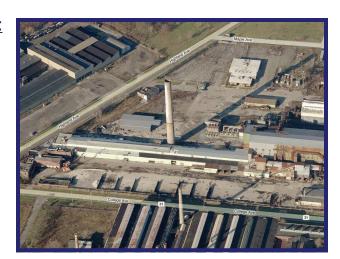
Brownfield Cleanup Program Application


Solsil, Inc. Site Highland Avenue and College Avenue Niagara Falls, New York

December 2008

0170-001-101

Prepared For:

Solsil, Inc.

Prepared By:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

BROWNFIELD CLEANUP PROGRAM (BCP)

ECL ARTICLE 27 / TITLE 14

07/07				DEPARTMENT BCP SITE #:	USE ONLY
Section I. Requestor Information	on				
NAME					
ADDRESS					
CITY/TOWN		ZIP CODE			
PHONE	FAX		E-MAIL		
NAME OF REQUESTOR'S REPRESENTATIVE	3				
ADDRESS					
CITY/TOWN		ZIP CODE			
PHONE	FAX		E-MAIL		
NAME OF REQUESTOR'S CONSULTANT					
ADDRESS					
CITY/TOWN		ZIP CODE			
PHONE	FAX		E-MAIL		
NAME OF REQUESTOR'S ATTORNEY					
ADDRESS					
CITY/TOWN		ZIP CODE			
PHONE	FAX		E-MAIL		
THE REQUESTOR MUST CERTIFY THAT HE CHECKING ONE OF THE BOXES BELOW:	SHE IS EITHER A PARTIO	CIPANT OR VOLUNTEER IN A	ACCORDAN	ICE WITH ECL § 27-1	405 (1) BY
PARTICIPANT A requestor who either 1) was the owner of the site of hazardous waste or discharge of petroleum or responsible for the contamination, unless the liabil of ownership, operation of, or involvement with disposal of hazardous waste or discharge of petrol	as a result of ownership, operation of or involvement with the site subsequent to the disposal of hazardous waste or discharge of petroleum.				
Requestor Relationship to Property (check one): Previous Owner Current Owner If requestor is not the site owner, requestor will (Note: proof of site access must be submitted for				Yes	No

Section II. Property Information	Summary Sheet						
PROPERTY NAME:							
ADDRESS/LOCATION	CITY/TOWN			ZIP C	ODE		
MUNICIPALITY(IF MORE THAN ONE, LIST AI	LL):						
COUNTY	SITE SIZE (ACRI	ES)					
LATITUDE (degrees/minutes/seconds) °	, " I	ONGITUDE (d	egrees/min	utes/seconds	s) °	•	
HORIZONTAL COLLECTION METHOD: S	SURVEY GPS MAP	ORIZONTAL R	EFERENCE	E DATUM:			
FOR EACH PARCEL, FILL OUT THE FOLLOWI	NG TAX MAP INFORMATION (if mor	e than three par	cels, attach	additional ir	nformation)		
Parcel Address	Parcel	No. Sect	ion No. I	Block No.	Lot No.	Acreage	
1. Do the property boundaries correspon	d to tax map metes and bounds?					Yes	No
If no, please attach a metes and bo	unds description of the property.						
2. Is the required property map attached	to the application? (application	will not be pi	ocessed v	without m	ap)	Yes	No
3. Is the property part of a designated Er	n-zone pursuant to Tax Law § 210	(b)(6)?				Yes	No
For more information go to: http://www	v.nylovesbiz.com/BrownField_R	edevelopmen	ıt/default.	asp.			
If yes, identify area (name)							
50% 100% of the site is in	the En-zone (check one)						
PROPERTY DESCRIPTION NARRATIVE:							
List of Existing Easements (type here or	eattach information)						
Easement Holder (type here or	Descrip	otion					
	 -						
List of Permits issued by the NYSDEC or	: USEPA Relating to the Propose	d Site (type	here or a	ttach info	rmation)		
Type <u>Issuing Ag</u>	gency <u>Descri</u>	ption					
nitials of each Requestor:				_			

Section III. Current Site Owner	/Operator Information					
OWNER'S NAME (if different from requestor)						
ADDRESS						
CITY/TOWN	ZIP CODE					
PHONE	HONE FAX E-MAIL					
OPERATOR'S NAME (if different from requestor	r or owner)					
ADDRESS						
CITY/TOWN	ZIP CODE					
PHONE	FAX	E-MAIL				
Section IV. Requestor Eligibility	y Information (Please refer to ECL §	27-1407)				
If answering "yes" to any of the following	ng questions, please provide an explanation as a	n attachment.				
1. Are any enforcement actions pending	against the requestor regarding this site?		Yes	No		
2. Is the requestor subject to an existing	order relating to contamination at the site?		Yes	No		
3. Is the requestor subject to an outstand	ling claim by the Spill Fund for this site?		Yes	No		
4. Has the requestor been determined to	have violated any provision of ECL Article 277	?	Yes	No		
5. Has the requestor previously been de	•		Yes	No		
6. Has the requestor been found in a civil proceeding to have committed a negligent or intentionally tortious act involving contaminants?				No		
7. Has the requestor been convicted of a criminal offense that involves a violent felony, fraud, bribery, perjury, theft, or offense against public administration?				No		
8. Has the requestor knowingly falsified or concealed material facts or knowingly submitted or made use of a false statement in a matter before the Department?			Yes	No		
9. Is the requestor an individual or entity	y of the type set forth in ECL 27-1407.8(f) that ce to act could be the basis for denial of a BCP ap		Yes	No		
	Information (Please refer to ECL § 27					
Is the property listed on the National			Yes	No		
2. Is the property listed on the NYS Registry of Inactive Hazardous Waste Disposal Sites?				No		
= = = = =	Class #					
3. Is the property subject to a permit under ECL Article 27, Title 9, other than an Interim Status facility? If yes, please provide: Permit type: EPA ID Number:				No		
Date permit issued: Permit expiration date: 4. Is the property subject to a cleanup order under navigation law Article 12 or ECL Article 17 Title 10?				No		
If yes, please provide: Order # 5. Is the property subject to a state or federal enforcement action related to hazardous waste or petroleum?				No		
If yes, please provide explanation as a	an attachment.					
Section VI. Project Description						
What stage is the project starting at?	investigation remediation	n				
Please attach a description of the project	which includes the following components:					
Purpose and scope of the projectEstimated project schedule						

Section VII. Property's Environmental History

To the extent that existing information/studies/reports are available to the requestor, please attach the following:

1. Environmental Reports

A phase I environmental site assessment report prepared in accordance with ASTM E 1527 (American Society for Testing and Materials: Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process), and all environmental reports related to contaminants on or emanating from the site.

If a final investigation	report is included	d, indicate whether it me	eets the requirements of	ECL Article 27-1415	(2): Yes No	
2. Sampling Data: Indic	cate known conta	aminants and the medi	ia which are known to	have been affected:		
Contaminant Category	Soil	Groundwater	Surface Water	Sediment	Soil Gas	
Petroleum						
Chlorinated Solvents						
Other VOCs						
SVOCs						
Metals						
Pesticides						
PCBs						
Other*						
*Please describe:					•	
3. Suspected Contamina	ants: Indicate su	spected contaminants	and the media which n	nay have been affecte	ed:	
Contaminant Category	Soil	Groundwater	Surface Water	Sediment	Soil Gas	
Petroleum						
Chlorinated Solvents						
Other VOCs						
SVOCs						
Metals						
Pesticides						
PCBs						
Other*						
*Please describe:						
4. INDICATE KNOWN OR S	USPECTED SOUR	CES OF CONTAMINANTS	S:			
Above Ground Pipeline or Tank Lagoons or Ponds Routine Industrial Operations Dumping or Burial of Waste Adjacent Property Seepage Pit or Dry Well Coal Gas Manufacture Industrial Accident Other:		amping or Burial of Wastes eepage Pit or Dry Well	Underground Pipeline of Septic tank/lateral field Foundry Sand Unknown	Foundry Sand Electroplating		
5. INDICATE PAST LAND U	ISES:					
Coal Gas Manufacturing Pipeline Other:	Manufacturin Service Statio		op Dry Cleaner Tannery	Salvage Yard Electroplating	Bulk Plant Unknown	
6. Owners						

A list of previous owners with names, last known addresses and telephone numbers (describe requestor's relationship, if any, to each previous owner listed. If no relationship, put "none").

7. Operators

A list of previous operators with names, last known addresses and telephone number (describe requestor's relationship, if any, to each previous operator listed. If no relationship, put "none").

Section VIII. Contact List Information

Please attach, at a minimum, the names and addresses of the following:

- 1. The chief executive officer and planning board/dept. chair of each county, city, town and village in which the property is located.
- 2. Residents, owners, and occupants of the property and properties adjacent to the property.
- 3. Local news media from which the community typically obtains information.
- 4. The public water supplier which services the area in which the property is located.
- 5. Any person who has requested to be placed on the contact list.
- 6. The administrator of any school or day care facility located on or near the property.
- 7. The location of a document repository for the project (e.g., local library). In addition, attach a copy of a letter sent to the repository acknowledging that it agrees to act as the document repository for the property.

Section IX. La	and Use Factor	rs (Please refe	r to ECL § 27	-1415(3))				
Current Use:	Residential	Commercial	Industrial	Vacant	Recreational	(check all	that apply)	
Intended Use:	Unrestricted	Residential	Commercial	Industrial	(check all that	apply)		
	appropriate box an omprehensive zonion					de a copy of	the local z	oning No
1. Do current hist re: discussion of a	orical and/or recentarea land uses)	it development pa	tterns support the	proposed use	e? (See #12 bel	ow		
2. Is the proposed	l use consistent wit	th applicable zoni	ng laws/maps?					
	l use consistent with use consistent with use signated Browns, designated Browns					erfront		
4. Are there any I	Environmental Just	ice Concerns? (Se	ee §27-1415(3)(p))).				
5. Are there any federal or state land use designations relating to this site?								
6. Do the populat	ion growth pattern	s and projections	support the propo	sed use?				
7. Is the property	accessible to exist	ing infrastructure	?					
8. Are there important cultural resources, including federal or state historic or heritage sites or Native American religious sites within ½ mile?								
	ortant federal, state cal habitats of enda				wildlife refuge	s,		
10. Are there floo	odplains within ½ r	mile?						
11. Are there any	institutional contr	ols currently appl	icable to the prop	erty?				
	ttachment the prox recreational areas.	imity to real prop	perty currently use	ed for residen	tial use, and to u	ırban, comm	ercial, indu	ıstrial,
	ttachment the pote ity to wellhead pro				ion that might r	nigrate from	the proper	ty,
14. Describe on a	ttachment the geog	graphy and geolog	gy of the site.					

Signamana or Castiffed on and Signatures
(By requestor who is an individual)
I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to section 210.45 of the Penal Law.
Date: Signature: Print Name:
(By an requestor other than an individual)
I hereby affirm that I am VP Finance (title) of Sols. I lee (entity); that I am authorized by that entity to make this application; that this application was prepared by me or under my supervision and direction; and that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to Section 210.45 of the Penal Law.
Date: 12/17/2008 Signature: Michael Row Print Name: MICHAEL ROND
SUBMITTAL INFORMATION: Three (3) complete copies are required.
• Two (2) copies, one paper copy with original signatures and one electronic copy in Portable Document Format (PDF) on a Cl or diskette, must be sent to:
Chief, Site Control Section New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7020
• One (1) paper copy must be sent to the DEC regional contact in the regional office covering the county in which the site is located. Please check our website for the address of our regional offices: http://www.dec.ny.gov/about/776.html
FOR DEPARTMENT USE ONLY BCP SITE T&A CODE: LEAD OFFICE:

LIST OF APPLICATION ATTACHMENTS

NYSDEC Brownfield Cleanup Program Application Solsil, Inc. Site Niagara Falls, New York

Attachment No.	Description
1	Site Description, BCP Eligibility Statement, Location Map and Site Plan
2	Tax Map
3	Project Description and Schedule
4	Proposed Redevelopment Plan
5	Phase I Environmental Site Assessment
6	Previous Environmental Investigation
7	Listing of Current and Previous Site Owners
8	Listing of Current and Previous Site Operators
9	Contact List Information
10	Document Repository Confirmation Letter
11	Environmental Factors and Historic Land Use Considerations
12	Nearby Land Use
13	Groundwater Vulnerability Assessment
14	Description of Site Geography/Geology

ATTACHMENT 01

SITE DESCRIPTION & BCP ELIGIBILITY STATEMENT SITE PHOTOGRAPHS SITE LOCATION MAP SITE PLAN

Site Description and BCP Eligibility Statement

Solsil, Inc. Site Brownfield Cleanup Program Application

A) SITE DESCRIPTION

The subject property (hereinafter, the "Project Site" or the "Site") subject to the BCP application is an approximate 5-acre portion of a 15.9-acre parcel, addressed as 3807 Highland Avenue (aka 3801 Highland Avenue), Niagara Falls New York (see Figures 1-1 and 1-2). The parcel included in this application is described as:

Solsil, Inc. Site, Highland and College Avenue, Niagara Falls, NY (portion of 15.9-acre parcel – SBL No. 130.14-2-41)

The remaining approximate 11-acre portion of the greater 15.9-acre parcel, together with 15 additional tax parcels make up a greater approximate 20.4-acre property that is subject to a separate BCP application submitted by Globe Metallurgical, Inc. (see Figure 1-3).

The Site is located in a heavily industrialized area of Niagara Falls and is surrounded by current or former heavy industrial sites. The Site is bounded by Highland Avenue to the west, College Avenue to the south, Maple Avenue to the north, and Hyde Park Boulevard to the east (northeastern portion). Properties adjacent to the Site include several heavy industrial properties, including Schleifmittel-Treibacher (former General Abrasives) to the east, PreMax (former Chisholm-Ryder) to the west and the former Hazorb/Niagara Vest/Union Carbide BCP site to the south.

The Site is currently vacant and has not been in operation since 2003. The Site was used for metal alloy manufacturing since at least 1913; most recently the Site was used to manufacture silicon metal and ferrosilicon metal. Site photographs taken during the 2008 Phase I Environmental Site Assessment (see Attachment 5) are attached hereto.

The Site's historical (i.e., approximately 100 years) heavy industrial manufacturing use has left a legacy of environmental concerns, including abandoned drums with unknown contents, petroleum spills on the property, former rail sidings, former exterior metal ore, coal and slag storage areas, former machine shops and maintenance areas, a former transformer room, a former electrical substation, generation of regulated wastes, and a former smoke stack on-Site. Approximately 10, 55-gallon drums with unknown contents are currently present in the Railcar Maintenance Building. Approximately 50, 55-gallon drums were recently moved from the Solsil, Inc. Site to the Globe Metallurgical Site in the vicinity of the Oil House and adjacent storage building. Petroleum staining was noted in the Railcar Maintenance Building; this area is associated with current and historic drum storage and maintenance activities. Figure 1-3 illustrates the areas of concern for the Solsil Site.

Site Description and BCP Eligibility Statement

Solsil, Inc. Site Brownfield Cleanup Program Application

As described in Attachment 06 as attached hereto, soil and sediment samples taken at the Project Site during a limited preliminary Site Investigation in the summer of 2008 indicate that certain polycyclic aromatic hydrocarbons PAHs and metals are present on-site at concentrations above the NYSDEC 375 restricted-industrial soil cleanup objectives (SCOs) and/or at concentrations that may deem soil/sediments characteristically hazardous upon removal and disposal. Furthermore, PCBs were also present in certain soil samples collected. Based on the results of the preliminary investigation, a comprehensive subsurface soil, surface soil, sediment and groundwater investigation is warranted to further characterize the full extent of environmental impacts.

Environmental investigations completed on the adjacent Hazorb/Niagara Vest/Union Carbide Brownfield Cleanup Program (BCP) site identified the presence of PCBs, PAHs, and metals above the NYSDEC Part 375 restricted-industrial SCOs in soil/fill and debris, as well as the presence of asbestos containing material (ACM) and PCBs (galbestos) along College Avenue. Based on the similar nature of historic heavy industrial use on the adjacent property, similar contaminants of concern could be present at the Project Site.

B) ELIGIBILITY FOR ACCEPTANCE INTO THE BROWNFIELD CLEANUP PROGRAM

The Site meets the definition of a "brownfield site" as set forth in New York State Environmental Conservation Law Section 27-1407.8.a, in that (A) there is confirmed contamination on the Site, and (B) there is a reasonable basis to believe that the contamination or potential presence of contamination may be complicating the development or re-use of the Site. Further, the regulations in 6 NYCRR 375-3.3(a)(1) clarify that the brownfield definition has two separate and distinct elements; namely the "Contamination Element" and the "Complication Element":

- (1) A brownfield site has two elements:
- (i) there must be confirmed contamination on the property or a reasonable basis to believe that contamination is likely to be present on the property; and
- (ii) there must be a reasonable basis to believe that the contamination or potential presence of contamination may be complicating the development, use or re-use of the property.

As noted in the text of this regulation, the concept of a "reasonable basis" test has been added to each element.

Site Description and BCP Eligibility Statement

Solsil, Inc. Site Brownfield Cleanup Program Application

Finally, the New York State Department of Environmental Conservation published BCP Eligibility Guidance in March 2005. This guidance establishes several factors that the Department considers in evaluating whether the Contamination Element and the Complication Element exist.

A) Contamination Element

Specifically, with respect to the establishing the Contamination Element or a reasonable basis to believe the Contamination Element has been met, the DEC will consider the:

- (A) the nature and extent of known or suspected contamination;
- (B) whether contaminants are present at levels that exceed standards, criteria or guidance;
- (C) whether contamination on the proposed site is historic fill material or exceeds background levels;
- (D) whether there are or were industrial or commercial operations at the proposed site which may have resulted in environmental contamination; and/or,
- (E) whether the proposed site has previously been subject to closure, a removal action, an interim or final remedial action, corrective action or any other cleanup activities performed by or under the oversight of the State or Federal government.

As describe within this BCP application, we respectfully submit that the Contamination Element of the BCP Eligibility Test has been met. Contamination does exist on the Site, and there is a reasonable basis to believe that additional contamination above and beyond what is known to exist on the Site to date may be present on this Site. As described in Attachment 6 as attached hereto, soil and sediment samples taken at the Project Site during a limited preliminary Site Investigation in the summer of 2008 indicate that certain polycyclic aromatic hydrocarbons PAHs and metals are present on-site at concentrations above the NYSDEC 375 restricted-industrial SCOs and/or at concentrations that may deem soil/sediments characteristically hazardous upon removal and disposal. The contamination on the site is not historic fill and does exceed background levels especially as evidenced by the Site's 100 year history of heavy industrial manufacturing use. The legacy of such heavy use, as visually described above and throughout this application, certainly indicates that such use resulted in its environmental contamination.

Site Description and BCP Eligibility Statement

Solsil, Inc. Site Brownfield Cleanup Program Application

B) Complication Element

Specifically, with respect to the establishing the Complication Element or a reasonable basis to believe the Complication Element has been met, the DEC will consider:

- (A) whether the proposed site is idled, abandoned or underutilized;
- (B) whether the proposed site is unattractive for redevelopment or reuse due to the presence or reasonable perception of contamination;
- (C) whether properties in the immediate vicinity of the proposed site show indicators of economic distress such as high commercial vacancy rates or depressed property values; and/or
- (D) whether the estimated cost of any necessary remedial program is likely to be significant in comparison to the anticipated value of the proposed site as redeveloped or reused.

As described within this BCP application, it is respectfully submitted that there is a reasonable basis to believe that the contamination known and suspected to be present on the Site is complicating the development, use or re-use, of the Site. First, the Site, suspected to be contaminated, has sat idled, abandoned and underutilized since 2003. The Site is unattractive for redevelopment or reuse due to the actual presence of contamination and the reasonable perception that there is additional contamination most likely present on the Site also in need of remediation. As noted in the Phase I Environmental Assessment dated September 2008, there are numerous abandoned drums and petroleum staining has been noted within certain areas of the Site. The Site is located in a current and historic heavy industrial area. Surrounding sites include active and abandoned industrial properties, including the former Hazorb/Niagara Vest/Union Carbide Brownfield Cleanup Program site to the south, and regulatory searches have revealed documented releases or potential releases of hazardous materials and/or petroleum products on nearby properties. Many known contaminated sites are in close proximity to the Site.

In addition, the Site and the properties in the immediate vicinity of the Site are in an area exhibiting indicators of extreme economic distress. For example, as of August, 2008, according to statistics provided by the New York State Department of Labor, Niagara County had the third highest county unemployment rate in the State of New York – 6.7%. In general, the Western New York Economic Development Region had the second highest overall unemployment rate in the State, 5.9%, second only to the North Country region. With the decline of industrial activity in Niagara Falls over the last four decades, the City has been left with a large collection of abandoned contaminated sites that cannot be remediated

Site Description and BCP Eligibility Statement

Solsil, Inc. Site Brownfield Cleanup Program Application

easily or quickly. The majority of these contaminated sites, such as the Project Site, will most likely continue to adversely affect the public health, welfare, and the environment, continue to further depress real estate values, and otherwise negatively affect the area. The general economic duress of the Project Site and the neighboring area, combined with known contamination issues affecting the Project Site, provide a dual complicating affect chilling any redevelopment opportunities of the Site.

The Site is located in a BCP Environmental Zone, a New York State Empire Zone, a New York State Brownfield Opportunity Area nomination site, a Federal Renewal Community Zone, and a "highly distressed area" as defined under New York General Municipal Law as it has a poverty rate (50%) of at least 20% and an unemployment rate (15%) at least 1.25% times the statewide unemployment rate (currently 5.6%). Because the site is located in these various designated distressed areas, it is eligible for certain local, state, and federal financial incentives, further indicating that the Site is unattractive for redevelopment particularly outside of the context of the BCP.

The estimated cost of a proposed remedial program with regard to the Site is likely to be significant in comparison to the anticipate value of the Site as redeveloped or reused. This has likely been one of the reasons behind the Site's vacancy. As described herein, and based on the result of the September 2008 Preliminary Investigation, a comprehensive subsurface soil, surface soil, sediment and groundwater investigation is warranted to characterize the full extent of environmental impacts. The Applicant proposes to remediate contaminated conditions, in addition to making approximately \$45,000,000 in capital investment. However, the extent of contamination is unknown and remediation costs are unknown and may significantly add to, or outpace, the capital expenditures the Requestor plans to undertake at the Site, depending upon the extent of the remediation required to be undertaken at the Site.

In conclusion, based on the foregoing and as discussed and depicted within the BCP application, the Site meets the Contamination Element and the Complicaton Element tests. As such, the Site qualifies as a Brownfield Site eligible for participation in the BCP because (A) there is confirmed contamination on the Site, and (B) there is a reasonable basis to believe that the contamination or potential presence of contamination may be complicating the development or re-use of the Site.

Site Photographs

Solsil, Inc. Site Brownfield Cleanup Program Application

Photo 1:

Photo 3:

Photo 2:

Photo 4:

Photo 1: Solsil Site looking south at Smoke Stack #1

Photo 2: Piles of unknown materials

Photo 3: Former factory building conditions and drums

Photo 4: Former factory building

Site Photographs

Solsil, Inc. Site Brownfield Cleanup Program Application

Photo 5:

Photo 6:

Photo 7:

Photo 8:

Photo 5: Drums/containers and staining in Railcar Maintenance Building

Photo 6: Additional drums/containers and staining in Railcar Maintenance Building

Photo 7: Former factory building

Photo 8: Former laboratory and unknown chemicals

Site Photographs

Solsil, Inc. Site **Brownfield Cleanup Program Application**

Photo 9:

Photo 10:

Photo 11:

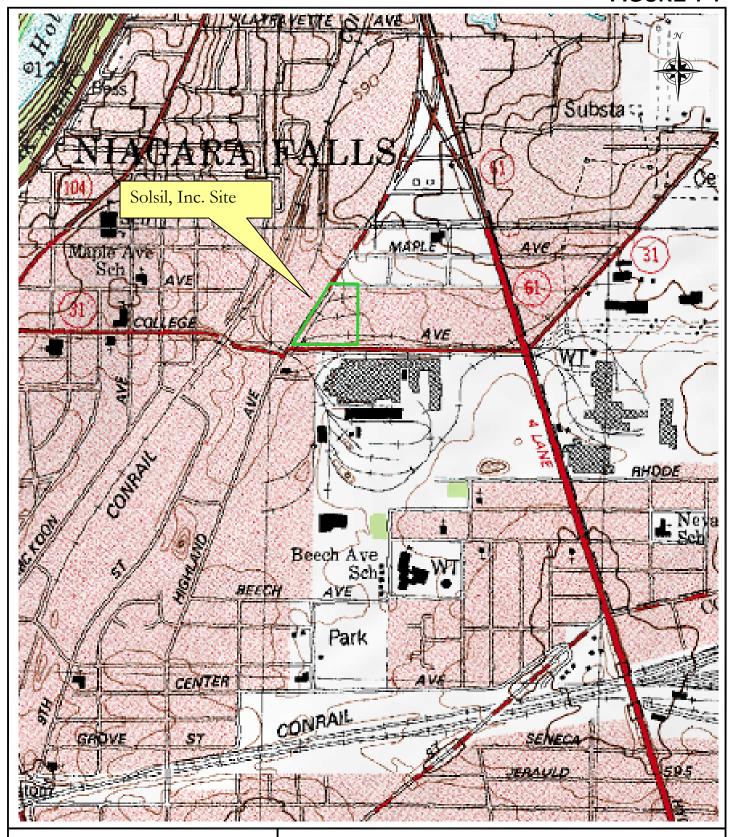

Photo 9: Subject Property and adjacent industrial properties to the west, south, and east

Photo 10: Adjacent former Union Carbide facility to the south

Photo 11: Adjacent former Union Carbide facility to the south

FIGURE 1-1

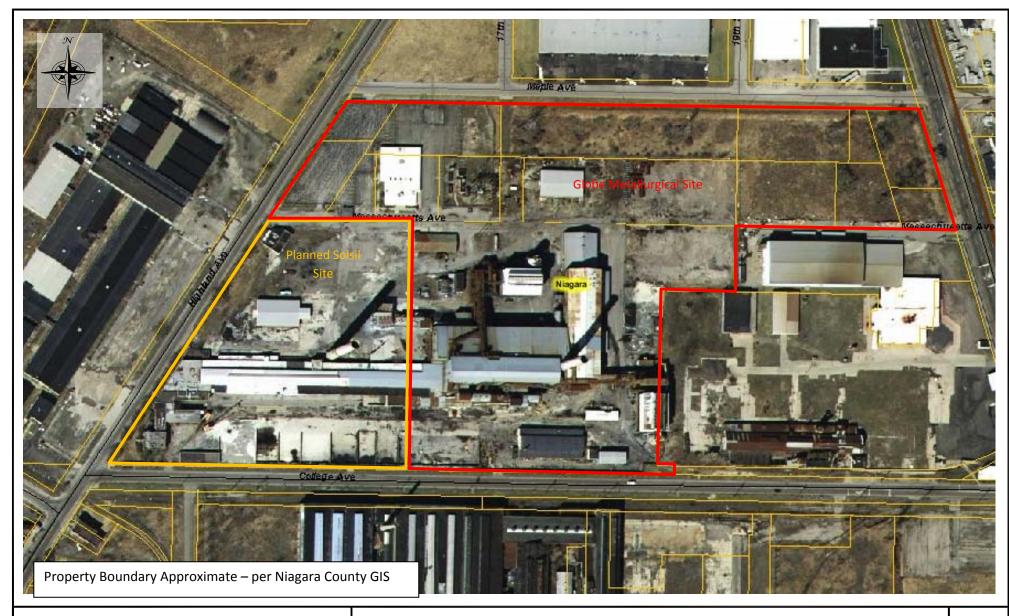
726 EXCHANGE STREET SUITE 624 BUFFALO, NEW YORK 14210 (716) 856-0599

PROJECT NO.: 0170-001-101

DATE: SEPTEMBER 2008

DRAFTED BY: NTM

SITE LOCATION AND VICINITY MAP


BROWNFIELD CLEANUP PROGRAM APPLICATION

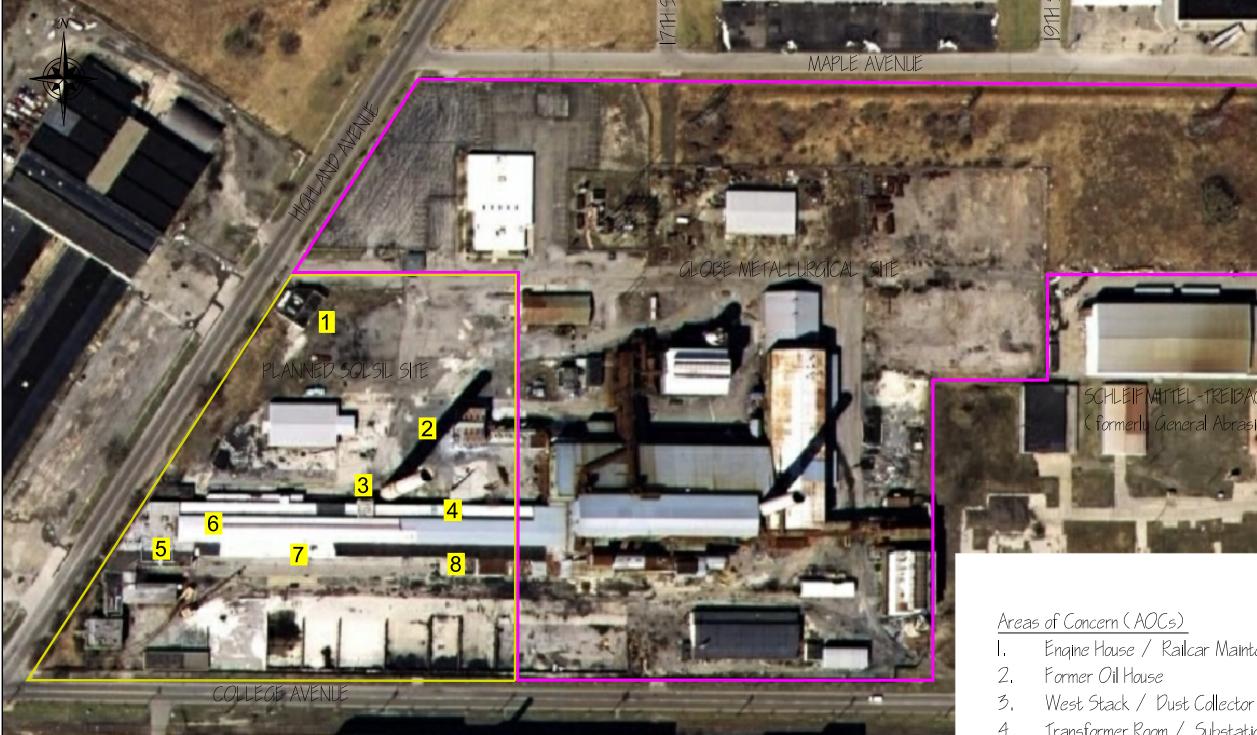
SOLSIL, INC. SITE

NIAGARA FALLS, NEW YORK PREPARED FOR

SOLSIL, INC.

726 EXCHANGE STREET SUITE 624 BUFFALO, NEW YORK 14210 (716) 856-0599

PROJECT NO.: 0170-001-101


DATE: SEPTEMBER 2008

DRAFTED BY: NTM

SITE PLAN

BROWNFIELD CLEANUP PROGRAM APPLICATION SOLSIL, INC. SITE

NIAGARA FALLS, NEW YORK
PREPARED FOR
SOLSIL, INC.

LEGEND:

PROPERTY BOUNDARY (SOLSIL)

PROPERTY BOUNDARY (GLOBE)

AREA OF CONCERN

Note: Drawing not to scale.

- Engine House / Railcar Maintenance
- Transformer Room / Substation
- Laboratory
- Machine Shop / Electric Shop / Drums
- Machine Shop
- Furnace Building

AREAS OF CONCERN
BROWNFIELD CLEANUP PROGRAM APPLICATION

SOLSIL, INC. SITE

JOB NO.: 0170-001-101

FIGURE 1-3

ATTACHMENT 02

TAX MAP

726 EXCHANGE STREET (716) 856-0599

PROJECT NO.: 0170-001-101

DATE: SEPTEMBER 2008

DRAFTED BY: NTM

BUFFALO, NEW YORK 14210

TAX MAP

BROWNFIELD CLEANUP PROGRAM APPLICATION SOLSIL, INC SITE

> NIAGARA FALLS, NEW YORK PREPARED FOR SOLSIL, INC.

ATTACHMENT 03

PROJECT DESCRIPTION & SCHEDULE

Project Description & Schedule

Solsil, Inc. Site Brownfield Cleanup Program Application

PROJECT DESCRIPTION

The Project Site is located in the City of Niagara Falls, Niagara County, New York. It is comprised of the southwest corner of the 3807 Highland Avenue (aka 3801 Highland Avenue) property, and is approximately 5-acres in size. The Site includes a former railcar maintenance building, former oil house, two former laboratories, 2 former machine shops, a former electric shop, former transformer room, a former electrical substation factory/furnace building, a smoke stack, several storage buildings and numerous former rail spurs. The Site is part of the greater adjacent property that was used for heavy industrial manufacturing of steel and metal alloys since at least 1913; most recently, the Site and the greater adjoining property was used to manufacture silicon metal and ferrosilicon metal. The Site is currently vacant and has not been in operation since 2003.

The Project Site is located within the City of Niagara Fall Highland Area Redevelopment Plan (the "Plan") area. The Plan seeks to create an environment attractive to new private investment and proposes a series of improvements to the area's street, rail and pedestrian networks. The Project Site is currently vacant and underutilized, depressing real estate values, and contamination concerns have precluded reuse. These conditions contribute to neighborhood disinvestment and decline.

The Project Site is also located within a Federal Renewal Community Zone, a New York State Empire Zone, a New York State Environmental Zone, and a "highly distressed area" as defined under New York General Municipal Law as it has a poverty rate (50%) of at least 20% and an unemployment rate (15%) at least 1.25% times the statewide unemployment rate (which is approximately 7%). As such, the Project Site is located in both a Federal and New York State defined and delineated distressed urban community.

Solsil, Inc., (the "Applicant") plans to demolish existing structures, remediate environmental contamination and construct new facilities to manufacture very-high-purity silicon for use in photovoltaic solar cells, by purifying metallurgical-grade silicon to solar-grade purity levels using metallurgical methods. The Applicant's main office is located in Beverly, Ohio.

The Applicant anticipates an investment of approximately \$45 million to investigate and remediate environmental impacts, demolish the vacant industrial factory and associated buildings and construct a new state of the art facility at the Project Site. It is anticipated that 400 new full-time jobs, including 100 high-skilled jobs, will be created within the first year of operation.

Project Description & Schedule

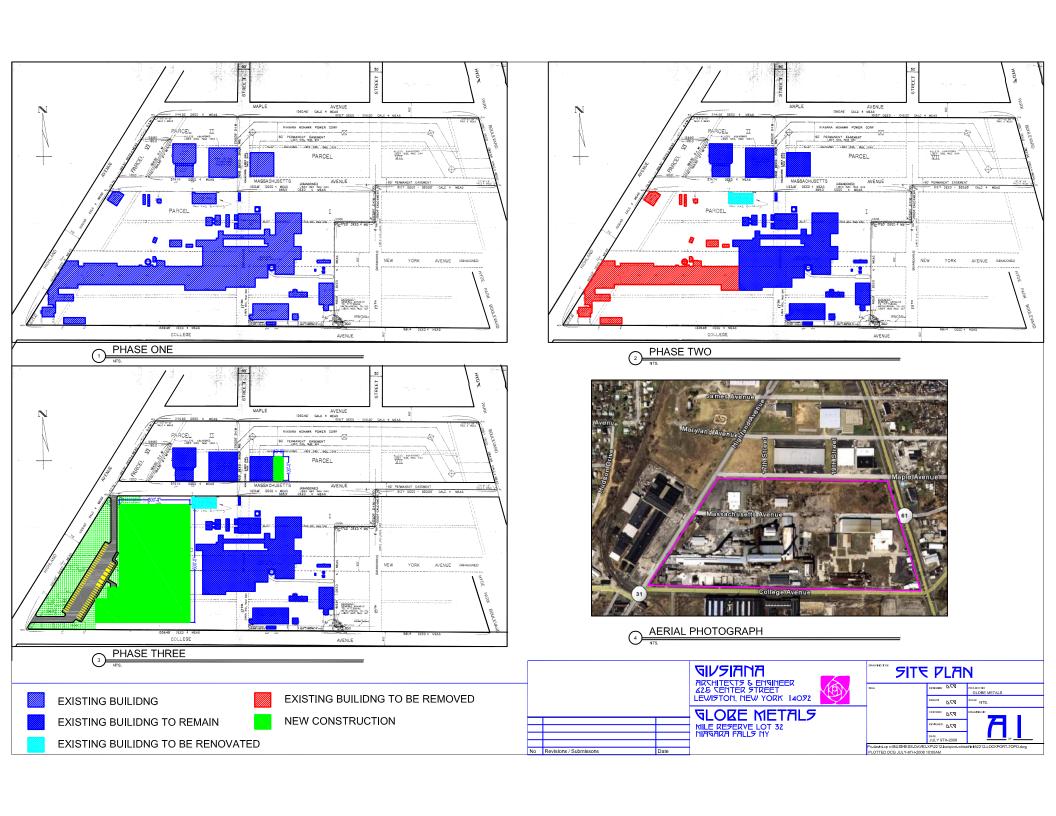
Solsil, Inc. Site Brownfield Cleanup Program Application

It is important to note that this project has only been made financially possible because of the tax benefits that potentially may be available to the Applicant under the New York State Brownfield Cleanup Program, the New York State Empire Zone Program, and other benefits to be made available to the applicant by the Niagara County Industrial Development Agency, and by the environmental liability protection afforded to the Applicant under the New York State Brownfield Cleanup Program.

Subsequent to submittal of this BCP application, the Applicant will submit a Remedial Investigation Work Plan (RIWP) to investigate constituents of concern and to characterize the impacts to environmental media (i.e., soil and groundwater). The RIWP will include advancement of soil borings and collection of soil samples; installation and sampling of groundwater monitoring wells; and sampling and cataloging of storage tanks, drums, and containers. Upon completion of the RI, an Alternatives Analysis Report (AAR) will be prepared to evaluate potential remedial technologies.

PROJECT SCHEDULE

The environmental engineering and consulting tasks associated with the Brownfield Cleanup Program (BCP) through completion of remedial work are estimated as follows:


December 2008 – Submit BCP application
January 2009 – Obtain notification of BCP program acceptance
February 2009 – Submit RIWP
April 2009 – Complete RI fieldwork
June 2009– Submit RI report and AAR
September 2009- Prepare Remedial Action Work Plan
Fall/Winter 2009- Remedial Work

ATTACHMENT 04

CONCEPTUAL REDEVELOPMENT PLAN MAP

ATTACHMENT 05

PHASE I ENVIRONMENTAL SITE ASSESSMENT REPORT (INCLUDED ELECTRONICALLY)

Benchmark Environmental Engineering & Science, PLLC. 2008. *Phase I Environmental Site Assessment Report, 3807 Highland Avenue, Niagara Falls, New York.* September.

Phase I Environmental Site Assessment

Solsil, Inc. Site Brownfield Cleanup Program Application

A summary of the Phase I ESA that was completed for the Site is presented below. The Phase I ESA report is provided on the attached CD.

<u>SEPTEMBER 2008 – PHASE I ENVIRONMENTAL SITE ASSESSMENT</u>

Benchmark conducted a Phase I Environmental Site Assessment (ESA) of the subject property. Benchmark identified several recognized environmental conditions and areas of concern, which are described below:

- The Site is a former heavy industrial Site that was used for industrial purposes for approximately 100 years. There are numerous areas of concern on-site, including: a railcar maintenance building, maintenance buildings/areas, machine shops, a former electric shop, current and former oil houses, a former laboratory, former transformer rooms, a factory/furnace building, drum storage areas, transformers and electrical sub-stations.
- The Site is located in a current and historic heavy industrial area. Properties adjacent to the Site include several heavy industrial properties, including Schleifmittel-Treibacher (former General Abrasives) to the east, PreMax (former Chisholm-Ryder) to the west and the former Hazorb/Niagara Vest/Union Carbide Brownfield Cleanup Program (BCP) site to the south.
- Regulatory search information for the Site indicates historic petroleum storage, petroleum spills and generation of regulated wastes. Several adjacent and nearby properties have documented releases or potential releases of hazardous material and/or petroleum products.

ATTACHMENT 06

PREVIOUS ENVIRONMENTAL INVESTIGATION

Previous Environmental Investigation

Solsil, Inc. Site Brownfield Cleanup Program Application

SEPTEMBER 2008 PRELIMINARY INVESTIGATION

Soil and sediment samples taken at the Project Site during a limited preliminary Site Investigation indicate that certain polycyclic aromatic hydrocarbons (PAHs) and metals are present on-site at concentrations above the NYSDEC 375 restricted-industrial soil cleanup objectives (SCOs) and/or at concentrations that may deem soil/sediments characteristically hazardous upon removal and disposal.

Based on the results of the preliminary investigation, a comprehensive subsurface soil, surface soil, sediment and groundwater investigation is warranted to characterize the full extent of environmental impacts.

September 23, 2008

Mr. Matthew Greene Globe Metallurgical, Inc. 1595 Sparling Road PO Box 157 Beverly, OH 45715

Re: Preliminary Site Investigation Globe Metallurgical and Solsil, Inc. Site 3807 Highland Avenue, Niagara Falls NY

Dear Mr. Greene:

At your request, Benchmark Environmental Engineering and Science, PLLC (Benchmark) has completed a Preliminary Site Investigation for the property addressed at 3807 Highland Avenue, Niagara Falls, New York (see Figure 1). It should be noted this investigation was completed to evaluate the Globe Metallurgical, Inc. redevelopment site (Globe Site) as well as the Solsil, Inc. redevelopment site (Solsil Site).

A description of our approach to the work and the investigation findings are presented below. Areas investigated and discussed within this report are identified on Figure 1.

BACKGROUND

Benchmark performed a Phase I Environmental Site Assessment (ESA) for the subject property that encompasses the Globe Site and Solsil Site in August 2008. The ESA identified several recognized environmental conditions (RECs) related to historic industrial manufacturing, including multiple current and historical underground storage tanks (USTs) and aboveground storage tanks (ASTs), numerous drums, maintenance/repair buildings, former oil houses, former transformer rooms, current/former electrical substations, a former waste battery storage area, and a former smoke stack. Based on the findings of the Phase I ESA, Benchmark recommended a Preliminary Site Investigation to evaluate whether historical operations impacted the site and potentially interfere with future redevelopment efforts.

PRELIMINARY SITE INVESTIGATION

The Investigation generally included the following activities:

Completion of a soil investigation in select areas of the Site. The soil investigation
included soil borings to evaluate potential impacts associated with past heavy
industrial operations, and to provide general characterization of the property.

Mr. Matthew Greene Globe Metallurgical, Inc.

> Collection and analyses of soil samples to determine if impacts, if identified, were present above current New York State Department of Environmental Conservation (NYSDEC) soil cleanup objectives (SCOs).

Installation of temporary monitoring wells and collection of groundwater samples to evaluate groundwater quality was a planned task; however, construction of temporary monitoring wells to the required depth(s) to collect representative groundwater samples was not able to be accomplished using a direct-push drill rig. As such, groundwater samples were not collected during this investigation.

Additional limitations to this investigation were encountered due to installation of utility lines at the Globe Site as well as Globe's request to avoid intrusive work within interior areas. Furthermore, at Globe's request, soil borings could only be completed in areas that were pre-cleared by Globe's utility location contractor prior to intrusive work. Specifically, areas of concern that were not accessible include the factory buildings (including machine shops and transformer rooms), the former oil house where numerous drums, ASTs and surface staining were identified, the area of a suspect vent pipe proximate the oil house, the former 10,000-gallon diesel AST, and subsurface areas beneath existing buildings.

METHODS

The soil investigation involved completion of a soil boring investigation program under the direction of Benchmark's environmental scientist, Mr. Nathan Munley. On August 27, 2008, Benchmark's designated subcontractor, TREC Environmental, mobilized a track-mounted Geoprobe® rig, and completed 11 soil borings, identified as SB-1 through SB-11, at various locations across the Site. Soil samples were collected with an approximate 1.5-inch diameter, approximate 48 inch long macro-core sampler. Soil samples were generally collected within each borehole continuously from the ground surface until approximately 12 to 14 feet below the ground surface (fbgs), or until equipment refusal was encountered.

Soil borings SB-1, SB-2, SB-3, surface sample SS-1 and sediment sample STACK-1 were completed on the Solsil Site. Soil borings SB-4 through SB-11 and surface samples SS-2 through SS-4 were completed on the Globe Site. Soil boring and sample locations are shown on Figure 1.

The physical characteristics of all soil samples were classified using the Unified Soil Classification System (USCS) (Visual-Manual Method). Field screening of soil borings for total VOC concentrations was completed using a photoionization detector (PID). PID measurements were recorded in the project field book and are summarized in Table 1.

Representative soil samples were collected from SS-1 through SS-4, STACK-1, and SB-1 through SB-11 for analysis. Specifically, samples were collected and placed in pre-cleaned, laboratory provided sample bottles using dedicated stainless steel sampling tools, and cooled to 4° C in the field, and transported under chain-of-custody command to TestAmerica of

Mr. Matthew Greene Globe Metallurgical, Inc.

Amherst, New York for analysis. Select samples were analyzed for Target Compound List (TCL) plus NYSDEC Spill Technology and Remediation Series (STARS) List volatile organic compounds (VOCs), STARS List semi-volatile organic compounds (SVOCs), Resource Conservation and Recovery Act (RCRA) Metals, and polychlorinated biphenyls (PCBs).

FIELD OBSERVATIONS

Globe Site

Soil borings SB-4 through SB-11 and surface samples SS-2 through SS-4 were completed on the Globe Site.

The subsurface geology on the Globe Site was similar to that of the Solsil Site as described above. Similar non-native materials (i.e., ash, coal/coke, slag-like fill, apparent metallic materials) were also noted in the surface of the southeast portion of the Globe Site proximate the factory buildings.

The northeast portion of the Globe site is a reported historic deposit area/landfill. Soil borings SB-10 and SB-11 were advanced in that area of the Globe Site, which is generally characterized as an elevated area of the property with vegetative cover. Soils in this portion of the site were described as a loose silty-sand from the ground surface to approximately one fbgs, with fill-like materials including brick, slag, wood, and rust-colored and gray to black-colored miscellaneous fill to boring terminus (i.e., 8 fbgs at SB-10 and 12 fbgs at SB-11). In the north portion of the Site along the western limits of the former deposit area, gray and green cobbles and boulder-like pieces of consolidated non-native material were noted deposited on the ground surface. The source of that material is not known.

Groundwater was encountered at approximately 12 fbgs on SB-6. A temporary monitoring well was installed at SB-6, but water production was insufficient for sample collection on the day of installation and during subsequent site visits. As such, a groundwater sample was not collected.

A sheen was noted on the core sampler sleeve at SB-6, between 10 – 14 fbgs. Non-native materials (i.e., ash, coal/coke, slag-like fill, apparent metallic materials), similar to those noted on the Solsil Site, were also noted in the surface soils across the southeast portion of the Globe Site proximate the factory buildings. As noted above, gray and green cobbles and boulder-like pieces of consolidated material were noted deposited on the ground surface in the northern area of the Globe Site. Furthermore, tar-like material was noted on the ground surface in the same general area of the Site.

PID readings at the Globe Site ranged from 0 ppm to 88.3 ppm. The highest PID readings were 68.7 ppm at SB-6 (12-14 fbgs) and 88.3 ppm at SB-11 (8-10 fbgs). Petroleum odors were also noted in B-6 from 10 to 14 fbgs. Refer to Table 1 for a summary of PID readings.

Solsil Site

Soil borings SB-1, SB-2, SB-3, surface sample SS-1 and sediment sample STACK-1 were completed on the Solsil Site.

In general, the geology of the Solsil Site is described as asphalt, concrete or non-native unconsolidated soil/fill surficial layer, including evidence of ash, coal/coke, slag-like fill, apparent metallic materials, from the ground surface to approximately one foot below ground surface (fbgs) overlaying fill-like material consisting of brick, slag, concrete, and/or wood to approximately two fbgs. Apparent native materials, consisting of brown, silty-clay was encountered at each boring location from approximately 2 fbgs to boring terminus (up to 14 fbgs).

Groundwater was encountered at approximately 7-8 fbgs at boring location SB-1 in the area of the former railcar maintenance building and current location of drums and petroleum staining. The boring was terminated at 8 fbgs where equipment refusal encountered. A temporary monitoring well was installed in an attempt to collect groundwater, but water production was insufficient for sample collection on the day of installation as well as on subsequent site visits. As such, a groundwater sample was not collected.

Visual evidence of petroleum staining was noted within the former railcar maintenance building in the area where sample SS-1 was collected. Non-native materials (i.e., ash, coal/coke, slag-like fill, apparent metallic materials) were noted across the majority of the surface of the Solsil Site that was not covered by buildings. Gray to dark black ash and silty material, with prominent metallic material intermixed, was noted within and around the former stack located on the north side of the factory building on the Solsil Site. A sample designated as STACK-1 was collected to characterize that material.

PID readings ranged from 23.8 parts per million (ppm) to 533 ppm in the borings completed at the Solsil Site. The highest readings from each soil boring were 283 ppm at SB-1 (6-8 fbgs), 533 ppm at SB-2 (4-8 fbgs) and 201 ppm at SB-3 (0-2 fbgs) Refer to Table 1 for a summary of PID readings. Odors were also noted in boring location SB-2, which was advanced in the area of a former oil house.

SAMPLING AND ANALYSIS

Representative soil samples were collected from SS-1, STACK-1, and SB-1 through SB-3 at the Solsil Site and from SB-4 through SB-11 and surface samples SS-2 through SS-4 from the Globe Site. Select samples were analyzed for VOCs, SVOCs, metals and/or PCBs. Elevated concentrations of VOCs, SVOCs, metals and PCBs were detected in most of the soil boring locations, including some SVOC and metal analytes above Part 375 Restricted-Industrial SCOs. The analytical results are presented on Table 2 and further discussed below. The analytical data package is included in Attachment 1.

SUMMARY AND CONCLUSIONS

- Arsenic was detected at 666 ppm, well above its Industrial SCO of 16 ppm, in the sample collected from STACK-1. Other metals detected in that sample included barium (1,250 ppm), cadmium (30 ppm) and lead (1,900 ppm), which are present above Commercial SCOs, as well as chromium (101 ppm) and selenium (55 ppm). Metals that were present in SS-1 include arsenic (15.3 ppm), barium (447 ppm), cadmium (9.3 ppm), chromium (245 ppm), lead (629 ppm) and mercury (0.4 ppm). Another smoke stack, located on the Globe portion of the property, was not accessible for sampling during this investigation. That stack likely contains similar constituents of concern as identified in the STACK-1 sample.
- Based on our experience at other sites with metals contamination, concentrations of arsenic, cadmium, chromium and lead are present in the soil at the Globe Site and Solsil Site at concentrations that may require handling of soil and/or sediment as hazardous waste if excavated and removed from the site during redevelopment activities.
- Benzo(a)pyrene was detected above industrial SCOs for SVOCs in SS-1 and SB-3.
 Numerous SVOCs were also detected at concentrations that exceeded Unrestricted SCOs.
- Sheening, elevated PID readings and odors were noted in boring location SB-6.
 Elevated PID reading and odors were noted in boring location SB-2. Additional soil
 sampling and installation of groundwater monitoring wells is recommended in these
 areas to determine the extent of impacts.
- Aboveground storage tanks at the Globe Site that are not intended to be utilized in the future should be drained, cleaned and removed from the Site. Liquid and/or sediment contents should be sampled and properly characterized for off-Site disposal.
- Abandoned drums on the Globe Site and Solsil Site will require sampling and characterization prior to off-Site disposal. Handling, transportation and off-Site disposal of drums and their contents should be conducted in accordance with applicable federal, state and/or local regulations.
- Areas of obvious petroleum surface staining on the Solsil Site and Globe Site should be cleaned and/or excavated to the extents of the petroleum-impacted surfaces and/or underlying soil. Handling, transportation and off-Site disposal of impacted soil or other materials (e.g., concrete) should be conducted in accordance with applicable federal, state and/or local regulations.
- The gray and green-colored material as well as the tar-like material noted in the
 northern portion of the Globe site should be sampled and properly characterized.
 Based on the 100-year historic use of the Globe and Solsil Sites for metal alloy
 manufacturing and steel finishing, chromium or other metals waste may have been
 generated on-Site. Based on our experience at other historic industrial sites in Niagara
 Falls, green-colored consolidated wastes encountered at other industrial sites
 contained elevated concentrations of chromium. The tar-like substance may contain
 elevated concentrations of VOCs and/or PAHs

- Based on this limited preliminary investigation, analytical results and field observations suggest historic releases from previous industrial operations at both the Globe Site and Solsil Site. However, we recommend a more thorough investigation of both Sites to better define the extents of contaminants in all media, including groundwater, subsurface soil, surface soil, sediments, solid/sediment contents of drums and liquid contents of ASTs and drums. Interior building areas, including former machine shops, transformer rooms and maintenance areas should also be sampled prior to any planned demolition activities.
- Based on the approximate 100-year historic heavy industrial use of the site, significant
 recognized environmental concerns related to the historic Site use, the confirmed
 presence of contaminants at concentrations that require mitigation, and
 redevelopment challenges that are involved in redevelopment of these types of
 properties, both redevelopment projects (i.e., the Globe Site and the Solsil Site)
 appear to be good candidates for the New York Brownfield Cleanup Program.

Thank you for allowing Benchmark to provide environmental consulting services to Globe Metallurgical, Inc. Please contact us if you have any questions or require additional information.

Sincerely,

Benchmark Environmental Engineering & Science, PLLC

Michael Lesakowski Project Manager

Att.

C: File 0170-001-100

TABLES

TABLE 1

SUMMARY OF SOIL ANALYTICAL RESULTS

GLOBE METALLURGICAL, INC.

3807 HIGHLAND AVENUE SITE

NIAGARA FALLS, NEW YORK

Depth					SOIL	BORING LOCA	TIONS				
(fbgs)	SB-1 (ppm)	SB-2 (ppm)	SB-3 (ppm)	SB-4 (ppm)	SB-5 (ppm)	SB-6 (ppm)	SB-7 (ppm)	SB-8 (ppm)	SB-9 (ppm)	SB-10 (ppm)	SB-11 (ppm)
(0 - 2)	23.8	28.3	201.0	9.1	1.1	0.0	0.3	0.0	12.2	34.1	15.7
(2 - 4)	23.0	436.0	201.0	7.7	0.8	0.0	0.3	0.0	12.2	34.1	15.7
(4 - 6)	58.7	533.0		9.1	0.0	0.0	0.2		4.4	57.1	47.1
(6 - 8)	283.0	555.0		9.1	0.0	0.0	0.2		4.4	57.1	47.1
(8 - 10)	-	401.0			0.0	0.2	0.9				88.3
(10-12)	-	183.0			0.0	32.8	-				13.2
(12-14)		53.8				68.7					

Note:

Highest recorded PID readings within a given depth range shown

NA - Not Applicable

19.5 PID readings above 5 ppm

[&]quot;--" = sample was not collected at that depth

TABLE 2 SUMMARY OF SOIL ANALYTICAL RESULTS GLOBE METALLURGICAL, INC. 3807 HIGHLAND AVENUE SITE NIAGARA FALLS, NEW YORK

_ 1							Sample L	_ocations	,						Unrestricted	Restricted SCOs	Restricted SCOs
Parameter ¹	SS-1	SS-2	Stack-1	SB-1 (5.5-7.5)	SB-2 (4-8)	SB-3 (0-3)	SB-4 (4-6)	SB-5 (4-8)	SB-6 (10-14)	SB-7 (4-8)	SB-8 (0-4)	SB-9 (0-4)	SB-10 (4-7)	SB-11 (8-10)	SCOs (ppm)	Commercial (ppm)	Industrial (ppm)
TCL Volatile Organic Compounds (VOCs) +	STARS (VO	Cs) - mg/l	kg ⁴														
Acetone				0.029 B	0.02 BJ	0.16 B			0.02 BJ				ND	ND	0.05	500	1000
2-Butanone (MEK)				ND	ND	0.016 J			ND				ND	ND			
Carbon disulfide				0.003 J	0.003 J	0.004 J			0.003 J				0.002 J	0.002 J			
Isopropylbenzene (Cumene)				ND	ND	ND			0.001 J				ND	ND			
Methylcyclohexane				ND	ND	ND			0.003 J				ND	ND			
Methylene chloride				0.011 B	0.015 B	0.008 B			0.014 B				0.014 B	0.012 B	0.05	500	1000
Toluene				ND	ND	ND			0 BJ				ND	ND	0.7	500	1000
n-Propylbenzene				ND	ND	ND			0.003 J				ND	ND	3.9	500	1000
p-Cymene (p-isopropyltoluene)				ND	ND	ND			0.001 J				ND	ND			
1,2,4-Trimethylbenzene				ND	0.004 J	ND			ND				ND	ND	3.6	190	380
1,3,5-Trimethylbenzene				ND	0.003 J	ND			ND				ND	ND	8.4	190	380
n-Butylbenzene				ND	ND	ND			0.008				ND	ND	12	500	1000
sec-Butylbenzene				ND	ND	ND			0.004 J				ND	ND	11	500	1000
Total TCL VOCs + STARS VOCs				0.043	0.043	0.188			0.058				0.016	0.014	11	500	1000
STARS Semi-Volatile Organic Compounds (SVOCs) - m	g/kg ⁴															
Acenaphthene	ND			ND	ND	0.55 J		ND	0.14 J	0.068 J	ND	ND	ND	0.11 J	20	500	1000
Acenaphthylene	ND			ND	ND	0.18 J		ND	0.082 J	0.082 J	ND	ND	ND	ND	100	500	1000
Anthracene	ND			0.015 J	ND	0.55 J		ND	0.13 J	0.2 J	ND	ND	0.11 J	0.16 J	100	500	1000
Benzo(a)anthracene	0.7 J			ND	0.009 J	1.4		ND	ND	0.7 J	ND	ND	0.35 J	0.56 J	1	5.6	11
Benzo(b)fluoranthene	1.8 J			ND	0.008 J	2.3		ND	ND	0.87 J	ND	ND	0.5 J	0.82 J	1	5.6	11
Benzo(k)fluoranthene	1.2 J			ND	0.021 J	0.72 J		ND	ND	0.29 J	ND	0.019 J	0.21 J	0.29 J	0.8	56	110
Benzo(g,h,i)perylene	0.65 J			ND	ND	1.6		ND	ND	0.47 J	ND	ND	0.21 J	0.31 J	100	500	1000
Benzo(a)pyrene	1.3 J			ND	ND	2.1		ND	ND	0.66 J	ND	ND	0.38 J	0.6 J	1	1	1.1
Chrysene	2.2 BJ			0.02 BJ	0.02 BJ	1.5 B		0.02 BJ	0.13 BJ	0.68 BJ	0.03 BJ	0.02 BJ	0.44 BJ	0.71 BJ	1	56	110
Dibenzo(a,h)anthracene	ND			ND	ND	0.35 J		ND	ND	0.15 J	ND	ND	0.073 J	0.11 J	0.33	0.56	1.1
Fluoranthene	1.3 J			0.015 J	0.013 J	2.8		ND	0.048 J	1.3	0.009 J	0.01 J	0.5 J	1.1	100	500	1000
Fluorene	ND			ND	ND	0.39 J		ND	0.3 J	ND	ND	ND	0.043 J	0.064 J	30	500	1000
Indeno(1,2,3-cd)pyrene	0.6 J			ND	ND	1.4		ND	ND	0.41 J	ND	ND	0.22 J	0.27 J	0.5	5.6	11

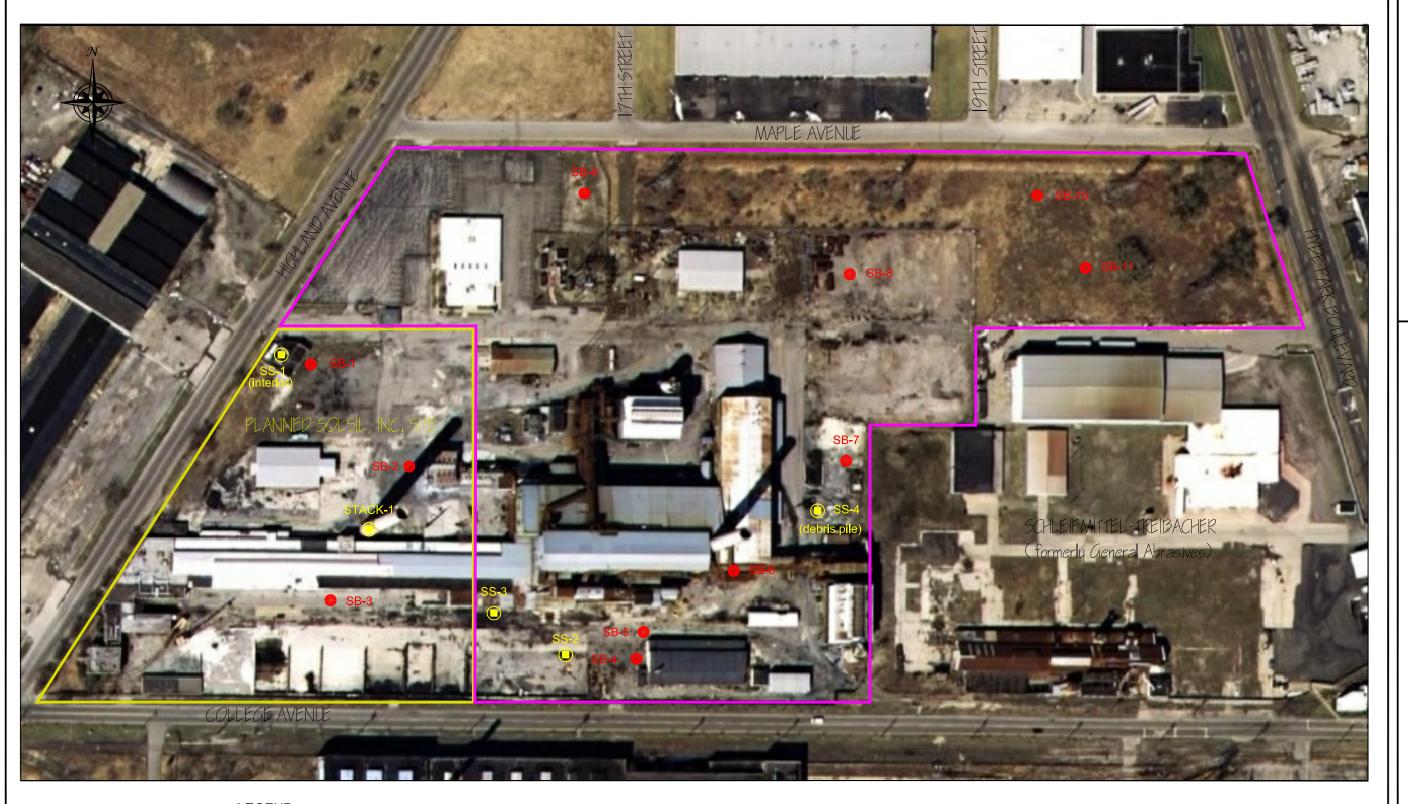
Page 1 of 2 0170-001-100

TABLE 2 SUMMARY OF SOIL ANALYTICAL RESULTS GLOBE METALLURGICAL, INC. 3807 HIGHLAND AVENUE SITE NIAGARA FALLS, NEW YORK

_ 1							Sample L	ocations							Unrestricted	Restricted SCOs	Restricted SCOs
Parameter ¹	SS-1	SS-2	Stack-1	SB-1 (5.5-7.5)	SB-2 (4-8)	SB-3 (0-3)	SB-4 (4-6)	SB-5 (4-8)	SB-6 (10-14)	SB-7 (4-8)	SB-8 (0-4)	SB-9 (0-4)	SB-10 (4-7)	SB-11 (8-10)	SCOs (ppm)	Commercial (ppm)	Industrial (ppm)
2-Methylnaphthalene	1.5 J			ND	ND	0.22 J		ND	0.27 J	0.052 J	ND	ND	ND	ND			
Naphthalene	0.78 J			ND	ND	0.33 J		ND	ND	0.069 J	ND	ND	0.04 J	0.072 J	12	500	1000
Phenanthrene	2 BJ			0.02 BJ	0.02 BJ	2.1 B		0.01 BJ	0.68 BJ	0.7 BJ	0.02 BJ	0.02 BJ	0.33 BJ	0.74 BJ	100	500	1000
Pyrene	1.6 J			0.016 J	0.011 J	2.6		ND	0.085 J	1 J	ND	ND	0.4 J	0.84 J	100	500	1000
Total STARS SVOCs	15.63			0.081	0.097	21.09		0.03	1.865	7.701	0.049	0.065	3.806	6.756			
RCRA Metals - mg/kg 4																	
Arsenic	15.3	ND	666	3.7	6.8	11.9	3	2.9	2.4	14.1	4.5	ND	10.5	11.2	13	16	16
Barium	447	88.7	1250	75.8	290	77.6	36.6	63.6	22	375	174	20.8	94	111	350	400	10,000
Cadmium	9.3	0.8	30.3	ND	0.86	1.2	ND	ND	1.8	1.2	0.29	1.6	1.3	1.5	2.5	9.3	60
Chromium	245	17.1	101	12.8	692	105	11.3	15.7	15.6	830	30.2	15.2	310	483	30	1,500	6,800
Lead	629	47.7	1900	5.9	212	74.6	3	5.2	177	168	10.9	52.4	409	508	63	1,000	3,900
Mercury	0.4	1.2	0.043	0.043	0.095	ND	ND	ND	0.048	ND	ND	0.23	0.036	0.071	0.18	2.8	5.7
Selenium	ND	ND	55.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	1,500	6,800
Polychlorinated Biphenyls (PCBs) - mg/kg 4																	
Aroclor 1254	0.63	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	1	25
Aroclor 1260	ND	ND	ND	ND	ND	0.84	ND	ND	ND	ND	ND	ND	ND	ND	0.1	1	25
Total PCBs	0.63					0.84									0.1	1	25

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per 6 NYCRR Part 375 NYSDEC Soil Cleanup Objectives .
- 3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparison to SCOs.


Definitions:

- ND = Parameter not detected above laboratory detection limit.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- B = Analyte was detected in the associated blank as well as in the sample. Value is above the action level for consideration as being external contamination.

= Exceeds Unrestricted SCOs = Exceeds Commercial SCOs = Exceeds Industrial SCOs

Page 2 of 2 0170-001-100

FIGURES

LEGEND:

PROPERTY BOUNDARY (GLOBE) PROPERTY BOUNDARY (SOLSIL)

SURFACE SAMPLE LOCATION

SOIL BORING LOCATION

NOT TO SCALE

SAMPLE LOCATIONS
PRELIMINARY SITE INVESTIGATION
3807 HIGHLAND AVENUE SITE

BENCHMARK

JOB NO.: 0170-001-100

NIAGARA FALLS, NEW YORK PREPARED FOR GLOBE METALLURGICAL, INC.

FIGURE 1

ATTACHMENT 1

Laboratory Analytical Results

Benchmark Globe Metallurgical BENCHMARK-SOIL-SW8463 8270-L PAHS ONLY

Client ID Job No Lab ID Sample Date		SS-1 A08-A597 08/18/2008	A8A59701						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	ND	11000	NA		NA NA		NA	
Acenaphthylene	UG/KG	ND	11000	NA		NA		NA	
Anthracene	UG/KG	ND	11000	NA		NA NA		NA	
Benzo(a)anthracene	UG/KG	700 J	11000	NA		NA		NA	
Benzo(b)fluoranthene	UG/KG	1800 J	11000	NA		NA		NA	
Benzo(k)fluoranthene	UG/KG	1200 J	11000	NA		NA		NA	
Benzo(ghi)perylene	UG/KG	650 J	11000	NA		NA		NA	
Benzo(a)pyrene	UG/KG	1300 J	11000	NA		NA		NA	
Chrysene	UG/KG	2200 BJ	11000	NA		NA		NA	
Dibenzo(a,h)anthracene	UG/KG	ND	11000	NA		NA		NA	
Fluoranthene	UG/KG	1300 J	11000	NA NA		NA NA		NA	
Fluorene	UG/KG	ND	11000	NA		NA NA		NA	
Indeno(1,2,3-cd)pyrene	UG/KG	600 J	11000	NA		NA NA		NA	1
2-Methylnaphthalene	UG/KG	1500 J	11000	NA		NA NA		NA	•
Naphthalene	UG/KG	780 J	11000	NA	,	NA NA		NA NA	1
Phenanthrene	UG/KG	2000 BJ	11000	NA		NA NA		NA	1
Pyrene	UG/KG	1600 J	11000	NA	,	NA NA		NA	
IS/SURROGATE(S)——						 			1
1,4-Dichlorobenzene-D4	%	83	50-200	NA NA		NA NA		NA NA	ĺ
Naphthalene-D8	%	88	50-200	NA		NA NA		NA NA	
Acenaphthene-D10	%	90	50-200	NA		NA.		NA	
Phenanthrene-D10	%	97	50-200	NA		NA NA		NA	
Chrysene-D12	%	118	50-200	NA		NA		NA	
Perylene-D12	%	149	50-200	NA		NA NA		NA NA	
Nitrobenzene-D5	%	97	35-120	NA		NA		NA	
2-Fluorobiphenyl	%	83	43-120	NA		NA		NA	
p-Terphenyl-d14	%	82	51-125	NA		NA		NA	
Phenol-D5	1%	90	38-120	NA.		NA NA		NA NA	
2-Fluorophenol	%	76	30-120	NA.		NA NA		NA	
2,4,6-Tribromophenol	%	100	46-129	NA		NA		NA NA	

Benchmark Globe Metallurgical METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date		SS-1 A08-A597 08/18/2008	A8A59701						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/KG	ND	210	NA		NA		NA	
Aroclor 1221	UG/KG	ND	210	NA	1	NA		NA	
Aroclor 1232	UG/KG	ND	210	NA	:	NA	1	NA	
Aroclor 1242	UG/KG	ND	210	NA		NA		NA	
Aroclor 1248	UG/KG	ND	210	NA	į l	NA		NA	
Aroclor 1254	UG/KG	630	210	NA	1	NA		NA	
Aroclor 1260	UG/KG	ND	210	NA		NA		NA	
SURROGATE(S)	- 	 	 		 				
Tetrachloro-m-xylene	[% [100	35-134	NA		NA		NA NA	
Decachlorobiphenyl	%	270 *	34-148	NA		NA		NA NA	

Benchmark Globe Metallurgical BENCHMARK - SW8463 RCRA METALS - S

Client ID Job No Lab ID Sample Date		SS-1 A08-A597 08/18/2008	A8A59701	SS-2 A08-A597 08/18/2008	A8A59702	STACK-1 A08-A597 08/18/2008	A8A59705		
Analyte U	Inits	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Arsenic - Total MG	i/KG	15.3	2.7	ND	5.2	666	2.4	NA	
Barium - Total MG	i/KG	447	0.67	88.7	1.3	1250	3.0	NA	
Cadmium - Total MG	KG	9.3	0.27	0.80	0.52	30.3	0.24	NA	ļ
Chromium - Total MG	/KG	245	0.67	17.1	1.3	1 01	0.60	NA	1
Lead - Total MG	/KG	629	1.3	47.7	2.6	1900	1.2	NA	
	/KG	0.40	0.027	1.2	0.052	0.043	0.027	NA	
	/KG	ND	5.3	ND	10.4	55.3	4.8	NA	1
Silver - Total MG	/KG	ND	0.67	ND	1.3	ND	0.60	NA	1

Benchmark Globe Metallurgical METHOD 8260 - TCL VOLATILE ORGANICS+STARS

Client ID Job No Lab ID Sample Date		SB-1 (5.5-7.5) A08-A609 08/27/2008	A8A60901	SB-2 (4-8) A08-A609 08/27/2008	A8A60902	SB-3 (0-3) A08-A609 08/27/2008	A8A60903	SB-6 (10-14) A08-A609 08/27/2008	A8A60906
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	29 B	29	18 BJ	29	160 B	29	19 BJ	28
Benzene	UG/KG	ND	6	ND	6	ND D	6	ND	6
Bromodichloromethane	UG/KG	ND	6	ND	6	ND	6	ND	6
Bromoform	UG/KG	ND	6	ND	6	ND	6	ND	6
Bromomethane	UG/KG	ND	6	ND	6	ND	6	ND	6
2-Butanone	UG/KG	ND	29	ND	29	16 J	29	ND	. 28
Carbon Disulfide	UG/KG	3 J	6	3 J	6	4 J	6	3 J	6
Carbon Tetrachloride	UG/KG	ND	6	ND	6	ND	6	ND	6
Chlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
Chloroethane	UG/KG	ND	6	ND	6	ND ND	6	ND	6
Chloroform	UG/KG	ND	6	ND	Ĭ	ND ND	6	ND	6
Chloromethane	UG/KG	ND	6	ND	ĕ	ND ND	6	ND	6
Cyclohexane	UG/KG	ND	6	ND ND	6	ND ND	6	ND	6
1,2-Dibromoethane	UG/KG	ND ND	6	ND ND	6	ND ND	6	ND	6
Dibromochloromethane		ND ND	6	ND ND	6	ND ND	6	ND	6
	UG/KG	ND ND	6	ND ND	6	ND ND	6	ND	6
1,2-Dibromo-3-chloropropane	UG/KG	ND ND	6	ND ND	6	ND ND	6	ND ND	6
1,2-Dichlorobenzene	UG/KG	ND ND	_	ND ND	6	ND ND	8	ND ND	6
1,3-Dichlorobenzene	UG/KG		6		6	ND ND	6	ND	6
1,4-Dichlorobenzene	UG/KG	ND ND	6	ND ND	6	ND ND	8	ND ND	6
Dichlorodifluoromethane	UG/KG		_		6	ND ND	6	ND ND	6
1,1-Dichloroethane	UG/KG	ND	6	ND	6	D D	6	ND ND	6
1,2-Dichloroethane	UG/KG	ND ND	6	ND ND	6	ND ND	8	ND ND	6
1,1-Dichloroethene	UG/KG	ND ND	6	· ·	6	ND ND	6	ND ND	6
cis-1,2-Dichloroethene	UG/KG	ND ND	6	ND ND	6	ND ND	6	ND ND	6
trans-1,2-Dichloroethene	UG/KG	ND	6	ND	6		°	ND ND	o 6
1,2-Dichloropropane	UG/KG	ND	6	ND	_	ND ND	6	ND ND	6
cis-1,3-Dichloropropene	UG/KG	ND	6	ND	6	ND ND	_		6
trans-1,3-Dichloropropene	UG/KG	ND	6	ND	6	ND ND	6	ND ND	6
Ethylbenzene	UG/KG	ND	6	ND 	6	ND	6	ND ND	
2-Hexanone	UG/KG	ND	29	ND	29	ND	29	ND	28 6
Isopropylbenzene	UG/KG	ND	6	ND	6	ND	6	1 J	
Methyl acetate	UG/KG	ND	6	ND	6	ND	6	ND	6
Methylcyclohexane	UG/KG	ND	6	ND	6	ND _	6	3 J	6
Methylene chloride	UG/KG	11 B	6	15 B	6	8 B	6	14 B	6
4-Methyl-2-pentanone	UG/KG) ND	29	ND	29	ND	29	ND	28
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND	6	ND	6	ND	6	ND	6
Styrene	UG/KG	ND	6	ND	6	ND	6	ND	6
1,1,2,2-Tetrachloroethane	UG/KG	ND	6	ND	6	ND	6	ND 4	[6
Tetrachloroethene	UG/KG	ND	6	ND	6	ND	6	ND	6
Toluene	UG/KG	ND	6	ND	6	ND	6	2 BJ	6
1,2,4-Trichlorobenzene	UG/KG	ND	6	ND	6	ND ND	6	ND	6
1,1,1-Trichloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
1,1,2-Trichloroethane	UG/KG	l ND	6	ND	6	ND ND	6	l ND	1 6

Benchmark Globe Metallurgical METHOD 8260 - TCL VOLATILE ORGANICS+STARS

Client ID Job No Lab ID Sample Date		SB-1 (5.5-7.5) A08-A609 08/27/2008	A8A60901	SB-2 (4-8) A08-A609 08/27/2008	A8A60902	SB-3 (0-3) A08-A609 08/27/2008	A8A60903	SB-6 (10-14) A08-A609 08/27/2008	A8A60906
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor	UG/KG	ND	6	ND	6	ND	6	ND	6
Trichlorofluoromethane	UG/KG	ND	6	ND	6	ND	6	ND	6
Trichloroethene	UG/KG	ND	6	ND	6	ND	6	ND	6
Vinyl chloride	UG/KG	ND	11	ND	12	ND	12	ND	11
Total Xylenes	UG/KG	ND	17	ND	18	ND	17	ND	17
o-Xylene	UG/KG	ND	6	ND	6	ND	6	ND	6
m/p-Xylenes	UG/KG	ND	11	ND	12	ND ND	12	ND	11
n-Propylbenzene	UG/KG	ND	6	ND	6	ND ND	6	3 J	6
p-Cymene	UG/KG	ND	6	ND	6	ND ND	6	1 J	6
1,2,4-Trimethylbenzene	UG/KG	ND	6	4 J	6	ND ND	6	ND	6
1,3,5-Trimethylbenzene	UG/KG	ND	6	3 J	6	ND ND	6	ND	6
n-Butylbenzene	UG/KG	ND 1	6	ND	6	ND ND	6	8	6
sec-Butylbenzene	UG/KG	ND	6	ND	6	ND ND	6	4 J	6
tert-ButylbenzeneIS/SURROGATE(S)	UG/KG	ND	6	ND	6	ND	6	ND	6
Chlorobenzene-D5	%	100	50-200	94	50-200	96	50-200	100	50-200
1.4-Difluorobenzene	%	100	50-200	92	50-200	97	50-200	99	50-200
1,4-Dichlorobenzene-D4	%	98	50-200	91	50-200	91	50-200	100	50-200
Toluene-D8	% %	111	71-125	112	71-125	114	71-125	112	71-125
p-Bromofluorobenzene	%	110	72-126	110	72-126	110	72-126	112	72-126
1,2-Dichloroethane-D4	%	89	61-136	93	61-136	91	61-136	93	61-136

Benchmark Globe Metallurgical BENCHMARK-SOIL-SW8463 8270-L PAHS ONLY

Client ID Job No Lab ID Sample Date		SB-1 (5.5-7.5) A08-A609 08/27/2008	A8A60901	SB-2 (4-8) A08-A609 08/27/2008	A8A60902	SB-3 (0-3) A08-A609 08/27/2008	A8A60903	SB-4 (4-6) A08-A609 08/27/2008	A8A60904
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	UG/KG	ND ND 15 J ND ND ND ND 17 BJ ND 15 J ND	190 190 190 190 190 190 190 190 190 190	ND ND 9 J 8 J 21 J ND ND 16 BJ ND 13 J ND	200 200 200 200 200 200 200 200 200 200	550 J 180 J 550 J 1400 2300 720 J 1600 2100 1500 B 350 J 2800 390 J 1400 220 J 330 J 2100 B 2600	1100 1100 1100 1100 1100 1100 1100 110	ND ND ND ND ND ND ND ND ND ND ND ND ND	990 990 990 990 990 990 990 990 990 990
IS/SURROGATE(S) 1,4-Dichlorobenzene-D4 Naphthalene-D8 Acenaphthene-D10 Phenanthrene-D10 Chrysene-D12 Perylene-D12 Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol	% % % % % % %	87 89 88 78 86 94 80 79 88 81 68	50-200 50-200 50-200 50-200 50-200 50-200 35-120 43-120 51-125 38-120 30-120 46-129	94 94 95 79 76 81 80 74 89 76 66	50-200 50-200 50-200 50-200 50-200 50-200 35-120 43-120 51-125 38-120 30-120 46-129	83 86 87 93 96 120 68 79 94 70 54	50-200 50-200 50-200 50-200 50-200 50-200 35-120 43-120 51-125 38-120 30-120 46-129	99 103 103 91 98 102 68 66 79 68 58	50-200 50-200 50-200 50-200 50-200 50-200 35-120 43-120 51-125 38-120 30-120 46-129

Benchmark Globe Metallurgical BENCHMARK-SOIL-SW8463 8270-L PAHS ONLY

Client ID Job No Lab ID Sample Date		SB-5 (4-8) A08-A609 08/27/2008	A8A60905	SB-6 (10-14) A08-A609 08/27/2008	A8A60906	SB-7 (4-8) A08-A609 08/27/2008	A8A60907	SB-8 (0-4) A08-A609 08/27/2008	A8A60908
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
i i	UG/KG	ND	210	140 J	930	68 J	1100	ND	210
Acenaphthylene	UG/KG	ND	210	82 J	930	82 J	1100	ND	210
Anthracene	UG/KG	ND	210	130 J	930	200 J	1100	ND	210
Benzo(a)anthracene	UG/KG	ND	210	ND	930	700 J	1100	ND	210
Benzo(b)fluoranthene	UG/KG	ND	210	ND	930	870 J	1100	ND	210
Benzo(k)fluoranthene	UG/KG	ND	210	ND	930	290 J	1100	ND	210
Benzo(ghi)perylene	UG/KG	ND	210	ND	930	470 J	1100	ND	210
Benzo(a)pyrene	UG/KG	ND	210	ND	930	660 J	1100	ND	210
Chrysene	UG/KG	20 BJ	210	130 BJ	930	680 BJ	1100	25 BJ	210
	UG/KG	ND	210	ND	930	150 J	1100	ND	210
	UG/KG	ND	210	48 J	930	1300	1100	9 J	210
	UG/KG	ND	210	300 J	930	ND ND	1100	ND	210
	UG/KG	ND	210	ND	930	410 J	1100	ND	210
2-Methylnaphthalene	UG/KG	ND	210	270 J	930	52 J	1100	ND	210
Naphthalene	UG/KG	ND ND	210	ND	930	69 J	1100	ND	210
Phenanthrene	UG/KG	10 BJ	210	680 BJ	930	700 BJ	1100	15 BJ	210
Pyrene	UG/KG	ND	210	85 J	930	1000 J	1100	ND	210
IS/SURROGATE(S)———	-								
1,4-Dichlorobenzene-D4	%	[9 1	50-200	89	50-200	88	50-200	91	50-200
Naphthalene-D8	%	93	50-200	89	50-200	93	50-200	93	50-200
Acenaphthene-D10	%	93	50-200	92	50-200	95	50-200	91	50-200
Phenanthrene-D10	%	80	50-200	94	50-200	103	50-200	82	50-200
Chrysene-D12	%	88	50-200	99	50-200	104	50-200	92	50-200
Pervlene-D12	%	92	50-200	120	50-200	129	50-200	104	50-200
Nitrobenzene-D5	%	73	35-120	82	35-120	75	35-120	80	35-120
2-Fluorobiphenyl	%	69	43-120	81	43-120	74	43-120	78	43-120
p-Terphenyl-d14	%	86	51-125	90	51-125	84	51-125	88	51-125
Phenol-D5	%	73	38-120	79	38-120	78	38-120	79	38-120
2-Fluorophenol	%	64	30-120	66	30-120	67	30-120	72	30-120
2,4,6-Tribromophenol	%	88	46-129	86	46-129	77	46-129	95	46-129

Benchmark Globe Metallurgical BENCHMARK-SOIL-SW8463 8270-L PAHS ONLY

Client ID Job No Lab ID Sample Date		SB-9 (0-4) A08-A609 08/27/2008	A8A60909						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	ND	210	NA		NA		NA NA	
Acenaphthylene	UG/KG	ND	210	NA		NA NA		NA NA	
Anthracene	UG/KG	ND	210	NA		NA NA		NA NA	
Benzo(a)anthracene	UG/KG	ND	210	NA		NA		NA NA	
Benzo(b)fluoranthene	UG/KG	ND	210	NA		NA NA		NA NA	
Benzo(k)fluoranthene	UG/KG	19 J	210	NA		NA NA		NA NA	
Benzo(ghi)perylene	UG/KG	ND	210	NA		NA NA		NA NA	
Benzo(a)pyrene	UG/KG]	ND	210	NA		NA		NA NA	
Chrysene	UG/KG	21 BJ	210	NA		NA NA		NA NA	
Dibenzo(a,h)anthracene	UG/KG	ND	210	NA		NA NA		NA NA	
Fluoranthene	UG/KG	10 J	210	NA		NA NA		NA NA	
Fluorene	UG/KG	ND	210	NA		NA NA		NA NA	
Indeno(1,2,3-cd)pyrene	UG/KG	ND	210	NA		NA		NA NA	
2-Methylnaphthalene	UG/KG	ND	210	NA		NA		NA NA	
Naphthalene	UG/KG	ND	210	NA		NA		NA NA	
Phenanthrene	UG/KG	15 BJ	210	NA		NA NA		NA NA	
Pyrene	UG/KG	ND	210	NA	}	NA NA		NA NA	ŀ
IS/SURROGATE(S)									
1,4-Dichlorobenzene-D4	[%	89	50-200	NA		NA NA		NA NA	ĺ
Naphthalene-D8	%	89	50-200	NA	[NA NA		NA NA	į
Acenaphthene-D10	1%	89	50-200	NA		NA NA		NA NA	
Phenanthrene-D10	%	78	50-200	NA		NA NA	ļ	NA NA	1
Chrysene-D12	%	87	50-200	NA		NA NA		NA NA	
Perylene-D12	%	97	50-200	NA		NA.		NA NA	
Nitrobenzene-D5	%	78	35-120	NA		NA.		NA NA	
2-Fluorobiphenyl	%	74	43-120	NA		NA		NA NA	
p-Terphenyl-d14	%	89	51-125	NA		NA NA		NA NA	
Phenol-D5	%	76	38-120	NA		NA NA	!	NA NA	
2-Fluorophenol	%	67	30-120	NA	1	NA NA	1	NA NA	
2,4,6-Tribromophenol	%	92	46-129	NA		NA NA		NA NA	

Benchmark Globe Metallurgical METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab I Sample Date	D	SB-1 (5.5-7.5) A08-A609 08/27/2008	A8A60901	SB-2 (4-8) A08-A609 08/27/2008	A8A60902	SB-3 (0-3) A08-A609 08/27/2008	A8A60903	SB-4 (4-6) A08-A609 08/27/2008	A8A60904
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 ———SURROGATE(S)	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND ND	19 19 19 19 19 19	ND ND ND ND ND ND	19 19 19 19 19 19 19	ND ND ND ND ND ND 840	84 84 84 84 84 84 84	ND ND ND ND ND ND	19 19 19 19 19 19
Tetrachloro-m-xylene Decachlorobiphenyl	% %	72 85	35-134 34-148	78 88	35-134 34-148	50 96	35-134 34-148	76 85	35-134 34-148

Client ID Job No La Sample Date	db ID	SB-5 (4-8) A08-A609 08/27/2008	A8A60905	SB-6 (10-14) A08-A609 08/27/2008	A8A60906	SB-7 (4-8) A08-A609 08/27/2008	A8A60907	SB-8 (0-4) A08-A609 08/27/2008	A8A60908
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	20 20 20 20 20 20 20 20	ND ND ND ND ND ND	18 18 18 18 18 18	ND ND ND ND ND ND	22 22 22 22 22 22 22 22	ND ND ND ND ND ND ND	21 21 21 21 21 21 21
SURROGATE(S)= Tetrachloro-m-xylene Decachlorobiphenyl	% %	77 90	35-134 34-148	67 87	35-134 34-148	92 112	35-134 34-148	78 89	35-134 34-148

Benchmark Globe Metallurgical METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date		SB-9 (0-4) A08-A609 08/27/2008	A8A60909						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 ——SURROGATE(S)	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	20 20 20 20 20 20 20 20	NA NA NA NA NA		NA NA NA NA NA NA		NA NA NA NA NA NA	
Tetrachloro-m-xylene Decachlorobiphenyl	%	78 86	35-134 34-148	NA NA		NA NA		NA NA	

Benchmark Globe Metallurgical BENCHMARK - SW8463 RCRA METALS - S

Client ID Job No Lab ID Sample Date		SB-1 (5.5-7.5) A08-A609 08/27/2008	A8A60901	SB-2 (4-8) A08-A609 08/27/2008	A8A60902	SB-3 (0-3) A08-A609 08/27/2008	A8A60903	SB-4 (4-6) A08-A609 08/27/2008	A8A60904
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Arsenic - Total	MG/KG	3.7	2.4	6.8	2.5	11.9	2.8	3.0	2.4
Barium - Total	MG/KG	75.8	0.61	290	0.62	77.6	0.70	36.6	0.59
Cadmium - Total	MG/KG	ND	0.24	0.86	0.25	1.2	0.28	ND	0.24
Chromium - Total	MG/KG	12.8	0.61	692	0.62	105	0.70	11.3	0.59
_ead - Total	MG/KG	5.9	1.2	212	1.2	74.6	1.4	3.0	1.2
Mercury - Total	MG/KG	0.043	0.023	0.095	0.023	ND	0.026	ND	0.023
Selenium - Total	MG/KG	ND	4.9	ND	5.0	ND	5.6	ND	4.7
Silver - Total	MG/KG	ND	0.61	ND	0.62	ND	0.70	ND	0.59

Client ID Job No Lab I Sample Date	D	SB-5 (4-8) A08-A609 08/27/2008	A8A60905	SB-6 (10-14) A08-A609 08/27/2008	A8A60906	SB-7 (4-8) A08-A609 08/27/2008	A8A60907	SB-8 (0-4) A08-A609 08/27/2008	A8A60908
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Arsenic - Total	MG/KG	2.9	2.4	2.4	2.1	14.1	2.9	4.5	2.8
Barium - Total	MG/KG	63.6	0.61	22.0	0.52	375	0.72	174	0.70
Cadmium - Total	MG/KG	ND	0.24	1.8	0.21	1.2	0,29	0.29	0.28
Chromium - Total	MG/KG	15.7	0.61	15.6	0.52	830	0.72	30.2	0.70
Lead - Total	MG/KG	5.2	1.2	177	1.0	168	1.4	10.9	1.4
Mercury - Total	MG/KG	ND	0.028	0.048	0.022	ND	0.027	ND	0.027
Selenium - Total	MG/KG	ND	4.9	ND I	4.1	ND	5.8	ND	5.6
Silver - Total	MG/KG	ND	0.61	ND ND	0.52	ND	0.72	ND	0.70

Benchmark Globe Metallurgical BENCHMARK - SW8463 RCRA METALS - S

Client ID Job No Lab II Sample Date)	SB-9 (0-4) A08-A609 08/27/2008	A8A60909						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Arsenic - Total	MG/KG	ND	2.6	NA		NA		NA	
Barium - Total	MG/KG	20.8	0.66	NA		NA		NA	
Cadmium - Total	MG/KG	1.6	0.26	NA		NA		NA	
Chromium - Total	MG/KG	15.2	0.66	NA		NA		NA	
Lead - Total	MG/KG	52.4	1.3	NA		NA		NA	
Mercury - Total	MG/KG	0.23	0.026	NA	1	NA		NA	
Selenium - Total	MG/KG	ND	5.2	NA		NA		NA	1
Silver - Total	MG/KG	ND	0.66	NA	1	NA		NA	

Benchmark Globe Metallurgical METHOD 8260 - TCL VOLATILE ORGANICS+STARS

Client ID Job No Lab ID Sample Date		SB-10(4-7) A08-A611 08/27/2008	A8A61101	\$B-11(8-10) A08-A611 08/27/2008	A8A61102				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	29	ND	29	NA NA		NA	
Benzene	UG/KG	ND	6	ND	6	NA NA		NA	
Bromodichloromethane	UG/KG	ND	6	ND	6	NA		NA	
Bromoform	UG/KG	ND	6	ND	6	NA NA		NA	
Bromomethane	UG/KG	ND	6	ND	6	NA NA		NA	
2-Butanone	UG/KG	ND	29	ND	29	NA NA		NA	
Carbon Disulfide	UG/KG	2 J	6	2 J	6	NA.		NA	1
Carbon Tetrachloride	UG/KG	ND	6	ND	6	NA.		NA	
Chlorobenzene	UG/KG	ND	6	ND	6	NA NA		NA	1
Chloroethane	UG/KG	ND	6	ND	6	NA NA	1	NA	1
Chloroform	UG/KG	ND	6	ND	6	NA NA		NA.	
Chloromethane	UG/KG	ND	6	ND	6	NA NA		NA	
Cyclohexane	UG/KG	ND ND	6	ND	6	NA NA		NA	
1.2-Dibromoethane	UG/KG	ND ND	6	ND	6	NA NA		NA	
Dibromochloromethane	UG/KG	ND	6	ND	6	NA NA		NA	
1.2-Dibromo-3-chloropropane	UG/KG	ND	6	ND	6	NA NA		NA	
1,2-Dichlorobenzene	UG/KG	ND ND	6	ND ND	6	NA NA		NA NA	-
1,3-Dichlorobenzene	UG/KG	ND	6	ND ND	6	NA NA		NA NA	Į.
1,4-Dichlorobenzene	UG/KG	ND ND	6	ND	6	NA NA		NA NA	
Dichlorodifluoromethane	UG/KG	ND UD	6	ND ND	6	NA NA		NA NA	
		ND ND	6	ND ND	6	NA NA		NA NA	
1,1-Dichloroethane	UG/KG		_		6				İ
1,2-Dichloroethane	UG/KG	ND ND	6	ND	6	NA.		NA NA	
1,1-Dichloroethene	UG/KG	ND ND	6	ND	_	NA NA		NA NA	
cis-1,2-Dichloroethene	UG/KG	ND	6	ND ND	6	NA NA		NA NA	
trans-1,2-Dichloroethene	UG/KG	ND	6	ND	6	NA NA		NA	
1,2-Dichloropropane	UG/KG	ND	6	ND	6	NA NA		NA NA	
cis-1,3-Dichloropropene	UG/KG	ND	6	ND	6	NA.		NA NA	
trans-1,3-Dichloropropene	UG/KG	ND	6	ND	6	NA NA		NA NA	
Ethylbenzene	UG/KG	ND	6	ND	6	NA 		NA NA	
2-Hexanone	UG/KG	ND	29	ND	29	NA		NA.	
Isopropylbenzene	UG/KG	ND .	6	ND	6	NA NA		NA NA	
Methyl acetate	UG/KG	ND	6	ND	6	NA		NA	
Methylcyclohexane	UG/KG	ND .	6	ND	6	NA NA		NA	
Methylene chloride	UG/KG	14 B	6	12 B	6	NA NA		NA 	
4-Methyl-2-pentanone	UG/KG	ND	29	ND	29	NA NA		NA	
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND	6	ND	6	NA NA		NA NA	
Styrene	UG/KG	ND 1	6	ND	6	NA NA		NA	
1,1,2,2-Tetrachloroethane	UG/KG	ND	6	ND	6	NA NA		NA	
Tetrachloroethene	UG/KG	ND	6	ND	6	NA		NA NA	
Toluene	UG/KG	ND	6	ND	6	NA NA		NA NA	
1,2,4-Trichlorobenzene	UG/KG	ND	6	ND	6	NA NA		NA	
1,1,1-Trichloroethane	UG/KG	ND	6	ND	6	NA NA		NA	
1,1,2-Trichloroethane	UG/KG	ND	6	ND	6	NA NA		NA	

Benchmark Globe Metallurgical METHOD 8260 - TCL VOLATILE ORGANICS+STARS

Client ID Job No Lab ID Sample Date		SB-10(4-7) A08-A611 08/27/2008	A8A61101	SB-11(8-10) A08-A611 08/27/2008	A8A61102				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes o-Xylene m/p-Xylenes n-Propylbenzene p-Cymene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	UG/KG	ND N	6 6 12 17 6 12 6 6 6 6	ND ND ND ND ND ND ND ND ND ND ND	6 6 6 12 18 6 12 6 6 6 6 6	NA NA NA NA NA NA NA NA NA		NA NA NA NA NA NA NA NA NA NA	
IS/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % %	94 94 88 113 110 95	50-200 50-200 50-200 71-125 72-126 61-136	97 95 94 112 110 95	50-200 50-200 50-200 71-125 72-126 61-136	NA NA NA NA NA		NA NA NA NA NA	

Benchmark
Globe Metallurgical
BENCHMARK-SOIL-SW8463 8270-L PAHS ONLY

Client ID Job No Lab ID Sample Date		SB-10(4-7) A08-A611 08/27/2008	A8A61101	SB-11(8-10) A08-A611 08/27/2008	A8A61102				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	ND	1000	110 J	1000	NA		NA	
Acenaphthylene	UG/KG	ND	1000	ND	1000	NA NA		NA	
Anthracene	UG/KG	110 J	1000	160 J	1000	NA NA		NA	
Benzo(a)anthracene	UG/KG	350 J	1000	560 J	1000	NA NA		NA	
Benzo(b)fluoranthene	UG/KG	500 J	1000	820 J	1000	NA NA		NA	
Benzo(k)fluoranthene	UG/KG	210 J	1000	290 J	1000	NA NA		NA	
Benzo(ghi)perylene	UG/KG	210 J	1000	310 J	1000	NA NA		NA	
Benzo(a)pyrene	UG/KG	380 J	1000	600 J	1000	NA NA		NA	
Chrysene	UG/KG	440 BJ	1000	710 BJ	1000) NA		NA	i
Dibenzo(a,h)anthracene	UG/KG	73 J	1000	110 J	1000	NA		NA NA	
Fluoranthene	UG/KG	500 J	1000	1100	1000	NA		NA]
Fluorene	UG/KG	43 J	1000	64 J	1000	NA		NA	
Indeno(1,2,3-cd)pyrene	UG/KG	220 J	1000	270 J	1000	NA		NA	
2-Methylnaphthalene	UG/KG	ND	1000	ND	1000	NA		NA	
Naphthalene	UG/KG	40 J	1000	72 J	1000	NA NA		NA	
Phenanthrene	UG/KG	330 BJ	1000	740 BJ	1000	NA NA		NA NA	i
Pyrene	UG/KG	400 J	1000	840 J	1000	NA		NA NA	
IS/SURROGATE(S)									
1.4-Dichlorobenzene-D4	1%	86	50-200	83	50-200	Í NA		NA NA	1
Naphthalene-D8	%	92	50-200	86	50-200	NA NA		NA NA	
Acenaphthene-D10	%	94	50-200	89	50-200	NA NA		NA NA	
Phenanthrene-D10	%	100	50-200	95	50-200	NA		NA NA	
Chrysene-D12	%	116	50-200	115	50-200	NA NA		NA NA	
Perylene-D12	%	158	50-200	157	50-200	NA		NA NA	
Nitrobenzene-D5	%	52	35-120	71	35-120	NA NA		NA NA	1
2-Fluorobiphenyl	%	62	43-120	67	43-120	NA NA		NA NA	
p-Terphenyl-d14	%	69	51-125	65	51-125	NA		NA NA	
Phenol-D5	%	60	38-120	71	38-120	NA		NA NA	
2-Fluorophenol	%	45	30-120	65	30-120	NA NA		NA NA	
2,4,6-Tribromophenol	%	99	46-129	94	46-129	NA		l na	

Benchmark
Globe Metallurgical
METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date		SB-10(4-7) A08-A611 08/27/2008	A8A61101	SB-11(8-10) A08-A611 08/27/2008	A8A61102				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND ND	19 19 19 19 19 19	ND ND ND ND ND ND ND	20 20 20 20 20 20 20 20	NA NA NA NA NA NA		NA NA NA NA NA NA	
SURROGATE(S)——— Tetrachloro-m-xylene Decachlorobiphenyl	% %	71 88	35-134 34-148	84 96	35-134 34-148	NA NA		NA NA	

Benchmark Globe Metallurgical BENCHMARK - SW8463 RCRA METALS - S

Client ID Job No Lab ID Sample Date		SB-10(4-7) A08-A611 08/27/2008	A8A61101	SB-11(8-10) A08-A611 08/27/2008	A8A61102				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Arsenic - Total	MG/KG	10.5	2.2	11.2	2.5	NA NA		NA	
Barium - Total	MG/KG	94.0	0.56	111	0.62	NA		NA	
Cadmium - Total	MG/KG	1.3	0.22	1.5	0.25	NA		NA	
Chromium - Total	MG/KG	310	0.56	483	0.62	NA		NA	
Lead - Total	MG/KG	409	1.1	508	1.2	NA		NA	
Mercury - Total	MG/KG	0.036	0.022	0.071	0.024	NA		NA	
Selenium – Total	MG/KG	ND	4.5	ND	5.0	NA		NA	
Silver - Total	MG/KG	ND	0.56	ND	0.62	NA	1	NA	

ATTACHMENT 07

LISTING OF CURRENT & PREVIOUS SITE OWNERS

Attachment 07

Listing of Current & Previous Site Owners

Solsil, Inc. Site Brownfield Cleanup Program Application

INTRODUCTION

Reasonable attempts were made to attain complete previous site owner contact information. In some cases, previous owners complete contact information was not available. The following table lists the previous property owners:

Parcel Address and Size	Date(s)	Relationship to Applicant
Part of 3801 Highland Avenue (~5 acre	es)	
Current Owner		
Globe Metallurgical, Inc. (1) 1595 Sparling Road P.O. Box 157 Beverly, OH 45715 (740) 984-8608	2006 - present	Same
Previous Owners		
Globe Metallurgical, Inc. 3807 Highland Avenue Niagara Falls, NY 14305	1994 - 2006	None- company's assets were merged into Globe Acquisition Corp. in November 2006, and Globe Acquisition Corp. was later renamed to Globe Metallurgical Inc.
SKW Alloys, Inc. (a.k.a. SKW Newco, Inc.) 3801 Highland Avenue Niagara Falls, NY 14305	1979 – 1994	None
Air Reduction Company, Inc. (a.k.a. Pittsburgh Metallurgical Co.) P.O. Box 368 Niagara Falls, NY 14302	1913 - 1979	None

⁽¹⁾ A wholly-owned subsidiary of Globe Specialty Metals (GSM). GSM was formed in 2004.

ATTACHMENT 08

LISTING OF CURRENT & PREVIOUS SITE OPERATORS

Attachment 08

Listing of Current and Previous Site Operators

Solsil, Inc. Site Brownfield Cleanup Program Application

INTRODUCTION

Reasonable attempts were made to attain complete previous site operator contact information. In some cases, previous operators complete contact information was not available. The following table lists the previous property operators:

Parcel Address and Size	Date(s)	Relationship to Applicant
Part of 3801 Highland Avenue (~5	acres)	
Current Owner		
Globe Metallurgical, Inc. (1) 1595 Sparling Road P.O. Box 157 Beverly, OH 45715 (740) 984-8608	2006 - present	Same
Previous Owners		
Globe Metallurgical, Inc. 3807 Highland Avenue Niagara Falls, NY 14305	1994 - 2006	None- company's assets were merged into Globe Acquisition Corp. in November 2006, and Globe Acquisition Corp. was later renamed to Globe Metallurgical Inc.
SKW Alloys, Inc. (a.k.a. SKW Newco, Inc.) 3801 Highland Avenue Niagara Falls, NY 14305	1979 – 1994	None
Air Reduction Company, Inc. (a.k.a. Pittsburgh Metallurgical Co.) P.O. Box 368 Niagara Falls, NY 14302	1913 - 1979	None

⁽¹⁾ A wholly-owned subsidiary of Globe Specialty Metals (GSM). GSM was formed in 2004.

ATTACHMENT 09

CONTACT LIST INFORMATION

Attachment 09

Contact List Information

Solsil, Inc. Site

Brownfield Cleanup Program Application

New York State Contacts:

Senator Hillary Rodham-Clinton

U.S. Senate

726 Exchange Street, Suite 511

Buffalo, NY 14210

Assembly, Francine Delmonte

138th District 1700 Pine Ave.

Niagara Falls, NY 14301

Community Outreach File

NYSDEC

270 Michigan Ave. Buffalo, NY 14203 Senator Charles Schumer U.S. Senate, Suite 660 130 So. Elmwood Ave

Buffalo, NY 14202

Rep. Louise Slaughter NY 28th District

1910 Pine Ave. Niagara Falls, NY 14301

DER File NYSDEC

270 Michigan Ave. Buffalo, NY 14203 Senator Antoine Thompson

NYS Senate Dist. 60 65 Court Street Buffalo, NY 14202

Mr. Michael Basile

WNY Public Info. Office

186 Exchange St. Buffalo, NY 14204

Niagara County Contacts:

Chairman William Ross Niagara County Legislature 6761 Walmore Road Niagara Falls, NY 14304

Mr. Daniel Bristol Niagara Falls City Admin. 4010 Barton Street Niagara Falls, NY 14305 Mr. Michael Shanley Niag. Co. Emergency Planning Niagara & Hawley Street Lockport, NY 14094

Mr. James Devald, P.E. Niagara Co. Health Dept. 5467 Upper Mountain Road Lockport, NY 14094 Wayne Jagow Niagara County Clerk PO Box 461 Lockport, NY 14095

Mr. Paul Dickey Niagara County Health Dept. 5467 Upper Mountain Rd. Lockport, NY 14094-1899

Solsil, Inc. Site

Brownfield Cleanup Program Application

Niagara County Contacts (cont'd):

Clerk James Sobczyk Niagara County Legislature 175 Hawley Street Lockport, NY 14094

David E. Wertman, MPA Comm. Niagara Co. Health Dept. 5467 Upper Mountain Rd. Lockport, NY 14094

Alan Nusbaum City of Niagara Fall Dept. of Planning/Env. Services 745 Main Street Niagara Falls, NY 14302

Mr. James Volkosh, Director Niagara Cty. Emergency Services PO Box 496 Lockport, NY 14095-0496

Robert Buzzelli, City Engineer City Hall Room 303 745 Main Street Niagara Falls, NY 14302 Herbert Downs Niagara Cty. Water District PO Box 315 Lockport, Ny 14094

Mr. Samuel M. Ferraro, Exec. Dir. Niagara Co. Ind. Dev. Agency 6311 Inducon Corporate Drive Sanborn, NY 14132

Mr. Greg Lewis Niagara County Manager 59 Park Avenue Lockport, NY 14094

Daniel Stapleton, Director Niagara County Dept. of Health 5467 Upper Mountain Rd, Suite 100 Lockport, NY 14094

Gerald Grose Niagara Falls Water Board 5815 Buffalo Avenue Niagara Falls, NY 14304 Amy Fisk, Env. Planner Niagara Cty. Econ. Devpt. 6311 Inducon Corporate Dr. Sanborn, NY 14132

Mr. Dennis F. Virtuoso Niagara Co. Legislature #4 2703 Independence Ave. Niagara Falls NY 14301

Ms. Dawn Walczak Niagara County EMC 59 Park Avenue Lockport, NY 14094

Ms. Carol Antonucci Niagara Falls City Clerk 745 Main Street Niagara Falls, NY 14302

Solsil, Inc. Site

Brownfield Cleanup Program Application

Local News Media:

ATTN: Aaron Besecker The Buffalo News 1 News Plaza Buffalo, NY 14240

ATTN: Env. News Desk WGRZ TV - CH. 2 259 Delaware Avenue Buffalo, NY 14202

ATTN: Tracey Drury Business First 465 Main Street Buffalo, NY 14203-1793

ATTN: News Director WLVL 1340 PO Box 477 Lockport, NY 14095-0477

Supplier of Potable Water:

Document Repository:

WKBW-TV 7 Broadcast Plaza Buffalo, NY 14202

ATTN: Environmental News Desk WIVB - CH. 4 2077 Elmwood Avenue Buffalo, NY 14207

ATTN: Aaron Besecker The Niagara Gazette 310 Niagara Street Niagara Falls, NY 14302

ATTN: Environmental News Desk WJYE 1700 Rand Building Buffalo, NY 14203

Niagara County Water District PO Box 315

Lockport, NY 14905-0315

Niagara Falls Public Library Earl W. Brydges Building 1425 Main Street

Niagara Falls, NY 14305

WBEN News Radio 930 Entercom Radio of Buffalo 500 Corporate Pkwy, Suite 200 Buffalo, NY 14226

ATTN: Michael Desmond WNED, Env. News Desk PO 1263, Horizons Plaza Buffalo, NY 14240

ATTN: Mike Hudson, Editor Niagara Falls Reporter 1625 Buffalo Ave Niagara Falls, NY 14303

Environmental News Desk The Niagara Gazette 310 Niagara Street Niagara Falls, NY 14302

Solsil, Inc. Site

Brownfield Cleanup Program Application

Nearby Schools:

Principal Lawrence Martinez Sixty Sixth Street School 630 66th Street Niagara Falls, NY 14304 Principal Maria Chille-Zafuto Niagara Middle School 6431 Girard Ave. Niagara Falls, NY 14304 Principal Joseph Colburn Gaskill Middle School 910 Hyde Park Blvd. Niagara Falls NY 14301

Other Interested Groups:

Brian Smith Citizens' Campaign for the Env. 227 McConkey Drive Tonawanda, NY 14223 Citizens' Environmental Coalition 33 Central Avenue Albany, NY 12210

Joe Gardella BEMC 176 Admiral Road Buffalo, NY 14216 Charles Lamb Sierra Club – Niagara Region 335 Walnut Lane Youngstown, NY 14174 Julie Barrett O'Neil, Director Buffalo Niagara Riverkeeper 1250 Niagara Street Buffalo, NY 14213

Mr. Michael Podd 4827 Rogers Rd. Hamburg, NY 14075

Solsil, Inc. Site

Brownfield Cleanup Program Application

Electronic Government Contacts:

Abby Snyder amsnyder@qw.dec.state.ny.us Daniel David drdavid@gw.dec.state.ny.us Larry Ennist ldennist@gw.dec.state.ny.us gpsutton@gw.dec.state.ny.us **Greg Sutton** Mike Hinton mjhinton@gw.dec.state.ny.us mtbaetzh@gw.dec.state.ny.us Mark Baetzhold megollwi@gw.dec.state.ny.us Megan Gollwitzer Rich Fedigan rjf01@health.state.ny.us Matt Forcucc imjf13@health.state.ny.us Mike Basile basile.michael@epa.gov

ATTACHMENT 09

AREA PROPERTY OWNERS

Solsil, Inc. Site Brownfield Cleanup Program Application

Adjacent Property Address		Owner Name and
No.	Street	Mailing Address
3700	Highland Ave.	Michael Prakash Bhimsingh
		3700 Highland Avenue
		Niagara Falls, NY 14305
3702	Highland Ave.	Isabel A. Anderson
		3702 Highland Avenue
		Niagara Falls, NY 14305
3710	Highland Ave.	James E. Walker
		3710 Highland Avenue
		Niagara Falls, NY 14305
3711	Highland Ave.	The House of God
		3711 Highland Avenue
		Niagara Falls, NY 14305
3712	Highland Ave.	Kelvin & Sonya S. Agee
		3712 Highland Avenue
		Niagara Falls, NY 14305
3716, 3718	Highland Ave.	Musid Mohammad Dubashi
		3718 Highland Avenue
		Niagara Falls, NY 14305
3719, 3721	Highland Ave.	Eddie Ashley
		3721 Highland Avenue
		Niagara Falls, NY 14305
3729	Highland Ave.	Niagara Mohawk Power Corp.
		(Right-of-Way)
		(rught-or-way)
3800	Highland Ave.	Dalana Realty, Inc.
		3800 Highland Ave.
		Niagara Falls, NY 14305
4101	Highland Ave.	Niagara Falls Urban Renewal
		4101 Highland Ave.
		Niagara Falls, NY 14305
4110	Highland Ave.	Armand Cerrone
		4110 Highland Ave.
		Niagara Falls, NY 14305
1501	College Ave.	G .
		Santarosa Holdings, Inc. 1501 College Ave.
		Niagara Falls, NY 14305
		Tylagaia Falls, IVI 14505
1402, 1503, 1511,	C 11 A	Niagara Mohawk Power Corp.
1925 & 2000	College Ave.	(Right-of-Way)
		,,

AREA PROPERTY OWNERS

Solsil, Inc. Site Brownfield Cleanup Program Application

Adjacent Property Address		Owner Name and
No.	Street	Mailing Address
1655	College Ave.	George J. Wolf 1655 College Ave. Niagara Falls, NY 14305
1731 & 1777	College Ave.	Hazorb, Inc. 1731 College Ave. Niagara Falls, NY 14305
1901	College Ave.	Eastern Ohio Paving, Inc. 1901 College Ave. Niagara Falls, NY 14305
2001	College Ave.	David Kushner 2001 College Ave. Niagara Falls, NY 14305
3701 & 3703	Lehigh Court	Jack Brundage 3701 Lehigh Court Niagara Falls, NY 14035
3707, 3711, 3713, & 3715	Lehigh Court	John A. Brundage 3702 Lehigh Court Niagara Falls, NY 14305
3723, 3727	Lehigh Court	J.A. Brundage - The Drain 3727 Lehigh Court Niagara Falls, NY 14305

DOCUMENT REPOSITORY CONFIRMATION LETTER

September 10, 2008

Ms. Betty Babanoury Library Director Niagara Falls Public Library Earl W. Brydges Building 1425 Main Street Niagara Falls, NY 14305

Re: Document Repository

Solsil, Inc. Site

5-acre portion of 3801 Highland Avenue, Niagara Falls, New York

Brownfield Cleanup Program Application

Dear Ms. Babanoury:

Per our recent telephone conversation, thank you for allowing the Niagara Falls Public Library to be the document repository for the above-referenced site.

Please contact me if you have questions or require additional information.

Sincerely,

Benchmark Environmental Engineering & Science, PLLC

Nathan T. Munley

Environmental Scientist

File: 0170-001-101

ENVIRONMENTAL FACTORS AND HISTORIC LAND USE CONSIDERATIONS

Environmental Factors & Historic Land Use Considerations

Solsil, Inc. Site Brownfield Cleanup Program Application

INTRODUCTION

The following provides a brief summary of the Site:

- There are no State or Federal wetlands or floodplains on the Site.
- The Site is located within a predominantly urban-developed area.
- There are no threatened or endangered species, or important plant habitats present on the Site.

NEARBY LAND USE

Surrounding Land Use Description

Solsil, Inc. Site Brownfield Cleanup Program Application

SURROUNDING LAND USE DESCRIPTION

The Site, comprised of the southwest corner of the 3807 (aka 3801) Highland Avenue property, is located in a highly industrial urban area of the City of Niagara Falls, Niagara County, New York.

Properties adjacent to the Site include several commercial and industrial properties, vacant parcels, and utility right-of-ways (see Figure 12-1). The surrounding land is mixed use, including commercial, industrial, residential, and community service parcels.

726 EXCHANGE STREET SUITE 624 BUFFALO, NEW YORK 14210 (716) 856-0599

PROJECT NO.: 0170-001-101

DATE: SEPTEMBER 2008

DRAFTED BY: NTM

NEARBY LAND USE

BROWNFIELD CLEANUP PROGRAM APPLICATION

SOLSIL, INC. SITE

NIAGARA FALLS, NEW YORK

PREPARED FOR

SOLSIL, INC.

GROUNDWATER VULNERABILITY ASSESSMENT

Groundwater Vulnerability Assessment

Solsil, Inc. Site Brownfield Cleanup Program Application

POTENTIAL VULNERABILITY OF GROUNDWATER TO CONTAMINATION

Currently, there are no known deed restrictions on the use of groundwater at the Site, and groundwater supply wells are not present on-site. Existing groundwater quality has not been investigated on the Site.

Regionally, groundwater in the area has not been developed for industrial, agriculture, or public supply purposes. Potable water service is provided on-site and off-site by the local municipal water authority.

GROUNDWATER FLOW/RECHARGE

Based on Site topography and proximity to the Niagara River, groundwater likely flows in a west/southwest direction (see Figure 1-1).

RECOMMENDATIONS

Further work is required to evaluate groundwater quality. Additional sampling to assess groundwater flow patterns and water quality will be investigated during the Remedial Investigation.

DESCRIPTION OF SITE GEOGRAPHY/GEOLOGY

Description of Site Geography/Geology

Solsil, Inc. Site Brownfield Cleanup Program Application

ECOLOGICAL SETTING

The Site is covered primarily by former warehouse/manufacturing and office buildings, electrical substations, asphalt pavement, former building foundations, aboveground storage tanks, soil/fill piles, and vegetation.

The Site is located in the Erie-Niagara River Basin, which generally drains west/southwest from the Site, although localized variation may occur. The Niagara River, Lake Erie and Lake Ontario are the major bodies of water within this basin.

DEMOGRAPHY AND LAND USE

The Site is located in a highly developed urban-industrial setting. Land use surrounding the Site includes industrial, commercial, vacant, public use, and residential properties (see Figure 12-1).

No residential properties are adjacent to the Site. However, nearby residential areas are located across Hyde Park Avenue, northeast of the Site and on Highland Avenue southwest of the Site (see Figure 12-1).

REGIONAL GEOLOGY/HYDROGEOLOGY

The U.S. Department of Agriculture (USDA) Soil Conservation Service soil survey map of Niagara County describes the general surficial soil type at the Site as Canandaigua silt loam, with slopes ranging from 0 to 2%.

Based on Site topography and proximity to the Niagara River, regional groundwater likely flows in a west/southwest direction (see Figure 1-1).

SITE GEOLOGY/HYDROGEOLOGY

The Site is predominately flat, with no distinguishable site features. Precipitation (i.e., rain or snow melt) generally moves radially from the Site via overland flow to on-Site catch basins. Site soil/fill and groundwater flow will be investigated during the Remedial Investigation.

