | Restricted<br>Residential Use | Commercial            | TP-26        | TP-27      | TP-28      | TP-29      | SB-17      | SB-18    | MW-3                 | SB-19      | MW-5         | SB-16         | SB-14     | SB-12         | SB-12      | SB-7      | SB-8       | SB-11      |
| FARAMETER                                                | Use SCOs <sup>2</sup> | SCOs <sup>2</sup>             | Use SCOs <sup>2</sup> | (1-3')       | (2-12')    | (1-4')     | (1-4')     | (5-16')    | (0.5-3') | (2-8')               | (3-12')    | (2-8')       | (1-7')        | (4-12')   | (1-8')        | (13-16')   | (1-5')    | (8-10')    | (1-16')    |
|                                                          |                       |                               |                       |              | 2/10/      | /2015      |            | 2/24       | /2015    | 4/15/2015            | 2/25/2015  | 4/14/2015    |               |           |               | 2/25/2015  |           |            |            |
| Volatile Organic Compounds (VOCs) - mg                   | /Kg <sup>3</sup>      |                               |                       |              |            |            |            |            |          |                      |            |              |               |           |               |            |           |            |            |
| 1,2,4-Trimethylbenzene                                   | 3.6                   | 52                            | 190                   | ND           | ND         |            |            |            | ND       | ND                   |            | ND           |               | ND        |               |            |           | 1.4        |            |
| 1,3,5-Trimethylbenzene                                   | 8.4                   | 52                            | 190                   | ND           | ND         |            |            |            | ND       | ND                   |            | ND           |               | ND        |               |            |           | 0.71 J     |            |
| Acetone                                                  | 0.05                  | 100                           | 500                   | ND           | ND         |            |            |            | 0.0051 J | 0.031                |            | ND           |               | 0.0069 J  |               |            |           | 0.44 J     |            |
| Cyclohexane                                              |                       |                               | -                     | ND           | ND         |            |            |            | ND       | ND                   |            | ND           |               | ND        |               |            |           | 0.43 J     |            |
| Isopropylbenzene (Cumene)                                |                       |                               | -                     | ND           | ND         |            |            |            | ND       | ND                   |            | ND           |               | ND        |               |            |           | 0.41       |            |
| Methylcyclohexane                                        |                       |                               |                       | ND           | ND         |            |            |            | ND       | ND                   |            | 0.00087 J    |               | ND        |               |            |           | 2.4        |            |
| n-Butylbenzene                                           | 12                    | -                             |                       | ND           | ND         |            |            |            | ND       | ND                   |            | 0.001 J      |               | ND        |               |            |           | 1.1        |            |
| n-Propylbenzene                                          | 3.9                   | 100                           | 500                   | ND           | ND         |            |            |            | ND       | ND                   |            | 0.00082 J    |               | ND        |               |            |           | 0.69       |            |
| sec-Butylbenzene                                         | 11                    | 100                           | 500                   | ND           | ND         |            |            |            | ND       | ND                   |            | 0.0055       |               | ND        |               |            |           | 0.65       |            |
| Tetrachloroethene                                        | 1.3                   | 19                            | 150                   | 0.00082 J    | 0.001 J    |            |            |            | ND       | ND                   |            | 0.00038 J    |               | ND        |               |            |           | ND         |            |
| Toluene                                                  | 0.7                   | 100                           | 500                   | ND           | ND         |            |            |            | ND       | 0.00028 J            |            | 0.00028 J    |               | ND        |               |            |           | ND         |            |
| Trichloroethene                                          | 0.47                  | 21                            | 200                   | 0.00035 J    | ND         |            |            |            | ND       | ND                   |            | ND           |               | ND        |               |            |           | ND         | <b>——</b>  |
| Total Xylenes                                            | 0.26                  | 100                           | 500                   | ND           | ND         |            |            |            | ND       | ND                   |            | 0.00029 J    |               | 0.00065 J |               |            |           | 0.058 J    |            |
| Semi-Volatile Organic Compounds (SVOC                    | s) - mg/Kg ³          |                               |                       |              |            |            |            |            |          |                      |            |              |               |           |               |            |           |            |            |
| 2-Methylnaphthalene                                      | -                     | <del>-</del>                  |                       | 0.84 J       | ND         | ND         | ND         | ND         | ND       | ND                   | ND         | ND           | ND            | ND        | ND            | ND         | ND        | 0.22 J     | ND         |
| Benzo(a)anthracene                                       | 1                     | 1                             | 5.6                   | 14           | 0.039 J    | ND         | ND         | ND         | ND       | ND                   | ND         | ND           | ND            | ND        | 0.054 J       | ND         | ND        | ND         | ND         |
| Benzo(b)fluoranthene                                     | 1                     | 1                             | 5.6                   | 16           | ND         | ND         | ND         | ND         | ND       | ND                   | ND         | ND           | ND            | ND        | 0.048 J       | ND         | ND        | ND         | ND         |
| Chrysene                                                 | 1                     | 3.9                           | 56                    | 13           | 0.039 J    | ND         | ND         | ND         | ND       | ND                   | ND         | ND           | ND            | ND        | 0.066 J       | ND         | ND        | ND         | ND         |
| Dibenzofuran                                             | 7                     | 59                            | 350                   | 1.2          | ND         | ND         | ND         | ND         | ND       | ND                   | ND         | ND           | ND            | ND        | ND            | ND         | ND        | 0.17 J     | ND         |
| Fluoranthene                                             | 100                   | 100                           | 500                   | 26           | 0.052 J    | ND         | ND         | ND         | ND       | ND                   | ND         | ND           | ND            | ND        | 0.057 J       | ND         | ND        | 0.27       | ND         |
| Fluorene                                                 | 30<br>100             | 100<br>100                    | 500<br>500            | 2.4          | ND         | ND<br>ND   | ND<br>ND   | ND<br>ND   | ND<br>ND | ND<br>ND             | ND         | ND<br>ND     | ND            | ND<br>ND  | ND<br>0.040 I | ND<br>ND   | ND<br>ND  | 0.19 J     | ND<br>ND   |
| Phenanthrene                                             | 100                   | 100                           | 500                   | 23           | ND         |            |            |            |          |                      | ND         |              | ND            |           | 0.046 J       |            |           | ND         |            |
| Pyrene                                                   | 100                   |                               | 500                   | 22           | ND<br>0.40 | ND         | ND         | ND         | ND       | ND                   | ND         | ND           | ND            | ND        | 0.067 J       | ND         | ND        | ND         | ND         |
| Total PAHs                                               |                       |                               | 500                   | 168.44       | 0.13       |            |            |            |          |                      |            |              |               |           | 0.338         |            |           | 0.85       |            |
| Metals - mg/Kg                                           |                       | 1                             | 1                     |              |            | 1          |            |            | 1        | 1                    |            | 1            |               |           |               |            |           |            |            |
| Arsenic                                                  | 13                    | 16                            | 16                    | 13           | 3.9        | 3.3        | 2.7        | 3.8        | 4.4      | 4.2                  | 3.1        |              | 7.1           | 3.1       | 11            | 4.2        | 2.8       | 3.8        | 3.8        |
| Barium                                                   | 350                   | 400                           | 400                   | 1700         | 53         | 17         | 17         | 15         | 36       | 52                   | 18         |              | 48            | 15        | 110           | 96         | 13        | 15         | 10         |
| Beryllium                                                | 7.2                   | 72                            | 590                   | 0.41         | 0.25       | 0.15 J     | 0.15 J     | 0.2 J      | 0.36     | 0.33                 | 0.17 J     |              | 0.32 J        | 0.14 J    | 0.18 J        | 0.38       | 0.08 J    | 0.16 J     | 0.24       |
| Cadmium                                                  | 2.5                   | 4.3                           | 9.3                   | 1.1          | 0.14 J     | 0.5 J      | 0.49 J     | 0.08 J     | 0.17 J   | 0.1 J                | 0.17 J     |              | 0.84 J        | 0.14 J    | 0.16 J        | 0.23 J     | 0.93      | 0.11 J     | 0.11       |
| Chromium                                                 | 30<br>50              | 180<br>270                    | 1500<br>270           | 18<br>97     | 8.7<br>9.3 | 5.2<br>8.1 | 5.1<br>9.6 | 6.6<br>6.6 | 9.2      | 11                   | 6.2<br>6.7 |              | 9.5<br>15     | 5<br>6.6  | 3.5<br>11     | 13<br>17   | 3.9<br>12 | 5.6<br>6.5 | 7.4<br>7.2 |
| Copper                                                   | 63                    | 400                           | 1000                  | 2400         | 9.9        | 39         | 33         | 5.4        | 16       |                      | 7.2        |              | 83            | 14        | 43            | 9.8        | 39        | 6.7        | 6.7        |
| Lead<br>Manganese                                        | 1600                  | 2000                          | 1000                  | 320          | 360        | 550        | 400        | 410        | 260      | 18<br>420            | 470        |              | 700           | 380       | 330           | 9.8<br>420 | 410       | 360        | 440        |
| Mercury                                                  | 0.18                  | 0.81                          | 2.8                   | 0.46         | ND         | 0.03 J     | 0.02 J     | ND         | 0.06 J   | ND                   | ND         |              | 0.17 J        | ND        | 0.03 J        | 0.02 J     | 0.02 J    | 0.02 J     | ND         |
| Nickel                                                   | 30                    | 310                           | 310                   | 11           | 9.7        | 4.9        | 5.3        | 8.9        | 12       | 12                   | 8.5        |              | 9.2           | 6         | 6.1           | 16         | 4.3       | 7.2        | 10         |
| Silver                                                   | 2                     | 180                           | 1500                  | 0.12 J       | ND         | ND         | ND         | ND         | ND       | ND                   | ND         |              | 9.2<br>0.14 J | ND        | ND            | ND         | ND        | ND         | ND         |
| Zinc                                                     | 109                   | 10000                         | 10000                 | 2700         | 70         | 150        | 210        | 38         | 76       | 110                  | 60         |              | 300           | 50        | 44            | 95         | 300       | 41         | 52         |
| Polychlorinated biphenyls (PCBs) - mg/Kg                 |                       |                               |                       | 00           |            |            |            |            | , ,,,    |                      | 30         | 1            |               |           |               |            |           |            | <u> </u>   |
| Aroclor 1254                                             | <i>-</i> -            |                               |                       | ND           | ND         |            | l          | ND         | ND       | 0.0479               | ND         | ND I         | ND            | ND I      |               | ND         |           | ND         |            |
| Total PCBs                                               | 0.1                   | 1                             | 1                     | ND<br>ND     | ND         |            |            | ND         | ND       | 0.0479               | ND         | ND           | ND            | ND        |               | ND         |           | ND<br>ND   |            |
|                                                          | 0.1                   |                               | <u> </u>              | IND          | IND        |            |            | IND        | IND      | 0.0473               | IND        | IND          | IND           | IND       |               | IND        |           | ND         |            |
| Pesticides and Herbicides - mg/Kg <sup>3</sup> Chlordane | 0.094                 | 4.2                           | 24                    | ND           | ND         | ı          |            | 1          | ND       | 0.0419               |            |              |               | ND        |               |            |           | ND         |            |
| cis-Chlordane                                            | 0.094                 | 4.2                           |                       | 0.0513       | ND<br>ND   |            |            |            | ND<br>ND | 0.0419               |            |              |               | ND<br>ND  |               |            | <u></u>   | ND<br>ND   |            |
| Heptachlor epoxide                                       |                       | <del>-</del> -                |                       | 0.0513<br>ND | ND<br>ND   |            |            |            | ND<br>ND | 0.00864<br>0.00143 J |            |              |               | ND<br>ND  |               |            |           | ND<br>ND   |            |
| trans-Chlordane                                          |                       |                               |                       | 0.0435 P I   | ND<br>ND   |            |            |            | ND<br>ND | 0.00143 3            | <u></u>    |              | <u></u>       | ND<br>ND  |               |            |           | ND<br>ND   |            |
| trans-chiordane                                          |                       |                               |                       | U.U435 PT    | טא         |            |            |            | טא       | U.UUUU I             |            |              |               | טא        |               |            |           | טא         |            |

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per 6NYCRR Part 375 Soil Cleanup Objectives (SCOs).
- 3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparisons to SCOs.

- **Definitions:**ND = Parameter not detected above laboratory detection limit.
- "--" = No value available for the parameter; Parameter not analysed for.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
  P = The RPD between the results for the two columns exceeds the method-specified criteria.
- I= The lower value for the two columns has been reported due to obvious interference.

|      | _                                                 |
|------|---------------------------------------------------|
| Bold | = Result exceeds Unrestricted Use SCOs.           |
| Bold | = Result exceeds Restricted Residential Use SCOs. |
| Bold | = Result exceeds Commercial Use SCOs.             |



### SUMMARY OF REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS

### REMEDIAL INVESTIGATION / INTERIM REMEDIAL MEASURES / ALTERNATIVE ANALYSIS REPORT

#### 402 AND 430 BUFFALO AVENUE SITE

### NIAGARA FALLS, NEW YORK

|                                          |                               | Sample Location |          |        |          |          |          |           |        |          |          |          |
|------------------------------------------|-------------------------------|-----------------|----------|--------|----------|----------|----------|-----------|--------|----------|----------|----------|
| Parameters <sup>1</sup>                  | Class GA<br>GWQS <sup>2</sup> | MW-1            | MW-2*    | MW-2   | MW-3     | MW-4     | MW-5     | MW-6      | MW-7   | MW-8     | MW-9     | MW-10    |
|                                          | on do                         | 4/1             | 6/15     | 5/1/15 |          | 4/10     | 6/15     |           | 6/4/15 |          | 4/16/15  |          |
| Volatile Organic Compounds (VOCs) - ug/L |                               |                 |          |        |          |          |          |           |        |          |          |          |
| 1,2,4-Trimethylbenzene                   | 5                             | ND              |          | ND     | 0.82 J   | ND       | 7.3      | ND        | ND     | ND       | ND       | 5.3      |
| 1,3,5-Trimethylbenzene                   | 5                             | ND              |          | ND     | 2.2 J    | ND       | 1 J      | ND        | ND     | ND       | ND       | 0.87 J   |
| 2-Butanone                               | 50                            | 2.9 J           |          | ND     | ND       | ND       | 3.5 J    | 4.3 J     | ND     | 3.3 J    | 2.8 J    | ND       |
| 2-Hexanone                               | 50                            | ND              |          | ND     | ND       | ND       | ND       | 1.2 J     | ND     | 1.1 J    | 1.1 J    | ND       |
| Acetone                                  | 50                            | 13              |          | ND     | 4 J      | ND       | 16       | 41        | 2.5 J  | 15       | 15       | ND       |
| Benzene                                  | 1                             | ND              |          | 0.44 J | 1.5      | ND       | 0.81     | 0.19 J    | 0.17 J | 0.61     | ND       | ND       |
| Carbon disulfide                         |                               | 2.3 J           |          | 1.9 J  | ND       | ND       | 1.6 J    | 1.7 J     | 2.6 J  | 3.1 J    | 1.3 J    | ND       |
| Chloroform                               | 7                             | ND              |          | ND     | ND       | ND       | ND       | ND        | ND     | 6.2      | 6.3      | ND       |
| Cyclohexane                              |                               | ND              |          | 1.7 J  | 2.4 J    | ND       | 0.48 J   | ND        | ND     | ND       | ND       | 0.63 J   |
| Ethylbenzene                             | 5                             | ND              |          | ND     | ND       | ND       | 1.5 J    | ND        | ND     | ND       | ND       | ND       |
| Isopropylbenzene                         | 5                             | ND              |          | ND     | ND       | ND       | 1.5 J    | ND        | ND     | ND       | ND       | 3.3      |
| Methylcyclohexane                        |                               | ND              |          | 1.9 J  | 4 J      | 0.51 J   | 0.64 J   | ND        | ND     | ND       | ND       | 1.6 J    |
| n-Propylbenzene                          | 5                             | ND              |          | ND     | ND       | ND       | 1.1 J    | ND        | ND     | ND       | ND       | 1.4 J    |
| Xylene (total)                           | 5                             | ND              |          | 1.64   | 4.9      | ND       | ND       | ND        | ND     | 1.4 J    | ND       | ND       |
| sec-Butylbenzene                         | 5                             | ND              |          | ND     | ND       | ND       | 1.4 J    | ND        | ND     | ND       | ND       | 3.1      |
| Tetrachloroethene                        | 5                             | ND              |          | ND     | 0.37 J   | ND       | ND       | 0.47 J    | ND     | 0.23 J   | ND       | ND       |
| Toluene                                  | 5                             | ND              |          | 1.2 J  | 4.5      | ND       | 1.6 J    | ND        | ND     | 1.6 J    | ND       | ND       |
| Trichloroethene                          | 5                             | ND              |          | ND     | 0.29 J   | ND       | ND       | 0.83      | ND     | 1.6 J    | ND       | ND       |
| Semivolatile Organic Compounds (SVOCs) - |                               | .,,,            |          | .,,,,, | . 3.200  |          |          |           |        |          |          | 110      |
| 2-Methylnaphthalene                      |                               | 0.19 J          | 0.21     |        | ND       | ND       | 0.35 J   | 0.46      |        | 0.23     | 0.1 J    | 3.9      |
| Acenaphthene                             | 20                            | ND              | ND       |        | ND       | ND<br>ND | ND       | 0.40      |        | ND       | ND       | 1.4      |
| Anthracene                               | 50                            | ND<br>ND        | ND       |        | ND<br>ND | ND<br>ND | ND<br>ND | 0.32      |        | ND<br>ND | ND       | ND       |
| Benzo(a)anthracene                       | 0.002                         | 0.07 J          | ND<br>ND |        | ND<br>ND | ND<br>ND | ND<br>ND | 0.18 J    |        | ND<br>ND | ND       | ND<br>ND |
| Benzo(a)pyrene                           | 0.002<br>ND                   | 0.07 J          | ND<br>ND |        | ND<br>ND | ND<br>ND | ND<br>ND | 0.18 J    |        | ND<br>ND | ND<br>ND | ND<br>ND |
| ( // )                                   |                               | 0.13            | 0.08 J   |        | ND<br>ND | ND<br>ND | ND<br>ND | 0.19 3    |        | ND<br>ND | ND<br>ND | ND<br>ND |
| Benzo(b)fluoranthene                     | 0.002                         | 0.2<br>0.09 J   | ND       |        | ND<br>ND | ND<br>ND | ND<br>ND | 0.12 J    |        | ND<br>ND | ND<br>ND | ND<br>ND |
| Benzo(ghi)perylene                       | 0.002                         | 0.09 J          | ND<br>ND |        | ND<br>ND | ND<br>ND |          | 0.12 J    |        | ND<br>ND | ND<br>ND | ND<br>ND |
| Benzo(k)fluoranthene                     |                               |                 | ND<br>ND |        | ND<br>ND | ND<br>ND | ND<br>ND |           |        | ND<br>ND | ND<br>ND | 1 J      |
| Biphenyl                                 | 5<br>5                        | ND              |          |        |          |          |          | ND        |        |          |          |          |
| Bis(2-ethylhexyl) phthalate              |                               | ND              | 1.4 J    | -      | ND       | ND<br>ND | ND       | ND        |        | ND       | ND       | ND<br>ND |
| Chrysene                                 | 0.002                         | 0.15 J          | 0.06 J   |        | ND       | ND       | ND       | 0.17 J    |        | ND       | ND       |          |
| Dibenzofuran                             |                               | ND<br>0.44      | ND       |        | ND       | ND       | ND       | 0.40      |        | ND       | ND       | 1 J      |
| Fluoranthene                             | 50                            | 0.44            | 0.16 J   |        | ND       | ND       | ND       | 0.42      |        | ND       | ND       | ND       |
| Fluorene                                 | 50                            | 0.07 J          | 0.07 J   |        | ND       | ND<br>ND | 0.31 J   | 0.34      |        | 0.11 J   | ND       | 3.3      |
| Indeno(1,2,3-cd)pyrene                   | 0.002                         | 0.11 J          | ND       |        | ND       | ND       | ND       | 0.13 J    |        | ND       | ND       | ND       |
| Naphthalene                              | 10                            | ND              | 0.14 J   |        | ND       | ND       | ND       | 1.4       |        | 0.12 J   | ND       | ND       |
| Phenanthrene                             | 50                            | 0.4             | 0.3      |        | ND       | ND       | 0.24 J   | 0.66      |        | 0.46     | 0.16 J   | 0.81 J   |
| Pyrene                                   | 50                            | 0.31            | 0.12 J   |        | ND       | ND       | ND       | 0.36      |        | ND       | ND       | ND       |
| Polychlorinated Biphenyls - ug/L         | 1                             |                 | T        | 1      | 1        | T        |          |           | 1      |          |          |          |
| Total PCBs                               | 0.09                          | ND              | ND       |        | ND       | ND       | ND       | ND        |        | ND       | ND       | ND       |
| Metals (Dissolved) - ug/L <sup>3</sup>   | _                             |                 | ,        | ,      |          |          |          | •         |        |          | •        |          |
| Arsenic                                  | 25                            | 0.85            | 0.8      |        | 0.65     | 0.21 J   | 1.27     | 1.84      |        | 2.89     | ND       | 2.23     |
| Barium                                   | 1000                          | 17.03           | 10.4     |        | 32.57    | 123.8    | 57.82    | 13.93     |        | 17.03    | 32.43    | 354.4    |
| Cadmium                                  | 5                             | 0.11 J          | 0.1 J    |        | 0.37     | 0.07 J   | 0.07 J   | ND        |        | 0.11 J   | 0.29     | ND       |
| Chromium                                 | 50                            | 2.45            | 1.5      |        | 2.03     | 2.11     | 0.66 J   | 1.33      |        | 2.98     | 0.67 J   | 0.8 J    |
| Copper                                   | 200                           | 1.86            | 1.8      |        | 1.65     | 0.9 J    | 2.24     | 4.48      |        | 2.97     | 0.36 J   | ND       |
| Lead                                     | 25                            | ND              | ND       |        | 23.76    | 0.57 J   | 0.34 J   | 29.18     |        | ND       | ND       | ND       |
| Manganese                                | 300                           | 247.8           | 335.9    |        | 103.1    | 7.59     | 423.6    | 425.4     |        | 28.9     | 572.2    | 431.4    |
| Nickel                                   | 100                           | 7.64            | 14.3     |        | 3.1      | 0.45 J   | 10.28    | 6.72      |        | 1.94     | 18.06    | 2.32     |
| Selenium                                 | 10                            | 1.56 J          | 2 J      |        | 3.92 J   | 2.44 J   | 5        | 2.36 J    |        | ND       | 5.15     | ND       |
| Zinc                                     | 2000                          | 33.63           | 27.4     |        | 119.3    | 39.68    | 25.55    | 86.07     |        | 17.26    | 28.88    | 6.83 J   |
| Pesticides and Herbicides - ug/L         |                               |                 |          |        |          |          |          |           |        |          |          |          |
| 4,4'-DDD                                 | 0.3                           | ND              | ND       |        | ND       | ND       | ND       | 0.037 J   |        | ND       | ND       | ND       |
| 4,4'-DDE                                 | 0.2                           | ND              | ND       |        | ND       | ND       | ND       | 0.076     |        | ND       | ND       | ND       |
| 4,4'-DDT                                 | 0.2                           | ND              | ND       |        | ND       | ND       | ND       | 0.165     |        | ND       | ND       | ND       |
| Chlordane                                | 0.05                          | ND              | ND       |        | ND       | ND       | ND       | 0.528 P,I |        | ND       | ND       | ND       |
| cis-Chlordane                            |                               | ND              | ND       |        | ND       | ND       | ND       | 0.033 P,I |        | ND       | ND       | ND       |
| Heptachlor epoxide                       | 0.03                          | ND              | ND       |        | ND       | ND       | ND       | 0.008     |        | ND       | ND       | ND       |
|                                          |                               |                 |          |        |          |          |          |           |        |          |          |          |

- Notes:
  1. Only parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
  2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.
  3. Sample results were reported by the laboratory in mg/L and converted to ug/L for comparisons to GWQSs
  \* = Suspect Groundwater Analytical Results, resampled on 05/01/15.

#### Qualifiers:

- ND = Parameter not detected above laboratory detection limit.

- "--" = Sample not analyzed for parameter or no GWQS available for the parameter.

  J = Estimated Value Below calibration range
  P = The dual column RPD's are above the acceptance criteria, the lower of the two results is reported.
- I = The lower value for the two columns has been reported due to obvious interference.



#### SUMMARY OF TRANSFORMER ROOM IRM POST-EXCAVATION SOIL ANALYTICAL RESULTS

#### REMEDIAL INVESTIGATION / INTERIM REMEDIAL MEASURES / ALTERNATIVE ANALYSIS REPORT

#### **402 AND 430 BUFFALO AVENUE SITE**

#### **NIAGARA FALLS, NEW YORK**

|                                          | Unrestricted Use SCOs <sup>2</sup> | Residential Use |                            | SAMPLE LOCATION       |             |             |             |             |             |             |             |                  |  |
|------------------------------------------|------------------------------------|-----------------|----------------------------|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------|--|
| PARAMETER <sup>1</sup>                   |                                    |                 | Residential Use Commercial | A-1<br>(1')           | B-1<br>(1') | C-1<br>(1') | D-1<br>(1') | E-1<br>(1') | F-1<br>(1') | G-2<br>(2') | H-2<br>(2') | Pipe<br>Sediment |  |
|                                          |                                    |                 |                            | 7/22/2015 7/24/2015 7 |             |             |             |             |             |             |             |                  |  |
| Polychlorinated biphenyls (PCBs) - mg/Kg | , <sup>3</sup>                     |                 |                            |                       |             |             |             |             |             |             |             |                  |  |
| Aroclor 1254                             | -                                  | -               | -                          | ND                    | ND          | ND          | ND          | ND          | ND          | ND          | ND          | 0.208            |  |
| Aroclor 1260                             | -                                  | -               | -                          | 0.0477                | 0.632       | 0.00653 J   | 0.317       | 0.07        | 0.0208 J    | 0.0245 J    | ND          | 0.266            |  |
| Total PCBs                               | 0.1                                | 1               | 1                          | 0.0477                | 0.632       | 0.00653     | 0.317       | 0.07        | 0.0208      | 0.0245      | ND          | 0.474            |  |

#### Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per 6NYCRR Part 375 Soil Cleanup Objectives (SCOs).
- 3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparisons to SCOs.

#### Definitions:

ND = Parameter not detected above laboratory detection limit.

"--" = No value available for the parameter.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

| Bold | = Result exceeds Unrestricted Use SCOs.           |
|------|---------------------------------------------------|
| Bold | = Result exceeds Restricted Residential Use SCOs. |
| Bold | = Result exceeds Commercial Use SCOs.             |



# SUMMARY OF TRANSFORMER ROOM IRM POST-REMEDIAL PCB WIPE SAMPLE RESULTS

# REMEDIAL INVESTIGATION/INTERIM REMEDIAL MEASURES/ALTERNATIVE ANALYSIS REPORT

# 402 and 430 BUFFALO AVENUE SITE

# **NIAGARA FALLS, NEW YORK**

| Parameter <sup>1</sup>                   | South Wall<br>Wipe | South Footer<br>Wipe | West Wall<br>Wipe | West Footer<br>Wipe |  |  |  |  |  |  |  |
|------------------------------------------|--------------------|----------------------|-------------------|---------------------|--|--|--|--|--|--|--|
|                                          |                    | 7/23/2015            |                   |                     |  |  |  |  |  |  |  |
| Polychlorinated biphenyls (PCBs) - ug/Ak | bs                 |                      |                   |                     |  |  |  |  |  |  |  |
| Aroclor 1016                             | ND                 | ND                   | ND                | ND                  |  |  |  |  |  |  |  |
| Aroclor 1221                             | ND                 | ND                   | ND                | ND                  |  |  |  |  |  |  |  |
| Aroclor 1232                             | ND                 | ND                   | ND                | ND                  |  |  |  |  |  |  |  |
| Aroclor 1242                             | ND                 | ND                   | ND                | ND                  |  |  |  |  |  |  |  |
| Aroclor 1248                             | ND                 | ND                   | ND                | ND                  |  |  |  |  |  |  |  |
| Aroclor 1254                             | ND                 | ND                   | ND                | ND                  |  |  |  |  |  |  |  |
| Aroclor 1260                             | ND                 | 1.24                 | ND                | 0.921               |  |  |  |  |  |  |  |
| Aroclor 1262                             | ND                 | ND                   | ND                | ND                  |  |  |  |  |  |  |  |
| Aroclor 1268                             | ND                 | ND                   | ND                | ND                  |  |  |  |  |  |  |  |
| Total PCBs                               | ND                 | 1.24                 | ND                | 0.921               |  |  |  |  |  |  |  |

#### Notes:

1. Sample results were reported by the laboratory in ug Abs; equivalent to ug/100 cm<sup>2</sup>.

#### **Definitions:**

ND = Parameter not detected above laboratory detection limit.



#### SUMMARY OF PETROLEUM AREA IRM AREA POST-EXCAVATION CONFIRMATORY SOIL ANALYTICAL RESULTS

# REMEDIAL INVESTIGATION / INTERIM REMEDIAL MEASURES / ALTERNATIVE ANALYSIS REPORT

#### **402 AND 430 BUFFALO AVENUE SITE**

#### **NIAGARA FALLS, NEW YORK**

|                                                              |                                       |                                                    |                                     | Sample Location        |                          |                        |  |  |  |
|--------------------------------------------------------------|---------------------------------------|----------------------------------------------------|-------------------------------------|------------------------|--------------------------|------------------------|--|--|--|
| PARAMETER <sup>1</sup>                                       | Unrestricted<br>Use SCOs <sup>2</sup> | Restricted<br>Residential<br>Use SCOs <sup>2</sup> | Commercial<br>Use SCOs <sup>2</sup> | Petroleum Area<br>East | Petroleum Area<br>Middle | Petroleum Area<br>West |  |  |  |
|                                                              |                                       |                                                    |                                     | 4/14/2015              |                          |                        |  |  |  |
| Volatile Organic Compounds (VOCs) - mg/Kg <sup>3</sup>       |                                       |                                                    |                                     |                        |                          |                        |  |  |  |
| 2-Butanone (MEK)                                             | 0.12                                  | 100                                                | 500                                 | ND                     | 0.0056 J                 | ND                     |  |  |  |
| 4-methyl-2-pentanone (MIBK)                                  | -                                     |                                                    | -                                   | ND                     | 0.00094 J                | 0.0024 J               |  |  |  |
| Acetone                                                      | 0.05                                  | 100                                                | 500                                 | ND                     | 0.0097 J                 | ND                     |  |  |  |
| Tetrachloroethene                                            | 1.3                                   | 19                                                 | 150                                 | 0.00027 J              | ND                       | ND                     |  |  |  |
| Semi-Volatile Organic Compounds (SVOCs) - mg/Kg <sup>3</sup> |                                       |                                                    |                                     |                        |                          |                        |  |  |  |
| Bis(2-ethylhexyl) phthalate                                  |                                       |                                                    |                                     | 0.048 J                | ND                       | ND                     |  |  |  |
| Total PAHs                                                   |                                       |                                                    | 500                                 | 0.048                  | -                        |                        |  |  |  |

#### Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per 6NYCRR Part 375 Soil Cleanup Objectives (SCOs).
- 3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparisons to SCOs.

#### Definitions:

- ND = Parameter not detected above laboratory detection limit.
- "--" = No value available for the parameter; Parameter not analysed for.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.

| Bold | = Result exceeds Unrestricted Use SCOs.           |
|------|---------------------------------------------------|
| Bold | = Result exceeds Restricted Residential Use SCOs. |
| Bold | = Result exceeds Commercial Use SCOs.             |



# SUMMARY OF 401 BUFFALO AVENUE IRM POST EXCAVATION SOIL SAMPLING RESULTS

# REMEDIAL INVESTIGATION / INTERIM REMEDIAL MEASURES / ALTERNATIVE ANALYSIS REPORT

# **402 AND 430 BUFFALO AVENUE SITE**

# NIAGARA FALLS, NEW YORK

|                                       |                                       |                                                    | 401 Buffalo Avenue IRM Excavation Areas - Sample Location |                                             |                                             |                                             |                         |                         |                        |                        |                     |                           |                 |
|---------------------------------------|---------------------------------------|----------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------|-------------------------|------------------------|------------------------|---------------------|---------------------------|-----------------|
| PARAMETER <sup>1</sup>                | Unrestricted<br>Use SCOs <sup>2</sup> | Restricted<br>Residential<br>Use SCOs <sup>2</sup> | Parking Lot<br>Island Area<br>Bottom-Comp 1               | Parking Lot<br>Island Area<br>Bottom-Comp 2 | Parking Lot<br>Island Area<br>Bottom-Comp 3 | Parking Lot<br>Island Area<br>Bottom-Comp 4 | Pool Area<br>North Wall | Pool Area<br>South Wall | Pool Area<br>East Wall | Pool Area<br>West Wall | Pool Area<br>Bottom | Southern Gas<br>Line Comp | SS-2 Area Comp. |
| Semi-Volatile Organic Compounds (SVOC | -) 3                                  |                                                    |                                                           | 6/3/2                                       | 2015                                        |                                             |                         |                         | 6/4/                   | 2015                   |                     |                           | 6/4/2015        |
| 2-Methylnaphthalene                   | s) - mg/kg<br>                        |                                                    | 1                                                         | I                                           |                                             |                                             |                         | I                       |                        | l                      | I                   | 0.24                      |                 |
| Acenaphthene                          | 20                                    | 100                                                |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     | 0.24<br>0.046 J           |                 |
| Anthracene                            | 100                                   | 100                                                |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     | 0.046 J                   |                 |
| Benzo(a)anthracene                    | 1                                     | 1                                                  |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     | 0.033 3<br>0.1 J          |                 |
| Benzo(a)pyrene                        | 1                                     | 1                                                  |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     | 0.075 J                   |                 |
| Benzo(b)fluoranthene                  | 1                                     | 1                                                  |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     | 0.11 J                    |                 |
| Benzo(ghi)perylene                    | 100                                   | 100                                                |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     | 0.049 J                   |                 |
| Chrysene                              | 1                                     | 3.9                                                |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     | 0.18                      |                 |
| Dibenzofuran                          | 7                                     | 59                                                 |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     | 0.079 J                   |                 |
| Fluoranthene                          | 100                                   | 100                                                |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     | 0.16                      |                 |
| Naphthalene                           | 12                                    | 100                                                |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     | 0.17 J                    |                 |
| Phenanthrene                          | 100                                   | 100                                                |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     | 0.34                      |                 |
| Pyrene                                | 100                                   | 100                                                |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     | 0.17                      |                 |
| Total PAHs                            |                                       |                                                    |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     | 1.754                     |                 |
| Metals - mg/Kg                        |                                       |                                                    |                                                           |                                             |                                             |                                             |                         |                         |                        |                        |                     |                           |                 |
| Arsenic                               | 13                                    | 16                                                 | 1.8                                                       | 3.2                                         | 1.4                                         | 2.8                                         | 2.4                     | 1.9                     | 1.6                    | 0.77                   | 2.1                 | 9.2                       | 2.5             |
| Barium                                | 350                                   | 400                                                | 31                                                        | 18                                          | 42                                          | 40                                          | 22                      | 30                      | 13                     | 11                     | 24                  | 71                        | 24              |
| Beryllium                             | 7.2                                   | 72                                                 | 0.21 J                                                    | 0.18 J                                      | 0.27                                        | 0.1 J                                       | 0.2 J                   | 0.22 J                  | 0.14 J                 | 0.1 J                  | 0.15 J              | 0.37                      | 0.2 J           |
| Cadmium                               | 2.5                                   | 4.3                                                | ND                                                        | ND                                          | ND                                          | ND                                          | ND                      | ND                      | ND                     | 0.08 J                 | 0.04 J              | ND                        | ND              |
| Chromium                              | 30                                    | 180                                                | 6.2                                                       | 5.2                                         | 5.9                                         | 3.1                                         | 5.8                     | 6.3                     | 4.6                    | 3.1                    | 4.3                 | 4.8                       | 5.5             |
| Copper                                | 50                                    | 270                                                | 8.8                                                       | 9.6                                         | 6.7                                         | 6.9                                         | 7.1                     | 7                       | 5.1                    | 3.4                    | 6                   | 39                        | 6.2             |
| Lead                                  | 63                                    | 400                                                | 24                                                        | 1.7 J                                       | 33                                          | 60                                          | 3.2                     | 5.1                     | 2 J                    | 22                     | 22                  | 22                        | 6.3             |
| Manganese                             | 1600                                  | 2000                                               | 380                                                       | 150                                         | 600                                         | 260                                         | 280                     | 290                     | 290                    | 240                    | 340                 | 94                        | 270             |
| Mercury                               | 0.18                                  | 0.81                                               | 0.08                                                      | 0.08                                        | 0.16                                        | 0.12                                        | 0.077 J                 | 0.09 J                  | 0.068 J                | 0.08                   | 0.1                 | 0.21                      | 0.03            |
| Nickel                                | 30                                    | 310                                                | 6.8                                                       | 8.4                                         | 5.4                                         | 3.4                                         | 7.4                     | 7.2                     | 5.8                    | 2.8                    | 4.6                 | 8.1                       | 5.6             |
| Silver                                | 2                                     | 180                                                | ND                                                        | ND                                          | 0.16 J                                      | 0.08 J                                      | ND                      | ND                      | ND                     | 0.09 J                 | 0.09 J              | ND                        | ND              |
| Selenium                              |                                       |                                                    | ND                                                        | ND                                          | ND                                          | ND                                          | ND                      | ND                      | ND                     | ND                     | 0.14 J              | 0.39 J                    | ND<br>10.1      |
| Zinc                                  | 109                                   | 10000                                              | 70                                                        | 28                                          | 63                                          | 59                                          | 37                      | 41                      | 29                     | 100                    | 99                  | 67                        | 43 J            |

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- Values per 6NYCRR Part 375 Soil Cleanup Objectives (SCOs).
   Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparisons to SCOs.

- ND = Parameter not detected above laboratory detection limit.
- "--" = No value available for the parameter; Parameter not analyzed for.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.

= Result exceeds Unrestricted Use SCOs. Bold = Result exceeds Restricted Residential Use SCOs.