

July 15, 2020

Mr. Samuel Savarino Savarino Companies 500 Seneca Street, Suite 508 Buffalo, New York 14204

Re: Limited Phase II Site Investigation Report

Vacant Lot, 389 Manhattan Avenue, Buffalo, NY (Site)

Dear Mr. Savarino:

Benchmark Environmental Engineering and Science, PLLC (Benchmark) has prepared this letter to summarize the results of the Limited Phase II Environmental Investigation (Phase II) activities at the above referenced Site for Savarino Companies (see Figures 1 and 2). The primary purposes of the Phase II were to evaluate if historic and/or filling activities have impacted the Site prior to purchase; and to determine the depth to bedrock which will be a building design factor for redevelopment. The secondary purpose was to evaluate whether the Site may be eligible for admission to the New York Brownfield Cleanup Program (BCP).

The Site consists of one (1) parcel (SBL # 79.78-1-1.1) and is ±2.9 acres in size. Benchmark conducted a preliminary review of publicly available resources, including the City of Buffalo Geographic Information System, Sanborn maps available through the University at Buffalo, and New York State Department of Environmental Conservation (NYSDEC) databases to determine if past operations/use or historic records may be indicative of potential releases or impacts on the property.

The Site was owned by Buffalo Meter Company, Inc. from at approximately 1915 through 1971 when it was purchased by University at Buffalo in 1971 to house their Department of Art and Architecture Department. It was purchased in 2006 by Bethune Hall, LLC. The property is currently vacant.

Review of NYSDEC databases, did not identify petroleum releases, underground storage tanks, or other regulatory listings for the Site, but two (2) adjacent properties to the northwest, 2917 Main Street and 2929/2939 Main Street have been subject to remedial action, and the 2929/2939 Main Street property is a BCP Site (NYSDEC Site No. C915318).

Strong Advocates, Effective Solutions, Integrated Implementation

www.benchmarkturnkey.com

In addition, properties in this area of the City of Buffalo have been subject to historic fill import due to the presence of the former rail lines and a portion of the former Buffalo Crushed Stone Company quarry adjacent to the east of the Site, which has been filled. The attached Sanborn map from 1935 (see Attachment 1) shows the former rail lines and quarry adjacent to the Site on the east as well as rail lines running through the Site which terminate at the adjacent former Buffalo Meter Co. manufacturing building and former McDougall Butler Company (paint manufacturing) buildings to the northwest of the Site.

Based on the presence of rail, historic filling activities in the area of the Site, and the remedial actions performed on adjacent properties, Benchmark recommended a limited Phase II investigation to determine if contamination is present on Site at levels which may complicate redevelopment. The Phase II approach and findings are discussed below.

LIMITED PHASE II SOIL/FILL INVESTIGATION

The Phase II investigation activities consisted of 14 excavation test pits (TPs). The locations are shown on attached Figure 2. The TPs were advanced using a track-mounted excavator (Komatsu PC88). The TPs were advanced to depths ranging from 1.5 to 12 feet below ground surface (fbgs) to assess subsurface soil/fill conditions and the depth to bedrock. Bedrock refusal was encountered at the 14 TP locations at the depths shown on Table 2. The variability in depth to bedrock is due to the topography at the Site, as the northwestern portion of the Site is about 10 to 14 feet lower in elevation than the eastern and southern portions, respectively, as shown on Figure 2.

Benchmark personnel made visual and olfactory observations, and scanned soil/fill samples retrieved from the TPs for total volatile organic vapors with a photoionization detector (PID) that is capable of detecting the presence of contaminants that emit volatile organic compounds (VOCs) such as petroleum products and solvents. The soil/fill samples retained from the TPs were also headspace screened. PID headspace measurements were not detected above background (i.e., 0 ppm) at the TP locations.

Table 1 is a summary of the soil/fill samples submitted for to the laboratory along with the analysis completed. The soil/fill samples collected were placed in pre-cleaned laboratory provided sample jars, cooled to 4°C in the field, and transported under chain-of-custody to the laboratory for analysis for analysis which included USEPA Target Compound List (TCL) semi-volatile organic compounds (SVOCs) via EPA Method 8270, Resource Conservation and Recovery Act (RCRA) 8 metals via EPA Method 6010C/7471B, and polychlorinated biphenyls (PCBs) via EPA Method 8082.

SURFACE AND SUBSURFACE CONDITIONS

The surface of the Site consists of gravel and visible urban fill such as broken brick and concrete in the northwestern and southern portions of the Site. The remainder of the Site is covered in grass, shrubs, and organic soil mixed with fill material. There were numerous soil/fill piles present which appear to be from dumping activities. The piles contained a range of materials such as sand, crusher run gravel, or urban fill consistent with Site-wide surface materials. Additional piles in the southern portion of the Site contained C&D debris (concrete, plastic pipes, metal, asphalt, etc.), wood, and general solid waste/household items (televisions, computer parts, plastic bottles, etc.). TP-10 was completed to assess one of the solid waste piles present at the Site in addition to the subsurface assessment. The various piles were opened up with the excavator to make visual, olfactory, and PID screening observations. No visual, olfactory, or PID evidence of impacts were noted.

The subsurface conditions encountered at the Site consist of soil/fill material over bedrock. Table 2 is a summary of the subsurface conditions encountered at the 14 investigation locations. Fill materials were encountered across the entire Site and varied from dark granular fill material to sandy soil containing man-made constituents (brick, cinders, ash, plastic debris, etc.). Native soil was not encountered. The fill material varies in thickness from 1.5 to 3.0 feet in the central and northwestern portion of the Site (TP-2, TP-3, TP-5, TP-7, TP-11, TP-12, TP-13, and TP-14) to 4 to 12 feet along the eastern and southern portions of the Site where the elevation is 10 to 14 feet higher (TP-1, TP-4, TP-6, TP-8, TP-9, TP-10).

Bedrock was encountered at the 14 test pit locations. Bedrock appears to be approximately 4 to 5 feet higher in elevation in the southern portion of the Site compared to the northern portion.

Saturated subsurface soils were encountered at TP-2, TP-3, and TP-4. These conditions were likely caused by nearby surface conditions (ponding water from recent rain events). Overburden groundwater was not encountered at the test pit locations and the first water bearing zone is likely present within the bedrock.

Photographs of the Site and select TP locations are included as Attachment 2.

SOIL/FILL ANALYTICAL RESULTS

The results of the analytical samples collected and analyzed as part of the Phase II investigation are summarized on Table 3 and the laboratory report is included as Attachment 3.

Based on the planned redevelopment, the applicable soil cleanup objectives (SCOs) would be Part 375 Restricted-Residential Use Soil Cleanup Objectives (RRSCOs). As discussed below exceedances of RRSCOs, as well as Commercial SCOs (CSCOs) and Industrial SCOs (ISCOs) were noted.

BENCHMARK

SVOCs were detected at or above their respective Part 375 RRSCOs in four (4) of the six (6) samples submitted for SVOC analysis, TP-6, 5 to 6 fbgs, TP-7, 0.5 to 1.5 fbgs, TP-11, 0.5 to 1.5 fbgs and TP-13, 0.5 to 1.5 fbgs. Of the six (6) detected compounds above their respective RRSCOS, benzo(a)pyrene was also detected at TP-6, TP-7 and TP-11 in exceedance of its ISCO; benzo(b)fluoranthene was detected at TP-11 in exceedance of its ISCO; dibenzo(a,h)anthracene was detected at TP-6 in exceedance of its CSCO and at TP-11 in exceedance of its CSCO. The samples from TP-6, 5 to 6 fbgs, TP-7, 0.5 to 1.5 fbgs, and TP-11, 0.5 to 1.5 fbgs were from a black granular material encountered at those locations. This black granular material was also observed at TP-4, TP-8, and TP-14.

Metal Analytes

Metal analytes were detected above their respective RRSCOs in four (4) of the six (6) samples submitted for RCRA 8 metals analysis, TP-6, 5 to 6 fbgs, TP-7, 0.5 to 1.5 fbgs, TP-10, 6 to 7 fbgs, and TP-11, 0.5 to 1.5 fbgs.

- Arsenic exceeded its ISCO at TP-7 and TP-11.
- Lead exceeded its CSCO at TP-6.
- Mercury exceeded its CSCO TP-10.

As stated above, the samples from TP-6, TP-7, and TP-11 were from a black granular material encountered at those locations which was also observed at TP-4, TP-8, and TP-14.

CONCLUSIONS

The contaminants detected, SVOCs and metals (arsenic, chromium, and lead) were detected at concentrations above their respective applicable SCOs (i.e., Restricted Residential) for the intended reuse of the property. The detected concentrations exceeding the applicable SCOs were detected in the fill material present at the Site. Fill material is present across the entire Site and varies in thickness due primarily to the difference in the surface elevation (western and southern portions of the Site are higher in elevation than the central and northwestern). The fill material with contamination above their respective RRSCOs and the other solid waste materials generated during the redevelopment of this Site will require landfill disposal.

Based on the existing data, which includes SVOC- and metals-contaminated soil/fill at multiple sample locations above applicable RRSCOs, as well as CSCOs/ISCOs, the Site is a candidate for the BCP. The Site meets the definition of a BCP site per the current BCP law which states a "brownfield site or site shall mean any real property where a contaminant is present at levels exceeding the soil cleanup objectives or other health-based or environmental standards, criteria, or guidance adopted by the department that are applicable based on the reasonably anticipated use of the property, in accordance with applicable regulations."

We appreciate this opportunity to work with Savarino Company on this project. Please contact us if you have any questions or require additional information.

Sincerely,

Benchmark Environmental Engineering & Science, PLLC

Christopher Boron, P.G.

Sr. Project Manager

Thomas H. Forbes, P.E.

Principal Engineer

Attachments: Table 1 – Summary of Sampling and Analysis Program

Table 2 – Summary of Subsurface Field Observations

Table 3 – Soil/Fill Sample Analytical Results Figure 1 – Site Location & Vicinity Map

Figure 2 – Site Plan with Investigation Locations

Attachment 1 – 1935 Sanborn Map

Attachment 2 – Photographs

Attachment 3 – Analytical Report

TABLES

TABLE 1

SUMMARY OF SAMPLING AND ANALYSIS PROGRAM LIMITED PHASE II INVESTGATION REPORT 389 MANHATTAN AVENUE, BUFFALO, NEW YORK

			Analysis			
Sample Location	Sample Depth (fbgs)	Soil Type	TCL SVOCs	RCRA 8 Metals	TCL PCBs	Sample Type
Subsurfac	Subsurface Soil/Fill Samples					
TP-1	3 to 4	Fill	Х	Х	Х	Grab
TP-6	5 to 6	Fill	Х	Х	Х	Grab
TP-7	0.5 to 1.5	Fill	Х	Х	Х	Grab
TP-10	6 to 7	Fill	Х	Х	Х	Grab
TP-11	0.5 to 1.5	Fill	Х	Х	Х	Grab
TP-13	0.5 to 1.5	Fill	Х	Х	Х	Grab

Notes:

fbgs - feet below ground surface.

TCL - Target Compound List

SVOCs - Semivolatile Organic Compounds.

RCRA - Resource Conservation & Recovery Act.

PCBs - Polychlorinated Biphenyls

TABLE 2

SUMMARY OF SUBSURFACE FIELD OBSERVATIONS LIMITED PHASE II INVESTIGATION REPORT 389 MANHATTAN AVENUE BUFFALO, NEW YORK

Location	Date	Fill Present	Odors	Depth of Fill (ft)	Depth to Bedrock (ft)	Ground Surface Elevation 2	Bedrock Elevation	Sample Depth (ft)	Depth (fbgs) and Soil Description
Soil Born	ing Locatio	ns		ı	T		ı	T	
TP-1	03/04/20	Yes	No	4	4	656	652	3-4'	 0.0-2.0 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material¹. 2.0-3.0 Sandy Clay Fill: Dark brown, mostly medium plastic fines, some fine sand mixed with urban fill material¹. 3.0-4.0 Black Sand Fill: Black, mostly fine sands, some medium grained granular material, some cinders. Bedrock refusal at 4 fbgs.
TP-2	03/04/20	Yes	No	2	2	655	653	N/A	0.0-2.0 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ . Bedrock refusal at 2 fbgs.
TP-3	03/04/20	Yes	No	2	2	653.5	651.5	N/A	0.0-2.0 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ , trace black cinders. Bedrock refusal at 2 fbgs.
TP-4	03/04/20	Yes	No	5	5	659	654	N/A	0.0-3.0 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ . 3.0-4.0 Concrete Fill 4.0-5.0 Black Granular Fill: Black, mostly medium grained granular material, some cinders. Bedrock refusal at 5 fbgs.
TP-5	03/04/20	Yes	No	1.5	1.5	654.5	653	N/A	0.0-1.5 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ , some concrete with rebar. Bedrock refusal at 1.5 fbgs.
TP-6	03/04/20	Yes	No	7	7	663	656	5-6'	0.0-5.0 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ , layer of black sand from 0.5-1.5 fbgs. 5.0-7.0 Black Granular and Sandy Fill: Black, mostly medium grained granular material and sand with cinders, some white ash. Large concrete and red brick fragments from 6-7 fbgs. Bedrock refusal at 7 fbgs.
TP-7	03/04/20	Yes	No	2.7	2.7	656	653.3	0.5-1.5'	O.0-0.5 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ . O.5-1.0 Black Granular Fill: Black, mostly medium grained granular material and cinders. 1.0-1.5 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ . 1.5-2.7 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ . Large concrete and stone fragments surrounded by orange sandy material. Bedrock refusal at 2.7 fbgs.
TP-8	03/04/20	Yes	No	12	12	666.5	654.5	N/A	0.0-2.0 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ . 2.0-9.0 Sandy Clay Fill: Grey, mostly medium plastic fines, some fine sand mixed with urban fill material ¹ . 9.0-12.0 Black Granular and Sand Fill: Black, mostly medium grained granular material and sand with cinders and coal, some large red and yeloow brick fragments. Bedrock refusal at 12 fbgs.
TP-9	03/04/20	Yes	No	9.5	9.5	663	653.5	N/A	0.0-9.5 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ . Black granular lens from 4-4.5 fbgs. Large rock fragments from 5-8 fbgs. Bedrock refusal at 9.5 fbgs.
TP-10	03/04/20	Yes	No	12	12	669	657	6-7'	0.0-9.5 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ . Pockets of black sands with some granular material and cinders from 6-7fbgs. Bedrock refusal at 12 fbgs.
TP-11	07/01/20	Yes	No	3	3	655.2	652.2	0.5-1.5'	O.0-0.5 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ . O.5-1.5 Black Granular Fill: Black, mostly medium grained granular material and cinders. 1.5-3.0 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ . Trace stone fragments surrounded by orange sandy material. Bedrock refusal at 3.0 fbgs.
TP-12	07/01/20	Yes	No	2	2	653.5	651.5	N/A	0.0-2.0 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ , trace black cinders. Bedrock refusal at 2 fbgs.
TP-13	07/01/20	Yes	No	2	2	653.5	651.5	0.5-1.5'	0.0-2.0 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material ¹ , trace black cinders and coal. Bedrock refusal at 2 fbgs.
TP-14	07/01/20	Yes	No	2.5	2.5	655	652.5	N/A	 0.0-0.5 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material¹. 0.5-1.5 Black Granular Fill: Black, mostly medium grained granular material and cinders. 1.5-2.5 Sandy Urban Fill: Brown, mostly fine sand mixed with urban fill material¹. Trace stone fragments surrounded by orange sandy material. Bedrock refusal at 2.5 fbgs.

Notes:

1. Urban Fill: varying combinations of block, concrete, wood, plastic, and cinders.
2. Ground surface elevation data based on survey information by Millard, MacKay & Delles Land Surveyors, LLP dated 2/20/20 utilizing GPS datum: NAD83 (2011) Epoch 2010.0 datum.

Definitions:

fbgs = feet below ground surface
N/A = Non applicable

TABLE 3

SOIL/FILL SAMPLE ANALYTICAL RESULTS LIMITED PHASE II INVESTGATION REPORT 389 MANHATTAN AVENUE, BUFFALO, NEW YORK

							SAMPLE LOCA	ATION (DEPTH	1)	
PARAMETER ¹	Unrestricted Use SCOs ²	Restricted Residential Use SCOs ³	Commercial Use SCOs ⁴	Industrial Use SCOs ⁵	TP-1 (3-4')	TP-6 (5-6')	TP-7 (0.5-1.5')	TP-10 (6-7')	TP-11 (0.5-1.5')	TP-13 (0.5-1.5')
Semi-Volatile Organic Compounds (SVC	Cs) - ma/Ka ⁶				D	D	D	D	D	
2-Methylnaphthalene					ND	0.53 J	8.7	ND	11	0.082 J
Acenaphthene	20	100	500	1000	ND	0.46 J	ND	ND	1	0.05 J
Acenaphthylene	100	100	500	1000	ND	ND	0.32 J	ND	0.63 J	0.091 J
Acetophenone	_		-	-	ND	ND	0.84 J	ND	ND	ND
Anthracene	100	100	500	1000	ND	1.1 J	0.79 J	ND	2.4	0.23
Benzo(a)anthracene	1	1	5.6	11	0.31 J	3.6	2.8	0.65 J	9.8	0.78
Benzo(a)pyrene	1	1	1	1.1	ND	4	2.9	0.76 J	7.8	0.81
Benzo(b)fluoranthene	1	1	5.6	11	0.42 J	5.2	3.7	0.94 J	12	1
Benzo(ghi)perylene	100	100	500	1000	ND	2	1.4 J	0.42 J	3.3	0.65
Benzo(k)fluoranthene	0.8	3.9	56	110	ND	1.6	1.3	0.33 J	3.3	0.42
Biphenyl	-		-	-	ND	ND	0.58 J	ND	0.81 J	ND
Butyl benzyl phthalate	-		-		ND	0.8 J	ND	ND	ND	ND
Carbazole	-		-	-	ND	0.72 J	0.61 J	ND	1.6	0.11 J
Chrysene	1	3.9	56	110	0.31 J	3.3	2.8	0.65 J	10	0.83
Dibenzofuran	7	59	350	1000	ND	0.35 J	1.8 J	ND	2.9	0.047 J
Dibenzo (a,h)anthracene	0.33	0.33	0.56	1.1	ND	0.58 J	0.41 J	ND	1.2	0.13
Fluoranthene	100	100	500	1000	0.58 J	9.9	5.9	1.4	20	1.6
Fluorene	30	100	500	1000	ND	0.51 J	0.52 J	ND	1.2	0.059 J
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	11	ND	2.3	1.5	0.47 J	4.2	0.61
Naphthalene	12	100	500	1000	ND	0.64 J	7.1	ND	8.2	0.07 J
Phenanthrene	100	100	500	1000	0.33 J	4.9	5.4	0.78 J	15	0.77
Pyrene	100	100	500	1000	0.52 J	8.1	4.3	1.1 J	17	1.3
2-Methylphenol	0.33	100	500	1000	ND	ND	ND	ND	0.16 J	ND
3-Methylphenol/4-Methylphenol	0.33	100	500	1000	ND	ND	ND	ND	0.18 J	ND
Total PCBs - mg/Kg 6										
Aroclor 1254	0.1	1	1	25	0.415	0.11 P	0.0382	0.0262	0.106	0.00783 J
Aroclor 1260	0.1	1	1	25	0.266	0.186	0.0483	0.0208	0.0923	ND
Total PCBs	0.1	1	1	25	0.681	0.296	0.0865	0.047	0.198	0.00783 J
Total Metals - mg/Kg										
Arsenic	13	16	16	16	8.96	13.5	29	5.69	108	3,48
Barium	350	400	400	10000	159	259	53.2	48.1	76	54.4
Cadmium	2.5	4.3	9.3	60	0.83	3.55	0.169 J	0.414 J	ND	0.13 J
Chromium	30	180	1500	6800	18.7	21.5	4.94	10	11.1	13.7
Lead	63	400	1000	3900	358	689	108	93.2	257	18.9
Mercury	0.18	0.81	2.8	5.7	0.085	0.378	0.284	0.837	0.354	0.05 J
Selenium	30	180	1500	10000	0.598 J	1.48	1.94	0.557 J	4.17	ND
Silver	2	180	1500	6800	0.34 J	0.562	0.159 J	ND	0.251 J	ND

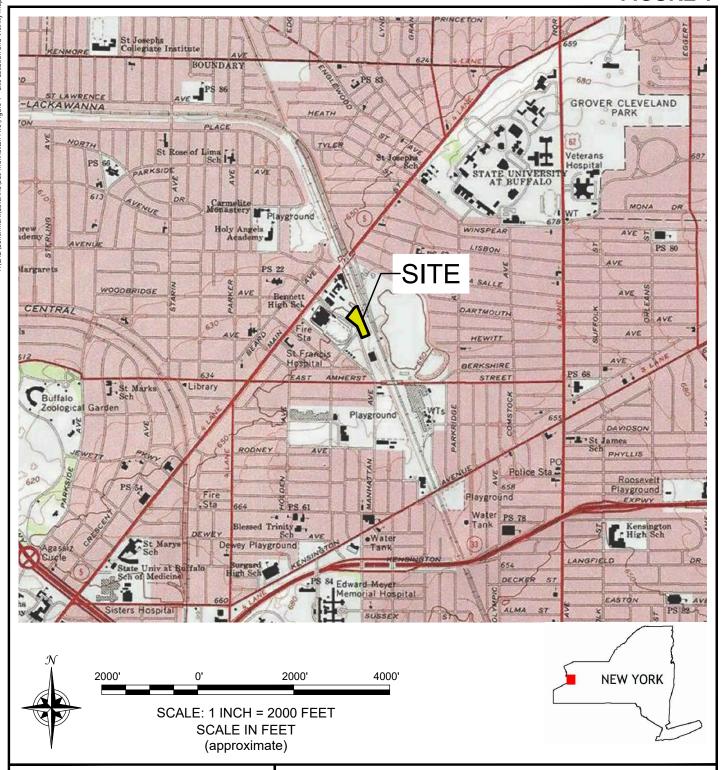
- Votes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Values per 6NYCRR Part 375 Unrestricted Soil Cleanup Objectives (SCOs).

 3. Values per 6NYCRR Part 375 Restricted-Residential Soil (Dejectives (SCOs).

 4. Values per 6NYCRR Part 375 Commercial Soil Cleanup Objectives (SCOs).


 5. Values per 6NYCRR Part 375 Restricted-Residential Soil Cleanup Objectives (SCOs).

 6. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparisons to SCOs

, , , , , , ,	3 3
Definitions:	
ND = Parameter not detected above laboratory detect	on limit.
"" = No value available for the parameter, or the para	meter was not analysed for.
J = Estimated value; result is less than the sample qua	ntitation limit but greater than zero.
P = The RPD between the results for the two columns	exceeds the method-specified criteria.
D = Compounds were identified in an analysis at the s	econdary dilution factor.
BOLD	= Result exceeds Unrestricted Use SCO's.
BOLD	= Result exceeds Restricted Residential Use SCO's.
BOLD	= Result exceeds Commercial Use SCOs
BOLD	= Result exceeds Industrial Use SCOs

FIGURES

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0599

PROJECT NO.: B0258-020-001

DATE: MARCH 2020

DRAFTED BY: CMS

SITE LOCATION AND VICINITY MAP

LIMITED PHASE II INVESTIGATION

VACANT LOT, 389 MANHATTAN AVENUE BUFFALO. NEW YORK

PREPARED FOR

SAVARINO COMPANIES

DISCLAIMER.

PROPERTY OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC.

SITE PLAN WITH INVESTIGATION LOCATIONS

VACANT LOT, 389 MANHATTAN AVENU

PREPARED FOR SAVARINO COMPANIES

JOB NO.: B0258-020-001

BENCHMARK

FIGURE 2

TE: MARCH 2020

ATTACHMENT 1

1935 SANBORN MAP

ATTACHMENT 2

PHOTOGRAPHS

Photo 1:

Photo 3:

Photo 4:

Photo 1: View of the Site parking area – facing northwest

Photo 2: Typical fill material encountered throughout the Site.

Photo 3: View of TP-1.

Photo 4: Black sandy and granular fill material encountered at TP-1.

389 Manhattan Avenue

Photo 5:

Photo 7:

Photo 8:

Photo 5: View of TP-6

Photo 6: Black granular and sandy fill material encountered at TP-6.

Photo 7: View of TP-7 (note: unknown orange sandy material).

Photo 8: Black granular fill material encountered at TP-7.

389 Manhattan Avenue

Photo 9:

Photo 11:

Photo 10:



Photo 12:

Photo 9: Location of TP-10 to investigate general debris pile.

Photo 10: View of TP-10 and fill material encountered.

Photo 11: Typical building and construction debris piles located in the southern portion of the Site.

Photo 12: Typical debris piles located on-Site.

389 Manhattan Avenue

Photo 13:

Photo 14:

Photo 13: View of TP-11.

Photo 14: Black granular fill material encountered at TP-11.

389 Manhattan Avenue

ATTACHMENT 3

ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number: L2010060

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Chris Boron
Phone: (716) 856-0599

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

Report Date: 03/12/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

 Lab Number:
 L2010060

 Report Date:
 03/12/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2010060-01	TP-1 3-4FT	SOIL	389 MANHATTAN AVE	03/04/20 09:00	03/05/20
L2010060-02	TP-6 5-6FT	SOIL	389 MANHATTAN AVE	03/04/20 11:30	03/05/20
L2010060-03	TP-7 0.5-1.5FT	SOIL	389 MANHATTAN AVE	03/04/20 12:00	03/05/20
L2010060-04	TP-10 6-7FT	SOIL	389 MANHATTAN AVE	03/04/20 14:00	03/05/20
L2010060-05	TP-3 0-2FT	SOIL	389 MANHATTAN AVE	03/04/20 10:00	03/05/20
L2010060-06	TP-7 1.5-2.7FT	SOIL	389 MANHATTAN AVE	03/04/20 12:05	03/05/20
L2010060-07	TP-8 9-11FT	SOIL	389 MANHATTAN AVE	03/04/20 12:30	03/05/20
L2010060-08	TP-9 4-5FT	SOIL	389 MANHATTAN AVE	03/04/20 13:00	03/05/20

L2010060

Lab Number:

Project Name: 389 MANHATTAN AVE

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L2010060

Lab Number:

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001 **Report Date:** 03/12/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

L2010060-01, -02, -03, and -04: The sample has elevated detection limits due to the dilution required by the sample matrix.

Total Metals

The WG1349193-3 MS recovery, performed on L2010060-01, is outside the acceptance criteria for cadmium (67%). A post digestion spike was performed and yielded an unacceptable recovery for cadmium (62%). The serial dilution recovery was not applicable; therefore, this element fails the matrix test and the result reported in the native sample should be considered estimated.

The WG1349193-3 MS recovery for lead (216%), performed on L2010060-01, does not apply because the sample concentration is greater than four times the spike amount added.

The WG1349193-4 Laboratory Duplicate RPD for arsenic (29%), performed on L2010060-01, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/12/20

Melissa Sturgis Melissa Sturgis

ALPHA

ORGANICS

SEMIVOLATILES

L2010060

03/04/20 09:00

Not Specified

03/05/20

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

SAMPLE RESULTS

Report Date: 03/12/20

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2010060-01 D

Client ID: TP-1 3-4FT

Sample Location: 389 MANHATTAN AVE

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 03/09/20 13:10

Analyst: JRW 86% Percent Solids:

Extraction Method: EPA 3546

Extraction Date: 03/08/20 01:46

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Acenaphthene	ND		ug/kg	1500	200	10	
Hexachlorobenzene	ND		ug/kg	1100	210	10	
Bis(2-chloroethyl)ether	ND		ug/kg	1700	260	10	
2-Chloronaphthalene	ND		ug/kg	1900	190	10	
3,3'-Dichlorobenzidine	ND		ug/kg	1900	500	10	
2,4-Dinitrotoluene	ND		ug/kg	1900	380	10	
2,6-Dinitrotoluene	ND		ug/kg	1900	320	10	
Fluoranthene	580	J	ug/kg	1100	220	10	
4-Chlorophenyl phenyl ether	ND		ug/kg	1900	200	10	
4-Bromophenyl phenyl ether	ND		ug/kg	1900	290	10	
Bis(2-chloroisopropyl)ether	ND		ug/kg	2300	320	10	
Bis(2-chloroethoxy)methane	ND		ug/kg	2000	190	10	
Hexachlorobutadiene	ND		ug/kg	1900	280	10	
Hexachlorocyclopentadiene	ND		ug/kg	5400	1700	10	
Hexachloroethane	ND		ug/kg	1500	310	10	
Isophorone	ND		ug/kg	1700	240	10	
Naphthalene	ND		ug/kg	1900	230	10	
Nitrobenzene	ND		ug/kg	1700	280	10	
NDPA/DPA	ND		ug/kg	1500	220	10	
n-Nitrosodi-n-propylamine	ND		ug/kg	1900	290	10	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	1900	660	10	
Butyl benzyl phthalate	ND		ug/kg	1900	480	10	
Di-n-butylphthalate	ND		ug/kg	1900	360	10	
Di-n-octylphthalate	ND		ug/kg	1900	640	10	
Diethyl phthalate	ND		ug/kg	1900	180	10	
Dimethyl phthalate	ND		ug/kg	1900	400	10	
Benzo(a)anthracene	310	J	ug/kg	1100	210	10	
Benzo(a)pyrene	ND		ug/kg	1500	460	10	

L2010060

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001 Repo

Report Date: 03/12/20

Lab Number:

SAMPLE RESULTS

Lab ID: L2010060-01 D

Client ID: TP-1 3-4FT

Sample Location: 389 MANHATTAN AVE

Date Collected: 03/04/20 09:00

Date Received: 03/05/20

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
Benzo(b)fluoranthene	420	J	ug/kg	1100	320	10
Benzo(k)fluoranthene	ND		ug/kg	1100	300	10
Chrysene	310	J	ug/kg	1100	200	10
Acenaphthylene	ND		ug/kg	1500	290	10
Anthracene	ND		ug/kg	1100	370	10
Benzo(ghi)perylene	ND		ug/kg	1500	220	10
Fluorene	ND		ug/kg	1900	180	10
Phenanthrene	330	J	ug/kg	1100	230	10
Dibenzo(a,h)anthracene	ND		ug/kg	1100	220	10
Indeno(1,2,3-cd)pyrene	ND		ug/kg	1500	260	10
Pyrene	520	J	ug/kg	1100	190	10
Biphenyl	ND		ug/kg	4300	440	10
4-Chloroaniline	ND		ug/kg	1900	340	10
2-Nitroaniline	ND		ug/kg	1900	360	10
3-Nitroaniline	ND		ug/kg	1900	360	10
4-Nitroaniline	ND		ug/kg	1900	780	10
Dibenzofuran	ND		ug/kg	1900	180	10
2-Methylnaphthalene	ND		ug/kg	2300	230	10
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	1900	200	10
Acetophenone	ND		ug/kg	1900	230	10
2,4,6-Trichlorophenol	ND		ug/kg	1100	360	10
p-Chloro-m-cresol	ND		ug/kg	1900	280	10
2-Chlorophenol	ND		ug/kg	1900	220	10
2,4-Dichlorophenol	ND		ug/kg	1700	300	10
2,4-Dimethylphenol	ND		ug/kg	1900	620	10
2-Nitrophenol	ND		ug/kg	4100	710	10
4-Nitrophenol	ND		ug/kg	2600	770	10
2,4-Dinitrophenol	ND		ug/kg	9100	880	10
4,6-Dinitro-o-cresol	ND		ug/kg	4900	910	10
Pentachlorophenol	ND		ug/kg	1500	420	10
Phenol	ND		ug/kg	1900	280	10
2-Methylphenol	ND		ug/kg	1900	290	10
3-Methylphenol/4-Methylphenol	ND		ug/kg	2700	300	10
2,4,5-Trichlorophenol	ND		ug/kg	1900	360	10
Carbazole	ND		ug/kg	1900	180	10
Atrazine	ND		ug/kg	1500	660	10
Benzaldehyde	ND		ug/kg	2500	510	10

Project Name: 389 MANHATTAN AVE Lab Number: L2010060

Project Number: B0258-020-001 **Report Date:** 03/12/20

SAMPLE RESULTS

Lab ID: L2010060-01 D Date Collected: 03/04/20 09:00

Client ID: TP-1 3-4FT Date Received: 03/05/20 Sample Location: 389 MANHATTAN AVE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Caprolactam	ND		ug/kg	1900	580	10
2,3,4,6-Tetrachlorophenol	ND		ug/kg	1900	380	10

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	75	25-120
Phenol-d6	79	10-120
Nitrobenzene-d5	71	23-120
2-Fluorobiphenyl	70	30-120
2,4,6-Tribromophenol	46	10-136
4-Terphenyl-d14	60	18-120

03/04/20 11:30

Not Specified

Dilution Factor

03/05/20

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

SAMPLE RESULTS

Lab Number: L2010060

Report Date: 03/12/20

Date Collected:

Date Received:

Field Prep:

RL

SAMPLE RESU

Result

Lab ID: L2010060-02 D

Client ID: TP-6 5-6FT

Sample Location: 389 MANHATTAN AVE

Sample Depth:

Parameter

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 03/09/20 13:34

Analyst: WR Percent Solids: ^{76%} Extraction Method: EPA 3546

MDL

Extraction Date: 03/08/20 01:46

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Acenaphthene	460	J	ug/kg	1700	220	10	
Hexachlorobenzene	ND		ug/kg	1300	240	10	
Bis(2-chloroethyl)ether	ND		ug/kg	1900	290	10	
2-Chloronaphthalene	ND		ug/kg	2200	210	10	
3,3'-Dichlorobenzidine	ND		ug/kg	2200	580	10	
2,4-Dinitrotoluene	ND		ug/kg	2200	430	10	
2,6-Dinitrotoluene	ND		ug/kg	2200	370	10	
Fluoranthene	9900		ug/kg	1300	250	10	
4-Chlorophenyl phenyl ether	ND		ug/kg	2200	230	10	
4-Bromophenyl phenyl ether	ND		ug/kg	2200	330	10	
Bis(2-chloroisopropyl)ether	ND		ug/kg	2600	370	10	
Bis(2-chloroethoxy)methane	ND		ug/kg	2300	220	10	
Hexachlorobutadiene	ND		ug/kg	2200	320	10	
Hexachlorocyclopentadiene	ND		ug/kg	6200	2000	10	
Hexachloroethane	ND		ug/kg	1700	350	10	
Isophorone	ND		ug/kg	1900	280	10	
Naphthalene	640	J	ug/kg	2200	260	10	
Nitrobenzene	ND		ug/kg	1900	320	10	
NDPA/DPA	ND		ug/kg	1700	250	10	
n-Nitrosodi-n-propylamine	ND		ug/kg	2200	330	10	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	2200	750	10	
Butyl benzyl phthalate	800	J	ug/kg	2200	540	10	
Di-n-butylphthalate	ND		ug/kg	2200	410	10	
Di-n-octylphthalate	ND		ug/kg	2200	740	10	
Diethyl phthalate	ND		ug/kg	2200	200	10	
Dimethyl phthalate	ND		ug/kg	2200	450	10	
Benzo(a)anthracene	3600		ug/kg	1300	240	10	
Benzo(a)pyrene	4000		ug/kg	1700	530	10	

Qualifier

Units

L2010060

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

SAMPLE RESULTS

Report Date: 03/12/20

Lab ID: L2010060-02 D

Client ID: TP-6 5-6FT

Sample Location: 389 MANHATTAN AVE Date Collected: 03/04/20 11:30

Lab Number:

Date Received: 03/05/20

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Benzo(b)fluoranthene	5200		ug/kg	1300	360	10
Benzo(k)fluoranthene	1600		ug/kg	1300	350	10
Chrysene	3300		ug/kg	1300	220	10
Acenaphthylene	ND		ug/kg	1700	330	10
Anthracene	1100	J	ug/kg	1300	420	10
Benzo(ghi)perylene	2000		ug/kg	1700	250	10
Fluorene	510	J	ug/kg	2200	210	10
Phenanthrene	4900		ug/kg	1300	260	10
Dibenzo(a,h)anthracene	580	J	ug/kg	1300	250	10
Indeno(1,2,3-cd)pyrene	2300		ug/kg	1700	300	10
Pyrene	8100		ug/kg	1300	220	10
Biphenyl	ND		ug/kg	4900	500	10
4-Chloroaniline	ND		ug/kg	2200	390	10
2-Nitroaniline	ND		ug/kg	2200	420	10
3-Nitroaniline	ND		ug/kg	2200	410	10
4-Nitroaniline	ND		ug/kg	2200	900	10
Dibenzofuran	350	J	ug/kg	2200	200	10
2-Methylnaphthalene	530	J	ug/kg	2600	260	10
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	2200	220	10
Acetophenone	ND		ug/kg	2200	270	10
2,4,6-Trichlorophenol	ND		ug/kg	1300	410	10
p-Chloro-m-cresol	ND		ug/kg	2200	320	10
2-Chlorophenol	ND		ug/kg	2200	260	10
2,4-Dichlorophenol	ND		ug/kg	1900	350	10
2,4-Dimethylphenol	ND		ug/kg	2200	710	10
2-Nitrophenol	ND		ug/kg	4700	810	10
4-Nitrophenol	ND		ug/kg	3000	880	10
2,4-Dinitrophenol	ND		ug/kg	10000	1000	10
4,6-Dinitro-o-cresol	ND		ug/kg	5600	1000	10
Pentachlorophenol	ND		ug/kg	1700	480	10
Phenol	ND		ug/kg	2200	330	10
2-Methylphenol	ND		ug/kg	2200	340	10
3-Methylphenol/4-Methylphenol	ND		ug/kg	3100	340	10
2,4,5-Trichlorophenol	ND		ug/kg	2200	410	10
Carbazole	720	J	ug/kg	2200	210	10
Atrazine	ND		ug/kg	1700	760	10
Benzaldehyde	ND		ug/kg	2800	580	10
			-			

Project Name: 389 MANHATTAN AVE **Lab Number:** L2010060

Project Number: B0258-020-001 **Report Date:** 03/12/20

SAMPLE RESULTS

Lab ID: L2010060-02 D Date Collected: 03/04/20 11:30

Client ID: TP-6 5-6FT Date Received: 03/05/20 Sample Location: 389 MANHATTAN AVE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Caprolactam	ND		ug/kg	2200	660	10
2,3,4,6-Tetrachlorophenol	ND		ua/ka	2200	440	10

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	76	25-120
Phenol-d6	82	10-120
Nitrobenzene-d5	80	23-120
2-Fluorobiphenyl	57	30-120
2,4,6-Tribromophenol	73	10-136
4-Terphenyl-d14	96	18-120

L2010060

03/04/20 12:00

Not Specified

03/05/20

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 03/12/20

Lab ID: D L2010060-03

Client ID: TP-7 0.5-1.5FT

Sample Location: 389 MANHATTAN AVE

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 03/09/20 14:22

Analyst: JRW 85% Percent Solids:

Extraction Method: EPA 3546

Extraction Date: 03/08/20 01:46

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
Acenaphthene	ND		ug/kg	1500	200	10
Hexachlorobenzene	ND		ug/kg	1200	210	10
Bis(2-chloroethyl)ether	ND		ug/kg	1700	260	10
2-Chloronaphthalene	ND		ug/kg	1900	190	10
3,3'-Dichlorobenzidine	ND		ug/kg	1900	510	10
2,4-Dinitrotoluene	ND		ug/kg	1900	380	10
2,6-Dinitrotoluene	ND		ug/kg	1900	330	10
Fluoranthene	5900		ug/kg	1200	220	10
4-Chlorophenyl phenyl ether	ND		ug/kg	1900	200	10
4-Bromophenyl phenyl ether	ND		ug/kg	1900	290	10
Bis(2-chloroisopropyl)ether	ND		ug/kg	2300	330	10
Bis(2-chloroethoxy)methane	ND		ug/kg	2100	190	10
Hexachlorobutadiene	ND		ug/kg	1900	280	10
Hexachlorocyclopentadiene	ND		ug/kg	5500	1700	10
Hexachloroethane	ND		ug/kg	1500	310	10
Isophorone	ND		ug/kg	1700	250	10
Naphthalene	7100		ug/kg	1900	230	10
Nitrobenzene	ND		ug/kg	1700	280	10
NDPA/DPA	ND		ug/kg	1500	220	10
n-Nitrosodi-n-propylamine	ND		ug/kg	1900	300	10
Bis(2-ethylhexyl)phthalate	ND		ug/kg	1900	660	10
Butyl benzyl phthalate	ND		ug/kg	1900	480	10
Di-n-butylphthalate	ND		ug/kg	1900	360	10
Di-n-octylphthalate	ND		ug/kg	1900	650	10
Diethyl phthalate	ND		ug/kg	1900	180	10
Dimethyl phthalate	ND		ug/kg	1900	400	10
Benzo(a)anthracene	2800		ug/kg	1200	220	10
Benzo(a)pyrene	2900		ug/kg	1500	470	10

L2010060

03/12/20

Project Name: 389 MANHATTAN AVE

L2010060-03

TP-7 0.5-1.5FT

389 MANHATTAN AVE

D

Project Number: B0258-020-001

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 03/04/20 12:00

Date Received: 03/05/20 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

MDL Qualifier Units RL **Dilution Factor Parameter** Result Semivolatile Organics by GC/MS - Westborough Lab Benzo(b)fluoranthene 3700 1200 320 10 ug/kg Benzo(k)fluoranthene 1300 1200 310 10 ug/kg Chrysene 2800 ug/kg 1200 200 10 Acenaphthylene 320 J 1500 300 10 ug/kg J Anthracene 790 ug/kg 1200 370 10 J Benzo(ghi)perylene 1400 ug/kg 1500 220 10 Fluorene 520 J ug/kg 1900 190 10 Phenanthrene 5400 ug/kg 1200 230 10 Dibenzo(a,h)anthracene 410 J ug/kg 1200 220 10 Indeno(1,2,3-cd)pyrene 1500 ug/kg 1500 270 10 Pyrene 4300 ug/kg 1200 190 10 J Biphenyl 580 4400 440 10 ug/kg 4-Chloroaniline ND 1900 350 10 ug/kg 2-Nitroaniline ND 370 ug/kg 1900 10 ND 1900 360 10 3-Nitroaniline ug/kg 4-Nitroaniline ND 1900 790 10 ug/kg Dibenzofuran 1800 J 1900 180 10 ug/kg 8700 2300 230 10 2-Methylnaphthalene ug/kg 1,2,4,5-Tetrachlorobenzene ND 1900 200 10 ug/kg 840 J 1900 240 10 Acetophenone ug/kg ND 1200 360 10 2,4,6-Trichlorophenol ug/kg p-Chloro-m-cresol ND 1900 280 10 ug/kg 2-Chlorophenol ND 1900 230 10 ug/kg 2,4-Dichlorophenol ND 1700 310 10 ug/kg 2,4-Dimethylphenol ND 1900 630 10 ug/kg 2-Nitrophenol ND 4100 720 10 ug/kg 4-Nitrophenol ND 2700 780 10 ug/kg 2,4-Dinitrophenol ND 9200 890 10 ug/kg ND 5000 10 4,6-Dinitro-o-cresol 920 ug/kg ND 1500 420 10 Pentachlorophenol ug/kg Phenol ND ug/kg 1900 290 10 2-Methylphenol ND 1900 300 10 ug/kg 3-Methylphenol/4-Methylphenol ND 2800 300 10 ug/kg 2,4,5-Trichlorophenol ND 1900 370 10 ug/kg 610 J 1900 190 10 Carbazole ug/kg Atrazine ND 1500 670 10 ug/kg Benzaldehyde ND 2500 520 10 ug/kg

Project Name: 389 MANHATTAN AVE Lab Number: L2010060

Project Number: B0258-020-001 **Report Date:** 03/12/20

SAMPLE RESULTS

Lab ID: L2010060-03 D Date Collected: 03/04/20 12:00

Client ID: TP-7 0.5-1.5FT Date Received: 03/05/20 Sample Location: 389 MANHATTAN AVE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Caprolactam	ND		ug/kg	1900	580	10
2,3,4,6-Tetrachlorophenol	ND		ug/kg	1900	390	10

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	68	25-120
Phenol-d6	73	10-120
Nitrobenzene-d5	105	23-120
2-Fluorobiphenyl	72	30-120
2,4,6-Tribromophenol	68	10-136
4-Terphenyl-d14	81	18-120
4 Tolphonyi di 4	01	10 120

03/04/20 14:00

Not Specified

03/05/20

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

SAMPLE RESULTS

Lab Number: L2010060

Report Date: 03/12/20

Lab ID: L2010060-04 D

Client ID: TP-10 6-7FT

Sample Location: 389 MANHATTAN AVE

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 03/09/20 14:46

Analyst: WR 85% Percent Solids:

Extraction Method: EPA 3546

Date Collected:

Date Received:

Field Prep:

Extraction Date: 03/08/20 01:46

Acenaphthene ND	
Hexachlorobenzene ND ug/kg 1200 220 10 Bis(2-chloroethyl)ether ND ug/kg 1700 260 10 2-Chloronaphthalene ND ug/kg 1900 190 10 3,3'-Dichlorobenzidine ND ug/kg 1900 520 10 2,4-Dinitrotoluene ND ug/kg 1900 390 10 2,4-Dinitrotoluene ND ug/kg 1900 330 10 2,6-Dinitrotoluene ND ug/kg 1900 330 10 Fluoranthene 1400 ug/kg 1900 220 10 4-Chlorophenyl phenyl ether ND ug/kg 1900 210 10 4-Bromophenyl phenyl ether ND ug/kg 1900 300 10 Bis(2-chloroisopropyl) ether ND ug/kg 2300 330 10 Bis(2-chloroisopropyl) ether ND ug/kg 190 280 10 Hexachlorobutadiene ND	
Bis(2-chloroethyl)ether ND	
2-Chloronaphthalene ND ug/kg 1900 190 10 3,3'-Dichlorobenzidine ND ug/kg 1900 520 10 2,4-Dinitrotoluene ND ug/kg 1900 390 10 2,6-Dinitrotoluene ND ug/kg 1900 330 10 Fluoranthene 1400 ug/kg 1200 220 10 4-Chlorophenyl phenyl ether ND ug/kg 1900 300 10 4-Bromophenyl phenyl ether ND ug/kg 1900 300 10 Bis(2-chloroscopropyl) ether ND ug/kg 1900 300 10 Hexachloroscopropyl) ether	
3,3*-Dichlorobenzidine ND ug/kg 1900 520 10 2,4*-Dinitrotoluene ND ug/kg 1900 390 10 2,6*-Dinitrotoluene ND ug/kg 1900 330 10 Fluoranthene 1400 ug/kg 1200 220 10 4-Chlorophenyl phenyl ether ND ug/kg 1900 300 10 4-Bromophenyl phenyl ether ND ug/kg 1900 300 10 Bis(2-chlorostoryl) phenyl ether ND ug/kg 1900 280 10 Hexachlorocyclopentadiene ND ug/kg 1600 310 10 Hexachlorocyclopent	
2,4-Dinitrotoluene ND ug/kg 1900 390 10 2,6-Dinitrotoluene ND ug/kg 1900 330 10 Fluoranthene 1400 ug/kg 1200 220 10 4-Chlorophenyl phenyl ether ND ug/kg 1900 300 10 4-Bromophenyl phenyl ether ND ug/kg 1900 300 10 8-Bis(2-chloroisopropyl)ether ND ug/kg 2300 330 10 Bis(2-chlorothoxy)methane ND ug/kg 2100 190 10 Hexachlorobutadiene ND ug/kg 1900 280 10 Hexachlorocyclopentadiene ND ug/kg 1900 280 10 Hexachlorocyclopentadiene ND ug/kg 1900 280 10 Hexachlorocyclopentadiene ND ug/kg 1600 310 10 Sophorone ND ug/kg 1600 310 10 Isophorone ND ug/kg 1700 250 10 Naphthalene ND ug/kg 1700 250 10 Naphthalene ND ug/kg 1700 250 10 Nitrobenzene ND ug/kg 1700 290 10 NDPA/DPA ND ug/kg 1600 220 10 NDPA/DPA ND ug/kg 1900 300 10 Bis(2-ethylhexyl)phthalate ND ug/kg 1900 490 10 Butyl benzyl phthalate ND ug/kg 1900 490 10 Butyl benzyl phthalate ND ug/kg 1900 490 10	
2,6-Dinitrotoluene ND ug/kg 1900 330 10 Fluoranthene 1400 ug/kg 1200 220 10 4-Chlorophenyl phenyl ether ND ug/kg 1900 210 10 4-Bromophenyl phenyl ether ND ug/kg 1900 300 10 Bis(2-chloroisopropyl)ether ND ug/kg 2300 330 10 Bis(2-chloroisopropyl)ether ND ug/kg 2100 190 10 Hexachlorobutadiene ND ug/kg 1900 280 10 Hexachlorocyclopentadiene ND ug/kg 1900 280 10 Hexachlorocyclopentadiene ND ug/kg 1600 310 10 Hexachlorocyclopentadiene ND ug/kg 1600 310 10 Sisphorone ND ug/kg 1700 250 10 Naphthalene ND ug/kg 1700 250 10 Naphthalene ND ug/kg 1700 250 10 Nitrobenzene ND ug/kg 1700 250 10 Nitrobenzene ND ug/kg 1700 250 10 Nitrobenzene ND ug/kg 1700 290 10 NDPA/DPA ND ug/kg 1600 300 10 NDPA/DPA ND ug/kg 1700 290 10 NDPA/DPA ND ug/kg 1600 220 10 N-Nitrosodi-n-propylamine ND ug/kg 1900 300 10 Bis(2-ethylhexyl)phthalate ND ug/kg 1900 490 10 Butyl benzyl phthalate ND ug/kg 1900 490 10 Di-n-butylphthalate ND ug/kg 1900 490 10	
Fluoranthene 1400 ug/kg 1200 220 10 4-Chlorophenyl phenyl ether ND ug/kg 1900 210 10 4-Bromophenyl phenyl ether ND ug/kg 1900 300 10 Bis(2-chloroisopropyl)ether ND ug/kg 2300 330 10 Bis(2-chloroethoxy)methane ND ug/kg 2100 190 10 Hexachlorobutadiene ND ug/kg 1900 280 10 Hexachlorocyclopentadiene ND ug/kg 5600 1800 10 Hexachloroethane ND ug/kg 1600 310 10 Isophorone ND ug/kg 1700 250 10 Naphthalene ND ug/kg 1700 290 10 NDPA/DPA ND ug/kg 1600 220 10 NDPA/DPA ND ug/kg 1900 300 10 Bis(2-ethylhexyl)phthalate ND ug/kg 19	
4-Chlorophenyl phenyl ether ND ug/kg 1900 210 10 4-Bromophenyl phenyl ether ND ug/kg 1900 300 10 Bis(2-chloroisopropyl)ether ND ug/kg 2300 330 10 Bis(2-chloroethoxy)methane ND ug/kg 2100 190 10 Hexachlorobutadiene ND ug/kg 1900 280 10 Hexachlorocyclopentadiene ND ug/kg 5600 1800 10 Hexachlorocyclopentadiene ND ug/kg 1600 310 10 Isophorone ND ug/kg 1600 310 10 Naphthalene ND ug/kg 1900 240 10 NDPA/DPA ND ug/kg 1600 220 10 NDPA/DPA ND	
4-Bromophenyl phenyl ether ND ug/kg 1900 300 10 Bis(2-chloroisopropyl)ether ND ug/kg 2300 330 10 Bis(2-chloroethoxy)methane ND ug/kg 2100 190 10 Hexachlorobutadiene ND ug/kg 1900 280 10 Hexachlorocyclopentadiene ND ug/kg 5600 1800 10 Hexachlorocyclopentadiene ND ug/kg 1600 310 10 Hexachloroethane ND ug/kg 1600 310 10 Isophorone ND ug/kg 1700 250 10 Naphthalene ND ug/kg 1900 240 10 Nitrobenzene ND ug/kg 1700 290 10 NDPA/DPA ND ug/kg 1700 290 10 NDPA/DPA ND ug/kg 1600 220 10 n-Nitrosodi-n-propylamine ND ug/kg 1900 300 10 Bis(2-ethylhexyl)phthalate ND ug/kg 1900 300 10 Butyl benzyl phthalate ND ug/kg 1900 370 10	
Bis(2-chloroisopropyl)ether ND ug/kg 2300 330 10 Bis(2-chloroethoxy)methane ND ug/kg 2100 190 10 Hexachlorobutadiene ND ug/kg 1900 280 10 Hexachlorocyclopentadiene ND ug/kg 5600 1800 10 Hexachloroethane ND ug/kg 1600 310 10 Isophorone ND ug/kg 1700 250 10 Naphthalene ND ug/kg 1900 240 10 Nitrobenzene ND ug/kg 1700 290 10 NDPA/DPA ND ug/kg 1600 220 10 n-Nitrosodi-n-propylamine ND ug/kg 1900 300 10 Bis(2-ethylhexyl)phthalate ND ug/kg 1900 670 10 Butyl benzyl phthalate ND ug/kg 1900 370 10	
Bis(2-chloroethoxy)methane ND ug/kg 2100 190 10 Hexachlorobutadiene ND ug/kg 1900 280 10 Hexachlorocyclopentadiene ND ug/kg 5600 1800 10 Hexachloroethane ND ug/kg 1600 310 10 Isophorone ND ug/kg 1700 250 10 Naphthalene ND ug/kg 1900 240 10 Nitrobenzene ND ug/kg 1700 290 10 NDPA/DPA ND ug/kg 1600 220 10 n-Nitrosodi-n-propylamine ND ug/kg 1900 300 10 Bis(2-ethylhexyl)phthalate ND ug/kg 1900 670 10 Butyl benzyl phthalate ND ug/kg 1900 370 10 Di-n-butylphthalate ND ug/kg 1900 370 10	
Hexachlorobutadiene ND ug/kg 1900 280 10 Hexachlorocyclopentadiene ND ug/kg 5600 1800 10 Hexachloroethane ND ug/kg 1600 310 10 Isophorone ND ug/kg 1700 250 10 Naphthalene ND ug/kg 1900 240 10 Nitrobenzene ND ug/kg 1700 290 10 NDPA/DPA ND ug/kg 1600 220 10 n-Nitrosodi-n-propylamine ND ug/kg 1900 300 10 Bis(2-ethylhexyl)phthalate ND ug/kg 1900 670 10 Butyl benzyl phthalate ND ug/kg 1900 490 10 Di-n-butylphthalate ND ug/kg 1900 370 10	
Hexachlorocyclopentadiene ND ug/kg 5600 1800 10 Hexachlorocethane ND ug/kg 1600 310 10 Isophorone ND ug/kg 1700 250 10 Naphthalene ND ug/kg 1900 240 10 Nitrobenzene ND ug/kg 1700 290 10 NDPA/DPA ND ug/kg 1600 220 10 n-Nitrosodi-n-propylamine ND ug/kg 1900 300 10 Bis(2-ethylhexyl)phthalate ND ug/kg 1900 670 10 Butyl benzyl phthalate ND ug/kg 1900 490 10 Di-n-butylphthalate ND ug/kg 1900 370 10	
Hexachloroethane ND ug/kg 1600 310 10 Isophorone ND ug/kg 1700 250 10 Naphthalene ND ug/kg 1900 240 10 Nitrobenzene ND ug/kg 1700 290 10 NDPA/DPA ND ug/kg 1600 220 10 n-Nitrosodi-n-propylamine ND ug/kg 1900 300 10 Bis(2-ethylhexyl)phthalate ND ug/kg 1900 670 10 Butyl benzyl phthalate ND ug/kg 1900 490 10 Di-n-butylphthalate ND ug/kg 1900 370 10	
Sophorone ND	
Naphthalene ND ug/kg 1900 240 10 Nitrobenzene ND ug/kg 1700 290 10 NDPA/DPA ND ug/kg 1600 220 10 n-Nitrosodi-n-propylamine ND ug/kg 1900 300 10 Bis(2-ethylhexyl)phthalate ND ug/kg 1900 670 10 Butyl benzyl phthalate ND ug/kg 1900 490 10 Di-n-butylphthalate ND ug/kg 1900 370 10	
Nitrobenzene ND ug/kg 1700 290 10 NDPA/DPA ND ug/kg 1600 220 10 n-Nitrosodi-n-propylamine ND ug/kg 1900 300 10 Bis(2-ethylhexyl)phthalate ND ug/kg 1900 670 10 Butyl benzyl phthalate ND ug/kg 1900 490 10 Di-n-butylphthalate ND ug/kg 1900 370 10	
NDPA/DPA ND ug/kg 1600 220 10 n-Nitrosodi-n-propylamine ND ug/kg 1900 300 10 Bis(2-ethylhexyl)phthalate ND ug/kg 1900 670 10 Butyl benzyl phthalate ND ug/kg 1900 490 10 Di-n-butylphthalate ND ug/kg 1900 370 10	
n-Nitrosodi-n-propylamine ND ug/kg 1900 300 10 Bis(2-ethylhexyl)phthalate ND ug/kg 1900 670 10 Butyl benzyl phthalate ND ug/kg 1900 490 10 Di-n-butylphthalate ND ug/kg 1900 370 10	
Bis(2-ethylhexyl)phthalate ND ug/kg 1900 670 10 Butyl benzyl phthalate ND ug/kg 1900 490 10 Di-n-butylphthalate ND ug/kg 1900 370 10	
Butyl benzyl phthalate ND ug/kg 1900 490 10 Di-n-butylphthalate ND ug/kg 1900 370 10	
Di-n-butylphthalate ND ug/kg 1900 370 10	
Di-n-octylphthalate ND ug/kg 1900 660 10	
Diethyl phthalate ND ug/kg 1900 180 10	
Dimethyl phthalate ND ug/kg 1900 410 10	
Benzo(a)anthracene 650 J ug/kg 1200 220 10	
Benzo(a)pyrene 760 J ug/kg 1600 470 10	

L2010060

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

SAMPLE RESULTS

Lab Number:

Report Date: 03/12/20

Lab ID: L2010060-04 D

Client ID: TP-10 6-7FT

Sample Location: 389 MANHATTAN AVE Date Collected: 03/04/20 14:00

Date Received: 03/05/20

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
Benzo(b)fluoranthene	940	J	ug/kg	1200	330	10
Benzo(k)fluoranthene	330	J	ug/kg	1200	310	10
Chrysene	650	J	ug/kg	1200	200	10
Acenaphthylene	ND		ug/kg	1600	300	10
Anthracene	ND		ug/kg	1200	380	10
Benzo(ghi)perylene	420	J	ug/kg	1600	230	10
Fluorene	ND		ug/kg	1900	190	10
Phenanthrene	780	J	ug/kg	1200	240	10
Dibenzo(a,h)anthracene	ND		ug/kg	1200	220	10
Indeno(1,2,3-cd)pyrene	470	J	ug/kg	1600	270	10
Pyrene	1100	J	ug/kg	1200	190	10
Biphenyl	ND		ug/kg	4400	450	10
4-Chloroaniline	ND		ug/kg	1900	350	10
2-Nitroaniline	ND		ug/kg	1900	370	10
3-Nitroaniline	ND		ug/kg	1900	370	10
4-Nitroaniline	ND		ug/kg	1900	800	10
Dibenzofuran	ND		ug/kg	1900	180	10
2-Methylnaphthalene	ND		ug/kg	2300	230	10
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	1900	200	10
Acetophenone	ND		ug/kg	1900	240	10
2,4,6-Trichlorophenol	ND		ug/kg	1200	370	10
p-Chloro-m-cresol	ND		ug/kg	1900	290	10
2-Chlorophenol	ND		ug/kg	1900	230	10
2,4-Dichlorophenol	ND		ug/kg	1700	310	10
2,4-Dimethylphenol	ND		ug/kg	1900	640	10
2-Nitrophenol	ND		ug/kg	4200	730	10
4-Nitrophenol	ND		ug/kg	2700	790	10
2,4-Dinitrophenol	ND		ug/kg	9300	900	10
4,6-Dinitro-o-cresol	ND		ug/kg	5000	930	10
Pentachlorophenol	ND		ug/kg	1600	430	10
Phenol	ND		ug/kg	1900	290	10
2-Methylphenol	ND		ug/kg	1900	300	10
3-Methylphenol/4-Methylphenol	ND		ug/kg	2800	300	10
2,4,5-Trichlorophenol	ND		ug/kg	1900	370	10
Carbazole	ND		ug/kg	1900	190	10
Atrazine	ND		ug/kg	1600	680	10
Benzaldehyde	ND		ug/kg	2600	520	10

Project Name: 389 MANHATTAN AVE Lab Number: L2010060

Project Number: B0258-020-001 **Report Date:** 03/12/20

SAMPLE RESULTS

Lab ID: L2010060-04 D Date Collected: 03/04/20 14:00

Client ID: TP-10 6-7FT Date Received: 03/05/20 Sample Location: 389 MANHATTAN AVE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Caprolactam	ND		ug/kg	1900	590	10	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	1900	390	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	96	25-120
Phenol-d6	95	10-120
Nitrobenzene-d5	97	23-120
2-Fluorobiphenyl	73	30-120
2,4,6-Tribromophenol	75	10-136
4-Terphenyl-d14	70	18-120

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001 Report Date

Report Date: 03/12/20

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 03/09/20 11:33

Analyst: WR

Extraction Method: EPA 3546
Extraction Date: 03/08/20 01:46

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-04	Batch:	WG1348475-1
Acenaphthene	ND		ug/kg	130		17.
Hexachlorobenzene	ND		ug/kg	99		18.
Bis(2-chloroethyl)ether	ND		ug/kg	150		22.
2-Chloronaphthalene	ND		ug/kg	160		16.
3,3'-Dichlorobenzidine	ND		ug/kg	160		44.
2,4-Dinitrotoluene	ND		ug/kg	160		33.
2,6-Dinitrotoluene	ND		ug/kg	160		28.
Fluoranthene	ND		ug/kg	99		19.
4-Chlorophenyl phenyl ether	ND		ug/kg	160		18.
4-Bromophenyl phenyl ether	ND		ug/kg	160		25.
Bis(2-chloroisopropyl)ether	ND		ug/kg	200		28.
Bis(2-chloroethoxy)methane	ND		ug/kg	180		17.
Hexachlorobutadiene	ND		ug/kg	160		24.
Hexachlorocyclopentadiene	ND		ug/kg	470		150
Hexachloroethane	ND		ug/kg	130		27.
Isophorone	ND		ug/kg	150		22.
Naphthalene	ND		ug/kg	160		20.
Nitrobenzene	ND		ug/kg	150		24.
NDPA/DPA	ND		ug/kg	130		19.
n-Nitrosodi-n-propylamine	ND		ug/kg	160		26.
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160		57.
Butyl benzyl phthalate	ND		ug/kg	160		42.
Di-n-butylphthalate	ND		ug/kg	160		31.
Di-n-octylphthalate	ND		ug/kg	160		56.
Diethyl phthalate	ND		ug/kg	160		15.
Dimethyl phthalate	ND		ug/kg	160		35.
Benzo(a)anthracene	ND		ug/kg	99		19.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	99		28.

Lab Number:

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001 **Report Date:** 03/12/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 03/09/20 11:33 Extraction Date: 03/08/20 01:46

Analyst: WR

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	S - Westborough	Lab for s	ample(s):	01-04	Batch:	WG1348475-1
Benzo(k)fluoranthene	ND		ug/kg	99		26.
Chrysene	ND		ug/kg	99		17.
Acenaphthylene	ND		ug/kg	130		26.
Anthracene	ND		ug/kg	99		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	99		20.
Dibenzo(a,h)anthracene	ND		ug/kg	99		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	99		16.
Biphenyl	ND		ug/kg	380		38.
4-Chloroaniline	ND		ug/kg	160		30.
2-Nitroaniline	ND		ug/kg	160		32.
3-Nitroaniline	ND		ug/kg	160		31.
4-Nitroaniline	ND		ug/kg	160		68.
Dibenzofuran	ND		ug/kg	160		16.
2-Methylnaphthalene	ND		ug/kg	200		20.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160		17.
Acetophenone	ND		ug/kg	160		20.
2,4,6-Trichlorophenol	ND		ug/kg	99		31.
p-Chloro-m-cresol	ND		ug/kg	160		25.
2-Chlorophenol	ND		ug/kg	160		20.
2,4-Dichlorophenol	ND		ug/kg	150		27.
2,4-Dimethylphenol	ND		ug/kg	160		55.
2-Nitrophenol	ND		ug/kg	360		62.
4-Nitrophenol	ND		ug/kg	230		68.
2,4-Dinitrophenol	ND		ug/kg	800		77.
4,6-Dinitro-o-cresol	ND		ug/kg	430		80.
Pentachlorophenol	ND		ug/kg	130		36.

03/08/20 01:46

Lab Number:

Extraction Date:

33.

Project Name: 389 MANHATTAN AVE

03/09/20 11:33

Report Date: Project Number: B0258-020-001 03/12/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546 Analytical Date:

Analyst: WR

2,3,4,6-Tetrachlorophenol

arameter	Result	Qualifier	Units	RL		MDL
semivolatile Organics by GC/MS	S - Westborough	Lab for s	ample(s):	01-04	Batch:	WG1348475-1
Phenol	ND		ug/kg	160		25.
2-Methylphenol	ND		ug/kg	160		26.
3-Methylphenol/4-Methylphenol	ND		ug/kg	240		26.
2,4,5-Trichlorophenol	ND		ug/kg	160		32.
Carbazole	ND		ug/kg	160		16.
Atrazine	ND		ug/kg	130		58.
Benzaldehyde	ND		ug/kg	220		45.
Caprolactam	ND		ug/kg	160		50.

ug/kg

160

Surrogate	%Recovery Qual	Acceptance ifier Criteria
2-Fluorophenol	68	25-120
Phenol-d6	75	10-120
Nitrobenzene-d5	67	23-120
2-Fluorobiphenyl	62	30-120
2,4,6-Tribromophenol	60	10-136
4-Terphenyl-d14	81	18-120

ND

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

Lab Number: L2010060

arameter	LCS %Recovery		.CSD ecovery		ecovery imits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS -	Westborough Lab Assoc	iated sample(s): 01	-04 Batch	n: WG1348475-2	WG134847	5-3		
Acenaphthene	94		81	3	1-137	15		50
Hexachlorobenzene	100		84	4	0-140	17		50
Bis(2-chloroethyl)ether	85		84	4	0-140	1		50
2-Chloronaphthalene	94		65	4	0-140	36		50
3,3'-Dichlorobenzidine	69		60	4	0-140	14		50
2,4-Dinitrotoluene	98		83	4	0-132	17		50
2,6-Dinitrotoluene	96		64	4	0-140	40		50
Fluoranthene	121		75	4	0-140	47		50
4-Chlorophenyl phenyl ether	93		76	4	0-140	20		50
4-Bromophenyl phenyl ether	94		78	4	0-140	19		50
Bis(2-chloroisopropyl)ether	90		81	4	0-140	11		50
Bis(2-chloroethoxy)methane	70		82	4	0-117	16		50
Hexachlorobutadiene	93		75	4	0-140	21		50
Hexachlorocyclopentadiene	83		63	4	0-140	27		50
Hexachloroethane	89		76	4	0-140	16		50
Isophorone	78		82	4	0-140	5		50
Naphthalene	92		83	4	0-140	10		50
Nitrobenzene	98		89	4	0-140	10		50
NDPA/DPA	96		81	3	6-157	17		50
n-Nitrosodi-n-propylamine	104		88	3.	2-121	17		50
Bis(2-ethylhexyl)phthalate	95		79	4	0-140	18		50
Butyl benzyl phthalate	121		73	4	0-140	49		50
Di-n-butylphthalate	92		72	4	0-140	24		50

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

Lab Number: L2010060

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - 1	Westborough Lab Assoc	iated sample(s):	01-04 Batc	h: WG1348475-2 WG13484	75-3	
Di-n-octylphthalate	74		75	40-140	1	50
Diethyl phthalate	90		75	40-140	18	50
Dimethyl phthalate	90		60	40-140	40	50
Benzo(a)anthracene	98		82	40-140	18	50
Benzo(a)pyrene	93		97	40-140	4	50
Benzo(b)fluoranthene	88		91	40-140	3	50
Benzo(k)fluoranthene	86		87	40-140	1	50
Chrysene	96		82	40-140	16	50
Acenaphthylene	92		63	40-140	37	50
Anthracene	98		83	40-140	17	50
Benzo(ghi)perylene	99		80	40-140	21	50
Fluorene	95		81	40-140	16	50
Phenanthrene	95		80	40-140	17	50
Dibenzo(a,h)anthracene	102		83	40-140	21	50
Indeno(1,2,3-cd)pyrene	105		84	40-140	22	50
Pyrene	124		75	35-142	49	50
Biphenyl	89		62	37-127	36	50
4-Chloroaniline	82		78	40-140	5	50
2-Nitroaniline	98		67	47-134	38	50
3-Nitroaniline	70		60	26-129	15	50
4-Nitroaniline	93		78	41-125	18	50
Dibenzofuran	95		80	40-140	17	50
2-Methylnaphthalene	92		80	40-140	14	50

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

Lab Number: L2010060

Parameter	LCS %Recovery	Qual	LCSD %Recov			ecovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Assoc	iated sample(s)	: 01-04	Batch:	WG1348475-2	2 WG13484	475-3		
1,2,4,5-Tetrachlorobenzene	91		72		4	40-117	23		50
Acetophenone	98		83		•	14-144	17		50
2,4,6-Trichlorophenol	98		67		3	30-130	38		50
p-Chloro-m-cresol	98		87		2	26-103	12		50
2-Chlorophenol	90		90		2	25-102	0		50
2,4-Dichlorophenol	74		83		3	30-130	11		50
2,4-Dimethylphenol	76		83		3	30-130	9		50
2-Nitrophenol	73		84		3	30-130	14		50
4-Nitrophenol	101		87		•	11-114	15		50
2,4-Dinitrophenol	88		72			4-130	20		50
4,6-Dinitro-o-cresol	95		79		,	10-130	18		50
Pentachlorophenol	91		76		,	17-109	18		50
Phenol	94	Q	86			26-90	9		50
2-Methylphenol	99		84		3	80-130.	16		50
3-Methylphenol/4-Methylphenol	104		86		3	30-130	19		50
2,4,5-Trichlorophenol	101		64		3	30-130	45		50
Carbazole	100		79		Ę	54-128	23		50
Atrazine	99		86		4	40-140	14		50
Benzaldehyde	84		74		4	40-140	13		50
Caprolactam	91		92		•	15-130	1		50
2,3,4,6-Tetrachlorophenol	98		81		4	40-140	19		50

Project Name: 389 MANHATTAN AVE

Lab Number:

L2010060

Project Number: B0258-020-001

Report Date:

03/12/20

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG1348475-2 WG1348475-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2-Fluorophenol	103		87		25-120	
Phenol-d6	98		88		10-120	
Nitrobenzene-d5	95		89		23-120	
2-Fluorobiphenyl	87		59		30-120	
2,4,6-Tribromophenol	96		79		10-136	
4-Terphenyl-d14	123	Q	78		18-120	

PCBS

Project Name: Lab Number: 389 MANHATTAN AVE L2010060

Project Number: B0258-020-001 **Report Date:** 03/12/20

SAMPLE RESULTS

Lab ID: Date Collected: 03/04/20 09:00 L2010060-01

Client ID: TP-1 3-4FT Date Received: 03/05/20

Sample Location: Field Prep: 389 MANHATTAN AVE Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 03/07/20 20:16 1,8082A Analytical Method:

Cleanup Method: EPA 3665A Analytical Date: 03/09/20 12:18 Cleanup Date: 03/08/20 Analyst: HT Cleanup Method: EPA 3660B

86% Percent Solids: Cleanup Date: 03/08/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - West	borough Lab						
Arcelor 1016	ND			27.4	2 22	4	۸
Aroclor 1016	ND		ug/kg	37.4	3.32	ı	Α
Aroclor 1221	ND		ug/kg	37.4	3.75	1	Α
Aroclor 1232	ND		ug/kg	37.4	7.94	1	Α
Aroclor 1242	ND		ug/kg	37.4	5.05	1	Α
Aroclor 1248	ND		ug/kg	37.4	5.62	1	Α
Aroclor 1254	415		ug/kg	37.4	4.10	1	В
Aroclor 1260	266		ug/kg	37.4	6.92	1	В
Aroclor 1262	ND		ug/kg	37.4	4.76	1	Α
Aroclor 1268	ND		ug/kg	37.4	3.88	1	Α
PCBs, Total	681		ug/kg	37.4	3.32	1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		30-150	Α
Decachlorobiphenyl	65		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	54		30-150	В
Decachlorobiphenyl	70		30-150	В

Project Name: Lab Number: 389 MANHATTAN AVE L2010060

Project Number: B0258-020-001 **Report Date:** 03/12/20

SAMPLE RESULTS

Lab ID: Date Collected: 03/04/20 11:30 L2010060-02

Client ID: TP-6 5-6FT Date Received: 03/05/20

Sample Location: Field Prep: 389 MANHATTAN AVE Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 03/07/20 20:16 1,8082A Analytical Method:

Cleanup Method: EPA 3665A Analytical Date: 03/09/20 12:30 Cleanup Date: 03/08/20 Analyst: HT EPA 3660B

Cleanup Method: 76% Percent Solids: Cleanup Date: 03/08/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Wes	tborough Lab						
Aroclor 1016	ND		ug/kg	43.5	3.86	1	А
Aroclor 1221	ND		ug/kg	43.5	4.36	1	Α
Aroclor 1232	ND		ug/kg	43.5	9.22	1	Α
Aroclor 1242	ND		ug/kg	43.5	5.86	1	А
Aroclor 1248	ND		ug/kg	43.5	6.53	1	Α
Aroclor 1254	110	Р	ug/kg	43.5	4.76	1	В
Aroclor 1260	186		ug/kg	43.5	8.04	1	Α
Aroclor 1262	ND		ug/kg	43.5	5.52	1	Α
Aroclor 1268	ND		ug/kg	43.5	4.51	1	А
PCBs, Total	296		ug/kg	43.5	3.86	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	59		30-150	Α
Decachlorobiphenyl	83		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	61		30-150	В
Decachlorobiphenyl	106		30-150	В

Project Name: Lab Number: 389 MANHATTAN AVE L2010060

Project Number: B0258-020-001 **Report Date:** 03/12/20

SAMPLE RESULTS

Lab ID: Date Collected: 03/04/20 12:00 L2010060-03

Date Received: Client ID: 03/05/20 TP-7 0.5-1.5FT

Sample Location: Field Prep: 389 MANHATTAN AVE Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 03/07/20 20:16 1,8082A Analytical Method:

Cleanup Method: EPA 3665A Analytical Date: 03/09/20 12:43 Cleanup Date: 03/08/20 Analyst: HT Cleanup Method: EPA 3660B 85%

Percent Solids: Cleanup Date: 03/08/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/kg	37.6	3.34	1	Α			
Aroclor 1221	ND		ug/kg	37.6	3.77	1	Α			
Aroclor 1232	ND		ug/kg	37.6	7.98	1	Α			
Aroclor 1242	ND		ug/kg	37.6	5.07	1	А			
Aroclor 1248	ND		ug/kg	37.6	5.64	1	А			
Aroclor 1254	38.2		ug/kg	37.6	4.12	1	В			
Aroclor 1260	48.3		ug/kg	37.6	6.95	1	В			
Aroclor 1262	ND		ug/kg	37.6	4.78	1	Α			
Aroclor 1268	ND		ug/kg	37.6	3.90	1	Α			
PCBs, Total	86.5		ug/kg	37.6	3.34	1	В			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	38		30-150	Α
Decachlorobiphenyl	53		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	37		30-150	В
Decachlorobiphenyl	64		30-150	В

Project Name: 389 MANHATTAN AVE **Lab Number:** L2010060

Project Number: B0258-020-001 **Report Date:** 03/12/20

SAMPLE RESULTS

Lab ID: L2010060-04 Date Collected: 03/04/20 14:00

Client ID: TP-10 6-7FT Date Received: 03/05/20 Sample Location: 389 MANHATTAN AVE Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 03/07/20 20:16

Analytical Date: 03/09/20 12:55

Analyst: HT Cleanup Method: EPA 3665A

Cleanup Date: 03/08/20

Percent Solids: 85% Cleanup Method: EPA 3660B Cleanup Date: 03/08/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - West	borough Lab						
Aroclor 1016	ND		//	37.7	3.35	1	Α
			ug/kg			I	
Aroclor 1221	ND		ug/kg	37.7	3.78	1 	Α
Aroclor 1232	ND		ug/kg	37.7	7.99	1	Α
Aroclor 1242	ND		ug/kg	37.7	5.08	1	Α
Aroclor 1248	ND		ug/kg	37.7	5.65	1	Α
Aroclor 1254	26.2	J	ug/kg	37.7	4.12	1	В
Aroclor 1260	20.8	J	ug/kg	37.7	6.96	1	Α
Aroclor 1262	ND		ug/kg	37.7	4.79	1	Α
Aroclor 1268	ND		ug/kg	37.7	3.90	1	Α
PCBs, Total	47.0	J	ug/kg	37.7	3.35	1	В

	Acceptance							
Surrogate	% Recovery	Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	66		30-150	Α				
Decachlorobiphenyl	68		30-150	Α				
2,4,5,6-Tetrachloro-m-xylene	65		30-150	В				
Decachlorobiphenyl	75		30-150	В				

Lab Number:

Project Name: 389 MANHATTAN AVE

1,8082A

03/09/20 11:29

Project Number: B0258-020-001 **Report Date:** 03/12/20

Method Blank Analysis
Batch Quality Control

Batch Quality Control

Analyst: HT

Analytical Method:

Analytical Date:

Extraction Method: EPA 3546
Extraction Date: 03/07/20 20:16
Cleanup Method: EPA 3665A
Cleanup Date: 03/08/20
Cleanup Date: EPA 3660B
Cleanup Date: 03/08/20

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	n Lab for s	ample(s):	01-04	Batch:	WG13	48459-1
Aroclor 1016	ND		ug/kg	31.5		2.80	А
Aroclor 1221	ND		ug/kg	31.5		3.16	Α
Aroclor 1232	ND		ug/kg	31.5		6.69	А
Aroclor 1242	ND		ug/kg	31.5		4.25	Α
Aroclor 1248	ND		ug/kg	31.5		4.73	Α
Aroclor 1254	ND		ug/kg	31.5		3.45	Α
Aroclor 1260	ND		ug/kg	31.5		5.83	Α
Aroclor 1262	ND		ug/kg	31.5		4.01	Α
Aroclor 1268	ND		ug/kg	31.5		3.27	Α
PCBs, Total	ND		ug/kg	31.5		2.80	Α

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	78		30-150	Α	
Decachlorobiphenyl	90		30-150	Α	
2,4,5,6-Tetrachloro-m-xylene	80		30-150	В	
Decachlorobiphenyl	94		30-150	В	

Project Name: 389 MANHATTAN AVE

Lab Number: L2010060

Project Number: B0258-020-001

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - West	tborough Lab Associa	ted sample(s)	: 01-04 Batch	: WG13484	459-2 WG134845	59-3			
Aroclor 1016	81		78		40-140	4		50	Α
Aroclor 1260	78		76		40-140	3		50	А

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	79	76	30-150 A
Decachlorobiphenyl	93	87	30-150 A
2,4,5,6-Tetrachloro-m-xylene	79	76	30-150 B
Decachlorobiphenyl	96	90	30-150 B

METALS

Project Name: 389 MANHATTAN AVE Lab Number: L2010060

Project Number: B0258-020-001 **Report Date:** 03/12/20

SAMPLE RESULTS

 Lab ID:
 L2010060-01
 Date Collected:
 03/04/20 09:00

 Client ID:
 TP-1 3-4FT
 Date Received:
 03/05/20

Sample Location: 389 MANHATTAN AVE Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 86%

reiterit solius.	0070					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	8.96		mg/kg	0.437	0.091	1	03/10/20 18:36	6 03/12/20 15:21	EPA 3050B	1,6010D	BV
Barium, Total	159		mg/kg	0.437	0.076	1	03/10/20 18:36	6 03/12/20 15:21	EPA 3050B	1,6010D	BV
Cadmium, Total	0.830		mg/kg	0.437	0.043	1	03/10/20 18:36	6 03/12/20 15:21	EPA 3050B	1,6010D	BV
Chromium, Total	18.7		mg/kg	0.437	0.042	1	03/10/20 18:36	6 03/12/20 15:21	EPA 3050B	1,6010D	BV
Lead, Total	358		mg/kg	2.18	0.117	1	03/10/20 18:36	6 03/12/20 15:21	EPA 3050B	1,6010D	BV
Mercury, Total	0.085		mg/kg	0.073	0.047	1	03/10/20 08:00	03/10/20 13:09	EPA 7471B	1,7471B	GD
Selenium, Total	0.598	J	mg/kg	0.873	0.113	1	03/10/20 18:36	3 03/12/20 15:21	EPA 3050B	1,6010D	BV
Silver, Total	0.340	J	mg/kg	0.437	0.124	1	03/10/20 18:36	6 03/12/20 15:21	EPA 3050B	1,6010D	BV

Project Name: 389 MANHATTAN AVE Lab Number: L2010060

Project Number: B0258-020-001 **Report Date:** 03/12/20

SAMPLE RESULTS

Lab ID:L2010060-02Date Collected:03/04/20 11:30Client ID:TP-6 5-6FTDate Received:03/05/20Sample Location:389 MANHATTAN AVEField Prep:Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 76%

Percent Solids.	1070					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	ofiold Lob										
Total Metals - Man	sileid Lab										
Arsenic, Total	13.5		mg/kg	0.516	0.107	1	03/10/20 18:36	6 03/12/20 15:37	EPA 3050B	1,6010D	BV
Barium, Total	259		mg/kg	0.516	0.090	1	03/10/20 18:36	6 03/12/20 15:37	EPA 3050B	1,6010D	BV
Cadmium, Total	3.55		mg/kg	0.516	0.051	1	03/10/20 18:36	6 03/12/20 15:37	EPA 3050B	1,6010D	BV
Chromium, Total	21.5		mg/kg	0.516	0.050	1	03/10/20 18:36	6 03/12/20 15:37	EPA 3050B	1,6010D	BV
Lead, Total	689		mg/kg	2.58	0.138	1	03/10/20 18:36	6 03/12/20 15:37	EPA 3050B	1,6010D	BV
Mercury, Total	0.378		mg/kg	0.083	0.054	1	03/10/20 08:00	03/10/20 13:12	EPA 7471B	1,7471B	GD
Selenium, Total	1.48		mg/kg	1.03	0.133	1	03/10/20 18:36	6 03/12/20 15:37	EPA 3050B	1,6010D	BV
Silver, Total	0.562		mg/kg	0.516	0.146	1	03/10/20 18:36	3 03/12/20 15:37	EPA 3050B	1,6010D	BV

Project Name: 389 MANHATTAN AVE Lab Number: L2010060

Project Number: B0258-020-001 **Report Date:** 03/12/20

SAMPLE RESULTS

 Lab ID:
 L2010060-03
 Date Collected:
 03/04/20 12:00

 Client ID:
 TP-7 0.5-1.5FT
 Date Received:
 03/05/20

 Sample Location:
 389 MANHATTAN AVE
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 85%

Percent Solids:	00%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	29.0		mg/kg	0.469	0.098	1	03/10/20 18:36	3 03/12/20 15:42	EPA 3050B	1,6010D	BV
Barium, Total	53.2		mg/kg	0.469	0.082	1	03/10/20 18:36	3 03/12/20 15:42	EPA 3050B	1,6010D	BV
Cadmium, Total	0.169	J	mg/kg	0.469	0.046	1	03/10/20 18:36	3 03/12/20 15:42	EPA 3050B	1,6010D	BV
Chromium, Total	4.94		mg/kg	0.469	0.045	1	03/10/20 18:36	3 03/12/20 15:42	EPA 3050B	1,6010D	BV
Lead, Total	108		mg/kg	2.34	0.126	1	03/10/20 18:36	3 03/12/20 15:42	EPA 3050B	1,6010D	BV
Mercury, Total	0.284		mg/kg	0.074	0.048	1	03/10/20 08:00	03/10/20 13:15	EPA 7471B	1,7471B	GD
Selenium, Total	1.94		mg/kg	0.938	0.121	1	03/10/20 18:36	3 03/12/20 15:42	EPA 3050B	1,6010D	BV
Silver, Total	0.159	J	mg/kg	0.469	0.133	1	03/10/20 18:36	3 03/12/20 15:42	EPA 3050B	1,6010D	BV

Not Specified

Field Prep:

Project Name: 389 MANHATTAN AVE Lab Number: L2010060

SAMPLE RESULTS

 Lab ID:
 L2010060-04
 Date Collected:
 03/04/20 14:00

 Client ID:
 TP-10 6-7FT
 Date Received:
 03/05/20

Sample Depth:

Sample Location:

Matrix: Soil Percent Solids: 85%

389 MANHATTAN AVE

Prep Dilution Date Date Analytical Method **Parameter** Qualifier Units Factor **Prepared** Analyzed Method Result RLMDL Analyst Total Metals - Mansfield Lab Arsenic, Total 5.69 mg/kg 0.460 0.096 1 03/10/20 18:36 03/12/20 15:47 EPA 3050B 1,6010D BV Barium, Total 48.1 mg/kg 0.460 0.080 1 03/10/20 18:36 03/12/20 15:47 EPA 3050B 1,6010D ΒV J 1 Cadmium, Total 0.414 mg/kg 0.460 0.045 03/10/20 18:36 03/12/20 15:47 EPA 3050B 1,6010D BV 1 Chromium, Total 10.0 mg/kg 0.460 0.044 03/10/20 18:36 03/12/20 15:47 EPA 3050B 1,6010D ΒV В۷ 93.2 2.30 0.123 03/10/20 18:36 03/12/20 15:47 EPA 3050B 1,6010D Lead, Total mg/kg 1 1,7471B Mercury, Total 0.837 0.074 0.048 1 03/10/20 08:00 03/10/20 13:19 EPA 7471B GD mg/kg J Selenium, Total 0.557 mg/kg 0.920 0.119 1 03/10/20 18:36 03/12/20 15:47 EPA 3050B 1,6010D ΒV Silver, Total ND 0.460 0.130 1 03/10/20 18:36 03/12/20 15:47 EPA 3050B 1,6010D ΒV mg/kg

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

Lab Number:

L2010060

Report Date:

03/12/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-04 B	atch: W	G13491	07-1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	03/10/20 08:00	03/10/20 11:53	1,7471B	GD

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sample(s):	01-04 Ba	atch: Wo	G13491	93-1				
Arsenic, Total	ND	mg/kg	0.400	0.083	1	03/10/20 18:36	03/12/20 15:12	1,6010D	BV
Barium, Total	ND	mg/kg	0.400	0.070	1	03/10/20 18:36	03/12/20 15:12	1,6010D	BV
Cadmium, Total	ND	mg/kg	0.400	0.039	1	03/10/20 18:36	03/12/20 15:12	1,6010D	BV
Chromium, Total	ND	mg/kg	0.400	0.038	1	03/10/20 18:36	03/12/20 15:12	1,6010D	BV
Lead, Total	ND	mg/kg	2.00	0.107	1	03/10/20 18:36	03/12/20 15:12	1,6010D	BV
Selenium, Total	ND	mg/kg	0.800	0.103	1	03/10/20 18:36	03/12/20 15:12	1,6010D	BV
Silver, Total	ND	mg/kg	0.400	0.113	1	03/10/20 18:36	03/12/20 15:12	1,6010D	BV

Prep Information

Digestion Method: EPA 3050B

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

Lab Number:

L2010060

Report Date:

03/12/20

Parameter	LCS %Recovery	/ Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	le(s): 01-04 B	atch: WG13	49107-2 SRM	Lot Number:	D105-540			
Mercury, Total	102		-		60-141	-		
Total Metals - Mansfield Lab Associated samp	le(s): 01-04 B	atch: WG13	49193-2 SRM	Lot Number:	D105-540			
Arsenic, Total	96		-		70-130	-		
Barium, Total	101		-		75-125	-		
Cadmium, Total	94		-		75-125	-		
Chromium, Total	95		-		70-130	-		
Lead, Total	91		-		71-128	-		
Selenium, Total	95		-		63-137	-		
Silver, Total	92		-		69-131	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

Lab Number:

L2010060

Report Date:

03/12/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qua	RPD Limits
Total Metals - Mansfield La	b Associated san	nple(s): 01-04	QC Bat	ch ID: WG134	9107-3	QC Sam	nple: L2010478-01	Client ID: MS	S Sample	
Mercury, Total	ND	0.136	0.145	107		-	-	80-120	-	20
Total Metals - Mansfield La	b Associated san	nple(s): 01-04	QC Bat	ch ID: WG134	9193-3	QC Sam	nple: L2010060-01	Client ID: TP	-1 3-4FT	
Arsenic, Total	8.96	10.8	18.2	86		-	-	75-125	-	20
Barium, Total	159	180	302	80		-	-	75-125	-	20
Cadmium, Total	0.830	4.58	3.89	67	Q	-	-	75-125	-	20
Chromium, Total	18.7	18	32.2	75		-	-	75-125	-	20
Lead, Total	358	45.8	457	216	Q	-	-	75-125	-	20
Selenium, Total	0.598J	10.8	9.09	84		-	-	75-125	-	20
Silver, Total	0.340J	26.9	21.0	78		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

Lab Number:

L2010060

Parameter	N	lative Sample	Duplica	ite Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associat	ted sample(s): 01-04	QC Batch ID:	WG1349107-4	QC Sample:	L2010478-01	Client ID:	DUP Samp	ole
Mercury, Total		ND		ND	mg/kg	NC		20
Total Metals - Mansfield Lab Associat	ted sample(s): 01-04	QC Batch ID:	WG1349193-4	QC Sample:	L2010060-01	Client ID:	TP-1 3-4F7	Γ
Arsenic, Total		8.96		12.0	mg/kg	29	Q	20
Barium, Total		159		193	mg/kg	19		20
Cadmium, Total		0.830).692	mg/kg	18		20
Chromium, Total		18.7		22.7	mg/kg	19		20
Lead, Total		358		390	mg/kg	9		20
Selenium, Total		0.598J).925	mg/kg	NC		20
Silver, Total		0.340J	C	.346J	mg/kg	NC		20

INORGANICS & MISCELLANEOUS

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

Lab Number:

L2010060

Report Date: 03/12/20

SAMPLE RESULTS

Lab ID: L2010060-01

Client ID: TP-1 3-4FT

Sample Location: 389 MANHATTAN AVE

Date Collected:

03/04/20 09:00

Date Received:

03/05/20

Field Prep:

Not Specified

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	86.3		%	0.100	NA	1	-	03/06/20 11:10	121,2540G	RI

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

Lab Number:

L2010060

Report Date:

03/12/20

SAMPLE RESULTS

Lab ID: L2010060-02

Client ID: TP-6 5-6FT

Sample Location: 389 MANHATTAN AVE

Date Collected:

03/04/20 11:30

Date Received:

03/05/20

Field Prep:

Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Solids, Total	76.0		%	0.100	NA	1	-	03/06/20 11:10	121,2540G	RI

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001 Lab Number:

L2010060

Report Date:

03/12/20

SAMPLE RESULTS

Lab ID: L2010060-03

Client ID: TP-7 0.5-1.5FT Date Collected: Date Received: 03/04/20 12:00

Sample Location: 389 MANHATTAN AVE

03/05/20

Not Specified Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab)								
Solids, Total	84.6		%	0.100	NA	1	-	03/06/20 11:10	121,2540G	RI

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

Lab Number:

L2010060

Report Date:

03/12/20

SAMPLE RESULTS

Lab ID: L2010060-04

Client ID: TP-10 6-7FT

Sample Location: 389 MANHATTAN AVE

Date Collected:

03/04/20 14:00

Date Received:

03/05/20

Field Prep:

Not Specified

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	84.6		%	0.100	NA	1	-	03/06/20 11:10	121,2540G	RI

Lab Number:

Lab Duplicate Analysis

Batch Quality Control

389 MANHATTAN AVE Batch Quality Control

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-04	QC Batch ID:	WG1348052-1	QC Sample:	L2008805-09	Client ID:	DUP Sample
Solids, Total	79.9		79.1	%	1		20

Project Name:

Project Name: 389 MANHATTAN AVE

Project Number: B0258-020-001

Lab Number: L2010060
Report Date: 03/12/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Information		Initial Final		Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L2010060-01A	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2010060-01B	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14),TS(7),NYTCL-8082(14)
L2010060-02A	Glass 120ml/4oz unpreserved	Α	NA		2.7	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2010060-02B	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14),TS(7),NYTCL-8082(14)
L2010060-03A	Glass 120ml/4oz unpreserved	Α	NA		2.7	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2010060-03B	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14),TS(7),NYTCL-8082(14)
L2010060-04A	Glass 120ml/4oz unpreserved	Α	NA		2.7	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2010060-04B	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14),TS(7),NYTCL-8082(14)
L2010060-05A	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		HOLD-METAL(180),HOLD-HG(28)
L2010060-05B	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		HOLD-8270(14),HOLD-8082(14)
L2010060-06A	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		HOLD-METAL(180),HOLD-HG(28)
L2010060-06B	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		HOLD-8270(14),HOLD-8082(14)
L2010060-07A	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		HOLD-METAL(180),HOLD-HG(28)
L2010060-07B	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		HOLD-8270(14),HOLD-8082(14)
L2010060-08A	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		HOLD-METAL(180),HOLD-HG(28)
L2010060-08B	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		HOLD-8270(14),HOLD-8082(14)

 Project Name:
 389 MANHATTAN AVE
 Lab Number:
 L2010060

 Project Number:
 B0258-020-001
 Report Date:
 03/12/20

GLOSSARY

Acronyms

EDL

LOQ

MS

NP

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

merudes any adjustments from unutions, concentrations of moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 389 MANHATTAN AVE
 Lab Number:
 L2010060

 Project Number:
 B0258-020-001
 Report Date:
 03/12/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 389 MANHATTAN AVE
 Lab Number:
 L2010060

 Project Number:
 B0258-020-001
 Report Date:
 03/12/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

R - Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 389 MANHATTAN AVE
 Lab Number:
 L2010060

 Project Number:
 B0258-020-001
 Report Date:
 03/12/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 16

Page 1 of 1

Published Date: 2/17/2020 10:46:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Project Information Project Name: 3 87 MANHATTAN AV Project Location: 387 MANHATTAN AV			Page of	1	Date Rec'd in Lab 3 Deliverables ASP-A EQUIS (1 File)			3 6	ASP-B EQuIS (4 File)		ALPHA Job # (20100 66 Billing Information Same as Client Info	
Client Information		Project # Bo258					Other							
Client: BONCHMARK	ANV. PNC. +SCI	(Use Project name as Pr	oject #)				Regulatory Requirement						Disposal Site Information	
Address: 2558 HAMI	burg Tropk	Project Manager: CHC	S BURON				NY TOGS NY Part 375						Please identify below location of	
BUFFAID, NY 1	4218	ALPHAQuote #:					AWQ Standards NY CP-51						applicable disposal facilities.	
Phone: 716-856-3	599	Turn-Around Time					NY Restricted Use Other						Disposal Facility:	
Fax:		Standard	A COLUMN TO SECULIAR	Due Date:			NY Unrestricted Use						□ nn 🔀 na	
Email: clooran alba	n-the.com	Rush (only if pre approved		# of Days:			NYC Sewer Discharge						Other:	
These samples have be	en previously analyze	ed by Alpha					ANALYSIS					Sample Filtration	T	
Other project specific Please specify Metals		ents:					Svac	A METAL					□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	t a l B o t
ALPHA Lab ID		mple ID Colle		llection Sample Sampler's		Sampler's	157	PCFA	50					1
(Lab Use Only)	34	inpie iD	Date	Date Time		Matrix Initials		10	0				Sample Specific Comments	e
10060 -01	TP-1 3-4.	C+	3/4/2020	900	Soil	CS	X	×	×					7
	TP-6 5-64	÷t	1	1130	1	1	×	X	×					2
- 03	TP-7 0.5-	1.5 +		1200			×	X	×					2
- 04	TP-10 6-7-	Ft		1400			×	X	×					2
- 05	TP-3 0-2			1000			x	X	X				HOLD	2
-06		2.74		1205			×	X	×				HOLD	2
107				1230			X	X	×				HOLD	7
-08	TP-9 4-5	· CL	V	1300	T	V	×	×	X				HOLD	2
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification No: MA935 Mansfield: Certification No: MA015 Relinquished By: Date/T			P	Son			Market Street, Square,	Date/Time 3 / 3 / 6 00 3 / 6 / 20 51,0		Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)		