Brownfield Cleanup Program Application

Globe Metallurgical Site 3807 Highland Avenue Niagara Falls, New York October 2008

0170-001-101

Prepared By:

726 Exchange Street, Suite 624, Buffalo, New York | phone: (716) 856-0599 | fax: (716) 856-0583

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

ECL ARTICLE 27 / TITLE 14

07/07				DEPARTMENT BCP SITE #:	USE ONLY
Section I. Requestor Information	on				
NAME					
ADDRESS					
CITY/TOWN		ZIP CODE			
PHONE	FAX		E-MAIL		
NAME OF REQUESTOR'S REPRESENTATIVE	E				
ADDRESS					
CITY/TOWN		ZIP CODE			
PHONE	FAX		E-MAIL		
NAME OF REQUESTOR'S CONSULTANT					
ADDRESS					
CITY/TOWN		ZIP CODE			
PHONE	FAX		E-MAIL		
NAME OF REQUESTOR'S ATTORNEY	•		•		
ADDRESS					
CITY/TOWN		ZIP CODE			
PHONE	FAX E-MAIL				
THE REQUESTOR MUST CERTIFY THAT HE CHECKING ONE OF THE BOXES BELOW:	/SHE IS EITHER A PARTI	CIPANT OR VOLUNTEER IN	ACCORDAN	NCE WITH ECL § 27-	1405 (1) BY
PARTICIPANT A requestor who either 1) was the owner of the site of hazardous waste or discharge of petroleum or responsible for the contamination, unless the liabi of ownership, operation of, or involvement with	r 2) is otherwise a person lity arises solely as a result	VOLUNTEER A requestor other than a partic as a result of ownership, opera disposal of hazardous waste or	ation of or in	volvement with the sit	
disposal of hazardous waste or discharge of petrol		NOTE: By checking this bo appropriate care with respect reasonable steps to: i) stop any release; and iii) prevent or limi any previously released hazard	to the hazard continuing c t human,envi	lous waste found at the discharge; ii) prevent ar	e facility by takin by threatened futur
Requestor Relationship to Property (check one):					
Previous Owner Current Owner If requestor is not the site owner, requestor will	Potential /Future Purcha			Yes	No
(Note: proof of site access must be submitted for		unougnout me DCF project.		105	110

あたにたわり アンドリン しんだい しゅうれんりょう アプリ・セッシン	and a start of the s Start of the start of	angen a talahan Dalaman talahan						
	307 Highland Avenue Site		<u> </u>		·			
ADDRESS/LOCATION	3807 Highland Avenue	CITY/TOWN	Niagara Fa	alls	ZIP CO	DDE	14305	
MUNICIPALITY(IF MO	RE THAN ONE, LIST ALL): City o	f Niagara Falls						
COUNTY Niagara		SITE SIZE (ACRES) 20.4	4				
LATITUDE (degrees/min	utes/seconds) 43 · 7 · 1	9.89 "	LONGITU	DE (degrees/mi	inutes/seconds)	79	° 2 · 28	3.1
HORIZONTAL COLLEC	CTION METHOD: SURVEY	GPS 🔽 MAP	HORIZONT	AL REFEREN	CE DATUM:	NAD	27	
FOR EACH PARCEL, FI Parcel Address	LL OUT THE FOLLOWING TAX MA		f more than thre arcel No.	ee parcels, attac Section No.		formation Lot No.	n) Acreage	
Several Parcels (se	e Attachment 01 and Figure 2-		[1	<u> </u>	Γ		<u>-</u>
	· · · · · · · · · · · · · · · · · · ·							
	ooundaries correspond to tax ma	-					TYes 🗸	No
If no, please a	ttach a metes and bounds descri	ption of the prope	erty.					
2. Is the required pr	operty map attached to the appli	ication? (applicat	ion will not	be processed	l without ma	ıp)	Yes [No
3. Is the property pa	art of a designated En-zone purs	uant to Tax Law §	§ 21(b)(6)?				√ Yes]No
For more information			d_Redevelop	oment/defaul	lt.asp.			
If yes, identif	y area (name) Census Tract #0	020200			· · · · ·			
50% 🖌 1	00% of the site is in the En-zone	e (check one)						
PROPERTY DESCRIPTI	ON NARRATIVE:			<u> </u>			<u>. </u>	
See Attachme	ent 01							
List of Existing Ease Easement Holder	ements (type here or attach info		scription					<u> </u>
Typical utility ea	sements							
(otherwise unkn	own)							
	d by the NYSDEC or USEPA R			(type here or	attach infor	mation)	
<u>Type</u>	Issuing Agency	_	escription					
PBS #9-120316	NYSDEC	F	etroleum B	ulk Storage	Permit			
Title V Air Permi	t NYSDEC							
<u> </u>				<u> </u>				
mitiala of south Dis	MTL							
initials of each Re								

Section III. Current Site Owner	r/Operator Information						
OWNER'S NAME (if different from requestor)							
ADDRESS							
CITY/TOWN	ZIP CODE						
PHONE	FAX	E-MAIL					
OPERATOR'S NAME (if different from requested	or or owner)						
ADDRESS							
CITY/TOWN	ZIP CODE						
PHONE	FAX	E-MAIL					
Section IV. Requestor Eligibilit	y Information (Please refer to ECL §	27-1407)					
If answering "yes" to any of the following	ng questions, please provide an explanation as a	n attachment.					
1. Are any enforcement actions pending	g against the requestor regarding this site?		Yes	No			
	order relating to contamination at the site?		Yes	No			
1 5	ling claim by the Spill Fund for this site?		Yes	No			
-	have violated any provision of ECL Article 27	?	Yes	No			
5. Has the requestor previously been de	•		Yes	No No			
act involving contaminants?	6. Has the requestor been found in a civil proceeding to have committed a negligent or intentionally tortious Yes act involving contaminants?						
7. Has the requestor been convicted of a theft, or offense against public admir	fraud, bribery, perjury,	Yes	No				
8. Has the requestor knowingly falsified false statement in a matter before the	l or concealed material facts or knowingly subm Department?	itted or made use of a	Yes	No			
-	y of the type set forth in ECL 27-1407.8(f) that of e to act could be the basis for denial of a BCP appendix of the basis for denial of a BCP appendix of the basis for denial of a BCP appendix of the basis for denial of the basis for denial of a BCP appendix of the basis for denial of the basi		Yes	No			
Section V. Property Eligibility Information (Please refer to ECL § 27-1405)							
1. Is the property listed on the National	Priorities List?		Yes	No			
	gistry of Inactive Hazardous Waste Disposal Site		Yes	No			
If yes, please provide: Site # Class # 3. Is the property subject to a permit under ECL Article 27, Title 9, other than an Interim Status facility? Yes No							
3. Is the property subject to a permit under ECL Article 27, Title 9, other than an Interim Status facility? Yes No If yes, please provide: Permit type:							
 4. Is the property subject to a cleanup order under navigation law Article 12 or ECL Article 17 Title 10? If yes, please provide: Order # 							
 5. Is the property subject to a state or federal enforcement action related to hazardous waste or petroleum? If yes, please provide explanation as an attachment. 							
Section VI. Project Description							
What stage is the project starting at?	investigation remediation	n					
Please attach a description of the project	which includes the following components:						
 Please attach a description of the project which includes the following components: Purpose and scope of the project Estimated project schedule 							

Section VII. Property's Environmental History

To the extent that existing information/studies/reports are available to the requestor, please attach the following:

1. Environmental Reports

A phase I environmental site assessment report prepared in accordance with ASTM E 1527 (American Society for Testing and Materials: Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process), and all environmental reports related to contaminants on or emanating from the site.

If a final investigation report is included, indicate whether it meets the requirements of ECL Article 27-1415(2): Yes No

2. Sampling Data: Indicate known contaminants and the media which are known to have been affected:

Contaminant Category	Soil	Groun	dwater	Surface Water	Sediment	Soil Gas
Petroleum						
Chlorinated Solvents						
Other VOCs						
SVOCs						
Metals						
Pesticides						
PCBs						
Other*						
*Please describe:	•					
3. Suspected Contamin	ants: Indicate	e suspected of	contaminants an	d the media which ma	y have been affecte	ed:
Contaminant Category	Soil	Groun		Surface Water	Sediment	Soil Gas
Petroleum						
Chlorinated Solvents						
Other VOCs						
SVOCs						
Metals						
Pesticides						
PCBs						
Other*						
*Please describe:	•					
4. INDICATE KNOWN OR S	SUSPECTED SO	URCES OF C	ONTAMINANTS:			
Above Ground Pipeline o Routine Industrial Operati Adjacent Property Coal Gas Manufacture Other:		Lagoons or P Dumping or E Seepage Pit o Industrial Aco	Burial of Wastes or Dry Well	Underground Pipeline or T Septic tank/lateral field Foundry Sand Unknown	-	ill or Discharge Storage Containers tting
5. INDICATE PAST LAND U	USES:					
Coal Gas Manufacturing Pipeline Other:	Manufac Service S	-	Agricultural Co-op Landfill	Dry Cleaner Tannery	Salvage Yard Electroplating	Bulk Plant Unknown

each previous owner listed. If no relationship, put "none"). 7. **Operators**

A list of previous operators with names, last known addresses and telephone number (describe requestor's relationship, if any, to each previous operator listed. If no relationship, put "none").

Section VIII. Contact List Information

Please attach, at a minimum, the names and addresses of the following:

- 1. The chief executive officer and planning board/dept. chair of each county, city, town and village in which the property is located.
- 2. Residents, owners, and occupants of the property and properties adjacent to the property.
- 3. Local news media from which the community typically obtains information.
- 4. The public water supplier which services the area in which the property is located.
- 5. Any person who has requested to be placed on the contact list.
- 6. The administrator of any school or day care facility located on or near the property.
- 7. The location of a document repository for the project (e.g., local library). In addition, attach a copy of a letter sent to the repository acknowledging that it agrees to act as the document repository for the property.

Section IX. Land Use Factors (Please refer to ECL § 27-1415(3))

Current Use:	Residential	Commercial	Industrial	Vacant	Recreational (c	heck all that apply)
Intended Use:	Unrestricted	Residential	Commercial	Industrial	(check all that app	ly)

Please check the appropriate box and provide an explanation as an attachment if appropriate. Provide a copy of the local zoning classifications, comprehensive zoning plan designations, and/or current land use approvals.

Yes

No

1. Do current historical and/or recent development patterns support the proposed use? (See #12 below re: discussion of area land uses)

2. Is the proposed use consistent with applicable zoning laws/maps?

3. Is the proposed use consistent with applicable comprehensive community master plans, local waterfront revitalization plans, designated Brownfield Opportunity Area plans, other adopted land use plans?

4. Are there any Environmental Justice Concerns? (See §27-1415(3)(p)).

5. Are there any federal or state land use designations relating to this site?

6. Do the population growth patterns and projections support the proposed use?

7. Is the property accessible to existing infrastructure?

8. Are there important cultural resources, including federal or state historic or heritage sites or Native American religious sites within ½ mile?

9. Are there important federal, state or local natural resources, including waterways, wildlife refuges, wetlands, or critical habitats of endangered or threatened species within $\frac{1}{2}$ mile?

10. Are there floodplains within $\frac{1}{2}$ mile?

11. Are there any institutional controls currently applicable to the property?

12. Describe on attachment the proximity to real property currently used for residential use, and to urban, commercial, industrial, agricultural, and recreational areas.

13. Describe on attachment the potential vulnerability of groundwater to contamination that might migrate from the property, including proximity to wellhead protection and groundwater recharge areas.

14. Describe on attachment the geography and geology of the site.

Statement of Certification and Signatures and an and statement of the stat
(By requestor who is an individual)
I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to section 210.45 of the Penal Law.
Date: Signature: Print Name: Print Name:
(By an requestor other than an individual) Environmental Globe I hereby affirm that I am <u>Monger</u> (title) of <u>Mctallargical</u> (entity); that I am authorized by that entity to make this application; that this application was prepared by me or under my supervision and direction; and that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to Section 210.45 of the Penal Law. Date: <u>Mathew</u> Greene Print Name: <u>Mathew</u> Greene

SUBMITTAL INFORMATION:

Three (3) complete copies are required.

• Two (2) copies, one paper copy with original signatures and one electronic copy in Portable Document Format (PDF) on a CD or diskette, must be sent to:

Chief, Site Control Section
New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway
Albany, NY 12233-7020

• **One (1)** paper copy must be sent to the DEC regional contact in the regional office covering the county in which the site is located. Please check our website for the address of our regional offices: http://www.dec.ny.gov/about/776.html

FOR DEPARTMENT USE ONLY	
BCP SITE T&A CODE:	LEAD OFFICE:

LIST OF APPLICATION ATTACHMENTS

NYSDEC Brownfield Cleanup Program Application Globe Metallurgical, Inc. – 3807 Highland Avenue Site Niagara Falls, New York

Attachment No.	Description
1	Site Description, Location Map and Site Plan
2	Tax Map
3	Project Description and Schedule
4	Proposed Redevelopment Plan
5	Phase I Environmental Site Assessment
6	Previous Environmental Investigation
7	Listing of Current and Previous Site Owners
8	Listing of Current and Previous Site Operators
9	Contact List Information
10	Document Repository Confirmation Letter
11	Environmental Factors and Historic Land Use Considerations
12	Nearby Land Use
13	Groundwater Vulnerability Assessment
14	Description of Site Geography/Geology

ATTACHMENT 01

SITE DESCRIPTION & BCP ELIGIBILITY STATEMENT SITE PHOTOGRAPHS SITE LOCATION MAP SITE PLAN

Site Description and BCP Eligibility Statement

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

A) SITE DESCRIPTION

The subject property (hereinafter referred to the "Project Site" or the "Site") subject to this BCP application is an approximate 20.4-acre parcel comprised of 16 tax parcels, commonly referred to as 3807 Highland Avenue, Niagara Falls New York (see Figures 1-1 and 1-2 and the summary table below). The Site to be redeveloped by Globe Metallurgical (Globe) is an approximate 20.4-acre portion of a greater approximate 25-acre property currently owned by Globe. The remaining approximate 5-acre portion of the greater property is subject to a separate BCP application submitted by Solsil, Inc. (see Figure 1-3 for location of Solsil site).

Parcel Address	Parcel No.	Section No.	Block No.	Lot No.	Acreage	
Part of 3807 (aka 3801) Highland Ave.	1	130.14	2	41	11.0	
4009 Highland Ave.	2	130.14	2	40	0.63	
4025 Highland Ave.	3	130.14	2	35	0.31	
4002 Hyde Park Blvd.	4	130.15	1	8	0.29	
4024 Hyde Park Blvd.	5	130.15	1	17	0.56	
1633 Maple Avenue	6	130.14	2	36	0.80	
1725 Maple Avenue	7	130.15	1	13	1.61	
1911 Maple Avenue	8	130.15	1	6	0.76	
1925 Maple Avenue	9	130.15	1	16	0.19	
1636 Massachusetts Ave.	10	130.14	2	37	0.28	
1622 Massachusetts Ave.	11	130.14	2	39	0.53	
1632 Massachusetts Ave.	12	130.14	2	38	0.51	
1702 Massachusetts Ave.	13	130.15	1	12	0.20	
1724 Massachusetts Ave.	14	130.15	1	11.1	1.40	
1914 Massachusetts Ave.	15	130.15	1	15	0.84	
1930 Massachusetts Ave.	16	130.15	1	7	0.50	
Total Approximate Acreage						

Site Description and BCP Eligibility Statement

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

The Site is located in a heavily industrialized area of Niagara Falls and is surrounded by current or former heavy industrial sites. The Site includes an office building, a factory/furnace building, and several maintenance and/or storage buildings. The Site is currently vacant and has not been in operation since 2003. The Site was used for heavy industrial manufacturing since at least 1913; most recently the Site was used to manufacture silicon metal and ferrosilicon metal. Site photographs taken during the 2008 Phase I Environmental Site Assessment are attached hereto.

The Site's historical (i.e., approximately 100 years) heavy industrial manufacturing use has left a legacy of environmental concerns, including abandoned drums with unknown contents, historic petroleum storage tanks, obvious petroleum spills on the property, generation of regulated wastes, and an inactive landfill on-site. Multiple aboveground storage tanks (ASTs) remain on the Site, including those in the Oil House labeled as gasoline, fuel oil, diesel, waste oil, transmission oil, and new oil. A 10,000-gallon diesel AST is located adjacent to the Furnace Building. Approximately 100, 55-gallon drums with unknown contents are currently present in the Oil House and adjacent storage building. Petroleum staining was noted in the Oil House and adjacent to the Maintenance Building. Parts washing stations were noted in the Maintenance Building; such washing stations typically utilize chlorinated solvents. Potential polychlorinated biphenyls (PCB)-containing electrical equipment/ transformers are present on-site. A large soil-debris pile is present in the eastern portion of the property (adjacent to the Duct House); the source of the soil pile is not known. In addition, the elevated area in the northeast portion of the Site adjacent to Maple Avenue is reportedly a former waste deposit area. Other areas of concern as summarized in the Phase I ESA include former machine shops, former transformer rooms, current/former electrical substations, a 20,000-gallon closed-in-place diesel underground storage tank (UST), former gasoline and waste oil USTs, former waste battery storage area, and a former smoke stack (#2). Figure 1-3 illustrates the areas of concern for the Site.

As described in <u>Attachment 6</u> as attached hereto, soil and sediment samples taken at the Project Site during a limited preliminary Site Investigation in the summer of 2008 indicate that certain polycyclic aromatic hydrocarbons PAHs and metals are present on-site at concentrations above the NYSDEC 375 restricted-industrial soil cleanup objectives (SCOs) and/or at concentrations that may deem soil/sediments characteristically hazardous upon removal and disposal. Based on the results of the preliminary investigation, a comprehensive subsurface soil, surface soil, sediment and groundwater investigation is warranted to further characterize the full extent of environmental impacts.

Site Description and BCP Eligibility Statement

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

Environmental investigations completed on the adjacent Hazorb/Niagara Vest/Union Carbide Brownfield Cleanup Program (BCP) site identified the presence of PCBs, PAHs, and metals above the NYSDEC Part 375 restricted-industrial SCOs in soil/fill and debris, as well as the presence of asbestos containing material (ACM) and PCBs (galbestos) along College Avenue. Based on the similar nature of historic heavy industrial use on the adjacent property, similar contaminants of concern could be present at the Project Site.

The Site is bounded by Highland Avenue to the west, College Avenue to the south, Maple Avenue to the north, and Hyde Park Boulevard to the east (northeastern portion). Properties adjacent to the Site include several heavy industrial properties, including Schleifmittel-Treibacher (former General Abrasives) to the east, PreMax (former Chisholm-Ryder) to the west and the former Hazorb/Niagara Vest/Union Carbide BCP site to the south.

B) ELIGIBILITY FOR ACCEPTANCE INTO THE BROWNFIELD CLEANUP PROGRAM

The Site meets the definition of a "brownfield site" as set forth in New York State Environmental Conservation Law Section 27-1407.8.a, in that (A) there is confirmed contamination on the Site, and (B) there is a reasonable basis to believe that the contamination or potential presence of contamination may be complicating the development or re-use of the Site. Further, the regulations in 6 NYCRR 375-3.3(a)(1) clarify that the brownfield definition has two separate and distinct elements; namely the "Contamination Element":

(1) A brownfield site has two elements:

(i) there must be confirmed contamination on the property or a reasonable basis to believe that contamination is likely to be present on the property; and

(ii) there must be a reasonable basis to believe that the contamination or potential presence of contamination may be complicating the development, use or re-use of the property.

As noted in the text of this regulation, the concept of a "reasonable basis" test has been added to each element.

Site Description and BCP Eligibility Statement

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

Finally, the New York State Department of Environmental Conservation published BCP Eligibility Guidance in March 2005. This guidance establishes several factors that the Department considers in evaluating whether the Contamination Element and the Complication Element exist.

A) Contamination Element

Specifically, with respect to the establishing the Contamination Element or a reasonable basis to believe the Contamination Element has been met, the DEC will consider the:

(A) the nature and extent of known or suspected contamination;

(B) whether contaminants are present at levels that exceed standards, criteria or guidance;

(C) whether contamination on the proposed site is historic fill material or exceeds background levels;

(D) whether there are or were industrial or commercial operations at the proposed site which may have resulted in environmental contamination; and/or,

(E) whether the proposed site has previously been subject to closure, a removal action, an interim or final remedial action, corrective action or any other cleanup activities performed by or under the oversight of the State or Federal government.

As describe within this BCP application, we respectfully submit that the Contamination Element of the BCP Eligibility Test has been met. Contamination does exist on the Site, and there is a reasonable basis to believe that additional contamination above and beyond what is known to exist on the Site to date may be present on this Site. As described in <u>Attachment 6</u> as attached hereto, soil and sediment samples taken at the Project Site during a limited preliminary Site Investigation in the summer of 2008 indicate that certain polycyclic aromatic hydrocarbons PAHs and metals are present on-site at concentrations above the NYSDEC 375 restricted-industrial SCOs and/or at concentrations that may deem soil/sediments characteristically hazardous upon removal and disposal. The contamination on the site is not historic fill and does exceed background levels especially as evidenced by the Site's 100 year history of heavy industrial manufacturing use. The legacy of such heavy

Site Description and BCP Eligibility Statement

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

use, as visually described above and throughout this application, certainly indicates that such use resulted in its environmental contamination.

B) Complication Element

Specifically, with respect to the establishing the Complication Element or a reasonable basis to believe the Complication Element has been met, the DEC will consider:

(A) whether the proposed site is idled, abandoned or underutilized;

(B) whether the proposed site is unattractive for redevelopment or reuse due to the presence or reasonable perception of contamination;

(C) whether properties in the immediate vicinity of the proposed site show indicators of economic distress such as high commercial vacancy rates or depressed property values; and/or

(D) whether the estimated cost of any necessary remedial program is likely to be significant in comparison to the anticipated value of the proposed site as redeveloped or reused.

As described within this BCP application, it is respectfully submitted that there is a reasonable basis to believe that the contamination known and suspected to be present on the Site is complicating the development, use or re-use, of the Site. First, the Site, suspected to be contaminated, has sat idled, abandoned and underutilized since 2003. The Site is unattractive for redevelopment or reuse due to the actual presence of contamination and the reasonable perception that there is additional contamination most likely present on the Site also in need of remediation. As noted in the Phase I Environmental Assessment dated September 2008, there are multiple aboveground storage tanks and petroleum staining has been noted within certain areas of the Site. The Site is located in a current and historic heavy industrial area. Surrounding sites include active and abandoned industrial properties, including the former Hazorb/Niagara Vest/Union Carbide Brownfield Cleanup Program site to the south, and regulatory searches have revealed documented releases or potential releases of hazardous materials and/or petroleum products on nearby properties. Many known contaminated sites are in close proximity to the Site.

In addition, the Site and the properties in the immediate vicinity of the Site are in an area exhibiting indicators of extreme economic distress. For example, as of August, 2008, according to statistics provided by the New York State Department of Labor, Niagara

Site Description and BCP Eligibility Statement

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

County had the third highest county unemployment rate in the State of New York – 6.7%. In general, the Western New York Economic Development Region had the second highest overall unemployment rate in the State, 5.9%, second only to the North Country region. With the decline of industrial activity in Niagara Falls over the last four decades, the City has been left with a large collection of abandoned contaminated sites that cannot be remediated easily or quickly. The majority of these contaminated sites, such as the Project Site, will most likely continue to adversely affect the public health, welfare, and the environment, continue to further depress real estate values, and otherwise negatively affect the area. The general economic duress of the Project Site and the neighboring area, combined with known contamination issues affecting the Project Site, provide a dual complicating affect chilling any redevelopment opportunities of the Site.

The Site is located in a BCP Environmental Zone, a New York State Empire Zone, a New York State Brownfield Opportunity Area nomination site, a Federal Renewal Community Zone, and a "highly distressed area" as defined under New York General Municipal Law as it has a poverty rate (50%) of at least 20% and an unemployment rate (15%) at least 1.25% times the statewide unemployment rate (currently 5.6%). Because the site is located in these various designated distressed areas, it is eligible for certain local, state, and federal financial incentives, further indicating that the Site is unattractive for redevelopment particularly outside of the context of the BCP.

The estimated cost of a proposed remedial program with regard to the Site is likely to be significant in comparison to the anticipate value of the Site as redeveloped or reused. This has likely been one of the reasons behind the Site's vacancy. As described herein, and based on the result of the September 2008 Preliminary Investigation, a comprehensive subsurface soil, surface soil, sediment and groundwater investigation is warranted to characterize the full extent of environmental impacts. The Applicant proposes to remediate contaminated conditions, in addition to making approximately \$20,000,000 in capital investment. However, the extent of contamination is unknown and remediation costs are unknown and may significantly add to, or outpace, the capital expenditures the Requestor plans to undertake at the Site, depending upon the extent of the remediation required to be undertaken at the Site.

In conclusion, based on the foregoing and as discussed and depicted within the BCP application, the Site meets the Contamination Element and the Complicaton Element tests. As such, the Site qualifies as a Brownfield Site eligible for participation in the BCP because

Site Description and BCP Eligibility Statement

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

(A) there is confirmed contamination on the Site, and (B) there is a reasonable basis to believe that the contamination or potential presence of contamination may be complicating the development or re-use of the Site.

Site Photographs

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

Photo 1:

- Photo 1: Exterior of Subject Property
- Photo 2: Exterior of Subject Property
- Photo 3: Electrical substation
- Photo 4: Exterior conditions

Photo 4:

0170-001-101

Photo Dates: July 15 & August 18, 2008

Site Photographs

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

Photo 5:

Photo 7:

Photo 6:

Photo 8:

- Photo 5: AST/drums in Oil House
- Photo 6: 10,000-gallon AST (adjacent to furnace building)
- Photo 7: Drum/container storage and stained floor
- Photo 8: Brine AST (former fuel oil)

0170-001-101

Photo Dates: July 15 & August 18, 2008

Site Photographs

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

Photo 9:

Photo 11:

- Photo 9: Discarded Tar material
- Photo 10: Discolored soil mixed with miscellaneous debris
- Photo 11: Soil/Debris piles
- Photo 12: Soil/Debris piles

0170-001-101

Photo Dates: July 15 and October 1, 2008

Photo 12:

Site Photographs

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

Photo 13:

Photo 15:

Photo 14:

Photo 16:

- Photo 13: Bulging drums in storage building
- Photo 14: Extensive staining in the Oil House building
- Photo 15: Unknown chemicals in the former laboratory
- Photo 16 Former factory building

0170-001-101

Photo Dates: July 15 and October 1, 2008

Site Photographs

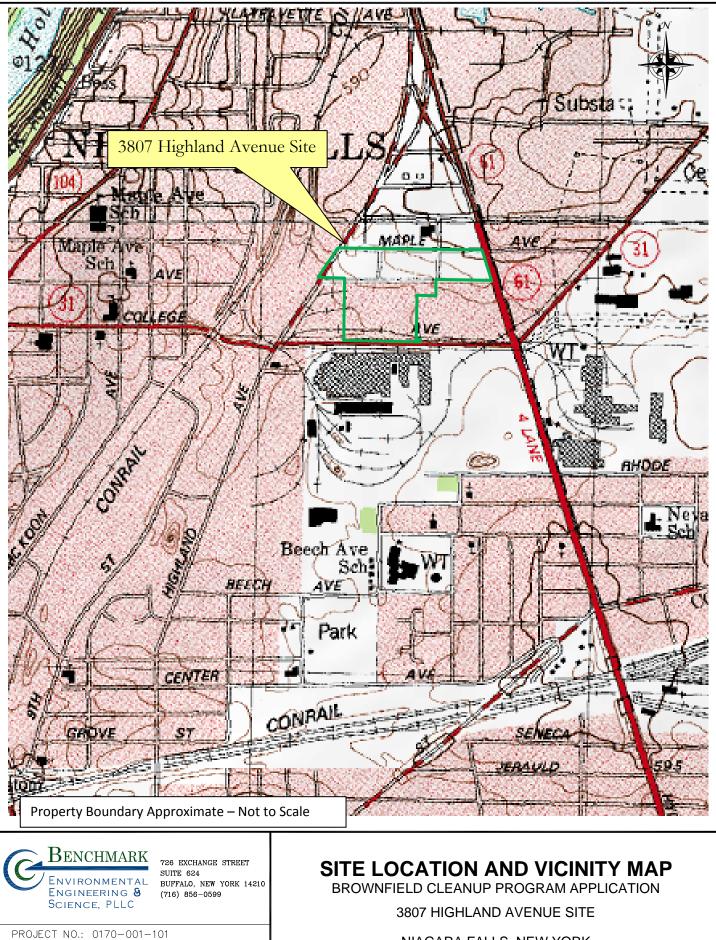
Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

Photo 17:

Photo 18:

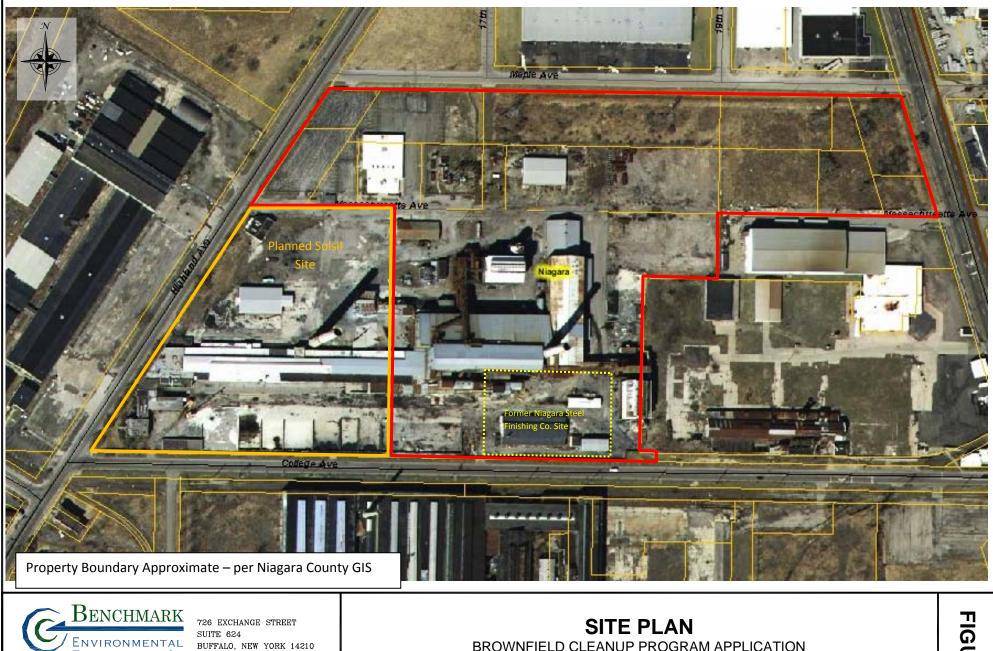
Photo 17: Subject Property and adjacent industrial properties to the west, south, and east

Photo 18: Adjacent former Union Carbide facility to the south


Photo 19: Adjacent former Union Carbide facility to the south

0170-001-101

Photo Dates: July 15 & August 18, 2008


FIGURE 1-1

NIAGARA FALLS, NEW YORK PREPARED FOR GLOBE METALLURGICAL, INC.

DRAFTED BY: NTM

DATE: SEPTEMBER 2008

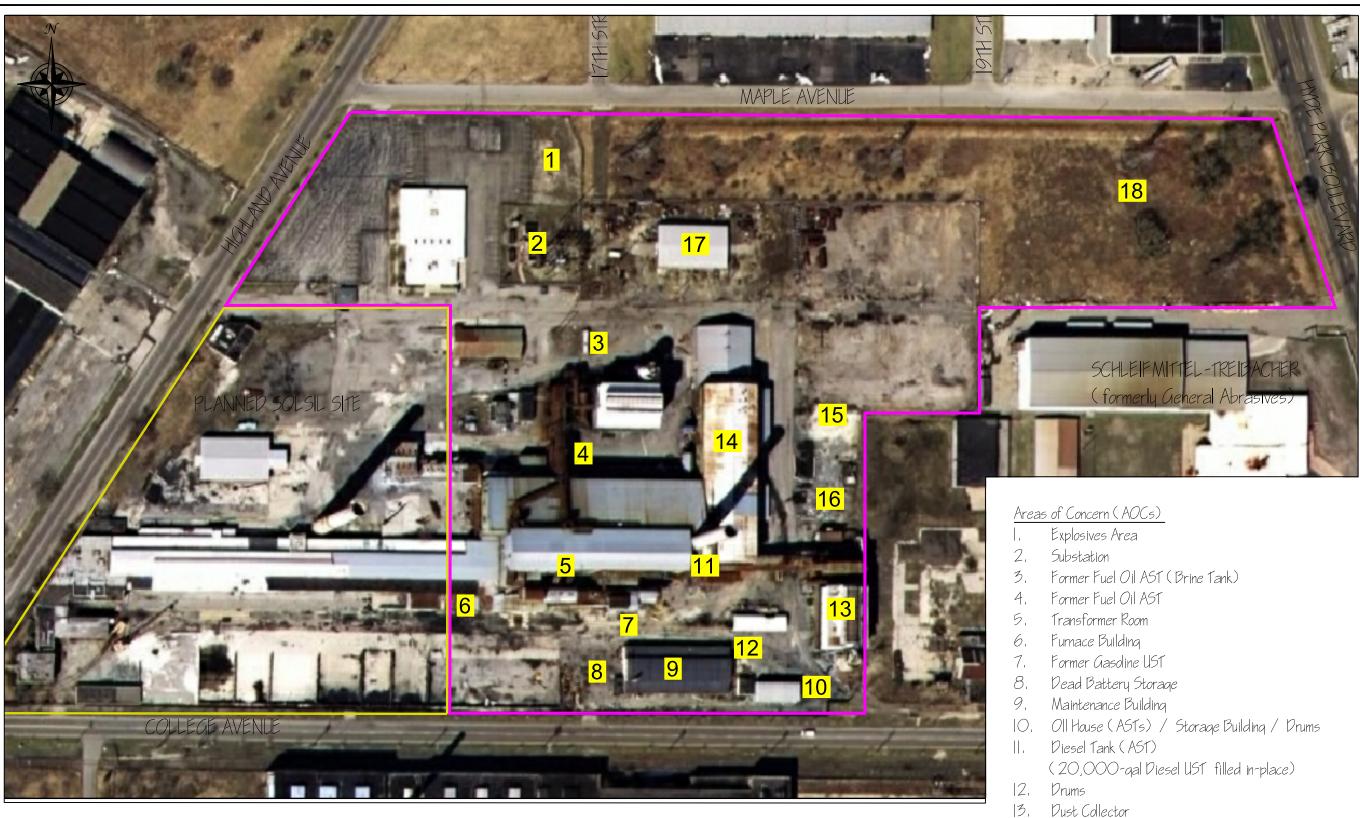
BROWNFIELD CLEANUP PROGRAM APPLICATION

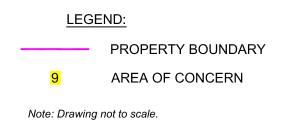
3807 HIGHLAND AVENUE SITE

NIAGARA FALLS, NEW YORK PREPARED FOR GLOBE METALLURGICAL, INC. FIGURE 1-2

DATE: SEPTEMBER 2008

PROJECT NO .: 0170-001-101


Engineering 8


SCIENCE, PLLC

(716) 856-0599

DRAFTED BY: NTM

ILEPATH:

6. Debris Pile 17. Steel Turnings Building 18. Elevated Area / Former SKW Alloys Disposal Area

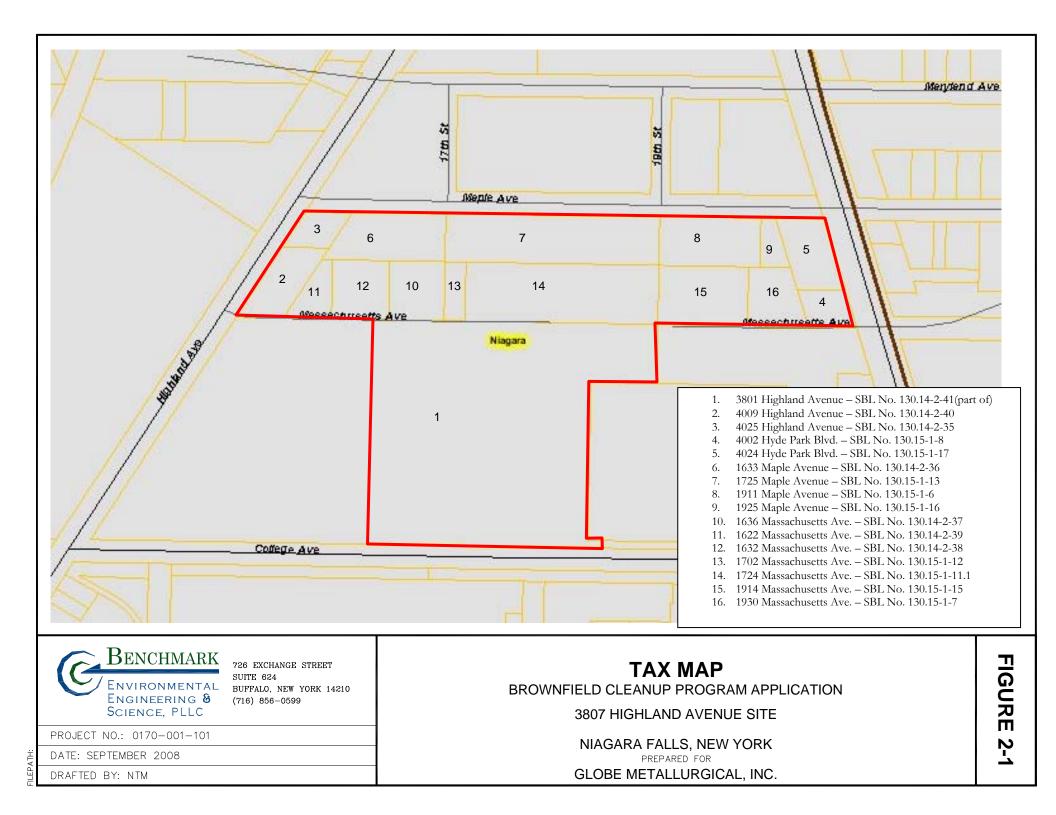
5. Substationr

14. Factory Building / Furnace

BENCHMARK 726 EXCHANGE STREET	4	Science, PLLC
AREAS OF CONCERN BROWNFIELD CLEANUP PROGRAM APPLICATION	3807 HIGHLAND AVENUE SITE	NIAGARA FALLS, NEW YORK PREPARED FOR GLOBE METALLURGICAL, INC.
FIGU	RE	1-3

ATTACHMENT 02

TAX MAP



Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

METES AND BOUNDS DESCRIPTION

The Project Site is comprised of 16 tax parcels as illustrated on Figure 2-1 attached. As the Site is in the process of being re-parceled for the Globe Metallurgical, Inc. project and the planned Solsil, Inc. project an updated metes and bounds description is not yet available. The metes and bounds description of the Project Site will be provided to the NYSDEC upon completion.

ATTACHMENT 03

PROJECT DESCRIPTION & SCHEDULE

Project Description & Schedule

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

PROJECT DESCRIPTION

The Project Site is located in the City of Niagara Falls, Niagara County, New York. It consists of approximately 20.4 acres and contains a former office building, a former factory/furnace building, and several former maintenance and/or storage buildings. The Site was used for heavy industrial manufacturing since at least 1913; most recently the Site was used to manufacture silicon metal and ferrosilicon metal. The Site is currently vacant and has not been in operation since 2003.

The Project Site is located within the City of Niagara Falls Highland Area Redevelopment Plan (the "Plan") area. The Plan seeks to create an environment attractive to new private investment and proposes a series of improvements to the area's street, rail and pedestrian networks. Specifically, the Plan calls for creating a modern, clean, "green" business campus in the vicinity of the Project Site. The Project Site is currently vacant, depressing real estate values, and contamination concerns have precluded reuse. These conditions contribute to neighborhood disinvestment and decline.

Globe Metallurgical, Inc., (the "Applicant") currently owns the property and plans to remediate, construct new facilities and refurbish/redevelop the vacant factory buildings to manufacture metallurgical and chemical-grade silicon metal and silicon-based specialty alloys. The Applicant currently operates successful manufacturing plants in the U.S. (i.e., Ohio, West Virginia, and Alabama), Brazil, and Argentina.

The Applicant anticipates an investment of approximately \$20 million in redevelopment to bring the property back into productive re-use. It is anticipated that approximately 80 new full-time jobs will be created within the first year of operation.

The Project Site is also located within a Federal Renewal Community Zone, a New York State Empire Zone, a New York State Environmental Zone, and a "highly distressed area" as defined under New York General Municipal Law as it has a poverty rate (50%) of at least 20% and an unemployment rate (15%) at least 1.25% times the statewide unemployment rate (which is approximately 7%). As such, the Project Site is located in both a Federal and New York State defined and delineated distressed urban community.

It is important to note that this project has only been made financially possible because of the tax benefits that potentially may be available to the Applicant under the New York State

Project Description & Schedule

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

Brownfield Cleanup Program, the New York State Empire Zone Program, and other benefits to be made available to the applicant by the Niagara County Industrial Development Agency, and by the environmental liability protection afforded to the Applicant under the New York State Brownfield Cleanup Program.

Subsequent to submittal of this BCP application, the Applicant will submit a Remedial Investigation/Interim Remedial Measures (RI/IRM) Work Plan to investigate constituents of concern, to fully characterize the impacts to environmental media (i.e., soil and groundwater) and to immediately address known areas of impact (e.g., abandoned drums, liquid wastes in ASTs, petroleum surface spills). The RI will include advancement of soil borings and collection of soil samples; installation and sampling of groundwater monitoring wells; and sampling and cataloging of storage tanks, drums, and containers. Known areas of concern, and any areas of environmental contamination identified during the RI that can be immediately addressed to protect human health and the environment, will be completed under an IRM approach. Long term remediation and environmental Site management requirements will be evaluated in an Alternatives Analysis Report (AAR), which will be submitted concurrently with the RI/IRM report.

PROJECT SCHEDULE

The environmental engineering and consulting tasks associated with the Brownfield Cleanup Program (BCP) through the completion of RI/IRM actitivities are estimated as follows:

October 2008 – Submit BCP application and RI/IRM Work Plan December 2008 – Obtain notification of BCP program acceptance December-March 2008 – Complete RI/IRM activities April 2009 – Submit RI/IRM/AAR report, Final Engineering Report and Site Management Plan

ATTACHMENT 04

REDEVELOPMENT PLAN MAP

(To Be Determined)

ATTACHMENT 05

PHASE I ENVIRONMENTAL SITE ASSESSMENT REPORT (INCLUDED ELECTRONICALLY)

Benchmark Environmental Engineering & Science, PLLC. 2008. Phase I Environmental Site Assessment Report, 3807 Highland Avenue, Niagara Falls, New York. September.

Phase I Environmental Site Assessment

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

A summary of the Phase I ESA that was completed for the Site is presented below. The Phase I ESA report is provided on the attached CD.

September 2008 – Phase I Environmental Site Assessment

A Phase I Environmental Site Assessment (ESA) of the subject property identified several recognized environmental conditions (RECs), which are described below:

- The Site is a former heavy industrial Site that was used for industrial purposes for approximately 100 years. There are numerous areas of concern on-site, including: a railcar maintenance building, maintenance buildings/areas, machine shops, a former electric shop, current and former oil houses, a former laboratory, former transformer rooms, a factory/furnace building, a waste battery storage area, an explosives area, AST areas, drum storage areas, transformers and electrical substations, and former UST areas.
- The Site is located in a current and historic heavy industrial area. Surrounding sites include active and abandoned heavy industrial properties, such as the former Hazorb/Niagara Vest/Union Carbide Brownfield Cleanup Program site to the south.
- Regulatory search information for the Site indicates historic petroleum storage, petroleum spills, generation of regulated wastes, and an inactive landfill. Several adjacent and nearby properties have documented releases or potential releases of hazardous material and/or petroleum products.

ATTACHMENT 06

PREVIOUS ENVIRONMENTAL INVESTIGATION

September 23, 2008

Mr. Matthew Greene Globe Metallurgical, Inc. 1595 Sparling Road PO Box 157 Beverly, OH 45715

Re: Preliminary Site Investigation Globe Metallurgical and Solsil, Inc. Site 3807 Highland Avenue, Niagara Falls NY

Dear Mr. Greene:

At your request, Benchmark Environmental Engineering and Science, PLLC (Benchmark) has completed a Preliminary Site Investigation for the property addressed at 3807 Highland Avenue, Niagara Falls, New York (see Figure 1). It should be noted this investigation was completed to evaluate the Globe Metallurgical, Inc. redevelopment site (Globe Site) as well as the Solsil, Inc. redevelopment site (Solsil Site).

A description of our approach to the work and the investigation findings are presented below. Areas investigated and discussed within this report are identified on Figure 1.

BACKGROUND

Benchmark performed a Phase I Environmental Site Assessment (ESA) for the subject property that encompasses the Globe Site and Solsil Site in August 2008. The ESA identified several recognized environmental conditions (RECs) related to historic industrial manufacturing, including multiple current and historical underground storage tanks (USTs) and aboveground storage tanks (ASTs), numerous drums, maintenance/repair buildings, former oil houses, former transformer rooms, current/former electrical substations, a former waste battery storage area, and a former smoke stack. Based on the findings of the Phase I ESA, Benchmark recommended a Preliminary Site Investigation to evaluate whether historical operations impacted the site and potentially interfere with future redevelopment efforts.

PRELIMINARY SITE INVESTIGATION

The Investigation generally included the following activities:

Completion of a soil investigation in select areas of the Site. The soil investigation
included soil borings to evaluate potential impacts associated with past heavy
industrial operations, and to provide general characterization of the property.

www.benchmarkees.com

 Collection and analyses of soil samples to determine if impacts, if identified, were present above current New York State Department of Environmental Conservation (NYSDEC) soil cleanup objectives (SCOs).

Installation of temporary monitoring wells and collection of groundwater samples to evaluate groundwater quality was a planned task; however, construction of temporary monitoring wells to the required depth(s) to collect representative groundwater samples was not able to be accomplished using a direct-push drill rig. As such, groundwater samples were not collected during this investigation.

Additional limitations to this investigation were encountered due to installation of utility lines at the Globe Site as well as Globe's request to avoid intrusive work within interior areas. Furthermore, at Globe's request, soil borings could only be completed in areas that were pre-cleared by Globe's utility location contractor prior to intrusive work. Specifically, areas of concern that were not accessible include the factory buildings (including machine shops and transformer rooms), the former oil house where numerous drums, ASTs and surface staining were identified, the area of a suspect vent pipe proximate the oil house, the former 10,000-gallon diesel AST, and subsurface areas beneath existing buildings.

METHODS

The soil investigation involved completion of a soil boring investigation program under the direction of Benchmark's environmental scientist, Mr. Nathan Munley. On August 27, 2008, Benchmark's designated subcontractor, TREC Environmental, mobilized a track-mounted Geoprobe[®] rig, and completed 11 soil borings, identified as SB-1 through SB-11, at various locations across the Site. Soil samples were collected with an approximate 1.5-inch diameter, approximate 48 inch long macro-core sampler. Soil samples were generally collected within each borehole continuously from the ground surface until approximately 12 to 14 feet below the ground surface (fbgs), or until equipment refusal was encountered.

Soil borings SB-1, SB-2, SB-3, surface sample SS-1 and sediment sample STACK-1 were completed on the Solsil Site. Soil borings SB-4 through SB-11 and surface samples SS-2 through SS-4 were completed on the Globe Site. Soil boring and sample locations are shown on Figure 1.

The physical characteristics of all soil samples were classified using the Unified Soil Classification System (USCS) (Visual-Manual Method). Field screening of soil borings for total VOC concentrations was completed using a photoionization detector (PID). PID measurements were recorded in the project field book and are summarized in Table 1.

Representative soil samples were collected from SS-1 through SS-4, STACK-1, and SB-1 through SB-11 for analysis. Specifically, samples were collected and placed in pre-cleaned, laboratory provided sample bottles using dedicated stainless steel sampling tools, and cooled to 4° C in the field, and transported under chain-of-custody command to TestAmerica of

BENCHMARK

Mr. Matthew Greene Globe Metallurgical, Inc.

Amherst, New York for analysis. Select samples were analyzed for Target Compound List (TCL) plus NYSDEC Spill Technology and Remediation Series (STARS) List volatile organic compounds (VOCs), STARS List semi-volatile organic compounds (SVOCs), Resource Conservation and Recovery Act (RCRA) Metals, and polychlorinated biphenyls (PCBs).

FIELD OBSERVATIONS

Globe Site

Soil borings SB-4 through SB-11 and surface samples SS-2 through SS-4 were completed on the Globe Site.

The subsurface geology on the Globe Site was similar to that of the Solsil Site as described above. Similar non-native materials (i.e., ash, coal/coke, slag-like fill, apparent metallic materials) were also noted in the surface of the southeast portion of the Globe Site proximate the factory buildings.

The northeast portion of the Globe site is a reported historic deposit area/landfill. Soil borings SB-10 and SB-11 were advanced in that area of the Globe Site, which is generally characterized as an elevated area of the property with vegetative cover. Soils in this portion of the site were described as a loose silty-sand from the ground surface to approximately one fbgs, with fill-like materials including brick, slag, wood, and rust-colored and gray to black-colored miscellaneous fill to boring terminus (i.e., 8 fbgs at SB-10 and 12 fbgs at SB-11). In the north portion of the Site along the western limits of the former deposit area, gray and green cobbles and boulder-like pieces of consolidated non-native material were noted deposited on the ground surface. The source of that material is not known.

Groundwater was encountered at approximately 12 fbgs on SB-6. A temporary monitoring well was installed at SB-6, but water production was insufficient for sample collection on the day of installation and during subsequent site visits. As such, a groundwater sample was not collected.

A sheen was noted on the core sampler sleeve at SB-6, between 10 - 14 fbgs. Non-native materials (i.e., ash, coal/coke, slag-like fill, apparent metallic materials), similar to those noted on the Solsil Site, were also noted in the surface soils across the southeast portion of the Globe Site proximate the factory buildings. As noted above, gray and green cobbles and boulder-like pieces of consolidated material were noted deposited on the ground surface in the northern area of the Globe Site. Furthermore, tar-like material was noted on the ground surface in the same general area of the Site.

PID readings at the Globe Site ranged from 0 ppm to 88.3 ppm. The highest PID readings were 68.7 ppm at SB-6 (12-14 fbgs) and 88.3 ppm at SB-11 (8-10 fbgs). Petroleum odors were also noted in B-6 from 10 to 14 fbgs. Refer to Table 1 for a summary of PID readings.

Mr. Matthew Greene Globe Metallurgical, Inc.

Solsil Site

Soil borings SB-1, SB-2, SB-3, surface sample SS-1 and sediment sample STACK-1 were completed on the Solsil Site.

In general, the geology of the Solsil Site is described as asphalt, concrete or non-native unconsolidated soil/fill surficial layer, including evidence of ash, coal/coke, slag-like fill, apparent metallic materials, from the ground surface to approximately one foot below ground surface (fbgs) overlaying fill-like material consisting of brick, slag, concrete, and/or wood to approximately two fbgs. Apparent native materials, consisting of brown, silty-clay was encountered at each boring location from approximately 2 fbgs to boring terminus (up to 14 fbgs).

Groundwater was encountered at approximately 7-8 fbgs at boring location SB-1 in the area of the former railcar maintenance building and current location of drums and petroleum staining. The boring was terminated at 8 fbgs where equipment refusal encountered. A temporary monitoring well was installed in an attempt to collect groundwater, but water production was insufficient for sample collection on the day of installation as well as on subsequent site visits. As such, a groundwater sample was not collected.

Visual evidence of petroleum staining was noted within the former railcar maintenance building in the area where sample SS-1 was collected. Non-native materials (i.e., ash, coal/coke, slag-like fill, apparent metallic materials) were noted across the majority of the surface of the Solsil Site that was not covered by buildings. Gray to dark black ash and silty material, with prominent metallic material intermixed, was noted within and around the former stack located on the north side of the factory building on the Solsil Site. A sample designated as STACK-1 was collected to characterize that material.

PID readings ranged from 23.8 parts per million (ppm) to 533 ppm in the borings completed at the Solsil Site. The highest readings from each soil boring were 283 ppm at SB-1 (6-8 fbgs), 533 ppm at SB-2 (4-8 fbgs) and 201 ppm at SB-3 (0-2 fbgs) Refer to Table 1 for a summary of PID readings. Odors were also noted in boring location SB-2, which was advanced in the area of a former oil house.

SAMPLING AND ANALYSIS

Representative soil samples were collected from SS-1, STACK-1, and SB-1 through SB-3 at the Solsil Site and from SB-4 through SB-11 and surface samples SS-2 through SS-4 from the Globe Site. Select samples were analyzed for VOCs, SVOCs, metals and/or PCBs. Elevated concentrations of VOCs, SVOCs, metals and PCBs were detected in most of the soil boring locations, including some SVOC and metal analytes above Part 375 Restricted-Industrial SCOs. The analytical results are presented on Table 2 and further discussed below. The analytical data package is included in Attachment 1.

SUMMARY AND CONCLUSIONS

- Arsenic was detected at 666 ppm, well above its Industrial SCO of 16 ppm, in the sample collected from STACK-1. Other metals detected in that sample included barium (1,250 ppm), cadmium (30 ppm) and lead (1,900 ppm), which are present above Commercial SCOs, as well as chromium (101 ppm) and selenium (55 ppm). Metals that were present in SS-1 include arsenic (15.3 ppm), barium (447 ppm), cadmium (9.3 ppm), chromium (245 ppm), lead (629 ppm) and mercury (0.4 ppm). Another smoke stack, located on the Globe portion of the property, was not accessible for sampling during this investigation. That stack likely contains similar constituents of concern as identified in the STACK-1 sample.
- Based on our experience at other sites with metals contamination, concentrations of arsenic, cadmium, chromium and lead are present in the soil at the Globe Site and Solsil Site at concentrations that may require handling of soil and/or sediment as hazardous waste if excavated and removed from the site during redevelopment activities.
- Benzo(a)pyrene was detected above industrial SCOs for SVOCs in SS-1 and SB-3. Numerous SVOCs were also detected at concentrations that exceeded Unrestricted SCOs.
- Sheening, elevated PID readings and odors were noted in boring location SB-6. Elevated PID reading and odors were noted in boring location SB-2. Additional soil sampling and installation of groundwater monitoring wells is recommended in these areas to determine the extent of impacts.
- Aboveground storage tanks at the Globe Site that are not intended to be utilized in the future should be drained, cleaned and removed from the Site. Liquid and/or sediment contents should be sampled and properly characterized for off-Site disposal.
- Abandoned drums on the Globe Site and Solsil Site will require sampling and characterization prior to off-Site disposal. Handling, transportation and off-Site disposal of drums and their contents should be conducted in accordance with applicable federal, state and/or local regulations.
- Areas of obvious petroleum surface staining on the Solsil Site and Globe Site should be cleaned and/or excavated to the extents of the petroleum-impacted surfaces and/or underlying soil. Handling, transportation and off-Site disposal of impacted soil or other materials (e.g., concrete) should be conducted in accordance with applicable federal, state and/or local regulations.
- The gray and green-colored material as well as the tar-like material noted in the northern portion of the Globe site should be sampled and properly characterized. Based on the 100-year historic use of the Globe and Solsil Sites for metal alloy manufacturing and steel finishing, chromium or other metals waste may have been generated on-Site. Based on our experience at other historic industrial sites in Niagara Falls, green-colored consolidated wastes encountered at other industrial sites contained elevated concentrations of chromium. The tar-like substance may contain elevated concentrations of VOCs and/or PAHs

Mr. Matthew Greene Globe Metallurgical, Inc.

- Based on this limited preliminary investigation, analytical results and field observations suggest historic releases from previous industrial operations at both the Globe Site and Solsil Site. However, we recommend a more thorough investigation of both Sites to better define the extents of contaminants in all media, including groundwater, subsurface soil, surface soil, sediments, solid/sediment contents of drums and liquid contents of ASTs and drums. Interior building areas, including former machine shops, transformer rooms and maintenance areas should also be sampled prior to any planned demolition activities.
- Based on the approximate 100-year historic heavy industrial use of the site, significant recognized environmental concerns related to the historic Site use, the confirmed presence of contaminants at concentrations that require mitigation, and redevelopment challenges that are involved in redevelopment of these types of properties, both redevelopment projects (i.e., the Globe Site and the Solsil Site) appear to be good candidates for the New York Brownfield Cleanup Program.

Thank you for allowing Benchmark to provide environmental consulting services to Globe Metallurgical, Inc. Please contact us if you have any questions or require additional information.

Sincerely, Benchmark Environmental Engineering & Science, PLLC

0/

Michael Lesakowski Project Manager

Att.

C: File 0170-001-100

TABLES

TABLE 1

SUMMARY OF SOIL ANALYTICAL RESULTS

GLOBE METALLURGICAL, INC.

3807 HIGHLAND AVENUE SITE

NIAGARA FALLS, NEW YORK

Depth					SOIL	IONS							
(fbgs)	SB-1 (ppm)	SB-2 (ppm)	SB-3 (ppm)	SB-4 (ppm)	SB-5 (ppm)	SB-6 (ppm)	SB-7 (ppm)	SB-8 (ppm)	SB-9 (ppm)	SB-10 (ppm)	SB-11 (ppm)		
(0 - 2)	23.8	28.3	201.0	9.1	1.1	0.0	0.3	0.0	12.2	34.1	15.7		
(2 - 4)	23.0	436.0	201.0	7.7	0.8	0.0	0.3	0.0	12.2	34.1	15.7		
(4 - 6)	58.7	533.0		9.1	0.0	0.0	0.2		4.4	57.1	47.1		
(6 - 8)	283.0	555.0		3.1	0.0	0.0	0.2		4.4	57.1	47.1		
(8 - 10)		401.0			0.0	0.2	0.9				88.3		
(10-12)		183.0			0.0	32.8					13.2		
(12-14)		53.8	-		-	68.7							

Note:

Highest recorded PID readings within a given depth range shown

NA - Not Applicable

19.5 PID readings above 5 ppm

"--" = sample was not collected at that depth

TABLE 2 SUMMARY OF SOIL ANALYTICAL RESULTS GLOBE METALLURGICAL, INC. 3807 HIGHLAND AVENUE SITE NIAGARA FALLS, NEW YORK

							Sample I	Locations							Unrestricted	Restricted SCOs	Restricted SCOs
Parameter ¹	SS-1	SS-2	Stack-1	SB-1 (5.5-7.5)	SB-2 (4-8)	SB-3 (0-3)	SB-4 (4-6)	SB-5 (4-8)	SB-6 (10-14)	SB-7 (4-8)	SB-8 (0-4)	SB-9 (0-4)	SB-10 (4-7)	SB-11 (8-10)	SCOs (ppm)	Commercial (ppm)	Industrial (ppm)
TCL Volatile Organic Compounds (VOCs) +	STARS (VO		kg ⁴														
Acetone				0.029 B	0.02 BJ	0.16 B			0.02 BJ				ND	ND	0.05	500	1000
2-Butanone (MEK)				ND	ND	0.016 J			ND				ND	ND			
Carbon disulfide				0.003 J	0.003 J	0.004 J			0.003 J				0.002 J	0.002 J			
Isopropylbenzene (Cumene)				ND	ND	ND			0.001 J				ND	ND			
Methylcyclohexane				ND	ND	ND			0.003 J				ND	ND			
Methylene chloride				0.011 B	0.015 B	0.008 B			0.014 B				0.014 B	0.012 B	0.05	500	1000
Toluene				ND	ND	ND			0 BJ				ND	ND	0.7	500	1000
n-Propylbenzene				ND	ND	ND			0.003 J				ND	ND	3.9	500	1000
p-Cymene (p-isopropyltoluene)				ND	ND	ND			0.001 J				ND	ND			
1,2,4-Trimethylbenzene				ND	0.004 J	ND			ND				ND	ND	3.6	190	380
1,3,5-Trimethylbenzene				ND	0.003 J	ND			ND				ND	ND	8.4	190	380
n-Butylbenzene				ND	ND	ND			0.008				ND	ND	12	500	1000
sec-Butylbenzene				ND	ND	ND			0.004 J				ND	ND	11	500	1000
Total TCL VOCs + STARS VOCs				0.043	0.043	0.188			0.058				0.016	0.014	11	500	1000
STARS Semi-Volatile Organic Compounds	(SVOCs) - m	g/kg ⁴				•			•				•	•			
Acenaphthene	ND			ND	ND	0.55 J		ND	0.14 J	0.068 J	ND	ND	ND	0.11 J	20	500	1000
Acenaphthylene	ND			ND	ND	0.18 J		ND	0.082 J	0.082 J	ND	ND	ND	ND	100	500	1000
Anthracene	ND			0.015 J	ND	0.55 J		ND	0.13 J	0.2 J	ND	ND	0.11 J	0.16 J	100	500	1000
Benzo(a)anthracene	0.7 J			ND	0.009 J	1.4		ND	ND	0.7 J	ND	ND	0.35 J	0.56 J	1	5.6	11
Benzo(b)fluoranthene	1.8 J			ND	0.008 J	2.3		ND	ND	0.87 J	ND	ND	0.5 J	0.82 J	1	5.6	11
Benzo(k)fluoranthene	1.2 J			ND	0.021 J	0.72 J		ND	ND	0.29 J	ND	0.019 J	0.21 J	0.29 J	0.8	56	110
Benzo(g,h,i)perylene	0.65 J			ND	ND	1.6		ND	ND	0.47 J	ND	ND	0.21 J	0.31 J	100	500	1000
Benzo(a)pyrene	1.3 J			ND	ND	2.1		ND	ND	0.66 J	ND	ND	0.38 J	0.6 J	1	1	1.1
Chrysene	2.2 BJ			0.02 BJ	0.02 BJ	1.5 B		0.02 BJ	0.13 BJ	0.68 BJ	0.03 BJ	0.02 BJ	0.44 BJ	0.71 BJ	1	56	110
Dibenzo(a,h)anthracene	ND			ND	ND	0.35 J		ND	ND	0.15 J	ND	ND	0.073 J	0.11 J	0.33	0.56	1.1
Fluoranthene	1.3 J			0.015 J	0.013 J	2.8		ND	0.048 J	1.3	0.009 J	0.01 J	0.5 J	1.1	100	500	1000
Fluorene	ND			ND	ND	0.39 J		ND	0.3 J	ND	ND	ND	0.043 J	0.064 J	30	500	1000
Indeno(1,2,3-cd)pyrene	0.6 J			ND	ND	1.4		ND	ND	0.41 J	ND	ND	0.22 J	0.27 J	0.5	5.6	11

TABLE 2 SUMMARY OF SOIL ANALYTICAL RESULTS GLOBE METALLURGICAL, INC. 3807 HIGHLAND AVENUE SITE NIAGARA FALLS, NEW YORK

1							Sample I	Locations							Unrestricted	Restricted SCOs	Restricted SCOs
Parameter ¹	SS-1	SS-2	Stack-1	SB-1 (5.5-7.5)	SB-2 (4-8)	SB-3 (0-3)	SB-4 (4-6)	SB-5 (4-8)	SB-6 (10-14)	SB-7 (4-8)	SB-8 (0-4)	SB-9 (0-4)	SB-10 (4-7)	SB-11 (8-10)	SCOs (ppm)	Commercial (ppm)	Industrial (ppm)
2-Methylnaphthalene	1.5 J			ND	ND	0.22 J		ND	0.27 J	0.052 J	ND	ND	ND	ND			
Naphthalene	0.78 J			ND	ND	0.33 J		ND	ND	0.069 J	ND	ND	0.04 J	0.072 J	12	500	1000
Phenanthrene	2 BJ			0.02 BJ	0.02 BJ	2.1 B		0.01 BJ	0.68 BJ	0.7 BJ	0.02 BJ	0.02 BJ	0.33 BJ	0.74 BJ	100	500	1000
Pyrene	1.6 J			0.016 J	0.011 J	2.6		ND	0.085 J	1 J	ND	ND	0.4 J	0.84 J	100	500	1000
Total STARS SVOCs	15.63			0.081	0.097	21.09		0.03	1.865	7.701	0.049	0.065	3.806	6.756			
RCRA Metals - mg/kg ⁴																	
Arsenic	15.3	ND	666	3.7	6.8	11.9	3	2.9	2.4	14.1	4.5	ND	10.5	11.2	13	16	16
Barium	447	88.7	1250	75.8	290	77.6	36.6	63.6	22	375	174	20.8	94	111	350	400	10,000
Cadmium	9.3	0.8	30.3	ND	0.86	1.2	ND	ND	1.8	1.2	0.29	1.6	1.3	1.5	2.5	9.3	60
Chromium	245	17.1	101	12.8	692	105	11.3	15.7	15.6	830	30.2	15.2	310	483	30	1,500	6,800
Lead	629	47.7	1900	5.9	212	74.6	3	5.2	177	168	10.9	52.4	409	508	63	1,000	3,900
Mercury	0.4	1.2	0.043	0.043	0.095	ND	ND	ND	0.048	ND	ND	0.23	0.036	0.071	0.18	2.8	5.7
Selenium	ND	ND	55.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	1,500	6,800
Polychlorinated Biphenyls (PCBs) - mg/kg ⁴																	
Aroclor 1254	0.63	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	1	25
Aroclor 1260	ND	ND	ND	ND	ND	0.84	ND	ND	ND	ND	ND	ND	ND	ND	0.1	1	25
Total PCBs	0.63					0.84									0.1	1	25

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. Values per 6 NYCRR Part 375 NYSDEC Soil Cleanup Objectives .

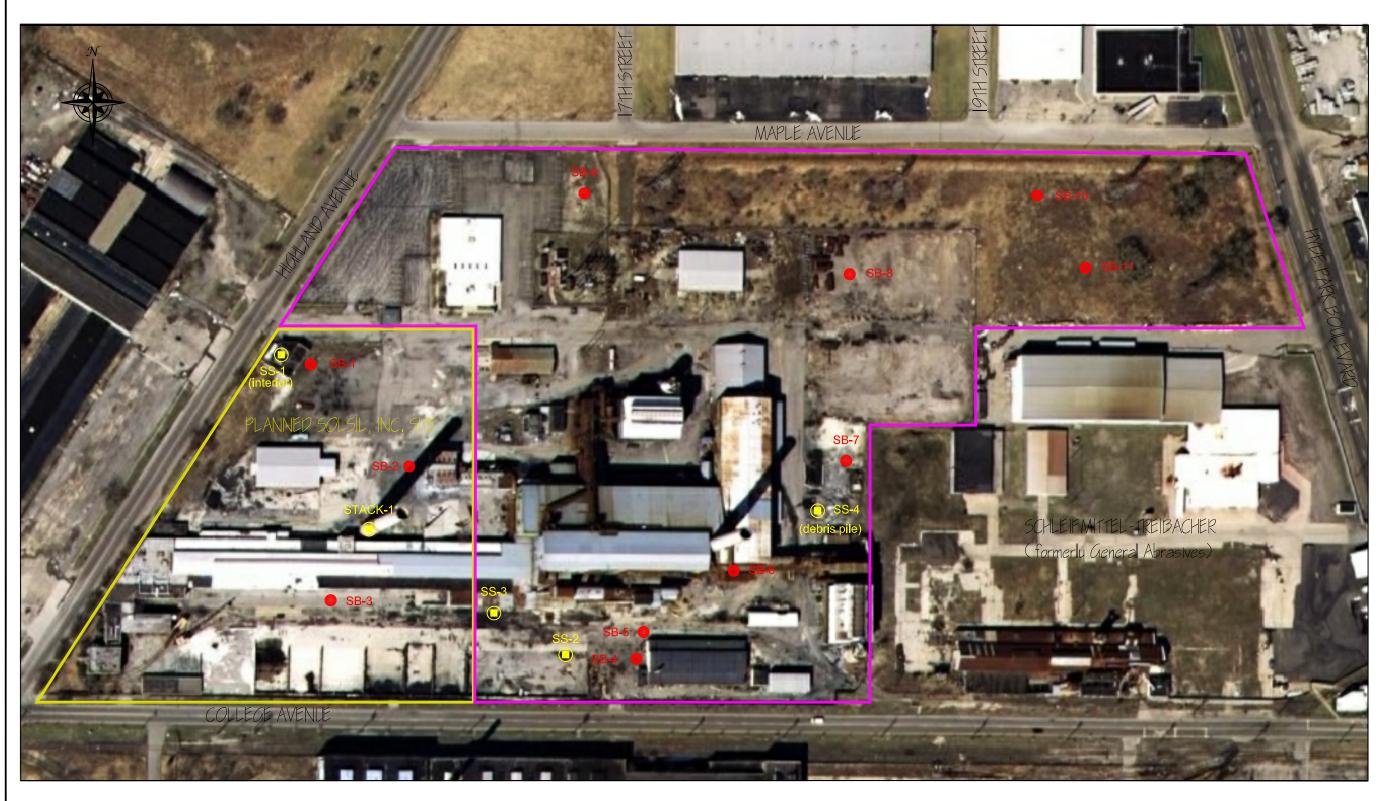
3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparison to SCOs.

Definitions:

ND = Parameter not detected above laboratory detection limit.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was detected in the associated blank as well as in the sample. Value is above the action level for consideration as being external contamination.

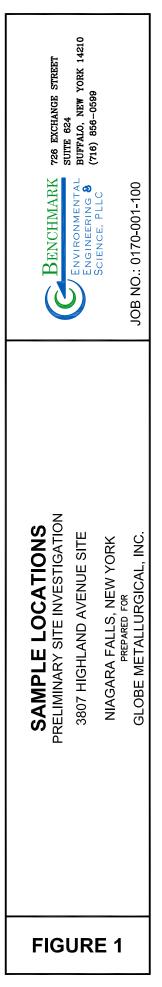

= Ex
= Ex
= Ex

= Exceeds Unrestricted SCOs

= Exceeds Commercial SCOs

Exceeds Industrial SCOs

FIGURES



LEGEND:

- PROPERTY BOUNDARY (GLOBE)PROPERTY BOUNDARY (SOLSIL)
- SS-1
 SURFACE SAMPLE LOCATION
- SB-1 SOIL BORING LOCATION

NOT TO SCALE

ATTACHMENT 1

Laboratory Analytical Results

Benchmark Globe Metallurgical BENCHMARK-SOIL-SW8463 8270-L PAHS ONLY

Rept:	AN1	246
-------	-----	-----

Client ID Job No Lab ID Sample Date		SS-1 A08-A597 08/18/2008	A8A59701						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	ND	11000	NA		NA	ŀ	NA	
Acenaphthylene	UG/KG	ND	11000	NA		NA		NA	
Anthracene	UG/KG	ND	11000	NA		NA		NA	
Benzo(a)anthracene	UG/KG	700 J	11000	NA		NA		NA	
Benzo(b)fluoranthene	UG/KG	1800 J	11000	NA		NA		NA	
Benzo(k)fluoranthene	UG/KG	1200 J	11000	NA		NA		NA	
3enzo(ghi)perylene	UG/KG	650 J	11000	NA		NA		NA	
Benzo(a)pyrene	UG/KG	1300 J	11000	NA		NA		NA	
Chrysene	UG/KG	2200 BJ	11000	NA		NA		NA	
ibenzo(a,h)anthracene	UG/KG	ND	11000	NA		NA		NA	
Fluoranthene	UG/KG	1300 J	11000	NA		NA		NA	
Fluorene	UG/KG	ND	11000	NA		NA		NA	
Indeno(1,2,3-cd)pyrene	UG/KG	600 J	11000	NA		NA		NA	
2-Methylnaphthalene	UG/KG	1500 J	11000	NA		NA		NA	
Naphthalene	UG/KG	780 J	11000	NA		NA		NA	1
Phenanthrene	UG/KG	2000 BJ	11000	NA		NA		NA	
Pyrene	UG/KG	1600 J	11000	NA		NA		NA	
IS/SURROGATE(S)									
1,4-Dichlorobenzene-D4	%	83	50-200	NA		NA		NA	
Naphthalene-D8	%	88	50-200	NA		NA		NA	
Acenaphthene-D10	%	90	50-200	NA		NA		NA	
Phenanthrene-D10	.%	9 7	50-200	NA		NA		NA	
Chrysene-D12	%	118	50-200	NA		NA		NA	
Perylene-D12	%	149	50-200	NA		NA		NA NA	
Nitrobenzene-D5	%	97	35-120	NA		NA		NA	
2-Fluorobiphenyl	%	83	43-120	NA		NA		NA	
p-Terphenyl-d14	%	82	51-125	NA		NA		NA	
Phenol-D5	%	90	38-120	NA		NA		NA	
2-Fluorophenol	%	76	30-120	NA		NA		NA	
2,4,6-Tribromophenol	%	100	46-129	NA		NA		NA	

.

.....

Benchmark Globe Metallurgical METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date		SS-1 A08-A597 08/18/2008	A8A59701						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/KG	ND	210	NA		NA		NA	
Aroclor 1221	UG/KG	ND	210	NA		NA		NA	
Aroclor 1232	UG/KG	ND	210	NA		NA		NA	
Aroclor 1242	UG/KG	ND	210	NA		NA		NA	
Aroclor 1248	UG/KG	ND	210	NA		NA		NA	
Aroclor 1254	UG/KG	630	210	NA		NA		NA	
Aroclor 1260	UG/KG	ND	210	NA		NA		NA	
SURROGATE(S)		· · · · · · · · · · · · · · · · · · ·	·····	·····		······································		<u> </u>	+
Cetrachloro-m-xylene	% (100	35-134	NA		NA		NA	
Decachlorobiphenyl	%	270 *	34-148	NA		NA		NA	

,

TestAmerica Lab

Rept: AN1246

Benchmark Globe Metallurgical BENCHMARK - SW8463 RCRA METALS - S

Rept: AN1246

Client ID Job No Lab ID Sample Date		SS-1 A08-A597 08/18/2008	A8A59701	SS-2 A08-A597 08/18/2008	A8A59702	STACK-1 A08-A597 08/18/2008	A8A59705		
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
rsenic - Total	MG/KG	15.3	2.7	ND	5.2	666	2.4	NA	
Barium - Total	MG/KG	447	0.67	88.7	1.3	1250	3.0	NA	
admium - Total	MG/KG	9.3	0.27	0.80	0.52	30.3	0.24	NA	
hromium - Total	MG/KG	245	0.67	17.1	1.3	101	0.60	NA	
.ead - Total	MG/KG	629	1.3	47.7	2.6	1900	1.2	NA	
lercury - Total	MG/KG	0.40	0.027	1.2	0.052	0.043	0.027	NA	
Selenium - Total	MG/KG	ND	5.3	ND	10.4	55.3	4.8	NA	1
Silver - Total	MG/KG	ND	0.67	ND	1.3	ND	0.60	NA	

. .

.

Benchmark Globe Metallurgical METHOD 8260 - TCL VOLATILE ORGANICS+STARS

Rept: AN124

Client ID Job No Lab ID Sample Date		SB-1 (5.5-7.5) A08-A609 08/27/2008	A8A60901	SB-2 (4-8) A08-A609 08/27/2008	A8A60902	SB-3 (0-3) A08-A609 08/27/2008	A8A60903	SB-6 (10-14) A08-A609 08/27/2008	A8A60906
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	29 в	29	18 BJ	29	160 B	29	19 BJ	28
Benzene	UG/KG	ND	6	ND	6	ND	6	ND	6
Bromodichloromethane	UG/KG	ND	6	ND	6	ND	6	ND	6
romoform	UG/KG	ND	6	ND	6	ND	6	ND	6
Bromomethane	UG/KG	ND	6	ND	6	ND	6	ND	6
2-Butanone	UG/KG	ND	29	ND	29	16 J	29	ND	28
Carbon Disulfide	UG/KG	3 J	6	3 J	6	4 J	6	3 J	6
Carbon Tetrachloride	UG/KG	ND	6	ND	6	ND	6	ND	6
Chlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
Chloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
Chloroform	UG/KG	ND	6	ND	6	ND	6	ND	6
Chloromethane	UG/KG	ND	6	ND	6	ND	6	ND	6
Cyclohexane	UG/KG	ND	6	ND	6	ND	6	ND	6
,2-Dibromoethane	UG/KG	ND	6	ND	6	ND	6	ND	6
)ibromochloromethane	UG/KG	ND	6	ND	6	ND	6	ND	6
.2-Dibromo-3-chloropropane	UG/KG	ND	6	ND	6	ND	6	ND	6
1.2-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
.3-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
1.4-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
)ichlorodifluoromethane	UG/KG	ND	6	ND	6	ND	6	ND	6
1,1-Dichloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
1,2-Dichloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
,1-Dichloroethene	UG/KG	ND	6	ND	6	ND	6	ND	6
cis-1,2-Dichloroethene	UG/KG	ND	6	ND	6	ND	6	ND	6
	UG/KG	ND	6	ND	6	ND	6	ND	6
trans-1,2-Dichloroethene	UG/KG	ND	6	ND	6	ND	6	ND	6
,2-Dichloropropane			6	ND	6	ND	6	ND	6
cis-1,3-Dichloropropene	UG/KG	ND	-		_	ND	6	ND	6
trans-1,3-Dichloropropene	UG/KG	ND	6	ND	6	ND	6	ND	6
thylbenzene	UG/KG	ND	6	ND ND	6 29	ND ND	29	ND	28
2-Hexanone	UG/KG	ND	29		6	ND ND	6	טא 1 J	6
sopropylbenzene	UG/KG	ND	6	ND			6	ND ND	6
lethyl acetate	UG/KG	ND	6	ND	6	ND	6		6
lethylcyclohexane	UG/KG	ND	6	ND	6	ND	-	3 J 14 B	0 6
Methylene chloride	UG/KG	11 B	6	15 B	6	8 B	6		28
-Methyl-2-pentanone	UG/KG	ND	29	ND	29	ND	29	ND	
ethyl-t-Butyl Ether (MTBE)	UG/KG	ND	6	ND	6	ND	6	ND	6
tyrene	UG/KG	ND	6	ND	6	ND	6	ND	6
,1,2,2-Tetrachloroethane	UG/KG	ND	6	ND	6	ND	6	ND a	6
ſetrachloroethene	UG/KG	ND	6	ND	6	ND	6	ND	6
oluene	UG/KG	ND	6	ND	6	ND	6	2 BJ	6
1,2,4-Trichlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
1,1,1-Trichloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
1,2-Trichloroethane	UG/KG	ND	6	ND	6	ND	6	ND ND	6

...

Benchmark Globe Metallurgical METHOD 8260 - TCL VOLATILE ORGANICS+STARS

Client ID Job No Lab ID Sample Date		SB-1 (5.5-7.5) A08-A609 08/27/2008) A8A60901	SB-2 (4-8) A08-A609 08/27/2008	A8A60902	SB-3 (0-3) A08-A609 08/27/2008	A8A60903	SB-6 (10-14) A08-A609 08/27/2008	A8A60906
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes o-Xylene m/p-Xylenes n-Propylbenzene p-Cymene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND ND ND ND ND ND ND ND N	6 6 11 17 6 11 6 6 6 6 6 6	ND ND ND ND ND ND ND ND ND ND ND ND ND	6 6 12 18 6 12 6 6 6 6 6 6 6 6	ND ND ND ND ND ND ND ND ND ND ND ND ND N	6 6 12 17 6 12 6 6 6 6 6 6	ND ND ND ND ND ND ND ND ND ND ND ND ND N	6 6 11 17 6 11 6 6 6 6 6 6
IS/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % %	100 100 98 111 110 89	50-200 50-200 50-200 71-125 72-126 61-136	94 92 91 112 110 93	50-200 50-200 50-200 71-125 72-126 61-136	96 97 91 114 110 91	50-200 50-200 50-200 71-125 72-126 61-136	100 99 100 112 112 93	50-200 50-200 50-200 71-125 72-126 61-136

;

Rept: AN1246

Benchmark Globe Metallurgical BENCHMARK-SOIL-SW8463 8270-L PAHS ONLY

Rept: AN1246

Client ID Job No Lab ID Sample Date		SB-1 (5.5-7.5) A08-A609 08/27/2008	A8A60901	SB-2 (4-8) A08-A609 08/27/2008	A8A60902	SB-3 (0-3) A08-A609 08/27/2008	A8A60903	SB-4 (4-6) A08-A609 08/27/2008	A8A60904
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	ND	190	ND	200	550 J	1100	ND	99 0
Acenaphthylene	UG/KG	ND	190	ND	200	180 J	1100	ND	990
Anthracene	UG/KG	15 J	190	ND	200	550 J	1100	ND	990
Benzo(a)anthracene	UG/KG	ND	190	9 J	200	1400	1100	ND	990
Benzo(b)fluoranthene	UG/KG	ND	190	8 J	200	2300	1100	ND	990
Benzo(k)fluoranthene	UG/KG	ND	190	21 J	200	720 J	1100	ND	990
Benzo(ghi)perylene	UG/KG	ND	190	ND	200	1600	1100	ND	990
Benzo(a)pyrene	UG/KG	ND	190	ND	200	2100	1100	ND	99 0
Chrysene	UG/KG	17 BJ	190	16 BJ	200	1500 в	1100	94 BJ	990
Dibenzo(a,h)anthracene	UG/KG	ND	190	ND	200	350 J	1100	ND	990
Fluoranthene	UG/KG	15 J	190	13 J	200	2800	1100	ND	990
Fluorene	UG/KG	ND	190	ND	200	390 J	1100	ND	990
Indeno(1,2,3-cd)pyrene	UG/KG	ND	190	ND	200	1400	1100	ND	990
2-Methylnaphthalene	UG/KG	ND	190	ND	200	220 J	1100	ND	990
Naphthalene	UG/KG	ND	190	ND	200	330 J	1100	ND	990
Phenanthrene	UG/KG	18 BJ	190	19 BJ	200	2100 B	1100	ND	990
Pyrene	UG/KG	16 J	190	11 J	200	2600	1100	ND	990
IS/SURROGATE(S)	<u> </u>						<u> </u>		
1,4-Dichlorobenzene-D4	%	87	50-200	94	50-200	83	50-200	99	50-200
Naphthalene-D8	%	89	50-200	94	50-200	86	50-200	103	50-200
Acenaphthene-D10	%	88	50-200	95	50-200	87	50-200	103	50-200
Phenanthrene-D10	%	78	50-200	79	50-200	93	50-200	91	50-200
Chrysene-D12	%	86	50-200	76	50-200	96	50-200	98	50-200
Perylene-D12	%	94	50-200	81	50-200	120	50-200	102	50-200
Nitrobenzene-D5	%	80	35-120	80	35-120	68	35-120	68	35-120
2-Fluorobiphenyl	%	79	43-120	74	43-120	79	43-120	66	43-120
p-Terphenyl-d14	%	88	51-125	89	51-125	94	51-125	79	51-125
Phenol - D5	%	81	38-120	76	38-120	70	38-120	68	38-120
2-Fluorophenol	%	68	30-120	66	30-120	54	30-120	58	30-120
2,4,6-Tribromophenol	%	98	46-129	95	46-129	87	46-129	72	46-129

,

Benchmark Globe Metallurgical BENCHMARK-SOIL-SW8463 8270-L PAHS ONLY

Rept: AN1246

Client ID Job No Lab ID Sample Date		SB-5 (4-8) A08-A609 08/27/2008	A8A60905	SB-6 (10-14) A08-A609 08/27/2008	A8A60906	SB-7 (4-8) A08-A609 08/27/2008	A8A60907	SB-8 (0-4) A08-A609 08/27/2008	A8A60908
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	ND	210	140 J	930	68 J	1100	ND	210
Acenaphthylene	UG/KG	ND	210	82 J	930	82 J	1100	ND	210
Anthracene	UG/KG	ND	210	130 J	930	200 J	1100	ND	210
Benzo(a)anthracene	UG/KG	ND	210	ND	930	700 J	1100	ND	210
Benzo(b)fluoranthene	UG/KG	ND	210	ND	930	870 J	1100	ND	210
Benzo(k)fluoranthene	UG/KG	ND	210	ND	930	290 J	1100	ND	210
Benzo(ghi)perylene	UG/KG	ND	210	ND	930	470 J	1100	ND	210
Benzo(a)pyrene	UG/KG	ND	210	ND	930	660 J	1100	ND	210
Chrysene	UG/KG	20 BJ	210	130 BJ	930	680 BJ	1100	25 BJ	210
Dibenzo(a,h)anthracene	UG/KG	ND	210	ND	930	150 J	1100	ND	210
Fluoranthene	UG/KG	ND	210	48 J	930	1300	1100	9 J	210
Fluorene	UG/KG	ND	210	300 J	930	ND	1100	ND	210
Indeno(1,2,3-cd)pyrene	UG/KG	ND	210	ND	930	410 J	1100	ND	210
2-Methylnaphthalene	UG/KG	ND	210	270 J	930	52 J	1100	ND	210
Naphthalene	UG/KG	ND	210	ND	930	69 J	1100	ND	210
Phenanthrene	UG/KG	10 BJ	210	680 BJ	930	700 BJ	1100	15 BJ	210
Pyrene	UG/KG	ND	210	85 J	930	1000 J	1100	ND	210
IS/SURROGATE(S)									
1,4-Dichlorobenzene-D4	%	91	50-200	89	50-200	88	50-200	91	50-200
Naphthalene-D8	%	93	50-200	89	50-200	93	50-200	93	50-200
Acenaphthene-D10	%	93	50-200	92	50-200	95	50-200	91	50-200
Phenanthrene-D10	%	80	50-200	94	50-200	103	50-200	82	50-200
Chrysene-D12	%	88	50-200	99	50-200	104	50-200	92	50-200
Perylene-D12	%	92	50-200	120	50-200	129	50-200	104	50-200
Nitrobenzene-D5	%	73	35-120	82	35-120	75	35-120	80	35-120
2-Fluorobiphenyl	%	69	43-120	81	43-120	74	43-120	78	43-120
p-Terphenyl-d14	%	86	51-125	90	51-125	84	51-125	88	51-125
Phenol-D5	%	73	38-120	79	38-120	78	38-120	79	38-120
2-Fluorophenol	%	64	30-120	66	30-120	67	30-120	72	30-120
2,4,6-Tribromophenol	%	88	46-129	86	46-129	77	46-129	95	46-129

1

Benchmark Globe Metallurgical BENCHMARK-SOIL-SW8463 8270-L PAHS ONLY

Rept:	AN 1	246
-------	------	-----

Client ID Job No Lab ID Sample Date		SB-9 (0-4) A08-A609 08/27/2008	A8A60909						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	ND	210	NA		NA		NA	1
Acenaphthylene	UG/KG	ND	210	NA		NA		NA	
Anthracene	UG/KG	ND	210	NA		NA		NA	
Benzo(a)anthracene	UG/KG	ND	210	NA		NA		NA	
Benzo(b)fluoranthene	UG/KG	ND	210	NA		NA		NA	
Benzo(k)fluoranthene	UG/KG	19 J	210	NA		NA		NA	
Benzo(ghi)perylene	UG/KG	ND	210	NA		NA		NA	
Benzo(a)pyrene	UG/KG	ND	210	NA		NA		NA	
Chrysene	UG/KG	21 BJ	210	NA		NA		NA	
Dibenzo(a,h)anthracene	UG/KG	ND	210	NA		NA		NA	
Fluoranthene	UG/KG	10 J	210	NA		NA		NA	
Fluorene	UG/KG	ND	210	NA		NA NA		NA	
Indeno(1,2,3-cd)pyrene	UG/KG	ND	210	NA		NA		NA	
2-Methylnaphthalene	UG/KG	ND	210	NA		NA		NA	
Naphthalene	UG/KG	ND	210	NA		NA		NA	
Phenanthrene	UG/KG	15 BJ	210	NA		NA		NA	
Pyrene	UG/KG	ND	210	NA		NA		NA	
IS/SURROGATE(S)									
1,4-Dichlorobenzene-D4	%	89	50-200	NA	1 I	NA	(NA	
Naphthalene-D8	%	89	50-200	NA		NA		NA	
Acenaphthene-D10	%	89	50-200	NA		NA		NA	
Phenanthrene-D10	%	78	50-200	NA		NA		NA	
Chrysene-D12	%	87	50-200	NA		NA		NA	
Perylene-D12	%	97	50-200	NA		NA		NA	
Nitrobenzene-D5	%	78	35-120	NA		NA		NA	
2-Fluorobiphenyl	%	74	43-120	NA		NA		NA	
p-Terphenyl-d14	%	89	51-125	NA		NA		NA	
Phenol-D5	%	76	38-120	NA		NA]	NA	
2-Fluorophenol	%	67	30-120	NA		NA		NA	
2,4,6-Tribromophenol	%	92	46-129	NA		NA		NA	

NA = Not Applicable ND = Not Detected

:

TestAmerica Lab

Benchmark Globe Metallurgical METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date		SB-1 (5.5-7.5 A08-A609 08/27/2008) A8A60901	SB-2 (4-8) A08-A609 08/27/2008	A8A60902	SB-3 (0-3) A08-A609 08/27/2008	A8A60903	SB-4 (4-6) A08-A609 08/27/2008	A8A60904
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	19 19 19 19 19 19 19 19	ND ND ND ND ND ND ND	19 19 19 19 19 19 19 19	ND ND ND ND ND 840	84 84 84 84 84 84 84 84	ND ND ND ND ND ND ND	19 19 19 19 19 19 19
SURROGATE(S) Tetrachloro-m-xylene Decachlorobiphenyl	% %	72 85	35-134 34-148	78 88	35-134 34-148	50 96	35-134 34-148	76 85	35-134 34-148

Client ID Job No Lab ID Sample Date		SB-5 (4-8) A08-A609 08/27/2008	A8A60905	SB-6 (10-14) A08-A609 08/27/2008	A8A60906	SB-7 (4-8) A08-A609 08/27/2008	A8A60907	SB-8 (0-4) A08-A609 08/27/2008	A8A60908
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/KG	ND	20	ND	18	ND	22	ND	21
Aroclor 1221	UG/KG	ND	20	ND	18	ND	22	ND	21
Aroclor 1232	UG/KG	ND	20	ND	18	ND	22	ND	21
Aroclor 1242	UG/KG	ND	20	ND	18	ND	22	ND	21
Aroclor 1248	UG/KG	ND	20	ND	18	ND	22	ND	21
Aroclor 1254	UG/KG	ND	20	ND	18	ND	22	ND	21
Aroclor 1260 SURROGATE(S)	UG/KG	ND	20	ND	18	ND	22	ND	21 21
Tetrachloro-m-xylene	%	77	35-134	67	35-134	92	35-134	78	35-134
Decachlorobiphenyl	%	90	34-148	87	34-148	112	34-148	89	34-148

Rept: AN1246

Benchmark Globe Metallurgical METHOD 8082 - POLYCHLORINATED BIPHENYLS

Rept: AN1246

Client ID Job No Lab ID Sample Date		SB-9 (0-4) A08-A609 08/27/2008	A8A60909						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/KG	ND	20	NA		NA		NA	
Aroclor 1221	UG/KG	ND	20	NA		NA		NA	1
Aroclor 1232	UG/KG	ND	20	NA		NA		NA	
roclor 1242	UG/KG	ND	20	NA		NA		NA	
roclor 1248	UG/KG	ND	20	NA		NA		NA	
roclor 1254	UG/KG	ND	20	NA		NA		NA	
roclor 1260 SURROGATE(S)	UG/KG	ND	20	NA		NA		NA	
etrachloro-m-xylene	%	78	35-134	NA		NA		NA	1
ecachlorobiphenyl	1%	86	34-148	NA		NA		NA	

~

Benchmark Globe Metallurgical BENCHMARK - SW8463 RCRA METALS - S

Rept: AN1246

Client ID Job No Lab ID Sample Date		SB-1 (5.5-7.5) A08-A609 A8A60901 08/27/2008		SB-2 (4-8) A08-A609 A8A60902 08/27/2008		SB-3 (0-3) A08-A609 08/27/2008	A8A60903	SB-4 (4-6) A08-A609 A8A6090 08/27/2008	
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Arsenic - Total	MG/KG	3.7	2.4	6.8	2.5	11.9	2.8	3.0	2.4
Barium - Total	MG/KG	75.8	0.61	290	0.62	77,6	0.70	36.6	0.59
Cadmium - Total	MG/KG	ND	0.24	0.86	0.25	1.2	0.28	ND	0.24
Chromium - Total	MG/KG	12.8	0.61	692	0.62	105	0.70	11.3	0.59
Lead - Total	MG/KG	5.9	1.2	212	1.2	74.6	1.4	3.0	1.2
Mercury - Total	MG/KG	0.043	0.023	0.095	0.023	ND	0.026	ND	0.023
Selenium - Total	MG/KG	ND	4.9	ND	5.0	ND	5.6	ND	4.7
Silver - Total	MG/KG	ND	0.61	ND	0.62	ND	0.70	ND	0.59

Client ID Job No Lab I Sample Date	D	SB-5 (4-8) A08-A609 08/27/2008	A8A60905	SB-6 (10-14) A08-A609 08/27/2008	A8A60906	SB-7 (4-8) A08-A609 08/27/2008	A8A60907	SB-8 (0-4) A08-A609 08/27/2008	A8A60908
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Arsenic - Total	MG/KG	2.9	2.4	2.4	2.1	14.1	2.9	4.5	2.8
Barium - Total	MG/KG	63,6	0.61	22.0	0.52	375	0.72	174	0.70
Cadmium - Total	MG/KG	ND	0.24	1.8	0.21	1.2	0,29	0.29	0.28
Chromium - Total	MG/KG	15.7	0.61	15.6	0.52	830	0,72	30.2	0.70
Lead - Total	MG/KG	5.2	1.2	177	1.0	168	1.4	10.9	1.4
fercury - Total	MG/KG	ND	0.028	0.048	0.022	ND	0.027	ND	0.027
Selenium - Total	MG/KG	ND	4.9	ND	4.1	ND	5.8	ND	5.6
Silver - Total	MG/KG	ND	0.61	ND	0.52	ND	0.72	ND	0.70

.

i

Benchmark Globe Metallurgical BENCHMARK - SW8463 RCRA METALS - S

Rept: AN1246

Client ID Job No Lab Sample Date	ID .	SB-9 (0-4) A08-A609 08/27/2008	A8A60909						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Arsenic - Total	MG/KG	ND	2.6	NA		NA		NA	
Barium - Total	MG/KG	20.8	0.66	NA		NA		NA	
Cadmium - Total	MG/KG	1.6	0.26	NA		NA		NA	
Chromium - Total	MG/KG	15.2	0.66	NA		NA		NA	
.ead - Total	MG/KG	52.4	1.3	NA		NA		NA	
Mercury - Total	MG/KG	0.23	0.026	NA		NA		NA	
Selenium - Total	MG/KG	ND	5.2	NA		NA		NA	
Silver - Total	MG/KG	ND	0.66	NA	1 1	NA		NA	

_

Ī

-

Benchmark Globe Metallurgical METHOD 8260 - TCL VOLATILE ORGANICS+STARS

Client ID Job No Lab ID Sample Date		SB-10(4-7) A08-A611 08/27/2008	A8A61101	SB-11(8-10) A08-A611 08/27/2008	A8A61102				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	29	ND	29	NA		NA	
Benzene	UG/KG	ND	6	ND	6	NA		NA	
Bromodichloromethane	UG/KG	ND	6	ND	6	NA		NA	
Bromoform	UG/KG	ND	6	ND	6	NA		NA	
Bromomethane	UG/KG	ND	6	ND	6	NA		NA	
2-Butanone	UG/KG	ND	29	ND	29	NA NA		NA	
Carbon Disulfide	UG/KG	2 J	6	2 J	6	NA		NA	1
Carbon Tetrachloride	UG/KG	ND	6	ND	6	NA		NA	
Chlorobenzene	UG/KG	ND	6	ND	6	NA		NA	
Chloroethane	UG/KG	ND	6	ND	6	NA	1	NA	
Chloroform	UG/KG	ND	6	ND	6	NA		NA	
Chloromethane	UG/KG	ND	6	ND	6	NA		NA	
Cyclohexane	UG/KG	ND	6	ND	6	NA		NA	
1.2-Dibromoethane	UG/KG	ND	6	ND	6	NA		NA	
Dibromochloromethane	UG/KG	ND	6	ND	6	NA		NA	
1,2-Dibromo-3-chloropropane	UG/KG	ND	6	ND	6	NA		NA	
1.2-Dichlorobenzene	UG/KG	ND	6	ND	6	NA		NA	ł
1,3-Dichlorobenzene	UG/KG	ND	6	ND	6	NA		NA	
1,4-Dichlorobenzene	UG/KG	ND	6	ND	6	NA		NA	
Dichlorodifluoromethane	UG/KG	ND	6	ND	6	NA		NA	
1,1-Dichloroethane	UG/KG	ND	6	ND	6	NA		NA	
1.2-Dichloroethane	UG/KG	ND	6	ND	6	NA		NA	1
1,1-Dichloroethene	UG/KG	ND	6	ND	6	NA		NA	
cis-1,2-Dichloroethene	UG/KG	ND	6	ND	6	NA		NA	
trans-1,2-Dichloroethene	UG/KG	ND	6	ND	6	NA		NA	
1,2-Dichloropropane	UG/KG	ND	6	ND	6	NA		NA	
cis-1,3-Dichloropropene	UG/KG	ND	6	ND	6	NA		NA	
trans-1,3-Dichloropropene	UG/KG	ND	6	ND	6	NA		NA	
Ethylbenzene	UG/KG	ND	6	ND	6	NA		NA	
2-Hexanone	UG/KG	ND	29	ND	29	NA		NA	
Isopropylbenzene	UG/KG	ND	6	ND	6	NA		NA	
Methyl acetate	UG/KG	ND	6	ND	6	NA		NA	
Methylcyclohexane	UG/KG	ND	6	ND	6	NA		NA	1
Methylene chloride	UG/KG	14 B	6	12 в	6	NA		NA	1
4-Methyl-2-pentanone	UG/KG	ND	29	ND	29	NA		NA	
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND	6	ND	6	NA		NA NA	
Styrene	UG/KG	ND	6	ND	6	NA		NA	
1,1,2,2-Tetrachloroethane	UG/KG	ND	6	ND	6	NA NA		NA	
Tetrachloroethene	UG/KG	ND	6	ND	6	NA		NA	1
Toluene	UG/KG	ND	6	ND	6	NA		NA	
1,2,4-Trichlorobenzene	UG/KG	ND	6	ND	6	NA		NA	
1,1,1-Trichloroethane	UG/KG	ND	6	ND	6	NA		NA	1
1,1,2-Trichloroethane	UG/KG	ND	6	ND	6	NA		NA	
r, r, contor betriane	007 KG		0	עה				1 10	

i

Rept: AN1246

Benchmark Globe Metallurgical METHOD 8260 - TCL VOLATILE ORGANICS+STARS

Client ID Job No Lab ID Sample Date		SB-10(4-7) A08-A611 08/27/2008	A8A61101	SB-11(8-10) A08-A611 08/27/2008	A8A61102				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor	UG/KG	ND	6	ND	6	· NA		NA	
	UG/KG	ND	6	ND	6	NA		NA	
Frichloroethene	UG/KG	ND	6	ND	6	NA -		NA	
	UG/KG	ND	12	ND	12	NA		NA	
Total Xylenes	UG/KG	ND	17	ND	18	NA		NA	
o-Xylene	UG/KG	ND	6	ND	6	NA		NA	
n/p-Xylenes	UG/KG	ND	12	ND	12	NA		NA	
n-Propylbenzene	UG/KG	ND	6	ND	6	NA		NA	
	UG/KG	ND	6	ND	6	NA		NA	
1,2,4-Trimethylbenzene	UG/KG	ND	6	ND	6	NA NA		NA	
1,3,5-Trimethylbenzene	UG/KG	ND	6	ND	6	NA		NA	
n-Butylbenzene	UG/KG	ND	6	ND	6	NA		NA	
sec-Butylbenzene	UG/KG	ND	6	ND	6	NA		NA	
tert-Butylbenzene IS/SURROGATE(S)	UG/KG	ND	6	ND	6	NA		NA	
Chlorobenzene-D5	%	94	50-200	97	50-200	Í NA		Í NA	[
,4-Difluorobenzene	%	94	50-200	95	50-200	NA		NA	
1,4-Dichlorobenzene-D4	%	88	50-200	94	50-200	NA		NA	
oluene-D8	%	113	71-125	112	71-125	NA		NA	
o-Bromofluorobenzene	%	110	72-126	110	72-126	NA		NA	
1.2-Dichloroethane-D4	%	95	61-136	95	61-136	NA		NA	

.

.

...

1

Lab ID

Units

UG/KG

UG/KG UG/KG

UG/KG

UG/KG UG/KG

UG/KG UG/KG

UG/KG

UG/KG

UG/KG UG/KG

UG/KG

UG/KG UG/KG

UG/KG UG/KG

86

92

94

100

116

158

52

62

69

60

45

99

50-200

50-200

50-200

50-200

50-200

50-200

35-120

43-120

51-125

38-120

30-120

46-129

* * * * * * * * *

%

% %

Client ID Job No

Sample Date

Acenaphthene

Anthracene Benzo(a)anthracene

Acenaphthylene

Benzo(a)pyrene Chrysene

Fluoranthene

Naphthalene Phenanthrene

Naphthalene-D8

Chrysene-D12

Perylene-D12

Phenol-D5

Acenaphthene-D10 Phenanthrene-D10

Nitrobenzene-D5

2-Fluorobiphenyl p-Terphenyl-d14

2-Fluorophenol

2,4,6-Tribromophenol

Fluorene

Pyrene

Benzo(b)fluoranthene

Benzo(k)fluoranthene Benzo(ghi)perylene

Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene

IS/SURROGATE(S)= 1,4-Dichlorobenzene-D4

Analyte

Benchmark

83

86

89

95

115

157

71

67

65

71

65

94

50-200

50-200

50-200

50-200

50-200

50-200

35-120

43-120

51-125

38-120

30-120

46-129

	Globe Metallurgical BENCHMARK-SOIL-SW8463 8270-L PAHS ONLY											
SB-10(4-7) A08-A611 08/27/2008	A8A61101	SB-11(8-10) A08-A611 08/27/2008	A8A61102									
Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit					
ND ND 110 J 350 J 500 J 210 J 210 J 380 J 440 BJ 73 J 500 J 43 J 220 J ND 40 J 330 BJ 400 J	1000 1000 1000 1000 1000 1000 1000 100	110 J ND 160 J 560 J 820 J 290 J 310 J 600 J 710 BJ 110 J 1100 64 J 270 J ND 72 J 740 BJ 840 J	1000 1000 1000 1000 1000 1000 1000 100	NA NA NA NA NA NA NA NA NA NA NA NA NA N		NA NA NA NA NA NA NA NA NA NA NA NA NA N						

NA

NA NA

NA

NA

NA

NA

NA

Benchmark Globe Metallurgîcal METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date		SB-10(4-7) A08-A611 08/27/2008	A8A61101	SB-11(8-10) A08-A611 08/27/2008	A8A61102				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
roclor 1016	UG/KG	ND	19	ND	20	NA		NA	
roclor 1221	UG/KG	ND	19	ND	20	NA		NA	
roclor 1232	UG/KG	ND	19	ND	20	NA		NA	1
roclor 1242	UG/KG	ND	19	ND	20	NA		NA	1
roclor 1248	UG/KG	ND	19	ND	20	NA		NA	
roclor 1254	UG/KG	ND	19	ND	20	NA		NA	
roclor 1260	UG/KG	ND	19	ND	20	NA		NA	ļ
SURROGATE(S) etrachloro-m-xylene	%	71	35-134	84	35-134	NA		NA	1
ecachlorobiphenyl	%	88	34-148	96	34-148	NA		NA	

-

ī

Rept: AN1246

Benchmark Globe Metallurgical BENCHMARK - SW8463 RCRA METALS - S

Rept: AN1246

Client ID Job No Lab I Sample Date		SB-10(4-7) A08-A611 08/27/2008	A8A61101	SB-11(8-10) A08-A611 08/27/2008	A8A61102				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Arsenic - Total	MG/KG	10.5	2.2	11.2	2.5	NA		NA	
Barium - Total	MG/KG	94.0	0.56	111	0.62	NA		NA	
Cadmium - Total	MG/KG	1.3	0.22	1.5	0.25	NA		NA	
Chromium - Total	MG/KG	310	0.56	483	0.62	NA		NA	
Lead - Total	MG/KG	409	1.1	508	1.2	NA		NA	
Mercury - Total	MG/KG	0.036	0.022	0.071	0.024	NA		NA	
Selenium - Total	MG/KG	ND	4.5	ND	5.0	NA		NA	
Silver - Total	MG/KG	ND	0.56	ND	0.62	NA		NA	

..

1

ATTACHMENT 07

LISTING OF CURRENT & PREVIOUS SITE OWNERS

Attachment 07

Listing of Current & Previous Site Owners

Globe Metallurgical, Inc. 3807 Highland Avenue Brownfield Cleanup Program Application

INTRODUCTION

Reasonable attempts were made to attain complete previous site owner contact information. In some cases, previous owners complete contact information was not available. The following table lists the previous property owners:

Parcel Address and Size	Date(s)	Relationship to Applicant
3807 Highland Avenue (all parcels list	ed below)	
Current Owner		
Globe Metallurgical, Inc. (1) 1595 Sparling Road P.O. Box 157 Beverly, OH 45715 (740) 984-8608	2006 - present	Same
Previous Owners		
Globe Metallurgical, Inc. 3807 Highland Avenue Niagara Falls, NY 14305	1994 - 2006	None- company's assets were merged into Globe Acquisition Corp. in November 2006, and Globe Acquisition Corp. was later renamed to Globe Metallurgical Inc.
SKW Alloys, Inc. (a.k.a. SKW Newco, Inc.) 3801 Highland Avenue Niagara Falls, NY 14305	1979 – 1994	None
Air Reduction Company, Inc. (a.k.a. Pittsburgh Metallurgical Co.) P.O. Box 368 Niagara Falls, NY 14302	1913 - 1979	None
Niagara Steel Finishing Company (2) 1702 College Avenue Niagara Falls, NY 14305 (SE portion of 3801 Highland Ave. property)*	Circa 1937 -1954	None

(1) A wholly-owned subsidiary of Globe Specialty Metals (GSM). GSM was formed in 2004.

(2) See Figure 1-2 in Attachment 01.

Attachment 07

Listing of Current & Previous Site Owners

Globe Metallurgical, Inc. 3807 Highland Avenue Brownfield Cleanup Program Application

Globe Metallurgical Inc. is the owner/operator of the tax parcels that comprise the Project Site, as listed below, totaling 20.4 acres:

- Portion of 3801 Highland Avenue SBL No. 130.14-2-41
- 4009 Highland Avenue SBL No. 130.14-2-40
- 4025 Highland Avenue SBL No. 130.14-2-35
- 4002 Hyde Park Blvd. SBL No. 130.15-1-8
- 4024 Hyde Park Blvd. SBL No. 130.15-1-17
- 1633 Maple Avenue SBL No. 130.14-2-36
- 1725 Maple Avenue SBL No. 130.15-1-13
- 1911 Maple Avenue SBL No. 130.15-1-6
- 1925 Maple Avenue SBL No. 130.15-1-16
- 1636 Massachusetts Ave. SBL No. 130.14-2-37
- 1622 Massachusetts Ave. SBL No. 130.14-2-39
- 1632 Massachusetts Ave. SBL No. 130.14-2-38
- 1702 Massachusetts Ave. SBL No. 130.15-1-12
- 1724 Massachusetts Ave. SBL No. 130.15-1-11.1
- 1914 Massachusetts Ave. SBL No. 130.15-1-15
- 1930 Massachusetts Ave. SBL No. 130.15-1-7

ATTACHMENT 08

LISTING OF CURRENT & PREVIOUS SITE OPERATORS

Attachment 08

Listing of Current and Previous Site Operators

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

INTRODUCTION

Reasonable attempts were made to attain complete previous site operator contact information. In some cases, previous operators complete contact information was not available. The following table lists the previous property operators:

Parcel Address and Size	Date(s)	Relationship to Applicant				
3807 Highland Avenue (all parcels listed below)						
Current Owner						
Globe Metallurgical, Inc. (1) 1595 Sparling Road P.O. Box 157 Beverly, OH 45715 (740) 984-8608	2006 - present	Same				
Previous Owners						
Globe Metallurgical, Inc. 3807 Highland Avenue Niagara Falls, NY 14305	1994 - 2006	None- company's assets were merged into Globe Acquisition Corp. in November 2006, and Globe Acquisition Corp. was later renamed to Globe Metallurgical Inc.				
SKW Alloys, Inc. (a.k.a. SKW Newco, Inc.) 3801 Highland Avenue Niagara Falls, NY 14305	1979 – 1994	None				
Air Reduction Company, Inc. (a.k.a. Pittsburgh Metallurgical Co.) P.O. Box 368 Niagara Falls, NY 14302	1913 - 1979	None				
Niagara Steel Finishing Company (2) 1702 College Avenue Niagara Falls, NY 14305 (SE portion of 3801 Highland Ave. property)* (1) A wholly-owned subsidiary of Glob	Circa 1937 - 1954	None				

(1) A wholly-owned subsidiary of Globe Specialty Metals (GSM). GSM was formed in 2004.(2) See Figure 1-2 in Attachment 01

ATTACHMENT 09

CONTACT LIST INFORMATION

Attachment 09

Contact List Information

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

New York State Contacts:

Regional Director NYSDEC, Region 9 270 Michigan Avenue Buffalo, NY 14203

Mr. Michael Hinton NYSDEC, Region 9 270 Michigan Avenue Buffalo, NY 14203

Ms. Meaghan Boice-Green NYSDEC, Region 9 270 Michigan Avenue Buffalo, NY 14203

Senator Hillary Rodham-Clinton U.S. Senate 726 Exchange Street, Suite 511 Buffalo, NY 14210

Congressman Brian Higgins Larkin Building 726 Exchange Street, Suite 610 Buffalo, NY 14210

Mr. Michael Basile WNY Public Information Office 186 Exchange St. Buffalo, NY 14204 Mr. Gregory Sutton NYSDEC, Region 9 270 Michigan Avenue Buffalo, NY 14203

Mr. Daniel David NYSDEC, Region 9 270 Michigan Avenue Buffalo, NY 14203

Mr. Mark VanValkenburg NYSDOH, Room 205 547 River Street Troy, NY 12180

Senator Charles Schumer U.S. Senate, Suite 660 130 So. Elmwood Ave Buffalo, NY 14202

Assemblywoman Francine Delmonte 138th District 1700 Pine Ave. Niagara Falls, NY 14301 Ms. Megan Gollwitzer NYSDEC, Region 9 270 Michigan Ave. Buffalo, N.Y 14203

Mr. Lawrence Ennist NYSDEC 625 Broadway Albany, NY 12233

Mr. Matthew Forcucci NYSDOH 584 Delaware Avenue Buffalo, NY 14202

Senator George Maziarz 62nd District 2578 Niagara Falls Blvd., Suite 600 Wheatfield, NY 14304

Rep. Louise Slaughter NY 28th District 1910 Pine Ave. Niagara Falls, NY 14301

0170-001-101

Attachment 09 Contact List Information

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

Niagara County Contacts:

Ms. Paulette M. Kline, Director Niagara County Dept.of Health 5467 Upper Mtn. Road, Suite 100 Lockport NY 14094-1894

Mr. Bruno Walker Niagara Falls Deputy Director 745 Main Street Niagara Falls, NY 14302

Mr. Daniel Bristol Niagara Falls City Admin. 4010 Barton Street Niagara Falls, NY 14305

Mr. James Devald, P.E. Niagara Co. Health Dept. 5467 Upper Mountain Road Lockport, NY 14094

Mr. Paul Dickey Niagara County Health Dept. 5467 Upper Mountain Rd. Lockport, NY 14094-1899

Joanne Ellsworth Niagara Co. EMC 59 Park Ave. Lockport, NY 14094 Mayor Vince Anello Niagara Falls 745 Main Street Niagara Falls, NY 14302

Mr. Michael Shanley Niag. Co. Emergency Planning Niagara & Hawley Street Lockport, NY 14094

Mr. Kevin O'Brien Niagara Falls City Engineer 745 Main Street Niagara Falls, NY 14302

Clerk Michael Carney Niagara Co. Legislature 175 Hawley Street Lockport, NY 14094

Beverly Snell Niagara County Municipal Clerk 8942 Ridge Rd. Gasport, NY 14067

Mr. Ronald C. Johnston, Admin. Dir. Niagara Co. Water Aurhtority 5450 Ernest Rd., PO Box 315 Lockport, NY 14094 Ms. Carol Antonucci Niagara Falls City Clerk 745 Main Street Niagara Falls, NY 14302

Chairman William L. Ross Niagara County Legislature 175 Hawley Street Lockport NY 14094-2740

Mr. Richard Roll Niagara Falls Water Board 1200 Buffalo Ave., PO Box 69 Niagara Falls, NY 14302-0069

Mr. Wayne Jagow Niagara County Clerk Courthouse Lockport, NY 14094

James Hoffman, Co-Chair Niagara County EMC 8737 Lake Rd. Baker, NY 14102

Amy Fisk, Env. Planner Niagara County Center for Economic Development 6311 Inducon Corporate Dr. Sanborn, NY 14132

0170-001-101

Attachment 09 Contact List Information

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

Niagara County Contacts (cont'd):

David E. Wertman, MPA Comm. Niagara Co. Health Dept. 5467 Upper Mountain Rd. Lockport, NY 14094

Alan Nusbaum City of Niagara Fall Dept. of Planning/ Environ. Services 745 Main Street Niagara Falls, NY 14302

Local News Media:

ATTN: Jay Bonfatti The Buffalo News 1 News Plaza Buffalo, NY 14240

ATTN: Env. News Desk WGRZ TV - CH. 2 259 Delaware Avenue Buffalo, NY 14202

ATTN: Tracey Drury Business First 465 Main Street Buffalo, NY 14203-1793 Mr. Samuel M. Ferraro, Exec. Dir. Niagara Co. Ind. Dev. Agency 6311 Inducon Corporate Drive Sanborn, NY 14132 Mr. Dennis F. Virtuoso Niagara Co. Legislature #4 2703 Independence Ave. Niagara Falls NY 14301

WKBW-TV 7 Broadcast Plaza Buffalo, NY 14202

ATTN: Environmental News Desk WIVB - CH. 4 2077 Elmwood Avenue Buffalo, NY 14207

ATTN: Aaron Besecker The Niagara Gazette 310 Niagara Street Niagara Falls, NY 14302 WBEN News Radio 930 Entercom Radio of Buffalo 500 Corporate Pkwy, Suite 200 Buffalo, NY 14226

ATTN: Michael Desmond WNED, Env. News Desk PO 1263, Horizons Plaza Buffalo, NY 14240

ATTN: Mike Hudson, Editor Niagara Falls Reporter 1625 Buffalo Ave Niagara Falls, NY 14303

Attachment 09 Contact List Information

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

Local News Media (cont.):

ATTN: News Director WLVL 1340 PO Box 477 Lockport, NY 14095-0477

Supplier of Potable Water:

Document Repository:

ATTN: Environmental News Desk WJYE 1700 Rand Building Buffalo, NY 14203

Niagara County Water District PO Box 315 Lockport, NY 14905-0315

Niagara Falls Public Library Earl W. Brydges Building 1425 Main Street Niagara Falls, NY 14305

Nearby Schools:

Principal Lawrence Martinez Sixty Sixth Street School 630 66th Street Niagara Falls, NY 14304 Principal Maria Chille-Zafuto Niagara Middle School 6431 Girard Ave. Niagara Falls, NY 14304 Principal Joseph Colburn Gaskill Middle School 910 Hyde Park Blvd. Niagara Falls NY 14301

Attachment 09 Contact List Information

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

Other Interested Groups:

Mr. Brian Smith Citizens Campaign-Environment 3144 Main Street Buffalo, NY 14214

Mr. Michael Podd 4827 Rogers Rd. Hamburg, NY 14075 WNY Director Citizens' Env. Coalition 543 Franklin St., Rm. 2 Buffalo, NY 14202-1109

Chairwoman Jane Jontz Sierra Club, Niagara Group 62 Lincoln Road Snyder, NY 14226 Mr. William Hilts, Sr. Environmental Council 5115 Baer Road Sanborn, NY 14132

AREA PROPERTY OWNERS

Globe Metallurgical, Inc. 3807 Highland Avenue Site

Brownfield Cleanup Program Application

Adjacent Property Address		Owner Name and
No.	Street	Mailing Address
3700	Highland Ave.	Michael Prakash Bhimsingh
		3700 Highland Avenue
		Niagara Falls, NY 14305
3702	Highland Ave.	Isabel A. Anderson
		3702 Highland Avenue
		Niagara Falls, NY 14305
	Highland Ave.	James E. Walker
3710		3710 Highland Avenue
		Niagara Falls, NY 14305
		The House of God
3711	Highland Ave.	3711 Highland Avenue
	C	Niagara Falls, NY 14305
		Kelvin & Sonya S. Agee
3712	Highland Ave.	3712 Highland Avenue
	C	Niagara Falls, NY 14305
	Highland Ave.	Musid Mohammad Dubashi
3716, 3718		3718 Highland Avenue
-		Niagara Falls, NY 14305
	Highland Ave.	Eddie Ashley
3719, 3721		3721 Highland Avenue
		Niagara Falls, NY 14305
	Highland Ave.	
3729		Niagara Mohawk Power Corp.
		(Right-of-Way)
	Highland Ave.	Dalana Realty, Inc.
3800		3800 Highland Ave.
2000		Niagara Falls, NY 14305
	Highland Ave.	Niagara Falls Urban Renewal
4101		4101 Highland Ave.
4101		Niagara Falls, NY 14305
		-
	Highland Ave.	Armand Cerrone
4110		4110 Highland Ave.
		Niagara Falls, NY 14305
1501	College Ave.	Niagara Vest, Inc.
		1501 College Ave.
		Niagara Falls, NY 14305
1402, 1503, 1511,		Niagara Mohawk Power Corp.
1402, 1505, 1511, 1925 & 2000	College Ave.	(Right-of-Way)
1923 & 2000		(rugin Or-way)

AREA PROPERTY OWNERS

Globe Metallurgical, Inc. 3807 Highland Avenue Site

Brownfield Cleanup Program Application

Adjacent	Property Address	Owner Name and
No.	Street	Mailing Address
1655	College Ave.	George J. Wolf 1655 College Ave. Niagara Falls, NY 14305
1731 & 1777	College Ave.	Hazorb, Inc. 1731 College Ave. Niagara Falls, NY 14305
1901	College Ave.	Eastern Ohio Paving, Inc. 1901 College Ave. Niagara Falls, NY 14305
2001	College Ave.	David Kushner 2001 College Ave. Niagara Falls, NY 14305
1701	Maryland Ave.	Frank A. Amendola 1701 Maryland Avenue Niagara Falls, NY 14305
3851	Hyde Park Blvd.	William Viele 3851 Hyde Park Blvd. Niagara Falls, NY 14305
3857	Hyde Park Blvd.	3857 Hyde Park Blvd. 3857 Hyde Park Blvd. Niagara Falls, NY 14305
3925	Hyde Park Blvd.	Park Development Associates 3925 Hyde Park Blvd. Niagara Falls, NY 14305
3938	Hyde Park Blvd.	Niagara County IDA 3938 Hyde Park Blvd. Niagara Falls, NY 14305
3940	Hyde Park Blvd.	Schleifmittel Treibacher 3940 Hyde Park Blvd. Niagara Falls, NY 14305
4011	Hyde Park Blvd.	4011 Hyde Park Blvd, LLC 4011 Hyde Park Blvd. Niagara Falls, NY 14305
4120	Hyde Park Blvd.	Norman C. & Barbara A. Oliver 4120 Hyde Park Blvd. Niagara Falls, NY 14305
4129	Hyde Park Blvd.	Henry M. Felicetti Etal 4129 Hyde Park Blvd. Niagara Falls, NY 14305

AREA PROPERTY OWNERS

Globe Metallurgical, Inc. 3807 Highland Avenue Site

Brownfield Cleanup Program Application

Adjacent Property Address		Owner Name and
No.	Street	Mailing Address
3701 & 3703	Lehigh Court	Jack Brundage
		3701 Lehigh Court
		Niagara Falls, NY 14035
2707 2711		John A. Brundage
3707, 3711, 3713, & 3715	Lehigh Court	3702 Lehigh Court
5/15, & 5/15		Niagara Falls, NY 14305
3723, 3727	Lehigh Court	J.A. Brundage - The Drain
		3727 Lehigh Court
		Niagara Falls, NY 14305
1910	Maple Ave.	Norman C. & Barbara A. Oliver
		1910 Maple Avenue
		Niagara Falls, NY 14305
2109	Maple Ave.	Pierce Lonberger
		2109 Maple Avenue
		Niagara Falls, NY 14305

DOCUMENT REPOSITORY CONFIRMATION LETTER

August 29, 2008

Ms. Betty Babanoury Library Director Niagara Falls Public Library Earl W. Brydges Building 1425 Main Street Niagara Falls, NY 14305

Re: Document Repository 3807 Highland Avenue, Niagara Falls, NY Brownfield Cleanup Program Application

Dear Ms. Babanoury:

Per our recent telephone conversation, thank you for allowing the Niagara Falls Public Library to be the document repository for the above-referenced site.

Please contact me if you have questions or require additional information.

Sincerely, Benchmark Environmental Engineering & Science, PLLC Nathan T. Munley Environmental Scientist

File: 0170-001-100

www.benchmarkees.com

ENVIRONMENTAL FACTORS AND HISTORIC LAND USE CONSIDERATIONS

Environmental Factors & Historic Land Use Considerations

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

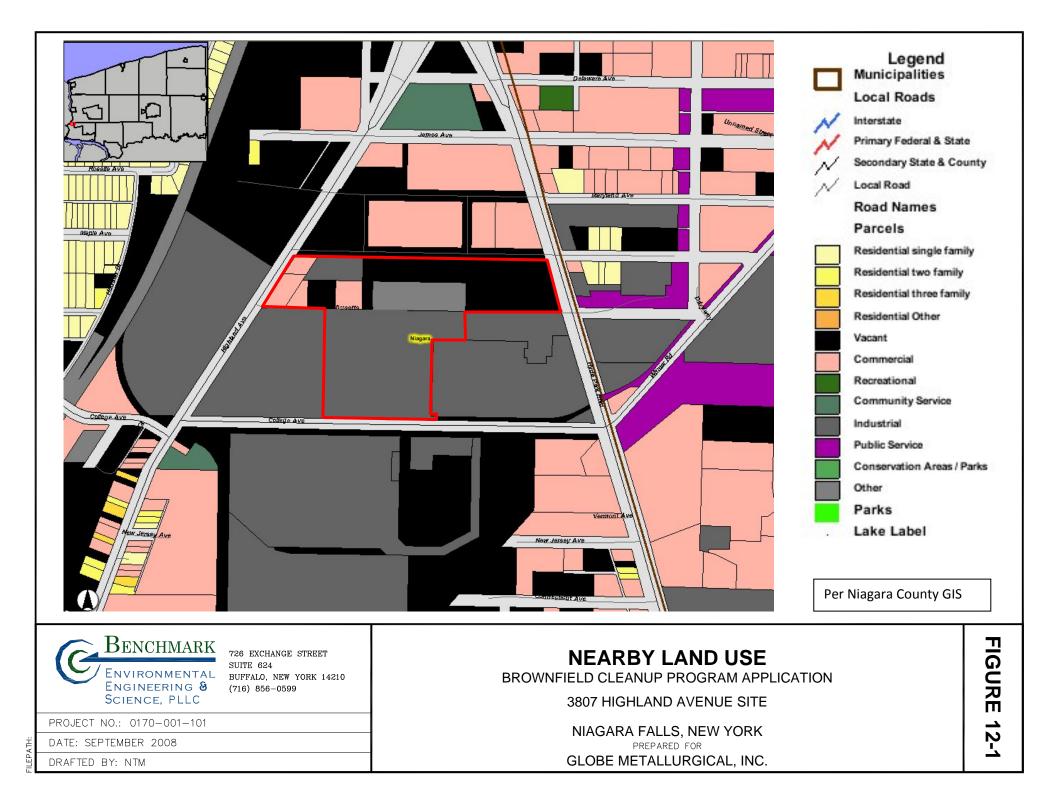
INTRODUCTION

The following provides a brief summary of the Site:

- There are no State or Federal wetlands or floodplains on the Site.
- The Site is located within a predominantly urban-developed area.
- There are no threatened or endangered species, or important plant habitats present on the Site.

NEARBY LAND USE

Surrounding Land Use Description


Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

SURROUNDING LAND USE DESCRIPTION

The Site, addressed as 3807 Highland Avenue, is located in an urban area of the City of Niagara Falls, Niagara County, New York. The Site includes 16 parcels of land as illustrated on Figure 2-1.

Properties adjacent to the Site include several commercial and industrial properties, vacant parcels, and utility right-of-ways (see Figure 12-1). The surrounding land is mixed use, including commercial, industrial, residential, and public use parcels.

GROUNDWATER VULNERABILITY ASSESSMENT

Groundwater Vulnerability Assessment

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

POTENTIAL VULNERABILITY OF GROUNDWATER TO CONTAMINATION

Currently, there are no known deed restrictions on the use of groundwater at the Site, and groundwater supply wells are not present on-site. Existing groundwater quality has not been investigated on the Site.

Regionally, groundwater in the area has not been developed for industrial, agriculture, or public supply purposes. Potable water service is provided on-site and off-site by the local municipal water authority.

GROUNDWATER FLOW/RECHARGE

Based on Site topography and proximity to the Niagara River, groundwater likely flows in a west/southwest direction (see Figure 1-1).

RECOMMENDATIONS

Further work is required to evaluate groundwater quality. Additional sampling to assess groundwater flow patterns and water quality will be investigated during the Remedial Investigation.

DESCRIPTION OF SITE GEOGRAPHY/GEOLOGY

Description of Site Geography/Geology

Globe Metallurgical, Inc. 3807 Highland Avenue Site Brownfield Cleanup Program Application

ECOLOGICAL SETTING

The Site is covered primarily by former warehouse/manufacturing and office buildings, electrical substations, asphalt pavement, former building foundations, aboveground storage tanks, soil/fill piles, and vegetation.

The Site is located in the Erie-Niagara River Basin, which generally drains west/southwest from the Site, although localized variation may occur. The Niagara River, Lake Erie and Lake Ontario are the major bodies of water within this basin.

DEMOGRAPHY AND LAND USE

The Site is located in a highly developed urban-industrial setting. Land use surrounding the Site includes industrial, commercial, vacant, public use, and residential properties (see Figure 12-1).

No residential properties are adjacent to the Site. However, nearby residential areas are located across Hyde Park Avenue, northeast of the Site and on Highland Avenue southwest of the Site (see Figure 12-1).

REGIONAL GEOLOGY/HYDROGEOLOGY

The U.S. Department of Agriculture (USDA) Soil Conservation Service soil survey map of Niagara County describes the general surficial soil type at the Site as Canandaigua silt loam, with slopes ranging from 0 to 2%.

Based on Site topography and proximity to the Niagara River, regional groundwater likely flows in a west/southwest direction (see Figure 1-1).

SITE GEOLOGY/HYDROGEOLOGY

The Site is predominately flat, with no distinguishable site features. Precipitation (i.e., rain or snow melt) generally moves radially from the Site via overland flow to on-Site catch basins. Site soil/fill and groundwater flow will be investigated during the Remedial Investigation.

