Strong Advocates, Effective Solutions, Integrated Implementation

September 15, 2014

Kelly A. Lewandowski, P.E. NYS Department of Environmental Conservation Site Control Section, Division of Environmental Remediation 625 Broadway, Albany NY 12233-7020

Re: 402 and 430 Buffalo Avenue BCP Site (Site No. C932164) Modification to Brownfield Cleanup Agreement (BCA) Request to add 401 Buffalo Avenue to the Existing BCA

Dear Ms. Lewandowski:

On behalf of our client, Merani Hospitality, Inc. (Merani), and in accordance with New York State Department of Environmental Conservation (NYSDEC) Program Policy DER-32/Brownfield Cleanup Program Applications and Agreements, TurnKey Environmental Restoration, LLC, is submitting this letter to request a modification of the existing Brownfield Cleanup Agreement (BCA) for the 402 and 430 Buffalo Avenue Brownfield Cleanup Program (BCP) Site. Specifically, Merani requests the following parcel, which is shown on the attached Figures 1 through 4, be added to the existing BCP Site and BCA:

3.8-acre parcel 401 Buffalo Avenue Tax ID #159.39-2-9 Niagara Falls, New York

The 401 Buffalo Avenue parcel, currently owned by Merani, was previously denied entry into the BCP at the time of the original BCP application, which was submitted for 401, 402 and 430 Buffalo Avenue, Niagara Falls, New York. The Slater Law Firm, PLLC submitted a "request for reconsideration" letter on September 15, 2014 based on new information collected at the 401 Buffalo Avenue parcel (see Attachment 1). Attachment 2 includes the Supplemental Investigation report for 401 Buffalo Avenue dated September 4, 2014 and Attachment 3 includes a letter from Five Star Bank, denying financing of the project due environmental concerns on the 401 Buffalo Avenue parcel.

Please contact me at (716) 856-0599 if you have any questions or require additional information regarding this matter.

Sincerely,

TurnKey Environmental Restoration, LLC

Michael Lesakowski

Sr. Project Manager

cc: Mr. Faisal Merani, Merani Hospitality

Mr. Craig Slater, Esq., The Slater Law Firm

Mr. Patrick Foster, Esq., NYSDEC

File No. 294-013-001-004

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

No

PART I. BROWNFIELD CLEANUP AMENDMENT APPLICATION

 Add Substitute Remove 	
o Remove	
o Change in Name	
an applicant(s) to the existing Brownfield Cleanup Agreement [Complete Section I-IV below and	Part II]
Does this proposed amendment involve a transfer of title to all or part of the brownfield site?	Yes 1
If yes, pursuant to 6 NYCRR Part 375-1.11(d), please also submit a Change of Use form.	
See http://www.dec.ny.gov/chemical/76250.html	
Amendment to modify description of the property(ies) listed in the existing Brownfield Cleanup	
Agreement [Complete Sections I and V below and Part II]	
Amendment to Expand or Reduce property boundaries of the property(ies) listed in the existing	
Brownfield Cleanup Agreement [Complete Section I and V below and Part II]	
Other (explain in detail below)	

D	4	c	
Page		\cap t	1
Lago		$\mathbf{v}_{\mathbf{I}}$	

Please refer to the attached instructions for guidance on filling out this application

04/2014

Section I. Existing Application I	nformat	ion		
BCP SITE NAME:			BCP SITE NUMBER:	
NAME OF CURRENT APPLICANT(S):				
INDEX NUMBER OF EXISTING AGREEMENT:			DATE OF EXISTING AGREEMENT:	
Section II. New Requestor Inform	nation (if no change	to Current Applicant, skip to Section V)	
NAME				
ADDRESS				
CITY/TOWN	T		ZIP CODE	
PHONE	FAX		E-MAIL	
Is the requestor authorized to conduct business in New York State (NYS)? Yes No -If the requestor is a Corporation, LLC, LLP or other entity requiring authorization from the NYS Department of State to conduct business in NYS, the requestor's name must appear, exactly as given above, in the NYS Department of State's (DOS) Corporation & Business Entity Database. A print-out of entity information from the DOS database must be submitted to DEC with the application, to document that the applicant is authorized to do business in NYS.				
NAME OF NEW REQUESTOR'S REPRESENTA	TIVE			
ADDRESS				
CITY/TOWN			ZIP CODE	
PHONE	HONE FAX		E-MAIL	
NAME OF NEW REQUESTOR'S CONSULTANT	(if applicab	le)		
ADDRESS				
CITY/TOWN			ZIP CODE	
PHONE	FAX		E-MAIL	
NAME OF NEW REQUESTOR'S ATTORNEY (if	f applicable)			
ADDRESS				
CITY/TOWN			ZIP CODE	
PHONE	FAX		E-MAIL	
THE NEW REQUESTOR MUST CERTIFY THAT CHECKING ONE OF THE BOXES BELOW:	TIT IS EITH	ER A PARTICIPA	NT OR VOLUNTEER IN ACCORDANCE WITH ECL §27-1405 (1) BY	
PARTICIPANT A requestor who either 1) was the owner of the time of the disposal of contamination otherwise a person responsible for the contaunless the liability arises solely as a ownership, operation of, or involvement wit subsequent to the disposal of contamination.	or 2) is amination, result of	as a result of contamination. NOTE: By contaminate can reasonable step release; and iii	ther than a participant, including a requestor whose liability arises solely ownership, operation of or involvement with the site subsequent to the necking this box, the requestor certifies that he/she has exercised re with respect to the contamination found at the facility by taking os to: i) stop any continuing discharge; ii) prevent any threatened future of prevent or limit human, environmental, or natural resource exposure to released contamination.	

Section II. New Requestor Infor	rmation continued (if no change to Cu	rrent Applicant, skip	to Sec	tion V)
Requestor's Relationship to Property (check one)	:			
	ntial /Future Purchaser Othernave access to the property throughout the BCP project.	Yes No		
would be documentation from corporate	rty signing this Application and Amendment has e organizational papers, which are updated, show ne, or an Operating Agreement or Resolution for	ing the authority to bind th	_	
Describe Requestor's Relationship to Existing	ng Applicant:			
	Owner/Operator Information (only inc formation is provided, and highlight i	-	perator	or
OWNER'S NAME (if different from requestor)				
ADDRESS				
CITY/TOWN	ZIP CODE			
PHONE	FAX	E-MAIL		
OPERATOR'S NAME (if different from request	or or owner)			
ADDRESS				
CITY/TOWN	ZIP CODE			
PHONE	FAX	E-MAIL		
Section IV. Eligibility Informat	ion for New Requestor (Please refer to	ECL § 27-1407 for	more de	etail)
If answering "yes" to any of the following	ng questions, please provide an explanation as an	attachment.		
1. Are any enforcement actions pending	g against the requestor regarding this site?		Yes	No
	g order relating to contamination at the site?		Yes	No
	ding claim by the Spill Fund for this site?		Yes	No
-	have violated any provision of ECL Article 275	•	Yes	No
	 5. Has the requestor previously been denied entry to the BCP? 6. Has the requestor been found in a civil proceeding to have committed a negligent or intentionally tortious Yes No 			
act involving contaminants?		6 11 7	*7	N
theft, or offense against public admir			Yes	No
8. Has the requestor knowingly falsified false statement in a matter before the	l or concealed material facts or knowingly subm Department?	itted or made use of a	Yes	No
9. Is the requestor an individual or entity of the type set forth in ECL 27-1407.9(f) that committed an act Yes No or failed to act, and such act or failure to act could be the basis for denial of a BCP application?				No

Section V. Property description and description of changes/additions/reductions (if applicable)			e)		
ADDRESS					
CITY/TOWN	ZIP CC	DDE			
TAX BLOCK AND LOT (TBL) (in existing agreement)					
Parcel Address	Parcel No.	Section No.	Block No.	Lot No.	Acreage
Check appropriate boxes below:					
☐ Changes to metes and bounds description or TBL corre	ection				
 Addition of property (may require a standard application instructions) 	on depending on the	he size and na	ture of additi	on – see atta	ached
Approximate acreage added:					
ADDITIONAL PARCELS:					
Parcel Address	Parcel No.	Section No.	Block No.	Lot No.	Acreage
☐ Reduction of property					
Approximate acreage removed:					
PARCELS REMOVED:					
Parcel Address	Parcel No.	Section No.	Block No.	Lot No.	Acreage
If requesting to modify a metes and bounds description or reque metes and bounds description, survey, or acceptable site map to		the boundarie	s of a site, ple	ease attach a	revised

PART II. BROWNFIELD CLEANUP PROGRAM AMENDMENT

Existing Agreement Informati	ion
BCP SITE NAME:	BCP SITE NUMBER:
NAME OF CURRENT APPLICANT(S):	
INDEX NUMBER OF EXISTING AGREEME	NT:
EFFECTIVE DATE OF EXISTING AGREEM	ENT:
above application to amend the Barand Amendment is made in accordance and state laws applicable thereto. unchanged and in full force and entire Nothing contained herein constitutions.	oplicant(s) signatures below, and subsequent signature by the Department, the rownfield Cleanup Agreement described above is hereby approved. This we with and subject to all of the BCA and all applicable guidance, regulations All other substantive and procedural terms of the Agreement will remain affect regarding the parties to the Agreement. Stitutes a waiver by the Department or the State of New York of any rights ement or any applicable state and/or federal law or a release for any party from the greement or those same laws.
Statement of Certification and	Signatures: New Requestor(s) (if applicable)
(Individual)	
Agreements. I also agree that in the eve and the terms contained in a site-specific form and its attachments is true and cor	terms and conditions set forth in DER-32 <i>Brownfield Cleanup Program Applications and</i> ent of a conflict between the general terms and conditions of participation set forth in DER-32 ic BCA, the terms in the BCA shall control. I hereby affirm that information provided on this implete to the best of my knowledge and belief. I am aware that any false statement made remeanor pursuant to section 210.45 of the Penal Law. My signature below constitutes the

requisite approval for the amendment to the BCA Application, which will be effective upon signature by the Department.

I hereby affirm that I am (title) of (entity); that I am authorized by that entity to make this application; that this application was prepared by me or under my supervision and direction; and that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I acknowledge and agree to the general terms and conditions set forth in DER-32 *Brownfield Cleanup Program Applications and Agreements*. I also agree that in the event of a conflict between the general terms and conditions of participation set forth in DER-32 and the terms contained in a site-specific BCA, the terms in the BCA shall control. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to Section 210.45 of the

Penal Law. ______ signature below constitutes the requisite approval for the amendment to the BCA

Page 5 of 7

Application, which will be effective upon signature by the Department.

Date: ______ Print Name: _____

(Entity)

Statement of Certification and Signature applicant must sign)	es: Existing Applicant(s) (an authorized representative of each
(Individual)	
am aware of this Application for an Amendment to	Cleanup Agreement and/or Application referenced in Section I above and that I that Agreement and/or Application. My signature below constitutes the requisite on, which will be effective upon signature by the Department. NA
Date:Signature:	Print Name:
(Entity) CEO	Merani Hospitality, Inc.
Agreement and/or Application. the BCA Application, which will be effective upon 9/15/14	I above and that I am aware of this Application for an Amendment to that signature below constitutes the requisite approval for the amendment to
Date: Signature:	Print Name:
PARTICIPANT A requestor who either 1) was the owner of the site at the time of the disposal of contamination or 2) is otherwise a person responsible for the contamination, unless the liability arises solely as a result of ownership, operation of, or involvement with the site subsequent to the disposal of contamination. Effective Date of the Original Agreement	VOLUNTEER A requestor other than a participant, including a requestor whose liability arises solely as a result ownership, operation of or involvement with the site subsequent to the contamination.
Effective Date of the Amendment:	
Signature by the Department:	
DATED:	
	NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
	Ву:
	Robert W. Schick, P.E., Director Division of Environmental Remediation

SUBMITTAL INFORMATION:

Three (3) complete copies are required.

• Two (2) copies, one hard copy with original signatures and one electronic copy in Portable Document Format (PDF) on a CD, must be sent to:

Chief, Site Control Section New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7020

• One (1) paper copy must be sent to the DEC regional contact in the regional office covering the county in which the site is located. Please check DEC's website for information on our regional offices.

FOR DEPARTMENT USE ONLY	
BCP SITE T&A CODE:	LEAD OFFICE:
PROJECT MANAGER:	

FIGURES

FIGURE 1

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

PROJECT NO.: 0294-013-001

DATE: FEBRUARY 2014

DRAFTED BY: JGT

SITE LOCATION AND VICINITY MAP

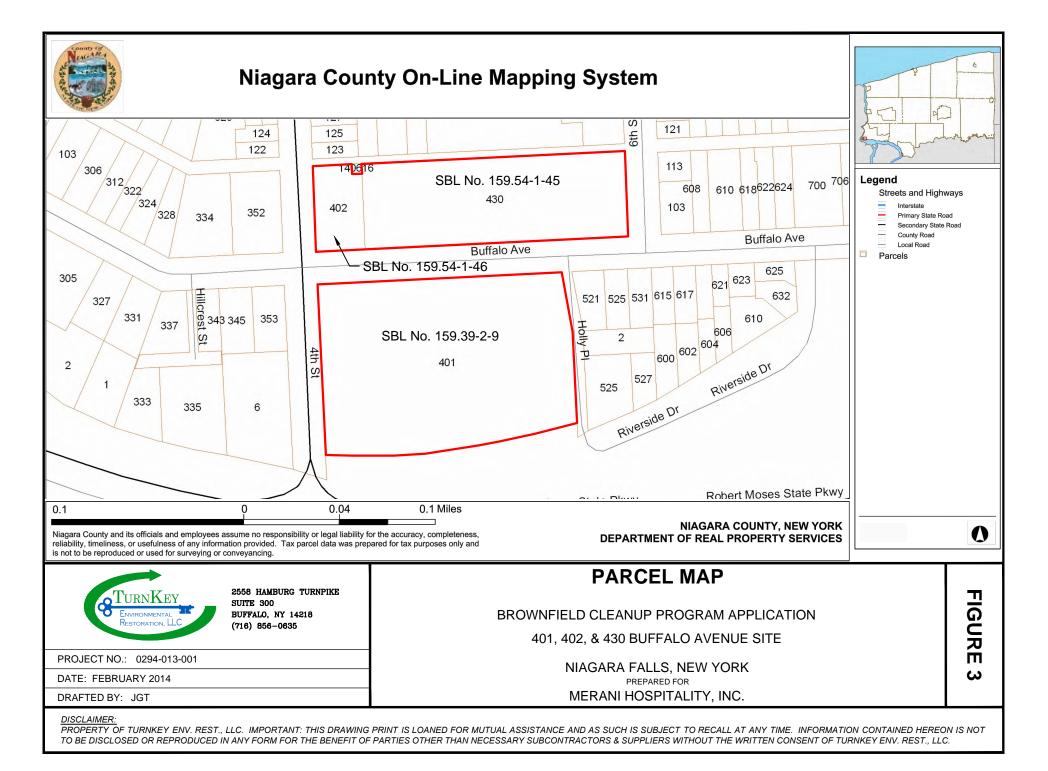
BROWNFIELD CLEANUP PROGRAM APPLICATION 401, 402, & 430 BUFFALO AVENUE SITE

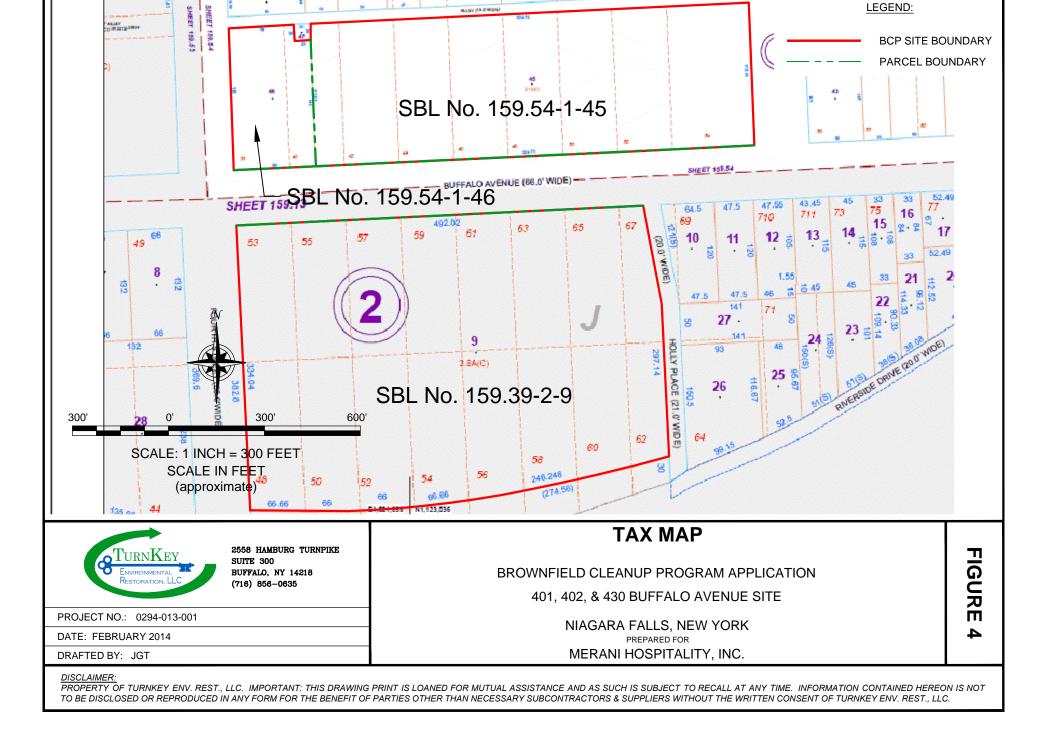
NIAGARA FALLS, NEW YORK PREPARED FOR

MERANI HOSPITALITY, INC.

DISCLAIMER.

PROPERTY OF TURNKEY ENV. REST., LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENV. REST., LLC.


BROWNFIELD CLEANUP PROGRAM APPLICATION


NIAGARA FALLS, NEW YORK

JOB NO.: 0294-013-001

FIGURE 2

TURNKEY ENV. REST., LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT ED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENV. REST., LLC.

ATTACHMENT 1

REQUEST FOR RECONSIDERATION LETTER
THE SLATER LAW FIRM, PLLC
SEPTEMBER 15, 2014

The Slater Law Firm, PLLC

www.CSlaterLaw.com

September 15, 2014

Kelly A. Lewandowski, P.E. Chief, Site Control Section NYSDEC – Division of Environmental Remediation 625 Broadway Albany, NY 12233-7020

Re: Brownfield Cleanup Application

401, 402, and 430 Buffalo Avenue, Niagara Falls, NY (Niagara County)

BCP ID No. C932164
Request for Reconsideration

Dear Kelly:

As you know, our firm represents the BCP applicant, Merani Hospitality, Inc., in the above-referenced matter. We are in receipt of a letter from Michael J. Cruden, P.E. (Director, Remedial Bureau), dated July 23, 2014, denying reconsideration of the Department's original denial of entry of the 401 Buffalo Avenue parcel ("401" or the "Site") into the BCP. We subsequently executed the BCA for the parcel deemed eligible for entry in the BCP.

Since the date of Mr. Cruden's letter, we have completed a further environmental investigation of the Site, completing our field work on August 26, 2014, as discussed in more detail in the enclosed Supplemental Investigation Report prepared by Turnkey Environmental Restoration, LLC. As you can see, this report confirms the on-site presence of elevated PAH's and metals above NYCRR Part 375 Unrestricted, Restricted-Residential and/or Commercial Use SCOs in several areas of the Site and, in addition, elevated levels of radiological waste (NORM/TERNORM) across the Site.

Mr. Cruden's letter properly stated that if additional information in the future showed contamination of soils at the Site, the BCA could be amended to include the Site in the BCP site definition. The Supplemental Investigation Report now confirms that soil contamination exists at the Site in excess of governing SCOs, and affirms, thereby, that redevelopment and reuse of the property is complicated by this contamination. We are, therefore, again asking for reconsideration of the denial of eligibility for the Site and approval of an Amendment to the BCA so that the Site (this parcel) can also be deemed eligible for entry into the BCP or, alternatively, requesting that the BCP site be administratively re-defined confirming that.

For these purposes, we have also enclosed a copy of a letter from John R. Sigeti, Senior Vice President of Five Star Bank, the lender for this project. As you can see, our lender has

The Slater Law Firm, PLLC
www.CSlaterLaw.com

Kelly A. Lewandowski, P.E. September 15, 2014 Page 2

reviewed the recent Supplemental Investigation Report and determined that it would be unwilling to close on project financing until the environmental issues referenced are addressed.

For all of the foregoing reasons, we request that the Department determine that the Site is eligible for inclusion in the BCP.

We appreciate your review and look forward to your response. To meet our construction time schedule, we need to commence demolition as soon as possible. Although under the circumstances, this is difficult to ask, to any extent that you can expedite and approval this request would be sincerely appreciated. Of course, feel free to contact me if you need anything further in support of this application.

Very truly yours,

The Slater Law Firm, PLLC

Craig A. Slater

DIRECT DIAL: (716) 845-6760 E-MAIL: CSLATER@CSLATERLAW.COM

CAS : es Enclosures

cc:

M. Cruden, P.E.

P. Foster, Esq.

G. Sutton, P.E.

M. Hinton, P.E.

F. Merani

M. Lesakowski

N. Munley

ATTACHMENT 2

SUPPLEMENTAL INVESTIGATION REPORT SEPTEMBER 4, 2014

Strong Advocates, Effective Solutions, Integrated Implementation

September 4, 2014

Mr. Craig Slater, Esq. The Slater Law Firm, PLLC 26 Mississippi Street, Suite 400 Buffalo NY 14203

Re: 401 Buffalo Avenue – Supplemental Investigation Niagara Falls, New York

Dear Mr. Slater:

TurnKey Environmental Restoration, LLC (TurnKey) conducted a Supplemental Investigation on behalf of The Slater Law Firm at the 401 Buffalo Avenue, Niagara Falls, New York (Site; see Figure 1) on August 26, 2014. The Supplemental Investigation was completed to further investigate and assess potential environmental impacts on-Site.

During a recent Site visit with the New York State Department of Environmental Conservation (NYSDEC) related to Spill No. 1312160, the Department requested additional investigation related to the spill and suggested completion of radiological screening prior to future demolition and/or redevelopment activities.

PREVIOUS INVESTIGATION FINDINGS

Previous investigations completed on-Site identified recognized environmental conditions (RECs) including:

- NYSDEC Spill No. 1312160 was assigned to the Site related to the vandalism/destruction of three transformers and spilling of approximately 120-gallons of potential PCB-containing transformer oil. The spill is currently open.
- Identification of "black-stained" fill material on-Site;
- Leaking oil-containing equipment and oil-contaminated floors, walls, and equipment were noted in the Boiler Room, Maintenance Room, and both elevator control rooms.

- Improper storage and handling of hazardous chemicals, including corrosive boiler chemicals, solvents, lubricants, degreasers, paints, thinners, hydraulic oils and maintenance equipment fuels, pesticides and herbicides, pool and water treatment chemicals;
- Sumps, floor drains and vent stacks noted in basement with staining noted proximate to several floor drains;
- Numerous ASTs of unknown contents in the basement;
- Illegal dumping and vandalism; and,
- Universal and e-waste throughout the building.

SCOPE OF WORK

The supplemental investigation included the excavation of test pits, interior subslab fill assessment and completion of a field radiological screening. Prior to the supplemental investigation, underground utilizes DigSafeNY was notified and cleared for intrusive activities.

Supplemental Investigation

A total of ten (10) sample locations were assessed across the Site during the August 2014 Supplemental Investigation (see Figure 1). Subsurface investigation activities were limited along Holly Place and 4th Street due to the presence of subgrade utilities. TurnKey mobilized a track-mounted mini-excavator to the Site and excavated test pits to assess the building backfill material. Test pits were inspected for the presence of slag fill material and scanned for total volatile organic vapors with a photoionization detector (PID) equipped with a 10.6 eV lamp. No elevated PID readings were detected. Test pit contents were screened by Greater Radiological Dimensions, Inc. (GRD), a licensed NYSDOH Radioactive Material Contractor, prior to backfilling test pits with spoils. Details of the laboratory analysis and radiological screening are provided below.

The subsurface soil/fill was typically characterized as asphalt and sub-base gravel fill, some including slag, overlying native sandy clay. Evidence of a black fill material with brick fragments was noted between 1-3 feet below ground surface in Island Test Pit (see Figure 2).

The supplemental investigation included the inspection and assessment of the south trench, west trench and pool test pit areas as described above.

TurnKey personnel utilized a concrete saw to remove an approximate 3-foot by 6-foot section of the concrete slab to assess underlying backfill material. Interior test pit (ITP-1) was completed in the lowest level of the 2-story section of the building planned for demolition and redevelopment. No visual, olfactory or elevated PID readings were detected under the building slab at this location. Accessibility and concrete thickness limited areas available for assessment. Radiological screening results are described below.

Analytical Sampling and Results

Samples were collected from the Island Test Pit, Pool Test Pit, West Trench and South Trench sample locations (see Figure 1). Samples were collected and placed in pre-cleaned, laboratory provided sample bottles using dedicated stainless steel sampling tools, and cooled to 4° C in the field. The samples were transported under chain-of-custody command to the analytical laboratory for analysis of polycyclic aromatic hydrocarbons (PAHs) and Resource Conservation and Recovery Act (RCRA) metals. Analytical results are presented on Table 1. Laboratory analytical package is attached electronically in Attachment 2.

Elevated PAHs above Part 375 Unrestricted, Restricted-Residential and/or Commercial Use SCOs, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)flouranthene, benzo(k)flouranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were detected in West Trench and South Trench sample locations (see Table 1).

Elevated metals above Part 375 Unrestricted, Restricted Residential, and/or Commercial Use SCOs were detected on-Site, including arsenic, cadmium, chromium, lead, and mercury were detected at West trench, South Trench, and Island Test Pit locations (see Table 1).

Radiological Assessment

Based on the location of the Site within an area of Niagara Falls, NY that is recently known to contain historic slag material which exhibits elevated levels of naturally-occurring radioactive material (NORM) and technologically-enhanced, naturally-occurring radioactive material (TENORM), radiological field screening was completed during the August 2014

Supplemental Investigation. Radiological screening was completed by GRD on the excavated test pits along the building foundation, accessible areas within the lowest floor of the existing building, including subslab ITP-1 location, paved areas (e.g., asphalt and concrete) and the entire perimeter of the vacant building. Background radiological readings were recorded between 4,000-7,000 counts per minute (cpm). Radiological screening field logs are provided in Appendix 1.

As shown on Figure 2, six (6) distinct areas of elevated radiological material ranging from twice to 10 times above background were detected on-Site. Specifically, four (4) areas of elevated radiological material, associated with the building foundation (2 areas up to 11,000 cpm) and subslab backfill material (one area up to 11,000 cpm), and the pool area with readings as high as 40,000 cpm. An area of elevated radiological material was detected in the parking lot island (up to 12,000 cpm) including the area of the Island Test Pit location. Another area of elevated radiological material was detected along the western portion of the Site with readings up to 12,000 cpm.

It should also be noted, that radiological screening values are typically muted by the presence of impervious surface cover (i.e., asphalt and concrete) and the likely radiological levels will be higher than the initial screening results once the material is disturbed during redevelopment activities. Based on the findings of the field screening, GRD recommended additional radiological investigation and assessment prior to any future demolition or redevelopment activities.

Summary of Results

- Elevated PAHs above Part 375 Unrestricted, Restricted-Residential and/or Commercial Use SCOs were detected on-Site, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)flouranthene, benzo(k)flouranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene.
- Elevated metals above Part 375 Unrestricted, Restricted Residential, and/or Commercial Use SCOs were detected on-Site, including arsenic, cadmium, chromium, lead, and mercury.

Mr. Craig Slater, Esq. 401 Buffalo Avenue Site

September 4, 2014 Page 5 of 5

Based on the radiological screening results, elevated levels of NORM/TENORM are
present across the Site. GRD recommends additional radiological assessment prior to
any intrusive activities.

Recommendations

- Based on the presence of elevated radiological material on-Site that directly impacts
 the planned demolition and redevelopment of the property, a radiological work plan
 detailing the regulated assessment and waste disposal requirements should be
 prepared and submitted to the NYSDEC for approval prior to intrusive activities.
- Though not directly part of this Supplemental Investigation, TurnKey recommends that oil or wipe sample(s) be collected from the spilled transformer oil area to determine if PCBs are present. Based on the results, a Corrective Action Plan should be prepared and submitted to the NYSDEC for review to address the open spill.
- Benchmark recommends providing this report to the NYSDEC with a request to reconsider the New York Brownfield Cleanup Program (BCP) eligibility determination for the 401 Buffalo Avenue parcel prior to completion of additional investigation and Site remedial and/or redevelopment activities.

Please contact us if you have any questions.

Sincerely,

TurnKey Environmental Restoration, LLC

Nathan T. Munley

Project Manager

ec:

F. Merani (Merani Hospitality)

File: 0271-013-001

Michael A. Lesakowski Sr. Project Manager

TABLE

TABLE 1

SUMMARY OF SOIL ANALYTICAL RESULTS

401 BUFFALO AVENUE SITE

NIAGARA FALLS, NEW YORK

Parameter ¹	Unrestricted Use SCOs ²	Restricted Residential Use SCOs ²	Commercial Use SCOs ²	WEST TRENCH	SOUTH TRENCH	ISLAND TEST PIT	POOL TEST PIT
					8/26/	/2014	
Semi-Volatile Organic Compounds (SVOCs) -	mg/Kg ³						
Acenaphthene	20	100	500	ND	8.2	ND	ND
Anthracene	100	100	500	2.2 J	16	0.074 J	ND
Benzo(a)anthracene	1	1	5.6	10	43	0.32	ND
Benzo(a)pyrene	1	1	1	12	43	0.28	ND
Benzo(b)fluoranthene	1	1	5.6	25	57	0.32	ND
Benzo(g,h,i)perylene	100	100	500	14	29	0.15	ND
Benzo(k)fluoranthene	0.8	3.9	56	9.3	24	0.17	ND
Chrysene	1	3.9	56	21	46	0.34	ND
Dibenzo(a,h)anthracene	0.33	0.33	0.56	2.3 J	7.3	0.046 J	ND
Fluoranthene	100	100	500	31	99	0.48	ND
Fluorene	30	100	500	ND	7.3	ND	ND
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	14	32	0.16	ND
Naphthalene	12	100	500	ND	3.7 J	ND	ND
Phenanthrene	100	100	500	13	66	0.18	ND
Pyrene	100	100	500	23	72	0.42	ND
Metals - mg/Kg							
Arsenic	13	16	16	7.1	4.7	21	3.6
Barium	350	400	400	160	150	84	25
Cadmium	2.5	4.3	9.3	2.6	8.2	0.24 J	0.42 J
Chromium	30	180	1500	32	98	9.7	7.6
Lead	63	400	1000	36	150	540	21
Selenium	3.9	180	1500	0.76 J	2 J	0.26 J	ND
Silver	2	8.3	1500	0.68 J	0.39 J	ND	ND
Mercury	0.18	0.73	2.8	0.18 J	1	0.29	0.03 J

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per 6NYCRR Part 375 Soil Cleanup Objectives (December 2006).
- 3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparison to SCOs.

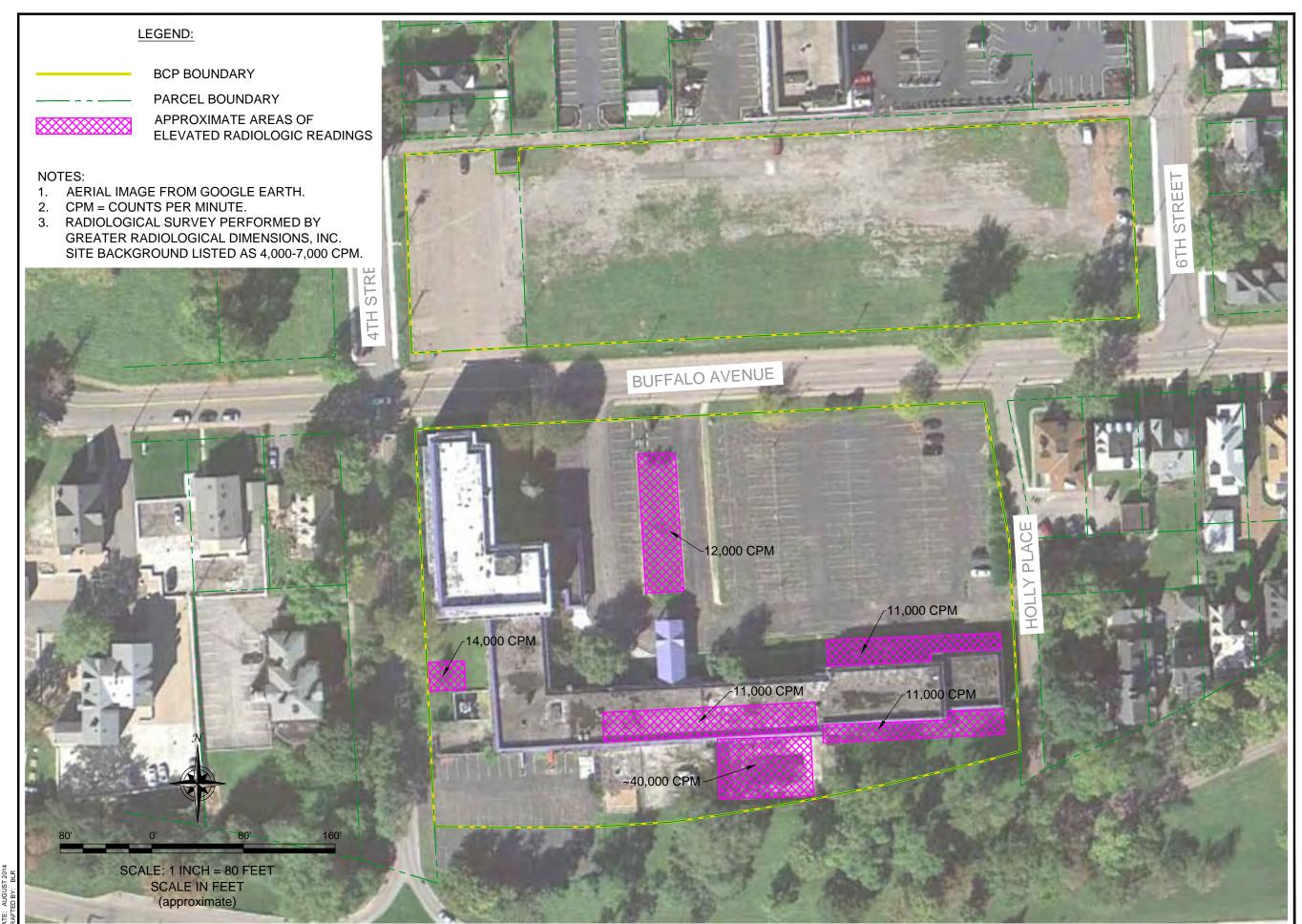
Definitions:

ND = Parameter not detected above laboratory detection limit.

- "--" = No SCO available for the parameter.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.

BOLD	= Result exceeds Part 375 Unrestricted Use SCOs.
BOLD	= Result exceeds Part 375 Restricted Residential Use SCOs.
BOLD	= Result exceeds Part 375 Commercial Use SCOs.

FIGURE


LOCATIONS SAMPLE

SUPPLEMENTAL INVESTIGATION

NIAGARA FALLS, NEW YORK

FIGURE 1

DISCLAIMER: PROPERTY OF TURNKEY ENV. REST., LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENV. REST., LLC.

RADIATION SURVEY RESULTS

SUPPLEMENTAL INVESTIGATION

FIGURE 2

MER: RTY OF TURNKEY ENV. REST., LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT ISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENV. REST., LLC.

ATTACHMENT 1

RADIOLOGICAL SCREENING RESULTS (GREATER RADIOLOGICAL DIMENSIONS, INC.)

RADIOLOGICAL SURVEY REPORT

Page I of Q

FROJECT NO: AREA: Oxf/ SURVEY#: Buff or RWP#: NA DATE: 8-26 TIME: /200	ave 001 below of On the 6 perform	described projecterior- Tiese addit	tion to a surficial ne test pituus perfori wulkover of accessibles I: NA	nec
Reviewed by RCS:	THART PRYCE	Shutzers	Print Name Signature 8, 28, 14 -	process of the second
See Count (2) - de	Prior Test Pit Local POOLHOUSE 2 STORY STR Dage two for ranges notes test pit cation	-concrete	Loading dock area. gas line (subsurface) Tower	44h STREET.

Q D

RADIOLOGICAL SURVEY REPORT

Page 1 of 2

PROJECT: 40/ Buffalu ave	JOB DESCRIPTION AND COMMENTS
	I LINUTE LIEULLUE UP NON-ROUTINE (Sparific Polone)
AREA: ext/int	Survey instrument - Ludlum 2221
SURVEY # Buffalo and 001	serial # 190170 pained w/a 44-10 probe.
RWP# NA	serial # PR2421829 with a system cal due
DATE: 8.26.14	date of 81.115. Imin wasst high Backronn
TDME: (200	ensite 4800-7000 cpm
Performed by RCT: Lames Hu-11	Performed by RCT: N/A
Performed by RCT:	let C Performed by RCT: N/A
Print Name	Signature Print Name Signature
Reviewed by RCS: STARAT PRYCE	5 Stantier 8 28.14
Exterior Test Pit.	Interior gamma readings
Count ranges all	(basement):
counts in Cpm's	one cut was made in the basemen
<u> </u>	Floor of the Two Story portion
(1) 7K - 11K cpm	of the building exposing the
material consisted of Cla	mutacial hearith the control
Soil, and small amount of	floor readings runge from
grave 1/ROCK.	5K-7500 apm.
@ 3 4 5 same	A Large amount of the basemant
as # /	une walked over where wite
TPI-Talong base of	due to debris.
Structure	The basement of the towner
6) 7K-12KCPM	Structure read 5K - 7K cpm
material excavated consist	ted In the two story structure
of clay, dist, building deb	readings ranged from TK-11K
and asmall amount of black	Cpm.
ashe material.	on the west side of the tower
TO I leader no arree le	land structure an area Ala around a marked out subsurface gas line
1 Po 10 cares on grassia	a marked out subsurface gas line
TPG located on grass Isi in front parking lot.	14K cpm on surface - no test pit was done.
(a) almosto a roadines 85-	14K Cpm
The the Innitiale	- Indicated the second of the second
after concrete was ver neadings were 18K-	from 11 12 1 2 2 2 2 2 1
	11012 And is below mallitallies for

ATTACHMENT 2

LABORATORY ANALYTICAL DATA PACKAGE

ANALYTICAL REPORT

Lab Number: L1419647

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Mike Lesakowski Phone: (716) 856-0599

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

Report Date: 08/29/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

Lab Number: L1419647 **Report Date:** 08/29/14

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1419647-01	WEST TRENCH DRAIN	SOIL	NIAGARA FALLS, NY	08/26/14 15:25	08/27/14
L1419647-02	SOUTH TRENCH DRAIN	SOIL	NIAGARA FALLS, NY	08/26/14 15:15	08/27/14
L1419647-03	ISLAND TEST PIT	SOIL	NIAGARA FALLS, NY	08/26/14 15:35	08/27/14
L1419647-04	POOL SIDEWALK	SOIL	NIAGARA FALLS, NY	08/26/14 15:00	08/27/14

L1419647

Lab Number:

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001 **Report Date:** 08/29/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated QC table. This information is also incorporated in the Data Usability format for our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800)-624-9220	with any	questions.

Serial_No:08291415:13

Project Name: 401 BUFFALO AVENUE Lab Number: L1419647

Project Number: 0294-013-001 **Report Date:** 08/29/14

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

L1419647-01 has elevated detection limits due to the dilution required by the matrix interferences encountered during the concentration of the sample and the analytical dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

king l. Winter Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

Date: 08/29/14

ORGANICS

SEMIVOLATILES

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

SAMPLE RESULTS

Lab Number: L1419647

Report Date: 08/29/14

SAWIF LE INESOL

Lab ID: L1419647-01 D
Client ID: WEST TRENCH DRAIN
Sample Location: NIAGARA FALLS, NY

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 08/29/14 02:12

Analyst: RC Percent Solids: 30%

Date Collected: 08/26/14 15:25
Date Received: 08/27/14
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 08/28/14 03:42

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Acenaphthene	ND		ug/kg	4400	1100	10			
2-Chloronaphthalene	ND		ug/kg	5500	1800	10			
Fluoranthene	31000		ug/kg	3300	1000	10			
Naphthalene	ND		ug/kg	5500	1800	10			
Benzo(a)anthracene	10000		ug/kg	3300	1100	10			
Benzo(a)pyrene	12000		ug/kg	4400	1300	10			
Benzo(b)fluoranthene	25000		ug/kg	3300	1100	10			
Benzo(k)fluoranthene	9300		ug/kg	3300	1000	10			
Chrysene	21000		ug/kg	3300	1100	10			
Acenaphthylene	ND		ug/kg	4400	1000	10			
Anthracene	2200	J	ug/kg	3300	910	10			
Benzo(ghi)perylene	14000		ug/kg	4400	1100	10			
Fluorene	ND		ug/kg	5500	1600	10			
Phenanthrene	13000		ug/kg	3300	1100	10			
Dibenzo(a,h)anthracene	2300	J	ug/kg	3300	1100	10			
Indeno(1,2,3-cd)Pyrene	14000		ug/kg	4400	1200	10			
Pyrene	23000		ug/kg	3300	1100	10			
2-Methylnaphthalene	ND		ug/kg	6600	1800	10			

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Nitrobenzene-d5	109		23-120	
2-Fluorobiphenyl	85		30-120	
4-Terphenyl-d14	87		18-120	

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

SAMPLE RESULTS

Lab Number: L1419647

Report Date: 08/29/14

Lab ID: L1419647-02 D SOUTH TRENCH DRAIN Client ID: Sample Location: NIAGARA FALLS, NY

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 08/29/14 13:00

Analyst: RC 33% Percent Solids:

Date Collected: 08/26/14 15:15 Date Received: 08/27/14 Field Prep: Not Specified Extraction Method: EPA 3546 08/28/14 03:42 **Extraction Date:**

Semivolatile Organics by GC/MS - Westborough Lab Acenaphthene 8200 ug/kg 4000 1000 10 2-Chloronaphthalene ND ug/kg 5000 1600 10 Fluoranthene 99000 ug/kg 3000 920 10 Naphthalene 3700 J ug/kg 5000 1600 10 Benzo(a)anthracene 43000 ug/kg 3000 980 10 Benzo(a)pyrene 43000 ug/kg 3000 1200 10 Benzo(b)fluoranthene 57000 ug/kg 3000 950 10 Benzo(k)fluoranthene 24000 ug/kg 3000 980 10 Chrysene 46000 ug/kg 3000 980 10 Acenaphthylene ND ug/kg 4000 930 10 Anthracene 16000 ug/kg 4000 1000 10 Enzo(ghi)perylene 29000 ug/kg 5000 1400 10	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
2-Chloronaphthalene ND ug/kg 5000 1600 10 Fluoranthene 99000 ug/kg 3000 920 10 Naphthalene 3700 Jug/kg 5000 1600 10 Benzo(a)anthracene 43000 ug/kg 3000 980 10 Benzo(a)pyrene 43000 ug/kg 4000 1200 10 Benzo(b)fluoranthene 57000 ug/kg 3000 1000 10 Benzo(k)fluoranthene 24000 ug/kg 3000 950 10 Chrysene 46000 ug/kg 3000 980 10 Acenaphthylene ND ug/kg 4000 930 10 Anthracene 16000 ug/kg 3000 830 10 Benzo(ghi)perylene 29000 ug/kg 4000 1000 10 Fluorene 7300 ug/kg 3000 980 10 Dibenzo(a,h)anthracene 7300 ug/kg 3000	Semivolatile Organics by GC/MS - Westborough Lab								
Fluoranthene 99000 ug/kg 3000 920 10 Naphthalene 3700 Jug/kg 5000 1600 10 Benzo(a)anthracene 43000 ug/kg 3000 980 10 Benzo(a)pyrene 43000 ug/kg 4000 1200 10 Benzo(b)fluoranthene 57000 ug/kg 3000 1000 10 Benzo(k)fluoranthene 24000 ug/kg 3000 950 10 Chrysene 46000 ug/kg 3000 980 10 Acenaphthylene ND ug/kg 4000 930 10 Anthracene 16000 ug/kg 3000 830 10 Benzo(ghi)perylene 29000 ug/kg 4000 1000 10 Fluorene 7300 ug/kg 5000 1400 10 Phenanthrene 66000 ug/kg 3000 980 10 Dibenzo(a,h)anthracene 7300 ug/kg 3000 <t< td=""><td>Acenaphthene</td><td>8200</td><td></td><td>ug/kg</td><td>4000</td><td>1000</td><td>10</td><td></td></t<>	Acenaphthene	8200		ug/kg	4000	1000	10		
Naphthalene 3700 J ug/kg 5000 1600 10 Benzo(a)anthracene 43000 ug/kg 3000 980 10 Benzo(a)pyrene 43000 ug/kg 4000 1200 10 Benzo(b)fluoranthene 57000 ug/kg 3000 1000 10 Benzo(k)fluoranthene 24000 ug/kg 3000 950 10 Chrysene 46000 ug/kg 3000 980 10 Acenaphthylene ND ug/kg 4000 930 10 Anthracene 16000 ug/kg 3000 830 10 Benzo(ghi)perylene 29000 ug/kg 4000 1000 10 Fluorene 7300 ug/kg 5000 1400 10 Phenanthrene 66000 ug/kg 3000 980 10 Dibenzo(a,h)anthracene 7300 ug/kg 3000 960 10 Indeno(1,2,3-cd)Pyrene 32000 ug/kg	2-Chloronaphthalene	ND		ug/kg	5000	1600	10		
Benzo(a)anthracene 43000 ug/kg 3000 980 10 Benzo(a)pyrene 43000 ug/kg 4000 1200 10 Benzo(b)fluoranthene 57000 ug/kg 3000 1000 10 Benzo(k)fluoranthene 24000 ug/kg 3000 950 10 Chrysene 46000 ug/kg 3000 980 10 Acenaphthylene ND ug/kg 4000 930 10 Anthracene 16000 ug/kg 3000 830 10 Benzo(ghi)perylene 29000 ug/kg 4000 1000 10 Fluorene 7300 ug/kg 5000 1400 10 Phenanthrene 66000 ug/kg 3000 980 10 Dibenzo(a,h)anthracene 7300 ug/kg 3000 960 10 Indeno(1,2,3-cd)Pyrene 32000 ug/kg 4000 1100 10 Pyrene 72000 ug/kg 3000	Fluoranthene	99000		ug/kg	3000	920	10		
Benzo(a)pyrene 43000 ug/kg 4000 1200 10 Benzo(b)fluoranthene 57000 ug/kg 3000 1000 10 Benzo(k)fluoranthene 24000 ug/kg 3000 950 10 Chrysene 46000 ug/kg 3000 980 10 Acenaphthylene ND ug/kg 4000 930 10 Anthracene 16000 ug/kg 3000 830 10 Benzo(ghi)perylene 29000 ug/kg 4000 1000 10 Fluorene 7300 ug/kg 5000 1400 10 Phenanthrene 66000 ug/kg 3000 980 10 Dibenzo(a,h)anthracene 7300 ug/kg 3000 960 10 Indeno(1,2,3-cd)Pyrene 32000 ug/kg 4000 1100 10 Pyrene 72000 ug/kg 3000 970 10	Naphthalene	3700	J	ug/kg	5000	1600	10		
Benzo(b)fluoranthene 57000 ug/kg 3000 1000 10 Benzo(k)fluoranthene 24000 ug/kg 3000 950 10 Chrysene 46000 ug/kg 3000 980 10 Acenaphthylene ND ug/kg 4000 930 10 Anthracene 16000 ug/kg 3000 830 10 Benzo(ghi)perylene 29000 ug/kg 4000 1000 10 Fluorene 7300 ug/kg 5000 1400 10 Phenanthrene 66000 ug/kg 3000 980 10 Dibenzo(a,h)anthracene 7300 ug/kg 3000 960 10 Indeno(1,2,3-cd)Pyrene 32000 ug/kg 4000 1100 10 Pyrene 72000 ug/kg 3000 970 10	Benzo(a)anthracene	43000		ug/kg	3000	980	10		
Benzo(k)fluoranthene 24000 ug/kg 3000 950 10 Chrysene 46000 ug/kg 3000 980 10 Acenaphthylene ND ug/kg 4000 930 10 Anthracene 16000 ug/kg 3000 830 10 Benzo(ghi)perylene 29000 ug/kg 4000 1000 10 Fluorene 7300 ug/kg 5000 1400 10 Phenanthrene 66000 ug/kg 3000 980 10 Dibenzo(a,h)anthracene 7300 ug/kg 3000 960 10 Indeno(1,2,3-cd)Pyrene 32000 ug/kg 4000 1100 10 Pyrene 72000 ug/kg 3000 970 10	Benzo(a)pyrene	43000		ug/kg	4000	1200	10		
Chrysene 46000 ug/kg 3000 980 10 Acenaphthylene ND ug/kg 4000 930 10 Anthracene 16000 ug/kg 3000 830 10 Benzo(ghi)perylene 29000 ug/kg 4000 1000 10 Fluorene 7300 ug/kg 5000 1400 10 Phenanthrene 66000 ug/kg 3000 980 10 Dibenzo(a,h)anthracene 7300 ug/kg 3000 960 10 Indeno(1,2,3-cd)Pyrene 32000 ug/kg 4000 1100 10 Pyrene 72000 ug/kg 3000 970 10	Benzo(b)fluoranthene	57000		ug/kg	3000	1000	10		
Acenaphthylene ND ug/kg 4000 930 10 Anthracene 16000 ug/kg 3000 830 10 Benzo(ghi)perylene 29000 ug/kg 4000 1000 10 Fluorene 7300 ug/kg 5000 1400 10 Phenanthrene 66000 ug/kg 3000 980 10 Dibenzo(a,h)anthracene 7300 ug/kg 3000 960 10 Indeno(1,2,3-cd)Pyrene 32000 ug/kg 4000 1100 10 Pyrene 72000 ug/kg 3000 970 10	Benzo(k)fluoranthene	24000		ug/kg	3000	950	10		
Anthracene 16000 ug/kg 3000 830 10 Benzo(ghi)perylene 29000 ug/kg 4000 1000 10 Fluorene 7300 ug/kg 5000 1400 10 Phenanthrene 66000 ug/kg 3000 980 10 Dibenzo(a,h)anthracene 7300 ug/kg 3000 960 10 Indeno(1,2,3-cd)Pyrene 32000 ug/kg 4000 1100 10 Pyrene 72000 ug/kg 3000 970 10	Chrysene	46000		ug/kg	3000	980	10		
Benzo(ghi)perylene 29000 ug/kg 4000 1000 10 Fluorene 7300 ug/kg 5000 1400 10 Phenanthrene 66000 ug/kg 3000 980 10 Dibenzo(a,h)anthracene 7300 ug/kg 3000 960 10 Indeno(1,2,3-cd)Pyrene 32000 ug/kg 4000 1100 10 Pyrene 72000 ug/kg 3000 970 10	Acenaphthylene	ND		ug/kg	4000	930	10		
Fluorene 7300 ug/kg 5000 1400 10 Phenanthrene 66000 ug/kg 3000 980 10 Dibenzo(a,h)anthracene 7300 ug/kg 3000 960 10 Indeno(1,2,3-cd)Pyrene 32000 ug/kg 4000 1100 10 Pyrene 72000 ug/kg 3000 970 10	Anthracene	16000		ug/kg	3000	830	10		
Phenanthrene 66000 ug/kg 3000 980 10 Dibenzo(a,h)anthracene 7300 ug/kg 3000 960 10 Indeno(1,2,3-cd)Pyrene 32000 ug/kg 4000 1100 10 Pyrene 72000 ug/kg 3000 970 10	Benzo(ghi)perylene	29000		ug/kg	4000	1000	10		
Dibenzo(a,h)anthracene 7300 ug/kg 3000 960 10 Indeno(1,2,3-cd)Pyrene 32000 ug/kg 4000 1100 10 Pyrene 72000 ug/kg 3000 970 10	Fluorene	7300		ug/kg	5000	1400	10		
Indeno(1,2,3-cd)Pyrene 32000 ug/kg 4000 1100 10 Pyrene 72000 ug/kg 3000 970 10	Phenanthrene	66000		ug/kg	3000	980	10		
Pyrene 72000 ug/kg 3000 970 10	Dibenzo(a,h)anthracene	7300		ug/kg	3000	960	10		
.,	Indeno(1,2,3-cd)Pyrene	32000		ug/kg	4000	1100	10		
	Pyrene	72000		ug/kg	3000	970	10		
2-Methylnaphthalene ND ug/kg 6000 1600 10	2-Methylnaphthalene	ND		ug/kg	6000	1600	10		

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Nitrobenzene-d5	63		23-120	
2-Fluorobiphenyl	64		30-120	
4-Terphenyl-d14	59		18-120	

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

SAMPLE RESULTS

Lab Number: L1419647

Report Date: 08/29/14

Lab ID: L1419647-03 **ISLAND TEST PIT** Client ID:

Sample Location: NIAGARA FALLS, NY Matrix: Soil

Analytical Method: 1,8270D Analytical Date: 08/29/14 03:07

Analyst: RC 88% Percent Solids:

Date Collected: 08/26/14 15:35 Date Received: 08/27/14 Field Prep: Not Specified Extraction Method: EPA 3546 08/28/14 03:42 **Extraction Date:**

Result	Qualifier	Units	RL	MDL	Dilution Factor
ough Lab					
ND		ug/kg	150	38.	1
ND		ug/kg	190	61.	1
480		ug/kg	110	34.	1
ND		ug/kg	190	62.	1
320		ug/kg	110	36.	1
280		ug/kg	150	46.	1
320		ug/kg	110	38.	1
170		ug/kg	110	36.	1
340		ug/kg	110	37.	1
ND		ug/kg	150	35.	1
74	J	ug/kg	110	31.	1
150		ug/kg	150	39.	1
ND		ug/kg	190	54.	1
180		ug/kg	110	36.	1
46	J	ug/kg	110	36.	1
160		ug/kg	150	41.	1
420		ug/kg	110	36.	1
ND		ug/kg	220	60.	1
	ND ND 480 ND 320 280 320 170 340 ND 74 150 ND 180 46 160 420	ND ND 480 ND 320 280 320 170 340 ND 74 J 150 ND 180 46 J 160 420	ND ug/kg ND ug/kg 480 ug/kg ND ug/kg 320 ug/kg 280 ug/kg 320 ug/kg 320 ug/kg 340 ug/kg ND ug/kg ND ug/kg 170 ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg 150 ug/kg 150 ug/kg 150 ug/kg 160 ug/kg 160 ug/kg 420 ug/kg	ND ug/kg 150 ND ug/kg 190 480 ug/kg 110 ND ug/kg 190 320 ug/kg 110 280 ug/kg 110 170 ug/kg 110 170 ug/kg 110 ND ug/kg 150 340 ug/kg 110 ND ug/kg 150 74 J ug/kg 150 ND ug/kg 150	ND ug/kg 150 38. ND ug/kg 190 61. 480 ug/kg 110 34. ND ug/kg 190 62. 320 ug/kg 110 36. 280 ug/kg 150 46. 320 ug/kg 110 38. 170 ug/kg 110 36. 340 ug/kg 110 36. 340 ug/kg 110 37. ND ug/kg 150 35. 74 J ug/kg 150 35. 74 J ug/kg 150 39. ND ug/kg 150 39. ND ug/kg 150 36. 46 J ug/kg 110 36. 46 J ug/kg 110 36. 46 J ug/kg 150 36.

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	86		23-120	
2-Fluorobiphenyl	72		30-120	
4-Terphenyl-d14	84		18-120	

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

SAMPLE RESULTS

Lab Number: L1419647

Report Date: 08/29/14

Lab ID: L1419647-04
Client ID: POOL SIDEWALK
Sample Location: NIAGARA FALLS, NY

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 08/29/14 03:35

Analyst: RC Percent Solids: 89%

Date Collected: 08/26/14 15:00
Date Received: 08/27/14

Field Prep: Not Specified
Extraction Method: EPA 3546

Extraction Date: 08/28/14 03:42

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Acenaphthene	ND		ug/kg	150	38.	1	
2-Chloronaphthalene	ND		ug/kg	190	61.	1	
Fluoranthene	ND		ug/kg	110	34.	1	
Naphthalene	ND		ug/kg	190	62.	1	
Benzo(a)anthracene	ND		ug/kg	110	37.	1	
Benzo(a)pyrene	ND		ug/kg	150	46.	1	
Benzo(b)fluoranthene	ND		ug/kg	110	38.	1	
Benzo(k)fluoranthene	ND		ug/kg	110	36.	1	
Chrysene	ND		ug/kg	110	37.	1	
Acenaphthylene	ND		ug/kg	150	35.	1	
Anthracene	ND		ug/kg	110	31.	1	
Benzo(ghi)perylene	ND		ug/kg	150	39.	1	
Fluorene	ND		ug/kg	190	54.	1	
Phenanthrene	ND		ug/kg	110	36.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	110	36.	1	
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	150	42.	1	
Pyrene	ND		ug/kg	110	36.	1	
2-Methylnaphthalene	ND		ug/kg	220	60.	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	89		23-120	
2-Fluorobiphenyl	63		30-120	
4-Terphenyl-d14	73		18-120	

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

Lab Number: L1419647

Report Date: 08/29/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/28/14 09:01

Analyst: RC

Extraction Method: EPA 3546
Extraction Date: 08/27/14 23:09

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	sample(s):	01-04	Batch:	WG717449-1
Acenaphthene	ND		ug/kg	130		33.
1,2,4-Trichlorobenzene	ND		ug/kg	160		53.
Hexachlorobenzene	ND		ug/kg	97		30.
Bis(2-chloroethyl)ether	ND		ug/kg	140		45.
2-Chloronaphthalene	ND		ug/kg	160		53.
1,2-Dichlorobenzene	ND		ug/kg	160		53.
1,3-Dichlorobenzene	ND		ug/kg	160		51.
1,4-Dichlorobenzene	ND		ug/kg	160		49.
3,3'-Dichlorobenzidine	ND		ug/kg	160		43.
2,4-Dinitrotoluene	ND		ug/kg	160		35.
2,6-Dinitrotoluene	ND		ug/kg	160		41.
Fluoranthene	ND		ug/kg	97		30.
4-Chlorophenyl phenyl ether	ND		ug/kg	160		49.
4-Bromophenyl phenyl ether	ND		ug/kg	160		37.
Bis(2-chloroisopropyl)ether	ND		ug/kg	190		57.
Bis(2-chloroethoxy)methane	ND		ug/kg	170		49.
Hexachlorobutadiene	ND		ug/kg	160		46.
Hexachlorocyclopentadiene	ND		ug/kg	460		100
Hexachloroethane	ND		ug/kg	130		29.
Isophorone	ND		ug/kg	140		43.
Naphthalene	ND		ug/kg	160		54.
Nitrobenzene	ND		ug/kg	140		38.
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg	130		34.
n-Nitrosodi-n-propylamine	ND		ug/kg	160		48.
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	160		42.
Butyl benzyl phthalate	ND		ug/kg	160		32.
Di-n-butylphthalate	ND		ug/kg	160		31.
Di-n-octylphthalate	ND		ug/kg	160		40.
Diethyl phthalate	ND		ug/kg	160		34.

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

Lab Number: L1419647

Report Date: 08/29/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/28/14 09:01

Analyst: RC

Extraction Method: EPA 3546
Extraction Date: 08/27/14 23:09

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	S - Westborough	Lab for s	ample(s):	01-04	Batch:	WG717449-1
Dimethyl phthalate	ND		ug/kg	160		41.
Benzo(a)anthracene	ND		ug/kg	97		32.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	97		33.
Benzo(k)fluoranthene	ND		ug/kg	97		31.
Chrysene	ND		ug/kg	97		32.
Acenaphthylene	ND		ug/kg	130		30.
Anthracene	ND		ug/kg	97		27.
Benzo(ghi)perylene	ND		ug/kg	130		34.
Fluorene	ND		ug/kg	160		46.
Phenanthrene	ND		ug/kg	97		32.
Dibenzo(a,h)anthracene	ND		ug/kg	97		31.
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	130		36.
Pyrene	ND		ug/kg	97		31.
Biphenyl	ND		ug/kg	370		53.
4-Chloroaniline	ND		ug/kg	160		43.
2-Nitroaniline	ND		ug/kg	160		46.
3-Nitroaniline	ND		ug/kg	160		45.
4-Nitroaniline	ND		ug/kg	160		44.
Dibenzofuran	ND		ug/kg	160		54.
2-Methylnaphthalene	ND		ug/kg	190		52.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160		50.
Acetophenone	ND		ug/kg	160		50.
2,4,6-Trichlorophenol	ND		ug/kg	97		30.
P-Chloro-M-Cresol	ND		ug/kg	160		47.
2-Chlorophenol	ND		ug/kg	160		49.
2,4-Dichlorophenol	ND		ug/kg	140		52.
2,4-Dimethylphenol	ND		ug/kg	160		48.
2-Nitrophenol	ND		ug/kg	350		50.

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001 Lab Number: L1419647

Report Date: 08/29/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/28/14 09:01

Analyst: RC Extraction Method: EPA 3546

08/27/14 23:09 Extraction Date:

Result	Qualifier	Units	RL		MDL
- Westboroug	h Lab for s	ample(s):	01-04	Batch:	WG717449-1
ND		ug/kg	230		52.
ND		ug/kg	780		220
ND		ug/kg	420		59.
ND		ug/kg	130		35.
ND		ug/kg	160		48.
ND		ug/kg	160		52.
ND		ug/kg	230		53.
ND		ug/kg	160		52.
ND		ug/kg	520		160
ND		ug/kg	160		50.
ND		ug/kg	160		35.
	ND N	ND N	ND ug/kg	ND ug/kg 230 ND ug/kg 780 ND ug/kg 420 ND ug/kg 130 ND ug/kg 130 ND ug/kg 160 ND ug/kg 160 ND ug/kg 160 ND ug/kg 230 ND ug/kg 160 ND ug/kg 520 ND ug/kg 160 ND ug/kg 160	ND ug/kg 230 ND ug/kg 780 ND ug/kg 420 ND ug/kg 130 ND ug/kg 130 ND ug/kg 160 ND ug/kg 160 ND ug/kg 160 ND ug/kg 230 ND ug/kg 160 ND ug/kg 520 ND ug/kg 520 ND ug/kg 160

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	62	25-120
Phenol-d6	59	10-120
Nitrobenzene-d5	56	23-120
2-Fluorobiphenyl	53	30-120
2,4,6-Tribromophenol	52	0-136
4-Terphenyl-d14	52	18-120

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

Lab Number: L1419647

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS -	Westborough Lab Associ	ated sample(s):	01-04 Bat	ch: WG71744	9-2 WG717449)-3	
Acenaphthene	58		78		31-137	29	50
1,2,4-Trichlorobenzene	56		68		38-107	19	50
Hexachlorobenzene	57		76		40-140	29	50
Bis(2-chloroethyl)ether	60		71		40-140	17	50
2-Chloronaphthalene	62		77		40-140	22	50
1,2-Dichlorobenzene	58		68		40-140	16	50
1,3-Dichlorobenzene	56		66		40-140	16	50
1,4-Dichlorobenzene	55		66		28-104	18	50
3,3'-Dichlorobenzidine	41		51		40-140	22	50
2,4-Dinitrotoluene	63		84		28-89	29	50
2,6-Dinitrotoluene	67		82		40-140	20	50
Fluoranthene	56		80		40-140	35	50
4-Chlorophenyl phenyl ether	60		80		40-140	29	50
4-Bromophenyl phenyl ether	60		79		40-140	27	50
Bis(2-chloroisopropyl)ether	61		75		40-140	21	50
Bis(2-chloroethoxy)methane	63		77		40-117	20	50
Hexachlorobutadiene	60		74		40-140	21	50
Hexachlorocyclopentadiene	66		78		40-140	17	50
Hexachloroethane	60		71		40-140	17	50
Isophorone	65		79		40-140	19	50
Naphthalene	58		74		40-140	24	50

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

Lab Number: L1419647

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	ated sample(s):	01-04	Batch:	WG717449	-2 WG717449	-3			
Nitrobenzene	60		76			40-140	24		50	
NitrosoDiPhenylAmine(NDPA)/DPA	60		80				29		50	
n-Nitrosodi-n-propylamine	60		74			32-121	21		50	
Bis(2-Ethylhexyl)phthalate	62		92			40-140	39		50	
Butyl benzyl phthalate	59		86			40-140	37		50	
Di-n-butylphthalate	60		86			40-140	36		50	
Di-n-octylphthalate	62		94			40-140	41		50	
Diethyl phthalate	62		81			40-140	27		50	
Dimethyl phthalate	62		81			40-140	27		50	
Benzo(a)anthracene	56		82			40-140	38		50	
Benzo(a)pyrene	56		81			40-140	36		50	
Benzo(b)fluoranthene	56		80			40-140	35		50	
Benzo(k)fluoranthene	57		85			40-140	39		50	
Chrysene	58		83			40-140	35		50	
Acenaphthylene	64		80			40-140	22		50	
Anthracene	58		85			40-140	38		50	
Benzo(ghi)perylene	55		80			40-140	37		50	
Fluorene	59		78			40-140	28		50	
Phenanthrene	56		81			40-140	36		50	
Dibenzo(a,h)anthracene	53		80			40-140	41		50	
Indeno(1,2,3-cd)Pyrene	55		81			40-140	38		50	

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

Lab Number: L1419647

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Assoc	iated sample(s):	01-04	Batch:	WG717449)-2 WG717449-3			
Pyrene	55		79			35-142	36		50
Biphenyl	61		85				33		50
4-Chloroaniline	59		46			40-140	25		50
2-Nitroaniline	67		80			47-134	18		50
3-Nitroaniline	49		58			26-129	17		50
4-Nitroaniline	58		77			41-125	28		50
Dibenzofuran	56		76			40-140	30		50
2-Methylnaphthalene	57		73			40-140	25		50
1,2,4,5-Tetrachlorobenzene	59		81			40-117	31		50
Acetophenone	64		78			14-144	20		50
2,4,6-Trichlorophenol	68		85			30-130	22		50
P-Chloro-M-Cresol	65		82			26-103	23		50
2-Chlorophenol	57		68			25-102	18		50
2,4-Dichlorophenol	60		77			30-130	25		50
2,4-Dimethylphenol	65		82			30-130	23		50
2-Nitrophenol	59		70			30-130	17		50
4-Nitrophenol	62		86			11-114	32		50
2,4-Dinitrophenol	46		63			4-130	31		50
4,6-Dinitro-o-cresol	57		75			10-130	27		50
Pentachlorophenol	55		78			17-109	35		50
Phenol	59		70			26-90	17		50

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

Lab Number:

L1419647

Report Date:

08/29/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD nits
Semivolatile Organics by GC/MS - Westbord	ough Lab Associ	ated sample(s)	: 01-04 Bato	ch: WG717	449-2 WG717449-	3	
2-Methylphenol	61		74		30-130.	19	50
3-Methylphenol/4-Methylphenol	60		74		30-130	21	50
2,4,5-Trichlorophenol	68		83		30-130	20	50
Benzoic Acid	42		51			19	50
Benzyl Alcohol	62		75		40-140	19	50
Carbazole	56		78		54-128	33	50

	LCS	LC:	SD	Acceptance
Surrogate	%Recovery	Qual %Reco	very Qual	Criteria
2-Fluorophenol	61	73		25-120
Phenol-d6	62	74		10-120
Nitrobenzene-d5	58	71		23-120
2-Fluorobiphenyl	59	74		30-120
2,4,6-Tribromophenol	59	83		0-136
4-Terphenyl-d14	53	75		18-120

METALS

Project Name: 401 BUFFALO AVENUE Lab Number: L1419647

Project Number: 0294-013-001 **Report Date:** 08/29/14

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/14 15:25

Client ID: WEST TRENCH DRAIN Date Received: 08/27/14
Sample Location: NIAGARA FALLS, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 30%

Dilution Date Date Prep Analytical Method Prepared Method Factor **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Westborough Lab Arsenic, Total 7.1 mg/kg 1.3 0.26 1 08/28/14 15:20 08/28/14 19:27 EPA 3050B 1,6010C TT Barium, Total 160 0.38 1 08/28/14 15:20 08/28/14 19:27 EPA 3050B 1,6010C TT mg/kg 1.3 2.6 1 1,6010C Cadmium, Total 1.3 0.09 08/28/14 15:20 08/28/14 19:27 EPA 3050B TT mg/kg Chromium, Total 32 mg/kg 1.3 0.26 1 08/28/14 15:20 08/28/14 19:27 EPA 3050B 1,6010C TT 36 6.4 0.26 1 08/28/14 15:20 08/28/14 19:27 EPA 3050B 1,6010C TT Lead, Total mg/kg Mercury, Total 0.18 J 0.21 0.05 1 08/28/14 07:55 08/28/14 11:09 EPA 7471B 1,7471B MC mg/kg J 1,6010C Selenium, Total 0.76 mg/kg 2.6 0.38 1 08/28/14 15:20 08/28/14 19:27 EPA 3050B TT Silver, Total 0.68 J mg/kg 1.3 0.26 1 08/28/14 15:20 08/28/14 19:27 EPA 3050B 1,6010C TT

Project Name: 401 BUFFALO AVENUE Lab Number: L1419647

Project Number: Report Date: 0294-013-001 08/29/14

SAMPLE RESULTS

Lab ID: L1419647-02 Date Collected: 08/26/14 15:15

Client ID: SOUTH TRENCH DRAIN Date Received: 08/27/14 Sample Location: NIAGARA FALLS, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 33%

Dilution Date Date Prep Analytical Method Method Prepared **Factor Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Westborough Lab Arsenic, Total 4.7 mg/kg 1.2 0.24 1 08/28/14 15:20 08/28/14 19:31 EPA 3050B 1,6010C TT Barium, Total 150 0.36 1 08/28/14 15:20 08/28/14 19:31 EPA 3050B 1,6010C TT mg/kg 1.2 8.2 1.2 1 1,6010C Cadmium, Total 0.09 08/28/14 15:20 08/28/14 19:31 EPA 3050B TT mg/kg Chromium, Total 98 mg/kg 1.2 0.24 1 08/28/14 15:20 08/28/14 19:31 EPA 3050B 1,6010C TT 150 6.1 0.24 1 08/28/14 15:20 08/28/14 19:31 EPA 3050B 1,6010C TT Lead, Total mg/kg Mercury, Total 1.0 0.20 0.04 1 08/28/14 07:55 08/28/14 11:11 EPA 7471B 1,7471B MC mg/kg J Selenium, Total 2.0 mg/kg 2.4 0.36 1 08/28/14 15:20 08/28/14 19:31 EPA 3050B 1,6010C TT Silver, Total 0.39 J mg/kg 1.2 0.24 1 08/28/14 15:20 08/28/14 19:31 EPA 3050B 1,6010C TT

Project Name: 401 BUFFALO AVENUE Lab Number: L1419647

Project Number: 0294-013-001 **Report Date:** 08/29/14

SAMPLE RESULTS

 Lab ID:
 L1419647-03
 Date Collected:
 08/26/14 15:35

 Client ID:
 ISLAND TEST PIT
 Date Received:
 08/27/14

Sample Location: NIAGARA FALLS, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 88%

reitent Solids.	00 /6					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - West	horough l	ah									
Total Metals - West	borougiri	Lau									
Arsenic, Total	21		mg/kg	0.43	0.09	1	08/28/14 15:20	08/28/14 19:34	EPA 3050B	1,6010C	TT
Barium, Total	84		mg/kg	0.43	0.13	1	08/28/14 15:20	08/28/14 19:34	EPA 3050B	1,6010C	TT
Cadmium, Total	0.24	J	mg/kg	0.43	0.03	1	08/28/14 15:20	08/28/14 19:34	EPA 3050B	1,6010C	TT
Chromium, Total	9.7		mg/kg	0.43	0.09	1	08/28/14 15:20	08/28/14 19:34	EPA 3050B	1,6010C	TT
Lead, Total	540		mg/kg	2.2	0.09	1	08/28/14 15:20	08/28/14 19:34	EPA 3050B	1,6010C	TT
Mercury, Total	0.29		mg/kg	0.08	0.02	1	08/28/14 07:55	5 08/28/14 11:13	EPA 7471B	1,7471B	МС
Selenium, Total	0.26	J	mg/kg	0.86	0.13	1	08/28/14 15:20	08/28/14 19:34	EPA 3050B	1,6010C	TT
Silver, Total	ND		mg/kg	0.43	0.09	1	08/28/14 15:20	08/28/14 19:34	EPA 3050B	1,6010C	TT

Project Name: 401 BUFFALO AVENUE Lab Number: L1419647

Project Number: 0294-013-001 **Report Date:** 08/29/14

SAMPLE RESULTS

 Lab ID:
 L1419647-04
 Date Collected:
 08/26/14 15:00

 Client ID:
 POOL SIDEWALK
 Date Received:
 08/27/14

Sample Location: NIAGARA FALLS, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 89%

reident Solids.	09%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Matala Mast	thorough l	oh									
Total Metals - West	iborougn i	_ab									
Arsenic, Total	3.6		mg/kg	0.43	0.09	1	08/28/14 15:20	08/28/14 19:38	EPA 3050B	1,6010C	TT
Barium, Total	25		mg/kg	0.43	0.13	1	08/28/14 15:20	08/28/14 19:38	EPA 3050B	1,6010C	TT
Cadmium, Total	0.42	J	mg/kg	0.43	0.03	1	08/28/14 15:20	08/28/14 19:38	EPA 3050B	1,6010C	TT
Chromium, Total	7.6		mg/kg	0.43	0.09	1	08/28/14 15:20	08/28/14 19:38	EPA 3050B	1,6010C	TT
Lead, Total	21		mg/kg	2.2	0.09	1	08/28/14 15:20	08/28/14 19:38	EPA 3050B	1,6010C	TT
Mercury, Total	0.03	J	mg/kg	0.07	0.02	1	08/28/14 07:55	5 08/28/14 11:14	EPA 7471B	1,7471B	MC
Selenium, Total	ND		mg/kg	0.87	0.13	1	08/28/14 15:20	0 08/28/14 19:38	EPA 3050B	1,6010C	TT
Silver, Total	ND		mg/kg	0.43	0.09	1	08/28/14 15:20	08/28/14 19:38	EPA 3050B	1,6010C	TT

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001 Repo

Lab Number: L1419647

Report Date: 08/29/14

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - West	tborough Lab for s	ample(s): 01-04	Batch	: WG71	7491-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	08/28/14 07:55	08/28/14 10:21	1,7471B	MC

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Q	tualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westbord	ough Lab fo	r sample(s): 01-04	Batch:	WG71	7723-1				
Arsenic, Total	ND		mg/kg	0.40	0.08	1	08/28/14 15:20	08/28/14 18:34	1,6010C	TT
Barium, Total	ND		mg/kg	0.40	0.12	1	08/28/14 15:20	08/28/14 18:34	1,6010C	TT
Cadmium, Total	ND		mg/kg	0.40	0.03	1	08/28/14 15:20	08/28/14 18:34	1,6010C	TT
Chromium, Total	ND		mg/kg	0.40	0.08	1	08/28/14 15:20	08/28/14 18:34	1,6010C	TT
Lead, Total	ND		mg/kg	2.0	0.08	1	08/28/14 15:20	08/28/14 18:34	1,6010C	TT
Selenium, Total	ND		mg/kg	0.80	0.12	1	08/28/14 15:20	08/28/14 18:34	1,6010C	TT
Silver, Total	ND		mg/kg	0.40	0.08	1	08/28/14 15:20	08/28/14 18:34	1,6010C	TT

Prep Information

Digestion Method: EPA 3050B

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

Lab Number:

L1419647

08/29/14

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated sam	nple(s): 01-04	Batch: WO	G717491-2 SI	RM Lot Numbe	er: D083-540			
Mercury, Total	121		-		75-126	-		
Total Metals - Westborough Lab Associated sam	nple(s): 01-04	Batch: WO	9717723-2 S	RM Lot Number	er: D083-540			
Arsenic, Total	106		-		78-122	-		
Barium, Total	108		-		82-117	-		
Cadmium, Total	98		-		82-118	-		
Chromium, Total	98		-		79-121	-		
Lead, Total	93		-		81-119	-		
Selenium, Total	102		-		78-123	-		
Silver, Total	102		-		74-125	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

Lab Number: L1419647

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qual	Recovery Limits	RPD Qual	RPD Limits
Total Metals - Westborough Lab	Associated	sample(s):	01-04 QC	Batch ID: WG	717491-4	4 QC S	Sample: L1419491-01	Client ID:	MS Sample	
Mercury, Total	0.06J	0.191	0.32	167	Q	-	-	80-120	-	20
Total Metals - Westborough Lab	Associated	sample(s):	01-04 QC	Batch ID: WG	717723-4	4 QC S	Sample: L1419502-01	Client ID:	MS Sample	
Arsenic, Total	2.2	10.9	12	90		-	-	75-125	-	20
Barium, Total	25.	182	190	90		-	-	75-125	-	20
Cadmium, Total	ND	4.65	3.8	82		-	-	75-125	-	20
Chromium, Total	18.	18.2	54	197	Q	-	-	75-125	-	20
Lead, Total	7.0	46.5	44	80		-	-	75-125	-	20
Selenium, Total	0.79J	10.9	9.5	87		-	-	75-125	-	20
Silver, Total	ND	27.4	25	91		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

Lab Number: L1419647

Native Sample	Duplicate Sample	Units	RPD	Qual RPD	Limits
01-04 QC Batch ID:	WG717491-3 QC Sample:	L1419491-01	Client ID	: DUP Sample	
0.06J	0.05J	mg/kg	NC		20
01-04 QC Batch ID:	WG717723-3 QC Sample:	L1419502-01	Client ID	: DUP Sample	
2.2	3.0	mg/kg	31	Q	20
25.	24	mg/kg	4		20
ND	ND	mg/kg	NC		20
18.	23	mg/kg	24	Q	20
7.0	6.2	mg/kg	12		20
0.79J	0.91J	mg/kg	NC		20
ND	ND	mg/kg	NC		20
	01-04 QC Batch ID: 0.06J 01-04 QC Batch ID: 2.2 25. ND 18. 7.0 0.79J	01-04 QC Batch ID: WG717491-3 QC Sample: 0.06J 0.05J 01-04 QC Batch ID: WG717723-3 QC Sample: 2.2 3.0 25. 24 ND ND 18. 23 7.0 6.2 0.79J 0.91J	01-04 QC Batch ID: WG717491-3 QC Sample: L1419491-01 01-04 QC Batch ID: WG717723-3 QC Sample: L1419502-01 2.2 3.0 mg/kg 25. 24 mg/kg ND ND mg/kg 18. 23 mg/kg 7.0 6.2 mg/kg 0.79J 0.91J mg/kg	01-04 QC Batch ID: WG717491-3 QC Sample: L1419491-01 Client ID 0.06J 0.05J mg/kg NC 01-04 QC Batch ID: WG717723-3 QC Sample: L1419502-01 Client ID 2.2 3.0 mg/kg 31 25. 24 mg/kg 4 ND ND mg/kg NC 18. 23 mg/kg 24 7.0 6.2 mg/kg 12 0.79J 0.91J mg/kg NC	01-04 QC Batch ID: WG717491-3 QC Sample: L1419491-01 Client ID: DUP Sample 01-04 QC Batch ID: WG717723-3 QC Sample: L1419502-01 Client ID: DUP Sample 2.2 3.0 mg/kg 31 Q 25. 24 mg/kg 4 ND ND mg/kg NC 18. 23 mg/kg 24 Q 7.0 6.2 mg/kg NC 0.79J 0.91J mg/kg NC

INORGANICS & MISCELLANEOUS

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

Lab Number:

L1419647

Report Date:

08/29/14

SAMPLE RESULTS

Lab ID:

L1419647-01

Client ID:

WEST TRENCH DRAIN

Sample Location: NIAGARA FALLS, NY

Matrix:

Soil

Date Collected:

08/26/14 15:25

Date Received:

08/27/14

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	29.8		%	0.100	NA	1	-	08/28/14 02:04	30,2540G	RT

Project Name: 401 BUFFALO AVENUE

Project Number: 0294-013-001

Lab Number:

L1419647

Report Date:

08/29/14

SAMPLE RESULTS

Lab ID: L1419647-02

Client ID: SOUTH TRENCH DRAIN Sample Location: NIAGARA FALLS, NY

Matrix: Soil

Date Collected:

08/26/14 15:15

Date Received:

08/27/14

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	32.7		%	0.100	NA	1	-	08/28/14 02:04	30,2540G	RT

Project Name: 401 BUFFALO AVENUE

BUFFALO AVENUE Lab Number: L1419647

Project Number: 0294-013-001 **Report Date:** 08/29/14

SAMPLE RESULTS

Lab ID: L1419647-03

Client ID: ISLAND TEST PIT
Sample Location: NIAGARA FALLS, NY

Matrix: Soil

Date Collected: 08/26/14 15:35

Date Received: 08/27/14

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab									
Solids, Total	88.4		%	0.100	NA	1	-	08/28/14 02:04	30,2540G	RT

L1419647

Project Name: 401 BUFFALO AVENUE

Lab Number:

Project Number: 0294-013-001 Report Date: 08/29/14

SAMPLE RESULTS

Lab ID: Date Collected: L1419647-04 08/26/14 15:00

POOL SIDEWALK Client ID: Date Received: 08/27/14 Sample Location: NIAGARA FALLS, NY Not Specified Field Prep:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	88.6		%	0.100	NA	1	-	08/28/14 02:04	30,2540G	RT

Lab Duplicate Analysis
Batch Quality Control

Lab Number: **Project Name: 401 BUFFALO AVENUE** L1419647

08/29/14 **Project Number:** 0294-013-001 Report Date:

Parameter	Native Sam	ple Duplicate S	Sample Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-04	QC Batch ID: WG7174	82-1 QC Sample	: L1419644-01	Client ID:	DUP Sample
Solids, Total	88.7	88.7	%	0		20

Project Name: **401 BUFFALO AVENUE**

Lab Number: L1419647 **Report Date:** 08/29/14 **Project Number:** 0294-013-001

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1419647-01A	Amber 120ml unpreserved	Α	N/A	4.2	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)
L1419647-01B	Amber 120ml unpreserved	A	N/A	4.2	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)
L1419647-02A	Amber 120ml unpreserved	A	N/A	4.2	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)
L1419647-02B	Amber 120ml unpreserved	A	N/A	4.2	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)
L1419647-03A	Amber 120ml unpreserved	Α	N/A	4.2	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)
L1419647-03B	Amber 120ml unpreserved	Α	N/A	4.2	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)
L1419647-04A	Amber 120ml unpreserved	Α	N/A	4.2	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)
L1419647-04B	Amber 120ml unpreserved	Α	N/A	4.2	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)

Project Name:401 BUFFALO AVENUELab Number:L1419647Project Number:0294-013-001Report Date:08/29/14

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

SRM

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

1

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.

Report Format: DU Report with 'J' Qualifiers

Project Name:401 BUFFALO AVENUELab Number:L1419647Project Number:0294-013-001Report Date:08/29/14

Data Qualifiers

- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: 401 BUFFALO AVENUE Lab Number: L1419647
Project Number: 0294-013-001 Report Date: 08/29/14

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised April 15, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene.

EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene,

Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mq,Mn,Mo,Ni,K,Se,Aq,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

//\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CHAIN OF	CUSTO)Y	GEO	F	Date F	ec'd in	Lab:	8/28	/14	New York	ALPI		No:082914	
WESTBORO, MA TEL: 508-898-9220	TEL: 508-822-9300	Project Informat		W A	ren n			mation -	- Data D MAIL	eliveral	oles		ng Informat ne as Client ir		
FAX: 508-898-9193 Client Informatio	FAX: 508-822-3288 n	Project Location:	laen	a Fal	De N	V AL	EX		id'l Delive						
Client: Towar	ey Enwy + Kestolufa	Rroject #: 0294	-013 -	-00 1				equirem	ents/Re						
Address: 255	8 Hambux Traple	Project Manager:	SOLME	shi /1	When	State //	ed Pro	gram 		Criteria	1.		_		
Lackawann	w NY 14218	ALPHA Quote #:	, , , , , , , , , , , , , , , , , , , 		<u> </u>										
Phone: 7/6 8	5le 0635	Turn-Around Tir	ne												
Email: lesako	7560-0583 wshiptorukeylk.a ve been previously analyzed by Alpha	Date Due:	RUSH (only co	ontimed if pre-appi	rovedi)	- S/S	To the second						/ / /	SAMPLE HAN	DLING T
	pecific Requirements/Comm					RA AMALYSI	HILLY STATES	γ						Filtration Done Not needed Lab to do Preservation Lab to do	# B O T
ALPHA Lab ID (Lab Use Only)	Sample ID	Coll Date	ection Time	Sample Matrix	Sampler's Initials					//	/ /			(Please specify below) le Specific Con	ıments s
	West Trench Dra	in 8/26	100001	5	ICT	2 1	2								
	South Trench Dr	2: n 8/1/	1515	5	101	2 2									
	Island Test Pi	4 8/250	1535	5 ;	77	1-2								· · ·	
1. 多 性性不能。就"是完成"、"上"。	D. 1 C (0/160	1504	5	3/1	4 4	,								
	Prol Sidewalk	8 1,20	<i>[3</i>		-01										
															_
									1			-		· 	
1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1						1									
					-			_							
	4														
					iner Type eservative	4	₹						pletely.	Samples can urnaround time	clock will not
FORM NO: 01-01 (rev. 14-0 Page 38 of 38	DCT-07)	Relinquished By:		8/26 8/26 8/27/1 8/28/14	7 70:45	15 /		eceived B	All.	M 8/30 8/28	Date Of The Park	e/Time (4 () 123 204 30:45	start un All sam Alpha's		ties are resolve are subject to

ATTACHMENT 3

FIVE STAR BANK LETTER SEPTEMBER 10, 2014

September 10, 2014

Faisal Merani 5195 Magdalen Street Niagara Falls, ON L2G3S6 Canada

Re: 401, 402, and 430 Buffalo Avenue, Niagara Falls, NY

Dear Mr. Merani:

As you are aware, Five Star Bank is the potential lender for Merani Hospitalty, Inc. and your project on Buffalo Avenue in Niagara Falls, NY. You and your counsel at The Slater Law Firm, PLLC have kept us apprised of the application for the Brownfield Cleanup Program.

I have reviewed the most recent Supplemental Investigation Report for 401 Buffalo Avenue from Turnkey Environmental Restoration, LLC. Unfortunately, our funding for this project cannot close until the conditions identified in the Report are addressed. We will continue to work with you during this period of time to get to a financial close.

Very truly yours,

Five Star Bank

John R. Sigeti

Senior Vice-President