October 14, 2020



Mr. Larry Quinn Great Point Opportunity Fund 219 Lexington Avenue Buffalo NY 14222

Re: Limited Phase II Environmental Investigation 1155 Niagara Street Site

Buffalo, New York

Dear Mr. Quinn:

TurnKey Environmental Restoration, LLC (TurnKey) has prepared this report to present the results of a Limited Phase II Environmental Investigation conducted at the 1155 Niagara Street Site, located in the City of Buffalo, New York (Site, see Figure 1).

#### **BACKGROUND**

The Site is currently vacant land and was formerly developed with an industrial building that was recently demolished. The 3.67-acre greater property, fronting on Niagara Street, West Ferry Street, and West Avenue, is slated for redevelopment as a movie and TV production complex. As requested, TurnKey's investigation was focused on the eastern portion of the Site related to historic operations, including automotive repair and associated tanks on the Site.

TurnKey reviewed historical documents related to the Site, including Sanborn Fire Insurance Maps, as further detailed below:

- In addition to being developed with numerous former residences, historic Sanborn maps (see Appendix A) indicate that the Site was formerly developed with commercial and industrial buildings from at least 1925 through at least 1981. Specifically, operations included a vehicle garage/storage, a contractors yard, and a black smith in at least 1925. In at least 1951, operations included a factory, a pipe shop, a garage, and storage. A portion of a greater whipped topping manufacturing operation (Rich Products) occupied the Site from at least 1951 through at least 1981.
- Historic Sanborn maps identified one gasoline underground storage tank (UST) east of
  the former vehicle garage on the southern portion of the Site from at least 1925 through
  at least 1951. One additional gasoline UST was identified in a former contractor's yard
  on the southern portion of the Site in at least 1925.
- Spill No. 1901298, dated May 6, 2019, involved a No. 2 fuel oil release, apparently from a 6,000-gallon No. 2 fuel oil UST that was closed/removed on May 10, 2019 under Petroleum Bulk Storage (PBS) No. 9-601821. The spill was reclassified as either

"inactive" or "closed" by the New York State Department of Environmental Conservation (NYSDEC) on August 30, 2019.

#### **INVESTIGATION ACTIVITIES**

On September 23, 2020, TurnKey completed 12 test pits, identified as TP-1 through TP-12 (see Figure 2) using an excavator. The TPs were completed to depths ranging from 8-9 feet below ground surface (fbgs).

Soil/fill was screened for volatile organics using a photoionization detector (PID), visual characteristics for each sample were classified and olfactory observations, if any, were noted.

Based on the field findings, certain locations were selected for laboratory analysis. The samples were selectively analyzed for Target Compound List (TCL) plus NYSDEC Commissioner Policy 51 (CP-51) volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and/or Resource Conservation and Recovery Act (RCRA) Metals. All samples were collected in laboratory provided sample bottles and were cooled to 40 C prior to transport.

#### FIELD OBSERVATIONS AND FINDINGS

In general, urban fill consisting of fine sand mixed with gravel and some brick and concrete fragments was observed from surface elevations to approximately three fbgs. Individual test pit location (TP-1 through TP-3 and TP-5) contained a layer of black fines and granular material from approximately 1 fbgs to 3.5 fbgs. Reworked native clay and/or fine sand was observed underlying the fill materials across the Site. Native clay was observed at three test pit locations (TP-1, TP-11, and TP-12) from 3 fbgs to the bottom of the test pits at 9 fbgs.

Elevated PID readings above background (0.0 parts per million, ppm) were noted at two (2) locations, TP-3 and TP-5, in the vicinity of suspect historic UST area on the southern portion of the Site as per historic Sanborn maps. The highest PID reading identified during the work exceeded 15,000 ppm at TP-3 (6 fbgs to 9 fbgs). PID readings up to 6,422 ppm were noted at TP-5.

Photographs taken during the investigation are included in Appendix B and test pit boring logs are included in Appendix C. Additional information relative to lithology and field observations is provided below:

| Investigation<br>Location ID | Environmental Concern<br>Assessed    | Highest PID reading in parts per million (ppm) and depth (fbgs) | Other Observations    |  |
|------------------------------|--------------------------------------|-----------------------------------------------------------------|-----------------------|--|
| TP-1                         | Former gasoline UST per Sanborns.    | 0 ppm throughout.                                               | Black fill materials. |  |
| TP -2                        | Former coolers and transformer room. | 0 ppm throughout.                                               | Black fill materials. |  |



| Investigation<br>Location ID | Environmental Concern<br>Assessed                                | Highest PID reading in parts per million (ppm) and depth (fbgs) | Other Observations                                                                                                                                                    |
|------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TP -3                        | Former gasoline UST on the southern portion of the Site.         | >15,000 ppm from 6 to 9 fbgs.                                   | Black fill materials from 2 to 3 fbgs.  Strong odors and black discoloration from 4 to 9 fbgs.  Equipment refusal due to concrete in east-west direction at 3.5 fbgs. |
| TP -4                        | Former garage/coolers.                                           | 0 ppm throughout.                                               | Some black pockets of sands/fines.                                                                                                                                    |
| TP -5                        | Former gasoline UST on the southern portion of the Site.         | 6,422 ppm from 5 to 6 fbgs.                                     | Black fill materials from 3 to 4 fbgs.  Strong odors and black discoloration from 4 to 9 fbgs.  Equipment refusal due to concrete in north-south direction at 3 fbgs. |
| TP -6                        | Former buildings, general Site conditions.                       | 0 ppm throughout.                                               | Some black pockets of sands/fines.                                                                                                                                    |
| TP -7                        | Former coolers/buildings, general Site conditions.               | 0 ppm throughout.                                               | None.                                                                                                                                                                 |
| TP -8                        | Former buildings, general Site conditions.                       | 0 ppm throughout.                                               | Some black pockets of sands/fines.                                                                                                                                    |
| TP -9                        | Former coolers/buildings, general Site conditions.               | 0 ppm throughout.                                               | None.                                                                                                                                                                 |
| TP -10                       | Former manufacturing rooms and coolers, general Site conditions. | 0 ppm throughout.                                               | None.                                                                                                                                                                 |
| TP -11                       | Former buildings, general Site conditions.                       | 0 ppm throughout.                                               | None.                                                                                                                                                                 |
| TP -12                       | Former garage, general Site conditions.                          | 0 ppm throughout.                                               | None.                                                                                                                                                                 |

#### **NYSDEC SPILL INCIDENT**

Due to the field observations at TP-3, TP-5, and the analytical results indicating the presence of petroleum-impacted soil/fill, as required the NYSDEC was notified and Spill No. 2005973 was assigned to the Site.

#### LABORATORY ANALYTICAL RESULTS

Laboratory analytical reports are provided in Appendix D. Analytical results were compared to applicable 6NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives (USCOs), Restricted-Residential Use SCOs (RRSCOs), Commercial Use SCOs (CSCOs), and Industrial Use SCOs (ISCOs). Analytical results were also compared to CP-51 SCLs, which are applicable to petroleum sites and petroleum tank areas (see Table 1).



Elevated petroleum VOCs exceeding the CP-51 SCLs, USCOs, RRSCOs and CSCOs were detected, including benzene, ethylbenzene, toluene, and xylene (BYEX compounds), 1,2,4-and 1,3,5-trimethylbenzene.

Elevated PAHs were detected exceeding their USCO, RRSCO, CSCOs and ISCOs at multiple sample locations, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene.

Elevated lead exceeded its USCO was detected in shallow fill at TP-1 and TP-3.

#### **CONCLUSIONS**

Based on the results of this assessment, TurnKey offers the following conclusions and recommendations:

- Fill material, including brick, block, cinders, ash, was identified in all 12 TPs completed across the Site.
- Petroleum contamination was identified, including elevated PID readings above 15,000 ppm, odors, and visual staining of on-Site soil/fill.
- Elevated VOCs, PAHs, and metals exceeding RRSCO, CSCO and ISCO were identified at multiple locations across the Site.
- Based on the petroleum contamination identified during the investigation, the NYSDEC Spill hotline was notified and Spill No. 2005973 was issued for the Site.

We understand the Site is being considered for redevelopment. Based on the findings detailed above, the Site is a potential candidate for the New York State Brownfield Cleanup Program (BCP). Regardless of whether the BCP is pursued, the petroleum-impacted soil in the former UST area on the southern portion of the Site related to NYSDEC Spill No. 2005973 will need to be properly addressed to the satisfaction of the Department. Further, elevated PAH-impacted soil/fill will require exposure control, remediation, and/or proper soil management prior to and during the redevelopment project.

Please contact us if you have any questions or require additional information.

Sincerely,

TurnKey Environmental Restoration, LLC

Michael A. Lesakowski

Principal

Bryan W. Mayback Sr. Project Scientist



#### **DECLARATIONS/LIMITATIONS**

This report has been prepared for the exclusive use of Great Point Opportunity Fund. The contents of this report are limited to information available at the time of the subject site investigation. Data provided by others as referenced herein is assumed to be accurate and reliable. The findings herein may be relied upon only at the discretion of Great Point Opportunity Fund. and are limited to the terms and conditions identified in the agreement between TurnKey and its client. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of TurnKey Environmental Restoration, LLC.



### **TABLE**





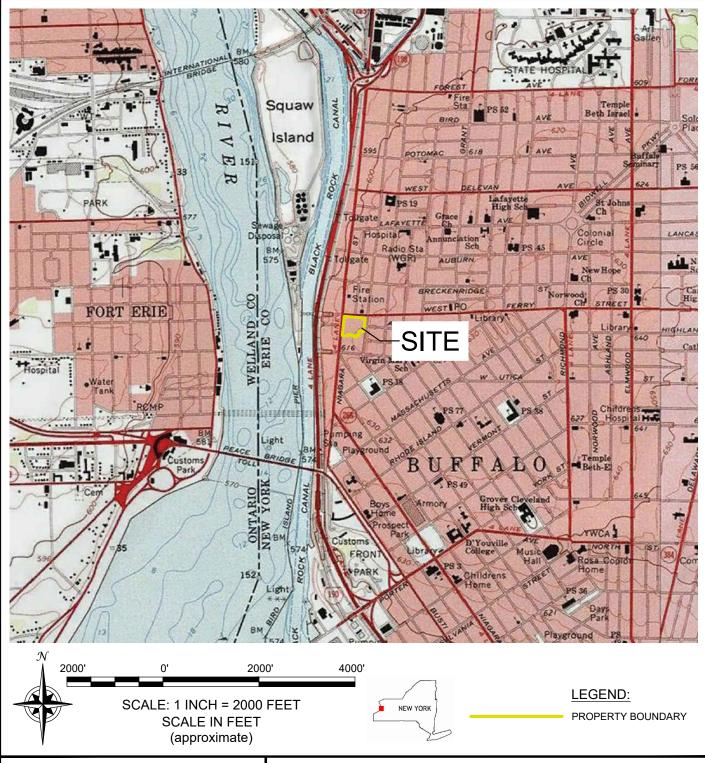
#### TABLE 1 SUMMARY OF SUBSURFACE SOIL/FILL ANALYTICAL RESULTS

### 1155 NIAGARA STREET BUFFALO, NEW YORK

|                                               |                         |                                       |                                                    |                                     |                                     |                     |                  |                    | SAMPL            | E LOCATION (         | DEPTH)           |                  |                  |                   |
|-----------------------------------------------|-------------------------|---------------------------------------|----------------------------------------------------|-------------------------------------|-------------------------------------|---------------------|------------------|--------------------|------------------|----------------------|------------------|------------------|------------------|-------------------|
| PARAMETER <sup>1</sup>                        | CP-51 SCLs <sup>2</sup> | Unrestricted<br>Use SCOs <sup>3</sup> | Restricted<br>Residential<br>Use SCOs <sup>3</sup> | Commercial<br>Use SCOs <sup>3</sup> | Industrial<br>Use SCOs <sup>3</sup> | TP-1<br>(1-2 FT)    | TP-2<br>(1-3 FT) | TP-3<br>(2-3 FT)   | TP-3<br>(5-7 FT) | TP-3<br>(8-9 FT)     | TP-4<br>(2-4 FT) | TP-5<br>(5-7 FT) | TP-8<br>(0-1 FT) | TP-11<br>(1-3 FT) |
|                                               |                         |                                       |                                                    |                                     |                                     |                     |                  |                    |                  | 09/23/2020           |                  |                  |                  |                   |
| Volatile Organic Compounds (VOC               |                         |                                       |                                                    |                                     |                                     |                     |                  |                    |                  |                      | •                |                  |                  |                   |
| 1,2,4-Trimethylbenzene                        | 3.6                     | 3.6                                   | 52                                                 | 190                                 | 380                                 | -                   |                  |                    | 330              | 15                   | -                | 29               |                  |                   |
| 1,3,5-Trimethylbenzene                        | 8.4                     | 8.4                                   | 52                                                 | 190                                 | 380<br>89                           |                     |                  |                    | 78               | 4.2                  |                  | 7.8              |                  |                   |
| Benzene<br>Cvclohexane                        | 0.06                    | 0.06                                  | 4.8                                                | 44                                  |                                     |                     |                  |                    | <b>18</b><br>58  | 0.37<br>1.3          |                  | 0.043<br>1.2     |                  |                   |
| Ethylbenzene                                  | <br>1                   | <br>1                                 | <br>41                                             | 390                                 | 780                                 |                     |                  |                    | 83               | 3.9                  |                  | 4.1              |                  |                   |
| Isopropylbenzene (Cumene)                     | -                       | <u> </u>                              |                                                    |                                     | 780                                 |                     |                  |                    | 11               | 0.51                 |                  | 0.88             |                  |                   |
| Methylcyclohexane                             | -                       |                                       | -                                                  | -                                   |                                     |                     |                  |                    | 38               | 1.1                  |                  | 1.2              |                  |                   |
| n-Butylbenzene                                | 12                      | 12                                    | 100                                                | 500                                 | 1000                                |                     |                  |                    | 15               | 0.77                 |                  | 1.8              |                  |                   |
| n-Propylbenzene                               | 3.9                     | 3.9                                   | 100                                                | 500                                 | 1000                                |                     |                  |                    | 43               | 2.2                  |                  | 4.2              |                  |                   |
| p-Isopropyltoluene                            | 10                      | 3.9                                   |                                                    |                                     |                                     |                     |                  |                    | 3                | 0.17                 |                  | 0.3              |                  |                   |
|                                               | 10                      |                                       |                                                    | 500                                 | 4000                                |                     |                  |                    | 5.4              | 0.17                 |                  | 0.3              |                  |                   |
| sec-Butylbenzene                              |                         |                                       | 100                                                |                                     | 1000                                | -                   |                  | -                  |                  |                      |                  |                  |                  |                   |
| Toluene                                       | 0.7<br>0.26             | 0.7                                   | 100<br>100                                         | 500<br>500                          | 1000<br>1000                        | -                   |                  | -                  | 68<br>430        | 0.15<br><b>14.95</b> |                  | ND               |                  |                   |
| Total Xylenes                                 |                         | 0.26                                  | 100                                                | 500                                 | 1000                                |                     |                  |                    | 430              | 14.95                |                  | 5.9              |                  |                   |
| Semi-Volatile Organic Compounds               |                         |                                       |                                                    |                                     |                                     |                     |                  |                    |                  |                      |                  |                  |                  |                   |
| 2,4-Dimethylphenol                            | -                       | -                                     | -                                                  | -                                   |                                     | -                   |                  |                    | ND               | 0.2                  |                  | ND               |                  |                   |
| 2-Methylnaphthalene                           | -                       |                                       |                                                    |                                     |                                     |                     |                  |                    | 8.8<br>0.55      | 0.65<br>ND           |                  | 0.24<br>ND       |                  |                   |
| 3-Methylphenol/4-Methylphenol<br>Acenaphthene | 20                      | 20                                    | 100                                                | 500                                 | 1000                                | 8.8 J               | 4                | 0.18               | 0.091 J          | ND<br>ND             | 12               | ND<br>ND         | 0.058 J          | ND                |
| Acenaphthylene                                | 100                     | 100                                   | 100                                                | 500                                 | 1000                                | 0.88 J              | 0.35 J           | 0.18 J             | 0.0913<br>ND     | ND                   | 0.66 J           | ND<br>ND         | 0.036 J<br>ND    | ND                |
| Anthracene                                    | 100                     | 100                                   | 100                                                | 500                                 | 1000                                | 19                  | 8.2              | 0.12 3             | 0.16             | ND<br>ND             | 26               | ND<br>ND         | 0.18             | 0.047 J           |
| Benzo(a)anthracene                            | 1                       | 1                                     | 1                                                  | 5.6                                 | 11                                  | 32                  | 15               | 1.6                | 0.44             | ND                   | 38               | ND<br>ND         | 0.18             | 0.12              |
| Benzo(a)pyrene                                | 1                       | 1                                     | 1                                                  | 1                                   | 1.1                                 | 29                  | 13               | 2.1                | 0.55             | ND                   | 32               | ND               | 0.32             | 0.11 J            |
| Benzo(b)fluoranthene                          | 1                       | 1                                     | 1                                                  | 5.6                                 | 11                                  | 34                  | 16               | 2.4                | 0.59             | ND                   | 37               | ND               | 0.43             | 0.13              |
| Benzo(ghi)perylene                            | 100                     | 100                                   | 100                                                | 500                                 | 1000                                | 16                  | 7.3              | 1.4                | 0.38             | ND                   | 17               | ND               | 0.17             | 0.068 J           |
| Benzo(k)fluoranthene                          | 0.8                     | 0.8                                   | 3.9                                                | 56                                  | 110                                 | 13                  | 5.9              | 0.71               | 0.26             | ND                   | 17               | ND               | 0.13             | 0.046 J           |
| Biphenyl                                      | -                       | -                                     | -                                                  |                                     |                                     |                     |                  | -                  | 0.13 J           | ND                   |                  | ND               |                  |                   |
| Carbazole                                     | -                       | -                                     | -                                                  |                                     |                                     |                     |                  |                    | 0.049 J          | ND                   |                  | ND               |                  |                   |
| Chrysene                                      | 1                       | 1                                     | 3.9                                                | 56                                  | 110                                 | 28                  | 13               | 1.4                | 0.36             | ND                   | 33               | ND               | 0.31             | 0.11 J            |
| Dibenzo(a,h)anthracene                        | 0.33                    | 0.33                                  | 0.33                                               | 0.56                                | 1.1                                 | 5.3                 | 2                | 0.32               | 0.097 J          | ND                   | 5.7              | ND               | 0.044 J          | ND                |
| Dibenzofuran                                  | 7                       | 7                                     | 59                                                 | 350                                 | 1000                                |                     |                  |                    | 0.056 J          | ND                   |                  | ND               |                  |                   |
| Fluoranthene                                  | 100                     | 100                                   | 100                                                | 500                                 | 1000                                | 59                  | 26               | 2.9                | 0.73             | ND                   | 67               | ND               | 0.87             | 0.32              |
| Fluorene                                      | 30                      | 30                                    | 100                                                | 500                                 | 1000                                | 9.1                 | 3.9              | 0.27               | 0.096 J          | ND                   | 14               | ND               | 0.059 J          | ND                |
| Indeno(1,2,3-cd)pyrene                        | 0.5                     | 0.5                                   | 0.5                                                | 5.6                                 | 11                                  | 17                  | 8                | 1.7                | 0.44             | ND                   | 19               | ND               | 0.21             | 0.07 J            |
| Naphthalene                                   | 12                      | 12                                    | 100                                                | 500                                 | 1000                                | 8.2                 | 3.3              | 0.39               | 7.8              | 0.64                 | 12               | 0.27             | 0.034 J          | ND                |
| Phenanthrene                                  | 100                     | 100                                   | 100                                                | 500                                 | 1000                                | 58                  | 26               | 2.1                | 0.54             | ND                   | 73               | ND               | 0.56             | 0.18              |
| Pyrene                                        | 100                     | 100                                   | 100                                                | 500                                 | 1000                                | 49                  | 22               | 2.4                | 0.62             | ND<br>2.04           | 54               | ND               | 0.71             | 0.26              |
| Total PAHs                                    | -                       | -                                     |                                                    | _                                   |                                     | 386.28 J            | 173.95           | 20.62              | 13.154           | 0.64                 | 457.36           | 0.27             | 4.465            | 1.461             |
| Metals - mg/Kg                                |                         |                                       |                                                    | 10                                  |                                     |                     |                  |                    |                  |                      |                  |                  |                  |                   |
| Arsenic                                       | -                       | 13                                    | 16                                                 | 16                                  | 16                                  | 9.45                | 7.14             | 5.36               |                  |                      | 8.02             |                  | 3.85             | 9.62              |
| Barium                                        | -                       | 350                                   | 400                                                | 400                                 | 10000                               | 121                 | 105              | 103                | -                |                      | 156              |                  | 43.5             | 60.6              |
| Cadmium                                       | -                       | 2.5                                   | 4.3                                                | 9.3<br>1500                         | 60                                  | 1.04                | 0.78             | 0.678              | -                |                      | 0.914            |                  | 0.411 J          | 0.59              |
| Chromium                                      | -                       | 30<br>63                              | 180<br>400                                         | 1500                                | 6800<br>3900                        | 9.41<br><b>72.1</b> | 9.32<br>30.5     | 6.47<br><b>189</b> | -                |                      | 18.1<br>31.3     |                  | 6.88             | 12.4<br>13.2      |
| Lead                                          | -                       | 0.18                                  | 400<br>0.81                                        | 2.8                                 |                                     | 72.1<br>ND          | 30.5<br>ND       | 0.131              |                  |                      | 0.057 J          |                  | 11.9<br>ND       | 13.2<br>ND        |
| Mercury<br>Selenium                           | -                       | 3.9                                   | 180                                                | 1500                                | 5.7<br>6800                         | 0.517 J             | 0.358 J          | 0.131<br>0.328 J   |                  |                      | 0.057 J<br>ND    |                  | ND<br>ND         | ND<br>ND          |
| Notes:                                        |                         | ა.უ                                   | 100                                                | 1300                                | 0000                                | U.317 J             | U.330 J          | U.320 J            |                  | -                    | שוו              |                  | טאו              | IND               |

- Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
   Values per NYSDEC CP-51 Soil Cleanup Levels (SCLs) listed in Table 2 and Table 3, respectively.
   Values per 6NYCRR Part 375 Soil Cleanup Objectives (SCOs).
   Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparisons to SCOs.

- Definitions:


  ND = Parameter not detected above laboratory detection limit.
  "--" = No value available for the parameter. Or parameter not analysed for.

  J = Estimated value; result is less than the sample quantitation limit but greater than zero.

| Bold | = Result exceeds CP-51 SCLs and/or Unrestricted Use SCOs. |
|------|-----------------------------------------------------------|
| Bold | = Result exceeds Restricted Residential Use SCOs.         |
| Bold | = Result exceeds Commercial Use SCOs.                     |
| Bold | = Result exceeds Industrial Use SCOs.                     |

## **FIGURES**

#### FIGURE 1





PROJECT NO.: T0550-020-001

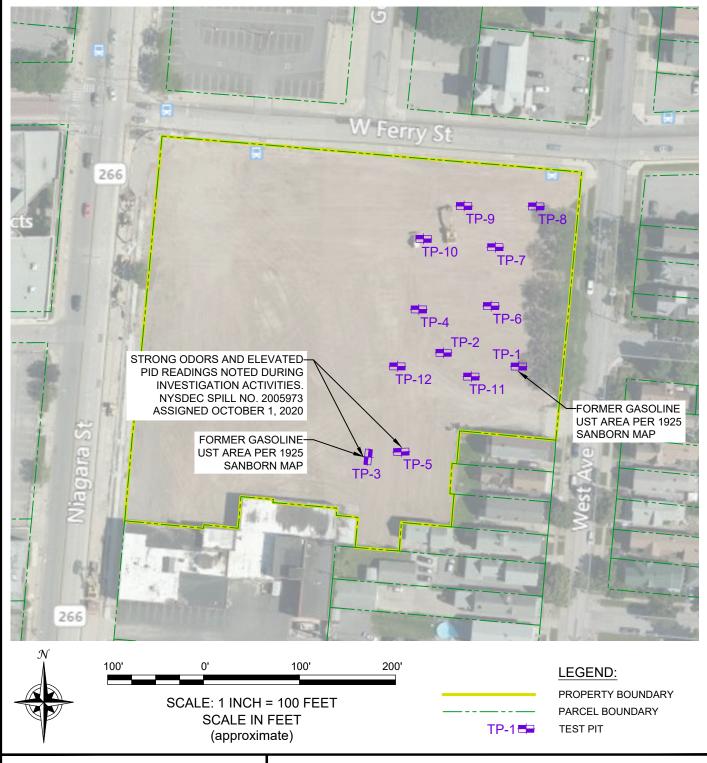
DATE: OCTOBER 2020

DRAFTED BY: CMS

### SITE LOCATION AND VICINITY MAP

LTD PHASE II ENVIRONMENTAL INVESTIGATION

1155 NIAGARA STREET SITE
BUFFALO, NEW YORK


PREPARED FOR

GREAT POINT OPPORTUNITY FUND (A) QOZB, LLC

#### DISCLAIMER

PROPERTY OF TURNKEY ENVIRONMENTAL RESTORATION, LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENVIRONMENTAL RESTORATION, LLC.

#### FIGURE 2





2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

PROJECT NO.: T0550-020-001

DATE: OCTOBER 2020

DRAFTED BY: CMS

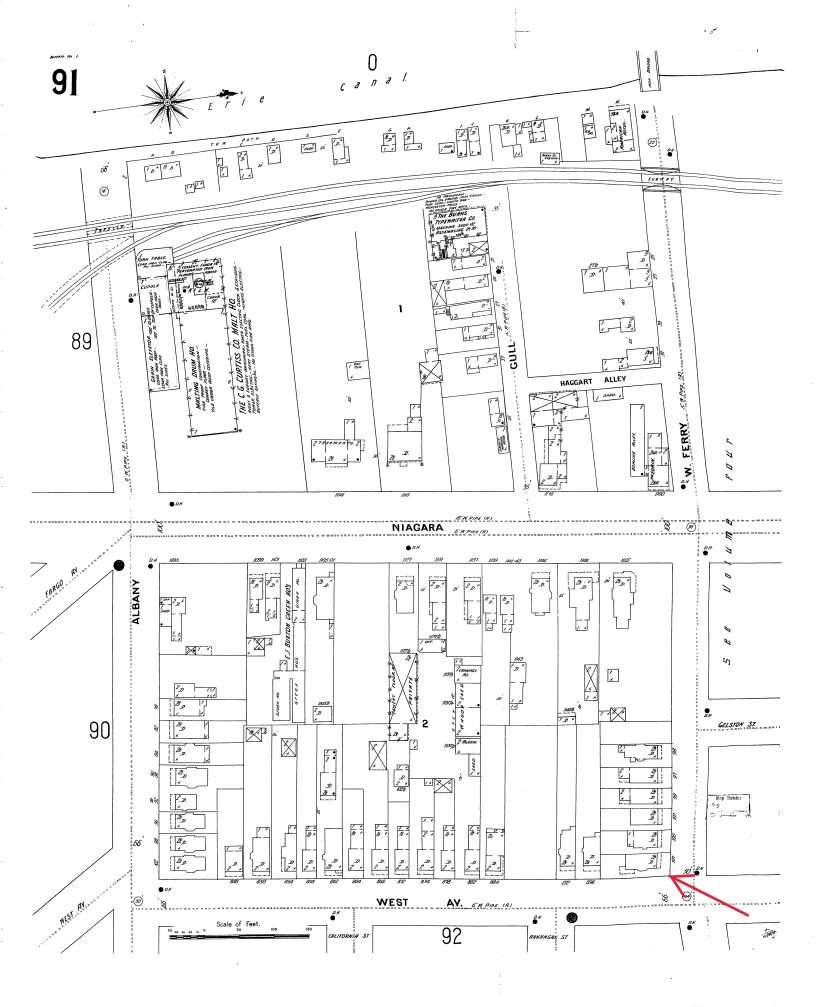
# SITE PLAN (AERIAL) WITH INVESTIGATION LOCATIONS

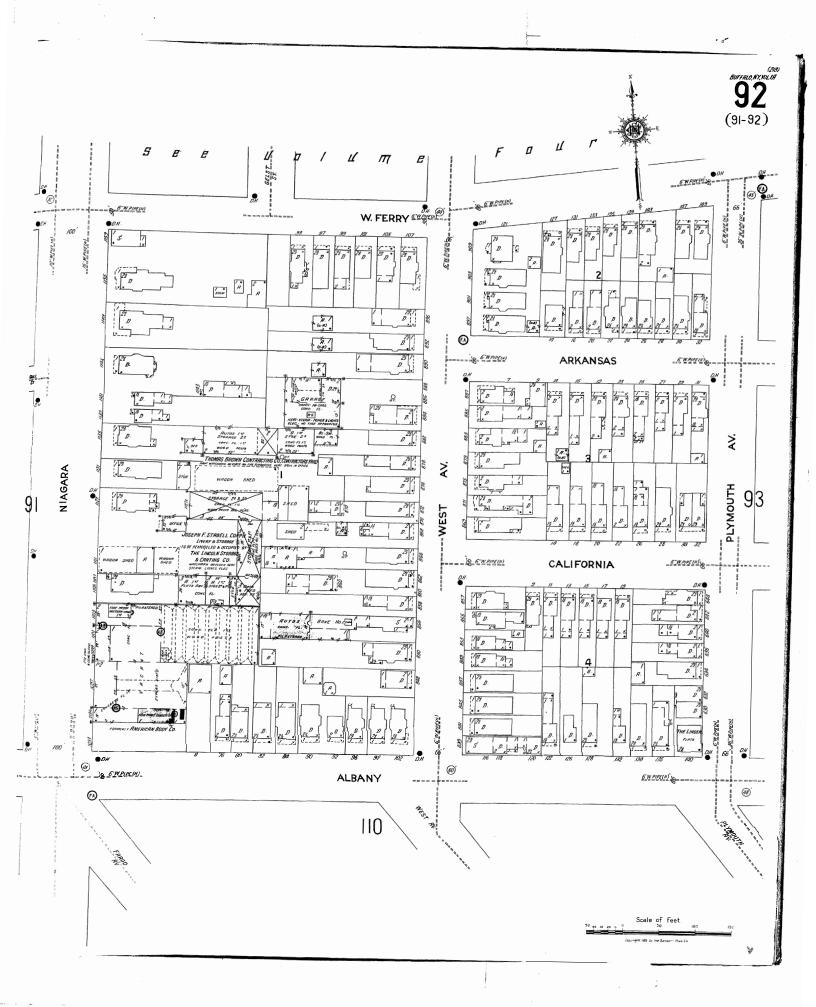
LTD PHASE II ENVIRONMENTAL INVESTIGATION

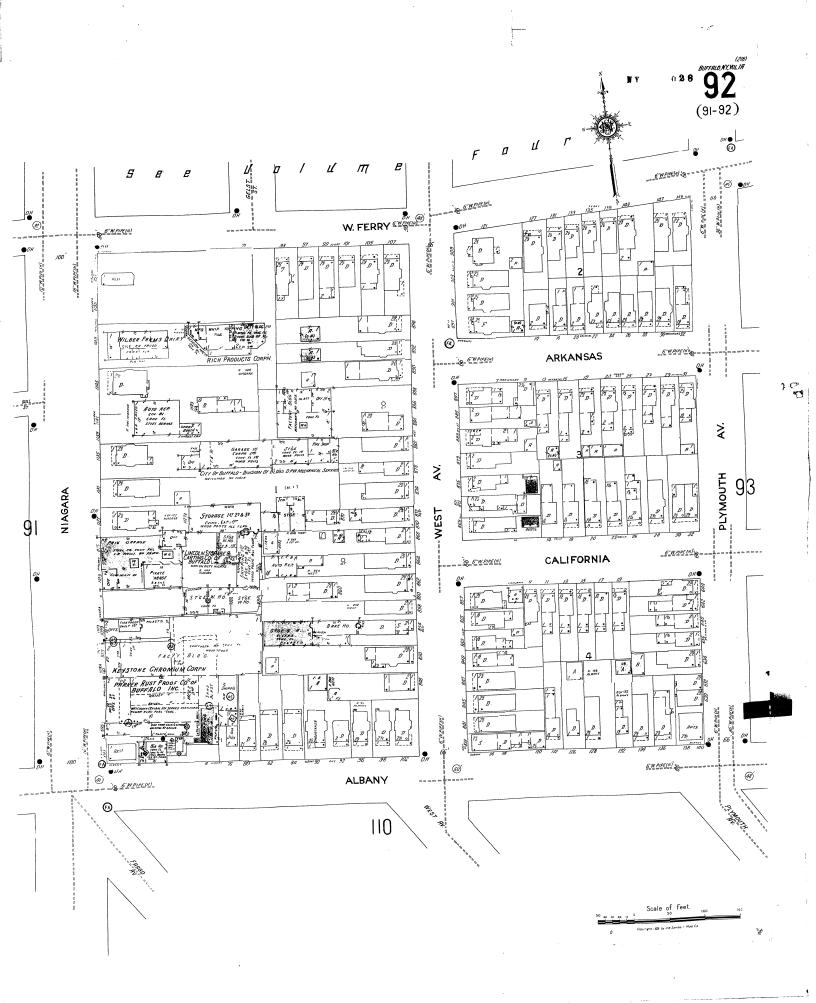
1155 NIAGARA STREET SITE BUFFALO, NEW YORK

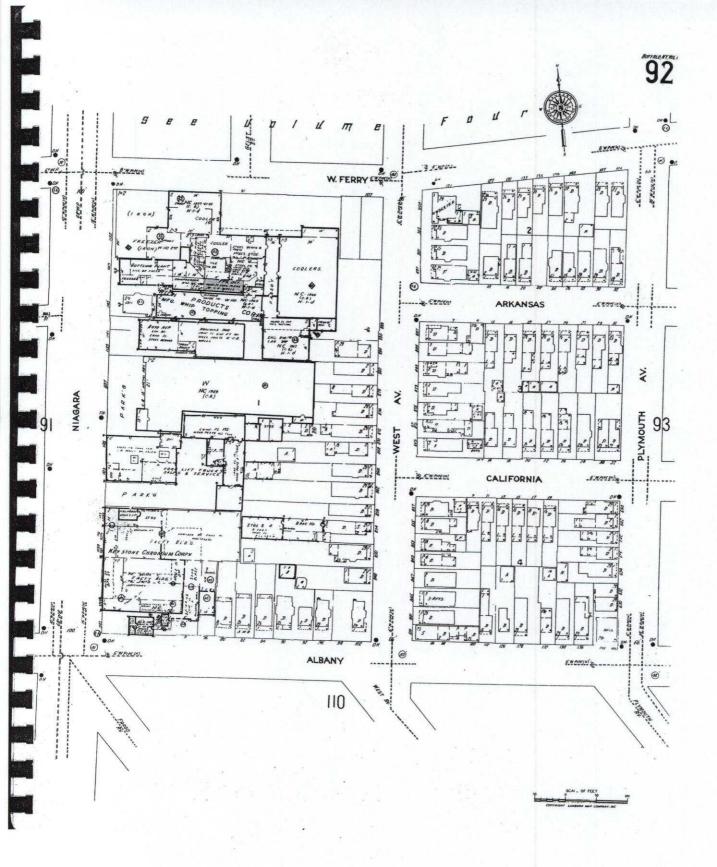
PREPARED FOR

GREAT POINT OPPORTUNITY FUND (A) QOZB, LLC


#### DISCLAIMER.


PROPERTY OF TURNKEY ENVIRONMENTAL RESTORATION, LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENVIRONMENTAL RESTORATION, LLC.


### **APPENDIX A**


HISTORIC SANBORN MAPS











### **APPENDIX B**

Рното Log

#### **SITE PHOTOGRAPHS**

#### Photo 1:



#### Photo 3:



Photo 2:



Photo 4:



Photo 1: View of TP-1 – facing east

Photo 2: Typical soil/fill encountered at TP-1.

Photo 3: View of TP-2 – facing southeast

Photo 4: Typical soil/fill encountered at TP-2.

Photo Date: September 23, 2020



#### **SITE PHOTOGRAPHS**

#### Photo 5:



Photo 6:



Photo 7:



Photo 8:



Photo 5: View of TP-3 – facing southwest

Photo 6: Typical shallow fill encountered at TP-3.

Photo 7: Typical soil/fill encountered at TP-3 with strong odors and elevated PID readings.

Photo 8: Additional soil/fill encountered at TP-3 with strong odors and elevated PID readings.

Photo Date: September 23, 2020



#### **SITE PHOTOGRAPHS**

#### Photo 9:



Photo 10:



Photo 11:



Photo 12:



Photo 9: View of TP-4 – facing southeast

Photo 10: Typical soil/fill encountered at TP-4.

Photo 11: View of TP-5 – facing southeast

Typical soil/fill encountered at TP-5 with strong odors and elevated PID readings. Photo 12:

## **APPENDIX C**

**TEST PIT LOGS** 



| Project:        | 1155 Niag            | ara Street Si                | te           |                          | Т          | EST PIT               | I.D.:            | TP-1           |                 |           |
|-----------------|----------------------|------------------------------|--------------|--------------------------|------------|-----------------------|------------------|----------------|-----------------|-----------|
| Project No.:    | T0550-0              | 20-001                       |              |                          | Е          | Excavatio             | n Date:          | 09/23/20       |                 |           |
| Client:         | Great Po             | oint Opportun                | ity Fund     |                          | E          | Excavatio             | n Method:        | Excavator      |                 |           |
| Location:       | 1155 Nia             | agara Street                 |              |                          | L          | ogged / 0             | Checked By:      | cms/bwm        |                 |           |
| Test Pit Loca   | ation: NOT T         | O SCALE                      |              |                          | Te         | st Pit Cro            | ss Section:      |                |                 |           |
| W Ferry St      |                      |                              |              |                          | Gr         | ade - 0' <del>-</del> | Fill             |                |                 |           |
| TP-9            | TP-8                 |                              |              |                          |            | _                     | r III            |                |                 |           |
| TP-10 TP-1      | 7                    |                              |              |                          |            | 2'-                   |                  |                |                 |           |
| TP-4 TP-6       |                      |                              |              |                          |            | 4'—                   |                  |                |                 |           |
| TP-12 TP-11     | FORM<br>UST /        |                              |              |                          |            | 6' <del>-</del>       |                  |                |                 |           |
| TP-3 TP-5       | t Ave                |                              |              |                          |            | -                     |                  |                |                 |           |
|                 | We                   |                              |              |                          |            | 8'-                   | CL               |                |                 |           |
| TIME            | E                    | Length:                      | 8 ft         | (approx.                 | )          | 10' <i>-</i>          |                  |                |                 |           |
| Start:<br>End:  |                      | Width:<br>Depth:             | 3 ft<br>8 ft | (approx.                 |            | _                     |                  |                |                 |           |
|                 |                      | Бериі.                       |              |                          |            |                       |                  | PID            | DI              | Samples   |
| Depth<br>(fbgs) |                      |                              |              | Symbol & :<br>escription | 5011       |                       |                  | Scan           | Photos<br>Y / N | Collected |
| (ibgo)          |                      |                              |              |                          | (ppm)      | .,,,                  | (fbgs)           |                |                 |           |
|                 | Fill:                |                              |              |                          | 0.0        | V                     | NI-              |                |                 |           |
| 0.0 - 1.0       | Brown, sa            | andy fill, with ar           | ngular grav  | el, some re              | d brick    | and concre            | ete fragments    | 0.0            | Y               | No        |
|                 |                      |                              |              |                          |            |                       |                  |                |                 |           |
| 1.0 - 2.0       | Fill:<br>Black, fine | es, some angu                | lar gravel   | concrete, a              | nd alass   | s fragment            | s. large red     | 0.0            | Y               | 1.0-2.0   |
| 1.0 2.0         | unkown fr            |                              | iai giavoi,  | 001101010, 01            | na giaot   | o maginioni           | o, largo roa     | 0.0            | ·               |           |
|                 | E:II.                |                              |              |                          |            |                       |                  |                |                 |           |
| 2.0 - 7.0       | Fill:<br>Brown, sa   | andy fill with ap            | parent #2    | crusher run,             | , some (   | concrete fr           | agments with     | 0.0            | Υ               | No        |
|                 | rebar from           |                              |              |                          |            |                       | J                |                |                 |           |
|                 |                      |                              |              |                          |            |                       |                  |                |                 |           |
| 7.0 - 8.0       | Native Le            | ean Clay:<br>prown, mostly r | medium nla   | etic finas s             | ome fin    | haes a                |                  | 0.0            | Υ               | No        |
|                 | rtoddioire           | orown, moony r               | nediam pie   | 10110 111100, 0          | 01110 1111 | o dana                |                  |                |                 |           |
|                 |                      |                              |              |                          |            |                       |                  |                |                 |           |
|                 |                      |                              |              |                          |            |                       |                  |                |                 |           |
|                 |                      |                              |              |                          |            |                       |                  |                |                 |           |
| COMMENTS:       | :                    |                              |              |                          |            |                       |                  |                |                 |           |
| GROUNDW         | /ATER ENC            | OUNTERED:                    |              | ☐ YES                    | ✓ N        | 0                     | If yes, depth to | GW:            |                 |           |
| VISUAL IMF      | PACTS:               |                              |              | YES                      | ✓ N        | 0                     | Describe:        |                |                 |           |
| OLFACTOR        | RY OBSERV            | 'ATIONS:                     |              | ☐ YES                    | ✓ N        | 0                     | Describe:        |                |                 |           |
| NON-NATIV       | /E FILL ENC          | COUNTERED:                   |              | ✓ YES                    | ☐ N        | 0                     |                  |                |                 |           |
| OTHER OB        | SERVATIO             | NS:                          |              | ✓ YES                    | □ N        | 0                     | Describe:        | Black fines ar | nd urban fill   |           |
| SAMPLES (       | COLLECTE             | D:                           | 1.0 - 2.0 ft |                          |            |                       | Sample I.D.:     |                |                 |           |
|                 |                      |                              |              |                          |            |                       | Sample I.D.:     |                |                 |           |

Test Pit Excavation Logs Page 1 of 1



SAMPLES COLLECTED:

#### **TEST PIT EXCAVATION LOG**

| Project:        | 1155 Niagara Street Site                                          |                        | TEST P           | IT I.D.:         | TP-2      |      |           |
|-----------------|-------------------------------------------------------------------|------------------------|------------------|------------------|-----------|------|-----------|
| Project No.:    | T0550-020-001                                                     |                        | Excavat          | ion Date:        | 09/23/20  |      |           |
| Client:         | Great Point Opportunity Fund                                      |                        | Excavat          | ion Method:      | Excavator |      |           |
| Location:       | 1155 Niagara Street                                               |                        | Logged           | / Checked By:    | cms/bwm   |      |           |
| Toot Dit Loop   | ition: NOT TO SCALE                                               |                        | Toot Dit C       | ross Section:    |           |      |           |
| W Ferry St      | MIOH. NOT TO SCALE                                                |                        |                  |                  |           |      |           |
|                 |                                                                   |                        | Grade - 0        | Fill             |           |      |           |
| TP-9 TP-10 TP-; | TP-8                                                              |                        | 2.5              | 01 5:11          |           |      |           |
| TP-4 TP-6       |                                                                   |                        |                  | CL-Fill          |           |      |           |
| TP-12 TP-1      |                                                                   |                        | 4                | '-               |           |      |           |
|                 | FORM<br>UST /<br>SANB                                             |                        | 6                | ,                |           |      |           |
| TP-3 TP-5       | T A A                                                             |                        |                  | _                |           |      |           |
|                 |                                                                   |                        | 8                | '                |           |      |           |
| TIME            |                                                                   | (approx.)              | 10               | -                |           |      |           |
| Start:<br>End:  | Width: 3 ft Depth: 9 ft                                           | (approx.)<br>(approx.) | =                |                  |           |      |           |
|                 |                                                                   |                        | .,               |                  | PID       | DI 1 | Samples   |
| Depth<br>(fbgs) | USCS                                                              |                        | Scan             | Photos<br>Y / N  | Collected |      |           |
| (IDGS)          |                                                                   | escription             |                  |                  | (ppm)     | 1714 | (fbgs)    |
|                 | Fill:                                                             |                        |                  |                  |           |      |           |
| 0.0 - 1.0       | Brown, sandy fill, with angular gra                               | ivel, some con         | crete fragmen    | ts               | 0.0       | Y    | No        |
|                 |                                                                   |                        |                  |                  |           |      |           |
|                 | Fill:                                                             |                        |                  |                  |           | .,   |           |
| 1.0 - 1.25      | Black, fines mixed with reddish br                                | own clay               |                  |                  | 0.0       | Y    | 1.0 - 3.0 |
|                 |                                                                   |                        |                  |                  |           |      |           |
|                 | Fill:                                                             |                        |                  |                  |           | .,   |           |
| 1.25 - 2.5      | Brown, sandy fill with angular and bottom of interval.            | l sub-angular g        | ravel. Filter fa | bric observed at | 0.0       | Y    | 1.0 - 3.0 |
|                 |                                                                   |                        |                  |                  |           |      |           |
|                 | Reworked Lean Clay:                                               |                        |                  |                  |           | .,   |           |
| 2.5 - 9         | Reddish brown, mostly medium p fragment with rebar from 4-5'. Gra |                        |                  |                  | 0.0       | Y    | 1.0 - 3.0 |
|                 |                                                                   |                        |                  |                  |           |      |           |
|                 |                                                                   |                        |                  |                  |           |      |           |
|                 |                                                                   |                        |                  |                  |           |      |           |
|                 |                                                                   |                        |                  |                  |           |      |           |
| COMMENTS:       |                                                                   |                        |                  |                  |           |      |           |
|                 | ATER ENCOUNTERED:                                                 | ☐ YES                  | ✓ NO             | If yes, depth to | GW:       |      |           |
| VISUAL IMF      | PACTS:                                                            | YES                    | ✓ NO             | Describe:        |           |      |           |
| OLFACTOR        | Y OBSERVATIONS:                                                   | YES                    | ✓ NO             | Describe:        |           |      |           |
| NON-NATIV       | 'E FILL ENCOUNTERED:                                              | ✓ YES                  | ☐ NO             |                  |           |      |           |
| OTHER OB        | SERVATIONS:                                                       | ✓ YES                  | ☐ NO             | Describe:        |           |      |           |

Test Pit Excavation Logs Page 1 of 1

Sample I.D.:
Sample I.D.:

1.0 - 3.0 ft



| Project:     | 1155 Niagara Street Site      | TEST PIT I.D.:       | TP-3      |
|--------------|-------------------------------|----------------------|-----------|
| Project No.: | T0550-020-001                 | Excavation Date:     | 09/23/20  |
| Client:      | Croot Daint Consortunity Fund | Excavation Method:   | Evenuetor |
| Ciletit.     | Great Point Opportunity Fund  | Excavation inetriod. | Excavator |

| Location:                                                       | 1155 Nia                  | agara Street                                 |                      |                                     | Logged /                              | Checked By:    | cms/bwm                                            |                |                                |
|-----------------------------------------------------------------|---------------------------|----------------------------------------------|----------------------|-------------------------------------|---------------------------------------|----------------|----------------------------------------------------|----------------|--------------------------------|
| Test Pit Loca                                                   | tion: NOT T               | O SCALE                                      |                      |                                     | Test Pit Cro                          | oss Section:   |                                                    |                |                                |
| TIME Start: End:                                                | FORM UNANE                | Length:<br>Width:<br>Depth:                  | 8 ft<br>3 ft<br>9 ft | (approx.)<br>(approx.)<br>(approx.) | Grade - 0'- 2'- 3.5'- 6'- 8'-         | Fill CL-Fill   |                                                    |                |                                |
| Depth<br>(fbgs)                                                 |                           |                                              | USCS S               | Symbol & Secription                 | Soil                                  |                | PID<br>Scan<br>(ppm)                               | Photos<br>Y/N  | Samples<br>Collected<br>(fbgs) |
| 0.0 - 2.0                                                       | <b>Fill:</b><br>Brown, sa | andy fill, with ar                           | ngular grav          | el, some rec                        | d brick and conc                      | rete fragments | 0.0                                                | Υ              | No                             |
| 2.0 - 3.5                                                       |                           |                                              |                      |                                     | ncrete fragments<br>d test pit to N/S |                | 0.0                                                | Υ              | 2.0 - 3.0                      |
| 3.5 - 9.0                                                       | Reddish b                 | d Lean Clay/Norown with black, strong odors. |                      |                                     | medium plastic                        | fines, some    | 1622 @ 4-5'<br>5782 @ 5-6'<br>>15000 from 6-<br>9' | Υ              | 5.0 - 7.0<br>8.0 - 9.0         |
|                                                                 |                           |                                              |                      |                                     |                                       |                |                                                    |                |                                |
|                                                                 |                           |                                              |                      |                                     |                                       |                |                                                    |                |                                |
| COMMENTS:                                                       |                           |                                              |                      |                                     |                                       |                |                                                    |                |                                |
| GROUNDW                                                         | ATER ENC                  | OUNTERED:                                    |                      | YES                                 | ✓ NO                                  | If yes, depth  | to GW:                                             |                |                                |
| VISUAL IMF                                                      |                           |                                              |                      | ✓ YES                               | NO NO                                 | Describe:      | Black discolor                                     | ration         |                                |
| OLFACTORY OBSERVATIONS:  YES  NON-NATIVE FILL ENCOUNTERED:  YES |                           |                                              |                      |                                     | □ NO □ NO                             | Describe:      | Strong odors                                       |                |                                |
| OTHER OBSERVATIONS:  YES                                        |                           |                                              |                      |                                     | ☐ NO                                  | Describe:      | Equipment re                                       | fusal in E/W d | irection                       |
| SAMPLES C                                                       | COLLECTE                  | <br>D:                                       | 2.0 - 3.0 ft         |                                     |                                       | Sample I.D.:   |                                                    |                |                                |
|                                                                 |                           |                                              | 5.0 - 7.0 ft         |                                     |                                       | Sample I.D.:   |                                                    |                |                                |
|                                                                 |                           | -                                            | 8.0 - 9.0 ft         |                                     |                                       | Sample I.D.:   |                                                    |                |                                |

Test Pit Excavation Logs Page 1 of 1



| Project:       | 1155 Niaga    | ara Street Si                  | te           |               | TE            | ST PIT          | I.D.:            | TP-4      |        |           |
|----------------|---------------|--------------------------------|--------------|---------------|---------------|-----------------|------------------|-----------|--------|-----------|
| Project No.:   | T0550-02      | 20-001                         |              |               | Exc           | cavation        | n Date:          | 09/23/20  |        |           |
| Client:        | Great Po      | int Opportun                   | ity Fund     |               | Exc           | cavation        | n Method:        | Excavator |        |           |
| Location:      | 1155 Nia      | gara Street                    |              |               | Log           | gged / C        | Checked By:      | cms/bwm   |        |           |
| Test Pit Loca  | ation: NOT T  | O SCALE                        |              |               | Test          | Pit Cros        | ss Section:      |           |        |           |
| W Ferry St     |               |                                |              |               |               | e - 0' —        |                  |           |        |           |
| TP-9           | TP-8          |                                |              |               | Cida          | _               | Fill             |           |        |           |
| TP-10 TP-1     | 7             |                                |              |               |               | 2'—             |                  |           |        |           |
| TP-4 TP-6      |               |                                |              |               |               | <u>-</u><br>4'- |                  |           |        |           |
| TP-12 TP-11    | ECON.         |                                |              |               |               |                 | CL-Fill          |           |        |           |
| TP-3           | UST A<br>SANB |                                |              |               |               | 6' <del></del>  | ML-Fill          |           |        |           |
| IP3            | West          |                                |              |               |               | 8'—             |                  |           |        |           |
| TIA            | 1             | 1 1                            | 0.11         |               | _             | Ŭ <u> </u>      |                  |           |        |           |
| TIME<br>Start: | =             | Length:<br>Width:              | 8 ft<br>3 ft | (approx.      |               | 10'—            |                  |           |        |           |
| End:           | -             | Depth:                         | 9 ft         | (approx.      |               |                 | <u> </u>         |           |        |           |
| Depth          |               |                                | USCS         | Symbol & S    | Soil          |                 |                  | PID       | Photos | Samples   |
| (fbgs)         |               |                                | De           |               | Scan<br>(ppm) | Y/N             | Collected (fbgs) |           |        |           |
|                |               |                                |              |               |               |                 |                  | (ррііі)   |        | (Ibgs)    |
| 0.0 - 1.0      | <u>Fill:</u>  |                                |              |               |               |                 |                  | 0.0       | Υ      | No        |
| 0.0 1.0        | Brown, sa     | ndy fill, with ar              | ngular grav  | /el           |               |                 |                  | 0.0       | •      | 110       |
|                |               |                                |              |               |               |                 |                  |           |        |           |
| 1.0 - 5.0      |               | orked Lean Corown, mostly r    |              | astic fines s | ome fine s    | sand so         | me concrete      | 0.0       | Υ      | 2.0 - 4.0 |
| 1.0 0.0        |               | , pockets of bl                |              |               |               | Jana, oo        |                  | 0.0       | ·      |           |
|                |               |                                |              |               |               |                 |                  |           |        |           |
| 5.0 - 9.0      |               | orked Sand:<br>ostly fine sand | some me      | dium plastic  | fines sor     | ne sub-a        | angular          | 0.0       | Υ      | No        |
| 0.0 0.0        |               | me concrete v                  |              |               | 111100, 001   |                 | angulai          | 0.0       | ·      |           |
|                |               |                                |              |               |               |                 |                  |           |        |           |
|                |               |                                |              |               |               |                 |                  |           |        |           |
|                |               |                                |              |               |               |                 |                  |           |        |           |
|                |               |                                |              |               |               |                 |                  |           |        |           |
|                |               |                                |              |               |               |                 |                  |           |        |           |
|                |               |                                |              |               |               |                 |                  |           |        |           |
| COMMENTS:      |               |                                |              |               |               |                 |                  |           |        |           |
|                |               | OUNTERED:                      |              | YES           | ✓ NO          |                 | If yes, depth to | n GW:     |        |           |
| VISUAL IMF     |               | OUNTERED.                      |              |               |               |                 |                  | J GVV.    |        |           |
|                |               | ATIONO:                        |              | ☐ YES         | ✓ NO          |                 | Describe:        |           |        |           |
|                | RY OBSERV     |                                |              | ☐ YES         | ✓ NO          |                 | Describe:        |           |        |           |
|                |               | COUNTERED:                     |              | ✓ YES         | ∐ NO          |                 |                  |           |        |           |
|                | SERVATION     |                                |              | ✓ YES         | ☐ NO          |                 | Describe:        |           |        |           |
| SAMPLES (      | COLLECTED     | D:                             | 2.0 - 4.0 ft |               |               |                 | Sample I.D.:     |           |        |           |
|                |               |                                |              |               |               |                 | Sample I.D.:     |           |        |           |

Test Pit Excavation Logs Page 1 of 1



| Project:     | 1155 Niagara Street Site     | TEST PIT I.D.:       | TP-5      |
|--------------|------------------------------|----------------------|-----------|
| Project No.: | T0550-020-001                | Excavation Date:     | 09/23/20  |
| Client:      | Great Point Opportunity Fund | Excavation Method:   | Excavator |
| Location:    | 1155 Niagara Street          | Logged / Checked By: | cms/bwm   |
|              |                              |                      |           |

| Location.                                                | 11001110                        | agara Otreet                                       |                      |                                  | Logged / Official Dy. Chia/DWIII |                                                                                            |                                              |               |               |                      |  |
|----------------------------------------------------------|---------------------------------|----------------------------------------------------|----------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------|---------------|---------------|----------------------|--|
| Test Pit Loca                                            | tion: NOT T                     | O SCALE                                            |                      |                                  | Tes                              | t Pit Cros                                                                                 | ss Section:                                  |               |               |                      |  |
| TIME Start:                                              | FORA UST / SAME                 | Length:<br>Width:<br>Depth:                        | 8 ft<br>3 ft<br>9 ft | (approx.<br>(approx.<br>(approx. | <u>.)</u><br>.)                  | ade - 0' —<br>2' —<br>4' —<br>6' —<br>8' —<br>10' —                                        | CL-Fill                                      |               |               |                      |  |
| Depth                                                    |                                 | •                                                  |                      | Symbol &                         |                                  |                                                                                            |                                              | PID           | Photos        | Samples<br>Collected |  |
| (fbgs)                                                   |                                 |                                                    | De                   | scription                        |                                  |                                                                                            |                                              | Scan<br>(ppm) | Y/N           | (fbgs)               |  |
| 0.0 - 3.0                                                |                                 | andy fill, with an<br>st pit to E/W dir            |                      | el. Concret                      | e refusa                         | l at 4' in N                                                                               | /S direction.                                | 0.0           | Y             | No                   |  |
| 3.0 - 4.0                                                | Fill:<br>Black, mo<br>fragments | ostly fine sand a                                  | and granula          | ars, some r                      | ed brick                         | and concr                                                                                  | ete                                          | 0.0           | Y             | No                   |  |
| 4.0 - 9.0                                                | Reddish b                       | orked Lean C<br>prown, mostly n<br>ion, strong odo | nedium pla           |                                  |                                  | me fine sands, minor black tom of test pit.  6422 @ 5-6 1034 @6-7' 1107 @ 7-8' 1823 @ 8-9' |                                              |               | Υ             | 5.0 - 7.0            |  |
|                                                          |                                 |                                                    |                      |                                  |                                  |                                                                                            |                                              |               |               |                      |  |
|                                                          |                                 |                                                    |                      |                                  |                                  |                                                                                            |                                              |               |               |                      |  |
| COMMENTS:                                                |                                 |                                                    |                      |                                  |                                  |                                                                                            |                                              |               |               |                      |  |
|                                                          |                                 | OUNTERED:                                          |                      | ✓ YES                            | ☐ N                              | )                                                                                          | If yes, depth                                | to GW:        | 9'            |                      |  |
| VISUAL IMF                                               |                                 |                                                    |                      | ✓ YES                            |                                  |                                                                                            | Describe:                                    | Minor black d |               |                      |  |
| OLFACTORY OBSERVATIONS:                                  |                                 |                                                    |                      |                                  | ☐ No                             |                                                                                            | Describe:                                    | Strong odors  |               |                      |  |
| NON-NATIVE FILL ENCOUNTERED:                             |                                 |                                                    |                      |                                  | ∐ No                             |                                                                                            | Deceriber                                    | Equipment :-  | fund in N/O - | iraction             |  |
| OTHER OBSERVATIONS: YES  SAMPLES COLLECTED: 5.0 - 7.0 ft |                                 |                                                    |                      |                                  | Ŭ N                              | ,                                                                                          | Describe: Equipment refusal in N/S direction |               |               |                      |  |
| OANT LLO                                                 | JOLLEGIE                        | J                                                  | 7.0 - 7.0 IL         |                                  |                                  |                                                                                            | Sample I.D.:                                 |               |               |                      |  |
|                                                          |                                 |                                                    |                      |                                  |                                  |                                                                                            | Sample I.D.:                                 |               |               |                      |  |
|                                                          |                                 |                                                    |                      |                                  |                                  |                                                                                            | •                                            |               |               |                      |  |

Test Pit Excavation Logs Page 1 of 1



SAMPLES COLLECTED:

#### **TEST PIT EXCAVATION LOG**

| Project:            | 1155 Niagara Street Site                                             |            | TEST PIT         | I.D.:            | TP-6        |        |                      |
|---------------------|----------------------------------------------------------------------|------------|------------------|------------------|-------------|--------|----------------------|
| Project No.:        | T0550-020-001                                                        |            | Excavation       | n Date:          | 09/23/20    |        |                      |
| Client:             | Great Point Opportunity Fund                                         |            | Excavation       | n Method:        | Excavator   |        |                      |
| Location:           | 1155 Niagara Street                                                  |            | Logged / (       | Checked By:      | cms/bwm     |        |                      |
| Test Pit Loca       | ation: NOT TO SCALE                                                  |            | Test Pit Cros    | ss Section:      |             |        |                      |
| W Ferry St          | The second second                                                    |            | Grade - 0'-      |                  |             |        |                      |
| r <del>□</del> TP.q | 200                                                                  |            | Grade - 0 —      | Fill             |             |        |                      |
| TP-10 TP-           |                                                                      |            | 2'-              |                  |             |        |                      |
| TP-4 TP-6           |                                                                      |            | 4'-              |                  |             |        |                      |
| TP-12 TP-11         | FOR                                                                  |            |                  | CL-Fill          |             |        |                      |
| TP-5                | UST /<br>SAMB                                                        |            | 6'-              |                  |             |        |                      |
|                     | West                                                                 |            | 8'-              |                  |             |        |                      |
| TIME                | Length: 8 ft (a                                                      | pprox.)    | _                |                  |             |        |                      |
| Start:              | J \                                                                  | pprox.)    | 10'-             |                  |             |        |                      |
| End:                | ,                                                                    | pprox.)    |                  |                  |             |        | 1 .                  |
| Depth               | USCS Sym                                                             |            | oil              |                  | PID<br>Scan | Photos | Samples<br>Collected |
| (fbgs)              | Descri                                                               |            | (ppm)            | Y/N              | (fbgs)      |        |                      |
|                     |                                                                      |            |                  |                  |             |        |                      |
| 0.0 - 0.5           | Fill: Brown, sandy fill, with angular gravel.                        |            |                  |                  | 0.0         | Υ      | No                   |
|                     | Drown, carray mi, with angular graven                                |            |                  |                  |             |        |                      |
|                     | Fill - Reworked Lean Clay:                                           |            |                  |                  |             |        |                      |
| 0.5 - 5.5           | Reddish brown, mostly medium plastic                                 | fines, sor | ne fine sand, so | me black         | 0.0         | Υ      | No                   |
|                     | pockets of sand and fines.                                           |            |                  |                  |             |        |                      |
|                     | Fine Sand:                                                           |            |                  |                  |             |        |                      |
| 5.5 - 9             | Brown, mostly fine sands, some mediur<br>gravel. Groundwater at 8.5' | m plastic  | fines, some sub  | -angular         | 0.0         | Y      | No                   |
|                     | gravor. Groundwater at 6.5                                           |            |                  |                  |             |        |                      |
|                     |                                                                      |            |                  |                  |             |        |                      |
|                     |                                                                      |            |                  |                  |             |        |                      |
|                     |                                                                      |            |                  |                  |             |        |                      |
|                     |                                                                      |            |                  |                  |             |        |                      |
|                     |                                                                      |            |                  |                  |             |        |                      |
| COMMENTS:           |                                                                      |            |                  |                  |             |        |                      |
|                     |                                                                      | VEC 1      | Пио              | If you don't !   | o CW:       | 0.5'   |                      |
|                     |                                                                      | YES [      | ∐ NO             | If yes, depth to | O GVV:      | 8.5'   |                      |
| VISUAL IMF          | <u>_</u>                                                             |            | ✓ NO             | Describe:        |             |        |                      |
|                     | RY OBSERVATIONS:                                                     |            | ✓ NO             | Describe:        |             |        |                      |
|                     | /E FILL ENCOUNTERED:                                                 | YES        | ∐ NO             |                  |             |        |                      |
| OTHER OB            | SERVATIONS:                                                          | YES        | ✓ NO             | Describe:        |             |        |                      |

Test Pit Excavation Logs Page 1 of 1

Sample I.D.:
Sample I.D.:



| Project:                                                            | 1155 Niag          | ara Street Si                                        | te           |                     |          | TEST PIT                  | I.D.:                         | TP-7                 |               |                                |
|---------------------------------------------------------------------|--------------------|------------------------------------------------------|--------------|---------------------|----------|---------------------------|-------------------------------|----------------------|---------------|--------------------------------|
| Project No.:                                                        | T0550-0            | T0550-020-001                                        |              |                     |          | Excavation Date: 09/23/20 |                               |                      |               |                                |
| Client:                                                             | Great Po           | oint Opportun                                        | ity Fund     |                     |          | Excavation                | Method:                       | nod: Excavator       |               |                                |
| Location:                                                           | 1155 Nia           | agara Street                                         |              |                     |          | Logged / C                | hecked By:                    | cms/bwm              |               |                                |
| Test Pit Loca W Ferry St  TP-0 TP-0 TP-1 TP-1 TP-1 TP-5 TIME Start: | FORM TOWN          | CO SCALE  Length: Width:                             | 8 ft<br>3 ft | (approx             | .)       | Test Pit Cros Grade - 0'  | S Section:  Fill  CL-Fill  ML |                      |               |                                |
| Siari.<br>End:                                                      |                    | Depth:                                               | 9 ft         | (approx             |          | -                         |                               |                      |               |                                |
| Depth<br>(fbgs)                                                     |                    |                                                      | USCS         | Symbol & escription |          |                           |                               | PID<br>Scan<br>(ppm) | Photos<br>Y/N | Samples<br>Collected<br>(fbgs) |
| 0.0 - 0.5                                                           | Fill:<br>Brown, sa | andy fill, with ar                                   | ngular grav  | /el.                |          |                           |                               | 0.0                  | Y             | No                             |
| 0.5 - 5.5                                                           | Reddish b          | orked Lean Corown, mostly reference of sand and fine | nedium pla   | astic fines, s      | some f   | fine sand, soi            | me black                      | 0.0                  | Y             | No                             |
| 5.5 - 9                                                             |                    | d:<br>ostly fine sand<br>roundwater at 8             |              | edium plast         | tic fine | es, some sub-             | angular                       | 0.0                  | Y             | No                             |
|                                                                     |                    |                                                      |              |                     |          |                           |                               |                      |               |                                |
| COMMENTS:                                                           |                    |                                                      |              |                     |          |                           |                               |                      | <u>l</u>      | <u> </u>                       |
| GROUNDW                                                             | /ATER ENC          | OUNTERED:                                            |              | ✓ YES               |          | NO                        | If yes, depth to              | GW:                  | 8.5'          |                                |
| VISUAL IMF                                                          | PACTS:             |                                                      |              | YES                 | 1        | NO                        | Describe:                     |                      |               |                                |
| OLFACTOR                                                            | RY OBSERV          | ATIONS:                                              |              | YES                 | <b>√</b> | NO                        | Describe:                     |                      |               |                                |
| NON-NATIV                                                           | /E FILL ENG        | COUNTERED:                                           |              | ✓ YES               |          | NO                        |                               |                      |               |                                |
| OTHER OB                                                            | SERVATIO           | NS:                                                  |              | YES                 | <b>√</b> | NO                        | Describe:                     |                      |               |                                |
| SAMPLES (                                                           | COLLECTE           | D:                                                   |              |                     |          |                           | Sample I.D.:                  |                      |               |                                |
|                                                                     |                    |                                                      |              |                     |          |                           | Sample I.D.:                  |                      |               |                                |

Test Pit Excavation Logs Page 1 of 1



| Project:        | 1155 Niag     | ara Street Sit | e         |                      | TEST PI                           | T I.D.:          | TP-8      |                 |           |
|-----------------|---------------|----------------|-----------|----------------------|-----------------------------------|------------------|-----------|-----------------|-----------|
| Project No.:    | T0550-0       | 20-001         |           |                      | Excavati                          | on Date:         | 09/23/20  |                 |           |
| Client:         | Great Po      | int Opportun   | ity Fund  |                      | Excavati                          | on Method:       | Excavator |                 |           |
| Location:       | 1155 Nia      | agara Street   |           |                      | Logged /                          | Checked By:      | cms/bwm   |                 |           |
| Test Pit Loca   | ation: NOT T  | O SCALE        |           |                      | Test Pit Cr                       | oss Section:     |           |                 |           |
| W Ferry St      |               |                |           |                      | Grade - 0'                        | Fill             |           |                 |           |
| TP-9            | TP-8          |                |           |                      |                                   | ГШ               |           |                 |           |
| TP-10 TP-       | 7             |                |           |                      | 2'                                |                  |           |                 |           |
| TP-4 TP-6       |               |                |           |                      | 4'                                |                  |           |                 |           |
| TP-12 TP-11     | FORM<br>UST / |                |           |                      | 6'                                |                  |           |                 |           |
| TP-3 TP-5       | trave         |                |           |                      | 0                                 |                  |           |                 |           |
|                 | We            |                |           |                      | 8'                                |                  |           |                 |           |
| TIME            | 310           | Length:        | 8 ft      | (approx.)            | 10'                               |                  |           |                 |           |
| Start:          |               | Width:         | 3 ft      | (approx.)            | -                                 |                  |           |                 |           |
| End:            |               | Depth:         | 9 ft      | (approx.)            | <u>.</u>                          |                  | PID       |                 | Samples   |
| Depth<br>(fbgs) |               |                |           | Symbol & Sescription | Oil                               |                  | Scan      | Photos<br>Y / N | Collected |
| (ibgs)          |               |                |           |                      |                                   |                  | (ppm)     | 1 / 1           | (fbgs)    |
|                 | Fill:         |                | _         |                      |                                   |                  |           | .,              |           |
| 0.0 - 5.0       |               |                |           |                      | ck sandy pocke<br>concrete fragme |                  | 0.0       | Y               | 0.0 - 1.0 |
|                 |               |                | ,         |                      |                                   |                  |           |                 |           |
| 50.00           | Fill:         |                |           |                      |                                   |                  | 0.0       | Y               | No        |
| 5.0 - 9.0       | Brown, 2"     | crusher run    |           |                      |                                   |                  | 0.0       | T               | INO       |
|                 |               |                |           |                      |                                   |                  |           |                 |           |
|                 |               |                |           |                      |                                   |                  |           |                 |           |
|                 |               |                |           |                      |                                   |                  |           |                 |           |
|                 |               |                |           |                      |                                   |                  |           |                 |           |
|                 |               |                |           |                      |                                   |                  |           |                 |           |
|                 |               |                |           |                      |                                   |                  |           |                 |           |
|                 |               |                |           |                      |                                   |                  |           |                 |           |
|                 |               |                |           |                      |                                   |                  |           |                 |           |
|                 |               |                |           |                      |                                   |                  |           |                 |           |
| COMMENTS:       |               |                |           |                      |                                   | <u> </u>         |           |                 |           |
| GROUNDW         | ATER ENC      | OUNTERED:      |           | YES                  | ✓ NO                              | If yes, depth to | o GW:     |                 |           |
| VISUAL IMF      | PACTS:        |                |           | YES                  | NO                                | Describe:        |           |                 |           |
| OLFACTOR        | RY OBSERV     | ATIONS:        |           | YES                  | ✓ NO                              | Describe:        |           |                 |           |
| NON-NATI\       | /E FILL ENC   | COUNTERED:     |           | ✓ YES                | □ NO                              |                  |           |                 |           |
| OTHER OB        | SERVATIO      | NS:            |           | ☐ YES                | ✓ NO                              | Describe:        |           |                 |           |
| SAMPLES (       |               |                | 0.0 - 1.0 |                      |                                   | Sample I.D.:     |           |                 |           |
|                 | <del>-</del>  |                |           |                      |                                   | Sample I.D.:     |           |                 |           |
|                 |               |                |           |                      |                                   | Jap. 10 1.D      |           |                 |           |

Test Pit Excavation Logs Page 1 of 1



| Project:       | 1155 Niagara Street Site |                   |              |              | TE        | TEST PIT I.D.:      |                  |           |        |           |
|----------------|--------------------------|-------------------|--------------|--------------|-----------|---------------------|------------------|-----------|--------|-----------|
| Project No.:   | T0550-02                 | T0550-020-001     |              |              |           | cavation            | n Date:          | 09/23/20  |        |           |
| Client:        | Great Poi                | nt Opportun       | ity Fund     |              | Ex        | cavation            | n Method:        | Excavator |        |           |
| Location:      | 1155 Niag                | gara Street       |              |              | Lo        | gged / C            | Checked By:      | cms/bwm   |        |           |
| Test Pit Loca  | ation: NOT TO            | ) SCALE           |              |              | Test      | Pit Cros            | ss Section:      |           |        |           |
| W Ferry St     | - b                      |                   |              |              |           | le - 0' <del></del> |                  |           |        |           |
| TP-9           | TP-8                     |                   |              |              | Orac      | _                   | Fill             |           |        |           |
| TP-10 TP-1     | 7                        |                   |              |              |           | 2'—                 |                  |           |        |           |
| TP-4 TP-6      | 5                        |                   |              |              |           | 4' <del></del>      |                  |           |        |           |
| TP-12 TP-11    | FORM                     |                   |              |              |           | · <u>-</u>          |                  |           |        |           |
| TP-3 TP-5      | UST /<br>SANB            |                   |              |              |           | 6'—                 |                  |           |        |           |
|                | West                     |                   |              |              |           | 8' <b>—</b>         |                  |           |        |           |
| TIME           |                          | Longth            | 0 #          | (opprov.)    |           | _                   |                  |           |        |           |
| TIME<br>Start: |                          | Length:<br>Width: | 8 ft<br>3 ft | (approx.)    |           | 10'—                |                  |           |        |           |
| End:           |                          | Depth:            | 9 ft         | (approx.)    |           | _                   |                  |           |        |           |
| Depth          |                          |                   | USCS         | Symbol & S   | Soil      |                     |                  | PID       | Photos | Samples   |
| (fbgs)         |                          |                   |              | escription   |           |                     |                  | Scan      | Y/N    | Collected |
|                |                          |                   |              |              |           |                     |                  | (ppm)     |        | (fbgs)    |
| 0.0 - 5.0      | Fill:                    | idy fill, with an | aular aray   | vol. somo co | neroto an | d rod bri           | ck fragments     | 0.0       | Y      | No        |
| 0.0 - 5.0      |                          | ome large co      |              |              |           | u reu bir           | ck fragments     | 0.0       | ·      | 140       |
|                |                          |                   |              |              |           |                     |                  |           |        |           |
| 5.0 - 9.0      | <u>Fill:</u>             |                   |              |              |           |                     |                  | 0.0       | Υ      | No        |
| 3.0 - 3.0      | Brown, 2" o              | rusher run        |              |              |           |                     |                  | 0.0       | '      | 110       |
|                |                          |                   |              |              |           |                     |                  |           |        |           |
|                |                          |                   |              |              |           |                     |                  |           |        |           |
|                |                          |                   |              |              |           |                     |                  |           |        |           |
|                |                          |                   |              |              |           |                     |                  |           |        |           |
|                |                          |                   |              |              |           |                     |                  |           |        |           |
|                |                          |                   |              |              |           |                     |                  |           |        |           |
|                |                          |                   |              |              |           |                     |                  |           |        |           |
|                |                          |                   |              |              |           |                     |                  |           |        |           |
|                |                          |                   |              |              |           |                     |                  |           |        |           |
| COMMENTS:      |                          |                   |              |              |           |                     |                  |           |        |           |
|                | ATER ENCC                | I INTEDED:        |              | □ ves        | ✓ NO      |                     | If yes, depth to | CW        |        |           |
|                |                          | OUNTERED.         |              | ☐ YES        |           |                     |                  | J GW.     |        |           |
| VISUAL IMF     |                          |                   |              | ☐ YES        | ✓ NO      |                     | Describe:        |           |        |           |
|                | RY OBSERVA               |                   |              | ☐ YES        | ✓ NO      |                     | Describe:        |           |        |           |
| NON-NATIV      | /E FILL ENC              | OUNTERED:         |              | ✓ YES        | ☐ NO      |                     |                  |           |        |           |
| OTHER OB       | SERVATION                | S:                |              | ☐ YES        | ✓ NO      |                     | Describe:        |           |        |           |
| SAMPLES (      | COLLECTED                | :                 |              |              |           |                     | Sample I.D.:     |           |        |           |
|                |                          | -                 | <u></u>      | ·            |           |                     | Sample I.D.:     |           | ·      |           |

Test Pit Excavation Logs Page 1 of 1



| Project:      | 1155 Niag     | ara Street Sit                     | te         |               | TEST P        | IT I.D.:         | TP-10     |        |           |
|---------------|---------------|------------------------------------|------------|---------------|---------------|------------------|-----------|--------|-----------|
| Project No.:  | T0550-0       | 20-001                             |            |               | Excavat       | tion Date:       | 09/23/20  |        |           |
| Client:       | Great Po      | oint Opportun                      | ity Fund   |               | Excavat       | tion Method:     | Excavator | •      |           |
| Location:     | 1155 Nia      | 1155 Niagara Street                |            |               |               | / Checked By:    | cms/bwm   |        |           |
| Test Pit Loca | ation: NOT 7  | O SCALE                            |            |               | Test Pit C    | ross Section:    |           |        |           |
| W Ferry St    |               |                                    |            |               | Grade - 0     | ' <b></b>        |           |        |           |
| TP-9          | ₩<br>TP-8     |                                    |            |               |               |                  |           |        |           |
| TP-10 TP.     | 7             |                                    |            |               | 2             | CL-Fill          |           |        |           |
| TP-4 TP-6     | 5<br><u>1</u> |                                    |            |               | 4             | '-               |           |        |           |
| TP-12 TP-11   | FORM<br>UST / |                                    |            |               | 0             | _                |           |        |           |
| TP-3 TP-5     | Ave           |                                    |            |               | 6             |                  |           |        |           |
|               | Wes           |                                    |            |               | 8             | ' <del>-</del>   |           |        |           |
| TIME          | E .           | Length:                            | 8 ft       | (approx.)     | 10            | ,                |           |        |           |
| Start:        |               | Width:                             | 3 ft       | (approx.)     | 10            |                  |           |        |           |
| End:          | I             | Depth:                             | 8 ft       | (approx.)     |               |                  | PID       |        | Samples   |
| Depth         |               |                                    |            | Symbol & S    | oil           |                  | Scan      | Photos | Collected |
| (fbgs)        |               |                                    | De         | escription    |               |                  | (ppm)     | Y/N    | (fbgs)    |
|               | Fill:         |                                    |            |               |               |                  |           |        |           |
| 0.0 - 2.0     |               |                                    |            |               | pipe and con  | crete fragments, | 0.0       | Υ      | No        |
|               | numerous      | s brick pavers t                   | nrougnou   | i.            |               |                  |           |        |           |
|               |               |                                    |            |               |               |                  |           |        |           |
|               |               | rked Lean Cla                      |            |               |               |                  |           |        |           |
| 2.0 - 8.0     |               | own, mostly me<br>cast iron pipe a |            |               | e fine sands, | some concrete    | 0.0       | Y      | No        |
| 2.0 0.0       |               |                                    |            |               |               |                  | 0.0       | ·      |           |
|               | Equipment     | refusal at 8' du                   | e to large | concrete frag | ments and col | bbles.           |           |        |           |
|               |               |                                    |            |               |               |                  |           |        |           |
|               |               |                                    |            |               |               |                  |           |        |           |
|               |               |                                    |            |               |               |                  |           |        |           |
|               |               |                                    |            |               |               |                  |           |        |           |
|               |               |                                    |            |               |               |                  |           |        |           |
|               |               |                                    |            |               |               |                  |           |        |           |
|               |               |                                    |            |               |               |                  |           |        |           |
| COMMENTS:     |               |                                    |            |               |               |                  |           |        |           |
| GROUNDW       | /ATER ENC     | OUNTERED:                          |            | YES           | ✓ NO          | If yes, depth t  | o GW:     |        |           |
| VISUAL IMF    | PACTS:        |                                    |            | YES           | ✓ NO          | Describe:        |           |        |           |
| OLFACTOR      | RY OBSERV     | 'ATIONS:                           |            | ☐ YES         | ✓ NO          | Describe:        |           |        |           |
| NON-NATI\     | /E FILL ENG   | COUNTERED:                         |            | ✓ YES         | ☐ NO          |                  |           |        |           |
| OTHER OB      | SERVATIO      | NS:                                |            | YES           | ✓ NO          | Describe:        |           |        |           |
| SAMPLES       | COLLECTE      | D:                                 |            |               |               | Sample I.D.:     |           |        |           |
|               |               |                                    |            |               |               | Sample I.D.:     |           |        |           |

Test Pit Excavation Logs Page 1 of 1



| Project:      | 1155 Niagara Street Site                       |                    | TEST PIT I.D.:          | TP-11       |        |                      |
|---------------|------------------------------------------------|--------------------|-------------------------|-------------|--------|----------------------|
| Project No.:  | T0550-020-001                                  |                    | Excavation Date:        | 09/23/20    |        |                      |
| Client:       | Great Point Opportunity Fund                   | t                  | Excavation Method:      | Excavator   |        |                      |
| Location:     | 1155 Niagara Street                            |                    | Logged / Checked By     | : cms/bwm   |        |                      |
| Test Pit Loca | ation: NOT TO SCALE                            |                    | Test Pit Cross Section: |             |        |                      |
| W Ferry St    |                                                |                    | Grado 0'                |             |        |                      |
| TP-9          | TP.0                                           |                    | Fill                    |             |        |                      |
| TP-10 TP-1    | 7                                              |                    | 2'                      |             |        |                      |
| TP-4 TP-6     |                                                |                    | 4' CL                   |             |        |                      |
| TP-12 TP-11   | FORM                                           |                    | · <u> </u>              |             |        |                      |
| TP-3 TP-5     | UST A<br>SANB                                  |                    | 6'                      |             |        |                      |
|               | West                                           |                    | 8'                      |             |        |                      |
| TIME          | E Length: 8 ft                                 | (approx.)          | _                       |             |        |                      |
| Start:        | Width: 3 ft                                    | (approx.)          | 10'                     |             |        |                      |
| End:          | Depth: 8 ft                                    | (approx.)          | _                       |             |        | T .                  |
| Depth         | USCS                                           | S Symbol & So      | pil                     | PID<br>Scan | Photos | Samples<br>Collected |
| (fbgs)        | ]                                              | Description        |                         | (ppm)       | Y/N    | (fbgs)               |
|               |                                                |                    |                         |             |        |                      |
| 0.0 - 3.0     | Fill: Brown, sandy fill, with angular gr       | avel dark brown    | n/halck from 1-3'       | 0.0         | Υ      | 1.0 - 3.0            |
|               | Brown, sandy mi, with angular gr               | avoi, dant brown   | Woodok Holli 1 0.       |             |        |                      |
|               |                                                |                    |                         |             |        |                      |
| 3.0 - 8.0     | Native Lean Clay: Reddish brown, mostly medium | olastic fines. sor | me fine sand.           | 0.0         | Υ      | No                   |
|               | , , , , , , , , , , , , , , , , , , , ,        | ,,                 |                         |             |        |                      |
|               |                                                |                    |                         |             |        |                      |
|               |                                                |                    |                         |             |        |                      |
|               |                                                |                    |                         |             |        |                      |
|               |                                                |                    |                         |             |        |                      |
|               |                                                |                    |                         |             |        |                      |
|               |                                                |                    |                         |             |        |                      |
|               |                                                |                    |                         |             |        |                      |
|               |                                                |                    |                         |             |        |                      |
|               |                                                |                    |                         |             |        |                      |
| COMMENTS:     |                                                |                    |                         |             |        |                      |
| GROUNDW       | /ATER ENCOUNTERED:                             |                    | NO If yes, depth        | to GW:      |        |                      |
| VISUAL IMF    | PACTS:                                         | YES                | NO Describe:            |             |        |                      |
| OLFACTOR      | RY OBSERVATIONS:                               | YES                | NO Describe:            |             |        |                      |
| NON-NATIV     | /E FILL ENCOUNTERED:                           | ✓ YES              | □ NO                    |             |        |                      |
| OTHER OB      | SERVATIONS:                                    | YES                | NO Describe:            |             |        |                      |
| SAMPLES (     | COLLECTED: 1.0 - 3.0                           |                    | Sample I.D.             | :           |        |                      |
|               |                                                |                    | Sample I.D.             | :           |        |                      |

Test Pit Excavation Logs Page 1 of 1



| Project:      | 1155 Niagara Street Sit    | е                         | TEST PIT I.D.:          | <b>TP-12</b> |        |           |
|---------------|----------------------------|---------------------------|-------------------------|--------------|--------|-----------|
| Project No.:  | T0550-020-001              |                           | Excavation Date:        | 09/23/20     |        |           |
| Client:       | Great Point Opportun       | ty Fund                   | Excavation Method:      | Excavator    |        |           |
| Location:     | 1155 Niagara Street        |                           | Logged / Checked By:    | cms/bwm      |        |           |
| Test Pit Loca | ation: NOT TO SCALE        |                           | Test Pit Cross Section: |              |        |           |
| W Ferry St    | - V                        |                           | Grade - 0'              |              |        |           |
| <b>TP-9</b>   | TP-8                       |                           |                         |              |        |           |
| TP-10 TP.     | 7                          |                           | 2'-                     |              |        |           |
| TP-4 TP-6     |                            |                           | 4' CL                   |              |        |           |
| TP-12 TP-11   | FORM<br>UST /              |                           |                         |              |        |           |
| TP-3 TP-5     | SANE                       |                           | 6'                      |              |        |           |
|               | West                       |                           | 8'—                     |              |        |           |
| TIME          | E Length:                  | 8 ft (approx.)            | 40                      |              |        |           |
| Start:        | Width:                     | 3 ft (approx.)            | 10'                     |              |        |           |
| End:          | Depth:                     | 8 ft (approx.)            |                         | PID          |        | Samples   |
| Depth         |                            | USCS Symbol & So          | oil                     | Scan         | Photos | Collected |
| (fbgs)        |                            | Description               |                         | (ppm)        | Y/N    | (fbgs)    |
| 0.0 - 3.0     | <u>Fill:</u>               |                           |                         | 0.0          | Y      | 1.0 - 3.0 |
| 0.0 0.0       | Brown, sandy fill, with ar | gular gravel, dark brow   | n/balck from 1-3'.      | 0.0          | ·      | 1.0 0.0   |
|               | Native Lean Clay:          |                           |                         |              |        |           |
| 3.0 - 8.0     | Reddish brown, mostly n    | nedium plastic fines, sor | me fine sand.           | 0.0          | Y      | No        |
|               |                            |                           |                         |              |        |           |
|               |                            |                           |                         |              |        |           |
|               |                            |                           |                         |              |        |           |
|               |                            |                           |                         |              |        |           |
|               |                            |                           |                         |              |        |           |
|               |                            |                           |                         |              |        |           |
|               |                            |                           |                         |              |        |           |
|               |                            |                           |                         |              |        |           |
|               |                            |                           |                         |              |        |           |
| COMMENTS:     |                            |                           |                         |              |        |           |
| GROUNDW       | ATER ENCOUNTERED:          | ☐ YES                     | ✓ NO If yes, depth      | to GW:       |        |           |
| VISUAL IMF    | PACTS:                     | ☐ YES                     | ✓ NO Describe:          |              |        |           |
| OLFACTOR      | RY OBSERVATIONS:           | ☐ YES                     | NO Describe:            |              |        |           |
| NON-NATI\     | /E FILL ENCOUNTERED:       | ✓ YES                     | ☐ NO                    |              |        |           |
| OTHER OB      | SERVATIONS:                | YES                       | NO Describe:            |              |        |           |
| SAMPLES (     | COLLECTED:                 | 1.0 - 3.0                 | Sample I.D.:            |              |        |           |
|               |                            |                           | Sample I.D.:            |              |        |           |

Test Pit Excavation Logs Page 1 of 1

### **APPENDIX D**

LABORATORY ANALYTICAL REPORT





#### ANALYTICAL REPORT

Lab Number: L2040164

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Mike Lesakowski
Phone: (716) 856-0599
Project Name: 1155 NIAGARA

Project Number: T0550-020-001

Report Date: 09/30/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



**Project Name:** 1155 NIAGARA **Project Number:** T0550-020-001

 Lab Number:
 L2040164

 Report Date:
 09/30/20

| Alpha<br>Sample ID | Client ID   | Matrix | Sample<br>Location | Collection Date/Time | Receive Date |
|--------------------|-------------|--------|--------------------|----------------------|--------------|
| L2040164-01        | TP-3 5-7 FT | SOIL   | 1155 NIAGARA       | 09/23/20 09:20       | 09/23/20     |
| L2040164-02        | TP-3 8-9 FT | SOIL   | 1155 NIAGARA       | 09/23/20 09:25       | 09/23/20     |
| L2040164-03        | TP-5 5-7 FT | SOIL   | 1155 NIAGARA       | 09/23/20 09:23       | 09/23/20     |



 Project Name:
 1155 NIAGARA
 Lab Number:
 L2040164

 Project Number:
 T0550-020-001
 Report Date:
 09/30/20

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Project Management at 800-624-9220 with any questions. |  |
|-----------------------------------------------------------------------|--|
|                                                                       |  |



 Project Name:
 1155 NIAGARA
 Lab Number:
 L2040164

 Project Number:
 T0550-020-001
 Report Date:
 09/30/20

#### **Case Narrative (continued)**

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The chain of custody did not accompany the samples to the laboratory. The requested analyses were performed.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/30/20

Melissa Sturgis Melissa Sturgis

ALPHA

## **ORGANICS**



## **VOLATILES**



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

**SAMPLE RESULTS** 

Lab ID: L2040164-01 D2 Date Collected: 09/23/20 09:20

Client ID: TP-3 5-7 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 09/30/20 00:41

Analyst: JC Percent Solids: 79%

| Parameter                       | Result         | Qualifier | Units | RL   | MDL  | Dilution Factor |  |
|---------------------------------|----------------|-----------|-------|------|------|-----------------|--|
| Volatile Organics by GC/MS - We | estborough Lab |           |       |      |      |                 |  |
| Methylene chloride              | ND             |           | ug/kg | 3600 | 1600 | 10              |  |
| 1,1-Dichloroethane              | ND             |           | ug/kg | 710  | 100  | 10              |  |
| Chloroform                      | ND             |           | ug/kg | 1100 | 100  | 10              |  |
| Carbon tetrachloride            | ND             |           | ug/kg | 710  | 160  | 10              |  |
| 1,2-Dichloropropane             | ND             |           | ug/kg | 710  | 89.  | 10              |  |
| Dibromochloromethane            | ND             |           | ug/kg | 710  | 100  | 10              |  |
| 1,1,2-Trichloroethane           | ND             |           | ug/kg | 710  | 190  | 10              |  |
| Tetrachloroethene               | ND             |           | ug/kg | 360  | 140  | 10              |  |
| Chlorobenzene                   | ND             |           | ug/kg | 360  | 91.  | 10              |  |
| Trichlorofluoromethane          | ND             |           | ug/kg | 2800 | 500  | 10              |  |
| 1,2-Dichloroethane              | ND             |           | ug/kg | 710  | 180  | 10              |  |
| 1,1,1-Trichloroethane           | ND             |           | ug/kg | 360  | 120  | 10              |  |
| Bromodichloromethane            | ND             |           | ug/kg | 360  | 78.  | 10              |  |
| trans-1,3-Dichloropropene       | ND             |           | ug/kg | 710  | 200  | 10              |  |
| cis-1,3-Dichloropropene         | ND             |           | ug/kg | 360  | 110  | 10              |  |
| Bromoform                       | ND             |           | ug/kg | 2800 | 180  | 10              |  |
| 1,1,2,2-Tetrachloroethane       | ND             |           | ug/kg | 360  | 120  | 10              |  |
| Benzene                         | 18000          |           | ug/kg | 360  | 120  | 10              |  |
| Toluene                         | 68000          |           | ug/kg | 710  | 390  | 10              |  |
| Ethylbenzene                    | 83000          |           | ug/kg | 710  | 100  | 10              |  |
| Chloromethane                   | ND             |           | ug/kg | 2800 | 660  | 10              |  |
| Bromomethane                    | ND             |           | ug/kg | 1400 | 420  | 10              |  |
| Vinyl chloride                  | ND             |           | ug/kg | 710  | 240  | 10              |  |
| Chloroethane                    | ND             |           | ug/kg | 1400 | 320  | 10              |  |
| 1,1-Dichloroethene              | ND             |           | ug/kg | 710  | 170  | 10              |  |
| trans-1,2-Dichloroethene        | ND             |           | ug/kg | 1100 | 98.  | 10              |  |
| Trichloroethene                 | ND             |           | ug/kg | 360  | 98.  | 10              |  |
| 1,2-Dichlorobenzene             | ND             |           | ug/kg | 1400 | 100  | 10              |  |
|                                 |                |           |       |      |      |                 |  |



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

SAMPLE RESULTS

Lab ID: L2040164-01 D2 Date Collected: 09/23/20 09:20

Client ID: TP-3 5-7 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

| 1,3-Dichlorobenzene   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Parameter                       | Result         | Qualifier | Units | RL    | MDL   | Dilution Factor |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|-----------|-------|-------|-------|-----------------|
| 1,4-Dichlorobenzene         ND         ug/kg         1400         120         10           Methyl tert butyl ether         ND         ug/kg         1400         140         10           p/m-Xylene         330000         ug/kg         1400         400         10           o-Xylene         100000         ug/kg         710         210         10           o-Xylene         ND         ug/kg         710         120         10           Styrene         ND         ug/kg         710         140         10           Styrene         ND         ug/kg         710         140         10           Acetone         ND         ug/kg         710         340         10           Acetone         ND         ug/kg         710         340         10           2-Butanone         ND         ug/kg         7100         340         10           2-Butanone         ND         ug/kg         7100         910         10           2-Hexanone         ND         ug/kg         7100         910         10           Bromochloromethane         ND         ug/kg         710         20         10           1,2-Dibromoethane <td>Volatile Organics by GC/MS - We</td> <td>estborough Lab</td> <td></td> <td></td> <td></td> <td></td> <td></td>               | Volatile Organics by GC/MS - We | estborough Lab |           |       |       |       |                 |
| 1.4-Dichlorobenzene         ND         ug/kg         1400         120         10           Methyl tert butyl ether         ND         ug/kg         1400         140         10           p/m-Xylene         330000         ug/kg         1400         400         10           o-Xylene         100000         ug/kg         710         210         10           o-Xylene         ND         ug/kg         710         140         10           Styrene         ND         ug/kg         710         140         10           Dichlorodifluoromethane         ND         ug/kg         7100         650         10           Acetone         ND         ug/kg         7100         3400         10           Carbon disulfide         ND         ug/kg         7100         3400         10           2-Butanone         ND         ug/kg         7100         3200         10           2-Butanone         ND         ug/kg         7100         910         10           2-Butanone         ND         ug/kg         7100         910         10           2-Butanone         ND         ug/kg         7100         910         10                                                                                                                                     | 1,3-Dichlorobenzene             | ND             |           | ug/kg | 1400  | 100   | 10              |
| Methyl ten buyl ether         ND         ug/kg         1400         140         10           p/m-Xylene         330000         ug/kg         1400         400         10           o-xylene         100000         ug/kg         710         210         10           cis-1,2-Dichloroethene         ND         ug/kg         710         120         10           Styrene         ND         ug/kg         710         120         10           Dichlorodifluoromethane         ND         ug/kg         7100         660         10           Acetone         ND         ug/kg         7100         3400         10           Carbon disulfide         ND         ug/kg         7100         3400         10           2-Butanone         ND         ug/kg         7100         3200         10           4-Methyl-2-pentanone         ND         ug/kg         7100         910         10           2-Butanone         ND         ug/kg         710         910         10           2-Hexanone         ND         ug/kg         710         910         10           1,2-Dibromoethane         ND         ug/kg         710         10         10                                                                                                                     | 1,4-Dichlorobenzene             | ND             |           |       | 1400  | 120   | 10              |
| o-Xylene         100000         ug/kg         710         210         10           cis-1,2-Dichloroethene         ND         ug/kg         710         120         10           Styrene         ND         ug/kg         710         140         10           Dichlorodifluoromethane         ND         ug/kg         7100         650         10           Acetone         ND         ug/kg         7100         3400         10           Carbon disulfide         ND         ug/kg         7100         3400         10           2-Butanone         ND         ug/kg         7100         3200         10           4-Methyl-2-pentanone         ND         ug/kg         7100         1600         10           4-Methyl-2-pentanone         ND         ug/kg         7100         840         10           2-Butanone         ND         ug/kg         7100         840         10           2-Butanone         ND         ug/kg         710         840         10           10-2-Butanone         ND         ug/kg         710         840         10           1-2-Distornoethane         ND         ug/kg         710         120         10                                                                                                                    | Methyl tert butyl ether         | ND             |           |       | 1400  | 140   | 10              |
| cis-1,2-Dichloroethene         ND         ug/kg         710         120         10           Styrene         ND         ug/kg         710         140         10           Dichlorodiffluoromethane         ND         ug/kg         7100         650         10           Acetone         ND         ug/kg         7100         3400         10           Carbon disulfide         ND         ug/kg         7100         3200         10           2-Butanone         ND         ug/kg         7100         1600         10           4-Methyl-2-pentanone         ND         ug/kg         7100         910         10           2-Hexanone         ND         ug/kg         7100         840         10           2-Hexanone         ND         ug/kg         7100         840         10           2-Hexanone         ND         ug/kg         7100         840         10           2-Hexanone         ND         ug/kg         710         200         10           1-2-Dibromo-drane         ND         ug/kg         710         200         10           1-2-Dibromo-s-chloropropane         ND         ug/kg         710         10         10 <td>p/m-Xylene</td> <td>330000</td> <td></td> <td>ug/kg</td> <td>1400</td> <td>400</td> <td>10</td>               | p/m-Xylene                      | 330000         |           | ug/kg | 1400  | 400   | 10              |
| Styrene         ND         ug/kg         710         140         10           Dichlorodiffluoromethane         ND         ug/kg         7100         650         10           Acetone         ND         ug/kg         7100         3400         10           Carbon disulfide         ND         ug/kg         7100         3200         10           2-Butanone         ND         ug/kg         7100         1600         10           4-Methyl-2-pentanone         ND         ug/kg         7100         910         10           2-Hexanone         ND         ug/kg         7100         840         10           Bromochloromethane         ND         ug/kg         710         840         10           1_2-Dibromoethane         ND         ug/kg         710         200         10           n-Butylbenzene         15000         ug/kg         710         120         10           sec-Butylbenzene         5400         ug/kg         710         10         10           lsopropylbenzene         11000         ug/kg         710         78.         10           p-Isopropylbenzene         11000         ug/kg         710         78.         10 </td <td>o-Xylene</td> <td>100000</td> <td></td> <td>ug/kg</td> <td>710</td> <td>210</td> <td>10</td> | o-Xylene                        | 100000         |           | ug/kg | 710   | 210   | 10              |
| Dichlorodiffluoromethane         ND         ug/kg         7100         650         10           Acetone         ND         ug/kg         7100         3400         10           Carbon disulfide         ND         ug/kg         7100         3200         10           2-Butanone         ND         ug/kg         7100         1600         10           4-Methyl-2-pentanone         ND         ug/kg         7100         910         10           4-Methyl-2-pentanone         ND         ug/kg         7100         840         10           2-Hexanone         ND         ug/kg         7100         840         10           Bromochloromethane         ND         ug/kg         7100         840         10           1_2-Dibromoethane         ND         ug/kg         710         200         10           n-Butylbenzene         15000         ug/kg         710         120         10           sec-Butylbenzene         5400         ug/kg         710         10         10           lsopropylbenzene         11000         ug/kg         710         78         10           p-Isopropylbenzene         11000         ug/kg         710         78                                                                                                     | cis-1,2-Dichloroethene          | ND             |           | ug/kg | 710   | 120   | 10              |
| Acetone         ND         ug/kg         7100         3400         10           Carbon disulfide         ND         ug/kg         7100         3200         10           2-Butanone         ND         ug/kg         7100         1600         10           4-Methyl-2-pentanone         ND         ug/kg         7100         910         10           2-Hexanone         ND         ug/kg         7100         840         10           Bromochloromethane         ND         ug/kg         1400         150         10           1,2-Dibromoethane         ND         ug/kg         710         200         10           n-Butylbenzene         15000         ug/kg         710         120         10           sec-Butylbenzene         5400         ug/kg         710         120         10           sec-Butylbenzene         11000         ug/kg         710         100         10           1,2-Dibromo-3-chloropropane         ND         ug/kg         710         78         10           p-Isopropylbenzene         11000         ug/kg         710         78         10           p-Isopropylbenzene         43000         ug/kg         710         120                                                                                                  | Styrene                         | ND             |           | ug/kg | 710   | 140   | 10              |
| Carbon disulfide         ND         ug/kg         7100         3200         10           2-Butanone         ND         ug/kg         7100         1600         10           4-Methyl-2-pentanone         ND         ug/kg         7100         910         10           2-Hexanone         ND         ug/kg         7100         840         10           Bromochloromethane         ND         ug/kg         710         200         10           1,2-Dibromoethane         ND         ug/kg         710         200         10           n-Butylbenzene         15000         ug/kg         710         120         10           sec-Butylbenzene         5400         ug/kg         710         120         10           sec-Butylbenzene         ND         ug/kg         710         10         10           1,2-Dibromo-3-chloropropane         ND         ug/kg         710         70         10           Isopropylbenzene         11000         ug/kg         710         78         10           p-Isopropyllouene         3000         ug/kg         710         78         10           n-Propylbenzene         43000         ug/kg         710         120                                                                                                   | Dichlorodifluoromethane         | ND             |           | ug/kg | 7100  | 650   | 10              |
| 2-Butanone         ND         ug/kg         7100         1600         10           4-Methyl-2-pentanone         ND         ug/kg         7100         910         10           2-Hexanone         ND         ug/kg         7100         840         10           Bromochloromethane         ND         ug/kg         710         200         10           1,2-Dibromoethane         ND         ug/kg         710         200         10           n-Butylbenzene         15000         ug/kg         710         120         10           sec-Butylbenzene         5400         ug/kg         710         100         10           1,2-Dibromo-3-chloropropane         ND         ug/kg         710         100         10           1sopropylbenzene         11000         ug/kg         710         78         10           p-Isopropyltoluene         3000         ug/kg         710         78         10           n-Propylbenzene         43000         ug/kg         710         120         10           1,2,3-Trichlorobenzene         ND         ug/kg         1400         190         10           1,3,5-Trimethylbenzene         78000         ug/kg         1400                                                                                             | Acetone                         | ND             |           | ug/kg | 7100  | 3400  | 10              |
| 4-Methyl-2-pentanone         ND         ug/kg         7100         910         10           2-Hexanone         ND         ug/kg         7100         840         10           Bromochloromethane         ND         ug/kg         1400         150         10           1,2-Dibromoethane         ND         ug/kg         710         200         10           n-Butylbenzene         15000         ug/kg         710         120         10           sec-Butylbenzene         5400         ug/kg         710         100         10           1,2-Dibromo-3-chloropropane         ND         ug/kg         710         10         10           1sopropylbenzene         11000         ug/kg         710         78         10           p-Isopropyltoluene         3000         ug/kg         710         78         10           n-Propylbenzene         43000         ug/kg         710         120         10           1,2,3-Trichlorobenzene         ND         ug/kg         1400         230         10           1,2,4-Trichlorobenzene         ND         ug/kg         1400         140         10           1,3,5-Trimethylbenzene         270000         E         ug/kg<                                                                                   | Carbon disulfide                | ND             |           | ug/kg | 7100  | 3200  | 10              |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-Butanone                      | ND             |           | ug/kg | 7100  | 1600  | 10              |
| Bromochloromethane   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-Methyl-2-pentanone            | ND             |           | ug/kg | 7100  | 910   | 10              |
| 1,2-Dibromoethane         ND         ug/kg         710         200         10           n-Butylbenzene         15000         ug/kg         710         120         10           sec-Butylbenzene         5400         ug/kg         710         100         10           1,2-Dibromo-3-chloropropane         ND         ug/kg         2100         710         10           Isopropylbenzene         11000         ug/kg         710         78.         10           p-Isopropyltoluene         3000         ug/kg         710         78.         10           n-Propylbenzene         43000         ug/kg         710         120         10           1,2,3-Trichlorobenzene         ND         ug/kg         1400         230         10           1,2,4-Trichlorobenzene         ND         ug/kg         1400         190         10           1,3,5-Trimethylbenzene         78000         ug/kg         1400         140         10           1,2,4-Trimethylbenzene         270000         E         ug/kg         1400         240         10           Methyl Acetate         ND         ug/kg         7100         390         10           Cyclohexane         58000         <                                                                               | 2-Hexanone                      | ND             |           | ug/kg | 7100  | 840   | 10              |
| n-Butylbenzene 15000 ug/kg 710 120 10 sec-Butylbenzene 5400 ug/kg 710 100 10 1,2-Dibromo-3-chloropropane ND ug/kg 2100 710 10 Isopropylbenzene 11000 ug/kg 710 78. 10 p-Isopropyltoluene 3000 ug/kg 710 78. 10 n-Propylbenzene 43000 ug/kg 710 78. 10 n-Propylbenzene ND ug/kg 710 120 10 1,2,3-Trichlorobenzene ND ug/kg 1400 230 10 1,2,4-Trichlorobenzene ND ug/kg 1400 190 10 1,3,5-Trimethylbenzene 78000 ug/kg 1400 190 10 1,3,5-Trimethylbenzene 270000 E ug/kg 1400 240 10 Methyl Acetate ND ug/kg 2800 680 10 Cyclohexane 58000 ug/kg 7100 390 10 1,4-Dioxane ND ug/kg 57000 25000 10 Freon-113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bromochloromethane              | ND             |           | ug/kg | 1400  | 150   | 10              |
| sec-Butylbenzene         5400         ug/kg         710         100         10           1,2-Dibromo-3-chloropropane         ND         ug/kg         2100         710         10           Isopropylbenzene         11000         ug/kg         710         78.         10           p-Isopropyltoluene         3000         ug/kg         710         78.         10           n-Propylbenzene         43000         ug/kg         710         120         10           1,2,3-Trichlorobenzene         ND         ug/kg         1400         230         10           1,2,4-Trichlorobenzene         ND         ug/kg         1400         190         10           1,3,5-Trimethylbenzene         78000         ug/kg         1400         140         10           1,2,4-Trimethylbenzene         270000         E         ug/kg         1400         240         10           Methyl Acetate         ND         ug/kg         2800         680         10           Cyclohexane         58000         ug/kg         7100         390         10           1,4-Dioxane         ND         ug/kg         57000         25000         10           Freon-113         ND         ug/kg<                                                                                   | 1,2-Dibromoethane               | ND             |           | ug/kg | 710   | 200   | 10              |
| 1,2-Dibromo-3-chloropropane         ND         ug/kg         2100         710         10           Isopropylbenzene         11000         ug/kg         710         78.         10           p-Isopropyltoluene         3000         ug/kg         710         78.         10           n-Propylbenzene         43000         ug/kg         710         120         10           1,2,3-Trichlorobenzene         ND         ug/kg         1400         230         10           1,2,4-Trichlorobenzene         ND         ug/kg         1400         190         10           1,3,5-Trimethylbenzene         78000         ug/kg         1400         140         10           1,2,4-Trimethylbenzene         270000         E         ug/kg         1400         240         10           Methyl Acetate         ND         ug/kg         2800         680         10           Cyclohexane         58000         ug/kg         7100         390         10           1,4-Dioxane         ND         ug/kg         57000         25000         10           Freon-113         ND         ug/kg         2800         500         10                                                                                                                                         | n-Butylbenzene                  | 15000          |           | ug/kg | 710   | 120   | 10              |
| Isopropylbenzene         11000         ug/kg         710         78.         10           p-Isopropyltoluene         3000         ug/kg         710         78.         10           n-Propylbenzene         43000         ug/kg         710         120         10           1,2,3-Trichlorobenzene         ND         ug/kg         1400         230         10           1,2,4-Trichlorobenzene         ND         ug/kg         1400         190         10           1,3,5-Trimethylbenzene         78000         ug/kg         1400         140         10           1,2,4-Trimethylbenzene         270000         E         ug/kg         1400         240         10           Methyl Acetate         ND         ug/kg         2800         680         10           Cyclohexane         58000         ug/kg         7100         390         10           1,4-Dioxane         ND         ug/kg         57000         25000         10           Freon-113         ND         ug/kg         2800         500         10                                                                                                                                                                                                                                            | sec-Butylbenzene                | 5400           |           | ug/kg | 710   | 100   | 10              |
| p-Isopropyltoluene 3000 ug/kg 710 78. 10 n-Propylbenzene 43000 ug/kg 710 120 10 1,2,3-Trichlorobenzene ND ug/kg 1400 230 10 1,2,4-Trichlorobenzene ND ug/kg 1400 190 10 1,3,5-Trimethylbenzene 78000 ug/kg 1400 140 10 1,2,4-Trimethylbenzene 270000 E ug/kg 1400 240 10 Methyl Acetate ND ug/kg 2800 680 10 Cyclohexane 58000 ug/kg 7100 390 10 1,4-Dioxane ND ug/kg 57000 25000 10 Freon-113 ND ug/kg 2800 500 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2-Dibromo-3-chloropropane     | ND             |           | ug/kg | 2100  | 710   | 10              |
| n-Propylbenzene 43000 ug/kg 710 120 10 1,2,3-Trichlorobenzene ND ug/kg 1400 230 10 1,2,4-Trichlorobenzene ND ug/kg 1400 190 10 1,3,5-Trimethylbenzene 78000 ug/kg 1400 140 10 1,2,4-Trimethylbenzene 270000 E ug/kg 1400 240 10 1,2,4-Trimethylbenzene ND ug/kg 2800 680 10 Cyclohexane 58000 ug/kg 7100 390 10 1,4-Dioxane ND ug/kg 57000 25000 10 Freon-113 ND ug/kg 2800 500 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Isopropylbenzene                | 11000          |           | ug/kg | 710   | 78.   | 10              |
| 1,2,3-Trichlorobenzene         ND         ug/kg         1400         230         10           1,2,4-Trichlorobenzene         ND         ug/kg         1400         190         10           1,3,5-Trimethylbenzene         78000         ug/kg         1400         140         10           1,2,4-Trimethylbenzene         270000         E         ug/kg         1400         240         10           Methyl Acetate         ND         ug/kg         2800         680         10           Cyclohexane         58000         ug/kg         7100         390         10           1,4-Dioxane         ND         ug/kg         57000         25000         10           Freon-113         ND         ug/kg         2800         500         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | p-Isopropyltoluene              | 3000           |           | ug/kg | 710   | 78.   | 10              |
| 1,2,4-Trichlorobenzene         ND         ug/kg         1400         190         10           1,3,5-Trimethylbenzene         78000         ug/kg         1400         140         10           1,2,4-Trimethylbenzene         270000         E         ug/kg         1400         240         10           Methyl Acetate         ND         ug/kg         2800         680         10           Cyclohexane         58000         ug/kg         7100         390         10           1,4-Dioxane         ND         ug/kg         57000         25000         10           Freon-113         ND         ug/kg         2800         500         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n-Propylbenzene                 | 43000          |           | ug/kg | 710   | 120   | 10              |
| 1,3,5-Trimethylbenzene       78000       ug/kg       1400       140       10         1,2,4-Trimethylbenzene       270000       E       ug/kg       1400       240       10         Methyl Acetate       ND       ug/kg       2800       680       10         Cyclohexane       58000       ug/kg       7100       390       10         1,4-Dioxane       ND       ug/kg       57000       25000       10         Freon-113       ND       ug/kg       2800       500       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,3-Trichlorobenzene          | ND             |           | ug/kg | 1400  | 230   | 10              |
| 1,2,4-Trimethylbenzene     270000     E     ug/kg     1400     240     10       Methyl Acetate     ND     ug/kg     2800     680     10       Cyclohexane     58000     ug/kg     7100     390     10       1,4-Dioxane     ND     ug/kg     57000     25000     10       Freon-113     ND     ug/kg     2800     500     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2,4-Trichlorobenzene          | ND             |           | ug/kg | 1400  | 190   | 10              |
| Methyl Acetate         ND         ug/kg         2800         680         10           Cyclohexane         58000         ug/kg         7100         390         10           1,4-Dioxane         ND         ug/kg         57000         25000         10           Freon-113         ND         ug/kg         2800         500         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,3,5-Trimethylbenzene          | 78000          |           | ug/kg | 1400  | 140   | 10              |
| Cyclohexane         58000         ug/kg         7100         390         10           1,4-Dioxane         ND         ug/kg         57000         25000         10           Freon-113         ND         ug/kg         2800         500         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,4-Trimethylbenzene          | 270000         | Е         | ug/kg | 1400  | 240   | 10              |
| 1,4-Dioxane         ND         ug/kg         57000         25000         10           Freon-113         ND         ug/kg         2800         500         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Methyl Acetate                  | ND             |           | ug/kg | 2800  | 680   | 10              |
| Freon-113 ND ug/kg 2800 500 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cyclohexane                     | 58000          |           | ug/kg | 7100  | 390   | 10              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,4-Dioxane                     | ND             |           | ug/kg | 57000 | 25000 | 10              |
| Methyl gyelehovene 2900 420 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Freon-113                       | ND             |           | ug/kg | 2800  | 500   | 10              |
| wellyl Cyclonexane 30000 ug/kg 2000 450 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Methyl cyclohexane              | 38000          |           | ug/kg | 2800  | 430   | 10              |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 110        | 70-130                           |  |
| Toluene-d8            | 98         | 70-130                           |  |
| 4-Bromofluorobenzene  | 104        | 70-130                           |  |
| Dibromofluoromethane  | 75         | 70-130                           |  |



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

SAMPLE RESULTS

Lab ID: L2040164-01 D Date Collected: 09/23/20 09:20

Client ID: TP-3 5-7 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 09/29/20 08:04

Analyst: MV Percent Solids: 79%

| Parameter                               | Result | Qualifier | Units | RL   | MDL  | Dilution Factor |
|-----------------------------------------|--------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - Westboroug | h Lab  |           |       |      |      |                 |
| 1,2,4-Trimethylbenzene                  | 330000 |           | ug/kg | 7100 | 1200 | 50              |
|                                         |        |           |       |      |      |                 |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |
|-----------------------|------------|-----------|------------------------|
| 1,2-Dichloroethane-d4 | 95         |           | 70-130                 |
| Toluene-d8            | 104        |           | 70-130                 |
| 4-Bromofluorobenzene  | 106        |           | 70-130                 |
| Dibromofluoromethane  | 82         |           | 70-130                 |



**Project Name:** Lab Number: 1155 NIAGARA L2040164

**Project Number:** Report Date: T0550-020-001 09/30/20

**SAMPLE RESULTS** 

Date Collected: 09/23/20 09:25

L2040164-02 Client ID: Date Received: 09/23/20 TP-3 8-9 FT Field Prep: Sample Location: 1155 NIAGARA Not Specified

Sample Depth:

Lab ID:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 09/29/20 23:49

Analyst: JC 86% Percent Solids:

| Parameter                          | Result     | Qualifier | Units | RL  | MDL | Dilution Factor |
|------------------------------------|------------|-----------|-------|-----|-----|-----------------|
| Volatile Organics by GC/MS - Westb | orough Lab |           |       |     |     |                 |
| Methylene chloride                 | ND         |           | ug/kg | 320 | 150 | 1               |
| 1,1-Dichloroethane                 | ND         |           | ug/kg | 64  | 9.2 | 1               |
| Chloroform                         | ND         |           | ug/kg | 96  | 8.9 | 1               |
| Carbon tetrachloride               | ND         |           | ug/kg | 64  | 15. | 1               |
| 1,2-Dichloropropane                | ND         |           | ug/kg | 64  | 8.0 | 1               |
| Dibromochloromethane               | ND         |           | ug/kg | 64  | 8.9 | 1               |
| 1,1,2-Trichloroethane              | ND         |           | ug/kg | 64  | 17. | 1               |
| Tetrachloroethene                  | ND         |           | ug/kg | 32  | 12. | 1               |
| Chlorobenzene                      | ND         |           | ug/kg | 32  | 8.1 | 1               |
| Trichlorofluoromethane             | ND         |           | ug/kg | 260 | 44. | 1               |
| 1,2-Dichloroethane                 | ND         |           | ug/kg | 64  | 16. | 1               |
| 1,1,1-Trichloroethane              | ND         |           | ug/kg | 32  | 11. | 1               |
| Bromodichloromethane               | ND         |           | ug/kg | 32  | 7.0 | 1               |
| trans-1,3-Dichloropropene          | ND         |           | ug/kg | 64  | 17. | 1               |
| cis-1,3-Dichloropropene            | ND         |           | ug/kg | 32  | 10. | 1               |
| Bromoform                          | ND         |           | ug/kg | 260 | 16. | 1               |
| 1,1,2,2-Tetrachloroethane          | ND         |           | ug/kg | 32  | 10. | 1               |
| Benzene                            | 370        |           | ug/kg | 32  | 10. | 1               |
| Toluene                            | 150        |           | ug/kg | 64  | 35. | 1               |
| Ethylbenzene                       | 3900       |           | ug/kg | 64  | 9.0 | 1               |
| Chloromethane                      | ND         |           | ug/kg | 260 | 59. | 1               |
| Bromomethane                       | ND         |           | ug/kg | 130 | 37. | 1               |
| Vinyl chloride                     | ND         |           | ug/kg | 64  | 21. | 1               |
| Chloroethane                       | ND         |           | ug/kg | 130 | 29. | 1               |
| 1,1-Dichloroethene                 | ND         |           | ug/kg | 64  | 15. | 1               |
| trans-1,2-Dichloroethene           | ND         |           | ug/kg | 96  | 8.7 | 1               |
| Trichloroethene                    | ND         |           | ug/kg | 32  | 8.7 | 1               |
| 1,2-Dichlorobenzene                | ND         |           | ug/kg | 130 | 9.2 | 1               |



**Project Name:** 1155 NIAGARA **Lab Number:** L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

**SAMPLE RESULTS** 

Lab ID: L2040164-02 Date Collected: 09/23/20 09:25

Client ID: TP-3 8-9 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Parameter                       | Result         | Qualifier | Units | RL   | MDL  | Dilution Factor |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|-----------|-------|------|------|-----------------|
| 1.4-Dichlorobenzene   ND   ug/kg   130   11.   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volatile Organics by GC/MS - Wo | estborough Lab |           |       |      |      |                 |
| 1,4-Dichlorobenzene         ND         ug/kg         130         11.         1           Methyl terb bulyl ether         ND         ug/kg         130         13.         1           p/m-Xylene         14000         ug/kg         130         36.         1           o-Xylene         950         ug/kg         64         118.         1           o-Xylene         ND         ug/kg         64         11.         1           Styrene         ND         ug/kg         64         12.         1           Dichlorodifluoromethane         ND         ug/kg         640         310         1           Acetone         ND         ug/kg         640         310         1           Carbon disulfide         ND         ug/kg         640         310         1           Carbon disulfide         ND         ug/kg         640         320         1           2-Butanone         ND         ug/kg         640         40         1           2-Butanone         ND         ug/kg         640         482.         1           2-Butanone         ND         ug/kg         640         482.         1           2-Butanone                                                                                                                                      | 1,3-Dichlorobenzene             | ND             |           | ug/kg | 130  | 9.4  | 1               |
| Methyl tert butyl ether         ND         ug/kg         130         13.         1           p/m-Xylene         14000         ug/kg         130         36.         1           o-Xylene         950         ug/kg         64         18.         1           cis-12-Dichloroethene         ND         ug/kg         64         11.         1           Syrene         ND         ug/kg         64         11.         1           Dichlorodifluoromethane         ND         ug/kg         640         58.         1           Acetone         ND         ug/kg         640         310         1           Carbon disulfide         ND         ug/kg         640         290         1           2-Butanone         ND         ug/kg         640         290         1           4-Methyl-2-pentanone         ND         ug/kg         640         82.         1           2-Hexanone         ND         ug/kg         640         82.         1           1,2-Dibromoethane         ND         ug/kg         64         18.         1           1,2-Dibromoethane         ND         ug/kg         64         9.3         1           1,2                                                                                                                            | 1,4-Dichlorobenzene             | ND             |           |       | 130  | 11.  | 1               |
| p/m-Xylene         14000         ug/kg         130         36.         1           o-Xylene         950         ug/kg         64         18.         1           cis-1,2-Dichloroethene         ND         ug/kg         64         11.         1           Styrene         ND         ug/kg         64         12.         1           Dichlorodifluoromethane         ND         ug/kg         640         310         1           Acetone         ND         ug/kg         640         310         1           Carbon disulfide         ND         ug/kg         640         290         1           2-Butanone         ND         ug/kg         640         140         1           4-Methyl-2-pentanone         ND         ug/kg         640         82.         1           2-Butanone         ND         ug/kg         640         82.         1           2-Hexanone         ND         ug/kg         640         82.         1           1,2-Dibromothane         ND         ug/kg         64         18.         1           1,2-Dibromothane         ND         ug/kg         64         9.3         1           1,2-Distoroethen                                                                                                                            | Methyl tert butyl ether         | ND             |           | ug/kg | 130  | 13.  | 1               |
| cis-1,2-Dichloroethene         ND         ug/kg         64         11.         1           Styrene         ND         ug/kg         64         12.         1           Dichlorodifluoromethane         ND         ug/kg         640         58.         1           Acetone         ND         ug/kg         640         310         1           Carbon disulfide         ND         ug/kg         640         290         1           2-Butanone         ND         ug/kg         640         290         1           2-Butanone         ND         ug/kg         640         290         1           4-Methyl-2-pentanone         ND         ug/kg         640         82.         1           2-Hexanone         ND         ug/kg         640         75.         1           Bromochloromethane         ND         ug/kg         64         18.         1           1,2-Dibromoethane         ND         ug/kg         64         11.         1           n-Butylbenzene         260         ug/kg         64         11.         1           1,2-Dibromoethane         ND         ug/kg         64         7.0         1           1,2-                                                                                                                            | p/m-Xylene                      | 14000          |           |       | 130  | 36.  | 1               |
| Styrene         ND         ug/kg         64         12.         1           Dichlorodifluoromethane         ND         ug/kg         640         58.         1           Acetone         ND         ug/kg         640         310         1           Carbon disulfide         ND         ug/kg         640         290         1           2-Butanone         ND         ug/kg         640         140         1           2-Butanone         ND         ug/kg         640         82.         1           4-Methyl-2-pentanone         ND         ug/kg         640         75.         1           2-Hexanone         ND         ug/kg         640         75.         1           Bromochloromethane         ND         ug/kg         64         18.         1           1,2-Dibromothane         ND         ug/kg         64         18.         1           n-Butylbenzene         770         ug/kg         64         18.         1           sec-Butylbenzene         510         ug/kg         64         7.0         1           lsportpythouzene         510         ug/kg         64         7.0         1           lsportpyth                                                                                                                            | o-Xylene                        | 950            |           | ug/kg | 64   | 18.  | 1               |
| Styrene         ND         ug/kg         64         12.         1           Dichlorodifluoromethane         ND         ug/kg         640         58.         1           Acetone         ND         ug/kg         640         310         1           Carbon disulfide         ND         ug/kg         640         290         1           2-Butanone         ND         ug/kg         640         140         1           4-Methyl-2-pentanone         ND         ug/kg         640         82.         1           2-Hexanone         ND         ug/kg         640         75.         1           Bromochloromethane         ND         ug/kg         64         18.         1           1,2-Dibromothane         ND         ug/kg         64         18.         1           n-Butylbenzene         770         ug/kg         64         18.         1           1,2-Dibromo-3-chloropropane         ND         ug/kg         64         11.         1           Isopropylbenzene         510         ug/kg         64         7.0         1           p-Isopropylbenzene         10         ug/kg         64         7.0         1                                                                                                                                | cis-1,2-Dichloroethene          | ND             |           |       | 64   | 11.  | 1               |
| Acetone         ND         ug/kg         640         310         1           Carbon disulfide         ND         ug/kg         640         290         1           2-Butanone         ND         ug/kg         640         140         1           2-Butanone         ND         ug/kg         640         82.         1           2-Hexanone         ND         ug/kg         640         75.         1           Bromochloromethane         ND         ug/kg         640         75.         1           Bromochloromethane         ND         ug/kg         64         18.         1           1,2-Dibromo-thane         ND         ug/kg         64         18.         1           n-Butylbenzene         770         ug/kg         64         11.         1           sec-Butylbenzene         260         ug/kg         64         9.3         1           1,2-Dibromo-3-chloropropane         ND         ug/kg         64         7.0         1           lsopropylbenzene         510         ug/kg         64         7.0         1           lsopropylbenzene         170         ug/kg         64         7.0         1 <t< td=""><td>Styrene</td><td>ND</td><td></td><td></td><td>64</td><td>12.</td><td>1</td></t<>                                       | Styrene                         | ND             |           |       | 64   | 12.  | 1               |
| Carbon disulfide         ND         ug/kg         640         290         1           2-Butanone         ND         ug/kg         640         140         1           4-Methyl-2-pentanone         ND         ug/kg         640         82.         1           2-Hexanone         ND         ug/kg         640         75.         1           Bromochloromethane         ND         ug/kg         64         18.         1           1,2-Dibromoethane         ND         ug/kg         64         18.         1           n-Butylbenzene         770         ug/kg         64         11.         1           sec-Butylbenzene         260         ug/kg         64         9.3         1           1,2-Dibromo-3-chloropropane         ND         ug/kg         64         9.3         1           1,2-Dibromo-3-chloropropane         ND         ug/kg         64         7.0         1           Isopropylbenzene         510         ug/kg         64         7.0         1           Isopropylbenzene         170         ug/kg         64         7.0         1           n-Propylbenzene         ND         ug/kg         64         11.         1                                                                                                            | Dichlorodifluoromethane         | ND             |           | ug/kg | 640  | 58.  | 1               |
| Carbon disulfide         ND         ug/kg         640         290         1           2-Butanone         ND         ug/kg         640         140         1           4-Methyl-2-pentanone         ND         ug/kg         640         82.         1           2-Hexanone         ND         ug/kg         640         75.         1           Bromochloromethane         ND         ug/kg         64         18.         1           1,2-Dibromoethane         ND         ug/kg         64         18.         1           n-Butylbenzene         770         ug/kg         64         11.         1           sec-Butylbenzene         260         ug/kg         64         9.3         1           1,2-Dibromo-3-chloropropane         ND         ug/kg         64         9.3         1           Isopropylbenzene         510         ug/kg         64         7.0         1           Isopropylbenzene         170         ug/kg         64         7.0         1           n-Propylbenzene         2200         ug/kg         64         11.         1           1,2-3-Trichlorobenzene         ND         ug/kg         130         17.         1 </td <td>Acetone</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>640</td> <td>310</td> <td>1</td>              | Acetone                         | ND             |           | ug/kg | 640  | 310  | 1               |
| 4-Methyl-2-pentanone         ND         ug/kg         640         82.         1           2-Hexanone         ND         ug/kg         640         75.         1           Bromochloromethane         ND         ug/kg         130         13.         1           1,2-Dibromoethane         ND         ug/kg         64         18.         1           n-Butylbenzene         770         ug/kg         64         11.         1           sec-Butylbenzene         260         ug/kg         64         9.3         1           1,2-Dibromo-3-chloropropane         ND         ug/kg         64         9.3         1           Isopropylbenzene         510         ug/kg         64         7.0         1           p-Isopropyltoluene         170         ug/kg         64         7.0         1           n-Propylbenzene         2200         ug/kg         64         11.         1           1,2,3-Trichlorobenzene         ND         ug/kg         130         20.         1           1,2,4-Trimethylbenzene         4200         ug/kg         130         12.         1           Methyl Acetate         ND         ug/kg         640         35. <t< td=""><td>Carbon disulfide</td><td>ND</td><td></td><td></td><td>640</td><td>290</td><td>1</td></t<> | Carbon disulfide                | ND             |           |       | 640  | 290  | 1               |
| 2-Hexanone ND ug/kg 640 75. 1 Bromochloromethane ND ug/kg 130 13. 1 1,2-Dibromoethane ND ug/kg 64 18. 1 n-Butylbenzene 770 ug/kg 64 11. 1 sec-Butylbenzene 260 ug/kg 64 9.3 1 1,2-Dibromo-3-chloropropane ND ug/kg 190 64. 1 Isopropylbenzene 510 ug/kg 64 7.0 1 Isopropyltoluene 170 ug/kg 64 7.0 1 -P-Isopropyltoluene 170 ug/kg 64 11. 1 1,2,3-Trichlorobenzene ND ug/kg 130 20. 1 1,2,4-Trichlorobenzene ND ug/kg 130 17. 1 1,3,5-Trimethylbenzene 4200 ug/kg 130 12. 1 1,3,4-Trimethylbenzene 1500 ug/kg 130 21. 1 1,2,4-Trimethylbenzene 1500 ug/kg 130 220 1 1,2,4-Trimethylbenzene 1500 ug/kg 1500 2200 1 1,2,4-Trimethylbenzene 1500 ug/kg 640 35. 1 1,4-Dioxane ND ug/kg 5100 2200 1 1,4-Dioxane ND ug/kg 5100 2200 1                                                                                 | 2-Butanone                      | ND             |           | ug/kg | 640  | 140  | 1               |
| Bromochloromethane   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-Methyl-2-pentanone            | ND             |           | ug/kg | 640  | 82.  | 1               |
| 1,2-Dibromoethane       ND       ug/kg       64       18.       1         n-Butylbenzene       770       ug/kg       64       11.       1         sec-Butylbenzene       260       ug/kg       64       9.3       1         1,2-Dibromo-3-chloropropane       ND       ug/kg       190       64.       1         Isopropylbenzene       510       ug/kg       64       7.0       1         p-Isopropyltoluene       170       ug/kg       64       7.0       1         n-Propylbenzene       2200       ug/kg       64       11.       1         1,2,3-Trichlorobenzene       ND       ug/kg       130       20.       1         1,2,4-Trichlorobenzene       ND       ug/kg       130       17.       1         1,3,5-Trimethylbenzene       4200       ug/kg       130       12.       1         1,2,4-Trimethylbenzene       15000       ug/kg       130       21.       1         Methyl Acetate       ND       ug/kg       260       60.       1         Cycloexane       1300       ug/kg       5100       2200       1         1,4-Dioxane       ND       ug/kg       5100       2200 <td>2-Hexanone</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>640</td> <td>75.</td> <td>1</td>                                                                              | 2-Hexanone                      | ND             |           | ug/kg | 640  | 75.  | 1               |
| n-Butylbenzene 770 ug/kg 64 11. 1 sec-Butylbenzene 260 ug/kg 64 9.3 1 1,2-Dibromo-3-chloropropane ND ug/kg 190 64. 1 Isopropylbenzene 510 ug/kg 64 7.0 1 p-Isopropyltoluene 170 ug/kg 64 7.0 1 n-Propylbenzene 2200 ug/kg 64 11. 1 1,2,3-Trichlorobenzene ND ug/kg 64 11. 1 1,2,3-Trichlorobenzene ND ug/kg 130 20. 1 1,2,4-Trichlorobenzene ND ug/kg 130 17. 1 1,3,5-Trimethylbenzene 4200 ug/kg 130 17. 1 1,3,5-Trimethylbenzene 15000 ug/kg 130 21. 1 1,2,4-Trimethylbenzene 15000 ug/kg 130 21. 1 Methyl Acetate ND ug/kg 260 60. 1 Cyclohexane 1300 ug/kg 640 35. 1 1,4-Dioxane ND ug/kg 5100 2200 1 Freon-113 ND ug/kg 5100 44. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bromochloromethane              | ND             |           | ug/kg | 130  | 13.  | 1               |
| sec-Butylbenzene         260         ug/kg         64         9.3         1           1,2-Dibromo-3-chloropropane         ND         ug/kg         190         64.         1           Isopropylbenzene         510         ug/kg         64         7.0         1           p-Isopropyltoluene         170         ug/kg         64         7.0         1           n-Propylbenzene         2200         ug/kg         64         11.         1           1,2,3-Trichlorobenzene         ND         ug/kg         130         20.         1           1,2,4-Trichlorobenzene         ND         ug/kg         130         17.         1           1,3,5-Trimethylbenzene         4200         ug/kg         130         12.         1           1,2,4-Trimethylbenzene         15000         ug/kg         130         21.         1           Methyl Acetate         ND         ug/kg         260         60.         1           Cyclohexane         1300         ug/kg         640         35.         1           1,4-Dioxane         ND         ug/kg         5100         2200         1           Freon-113         ND         ug/kg         260         44.                                                                                                    | 1,2-Dibromoethane               | ND             |           | ug/kg | 64   | 18.  | 1               |
| 1,2-Dibromo-3-chloropropane       ND       ug/kg       190       64.       1         Isopropylbenzene       510       ug/kg       64       7.0       1         p-Isopropyltoluene       170       ug/kg       64       7.0       1         n-Propylbenzene       2200       ug/kg       64       11.       1         1,2,3-Trichlorobenzene       ND       ug/kg       130       20.       1         1,2,4-Trichlorobenzene       ND       ug/kg       130       17.       1         1,3,5-Trimethylbenzene       4200       ug/kg       130       12.       1         1,2,4-Trimethylbenzene       15000       ug/kg       130       21.       1         Methyl Acetate       ND       ug/kg       260       60.       1         Cyclohexane       1300       ug/kg       640       35.       1         1,4-Dioxane       ND       ug/kg       5100       2200       1         Freon-113       ND       ug/kg       260       44.       1                                                                                                                                                                                                                                                                                                                              | n-Butylbenzene                  | 770            |           | ug/kg | 64   | 11.  | 1               |
| Isopropylbenzene   510   ug/kg   64   7.0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sec-Butylbenzene                | 260            |           | ug/kg | 64   | 9.3  | 1               |
| p-Isopropyltoluene       170       ug/kg       64       7.0       1         n-Propylbenzene       2200       ug/kg       64       11.       1         1,2,3-Trichlorobenzene       ND       ug/kg       130       20.       1         1,2,4-Trichlorobenzene       ND       ug/kg       130       17.       1         1,3,5-Trimethylbenzene       4200       ug/kg       130       12.       1         1,2,4-Trimethylbenzene       15000       ug/kg       130       21.       1         Methyl Acetate       ND       ug/kg       260       60.       1         Cyclohexane       1300       ug/kg       640       35.       1         1,4-Dioxane       ND       ug/kg       5100       2200       1         Freon-113       ND       ug/kg       260       44.       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2-Dibromo-3-chloropropane     | ND             |           | ug/kg | 190  | 64.  | 1               |
| n-Propylbenzene 2200 ug/kg 64 11. 1 1,2,3-Trichlorobenzene ND ug/kg 130 20. 1 1,2,4-Trichlorobenzene ND ug/kg 130 17. 1 1,3,5-Trimethylbenzene 4200 ug/kg 130 12. 1 1,2,4-Trimethylbenzene 15000 ug/kg 130 21. 1 1,2,4-Trimethylbenzene ND ug/kg 30 21. 1 1,2,4-Trimethylbenzene ND ug/kg 50 60. 1 Cyclohexane 1300 ug/kg 640 35. 1 1,4-Dioxane ND ug/kg 5100 2200 1 Freon-113 ND ug/kg 260 44. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Isopropylbenzene                | 510            |           | ug/kg | 64   | 7.0  | 1               |
| 1,2,3-Trichlorobenzene       ND       ug/kg       130       20.       1         1,2,4-Trichlorobenzene       ND       ug/kg       130       17.       1         1,3,5-Trimethylbenzene       4200       ug/kg       130       12.       1         1,2,4-Trimethylbenzene       15000       ug/kg       130       21.       1         Methyl Acetate       ND       ug/kg       260       60.       1         Cyclohexane       1300       ug/kg       640       35.       1         1,4-Dioxane       ND       ug/kg       5100       2200       1         Freon-113       ND       ug/kg       260       44.       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p-Isopropyltoluene              | 170            |           | ug/kg | 64   | 7.0  | 1               |
| 1,2,4-Trichlorobenzene     ND     ug/kg     130     17.     1       1,3,5-Trimethylbenzene     4200     ug/kg     130     12.     1       1,2,4-Trimethylbenzene     15000     ug/kg     130     21.     1       Methyl Acetate     ND     ug/kg     260     60.     1       Cyclohexane     1300     ug/kg     640     35.     1       1,4-Dioxane     ND     ug/kg     5100     2200     1       Freon-113     ND     ug/kg     260     44.     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n-Propylbenzene                 | 2200           |           | ug/kg | 64   | 11.  | 1               |
| 1,3,5-Trimethylbenzene       4200       ug/kg       130       12.       1         1,2,4-Trimethylbenzene       15000       ug/kg       130       21.       1         Methyl Acetate       ND       ug/kg       260       60.       1         Cyclohexane       1300       ug/kg       640       35.       1         1,4-Dioxane       ND       ug/kg       5100       2200       1         Freon-113       ND       ug/kg       260       44.       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2,3-Trichlorobenzene          | ND             |           | ug/kg | 130  | 20.  | 1               |
| 1,2,4-Trimethylbenzene       15000       ug/kg       130       21.       1         Methyl Acetate       ND       ug/kg       260       60.       1         Cyclohexane       1300       ug/kg       640       35.       1         1,4-Dioxane       ND       ug/kg       5100       2200       1         Freon-113       ND       ug/kg       260       44.       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2,4-Trichlorobenzene          | ND             |           | ug/kg | 130  | 17.  | 1               |
| Methyl Acetate         ND         ug/kg         260         60.         1           Cyclohexane         1300         ug/kg         640         35.         1           1,4-Dioxane         ND         ug/kg         5100         2200         1           Freon-113         ND         ug/kg         260         44.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3,5-Trimethylbenzene          | 4200           |           | ug/kg | 130  | 12.  | 1               |
| Cyclohexane         1300         ug/kg         640         35.         1           1,4-Dioxane         ND         ug/kg         5100         2200         1           Freon-113         ND         ug/kg         260         44.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-Trimethylbenzene          | 15000          |           | ug/kg | 130  | 21.  | 1               |
| 1,4-Dioxane         ND         ug/kg         5100         2200         1           Freon-113         ND         ug/kg         260         44.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Methyl Acetate                  | ND             |           | ug/kg | 260  | 60.  | 1               |
| Freon-113 ND ug/kg 260 44. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cyclohexane                     | 1300           |           | ug/kg | 640  | 35.  | 1               |
| -0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,4-Dioxane                     | ND             |           | ug/kg | 5100 | 2200 | 1               |
| Methyl cyclohexane         1100         ug/kg         260         38.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Freon-113                       | ND             |           | ug/kg | 260  | 44.  | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Methyl cyclohexane              | 1100           |           | ug/kg | 260  | 38.  | 1               |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 98         | 70-130                           |  |
| Toluene-d8            | 96         | 70-130                           |  |
| 4-Bromofluorobenzene  | 95         | 70-130                           |  |
| Dibromofluoromethane  | 83         | 70-130                           |  |



**Project Name:** Lab Number: 1155 NIAGARA L2040164

**Project Number:** Report Date: T0550-020-001 09/30/20

**SAMPLE RESULTS** 

Lab ID: L2040164-03 Date Collected: 09/23/20 09:23

Client ID: Date Received: 09/23/20 TP-5 5-7 FT Field Prep: Sample Location: 1155 NIAGARA Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 09/29/20 22:56

Analyst: JC 85% Percent Solids:

| Parameter                       | Result        | Qualifier | Units | RL  | MDL | Dilution Factor |  |
|---------------------------------|---------------|-----------|-------|-----|-----|-----------------|--|
| Volatile Organics by GC/MS - We | stborough Lab |           |       |     |     |                 |  |
| Methylene chloride              | ND            |           | ug/kg | 320 | 150 | 1               |  |
| 1,1-Dichloroethane              | ND            |           | ug/kg | 64  | 9.3 | 1               |  |
| Chloroform                      | ND            |           | ug/kg | 96  | 9.0 | 1               |  |
| Carbon tetrachloride            | ND            |           | ug/kg | 64  | 15. | 1               |  |
| 1,2-Dichloropropane             | ND            |           | ug/kg | 64  | 8.0 | 1               |  |
| Dibromochloromethane            | ND            |           | ug/kg | 64  | 9.0 | 1               |  |
| 1,1,2-Trichloroethane           | ND            |           | ug/kg | 64  | 17. | 1               |  |
| Tetrachloroethene               | ND            |           | ug/kg | 32  | 12. | 1               |  |
| Chlorobenzene                   | ND            |           | ug/kg | 32  | 8.1 | 1               |  |
| Trichlorofluoromethane          | ND            |           | ug/kg | 260 | 44. | 1               |  |
| 1,2-Dichloroethane              | ND            |           | ug/kg | 64  | 16. | 1               |  |
| 1,1,1-Trichloroethane           | ND            |           | ug/kg | 32  | 11. | 1               |  |
| Bromodichloromethane            | ND            |           | ug/kg | 32  | 7.0 | 1               |  |
| trans-1,3-Dichloropropene       | ND            |           | ug/kg | 64  | 17. | 1               |  |
| cis-1,3-Dichloropropene         | ND            |           | ug/kg | 32  | 10. | 1               |  |
| Bromoform                       | ND            |           | ug/kg | 260 | 16. | 1               |  |
| 1,1,2,2-Tetrachloroethane       | ND            |           | ug/kg | 32  | 11. | 1               |  |
| Benzene                         | 43            |           | ug/kg | 32  | 11. | 1               |  |
| Toluene                         | ND            |           | ug/kg | 64  | 35. | 1               |  |
| Ethylbenzene                    | 4100          |           | ug/kg | 64  | 9.0 | 1               |  |
| Chloromethane                   | ND            |           | ug/kg | 260 | 60. | 1               |  |
| Bromomethane                    | ND            |           | ug/kg | 130 | 37. | 1               |  |
| Vinyl chloride                  | ND            |           | ug/kg | 64  | 21. | 1               |  |
| Chloroethane                    | ND            |           | ug/kg | 130 | 29. | 1               |  |
| 1,1-Dichloroethene              | ND            |           | ug/kg | 64  | 15. | 1               |  |
| trans-1,2-Dichloroethene        | ND            |           | ug/kg | 96  | 8.8 | 1               |  |
| Trichloroethene                 | ND            |           | ug/kg | 32  | 8.8 | 1               |  |
| 1,2-Dichlorobenzene             | ND            |           | ug/kg | 130 | 9.2 | 1               |  |
|                                 |               |           |       |     |     |                 |  |



MDL

**Dilution Factor** 

**Project Name:** 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

**SAMPLE RESULTS** 

Qualifier

Units

RL

Lab ID: L2040164-03 Date Collected: 09/23/20 09:23

Client ID: TP-5 5-7 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

Result

Sample Depth:

Parameter

| Parameter                        | Resuit       | Qualifier | Ullits | KL.  | MIDL | Dilution Factor |  |
|----------------------------------|--------------|-----------|--------|------|------|-----------------|--|
| Volatile Organics by GC/MS - Wes | tborough Lab |           |        |      |      |                 |  |
| 1,3-Dichlorobenzene              | ND           |           | ug/kg  | 130  | 9.5  | 1               |  |
| 1,4-Dichlorobenzene              | ND           |           | ug/kg  | 130  | 11.  | 1               |  |
| Methyl tert butyl ether          | ND           |           | ug/kg  | 130  | 13.  | 1               |  |
| p/m-Xylene                       | 5900         |           | ug/kg  | 130  | 36.  | 1               |  |
| o-Xylene                         | ND           |           | ug/kg  | 64   | 19.  | 1               |  |
| cis-1,2-Dichloroethene           | ND           |           | ug/kg  | 64   | 11.  | 1               |  |
| Styrene                          | ND           |           | ug/kg  | 64   | 12.  | 1               |  |
| Dichlorodifluoromethane          | ND           |           | ug/kg  | 640  | 59.  | 1               |  |
| Acetone                          | ND           |           | ug/kg  | 640  | 310  | 1               |  |
| Carbon disulfide                 | ND           |           | ug/kg  | 640  | 290  | 1               |  |
| 2-Butanone                       | ND           |           | ug/kg  | 640  | 140  | 1               |  |
| 4-Methyl-2-pentanone             | ND           |           | ug/kg  | 640  | 82.  | 1               |  |
| 2-Hexanone                       | ND           |           | ug/kg  | 640  | 76.  | 1               |  |
| Bromochloromethane               | ND           |           | ug/kg  | 130  | 13.  | 1               |  |
| 1,2-Dibromoethane                | ND           |           | ug/kg  | 64   | 18.  | 1               |  |
| n-Butylbenzene                   | 1800         |           | ug/kg  | 64   | 11.  | 1               |  |
| sec-Butylbenzene                 | 560          |           | ug/kg  | 64   | 9.4  | 1               |  |
| 1,2-Dibromo-3-chloropropane      | ND           |           | ug/kg  | 190  | 64.  | 1               |  |
| Isopropylbenzene                 | 880          |           | ug/kg  | 64   | 7.0  | 1               |  |
| p-Isopropyltoluene               | 300          |           | ug/kg  | 64   | 7.0  | 1               |  |
| n-Propylbenzene                  | 4200         |           | ug/kg  | 64   | 11.  | 1               |  |
| 1,2,3-Trichlorobenzene           | ND           |           | ug/kg  | 130  | 21.  | 1               |  |
| 1,2,4-Trichlorobenzene           | ND           |           | ug/kg  | 130  | 17.  | 1               |  |
| 1,3,5-Trimethylbenzene           | 7800         |           | ug/kg  | 130  | 12.  | 1               |  |
| 1,2,4-Trimethylbenzene           | 24000        | E         | ug/kg  | 130  | 21.  | 1               |  |
| Methyl Acetate                   | ND           |           | ug/kg  | 260  | 61.  | 1               |  |
| Cyclohexane                      | 1200         |           | ug/kg  | 640  | 35.  | 1               |  |
| 1,4-Dioxane                      | ND           |           | ug/kg  | 5100 | 2200 | 1               |  |
| Freon-113                        | ND           |           | ug/kg  | 260  | 44.  | 1               |  |
| Methyl cyclohexane               | 1200         |           | ug/kg  | 260  | 39.  | 1               |  |
|                                  |              |           |        |      |      |                 |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 98         | 70-130                           |  |
| Toluene-d8            | 97         | 70-130                           |  |
| 4-Bromofluorobenzene  | 105        | 70-130                           |  |
| Dibromofluoromethane  | 82         | 70-130                           |  |



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

SAMPLE RESULTS

Lab ID: L2040164-03 D Date Collected: 09/23/20 09:23

Client ID: TP-5 5-7 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 09/29/20 08:47

Analyst: MV Percent Solids: 85%

| Parameter                              | Result  | Qualifier | Units      | RL        | MDL | Dilution Factor    |
|----------------------------------------|---------|-----------|------------|-----------|-----|--------------------|
| Volatile Organics by GC/MS - Westborou | ıgh Lab |           |            |           |     |                    |
| 1,2,4-Trimethylbenzene                 | 29000   |           | ug/kg      | 510       | 86. | 4                  |
| Surrogate                              |         |           | % Recovery | Qualifier |     | eptance<br>riteria |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |
|-----------------------|------------|-----------|------------------------|
| 1,2-Dichloroethane-d4 | 99         |           | 70-130                 |
| Toluene-d8            | 97         |           | 70-130                 |
| 4-Bromofluorobenzene  | 107        |           | 70-130                 |
| Dibromofluoromethane  | 89         |           | 70-130                 |



**Project Number:** T0550-020-001 **Report Date:** 09/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/20 16:45

Analyst: MKS

| arameter                    | Result          | Qualifier Units | RL           | MDL         |
|-----------------------------|-----------------|-----------------|--------------|-------------|
| olatile Organics by GC/MS - | Westborough Lab | for sample(s):  | 01-03 Batch: | WG1416247-5 |
| Methylene chloride          | ND              | ug/k <u>ç</u>   | g 250        | 110         |
| 1,1-Dichloroethane          | ND              | ug/kç           | g 50         | 7.2         |
| Chloroform                  | ND              | ug/k            | g 75         | 7.0         |
| Carbon tetrachloride        | ND              | ug/k            | g 50         | 12.         |
| 1,2-Dichloropropane         | ND              | ug/k            | g 50         | 6.2         |
| Dibromochloromethane        | ND              | ug/kç           | g 50         | 7.0         |
| 1,1,2-Trichloroethane       | ND              | ug/k            | g 50         | 13.         |
| Tetrachloroethene           | ND              | ug/k            | g 25         | 9.8         |
| Chlorobenzene               | ND              | ug/kç           | g 25         | 6.4         |
| Trichlorofluoromethane      | ND              | ug/kç           | g 200        | 35.         |
| 1,2-Dichloroethane          | ND              | ug/kç           | g 50         | 13.         |
| 1,1,1-Trichloroethane       | ND              | ug/kç           | g 25         | 8.4         |
| Bromodichloromethane        | ND              | ug/kç           | g 25         | 5.4         |
| trans-1,3-Dichloropropene   | ND              | ug/kç           | g 50         | 14.         |
| cis-1,3-Dichloropropene     | ND              | ug/kç           | g 25         | 7.9         |
| Bromoform                   | ND              | ug/kç           | g 200        | 12.         |
| 1,1,2,2-Tetrachloroethane   | ND              | ug/kç           | g 25         | 8.3         |
| Benzene                     | ND              | ug/kç           | g 25         | 8.3         |
| Toluene                     | ND              | ug/kç           | g 50         | 27.         |
| Ethylbenzene                | ND              | ug/kç           | g 50         | 7.0         |
| Chloromethane               | ND              | ug/kç           | g 200        | 47.         |
| Bromomethane                | ND              | ug/kç           | g 100        | 29.         |
| Vinyl chloride              | ND              | ug/kç           | g 50         | 17.         |
| Chloroethane                | ND              | ug/kç           | g 100        | 23.         |
| 1,1-Dichloroethene          | ND              | ug/kç           | g 50         | 12.         |
| trans-1,2-Dichloroethene    | ND              | ug/kç           | g 75         | 6.8         |
| Trichloroethene             | ND              | ug/kç           | g 25         | 6.8         |
| 1,2-Dichlorobenzene         | ND              | ug/kç           | g 100        | 7.2         |
| 1,3-Dichlorobenzene         | ND              | ug/kç           | g 100        | 7.4         |



**Project Number:** T0550-020-001 **Report Date:** 09/30/20

#### Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/20 16:45

Analyst: MKS

| arameter                      | Result          | Qualifier | Units    | RL          | MDL         |
|-------------------------------|-----------------|-----------|----------|-------------|-------------|
| olatile Organics by GC/MS - V | Vestborough Lab | for sampl | e(s): 01 | I-03 Batch: | WG1416247-5 |
| 1,4-Dichlorobenzene           | ND              |           | ug/kg    | 100         | 8.6         |
| Methyl tert butyl ether       | 10              | J         | ug/kg    | 100         | 10.         |
| p/m-Xylene                    | ND              |           | ug/kg    | 100         | 28.         |
| o-Xylene                      | ND              |           | ug/kg    | 50          | 14.         |
| cis-1,2-Dichloroethene        | ND              |           | ug/kg    | 50          | 8.8         |
| Styrene                       | ND              |           | ug/kg    | 50          | 9.8         |
| Dichlorodifluoromethane       | ND              |           | ug/kg    | 500         | 46.         |
| Acetone                       | ND              |           | ug/kg    | 500         | 240         |
| Carbon disulfide              | ND              |           | ug/kg    | 500         | 230         |
| 2-Butanone                    | ND              |           | ug/kg    | 500         | 110         |
| 4-Methyl-2-pentanone          | ND              |           | ug/kg    | 500         | 64.         |
| 2-Hexanone                    | ND              |           | ug/kg    | 500         | 59.         |
| Bromochloromethane            | ND              |           | ug/kg    | 100         | 10.         |
| 1,2-Dibromoethane             | ND              |           | ug/kg    | 50          | 14.         |
| n-Butylbenzene                | 9.6             | J         | ug/kg    | 50          | 8.4         |
| sec-Butylbenzene              | ND              |           | ug/kg    | 50          | 7.3         |
| 1,2-Dibromo-3-chloropropane   | ND              |           | ug/kg    | 150         | 50.         |
| Isopropylbenzene              | ND              |           | ug/kg    | 50          | 5.4         |
| p-Isopropyltoluene            | 5.4             | J         | ug/kg    | 50          | 5.4         |
| n-Propylbenzene               | ND              |           | ug/kg    | 50          | 8.6         |
| 1,2,3-Trichlorobenzene        | 19              | J         | ug/kg    | 100         | 16.         |
| 1,2,4-Trichlorobenzene        | 14              | J         | ug/kg    | 100         | 14.         |
| 1,3,5-Trimethylbenzene        | ND              |           | ug/kg    | 100         | 9.6         |
| 1,2,4-Trimethylbenzene        | ND              |           | ug/kg    | 100         | 17.         |
| Methyl Acetate                | ND              |           | ug/kg    | 200         | 48.         |
| Cyclohexane                   | ND              |           | ug/kg    | 500         | 27.         |
| 1,4-Dioxane                   | ND              |           | ug/kg    | 4000        | 1800        |
| Freon-113                     | ND              |           | ug/kg    | 200         | 35.         |
| Methyl cyclohexane            | ND              |           | ug/kg    | 200         | 30.         |



**Project Number:** T0550-020-001 **Report Date:** 09/30/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/20 16:45

Analyst: MKS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-03 Batch: WG1416247-5

|                       |             | Acceptance         |
|-----------------------|-------------|--------------------|
| Surrogate             | %Recovery ( | Qualifier Criteria |
|                       |             |                    |
| 1,2-Dichloroethane-d4 | 94          | 70-130             |
| Toluene-d8            | 95          | 70-130             |
| 4-Bromofluorobenzene  | 96          | 70-130             |
| Dibromofluoromethane  | 87          | 70-130             |



**Project Name:** 1155 NIAGARA

Project Number: T0550-020-001

Lab Number: L2040164

| Parameter                                | LCS<br>%Recovery | Qual       | LCSD<br>%Recovery |               | covery<br>mits RPD | RPI<br>Qual Lim |   |
|------------------------------------------|------------------|------------|-------------------|---------------|--------------------|-----------------|---|
| Volatile Organics by GC/MS - Westborough | Lab Associated   | sample(s): | 01-03 Batch: W0   | G1416247-3 WG | 1416247-4          |                 |   |
| Methylene chloride                       | 102              |            | 100               | 70-           | 130 2              | 30              | ı |
| 1,1-Dichloroethane                       | 105              |            | 105               | 70-           | 130 0              | 30              |   |
| Chloroform                               | 90               |            | 92                | 70-           | 130 2              | 30              |   |
| Carbon tetrachloride                     | 89               |            | 88                | 70-           | 130 1              | 30              |   |
| 1,2-Dichloropropane                      | 107              |            | 109               | 70-           | 130 2              | 30              |   |
| Dibromochloromethane                     | 87               |            | 87                | 70-           | 130 0              | 30              |   |
| 1,1,2-Trichloroethane                    | 99               |            | 99                | 70-           | 130 0              | 30              |   |
| Tetrachloroethene                        | 106              |            | 104               | 70-           | 130 2              | 30              |   |
| Chlorobenzene                            | 91               |            | 90                | 70-           | 130 1              | 30              |   |
| Trichlorofluoromethane                   | 96               |            | 94                | 70-           | 139 2              | 30              |   |
| 1,2-Dichloroethane                       | 97               |            | 99                | 70-           | 130 2              | 30              |   |
| 1,1,1-Trichloroethane                    | 98               |            | 97                | 70-           | 130 1              | 30              |   |
| Bromodichloromethane                     | 90               |            | 91                | 70-           | 130 1              | 30              |   |
| trans-1,3-Dichloropropene                | 98               |            | 98                | 70-           | 130 0              | 30              |   |
| cis-1,3-Dichloropropene                  | 98               |            | 101               | 70-           | 130 3              | 30              |   |
| Bromoform                                | 86               |            | 87                | 70-           | 130 1              | 30              |   |
| 1,1,2,2-Tetrachloroethane                | 95               |            | 95                | 70-           | 130 0              | 30              |   |
| Benzene                                  | 100              |            | 100               | 70-           | 130 0              | 30              |   |
| Toluene                                  | 100              |            | 98                | 70-           | 130 2              | 30              |   |
| Ethylbenzene                             | 100              |            | 99                | 70-           | 130 1              | 30              |   |
| Chloromethane                            | 148              | Q          | 143               | Q 52-         | 130 3              | 30              |   |
| Bromomethane                             | 98               |            | 96                | 57-           | 147 2              | 30              |   |
| Vinyl chloride                           | 126              |            | 120               | 67-           | 130 5              | 30              |   |



**Project Name:** 1155 NIAGARA

Project Number: T0550-020-001

Lab Number: L2040164

| Parameter                               | LCS<br>%Recovery  | Qual       | LCSD<br>%Recovery | %Recovery<br>Qual Limits | RPD | RPD<br>Qual Limits |
|-----------------------------------------|-------------------|------------|-------------------|--------------------------|-----|--------------------|
| Volatile Organics by GC/MS - Westboroug | gh Lab Associated | sample(s): | 01-03 Batch: WC   | G1416247-3 WG1416247-4   |     |                    |
| Chloroethane                            | 101               |            | 100               | 50-151                   | 1   | 30                 |
| 1,1-Dichloroethene                      | 117               |            | 114               | 65-135                   | 3   | 30                 |
| trans-1,2-Dichloroethene                | 107               |            | 104               | 70-130                   | 3   | 30                 |
| Trichloroethene                         | 97                |            | 97                | 70-130                   | 0   | 30                 |
| 1,2-Dichlorobenzene                     | 93                |            | 94                | 70-130                   | 1   | 30                 |
| 1,3-Dichlorobenzene                     | 93                |            | 93                | 70-130                   | 0   | 30                 |
| 1,4-Dichlorobenzene                     | 91                |            | 92                | 70-130                   | 1   | 30                 |
| Methyl tert butyl ether                 | 105               |            | 107               | 66-130                   | 2   | 30                 |
| p/m-Xylene                              | 99                |            | 98                | 70-130                   | 1   | 30                 |
| o-Xylene                                | 91                |            | 91                | 70-130                   | 0   | 30                 |
| cis-1,2-Dichloroethene                  | 99                |            | 102               | 70-130                   | 3   | 30                 |
| Styrene                                 | 93                |            | 94                | 70-130                   | 1   | 30                 |
| Dichlorodifluoromethane                 | 144               |            | 139               | 30-146                   | 4   | 30                 |
| Acetone                                 | 93                |            | 95                | 54-140                   | 2   | 30                 |
| Carbon disulfide                        | 94                |            | 90                | 59-130                   | 4   | 30                 |
| 2-Butanone                              | 113               |            | 124               | 70-130                   | 9   | 30                 |
| 4-Methyl-2-pentanone                    | 118               |            | 121               | 70-130                   | 3   | 30                 |
| 2-Hexanone                              | 109               |            | 111               | 70-130                   | 2   | 30                 |
| Bromochloromethane                      | 92                |            | 93                | 70-130                   | 1   | 30                 |
| 1,2-Dibromoethane                       | 98                |            | 99                | 70-130                   | 1   | 30                 |
| n-Butylbenzene                          | 99                |            | 98                | 70-130                   | 1   | 30                 |
| sec-Butylbenzene                        | 102               |            | 101               | 70-130                   | 1   | 30                 |
| 1,2-Dibromo-3-chloropropane             | 102               |            | 104               | 68-130                   | 2   | 30                 |



**Project Name:** 1155 NIAGARA

Lab Number: L2040164

**Project Number:** T0550-020-001

| arameter                                   | LCS<br>%Recovery | Qual       |       | LCSD<br>Recovery | Qual        | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|--------------------------------------------|------------------|------------|-------|------------------|-------------|---------------------|-----|------|---------------|
| olatile Organics by GC/MS - Westborough La | ab Associated    | sample(s): | 01-03 | Batch:           | WG1416247-3 | WG1416247-4         |     |      |               |
| Isopropylbenzene                           | 100              |            |       | 99               |             | 70-130              | 1   |      | 30            |
| p-Isopropyltoluene                         | 100              |            |       | 100              |             | 70-130              | 0   |      | 30            |
| n-Propylbenzene                            | 101              |            |       | 99               |             | 70-130              | 2   |      | 30            |
| 1,2,3-Trichlorobenzene                     | 101              |            |       | 104              |             | 70-130              | 3   |      | 30            |
| 1,2,4-Trichlorobenzene                     | 103              |            |       | 104              |             | 70-130              | 1   |      | 30            |
| 1,3,5-Trimethylbenzene                     | 98               |            |       | 97               |             | 70-130              | 1   |      | 30            |
| 1,2,4-Trimethylbenzene                     | 96               |            |       | 96               |             | 70-130              | 0   |      | 30            |
| Methyl Acetate                             | 105              |            |       | 106              |             | 51-146              | 1   |      | 30            |
| Cyclohexane                                | 132              |            |       | 130              |             | 59-142              | 2   |      | 30            |
| 1,4-Dioxane                                | 120              |            |       | 122              |             | 65-136              | 2   |      | 30            |
| Freon-113                                  | 108              |            |       | 104              |             | 50-139              | 4   |      | 30            |
| Methyl cyclohexane                         | 110              |            |       | 109              |             | 70-130              | 1   |      | 30            |

|                       | LCS                               | LCSD           | Acceptance |  |
|-----------------------|-----------------------------------|----------------|------------|--|
| Surrogate             | rogate %Recovery Qual %Recovery Q | %Recovery Qual | Criteria   |  |
| 1,2-Dichloroethane-d4 | 93                                | 93             | 70-130     |  |
| Toluene-d8            | 97                                | 96             | 70-130     |  |
| 4-Bromofluorobenzene  | 99                                | 99             | 70-130     |  |
| Dibromofluoromethane  | 88                                | 89             | 70-130     |  |



#### **SEMIVOLATILES**



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

SAMPLE RESULTS

Lab ID: L2040164-01 Date Collected: 09/23/20 09:20

Client ID: TP-3 5-7 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1 8270D Extraction Date: 09/26/20 05:3

Analytical Method: 1,8270D Extraction Date: 09/26/20 05:36
Analytical Date: 09/27/20 22:21

Analyst: JRW Percent Solids: 79%

| Semivolatile Organics by GC/MS - Westborou  Acenaphthene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene | 91 ND ND ND ND ND ND ND | J | ug/kg<br>ug/kg<br>ug/kg | 160<br>120<br>180 | 21.<br>23. | 1 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---|-------------------------|-------------------|------------|---|
| Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 3,3'-Dichlorobenzidine                                                                             | ND<br>ND<br>ND          | J | ug/kg<br>ug/kg          | 120               | 23.        |   |
| Bis(2-chloroethyl)ether 2-Chloronaphthalene 3,3'-Dichlorobenzidine                                                                                               | ND<br>ND<br>ND          |   | ug/kg                   |                   |            | 1 |
| 2-Chloronaphthalene 3,3'-Dichlorobenzidine                                                                                                                       | ND<br>ND                |   |                         | 180               | 20         |   |
| 3,3'-Dichlorobenzidine                                                                                                                                           | ND                      |   |                         |                   | 28.        | 1 |
| <u>'</u>                                                                                                                                                         |                         |   | ug/kg                   | 210               | 20.        | 1 |
| 2,4-Dinitrotoluene                                                                                                                                               | ND                      |   | ug/kg                   | 210               | 55.        | 1 |
|                                                                                                                                                                  |                         |   | ug/kg                   | 210               | 41.        | 1 |
| 2,6-Dinitrotoluene                                                                                                                                               | ND                      |   | ug/kg                   | 210               | 35.        | 1 |
| Fluoranthene                                                                                                                                                     | 730                     |   | ug/kg                   | 120               | 24.        | 1 |
| 4-Chlorophenyl phenyl ether                                                                                                                                      | ND                      |   | ug/kg                   | 210               | 22.        | 1 |
| 4-Bromophenyl phenyl ether                                                                                                                                       | ND                      |   | ug/kg                   | 210               | 31.        | 1 |
| Bis(2-chloroisopropyl)ether                                                                                                                                      | ND                      |   | ug/kg                   | 250               | 35.        | 1 |
| Bis(2-chloroethoxy)methane                                                                                                                                       | ND                      |   | ug/kg                   | 220               | 21.        | 1 |
| Hexachlorobutadiene                                                                                                                                              | ND                      |   | ug/kg                   | 210               | 30.        | 1 |
| Hexachlorocyclopentadiene                                                                                                                                        | ND                      |   | ug/kg                   | 590               | 190        | 1 |
| Hexachloroethane                                                                                                                                                 | ND                      |   | ug/kg                   | 160               | 33.        | 1 |
| Isophorone                                                                                                                                                       | ND                      |   | ug/kg                   | 180               | 27.        | 1 |
| Naphthalene                                                                                                                                                      | 11000                   | E | ug/kg                   | 210               | 25.        | 1 |
| Nitrobenzene                                                                                                                                                     | ND                      |   | ug/kg                   | 180               | 30.        | 1 |
| NDPA/DPA                                                                                                                                                         | ND                      |   | ug/kg                   | 160               | 23.        | 1 |
| n-Nitrosodi-n-propylamine                                                                                                                                        | ND                      |   | ug/kg                   | 210               | 32.        | 1 |
| Bis(2-ethylhexyl)phthalate                                                                                                                                       | ND                      |   | ug/kg                   | 210               | 71.        | 1 |
| Butyl benzyl phthalate                                                                                                                                           | ND                      |   | ug/kg                   | 210               | 52.        | 1 |
| Di-n-butylphthalate                                                                                                                                              | ND                      |   | ug/kg                   | 210               | 39.        | 1 |
| Di-n-octylphthalate                                                                                                                                              | ND                      |   | ug/kg                   | 210               | 70.        | 1 |
| Diethyl phthalate                                                                                                                                                | ND                      |   | ug/kg                   | 210               | 19.        | 1 |
| Dimethyl phthalate                                                                                                                                               | ND                      |   | ug/kg                   | 210               | 43.        | 1 |
| Benzo(a)anthracene                                                                                                                                               | 440                     |   | ug/kg                   | 120               | 23.        | 1 |
| Benzo(a)pyrene                                                                                                                                                   | 550                     |   | ug/kg                   | 160               | 50.        | 1 |



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

**SAMPLE RESULTS** 

Lab ID: L2040164-01 Date Collected: 09/23/20 09:20

Client ID: TP-3 5-7 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

| Parameter                            | Result       | Qualifier | Units | RL  | MDL | Dilution Factor |
|--------------------------------------|--------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS - Wes | tborough Lab |           |       |     |     |                 |
| Benzo(b)fluoranthene                 | 590          |           | ug/kg | 120 | 35. | 1               |
| Benzo(k)fluoranthene                 | 260          |           | ug/kg | 120 | 33. | 1               |
| Chrysene                             | 360          |           | ug/kg | 120 | 21. | 1               |
| Acenaphthylene                       | ND           |           | ug/kg | 160 | 32. | 1               |
| Anthracene                           | 160          |           | ug/kg | 120 | 40. | 1               |
| Benzo(ghi)perylene                   | 380          |           | ug/kg | 160 | 24. | 1               |
| Fluorene                             | 96           | J         | ug/kg | 210 | 20. | 1               |
| Phenanthrene                         | 540          |           | ug/kg | 120 | 25. | 1               |
| Dibenzo(a,h)anthracene               | 97           | J         | ug/kg | 120 | 24. | 1               |
| Indeno(1,2,3-cd)pyrene               | 440          |           | ug/kg | 160 | 29. | 1               |
| Pyrene                               | 620          |           | ug/kg | 120 | 20. | 1               |
| Biphenyl                             | 130          | J         | ug/kg | 470 | 48. | 1               |
| 4-Chloroaniline                      | ND           |           | ug/kg | 210 | 38. | 1               |
| 2-Nitroaniline                       | ND           |           | ug/kg | 210 | 40. | 1               |
| 3-Nitroaniline                       | ND           |           | ug/kg | 210 | 39. | 1               |
| 4-Nitroaniline                       | ND           |           | ug/kg | 210 | 85. | 1               |
| Dibenzofuran                         | 56           | J         | ug/kg | 210 | 20. | 1               |
| 2-Methylnaphthalene                  | 13000        | E         | ug/kg | 250 | 25. | 1               |
| 1,2,4,5-Tetrachlorobenzene           | ND           |           | ug/kg | 210 | 22. | 1               |
| Acetophenone                         | ND           |           | ug/kg | 210 | 26. | 1               |
| 2,4,6-Trichlorophenol                | ND           |           | ug/kg | 120 | 39. | 1               |
| p-Chloro-m-cresol                    | ND           |           | ug/kg | 210 | 31. | 1               |
| 2-Chlorophenol                       | ND           |           | ug/kg | 210 | 24. | 1               |
| 2,4-Dichlorophenol                   | ND           |           | ug/kg | 180 | 33. | 1               |
| 2,4-Dimethylphenol                   | ND           |           | ug/kg | 210 | 68. | 1               |
| 2-Nitrophenol                        | ND           |           | ug/kg | 440 | 78. | 1               |
| 4-Nitrophenol                        | ND           |           | ug/kg | 290 | 84. | 1               |
| 2,4-Dinitrophenol                    | ND           |           | ug/kg | 990 | 96. | 1               |
| 4,6-Dinitro-o-cresol                 | ND           |           | ug/kg | 540 | 99. | 1               |
| Pentachlorophenol                    | ND           |           | ug/kg | 160 | 45. | 1               |
| Phenol                               | ND           |           | ug/kg | 210 | 31. | 1               |
| 2-Methylphenol                       | ND           |           | ug/kg | 210 | 32. | 1               |
| 3-Methylphenol/4-Methylphenol        | 550          |           | ug/kg | 300 | 32. | 1               |
| 2,4,5-Trichlorophenol                | ND           |           | ug/kg | 210 | 40. | 1               |
| Carbazole                            | 49           | J         | ug/kg | 210 | 20. | 1               |
| Atrazine                             | ND           |           | ug/kg | 160 | 72. | 1               |
| Benzaldehyde                         | ND           |           | ug/kg | 270 | 56. | 1               |



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

**SAMPLE RESULTS** 

Lab ID: L2040164-01 Date Collected: 09/23/20 09:20

Client ID: TP-3 5-7 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

| Parameter                      | Result            | Qualifier | Units | RL  | MDL | Dilution Factor |
|--------------------------------|-------------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS | - Westborough Lab |           |       |     |     |                 |
| Caprolactam                    | ND                |           | ug/kg | 210 | 63. | 1               |
| 2,3,4,6-Tetrachlorophenol      | ND                |           | ua/ka | 210 | 42. | 1               |

| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria |
|----------------------|------------|----------------------------------|
| 2-Fluorophenol       | 80         | 25-120                           |
| Phenol-d6            | 78         | 10-120                           |
| Nitrobenzene-d5      | 90         | 23-120                           |
| 2-Fluorobiphenyl     | 66         | 30-120                           |
| 2,4,6-Tribromophenol | 81         | 10-136                           |
| 4-Terphenyl-d14      | 63         | 18-120                           |



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

**SAMPLE RESULTS** 

Lab ID: L2040164-01 D Date Collected: 09/23/20 09:20

Client ID: TP-3 5-7 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 09/26/20 05:36

Analytical Date: 09/28/20 20:42

Analyst: WR Percent Solids: 79%

| Parameter                                        | Result | Qualifier | Units | RL  | MDL | Dilution Factor |  |
|--------------------------------------------------|--------|-----------|-------|-----|-----|-----------------|--|
| Semivolatile Organics by GC/MS - Westborough Lab |        |           |       |     |     |                 |  |
| Naphthalene                                      | 7800   |           | ug/kg | 410 | 50. | 2               |  |
| 2-Methylnaphthalene                              | 8800   |           | ug/kg | 500 | 50. | 2               |  |



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

SAMPLE RESULTS

Lab ID: L2040164-02 Date Collected: 09/23/20 09:25

Client ID: TP-3 8-9 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8270D Extraction Date: 09/26/20 05:36
Analytical Date: 09/27/20 17:34

Analyst: WR
Percent Solids: 86%

| Parameter                           | Result         | Qualifier | Units | RL  | MDL | Dilution Factor |
|-------------------------------------|----------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS - We | estborough Lab |           |       |     |     |                 |
| Acenaphthene                        | ND             |           | ug/kg | 150 | 20. | 1               |
| Hexachlorobenzene                   | ND             |           | ug/kg | 120 | 22. | 1               |
| Bis(2-chloroethyl)ether             | ND             |           | ug/kg | 170 | 26. | 1               |
| 2-Chloronaphthalene                 | ND             |           | ug/kg | 190 | 19. | 1               |
| 3,3'-Dichlorobenzidine              | ND             |           | ug/kg | 190 | 51. | 1               |
| 2,4-Dinitrotoluene                  | ND             |           | ug/kg | 190 | 38. | 1               |
| 2,6-Dinitrotoluene                  | ND             |           | ug/kg | 190 | 33. | 1               |
| Fluoranthene                        | ND             |           | ug/kg | 120 | 22. | 1               |
| 4-Chlorophenyl phenyl ether         | ND             |           | ug/kg | 190 | 21. | 1               |
| 4-Bromophenyl phenyl ether          | ND             |           | ug/kg | 190 | 29. | 1               |
| Bis(2-chloroisopropyl)ether         | ND             |           | ug/kg | 230 | 33. | 1               |
| Bis(2-chloroethoxy)methane          | ND             |           | ug/kg | 210 | 19. | 1               |
| Hexachlorobutadiene                 | ND             |           | ug/kg | 190 | 28. | 1               |
| Hexachlorocyclopentadiene           | ND             |           | ug/kg | 550 | 170 | 1               |
| Hexachloroethane                    | ND             |           | ug/kg | 150 | 31. | 1               |
| Isophorone                          | ND             |           | ug/kg | 170 | 25. | 1               |
| Naphthalene                         | 640            |           | ug/kg | 190 | 23. | 1               |
| Nitrobenzene                        | ND             |           | ug/kg | 170 | 28. | 1               |
| NDPA/DPA                            | ND             |           | ug/kg | 150 | 22. | 1               |
| n-Nitrosodi-n-propylamine           | ND             |           | ug/kg | 190 | 30. | 1               |
| Bis(2-ethylhexyl)phthalate          | ND             |           | ug/kg | 190 | 67. | 1               |
| Butyl benzyl phthalate              | ND             |           | ug/kg | 190 | 48. | 1               |
| Di-n-butylphthalate                 | ND             |           | ug/kg | 190 | 36. | 1               |
| Di-n-octylphthalate                 | ND             |           | ug/kg | 190 | 66. | 1               |
| Diethyl phthalate                   | ND             |           | ug/kg | 190 | 18. | 1               |
| Dimethyl phthalate                  | ND             |           | ug/kg | 190 | 40. | 1               |
| Benzo(a)anthracene                  | ND             |           | ug/kg | 120 | 22. | 1               |
| Benzo(a)pyrene                      | ND             |           | ug/kg | 150 | 47. | 1               |
|                                     |                |           |       |     |     |                 |

Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

**SAMPLE RESULTS** 

Lab ID: L2040164-02 Date Collected: 09/23/20 09:25

Client ID: TP-3 8-9 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

| Parameter                          | Result         | Qualifier | Units | RL  | MDL | Dilution Factor |
|------------------------------------|----------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS - W | estborough Lab |           |       |     |     |                 |
| Benzo(b)fluoranthene               | ND             |           | ug/kg | 120 | 32. | 1               |
| Benzo(k)fluoranthene               | ND             |           | ug/kg | 120 | 31. | 1               |
| Chrysene                           | ND             |           | ug/kg | 120 | 20. | 1               |
| Acenaphthylene                     | ND             |           | ug/kg | 150 | 30. | 1               |
| Anthracene                         | ND             |           | ug/kg | 120 | 38. | 1               |
| Benzo(ghi)perylene                 | ND             |           | ug/kg | 150 | 23. | 1               |
| Fluorene                           | ND             |           | ug/kg | 190 | 19. | 1               |
| Phenanthrene                       | ND             |           | ug/kg | 120 | 23. | 1               |
| Dibenzo(a,h)anthracene             | ND             |           | ug/kg | 120 | 22. | 1               |
| Indeno(1,2,3-cd)pyrene             | ND             |           | ug/kg | 150 | 27. | 1               |
| Pyrene                             | ND             |           | ug/kg | 120 | 19. | 1               |
| Biphenyl                           | ND             |           | ug/kg | 440 | 45. | 1               |
| 4-Chloroaniline                    | ND             |           | ug/kg | 190 | 35. | 1               |
| 2-Nitroaniline                     | ND             |           | ug/kg | 190 | 37. | 1               |
| 3-Nitroaniline                     | ND             |           | ug/kg | 190 | 36. | 1               |
| 4-Nitroaniline                     | ND             |           | ug/kg | 190 | 80. | 1               |
| Dibenzofuran                       | ND             |           | ug/kg | 190 | 18. | 1               |
| 2-Methylnaphthalene                | 650            |           | ug/kg | 230 | 23. | 1               |
| 1,2,4,5-Tetrachlorobenzene         | ND             |           | ug/kg | 190 | 20. | 1               |
| Acetophenone                       | ND             |           | ug/kg | 190 | 24. | 1               |
| 2,4,6-Trichlorophenol              | ND             |           | ug/kg | 120 | 36. | 1               |
| p-Chloro-m-cresol                  | ND             |           | ug/kg | 190 | 29. | 1               |
| 2-Chlorophenol                     | ND             |           | ug/kg | 190 | 23. | 1               |
| 2,4-Dichlorophenol                 | ND             |           | ug/kg | 170 | 31. | 1               |
| 2,4-Dimethylphenol                 | 200            |           | ug/kg | 190 | 64. | 1               |
| 2-Nitrophenol                      | ND             |           | ug/kg | 420 | 72. | 1               |
| 4-Nitrophenol                      | ND             |           | ug/kg | 270 | 79. | 1               |
| 2,4-Dinitrophenol                  | ND             |           | ug/kg | 920 | 90. | 1               |
| 4,6-Dinitro-o-cresol               | ND             |           | ug/kg | 500 | 92. | 1               |
| Pentachlorophenol                  | ND             |           | ug/kg | 150 | 42. | 1               |
| Phenol                             | ND             |           | ug/kg | 190 | 29. | 1               |
| 2-Methylphenol                     | ND             |           | ug/kg | 190 | 30. | 1               |
| 3-Methylphenol/4-Methylphenol      | ND             |           | ug/kg | 280 | 30. | 1               |
| 2,4,5-Trichlorophenol              | ND             |           | ug/kg | 190 | 37. | 1               |
| Carbazole                          | ND             |           | ug/kg | 190 | 19. | 1               |
| Atrazine                           | ND             |           | ug/kg | 150 | 67. | 1               |
| Benzaldehyde                       | ND             |           | ug/kg | 250 | 52. | 1               |
|                                    |                |           |       |     |     |                 |



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

**SAMPLE RESULTS** 

Lab ID: L2040164-02 Date Collected: 09/23/20 09:25

Client ID: TP-3 8-9 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

| Parameter                      | Result            | Qualifier | Units | RL  | MDL | Dilution Factor |
|--------------------------------|-------------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS | - Westborough Lab |           |       |     |     |                 |
| Caprolactam                    | ND                |           | ug/kg | 190 | 59. | 1               |
| 2,3,4,6-Tetrachlorophenol      | ND                |           | ug/kg | 190 | 39. | 1               |

| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria |
|----------------------|------------|----------------------------------|
| 2-Fluorophenol       | 85         | 25-120                           |
| Phenol-d6            | 85         | 10-120                           |
| Nitrobenzene-d5      | 86         | 23-120                           |
| 2-Fluorobiphenyl     | 69         | 30-120                           |
| 2,4,6-Tribromophenol | 85         | 10-136                           |
| 4-Terphenyl-d14      | 61         | 18-120                           |



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

SAMPLE RESULTS

Lab ID: L2040164-03 Date Collected: 09/23/20 09:23

Client ID: TP-5 5-7 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1.8270D Extraction Date: 09/26/20 05:36

Analytical Method: 1,8270D Extraction Date: 09/26/20 05:36
Analytical Date: 09/27/20 17:58

Analyst: JRW Percent Solids: 85%

| Hexachlorobenzene   ND   ug/kg   110   21.   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parameter                          | Result          | Qualifier | Units | RL  | MDL | Dilution Factor |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|-----------|-------|-----|-----|-----------------|
| Hoxachiorobenzene   ND   ug/kg   110   21.   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Semivolatile Organics by GC/MS - V | Vestborough Lab |           |       |     |     |                 |
| Hoxachiorobenzene   ND   ug/kg   110   21.   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acenaphthene                       | ND              |           | ug/kg | 150 | 20. | 1               |
| Bis(2-chloroethyl)ether         ND         ug/kg         170         26.         1           2-Chloronaphthalene         ND         ug/kg         190         19.         1           3.3-Chloroberzidine         ND         ug/kg         190         50.         1           2,4-Dinitrotoluene         ND         ug/kg         190         38.         1           2,6-Dinitrotoluene         ND         ug/kg         190         32.         1           1,0-Chlorotoluene         ND         ug/kg         190         32.         1           1,0-Chlorotoluene         ND         ug/kg         190         32.         1           4-Cholorotoluene         ND         ug/kg         190         32.         1           4-Cholorotholorolorolorolorolorolorolorolorolorolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hexachlorobenzene                  | ND              |           |       | 110 | 21. | 1               |
| 3,3-Dichlorobenzidine ND ug/kg 190 50. 1 2,4-Dinitrotoluene ND ug/kg 190 38. 1 2,6-Dinitrotoluene ND ug/kg 190 32. 1 Fluoranthene ND ug/kg 190 32. 1 Fluoranthene ND ug/kg 190 32. 1 Fluoranthene ND ug/kg 190 22. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 20. 1 4-Bromophenyl phenyl ether ND ug/kg 190 29. 1 Elisi(2-chloroisoproyl)ether ND ug/kg 200 32. 1 Elisi(2-chloroisoproyl)ether ND ug/kg 190 29. 1 Elisi(2-chloroisoproyl)ether ND ug/kg 200 19. 1 Elisi(2-chlorotobutadiene ND ug/kg 200 19. 1 Elexachlorocyclopentadiene ND ug/kg 190 28. 1 Elexachlorocyclopentadiene ND ug/kg 190 28. 1 Elexachlorocyclopentadiene ND ug/kg 190 28. 1 Elexachlorocyclopentadiene ND ug/kg 150 31. 1 Elsophorone ND ug/kg 150 31. 1 Elsophorone ND ug/kg 150 31. 1 Elsophorone ND ug/kg 170 25. 1 Elsophorone ND ug/kg 170 25. 1 Elsophorone ND ug/kg 190 23. 1 Elsophorone ND ug/kg 190 29. 1 Elsophorone ND ug/kg 190 66. 1 Elsophorone ND ug/kg 190 48. 1 Elso(2-chlylhexyl)phthalate ND ug/kg 190 48. 1 Elsophorophithalate ND ug/kg 190 64. 1 | Bis(2-chloroethyl)ether            | ND              |           | ug/kg | 170 | 26. | 1               |
| 2,4-Dinitrotoluene         ND         ug/kg         190         38.         1           2,6-Dinitrotoluene         ND         ug/kg         190         32.         1           Fluoranthene         ND         ug/kg         110         22.         1           4-Chlorophenyl phenyl ether         ND         ug/kg         190         20.         1           4-Bromophenyl phenyl ether         ND         ug/kg         190         29.         1           Bis(2-chlorosthoxy)methane         ND         ug/kg         230         32.         1           Hexachlorobutadiene         ND         ug/kg         200         19.         1           Hexachlorocyclopentadiene         ND         ug/kg         190         28.         1           Hexachlorocyclopentadiene         ND         ug/kg         540         170         1           Hexachlorocyclopentadiene         ND         ug/kg         150         31.         1           Hexachlorocyclopentadiene         ND         ug/kg         150         31.         1           Hexachlorocyclopentadiene         ND         ug/kg         150         25.         1           Hexachlorocyclopentadiene         ND         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-Chloronaphthalene                | ND              |           | ug/kg | 190 | 19. | 1               |
| 2,6-Dinitrotoluene         ND         ug/kg         190         32.         1           Fluoranthene         ND         ug/kg         110         22.         1           4-Chlorophenyl phenyl ether         ND         ug/kg         190         20.         1           4-Bromophenyl phenyl ether         ND         ug/kg         190         29.         1           Bis(2-chlorostopropyl)ether         ND         ug/kg         230         32.         1           Bis(2-chlorosthoxy)methane         ND         ug/kg         200         19.         1           Hexachlorobutadiene         ND         ug/kg         190         28.         1           Hexachlorocyclopentadiene         ND         ug/kg         540         170         1           Hexachlorocyclopentadiene         ND         ug/kg         540         170         1           Hexachlorocyclopentadiene         ND         ug/kg         150         31.         1           Hexachlorocyclopentadiene         ND         ug/kg         150         31.         1           Hexachlorocyclopentadiene         ND         ug/kg         150         31.         1           Hexachlorocyclopentadiene         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,3'-Dichlorobenzidine             | ND              |           | ug/kg | 190 | 50. | 1               |
| Fluoranthene ND ug/kg 110 22. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 20. 1 4-Bromophenyl phenyl ether ND ug/kg 190 29. 1 Bis(2-chloroisopropyl)ether ND ug/kg 230 32. 1 Bis(2-chloroisopropyl)ether ND ug/kg 200 19. 1  Hexachlorobutadiene ND ug/kg 190 28. 1  Hexachlorocyclopentadiene ND ug/kg 190 28. 1  Hexachlorocyclopentadiene ND ug/kg 540 170 1  Hexachlorocyclopentadiene ND ug/kg 150 31. 1  Isophorone ND ug/kg 170 25. 1  Naphthalene 270 ug/kg 190 23. 1  Nitrobenzene ND ug/kg 170 25. 1  Nitrobenzene ND ug/kg 170 25. 1  Nitrobenzene ND ug/kg 170 28. 1  NITrobenzene ND ug/kg 190 23. 1  Nitrobenzene ND ug/kg 190 29. 1  Sis(2-ethylhexyl)phthalate ND ug/kg 190 29. 1  Bis(2-ethylhexyl)phthalate ND ug/kg 190 48. 1  Di-n-butylphthalate ND ug/kg 190 48. 1  Di-n-butylphthalate ND ug/kg 190 36. 1  Di-n-octylphthalate ND ug/kg 190 64. 1  Di-n-octylphthalate ND ug/kg 190 64. 1  Di-n-octylphthalate ND ug/kg 190 64. 1  Di-methyl phthalate ND ug/kg 190 40. 1                                                                                                                                                                                                                                                                                                                                                                               | 2,4-Dinitrotoluene                 | ND              |           | ug/kg | 190 | 38. | 1               |
| 4-Chlorophenyl phenyl ether ND ug/kg 190 20. 1 4-Bromophenyl phenyl ether ND ug/kg 190 29. 1 Bis(2-chloroisopropyl)ether ND ug/kg 230 32. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 19. 1 Hexachlorobutadiene ND ug/kg 190 28. 1 Hexachlorocyclopentadiene ND ug/kg 190 28. 1 Hexachlorocyclopentadiene ND ug/kg 540 170 1 Hexachlorocyclopentadiene ND ug/kg 150 31. 1 Isophorone ND ug/kg 150 31. 1 Isophorone ND ug/kg 170 25. 1 Naphthalene 270 ug/kg 190 23. 1 Nitrobenzene ND ug/kg 170 25. 1 Nitrobenzene ND ug/kg 190 23. 1 Nitrobenzene ND ug/kg 190 23. 1 Nitrobenzene ND ug/kg 190 29. 1 Sis(2-ethylhexyl)phthalate ND ug/kg 190 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 48. 1 Di-n-butylphthalate ND ug/kg 190 48. 1 Di-n-butylphthalate ND ug/kg 190 36. 1 Di-n-octylphthalate ND ug/kg 190 64. 1 Di-n-octylphthalate ND ug/kg 190 64. 1 Di-n-octylphthalate ND ug/kg 190 40. 1 Benzo(a)anthracene ND ug/kg 190 40. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,6-Dinitrotoluene                 | ND              |           | ug/kg | 190 | 32. | 1               |
| 4-Bromophenyl phenyl ether ND ug/kg 190 29. 1  Bis (2-chloroisopropyl)ether ND ug/kg 230 32. 1  Bis (2-chloroethoxy)methane ND ug/kg 200 19. 1  Hexachlorobutadiene ND ug/kg 190 28. 1  Hexachlorocyclopentadiene ND ug/kg 540 170 1  Hexachlorocyclopentadiene ND ug/kg 150 31. 1  Isophorone ND ug/kg 150 31. 1  Isophorone ND ug/kg 170 25. 1  Naphthalene 270 ug/kg 190 23. 1  Nitrobenzene ND ug/kg 170 25. 1  Nitrobenzene ND ug/kg 190 23. 1  Nitrobenzene ND ug/kg 190 23. 1  Nitrobenzene ND ug/kg 190 25. 1  NDPA/DPA ND ug/kg 190 29. 1  Bis (2-ethylhexyl)phthalate ND ug/kg 190 66. 1  Butyl benzyl phthalate ND ug/kg 190 48. 1  Di-n-butylphthalate ND ug/kg 190 36. 1  Di-n-cotylphthalate ND ug/kg 190 64. 1  Di-n-cotylphthalate ND ug/kg 190 64. 1  Di-n-totylphthalate ND ug/kg 190 64. 1  Dienthyl phthalate ND ug/kg 190 64. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fluoranthene                       | ND              |           | ug/kg | 110 | 22. | 1               |
| Bis(2-chloroisopropyl)ether         ND         ug/kg         230         32.         1           Bis(2-chloroethoxy)methane         ND         ug/kg         200         19.         1           Hexachlorobutadiene         ND         ug/kg         190         28.         1           Hexachlorocyclopentadiene         ND         ug/kg         540         170         1           Hexachloroethane         ND         ug/kg         150         31.         1           Hexachloroethane         ND         ug/kg         170         25.         1           Isophorone         ND         ug/kg         170         25.         1           Naphthalene         270         ug/kg         190         23.         1           Nitrobenzene         ND         ug/kg         170         28.         1           NDPA/DPA         ND         ug/kg         150         22.         1           n-Nitrosodi-n-propylamine         ND         ug/kg         190         29.         1           Bis(2-ethylhexyl)phthalate         ND         ug/kg         190         48.         1           Di-n-butylphthalate         ND         ug/kg         190         48.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-Chlorophenyl phenyl ether        | ND              |           | ug/kg | 190 | 20. | 1               |
| Bis(2-chloroethoxy)methane   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-Bromophenyl phenyl ether         | ND              |           | ug/kg | 190 | 29. | 1               |
| Hexachlorobutadiene         ND         ug/kg         190         28.         1           Hexachlorocyclopentadiene         ND         ug/kg         540         170         1           Hexachloroethane         ND         ug/kg         150         31.         1           Isophorone         ND         ug/kg         170         25.         1           Naphthalene         270         ug/kg         190         23.         1           Nitrobenzene         ND         ug/kg         170         28.         1           NDPA/DPA         ND         ug/kg         150         22.         1           n-Nitrosodi-n-propylamine         ND         ug/kg         190         29.         1           Bis(2-ethylhexyl)phthalate         ND         ug/kg         190         66.         1           Butyl benzyl phthalate         ND         ug/kg         190         48.         1           Di-n-butylphthalate         ND         ug/kg         190         64.         1           Di-n-octylphthalate         ND         ug/kg         190         64.         1           Di-n-butyl phthalate         ND         ug/kg         190         48.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bis(2-chloroisopropyl)ether        | ND              |           | ug/kg | 230 | 32. | 1               |
| Hexachlorocyclopentadiene         ND         ug/kg         540         170         1           Hexachlorocthane         ND         ug/kg         150         31.         1           Isophorone         ND         ug/kg         170         25.         1           Naphthalene         270         ug/kg         190         23.         1           Nitrobenzene         ND         ug/kg         170         28.         1           NDPA/DPA         ND         ug/kg         150         22.         1           n-Nitrosodi-n-propylamine         ND         ug/kg         190         29.         1           Bis(2-ethylhexyl)phthalate         ND         ug/kg         190         66.         1           Butyl benzyl phthalate         ND         ug/kg         190         48.         1           Di-n-butylphthalate         ND         ug/kg         190         36.         1           Di-n-ctylphthalate         ND         ug/kg         190         64.         1           Diethyl phthalate         ND         ug/kg         190         18.         1           Diethyl phthalate         ND         ug/kg         190         40.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bis(2-chloroethoxy)methane         | ND              |           | ug/kg | 200 | 19. | 1               |
| Hexachloroethane         ND         ug/kg         150         31.         1           Isophorone         ND         ug/kg         170         25.         1           Naphthalene         270         ug/kg         190         23.         1           Nitrobenzene         ND         ug/kg         170         28.         1           NDPA/DPA         ND         ug/kg         150         22.         1           n-Nitrosodi-n-propylamine         ND         ug/kg         190         29.         1           Bis(2-ethylhexyl)phthalate         ND         ug/kg         190         66.         1           Butyl benzyl phthalate         ND         ug/kg         190         48.         1           Di-n-butylphthalate         ND         ug/kg         190         36.         1           Di-n-cytylphthalate         ND         ug/kg         190         64.         1           Diethyl phthalate         ND         ug/kg         190         64.         1           Diethyl phthalate         ND         ug/kg         190         40.         1           Diethyl phthalate         ND         ug/kg         190         40.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hexachlorobutadiene                | ND              |           | ug/kg | 190 | 28. | 1               |
| Isophorone   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hexachlorocyclopentadiene          | ND              |           | ug/kg | 540 | 170 | 1               |
| Naphthalene         270         ug/kg         190         23.         1           Nitrobenzene         ND         ug/kg         170         28.         1           NDPA/DPA         ND         ug/kg         150         22.         1           n-Nitrosodi-n-propylamine         ND         ug/kg         190         29.         1           Bis(2-ethylhexyl)phthalate         ND         ug/kg         190         66.         1           Butyl benzyl phthalate         ND         ug/kg         190         48.         1           Di-n-butylphthalate         ND         ug/kg         190         36.         1           Di-n-cotylphthalate         ND         ug/kg         190         64.         1           Diethyl phthalate         ND         ug/kg         190         18.         1           Dimethyl phthalate         ND         ug/kg         190         40.         1           Benzo(a)anthracene         ND         ug/kg         110         21.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hexachloroethane                   | ND              |           | ug/kg | 150 | 31. | 1               |
| Nitrobenzene         ND         ug/kg         170         28.         1           NDPA/DPA         ND         ug/kg         150         22.         1           n-Nitrosodi-n-propylamine         ND         ug/kg         190         29.         1           Bis(2-ethylhexyl)phthalate         ND         ug/kg         190         66.         1           Butyl benzyl phthalate         ND         ug/kg         190         48.         1           Di-n-butylphthalate         ND         ug/kg         190         36.         1           Di-n-cotylphthalate         ND         ug/kg         190         64.         1           Diethyl phthalate         ND         ug/kg         190         18.         1           Dimethyl phthalate         ND         ug/kg         190         40.         1           Benzo(a)anthracene         ND         ug/kg         110         21.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Isophorone                         | ND              |           | ug/kg | 170 | 25. | 1               |
| NDPA/DPA         ND         ug/kg         150         22.         1           n-Nitrosodi-n-propylamine         ND         ug/kg         190         29.         1           Bis(2-ethylhexyl)phthalate         ND         ug/kg         190         66.         1           Butyl benzyl phthalate         ND         ug/kg         190         48.         1           Di-n-butylphthalate         ND         ug/kg         190         36.         1           Di-n-octylphthalate         ND         ug/kg         190         64.         1           Diethyl phthalate         ND         ug/kg         190         18.         1           Dimethyl phthalate         ND         ug/kg         190         40.         1           Benzo(a)anthracene         ND         ug/kg         110         21.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Naphthalene                        | 270             |           | ug/kg | 190 | 23. | 1               |
| n-Nitrosodi-n-propylamine ND ug/kg 190 29. 1  Bis(2-ethylhexyl)phthalate ND ug/kg 190 66. 1  Butyl benzyl phthalate ND ug/kg 190 48. 1  Di-n-butylphthalate ND ug/kg 190 36. 1  Di-n-octylphthalate ND ug/kg 190 64. 1  Diethyl phthalate ND ug/kg 190 64. 1  Diethyl phthalate ND ug/kg 190 64. 1  Diethyl phthalate ND ug/kg 190 40. 1  Benzo(a)anthracene ND ug/kg 110 21. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nitrobenzene                       | ND              |           | ug/kg | 170 | 28. | 1               |
| Bis(2-ethylhexyl)phthalate         ND         ug/kg         190         66.         1           Butyl benzyl phthalate         ND         ug/kg         190         48.         1           Di-n-butylphthalate         ND         ug/kg         190         36.         1           Di-n-octylphthalate         ND         ug/kg         190         64.         1           Diethyl phthalate         ND         ug/kg         190         18.         1           Dimethyl phthalate         ND         ug/kg         190         40.         1           Benzo(a)anthracene         ND         ug/kg         110         21.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NDPA/DPA                           | ND              |           | ug/kg | 150 | 22. | 1               |
| Butyl benzyl phthalate         ND         ug/kg         190         48.         1           Di-n-butylphthalate         ND         ug/kg         190         36.         1           Di-n-octylphthalate         ND         ug/kg         190         64.         1           Diethyl phthalate         ND         ug/kg         190         18.         1           Dimethyl phthalate         ND         ug/kg         190         40.         1           Benzo(a)anthracene         ND         ug/kg         110         21.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n-Nitrosodi-n-propylamine          | ND              |           | ug/kg | 190 | 29. | 1               |
| Di-n-butylphthalate         ND         ug/kg         190         36.         1           Di-n-octylphthalate         ND         ug/kg         190         64.         1           Diethyl phthalate         ND         ug/kg         190         18.         1           Dimethyl phthalate         ND         ug/kg         190         40.         1           Benzo(a)anthracene         ND         ug/kg         110         21.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bis(2-ethylhexyl)phthalate         | ND              |           | ug/kg | 190 | 66. | 1               |
| Di-n-octylphthalate         ND         ug/kg         190         64.         1           Diethyl phthalate         ND         ug/kg         190         18.         1           Dimethyl phthalate         ND         ug/kg         190         40.         1           Benzo(a)anthracene         ND         ug/kg         110         21.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Butyl benzyl phthalate             | ND              |           | ug/kg | 190 | 48. | 1               |
| Diethyl phthalate         ND         ug/kg         190         18.         1           Dimethyl phthalate         ND         ug/kg         190         40.         1           Benzo(a)anthracene         ND         ug/kg         110         21.         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Di-n-butylphthalate                | ND              |           | ug/kg | 190 | 36. | 1               |
| Dimethyl phthalate ND ug/kg 190 40. 1 Benzo(a)anthracene ND ug/kg 110 21. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Di-n-octylphthalate                | ND              |           | ug/kg | 190 | 64. | 1               |
| Benzo(a)anthracene ND ug/kg 110 21. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Diethyl phthalate                  | ND              |           | ug/kg | 190 | 18. | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dimethyl phthalate                 | ND              |           | ug/kg | 190 | 40. | 1               |
| Benzo(a)pyrene ND ug/kg 150 46. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzo(a)anthracene                 | ND              |           | ug/kg | 110 | 21. | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Benzo(a)pyrene                     | ND              |           | ug/kg | 150 | 46. | 1               |



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

**SAMPLE RESULTS** 

Lab ID: L2040164-03 Date Collected: 09/23/20 09:23

Client ID: TP-5 5-7 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

| Parameter                        | Result          | Qualifier | Units | RL  | MDL | Dilution Factor |
|----------------------------------|-----------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS - | Westborough Lab |           |       |     |     |                 |
| Benzo(b)fluoranthene             | ND              |           | ug/kg | 110 | 32. | 1               |
| Benzo(k)fluoranthene             | ND              |           | ug/kg | 110 | 30. | 1               |
| Chrysene                         | ND              |           | ug/kg | 110 | 20. | 1               |
| Acenaphthylene                   | ND              |           | ug/kg | 150 | 29. | 1               |
| Anthracene                       | ND              |           | ug/kg | 110 | 37. | 1               |
| Benzo(ghi)perylene               | ND              |           | ug/kg | 150 | 22. | 1               |
| Fluorene                         | ND              |           | ug/kg | 190 | 18. | 1               |
| Phenanthrene                     | ND              |           | ug/kg | 110 | 23. | 1               |
| Dibenzo(a,h)anthracene           | ND              |           | ug/kg | 110 | 22. | 1               |
| Indeno(1,2,3-cd)pyrene           | ND              |           | ug/kg | 150 | 26. | 1               |
| Pyrene                           | ND              |           | ug/kg | 110 | 19. | 1               |
| Biphenyl                         | ND              |           | ug/kg | 430 | 44. | 1               |
| 4-Chloroaniline                  | ND              |           | ug/kg | 190 | 34. | 1               |
| 2-Nitroaniline                   | ND              |           | ug/kg | 190 | 36. | 1               |
| 3-Nitroaniline                   | ND              |           | ug/kg | 190 | 36. | 1               |
| 4-Nitroaniline                   | ND              |           | ug/kg | 190 | 78. | 1               |
| Dibenzofuran                     | ND              |           | ug/kg | 190 | 18. | 1               |
| 2-Methylnaphthalene              | 240             |           | ug/kg | 230 | 23. | 1               |
| 1,2,4,5-Tetrachlorobenzene       | ND              |           | ug/kg | 190 | 20. | 1               |
| Acetophenone                     | ND              |           | ug/kg | 190 | 23. | 1               |
| 2,4,6-Trichlorophenol            | ND              |           | ug/kg | 110 | 36. | 1               |
| p-Chloro-m-cresol                | ND              |           | ug/kg | 190 | 28. | 1               |
| 2-Chlorophenol                   | ND              |           | ug/kg | 190 | 22. | 1               |
| 2,4-Dichlorophenol               | ND              |           | ug/kg | 170 | 30. | 1               |
| 2,4-Dimethylphenol               | ND              |           | ug/kg | 190 | 63. | 1               |
| 2-Nitrophenol                    | ND              |           | ug/kg | 410 | 71. | 1               |
| 4-Nitrophenol                    | ND              |           | ug/kg | 260 | 77. | 1               |
| 2,4-Dinitrophenol                | ND              |           | ug/kg | 910 | 88. | 1               |
| 4,6-Dinitro-o-cresol             | ND              |           | ug/kg | 490 | 91. | 1               |
| Pentachlorophenol                | ND              |           | ug/kg | 150 | 42. | 1               |
| Phenol                           | ND              |           | ug/kg | 190 | 29. | 1               |
| 2-Methylphenol                   | ND              |           | ug/kg | 190 | 29. | 1               |
| 3-Methylphenol/4-Methylphenol    | ND              |           | ug/kg | 270 | 30. | 1               |
| 2,4,5-Trichlorophenol            | ND              |           | ug/kg | 190 | 36. | 1               |
| Carbazole                        | ND              |           | ug/kg | 190 | 18. | 1               |
| Atrazine                         | ND              |           | ug/kg | 150 | 66. | 1               |
| Benzaldehyde                     | ND              |           | ug/kg | 250 | 51. | 1               |
|                                  |                 |           |       |     |     |                 |



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

**SAMPLE RESULTS** 

Lab ID: L2040164-03 Date Collected: 09/23/20 09:23

Client ID: TP-5 5-7 FT Date Received: 09/23/20 Sample Location: 1155 NIAGARA Field Prep: Not Specified

| Parameter                      | Result            | Qualifier | Units | RL  | MDL | Dilution Factor |
|--------------------------------|-------------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS | - Westborough Lab |           |       |     |     |                 |
| Caprolactam                    | ND                |           | ug/kg | 190 | 58. | 1               |
| 2,3,4,6-Tetrachlorophenol      | ND                |           | ua/ka | 190 | 38. | 1               |

| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria |
|----------------------|------------|----------------------------------|
| 2-Fluorophenol       | 91         | 25-120                           |
| Phenol-d6            | 93         | 10-120                           |
| Nitrobenzene-d5      | 94         | 23-120                           |
| 2-Fluorobiphenyl     | 82         | 30-120                           |
| 2,4,6-Tribromophenol | 91         | 10-136                           |
| 4-Terphenyl-d14      | 72         | 18-120                           |



Project Name: 1155 NIAGARA

Project Number: T0550-020-001

Lab Number:

**Report Date:** 

L2040164 09/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 09/27/20 06:54

Analyst: EK

Extraction Method: EPA 3546 Extraction Date: 09/25/20 13:29

| arameter                     | Result          | Qualifier   | Units     | RL    |        | MDL         |
|------------------------------|-----------------|-------------|-----------|-------|--------|-------------|
| emivolatile Organics by GC/M | S - Westborough | n Lab for s | ample(s): | 01-03 | Batch: | WG1414652-1 |
| Acenaphthene                 | ND              |             | ug/kg     | 130   |        | 17.         |
| Hexachlorobenzene            | ND              |             | ug/kg     | 98    |        | 18.         |
| Bis(2-chloroethyl)ether      | ND              |             | ug/kg     | 150   |        | 22.         |
| 2-Chloronaphthalene          | ND              |             | ug/kg     | 160   |        | 16.         |
| 3,3'-Dichlorobenzidine       | ND              |             | ug/kg     | 160   |        | 44.         |
| 2,4-Dinitrotoluene           | ND              |             | ug/kg     | 160   |        | 33.         |
| 2,6-Dinitrotoluene           | ND              |             | ug/kg     | 160   |        | 28.         |
| Fluoranthene                 | ND              |             | ug/kg     | 98    |        | 19.         |
| 4-Chlorophenyl phenyl ether  | ND              |             | ug/kg     | 160   |        | 18.         |
| 4-Bromophenyl phenyl ether   | ND              |             | ug/kg     | 160   |        | 25.         |
| Bis(2-chloroisopropyl)ether  | ND              |             | ug/kg     | 200   |        | 28.         |
| Bis(2-chloroethoxy)methane   | ND              |             | ug/kg     | 180   |        | 16.         |
| Hexachlorobutadiene          | ND              |             | ug/kg     | 160   |        | 24.         |
| Hexachlorocyclopentadiene    | ND              |             | ug/kg     | 470   |        | 150         |
| Hexachloroethane             | ND              |             | ug/kg     | 130   |        | 26.         |
| Isophorone                   | ND              |             | ug/kg     | 150   |        | 21.         |
| Naphthalene                  | ND              |             | ug/kg     | 160   |        | 20.         |
| Nitrobenzene                 | ND              |             | ug/kg     | 150   |        | 24.         |
| NDPA/DPA                     | ND              |             | ug/kg     | 130   |        | 19.         |
| n-Nitrosodi-n-propylamine    | ND              |             | ug/kg     | 160   |        | 25.         |
| Bis(2-ethylhexyl)phthalate   | ND              |             | ug/kg     | 160   |        | 57.         |
| Butyl benzyl phthalate       | ND              |             | ug/kg     | 160   |        | 41.         |
| Di-n-butylphthalate          | ND              |             | ug/kg     | 160   |        | 31.         |
| Di-n-octylphthalate          | ND              |             | ug/kg     | 160   |        | 56.         |
| Diethyl phthalate            | ND              |             | ug/kg     | 160   |        | 15.         |
| Dimethyl phthalate           | ND              |             | ug/kg     | 160   |        | 34.         |
| Benzo(a)anthracene           | ND              |             | ug/kg     | 98    |        | 18.         |
| Benzo(a)pyrene               | ND              |             | ug/kg     | 130   |        | 40.         |
| Benzo(b)fluoranthene         | ND              |             | ug/kg     | 98    |        | 28.         |



**Project Name:** 1155 NIAGARA **Project Number:** 

T0550-020-001

Lab Number: L2040164

Report Date: 09/30/20

## Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 09/27/20 06:54

Analyst: ΕK Extraction Method: EPA 3546 09/25/20 13:29 **Extraction Date:** 

| arameter                      | Result        | Qualifier   | Units     | RL    |        | MDL         |
|-------------------------------|---------------|-------------|-----------|-------|--------|-------------|
| emivolatile Organics by GC/MS | - Westborough | n Lab for s | ample(s): | 01-03 | Batch: | WG1414652-1 |
| Benzo(k)fluoranthene          | ND            |             | ug/kg     | 98    |        | 26.         |
| Chrysene                      | ND            |             | ug/kg     | 98    |        | 17.         |
| Acenaphthylene                | ND            |             | ug/kg     | 130   |        | 25.         |
| Anthracene                    | ND            |             | ug/kg     | 98    |        | 32.         |
| Benzo(ghi)perylene            | ND            |             | ug/kg     | 130   |        | 19.         |
| Fluorene                      | ND            |             | ug/kg     | 160   |        | 16.         |
| Phenanthrene                  | ND            |             | ug/kg     | 98    |        | 20.         |
| Dibenzo(a,h)anthracene        | ND            |             | ug/kg     | 98    |        | 19.         |
| Indeno(1,2,3-cd)pyrene        | ND            |             | ug/kg     | 130   |        | 23.         |
| Pyrene                        | ND            |             | ug/kg     | 98    |        | 16.         |
| Biphenyl                      | ND            |             | ug/kg     | 370   |        | 38.         |
| 4-Chloroaniline               | ND            |             | ug/kg     | 160   |        | 30.         |
| 2-Nitroaniline                | ND            |             | ug/kg     | 160   |        | 32.         |
| 3-Nitroaniline                | ND            |             | ug/kg     | 160   |        | 31.         |
| 4-Nitroaniline                | ND            |             | ug/kg     | 160   |        | 68.         |
| Dibenzofuran                  | ND            |             | ug/kg     | 160   |        | 16.         |
| 2-Methylnaphthalene           | ND            |             | ug/kg     | 200   |        | 20.         |
| 1,2,4,5-Tetrachlorobenzene    | ND            |             | ug/kg     | 160   |        | 17.         |
| Acetophenone                  | ND            |             | ug/kg     | 160   |        | 20.         |
| 2,4,6-Trichlorophenol         | ND            |             | ug/kg     | 98    |        | 31.         |
| p-Chloro-m-cresol             | ND            |             | ug/kg     | 160   |        | 24.         |
| 2-Chlorophenol                | ND            |             | ug/kg     | 160   |        | 19.         |
| 2,4-Dichlorophenol            | ND            |             | ug/kg     | 150   |        | 26.         |
| 2,4-Dimethylphenol            | ND            |             | ug/kg     | 160   |        | 54.         |
| 2-Nitrophenol                 | ND            |             | ug/kg     | 350   |        | 62.         |
| 4-Nitrophenol                 | ND            |             | ug/kg     | 230   |        | 67.         |
| 2,4-Dinitrophenol             | ND            |             | ug/kg     | 790   |        | 76.         |
| 4,6-Dinitro-o-cresol          | ND            |             | ug/kg     | 430   |        | 79.         |
| Pentachlorophenol             | ND            |             | ug/kg     | 130   |        | 36.         |



**Project Number:** T0550-020-001 **Report Date:** 09/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 09/27/20 06:54

Analyst: EK

Extraction Method: EPA 3546
Extraction Date: 09/25/20 13:29

| Parameter                          | Result      | Qualifier | Units     | RL    | MDL                |  |
|------------------------------------|-------------|-----------|-----------|-------|--------------------|--|
| Semivolatile Organics by GC/MS - \ | Nestborough | Lab for s | ample(s): | 01-03 | Batch: WG1414652-1 |  |
| Phenol                             | ND          |           | ug/kg     | 160   | 25.                |  |
| 2-Methylphenol                     | ND          |           | ug/kg     | 160   | 25.                |  |
| 3-Methylphenol/4-Methylphenol      | ND          |           | ug/kg     | 240   | 26.                |  |
| 2,4,5-Trichlorophenol              | ND          |           | ug/kg     | 160   | 31.                |  |
| Carbazole                          | ND          |           | ug/kg     | 160   | 16.                |  |
| Atrazine                           | ND          |           | ug/kg     | 130   | 57.                |  |
| Benzaldehyde                       | ND          |           | ug/kg     | 220   | 44.                |  |
| Caprolactam                        | ND          |           | ug/kg     | 160   | 50.                |  |
| 2,3,4,6-Tetrachlorophenol          | ND          |           | ug/kg     | 160   | 33.                |  |

| Surrogate            | %Recovery Q | Acceptance<br>ualifier Criteria |
|----------------------|-------------|---------------------------------|
| 2-Fluorophenol       | 106         | 25-120                          |
| Phenol-d6            | 107         | 10-120                          |
| Nitrobenzene-d5      | 102         | 23-120                          |
| 2-Fluorobiphenyl     | 100         | 30-120                          |
| 2,4,6-Tribromophenol | 97          | 10-136                          |
| 4-Terphenyl-d14      | 100         | 18-120                          |



**Project Name:** 1155 NIAGARA

Project Number: T0550-020-001

Lab Number: L2040164

| Parameter                        | LCS<br>%Recovery      | Qual             | LCSD<br>%Recovery | %Recovery<br>Qual Limits | RPD  | RPD<br>Qual Limits |
|----------------------------------|-----------------------|------------------|-------------------|--------------------------|------|--------------------|
| Semivolatile Organics by GC/MS - | Westborough Lab Assoc | iated sample(s): | 01-03 Batch:      | WG1414652-2 WG14146      | 52-3 |                    |
| Acenaphthene                     | 98                    |                  | 98                | 31-137                   | 0    | 50                 |
| Hexachlorobenzene                | 104                   |                  | 104               | 40-140                   | 0    | 50                 |
| Bis(2-chloroethyl)ether          | 99                    |                  | 97                | 40-140                   | 2    | 50                 |
| 2-Chloronaphthalene              | 110                   |                  | 110               | 40-140                   | 0    | 50                 |
| 3,3'-Dichlorobenzidine           | 97                    |                  | 96                | 40-140                   | 1    | 50                 |
| 2,4-Dinitrotoluene               | 117                   |                  | 121               | 40-132                   | 3    | 50                 |
| 2,6-Dinitrotoluene               | 127                   |                  | 124               | 40-140                   | 2    | 50                 |
| Fluoranthene                     | 107                   |                  | 107               | 40-140                   | 0    | 50                 |
| 4-Chlorophenyl phenyl ether      | 106                   |                  | 107               | 40-140                   | 1    | 50                 |
| 4-Bromophenyl phenyl ether       | 112                   |                  | 110               | 40-140                   | 2    | 50                 |
| Bis(2-chloroisopropyl)ether      | 99                    |                  | 96                | 40-140                   | 3    | 50                 |
| Bis(2-chloroethoxy)methane       | 115                   |                  | 113               | 40-117                   | 2    | 50                 |
| Hexachlorobutadiene              | 94                    |                  | 95                | 40-140                   | 1    | 50                 |
| Hexachlorocyclopentadiene        | 96                    |                  | 95                | 40-140                   | 1    | 50                 |
| Hexachloroethane                 | 88                    |                  | 87                | 40-140                   | 1    | 50                 |
| Isophorone                       | 109                   |                  | 107               | 40-140                   | 2    | 50                 |
| Naphthalene                      | 97                    |                  | 97                | 40-140                   | 0    | 50                 |
| Nitrobenzene                     | 109                   |                  | 108               | 40-140                   | 1    | 50                 |
| NDPA/DPA                         | 109                   |                  | 109               | 36-157                   | 0    | 50                 |
| n-Nitrosodi-n-propylamine        | 116                   |                  | 118               | 32-121                   | 2    | 50                 |
| Bis(2-ethylhexyl)phthalate       | 122                   |                  | 122               | 40-140                   | 0    | 50                 |
| Butyl benzyl phthalate           | 118                   |                  | 119               | 40-140                   | 1    | 50                 |
| Di-n-butylphthalate              | 115                   |                  | 116               | 40-140                   | 1    | 50                 |
|                                  |                       |                  |                   |                          |      |                    |



**Project Name:** 1155 NIAGARA

Project Number: T0550-020-001

Lab Number: L2040164

| Parameter                          | LCS<br>%Recovery (        | LCSD<br>Qual %Recovery | %Recovery<br>Qual Limits | RPD  | RPD<br>Qual Limits |
|------------------------------------|---------------------------|------------------------|--------------------------|------|--------------------|
| Semivolatile Organics by GC/MS - W | estborough Lab Associated | sample(s): 01-03 Batch | : WG1414652-2 WG14146    | 52-3 |                    |
| Di-n-octylphthalate                | 119                       | 119                    | 40-140                   | 0    | 50                 |
| Diethyl phthalate                  | 108                       | 109                    | 40-140                   | 1    | 50                 |
| Dimethyl phthalate                 | 118                       | 114                    | 40-140                   | 3    | 50                 |
| Benzo(a)anthracene                 | 102                       | 104                    | 40-140                   | 2    | 50                 |
| Benzo(a)pyrene                     | 114                       | 115                    | 40-140                   | 1    | 50                 |
| Benzo(b)fluoranthene               | 109                       | 117                    | 40-140                   | 7    | 50                 |
| Benzo(k)fluoranthene               | 104                       | 101                    | 40-140                   | 3    | 50                 |
| Chrysene                           | 100                       | 101                    | 40-140                   | 1    | 50                 |
| Acenaphthylene                     | 111                       | 110                    | 40-140                   | 1    | 50                 |
| Anthracene                         | 105                       | 107                    | 40-140                   | 2    | 50                 |
| Benzo(ghi)perylene                 | 112                       | 113                    | 40-140                   | 1    | 50                 |
| Fluorene                           | 107                       | 107                    | 40-140                   | 0    | 50                 |
| Phenanthrene                       | 102                       | 102                    | 40-140                   | 0    | 50                 |
| Dibenzo(a,h)anthracene             | 111                       | 113                    | 40-140                   | 2    | 50                 |
| Indeno(1,2,3-cd)pyrene             | 118                       | 119                    | 40-140                   | 1    | 50                 |
| Pyrene                             | 104                       | 104                    | 35-142                   | 0    | 50                 |
| Biphenyl                           | 120                       | 122                    | 37-127                   | 2    | 50                 |
| 4-Chloroaniline                    | 104                       | 96                     | 40-140                   | 8    | 50                 |
| 2-Nitroaniline                     | 127                       | 126                    | 47-134                   | 1    | 50                 |
| 3-Nitroaniline                     | 105                       | 100                    | 26-129                   | 5    | 50                 |
| 4-Nitroaniline                     | 114                       | 113                    | 41-125                   | 1    | 50                 |
| Dibenzofuran                       | 105                       | 105                    | 40-140                   | 0    | 50                 |
| 2-Methylnaphthalene                | 109                       | 109                    | 40-140                   | 0    | 50                 |
|                                    |                           |                        |                          |      |                    |



**Project Name:** 1155 NIAGARA

**Project Number:** 

T0550-020-001

Lab Number: L2040164

| Parameter                               | LCS<br>%Recovery | Qual             | LCSD<br>%Recove | ry Qual      | %Recovery<br>Limits | RPD    | RPD<br>Qual Limits |  |
|-----------------------------------------|------------------|------------------|-----------------|--------------|---------------------|--------|--------------------|--|
| Semivolatile Organics by GC/MS - Westbo | orough Lab Assoc | iated sample(s): | : 01-03 I       | Batch: WG141 | 14652-2 WG1414      | 1652-3 |                    |  |
| 1,2,4,5-Tetrachlorobenzene              | 113              |                  | 112             |              | 40-117              | 1      | 50                 |  |
| Acetophenone                            | 127              |                  | 126             |              | 14-144              | 1      | 50                 |  |
| 2,4,6-Trichlorophenol                   | 124              |                  | 126             |              | 30-130              | 2      | 50                 |  |
| p-Chloro-m-cresol                       | 126              | Q                | 124             | Q            | 26-103              | 2      | 50                 |  |
| 2-Chlorophenol                          | 110              | Q                | 108             | Q            | 25-102              | 2      | 50                 |  |
| 2,4-Dichlorophenol                      | 126              |                  | 127             |              | 30-130              | 1      | 50                 |  |
| 2,4-Dimethylphenol                      | 119              |                  | 120             |              | 30-130              | 1      | 50                 |  |
| 2-Nitrophenol                           | 118              |                  | 115             |              | 30-130              | 3      | 50                 |  |
| 4-Nitrophenol                           | 114              |                  | 114             |              | 11-114              | 0      | 50                 |  |
| 2,4-Dinitrophenol                       | 101              |                  | 100             |              | 4-130               | 1      | 50                 |  |
| 4,6-Dinitro-o-cresol                    | 110              |                  | 109             |              | 10-130              | 1      | 50                 |  |
| Pentachlorophenol                       | 109              |                  | 109             |              | 17-109              | 0      | 50                 |  |
| Phenol                                  | 110              | Q                | 110             | Q            | 26-90               | 0      | 50                 |  |
| 2-Methylphenol                          | 112              |                  | 110             |              | 30-130.             | 2      | 50                 |  |
| 3-Methylphenol/4-Methylphenol           | 113              |                  | 112             |              | 30-130              | 1      | 50                 |  |
| 2,4,5-Trichlorophenol                   | 123              |                  | 115             |              | 30-130              | 7      | 50                 |  |
| Carbazole                               | 111              |                  | 111             |              | 54-128              | 0      | 50                 |  |
| Atrazine                                | 124              |                  | 124             |              | 40-140              | 0      | 50                 |  |
| Benzaldehyde                            | 110              |                  | 112             |              | 40-140              | 2      | 50                 |  |
| Caprolactam                             | 140              | Q                | 139             | Q            | 15-130              | 1      | 50                 |  |
| 2,3,4,6-Tetrachlorophenol               | 111              |                  | 113             |              | 40-140              | 2      | 50                 |  |



**Project Name:** 1155 NIAGARA

Lab Number:

L2040164

Project Number: T0550-020-001

Report Date:

09/30/20

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG1414652-2 WG1414652-3

| Surrogate            | LCS<br>%Recovery Qua | LCSD<br>al %Recovery Qual | Acceptance<br>Criteria |
|----------------------|----------------------|---------------------------|------------------------|
| 2-Fluorophenol       | 104                  | 103                       | 25-120                 |
| Phenol-d6            | 109                  | 110                       | 10-120                 |
| Nitrobenzene-d5      | 108                  | 106                       | 23-120                 |
| 2-Fluorobiphenyl     | 103                  | 105                       | 30-120                 |
| 2,4,6-Tribromophenol | 112                  | 111                       | 10-136                 |
| 4-Terphenyl-d14      | 100                  | 101                       | 18-120                 |



# INORGANICS & MISCELLANEOUS



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

**SAMPLE RESULTS** 

 Lab ID:
 L2040164-01
 Date Collected:
 09/23/20 09:20

 Client ID:
 TP-3 5-7 FT
 Date Received:
 09/23/20

 Sample Location:
 1155 NIAGARA
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil

| Parameter           | Result          | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|-----------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - | Westborough Lab | )         |       |       |     |                    |                  |                  |                      |         |
| Solids, Total       | 79.3            |           | %     | 0.100 | NA  | 1                  | -                | 09/24/20 12:23   | 121,2540G            | RI      |



Project Name: 1155 NIAGARA Lab Number: L2040164

**Project Number:** T0550-020-001 **Report Date:** 09/30/20

**SAMPLE RESULTS** 

 Lab ID:
 L2040164-02
 Date Collected:
 09/23/20 09:25

 Client ID:
 TP-3 8-9 FT
 Date Received:
 09/23/20

 Sample Location:
 1155 NIAGARA
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil

| Parameter           | Result          | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|-----------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - | Westborough Lab |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total       | 85.8            |           | %     | 0.100 | NA  | 1                  | -                | 09/24/20 12:23   | 121,2540G            | RI      |



**Project Name:** Lab Number: 1155 NIAGARA L2040164

Report Date: **Project Number:** 09/30/20 T0550-020-001

**SAMPLE RESULTS** 

Lab ID: Date Collected: L2040164-03 09/23/20 09:23 Client ID: TP-5 5-7 FT Date Received: 09/23/20 Not Specified Field Prep:

Sample Location: 1155 NIAGARA

Sample Depth:

Matrix: Soil

| Parameter           | Result          | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|-----------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - | Westborough Lab | )         |       |       |     |                    |                  |                  |                      |         |
| Solids, Total       | 85.2            |           | %     | 0.100 | NA  | 1                  | -                | 09/24/20 12:23   | 121,2540G            | RI      |



Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** 1155 NIAGARA L2040164 **Project Number:** Report Date: 09/30/20 T0550-020-001

| Parameter                           | Native Sam                  | ple D        | ouplicate Sample | Units      | RPD         | Qual       | RPD Limits |
|-------------------------------------|-----------------------------|--------------|------------------|------------|-------------|------------|------------|
| General Chemistry - Westborough Lab | Associated sample(s): 01-03 | QC Batch ID: | WG1414125-1      | QC Sample: | L2040071-01 | Client ID: | DUP Sample |
| Solids, Total                       | 94.3                        |              | 94.3             | %          | 0           |            | 20         |



Lab Number: L2040164

**Report Date:** 09/30/20

## Sample Receipt and Container Information

Were project specific reporting limits specified?

1155 NIAGARA

**Cooler Information** 

Project Name:

Cooler Custody Seal

A Absent

**Project Number:** T0550-020-001

| Container Info | ormation                    |        | Initial | Final | Temp  |      |        | Frozen          |                      |
|----------------|-----------------------------|--------|---------|-------|-------|------|--------|-----------------|----------------------|
| Container ID   | Container Type              | Cooler | рН      | рН    | deg C | Pres | Seal   | Date/Time       | Analysis(*)          |
| L2040164-01A   | Glass 120ml/4oz unpreserved | Α      | NA      |       | 3.2   | Υ    | Absent |                 | NYTCL-8260-R2(14)    |
| L2040164-01B   | Glass 120ml/4oz unpreserved | Α      | NA      |       | 3.2   | Υ    | Absent |                 | NYTCL-8270(14),TS(7) |
| L2040164-01X   | Vial MeOH preserved split   | Α      | NA      |       | 3.2   | Υ    | Absent |                 | NYTCL-8260-R2(14)    |
| L2040164-01Y   | Vial Water preserved split  | Α      | NA      |       | 3.2   | Υ    | Absent | 28-SEP-20 09:27 | NYTCL-8260-R2(14)    |
| L2040164-01Z   | Vial Water preserved split  | Α      | NA      |       | 3.2   | Υ    | Absent | 28-SEP-20 09:27 | NYTCL-8260-R2(14)    |
| L2040164-02A   | Glass 120ml/4oz unpreserved | Α      | NA      |       | 3.2   | Υ    | Absent |                 | NYTCL-8260-R2(14)    |
| L2040164-02B   | Glass 120ml/4oz unpreserved | Α      | NA      |       | 3.2   | Υ    | Absent |                 | NYTCL-8270(14),TS(7) |
| L2040164-02X   | Vial MeOH preserved split   | Α      | NA      |       | 3.2   | Υ    | Absent |                 | NYTCL-8260-R2(14)    |
| L2040164-02Y   | Vial Water preserved split  | Α      | NA      |       | 3.2   | Υ    | Absent | 28-SEP-20 09:27 | NYTCL-8260-R2(14)    |
| L2040164-02Z   | Vial Water preserved split  | Α      | NA      |       | 3.2   | Υ    | Absent | 28-SEP-20 09:27 | NYTCL-8260-R2(14)    |
| L2040164-03A   | Glass 120ml/4oz unpreserved | Α      | NA      |       | 3.2   | Υ    | Absent |                 | NYTCL-8260-R2(14)    |
| L2040164-03B   | Glass 120ml/4oz unpreserved | Α      | NA      |       | 3.2   | Υ    | Absent |                 | NYTCL-8270(14),TS(7) |
| L2040164-03X   | Vial MeOH preserved split   | Α      | NA      |       | 3.2   | Υ    | Absent |                 | NYTCL-8260-R2(14)    |
| L2040164-03Y   | Vial Water preserved split  | Α      | NA      |       | 3.2   | Υ    | Absent | 28-SEP-20 09:27 | NYTCL-8260-R2(14)    |
| L2040164-03Z   | Vial Water preserved split  | Α      | NA      |       | 3.2   | Υ    | Absent | 28-SEP-20 09:27 | NYTCL-8260-R2(14)    |



 Project Name:
 1155 NIAGARA
 Lab Number:
 L2040164

 Project Number:
 T0550-020-001
 Report Date:
 09/30/20

#### **GLOSSARY**

#### **Acronyms**

LCSD

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a

specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Laboratory Control Sample Duplicate: Refer to LCS.

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers



 Project Name:
 1155 NIAGARA
 Lab Number:
 L2040164

 Project Number:
 T0550-020-001
 Report Date:
 09/30/20

#### **Footnotes**

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### **Terms**

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: DU Report with 'J' Qualifiers



 Project Name:
 1155 NIAGARA
 Lab Number:
 L2040164

 Project Number:
 T0550-020-001
 Report Date:
 09/30/20

#### **Data Qualifiers**

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers



 Project Name:
 1155 NIAGARA
 Lab Number:
 L2040164

 Project Number:
 T0550-020-001
 Report Date:
 09/30/20

#### REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

#### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 17

Published Date: 4/28/2020 9:42:21 AM

#### Page 1 of 1

#### Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

**SM4500**: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

### **Mansfield Facility**

**SM 2540D:** TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

**EPA TO-12** Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

**EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

#### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

#### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 |              |        |                      |             |                 |               |        |          | -         | CORP BOX | A PARTY OF THE PAR | STORY .  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|--------------|--------|----------------------|-------------|-----------------|---------------|--------|----------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| ALPHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NEW YORK<br>CHAIN OF<br>CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Service Centers<br>Mahwah, NJ 07430: 35 Whitney<br>Albany, NY 12205: 14 Walker W<br>Tonawanda, NY 14150: 275 Coo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | av V      | te 105          | Pag          | of     |                      |             | te Red<br>n Lab |               | 9/2    | 13,      | /20       |          | PHA Job# 12048/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Westborough, MA 01581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mansfield, MA 02048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | TO PROFIT       | - X - 1-     | SVER   | De                   | elivera     | bles            |               | LUNE.  |          | Silci     |          | ing Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 8 Walkup Dr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 320 Forbes Blvd<br>TEL: 508-822-9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project Name:   155 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14642     | 4               |              |        |                      | ] AS        | SP-A            |               |        | ASP      |           |          | Same as Client Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| TEL: 508-898-9220<br>FAX: 508-898-9193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FAX: 508-622-3288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project Location:   55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MILL      | 444             | 40           |        |                      | _ E         | QuIS (          | 1 File)       |        | EQ       | 11S (4 Fi | le) PO   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1      |
| \$100,000,000,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project # To550 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                 |              |        |                      |             | ther            |               |        |          |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × 12-10/ |
| Client Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · vor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Use Project name as Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                 | 7            |        | R                    | egulat      | ory Re          | quiren        |        | re       | III A     |          | sposal Site Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| lient: TUKNKEY EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V. MEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project Manager: MIKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                 |              |        |                      | □ N         | Y TOGS          | 3             |        | NY       | Part 375  | Ple      | ease identify below location<br>plicable disposal facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of       |
| ddress 2558 HAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VENET INTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALPHAQuote #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CFORE     |                 |              |        |                      | ☐ A         | WQ Sta          | ndards        |        | NY       | CP-51     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| BIFFALO, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 1448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THE RESERVE OF THE PARTY OF THE | 91 13     | No. of the last | 三 多 五        | MISSE  | <b>表情</b> 被          | □ N         | Y Restr         | icted U       | se [   | Oth      | ег        | Dis      | sposal Facility:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| Phone: 716 - 856 - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Turn-Around Time<br>Standar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .57       | Due D           | alat         |        |                      | □ N         | Y Unre          | stricted      | Use    |          |           |          | Jun (X un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| ax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | # of D          |              |        |                      | $\square$ N | YC Sev          | wer Dis       | charge |          |           | L        | Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T        |
| email: mlesekowst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ei Dlom-tk. cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Rush (only if pre approve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | # 01 D          | ays.         |        | 1                    | NAL         | /SIS            |               |        |          |           | S        | ample Filtration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _ 0      |
| These samples have be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | en previously analy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | zed by Alpha L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                 |              |        |                      | T           | T               | -             |        |          |           |          | Done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t        |
| Other project specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | requirements/com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                 |              |        |                      | 2           |                 | -             |        | 1        | 1         |          | Lab to do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 |              |        |                      | tcPs1voc    | 3               |               |        | 1        |           |          | reservation Lab to do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |                 |              |        |                      | 5           | 2005            |               |        |          | 1         | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0        |
| Please specify Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or TAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,500,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                 |              |        | -                    | 2           | 1               |               | - 1    | 1        | - 1       | 1 10     | (Please Specify below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t        |
| 459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 |              | 1      |                      |             | اد              | - 1           |        | 1        |           | 1 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ALPHA Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 1,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | Collection      | Samp<br>Matr |        | ampler's<br>Initials | 回           | 15)             | - 1           |        | 1        |           | 1 1      | Sample Specific Commen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| (Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Da        |                 | 8            |        |                      | _           |                 | -             | _      | +        |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12       |
| State of the last | TP-3 5-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>(1</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9/23/     |                 | 3920 50      | 10 0   | CS.                  | ×           | X               | -             | -      | +        |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        |
| THE RESERVE AND ADDRESS OF THE PARTY OF THE | TP-3 8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120       | 925             | 5            | _      | 1                    | X           | Ž               | $\rightarrow$ | -      | +        | _         | 1        | = 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12       |
| 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TP-5 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *         | 102             | 3 4          | _      | 4                    | ×           | ~               | -             | -      | +        | +         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                 |              | _      | *                    |             |                 | -             | -      | -        | -         | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| A TO SEAT OUT THE COURSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 30      |                 |              |        | 7.70                 |             |                 | _             | -      | +        | -         | _        | 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jan.     |
| 三型加速的 (Act ) (Act )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                 | 100          |        | 1270                 | _           |                 |               | -      | -        | -         | _        | 11.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laboratoria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                 | Sec. 347.7   |        | XE                   |             | _               | _             | -      | $\dashv$ | -         | _        | - M-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5        |
| 100 四里安日里到79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C2500077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.18957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                 |              |        | 7 1                  |             | _               | _             | -      | $\dashv$ | -         | +        | 10.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mars.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 (000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _         |                 |              |        |                      | J           | _               | _             | -      | -        | -         | -        | 15.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HILL.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24/5EHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -         |                 | 6 18         | ~      | 100                  |             |                 | _             | -      | _        | -         | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lagible  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | policina de la contra del la contra del la contra del la contra de la contra del la contra de la contra de la contra del la | n No: MAS | 135             |              | Cantai | iner Type            | 1           | 1               |               |        | 10       |           |          | Please print clearly,<br>and completely. San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mples (  |
| Preservative Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Container Code P = Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Westboro: Certificatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - No. MAS | 145             |              | Contai | пет туре             | A           | A               |               |        |          | -         | -        | not be logged in an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d        |
| A = None<br>B = HCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A = Amber Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mansfield: Certificatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n No: MAL | ,10             |              |        |                      |             | A               |               |        |          |           |          | turnaround time clo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ck will  |
| C = HNO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ∨ = Vial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 |              | Pre    | eservative           | A           | 1               |               | 1      |          |           |          | start until any ambi<br>resolved. BY EXEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | guities  |
| D = H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G = Glass<br>B = Bacteria Cup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T. REEDELE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.25     |                 | Date/Time    |        | 0 0                  | Rece        | eived E         | y;            | 150    | _,       | Date/T    | ime      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LIENT    |
| E = NaOH<br>F = MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C = Cube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relinquish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 0/2             |              | 03     | 41                   | 4           | ived E          | U.            | /      | 9/2      | 3/20      | 16:39    | HAS READ AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AGREE    |
| G = NaHSO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O = Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Clock M Sai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | de        | 712             | 3/24 161     | 185    | -00                  | 5           |                 | -             | 100    |          |           | 11       | TO BE BOUND BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y ALPH   |
| H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E = Encore<br>D = BOD Bottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JUL GAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1         | 9/              | 23/10/16     | 7>     |                      | _           |                 |               |        |          |           |          | TERMS & CONDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IIONS.   |
| K/E = Zn Ac/NaOH<br>O = Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                 |              | -      |                      |             |                 |               | 77     | -        |           |          | (See reverse side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .,       |
| e 50 of 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TO SECURE A SECURE OF THE PARTY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |                 |              |        |                      |             |                 |               | -      | _        |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |



#### ANALYTICAL REPORT

Lab Number: L2040459

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Mike Lesakowski
Phone: (716) 856-0599

Project Name: 1155 NIAGARA ST

Project Number: T0550-020-001

Report Date: 10/01/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



**Project Name:** 1155 NIAGARA ST **Project Number:** T0550-020-001

**Lab Number:** L2040459 **Report Date:** 10/01/20

| Alpha<br>Sample ID | Client ID   | Matrix | Sample<br>Location | Collection Date/Time | Receive Date |
|--------------------|-------------|--------|--------------------|----------------------|--------------|
| L2040459-01        | TP-1 1-2FT  | SOIL   | 1155 NIAGARA ST    | 09/23/20 07:56       | 09/24/20     |
| L2040459-02        | TP-2 1-3FT  | SOIL   | 1155 NIAGARA ST    | 09/23/20 08:17       | 09/24/20     |
| L2040459-03        | TP-3 2-3FT  | SOIL   | 1155 NIAGARA ST    | 09/23/20 09:15       | 09/24/20     |
| L2040459-04        | TP-3 5-7FT  | SOIL   | 1155 NIAGARA ST    | 09/23/20 09:20       | 09/24/20     |
| L2040459-05        | TP-4 2-4FT  | SOIL   | 1155 NIAGARA ST    | 09/23/20 10:05       | 09/24/20     |
| L2040459-06        | TP-5 5-7FT  | SOIL   | 1155 NIAGARA ST    | 09/23/20 10:23       | 09/24/20     |
| L2040459-07        | TP-8 0-1FT  | SOIL   | 1155 NIAGARA ST    | 09/23/20 12:00       | 09/24/20     |
| L2040459-08        | TP-11 1-3FT | SOIL   | 1155 NIAGARA ST    | 09/23/20 12:31       | 09/24/20     |



Project Name:1155 NIAGARA STLab Number:L2040459Project Number:T0550-020-001Report Date:10/01/20

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Project Management at 800-624-9220 with any questions. |  |
|-----------------------------------------------------------------------|--|
|                                                                       |  |



 Project Name:
 1155 NIAGARA ST
 Lab Number:
 L2040459

 Project Number:
 T0550-020-001
 Report Date:
 10/01/20

#### **Case Narrative (continued)**

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/01/20

Jufani Morrissey-Tiffani Morrissey

# **ORGANICS**



## **SEMIVOLATILES**



**Project Name:** 1155 NIAGARA ST **Lab Number:** L2040459

**Project Number:** T0550-020-001 **Report Date:** 10/01/20

**SAMPLE RESULTS** 

Lab ID: L2040459-01 D Date Collected: 09/23/20 07:56

Client ID: TP-1 1-2FT Date Received: 09/24/20 Sample Location: 1155 NIAGARA ST Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 09/27/20 03:30

Analyst: JG
Percent Solids: 83%

09/30/20 02:10

| Parameter                          | Result          | Qualifier | Units | RL   | MDL | Dilution Factor |
|------------------------------------|-----------------|-----------|-------|------|-----|-----------------|
| Semivolatile Organics by GC/MS - V | Vestborough Lab |           |       |      |     |                 |
| Acenaphthene                       | 8800            |           | ug/kg | 1600 | 200 | 10              |
| Fluoranthene                       | 59000           |           | ug/kg | 1200 | 230 | 10              |
| Naphthalene                        | 8200            |           | ug/kg | 2000 | 240 | 10              |
| Benzo(a)anthracene                 | 32000           |           | ug/kg | 1200 | 220 | 10              |
| Benzo(a)pyrene                     | 29000           |           | ug/kg | 1600 | 480 | 10              |
| Benzo(b)fluoranthene               | 34000           |           | ug/kg | 1200 | 330 | 10              |
| Benzo(k)fluoranthene               | 13000           |           | ug/kg | 1200 | 320 | 10              |
| Chrysene                           | 28000           |           | ug/kg | 1200 | 200 | 10              |
| Acenaphthylene                     | 880             | J         | ug/kg | 1600 | 300 | 10              |
| Anthracene                         | 19000           |           | ug/kg | 1200 | 380 | 10              |
| Benzo(ghi)perylene                 | 16000           |           | ug/kg | 1600 | 230 | 10              |
| Fluorene                           | 9100            |           | ug/kg | 2000 | 190 | 10              |
| Phenanthrene                       | 58000           |           | ug/kg | 1200 | 240 | 10              |
| Dibenzo(a,h)anthracene             | 5300            |           | ug/kg | 1200 | 230 | 10              |
| Indeno(1,2,3-cd)pyrene             | 17000           |           | ug/kg | 1600 | 280 | 10              |
| Pyrene                             | 49000           |           | ug/kg | 1200 | 200 | 10              |

| Surrogate        | % Recovery | Acceptanc<br>Qualifier Criteria | e<br> |
|------------------|------------|---------------------------------|-------|
| Nitrobenzene-d5  | 67         | 23-120                          |       |
| 2-Fluorobiphenyl | 67         | 30-120                          |       |
| 4-Terphenyl-d14  | 80         | 18-120                          |       |



**Project Name:** 1155 NIAGARA ST **Lab Number:** L2040459

**Project Number:** T0550-020-001 **Report Date:** 10/01/20

**SAMPLE RESULTS** 

Lab ID: L2040459-02 D Date Collected: 09/23/20 08:17

Client ID: TP-2 1-3FT Date Received: 09/24/20 Sample Location: 1155 NIAGARA ST Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 09/27/20 03:30

Analyst: JG Percent Solids: 88%

09/30/20 02:32

| Parameter                          | Result         | Qualifier | Units | RL  | MDL | Dilution Factor |  |
|------------------------------------|----------------|-----------|-------|-----|-----|-----------------|--|
| Semivolatile Organics by GC/MS - W | estborough Lab |           |       |     |     |                 |  |
| Acenaphthene                       | 4000           |           | ug/kg | 750 | 97. | 5               |  |
| Fluoranthene                       | 26000          |           | ug/kg | 560 | 110 | 5               |  |
| Naphthalene                        | 3300           |           | ug/kg | 940 | 110 | 5               |  |
| Benzo(a)anthracene                 | 15000          |           | ug/kg | 560 | 100 | 5               |  |
| Benzo(a)pyrene                     | 13000          |           | ug/kg | 750 | 230 | 5               |  |
| Benzo(b)fluoranthene               | 16000          |           | ug/kg | 560 | 160 | 5               |  |
| Benzo(k)fluoranthene               | 5900           |           | ug/kg | 560 | 150 | 5               |  |
| Chrysene                           | 13000          |           | ug/kg | 560 | 98. | 5               |  |
| Acenaphthylene                     | 350            | J         | ug/kg | 750 | 140 | 5               |  |
| Anthracene                         | 8200           |           | ug/kg | 560 | 180 | 5               |  |
| Benzo(ghi)perylene                 | 7300           |           | ug/kg | 750 | 110 | 5               |  |
| Fluorene                           | 3900           |           | ug/kg | 940 | 91. | 5               |  |
| Phenanthrene                       | 26000          |           | ug/kg | 560 | 110 | 5               |  |
| Dibenzo(a,h)anthracene             | 2000           |           | ug/kg | 560 | 110 | 5               |  |
| Indeno(1,2,3-cd)pyrene             | 8000           |           | ug/kg | 750 | 130 | 5               |  |
| Pyrene                             | 22000          |           | ug/kg | 560 | 93. | 5               |  |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 68         | 23-120                           |  |
| 2-Fluorobiphenyl | 64         | 30-120                           |  |
| 4-Terphenyl-d14  | 62         | 18-120                           |  |



L2040459

**Project Name:** 1155 NIAGARA ST

**Project Number:** T0550-020-001

**SAMPLE RESULTS** 

Report Date: 10/01/20

Lab Number:

Lab ID: L2040459-03 Client ID: TP-3 2-3FT

Sample Location: 1155 NIAGARA ST

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 09/28/20 22:41

Analyst: ΕK 90% Percent Solids:

Date Collected: 09/23/20 09:15

Date Received: 09/24/20

Field Prep: Not Specified

Extraction Method: EPA 3546 **Extraction Date:** 09/27/20 03:30

| Parameter                                        | Result | Qualifier | Units | RL  | MDL | Dilution Factor |  |  |  |
|--------------------------------------------------|--------|-----------|-------|-----|-----|-----------------|--|--|--|
| Semivolatile Organics by GC/MS - Westborough Lab |        |           |       |     |     |                 |  |  |  |
| Acenaphthene                                     | 180    |           | ug/kg | 150 | 19. | 1               |  |  |  |
| Fluoranthene                                     | 2900   |           | ug/kg | 110 | 21. | 1               |  |  |  |
| Naphthalene                                      | 390    |           | ug/kg | 180 | 22. | 1               |  |  |  |
| Benzo(a)anthracene                               | 1600   |           | ug/kg | 110 | 21. | 1               |  |  |  |
| Benzo(a)pyrene                                   | 2100   |           | ug/kg | 150 | 45. | 1               |  |  |  |
| Benzo(b)fluoranthene                             | 2400   |           | ug/kg | 110 | 31. | 1               |  |  |  |
| Benzo(k)fluoranthene                             | 710    |           | ug/kg | 110 | 29. | 1               |  |  |  |
| Chrysene                                         | 1400   |           | ug/kg | 110 | 19. | 1               |  |  |  |
| Acenaphthylene                                   | 120    | J         | ug/kg | 150 | 28. | 1               |  |  |  |
| Anthracene                                       | 630    |           | ug/kg | 110 | 36. | 1               |  |  |  |
| Benzo(ghi)perylene                               | 1400   |           | ug/kg | 150 | 22. | 1               |  |  |  |
| Fluorene                                         | 270    |           | ug/kg | 180 | 18. | 1               |  |  |  |
| Phenanthrene                                     | 2100   |           | ug/kg | 110 | 22. | 1               |  |  |  |
| Dibenzo(a,h)anthracene                           | 320    |           | ug/kg | 110 | 21. | 1               |  |  |  |
| Indeno(1,2,3-cd)pyrene                           | 1700   |           | ug/kg | 150 | 26. | 1               |  |  |  |
| Pyrene                                           | 2400   |           | ug/kg | 110 | 18. | 1               |  |  |  |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 75         | 23-120                           |  |
| 2-Fluorobiphenyl | 68         | 30-120                           |  |
| 4-Terphenyl-d14  | 63         | 18-120                           |  |



**Project Name:** Lab Number: 1155 NIAGARA ST L2040459

**Project Number:** Report Date: T0550-020-001 10/01/20

**SAMPLE RESULTS** 

Lab ID: D Date Collected: 09/23/20 10:05 L2040459-05

Date Received: Client ID: TP-4 2-4FT 09/24/20 Sample Location: Field Prep: 1155 NIAGARA ST Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 09/27/20 03:30 Analytical Method: 1,8270D Analytical Date:

Analyst: JG 76% Percent Solids:

09/30/20 02:54

| Parameter                                        | Result | Qualifier | Units | RL   | MDL | Dilution Factor |  |  |  |
|--------------------------------------------------|--------|-----------|-------|------|-----|-----------------|--|--|--|
| Semivolatile Organics by GC/MS - Westborough Lab |        |           |       |      |     |                 |  |  |  |
| Acenaphthene                                     | 12000  |           | ug/kg | 1700 | 220 | 10              |  |  |  |
| Fluoranthene                                     | 67000  |           | ug/kg | 1300 | 240 | 10              |  |  |  |
| Naphthalene                                      | 12000  |           | ug/kg | 2100 | 260 | 10              |  |  |  |
| Benzo(a)anthracene                               | 38000  |           | ug/kg | 1300 | 240 | 10              |  |  |  |
| Benzo(a)pyrene                                   | 32000  |           | ug/kg | 1700 | 520 | 10              |  |  |  |
| Benzo(b)fluoranthene                             | 37000  |           | ug/kg | 1300 | 360 | 10              |  |  |  |
| Benzo(k)fluoranthene                             | 17000  |           | ug/kg | 1300 | 340 | 10              |  |  |  |
| Chrysene                                         | 33000  |           | ug/kg | 1300 | 220 | 10              |  |  |  |
| Acenaphthylene                                   | 660    | J         | ug/kg | 1700 | 330 | 10              |  |  |  |
| Anthracene                                       | 26000  |           | ug/kg | 1300 | 420 | 10              |  |  |  |
| Benzo(ghi)perylene                               | 17000  |           | ug/kg | 1700 | 250 | 10              |  |  |  |
| Fluorene                                         | 14000  |           | ug/kg | 2100 | 210 | 10              |  |  |  |
| Phenanthrene                                     | 73000  |           | ug/kg | 1300 | 260 | 10              |  |  |  |
| Dibenzo(a,h)anthracene                           | 5700   |           | ug/kg | 1300 | 250 | 10              |  |  |  |
| Indeno(1,2,3-cd)pyrene                           | 19000  |           | ug/kg | 1700 | 300 | 10              |  |  |  |
| Pyrene                                           | 54000  |           | ug/kg | 1300 | 210 | 10              |  |  |  |

| Surrogate        | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|------------------|------------|-----------|------------------------|--|
| Nitrobenzene-d5  | 60         |           | 23-120                 |  |
| 2-Fluorobiphenyl | 66         |           | 30-120                 |  |
| 4-Terphenyl-d14  | 78         |           | 18-120                 |  |



L2040459

09/23/20 12:00

Not Specified

09/24/20

**Project Name:** 1155 NIAGARA ST

**Project Number:** T0550-020-001

**SAMPLE RESULTS** 

Report Date: 10/01/20

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2040459-07

Client ID: TP-8 0-1FT

Sample Location: 1155 NIAGARA ST

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 09/28/20 22:17

Analyst: ΕK 79% Percent Solids:

Extraction Method: EPA 3546

**Extraction Date:** 09/27/20 03:30

| Parameter                                        | Result | Qualifier | Units | RL  | MDL | Dilution Factor |  |  |  |  |
|--------------------------------------------------|--------|-----------|-------|-----|-----|-----------------|--|--|--|--|
| Semivolatile Organics by GC/MS - Westborough Lab |        |           |       |     |     |                 |  |  |  |  |
| Acenaphthene                                     | 58     | J         | ug/kg | 170 | 22. | 1               |  |  |  |  |
| Fluoranthene                                     | 870    |           | ug/kg | 120 | 24. | 1               |  |  |  |  |
| Naphthalene                                      | 34     | J         | ug/kg | 210 | 25. | 1               |  |  |  |  |
| Benzo(a)anthracene                               | 380    |           | ug/kg | 120 | 23. | 1               |  |  |  |  |
| Benzo(a)pyrene                                   | 320    |           | ug/kg | 170 | 51. | 1               |  |  |  |  |
| Benzo(b)fluoranthene                             | 430    |           | ug/kg | 120 | 35. | 1               |  |  |  |  |
| Benzo(k)fluoranthene                             | 130    |           | ug/kg | 120 | 33. | 1               |  |  |  |  |
| Chrysene                                         | 310    |           | ug/kg | 120 | 22. | 1               |  |  |  |  |
| Acenaphthylene                                   | ND     |           | ug/kg | 170 | 32. | 1               |  |  |  |  |
| Anthracene                                       | 180    |           | ug/kg | 120 | 41. | 1               |  |  |  |  |
| Benzo(ghi)perylene                               | 170    |           | ug/kg | 170 | 24. | 1               |  |  |  |  |
| Fluorene                                         | 59     | J         | ug/kg | 210 | 20. | 1               |  |  |  |  |
| Phenanthrene                                     | 560    |           | ug/kg | 120 | 25. | 1               |  |  |  |  |
| Dibenzo(a,h)anthracene                           | 44     | J         | ug/kg | 120 | 24. | 1               |  |  |  |  |
| Indeno(1,2,3-cd)pyrene                           | 210    |           | ug/kg | 170 | 29. | 1               |  |  |  |  |
| Pyrene                                           | 710    |           | ug/kg | 120 | 21. | 1               |  |  |  |  |
|                                                  |        |           |       |     |     |                 |  |  |  |  |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 86         | 23-120                           |  |
| 2-Fluorobiphenyl | 77         | 30-120                           |  |
| 4-Terphenyl-d14  | 73         | 18-120                           |  |



**Project Name:** 1155 NIAGARA ST **Lab Number:** L2040459

**Project Number:** T0550-020-001 **Report Date:** 10/01/20

**SAMPLE RESULTS** 

Lab ID: L2040459-08 Date Collected: 09/23/20 12:31

Client ID: TP-11 1-3FT Date Received: 09/24/20 Sample Location: 1155 NIAGARA ST Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 09/27/20 03:30

Analytical Date: 09/28/20 23:04

Analyst: EK Percent Solids: 83%

| Parameter                                        | Result | Qualifier | Units | RL  | MDL | Dilution Factor |  |  |  |  |
|--------------------------------------------------|--------|-----------|-------|-----|-----|-----------------|--|--|--|--|
| Semivolatile Organics by GC/MS - Westborough Lab |        |           |       |     |     |                 |  |  |  |  |
| Acenaphthene                                     | ND     |           | ug/kg | 160 | 21. | 1               |  |  |  |  |
| Fluoranthene                                     | 320    |           | ug/kg | 120 | 23. | 1               |  |  |  |  |
| Naphthalene                                      | ND     |           | ug/kg | 200 | 24. | 1               |  |  |  |  |
| Benzo(a)anthracene                               | 120    |           | ug/kg | 120 | 22. | 1               |  |  |  |  |
| Benzo(a)pyrene                                   | 110    | J         | ug/kg | 160 | 49. | 1               |  |  |  |  |
| Benzo(b)fluoranthene                             | 130    |           | ug/kg | 120 | 34. | 1               |  |  |  |  |
| Benzo(k)fluoranthene                             | 46     | J         | ug/kg | 120 | 32. | 1               |  |  |  |  |
| Chrysene                                         | 110    | J         | ug/kg | 120 | 21. | 1               |  |  |  |  |
| Acenaphthylene                                   | ND     |           | ug/kg | 160 | 31. | 1               |  |  |  |  |
| Anthracene                                       | 47     | J         | ug/kg | 120 | 39. | 1               |  |  |  |  |
| Benzo(ghi)perylene                               | 68     | J         | ug/kg | 160 | 23. | 1               |  |  |  |  |
| Fluorene                                         | ND     |           | ug/kg | 200 | 19. | 1               |  |  |  |  |
| Phenanthrene                                     | 180    |           | ug/kg | 120 | 24. | 1               |  |  |  |  |
| Dibenzo(a,h)anthracene                           | ND     |           | ug/kg | 120 | 23. | 1               |  |  |  |  |
| Indeno(1,2,3-cd)pyrene                           | 70     | J         | ug/kg | 160 | 28. | 1               |  |  |  |  |
| Pyrene                                           | 260    |           | ug/kg | 120 | 20. | 1               |  |  |  |  |

| Surrogate        | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|------------------|------------|-----------|------------------------|--|
| Nitrobenzene-d5  | 75         |           | 23-120                 |  |
| 2-Fluorobiphenyl | 67         |           | 30-120                 |  |
| 4-Terphenyl-d14  | 52         |           | 18-120                 |  |



**Project Name:** Lab Number: 1155 NIAGARA ST

Report Date: **Project Number:** T0550-020-001 10/01/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date:

Extraction Method: EPA 3546

L2040459

09/28/20 13:46 09/27/20 03:30 **Extraction Date:** Analyst: ΕK

| Parameter                      | Result       | Qualifier   | Units     | RL             | MDL    |           |
|--------------------------------|--------------|-------------|-----------|----------------|--------|-----------|
| Semivolatile Organics by GC/MS | - Westboroug | h Lab for s | ample(s): | 01-03,05,07-08 | Batch: | WG1415078 |
| Acenaphthene                   | ND           |             | ug/kg     | 130            | 17.    |           |
| Fluoranthene                   | ND           |             | ug/kg     | 100            | 19.    |           |
| Naphthalene                    | ND           |             | ug/kg     | 170            | 20.    |           |
| Benzo(a)anthracene             | ND           |             | ug/kg     | 100            | 19.    |           |
| Benzo(a)pyrene                 | ND           |             | ug/kg     | 130            | 40.    |           |
| Benzo(b)fluoranthene           | ND           |             | ug/kg     | 100            | 28.    |           |
| Benzo(k)fluoranthene           | ND           |             | ug/kg     | 100            | 26.    |           |
| Chrysene                       | ND           |             | ug/kg     | 100            | 17.    |           |
| Acenaphthylene                 | ND           |             | ug/kg     | 130            | 26.    |           |
| Anthracene                     | ND           |             | ug/kg     | 100            | 32.    |           |
| Benzo(ghi)perylene             | ND           |             | ug/kg     | 130            | 20.    |           |
| Fluorene                       | ND           |             | ug/kg     | 170            | 16.    |           |
| Phenanthrene                   | ND           |             | ug/kg     | 100            | 20.    |           |
| Dibenzo(a,h)anthracene         | ND           |             | ug/kg     | 100            | 19.    |           |
| Indeno(1,2,3-cd)pyrene         | ND           |             | ug/kg     | 130            | 23.    |           |
| Pyrene                         | ND           |             | ug/kg     | 100            | 16.    |           |

| Surrogate            | %Recovery Qua  | Acceptance<br>lifier Criteria |
|----------------------|----------------|-------------------------------|
|                      | 78.1000 Tol. y |                               |
| 2-Fluorophenol       | 70             | 25-120                        |
| Phenol-d6            | 72             | 10-120                        |
| Nitrobenzene-d5      | 63             | 23-120                        |
| 2-Fluorobiphenyl     | 71             | 30-120                        |
| 2,4,6-Tribromophenol | 74             | 10-136                        |
| 4-Terphenyl-d14      | 77             | 18-120                        |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 1155 NIAGARA ST

Project Number: T0550-020-001

Lab Number: L2040459

**Report Date:** 10/01/20

| arameter                               | LCS<br>%Recovery   | Qual            | LCSD<br>%Recovery | Qual   | %Recovery<br>Limits | RPD         | Qual | RPD<br>Limits |
|----------------------------------------|--------------------|-----------------|-------------------|--------|---------------------|-------------|------|---------------|
| emivolatile Organics by GC/MS - Westbo | orough Lab Associa | ated sample(s): | 01-03,05,07-08    | Batch: | WG1415078-2         | WG1415078-3 |      |               |
| Acenaphthene                           | 74                 |                 | 64                |        | 31-137              | 14          |      | 50            |
| Fluoranthene                           | 79                 |                 | 70                |        | 40-140              | 12          |      | 50            |
| Naphthalene                            | 76                 |                 | 65                |        | 40-140              | 16          |      | 50            |
| Benzo(a)anthracene                     | 77                 |                 | 66                |        | 40-140              | 15          |      | 50            |
| Benzo(a)pyrene                         | 86                 |                 | 76                |        | 40-140              | 12          |      | 50            |
| Benzo(b)fluoranthene                   | 87                 |                 | 72                |        | 40-140              | 19          |      | 50            |
| Benzo(k)fluoranthene                   | 76                 |                 | 71                |        | 40-140              | 7           |      | 50            |
| Chrysene                               | 74                 |                 | 64                |        | 40-140              | 14          |      | 50            |
| Acenaphthylene                         | 84                 |                 | 76                |        | 40-140              | 10          |      | 50            |
| Anthracene                             | 75                 |                 | 68                |        | 40-140              | 10          |      | 50            |
| Benzo(ghi)perylene                     | 81                 |                 | 72                |        | 40-140              | 12          |      | 50            |
| Fluorene                               | 79                 |                 | 70                |        | 40-140              | 12          |      | 50            |
| Phenanthrene                           | 74                 |                 | 66                |        | 40-140              | 11          |      | 50            |
| Dibenzo(a,h)anthracene                 | 81                 |                 | 72                |        | 40-140              | 12          |      | 50            |
| Indeno(1,2,3-cd)pyrene                 | 85                 |                 | 76                |        | 40-140              | 11          |      | 50            |
| Pyrene                                 | 76                 |                 | 68                |        | 35-142              | 11          |      | 50            |

# Lab Control Sample Analysis Batch Quality Control

Project Name: 1155 NIAGARA ST

Lab Number:

L2040459

Project Number: T0550-020-001

Report Date:

10/01/20

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03,05,07-08 Batch: WG1415078-2 WG1415078-3

| Surrogate            | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|----------------------|-----------------------|------------------------|------------------------|
| 2-Fluorophenol       | 85                    | 72                     | 25-120                 |
| Phenol-d6            | 87                    | 76                     | 10-120                 |
| Nitrobenzene-d5      | 88                    | 74                     | 23-120                 |
| 2-Fluorobiphenyl     | 84                    | 73                     | 30-120                 |
| 2,4,6-Tribromophenol | 88                    | 77                     | 10-136                 |
| 4-Terphenyl-d14      | 77                    | 70                     | 18-120                 |

## **METALS**



 Project Name:
 1155 NIAGARA ST
 Lab Number:
 L2040459

 Project Number:
 T0550-020-001
 Report Date:
 10/01/20

**SAMPLE RESULTS** 

Lab ID:L2040459-01Date Collected:09/23/20 07:56Client ID:TP-1 1-2FTDate Received:09/24/20Sample Location:1155 NIAGARA STField Prep:Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 83%

| reident Solids.     | 0070       |           |       |       |       | Dilution | Date           | Date             | Prep      | Analytical |         |
|---------------------|------------|-----------|-------|-------|-------|----------|----------------|------------------|-----------|------------|---------|
| Parameter           | Result     | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed         | Method    | Method     | Analyst |
| Total Metals - Man  | ofiold Lob |           |       |       |       |          |                |                  |           |            |         |
| Total Metals - Mail | Sileiu Lab |           |       |       |       |          |                |                  |           |            |         |
| Arsenic, Total      | 9.45       |           | mg/kg | 0.470 | 0.098 | 1        | 09/30/20 10:10 | 10/01/20 12:53   | EPA 3050B | 1,6010D    | GD      |
| Barium, Total       | 121        |           | mg/kg | 0.470 | 0.082 | 1        | 09/30/20 10:10 | ) 10/01/20 12:53 | EPA 3050B | 1,6010D    | GD      |
| Cadmium, Total      | 1.04       |           | mg/kg | 0.470 | 0.046 | 1        | 09/30/20 10:10 | ) 10/01/20 12:53 | EPA 3050B | 1,6010D    | GD      |
| Chromium, Total     | 9.41       |           | mg/kg | 0.470 | 0.045 | 1        | 09/30/20 10:10 | ) 10/01/20 12:53 | EPA 3050B | 1,6010D    | GD      |
| Lead, Total         | 72.1       |           | mg/kg | 2.35  | 0.126 | 1        | 09/30/20 10:10 | 10/01/20 12:53   | EPA 3050B | 1,6010D    | GD      |
| Mercury, Total      | ND         |           | mg/kg | 0.077 | 0.050 | 1        | 09/30/20 11:15 | 5 09/30/20 15:25 | EPA 7471B | 1,7471B    | AL      |
| Selenium, Total     | 0.517      | J         | mg/kg | 0.940 | 0.121 | 1        | 09/30/20 10:10 | ) 10/01/20 12:53 | EPA 3050B | 1,6010D    | GD      |
| Silver, Total       | ND         |           | mg/kg | 0.470 | 0.133 | 1        | 09/30/20 10:10 | ) 10/01/20 12:53 | EPA 3050B | 1,6010D    | GD      |
|                     |            |           |       |       |       |          |                |                  |           |            |         |



 Project Name:
 1155 NIAGARA ST
 Lab Number:
 L2040459

 Project Number:
 T0550-020-001
 Report Date:
 10/01/20

**SAMPLE RESULTS** 

 Lab ID:
 L2040459-02
 Date Collected:
 09/23/20 08:17

 Client ID:
 TP-2 1-3FT
 Date Received:
 09/24/20

 Sample Location:
 1155 NIAGARA ST
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 88%

| Percent Solids:    | 00%             |           |       |       |       | Dilution | Date           | Date             | Prep      | Analytical |         |
|--------------------|-----------------|-----------|-------|-------|-------|----------|----------------|------------------|-----------|------------|---------|
| Parameter          | Result          | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed         | Method    | Method     | Analyst |
| Tatal Martala Mara | - C - L . L . L |           |       |       |       |          |                |                  |           |            |         |
| Total Metals - Man | stield Lab      |           |       |       |       |          |                |                  |           |            |         |
| Arsenic, Total     | 7.14            |           | mg/kg | 0.426 | 0.089 | 1        | 09/30/20 10:10 | 0 10/01/20 12:57 | EPA 3050B | 1,6010D    | GD      |
| Barium, Total      | 105             |           | mg/kg | 0.426 | 0.074 | 1        | 09/30/20 10:10 | 0 10/01/20 12:57 | EPA 3050B | 1,6010D    | GD      |
| Cadmium, Total     | 0.788           |           | mg/kg | 0.426 | 0.042 | 1        | 09/30/20 10:10 | 0 10/01/20 12:57 | EPA 3050B | 1,6010D    | GD      |
| Chromium, Total    | 9.32            |           | mg/kg | 0.426 | 0.041 | 1        | 09/30/20 10:10 | 0 10/01/20 12:57 | EPA 3050B | 1,6010D    | GD      |
| Lead, Total        | 30.5            |           | mg/kg | 2.13  | 0.114 | 1        | 09/30/20 10:10 | 0 10/01/20 12:57 | EPA 3050B | 1,6010D    | GD      |
| Mercury, Total     | ND              |           | mg/kg | 0.071 | 0.046 | 1        | 09/30/20 11:15 | 5 09/30/20 15:28 | EPA 7471B | 1,7471B    | AL      |
| Selenium, Total    | 0.358           | J         | mg/kg | 0.852 | 0.110 | 1        | 09/30/20 10:10 | ) 10/01/20 12:57 | EPA 3050B | 1,6010D    | GD      |
| Silver, Total      | ND              |           | mg/kg | 0.426 | 0.120 | 1        | 09/30/20 10:10 | 0 10/01/20 12:57 | EPA 3050B | 1,6010D    | GD      |



 Project Name:
 1155 NIAGARA ST
 Lab Number:
 L2040459

 Project Number:
 T0550-020-001
 Report Date:
 10/01/20

**SAMPLE RESULTS** 

 Lab ID:
 L2040459-03
 Date Collected:
 09/23/20 09:15

 Client ID:
 TP-3 2-3FT
 Date Received:
 09/24/20

 Sample Location:
 1155 NIAGARA ST
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 90%

| Percent Solids:    | 90 /6         |           |       |       |       | Dilution | Date           | Date             | Prep      | Analytical |         |
|--------------------|---------------|-----------|-------|-------|-------|----------|----------------|------------------|-----------|------------|---------|
| Parameter          | Result        | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed         | Method    | Method     | Analyst |
| Total Matala Man   | -£:- -    - - |           |       |       |       |          |                |                  |           |            |         |
| Total Metals - Man | stield Lab    |           |       |       |       |          |                |                  |           |            |         |
| Arsenic, Total     | 5.36          |           | mg/kg | 0.432 | 0.090 | 1        | 09/30/20 10:10 | 10/01/20 13:02   | EPA 3050B | 1,6010D    | GD      |
| Barium, Total      | 103           |           | mg/kg | 0.432 | 0.075 | 1        | 09/30/20 10:10 | ) 10/01/20 13:02 | EPA 3050B | 1,6010D    | GD      |
| Cadmium, Total     | 0.678         |           | mg/kg | 0.432 | 0.042 | 1        | 09/30/20 10:10 | 10/01/20 13:02   | EPA 3050B | 1,6010D    | GD      |
| Chromium, Total    | 6.47          |           | mg/kg | 0.432 | 0.042 | 1        | 09/30/20 10:10 | 10/01/20 13:02   | EPA 3050B | 1,6010D    | GD      |
| Lead, Total        | 189           |           | mg/kg | 2.16  | 0.116 | 1        | 09/30/20 10:10 | 10/01/20 13:02   | EPA 3050B | 1,6010D    | GD      |
| Mercury, Total     | 0.131         |           | mg/kg | 0.070 | 0.045 | 1        | 09/30/20 11:15 | 5 09/30/20 15:31 | EPA 7471B | 1,7471B    | AL      |
| Selenium, Total    | 0.328         | J         | mg/kg | 0.864 | 0.111 | 1        | 09/30/20 10:10 | ) 10/01/20 13:02 | EPA 3050B | 1,6010D    | GD      |
| Silver, Total      | ND            |           | mg/kg | 0.432 | 0.122 | 1        | 09/30/20 10:10 | ) 10/01/20 13:02 | EPA 3050B | 1,6010D    | GD      |



 Project Name:
 1155 NIAGARA ST
 Lab Number:
 L2040459

 Project Number:
 T0550-020-001
 Report Date:
 10/01/20

**SAMPLE RESULTS** 

Lab ID:L2040459-05Date Collected:09/23/20 10:05Client ID:TP-4 2-4FTDate Received:09/24/20Sample Location:1155 NIAGARA STField Prep:Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 76%

| Percent Solids:    | 1070       |           |       |       |       | Dilution | Date           | Date             | Prep      | Analytical |         |
|--------------------|------------|-----------|-------|-------|-------|----------|----------------|------------------|-----------|------------|---------|
| Parameter          | Result     | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed         | Method    | Method     | Analyst |
|                    |            |           |       |       |       |          |                |                  |           |            |         |
| Total Metals - Man | sfield Lab |           |       |       |       |          |                |                  |           |            |         |
| Arsenic, Total     | 8.02       |           | mg/kg | 0.505 | 0.105 | 1        | 09/30/20 10:10 | 10/01/20 13:07   | EPA 3050B | 1,6010D    | GD      |
| Barium, Total      | 156        |           | mg/kg | 0.505 | 0.088 | 1        | 09/30/20 10:10 | ) 10/01/20 13:07 | EPA 3050B | 1,6010D    | GD      |
| Cadmium, Total     | 0.914      |           | mg/kg | 0.505 | 0.050 | 1        | 09/30/20 10:10 | ) 10/01/20 13:07 | EPA 3050B | 1,6010D    | GD      |
| Chromium, Total    | 18.1       |           | mg/kg | 0.505 | 0.049 | 1        | 09/30/20 10:10 | ) 10/01/20 13:07 | EPA 3050B | 1,6010D    | GD      |
| Lead, Total        | 31.3       |           | mg/kg | 2.52  | 0.135 | 1        | 09/30/20 10:10 | ) 10/01/20 13:07 | EPA 3050B | 1,6010D    | GD      |
| Mercury, Total     | 0.057      | J         | mg/kg | 0.085 | 0.055 | 1        | 09/30/20 11:15 | 5 09/30/20 15:35 | EPA 7471B | 1,7471B    | AL      |
| Selenium, Total    | ND         |           | mg/kg | 1.01  | 0.130 | 1        | 09/30/20 10:10 | ) 10/01/20 13:07 | EPA 3050B | 1,6010D    | GD      |
| Silver, Total      | ND         |           | mg/kg | 0.505 | 0.143 | 1        | 09/30/20 10:10 | ) 10/01/20 13:07 | EPA 3050B | 1,6010D    | GD      |



 Project Name:
 1155 NIAGARA ST
 Lab Number:
 L2040459

 Project Number:
 T0550-020-001
 Report Date:
 10/01/20

**SAMPLE RESULTS** 

 Lab ID:
 L2040459-07
 Date Collected:
 09/23/20 12:00

 Client ID:
 TP-8 0-1FT
 Date Received:
 09/24/20

 Sample Location:
 1155 NIAGARA ST
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 79%

| Percent Solids:    | 79%                    |           |       |       |       | Dilution | Date           | Date             | Prep      | Analytical |         |
|--------------------|------------------------|-----------|-------|-------|-------|----------|----------------|------------------|-----------|------------|---------|
| Parameter          | Result                 | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed         | Method    | Method     | Analyst |
| Total Matala Man   | - <i>t</i> : -  -  - - |           |       |       |       |          |                |                  |           |            |         |
| Total Metals - Man | stield Lab             |           |       |       |       |          |                |                  |           |            |         |
| Arsenic, Total     | 3.85                   |           | mg/kg | 0.489 | 0.102 | 1        | 09/30/20 10:10 | 0 10/01/20 13:11 | EPA 3050B | 1,6010D    | GD      |
| Barium, Total      | 43.5                   |           | mg/kg | 0.489 | 0.085 | 1        | 09/30/20 10:10 | 0 10/01/20 13:11 | EPA 3050B | 1,6010D    | GD      |
| Cadmium, Total     | 0.411                  | J         | mg/kg | 0.489 | 0.048 | 1        | 09/30/20 10:10 | 0 10/01/20 13:11 | EPA 3050B | 1,6010D    | GD      |
| Chromium, Total    | 6.88                   |           | mg/kg | 0.489 | 0.047 | 1        | 09/30/20 10:10 | 0 10/01/20 13:11 | EPA 3050B | 1,6010D    | GD      |
| Lead, Total        | 11.9                   |           | mg/kg | 2.45  | 0.131 | 1        | 09/30/20 10:10 | 0 10/01/20 13:11 | EPA 3050B | 1,6010D    | GD      |
| Mercury, Total     | ND                     |           | mg/kg | 0.079 | 0.052 | 1        | 09/30/20 11:15 | 5 09/30/20 15:38 | EPA 7471B | 1,7471B    | AL      |
| Selenium, Total    | ND                     |           | mg/kg | 0.978 | 0.126 | 1        | 09/30/20 10:10 | 0 10/01/20 13:11 | EPA 3050B | 1,6010D    | GD      |
| Silver, Total      | ND                     |           | mg/kg | 0.489 | 0.138 | 1        | 09/30/20 10:10 | 0 10/01/20 13:11 | EPA 3050B | 1,6010D    | GD      |



 Project Name:
 1155 NIAGARA ST
 Lab Number:
 L2040459

 Project Number:
 T0550-020-001
 Report Date:
 10/01/20

**SAMPLE RESULTS** 

Lab ID:L2040459-08Date Collected:09/23/20 12:31Client ID:TP-11 1-3FTDate Received:09/24/20Sample Location:1155 NIAGARA STField Prep:Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 83%

| Percent Solids:    | 03%        |           |       |       |       | Dilution | Date           | Date             | Prep      | Analytical |         |
|--------------------|------------|-----------|-------|-------|-------|----------|----------------|------------------|-----------|------------|---------|
| Parameter          | Result     | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed         | Method    | Method     | Analyst |
| T                  | <i>.</i>   |           |       |       |       |          |                |                  |           |            |         |
| Total Metals - Man | sfield Lab |           |       |       |       |          |                |                  |           |            |         |
| Arsenic, Total     | 9.62       |           | mg/kg | 0.460 | 0.096 | 1        | 09/30/20 10:10 | 10/01/20 13:16   | EPA 3050B | 1,6010D    | GD      |
| Barium, Total      | 60.6       |           | mg/kg | 0.460 | 0.080 | 1        | 09/30/20 10:10 | ) 10/01/20 13:16 | EPA 3050B | 1,6010D    | GD      |
| Cadmium, Total     | 0.598      |           | mg/kg | 0.460 | 0.045 | 1        | 09/30/20 10:10 | ) 10/01/20 13:16 | EPA 3050B | 1,6010D    | GD      |
| Chromium, Total    | 12.4       |           | mg/kg | 0.460 | 0.044 | 1        | 09/30/20 10:10 | ) 10/01/20 13:16 | EPA 3050B | 1,6010D    | GD      |
| Lead, Total        | 13.2       |           | mg/kg | 2.30  | 0.123 | 1        | 09/30/20 10:10 | ) 10/01/20 13:16 | EPA 3050B | 1,6010D    | GD      |
| Mercury, Total     | ND         |           | mg/kg | 0.075 | 0.049 | 1        | 09/30/20 11:15 | 5 09/30/20 15:41 | EPA 7471B | 1,7471B    | AL      |
| Selenium, Total    | ND         |           | mg/kg | 0.921 | 0.119 | 1        | 09/30/20 10:10 | ) 10/01/20 13:16 | EPA 3050B | 1,6010D    | GD      |
| Silver, Total      | ND         |           | mg/kg | 0.460 | 0.130 | 1        | 09/30/20 10:10 | ) 10/01/20 13:16 | EPA 3050B | 1,6010D    | GD      |



Project Name: 1155 NIAGARA ST
Project Number: T0550-020-001

**Lab Number:** L2040459 **Report Date:** 10/01/20

# Method Blank Analysis Batch Quality Control

| Parameter                | Result Qualifier     | Units     | RL    | MDL      | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|----------------------|-----------|-------|----------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfield | d Lab for sample(s): | 01-03,05, | 07-08 | Batch: \ | NG1415576          | -1               |                  |                      |         |
| Arsenic, Total           | ND                   | mg/kg     | 0.400 | 0.083    | 1                  | 09/30/20 10:10   | 10/01/20 12:03   | 1,6010D              | GD      |
| Barium, Total            | ND                   | mg/kg     | 0.400 | 0.070    | 1                  | 09/30/20 10:10   | 10/01/20 12:03   | 1,6010D              | GD      |
| Cadmium, Total           | ND                   | mg/kg     | 0.400 | 0.039    | 1                  | 09/30/20 10:10   | 10/01/20 12:03   | 1,6010D              | GD      |
| Chromium, Total          | ND                   | mg/kg     | 0.400 | 0.038    | 1                  | 09/30/20 10:10   | 10/01/20 12:03   | 1,6010D              | GD      |
| Lead, Total              | ND                   | mg/kg     | 2.00  | 0.107    | 1                  | 09/30/20 10:10   | 10/01/20 12:03   | 1,6010D              | GD      |
| Selenium, Total          | ND                   | mg/kg     | 0.800 | 0.103    | 1                  | 09/30/20 10:10   | 10/01/20 12:03   | 1,6010D              | GD      |
| Silver, Total            | ND                   | mg/kg     | 0.400 | 0.113    | 1                  | 09/30/20 10:10   | 10/01/20 12:03   | 1,6010D              | GD      |

**Prep Information** 

Digestion Method: EPA 3050B

| Parameter           | Result Qualifier         | Units     | RL    | MDL      | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytica<br>Method |    |
|---------------------|--------------------------|-----------|-------|----------|--------------------|------------------|------------------|---------------------|----|
| Total Metals - Mans | field Lab for sample(s): | 01-03,05, | 07-08 | Batch: V | NG1415578          | 3-1              |                  |                     |    |
| Mercury, Total      | ND                       | mg/kg     | 0.083 | 0.054    | 1                  | 09/30/20 11:15   | 09/30/20 14:38   | 3 1,7471B           | AL |

**Prep Information** 

Digestion Method: EPA 7471B



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 1155 NIAGARA ST

Project Number: T0550-020-001

Lab Number:

L2040459

Report Date:

10/01/20

| Parameter                                      | LCS<br>%Recovery (   | LCSD<br>Qual %Recovery | %Recovery<br>Qual Limits | RPD | Qual | RPD Limits |
|------------------------------------------------|----------------------|------------------------|--------------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample | e(s): 01-03,05,07-08 | Batch: WG1415576-2     | SRM Lot Number: D109-540 |     |      |            |
| Arsenic, Total                                 | 95                   | -                      | 70-130                   | -   |      |            |
| Barium, Total                                  | 94                   | -                      | 75-125                   | -   |      |            |
| Cadmium, Total                                 | 92                   | -                      | 75-125                   | -   |      |            |
| Chromium, Total                                | 92                   | -                      | 70-130                   | -   |      |            |
| Lead, Total                                    | 91                   | -                      | 72-128                   | -   |      |            |
| Selenium, Total                                | 95                   | -                      | 68-132                   | -   |      |            |
| Silver, Total                                  | 94                   | -                      | 68-131                   | -   |      |            |
| Total Metals - Mansfield Lab Associated sample | e(s): 01-03,05,07-08 | Batch: WG1415578-2     | SRM Lot Number: D109-540 |     |      |            |
| Mercury, Total                                 | 89                   | -                      | 60-140                   | -   |      |            |



## Matrix Spike Analysis Batch Quality Control

**Project Name:** 1155 NIAGARA ST

**Project Number:** T0550-020-001

Lab Number: L2040459

**Report Date:** 10/01/20

| arameter                   | Native<br>Sample | MS<br>Added  | MS<br>Found | MS<br>%Recovery | MSI<br>Qual Four | 111.00       | Reco<br>ry Qual Lin | •          | RPD<br>Qual Limits |
|----------------------------|------------------|--------------|-------------|-----------------|------------------|--------------|---------------------|------------|--------------------|
| otal Metals - Mansfield La | b Associated san | nple(s): 01- | 03,05,07-08 | QC Batch ID     | : WG1415576      | -3 QC Sample | e: L2040360-01      | Client ID: | MS Sample          |
| Arsenic, Total             | 4.45             | 13           | 15.6        | 86              |                  | -            | 75-                 | 25 -       | 20                 |
| Barium, Total              | 40.2             | 216          | 265         | 104             |                  | <del>-</del> | 75-                 | 25 -       | 20                 |
| Cadmium, Total             | 0.500J           | 5.51         | 5.90        | 107             |                  | . <u>-</u>   | 75-                 | 25 -       | 20                 |
| Chromium, Total            | 10.6             | 21.6         | 35.0        | 113             |                  | · -          | 75-                 | 25 -       | 20                 |
| Lead, Total                | 24.4             | 55.1         | 80.3        | 101             |                  | <del>-</del> | 75-                 | 25 -       | 20                 |
| Selenium, Total            | 0.521J           | 13           | 12.8        | 99              |                  | · -          | 75-                 | 25 -       | 20                 |
| Silver, Total              | ND               | 32.4         | 34.1        | 105             |                  | -            | 75-                 | 25 -       | 20                 |
| otal Metals - Mansfield La | b Associated san | nple(s): 01- | 03,05,07-08 | QC Batch ID     | : WG1415578      | -3 QC Sample | e: L2040360-03      | Client ID: | MS Sample          |
| Mercury, Total             | 0.067J           | 0.169        | 0.214       | 127             | Q                |              | 80-1                | 20 -       | 20                 |

# Lab Duplicate Analysis Batch Quality Control

**Project Name:** 1155 NIAGARA ST **Project Number:** T0550-020-001

Lab Number: L2040459 10/01/20

Report Date:

| Parameter                                         | Native San     | nple Duplicate Sampl     | e Units    | RPD         | Qual       | RPD Limits |
|---------------------------------------------------|----------------|--------------------------|------------|-------------|------------|------------|
| otal Metals - Mansfield Lab Associated sample(s): | 01-03,05,07-08 | QC Batch ID: WG1415576-4 | QC Sample: | L2040360-01 | Client ID: | DUP Sample |
| Arsenic, Total                                    | 4.45           | 2.09                     | mg/kg      | 72          | Q          | 20         |
| Barium, Total                                     | 40.2           | 94.4                     | mg/kg      | 81          | Q          | 20         |
| Cadmium, Total                                    | 0.500J         | 0.475J                   | mg/kg      | NC          |            | 20         |
| Chromium, Total                                   | 10.6           | 11.8                     | mg/kg      | 11          |            | 20         |
| Lead, Total                                       | 24.4           | 33.8                     | mg/kg      | 32          | Q          | 20         |
| Selenium, Total                                   | 0.521J         | 0.486J                   | mg/kg      | NC          |            | 20         |
| Silver, Total                                     | ND             | ND                       | mg/kg      | NC          |            | 20         |
| otal Metals - Mansfield Lab Associated sample(s): | 01-03,05,07-08 | QC Batch ID: WG1415578-4 | QC Sample: | L2040360-03 | Client ID: | DUP Sample |
| Mercury, Total                                    | 0.067J         | ND                       | mg/kg      | NC          |            | 20         |



# INORGANICS & MISCELLANEOUS



Project Name: 1155 NIAGARA ST Lab Number: L2040459

**Project Number:** T0550-020-001 **Report Date:** 10/01/20

**SAMPLE RESULTS** 

Lab ID: L2040459-01 Date Collected: 09/23/20 07:56

Client ID: TP-1 1-2FT Date Received: 09/24/20 Sample Location: 1155 NIAGARA ST Field Prep: Not Specified

Sample Depth:

| Parameter             | Result          | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------|-----------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - \ | Westborough Lab | •         |       |       |     |                    |                  |                  |                      |         |
| Solids, Total         | 82.6            |           | %     | 0.100 | NA  | 1                  | -                | 09/25/20 14:27   | 121,2540G            | RI      |



**Project Name:** Lab Number: 1155 NIAGARA ST L2040459 **Project Number:** T0550-020-001

Report Date: 10/01/20

**SAMPLE RESULTS** 

Lab ID: Date Collected: L2040459-02 09/23/20 08:17 Client ID: TP-2 1-3FT Date Received: 09/24/20 Sample Location: 1155 NIAGARA ST

Not Specified Field Prep:

Sample Depth:

| Parameter           | Result          | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|-----------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - | Westborough Lab | )         |       |       |     |                    |                  |                  |                      |         |
| Solids, Total       | 88.3            |           | %     | 0.100 | NA  | 1                  | -                | 09/25/20 14:27   | 121,2540G            | RI      |



Project Name: 1155 NIAGARA ST Lab Number: L2040459

**Project Number:** T0550-020-001 **Report Date:** 10/01/20

**SAMPLE RESULTS** 

Lab ID: L2040459-03 Date Collected: 09/23/20 09:15

Client ID: TP-3 2-3FT Date Received: 09/24/20 Sample Location: 1155 NIAGARA ST Field Prep: Not Specified

Sample Depth:

| Parameter         | Result            | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-------------------|-------------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry | - Westborough Lab |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total     | 90.2              |           | %     | 0.100 | NA  | 1                  | -                | 09/25/20 14:27   | 121,2540G            | RI      |



09/23/20 10:05

Project Name: 1155 NIAGARA ST

Lab Number: L2040459

Date Collected:

**Project Number:** T0550-020-001 **Report Date:** 10/01/20

**SAMPLE RESULTS** 

Lab ID: L2040459-05

Client ID: TP-4 2-4FT Date Received: 09/24/20 Sample Location: 1155 NIAGARA ST Field Prep: Not Specified

Sample Depth:

| Parameter             | Result          | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------|-----------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - ' | Westborough Lab | )         |       |       |     |                    |                  |                  |                      |         |
| Solids, Total         | 75.5            |           | %     | 0.100 | NA  | 1                  | -                | 09/25/20 14:27   | 121,2540G            | RI      |



**Project Name:** 1155 NIAGARA ST Lab Number:

L2040459

**Project Number:** T0550-020-001 Report Date:

10/01/20

**SAMPLE RESULTS** 

Lab ID:

L2040459-07

Client ID:

TP-8 0-1FT

Sample Location: 1155 NIAGARA ST

Date Collected:

09/23/20 12:00

Date Received: Field Prep:

09/24/20

Not Specified

Sample Depth:

Matrix:

Soil

| Parameter           | Result            | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|-------------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - | - Westborough Lab | )         |       |       |     |                    |                  |                  |                      |         |
| Solids, Total       | 79.1              |           | %     | 0.100 | NA  | 1                  | -                | 09/25/20 14:27   | 121,2540G            | RI      |



Project Name: 1155 NIAGARA ST Lab Number: L2040459

**Project Number:** T0550-020-001 **Report Date:** 10/01/20

**SAMPLE RESULTS** 

 Lab ID:
 L2040459-08
 Date Collected:
 09/23/20 12:31

 Client ID:
 TP-11 1-3FT
 Date Received:
 09/24/20

Sample Location: 1155 NIAGARA ST Field Prep: Not Specified

Sample Depth:

| Parameter           | Result          | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|-----------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - | Westborough Lab |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total       | 83.3            |           | %     | 0.100 | NA  | 1                  | -                | 09/25/20 14:27   | 121,2540G            | RI      |



Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2040459 10/01/20 Report Date:

| Parameter                                  | Native Sample                        | Duplicate Sample      | Units     | RPD         | Qual RPD Limits         |  |
|--------------------------------------------|--------------------------------------|-----------------------|-----------|-------------|-------------------------|--|
| General Chemistry - Westborough Lab Sample | Associated sample(s): 01-03,05,07-08 | QC Batch ID: WG141466 | 67-1 QC S | ample: L204 | 40335-01 Client ID: DUP |  |
| Solids, Total                              | 75.2                                 | 75.4                  | %         | 0           | 20                      |  |



**Project Name:** 

**Project Number:** 

1155 NIAGARA ST

T0550-020-001

**Lab Number:** L2040459

**Report Date:** 10/01/20

## Sample Receipt and Container Information

Were project specific reporting limits specified?

1155 NIAGARA ST

YES

**Cooler Information** 

Container Information

Project Name:

Cooler Custody Seal

A Absent

**Project Number:** T0550-020-001

| Container info | rmation                                |        | Initial | Final | Temp  |      |        | Frozen    |                                                                                               |
|----------------|----------------------------------------|--------|---------|-------|-------|------|--------|-----------|-----------------------------------------------------------------------------------------------|
| Container ID   | Container Type                         | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                   |
| L2040459-01A   | Metals Only-Glass 60mL/2oz unpreserved | A      | NA      |       | 2.0   | Υ    | Absent |           | BA-TI(180),AS-TI(180),AG-TI(180),CR-<br>TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD-<br>TI(180) |
| L2040459-01B   | Glass 120ml/4oz unpreserved            | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-PAH(14),TS(7)                                                                          |
| L2040459-02A   | Glass 120ml/4oz unpreserved            | Α      | NA      |       | 2.0   | Υ    | Absent |           | AS-TI(180),BA-TI(180),AG-TI(180),CR-<br>TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD-<br>TI(180) |
| L2040459-02B   | Glass 120ml/4oz unpreserved            | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-PAH(14),TS(7)                                                                          |
| L2040459-03A   | Glass 120ml/4oz unpreserved            | Α      | NA      |       | 2.0   | Υ    | Absent |           | AS-TI(180),BA-TI(180),AG-TI(180),CR-<br>TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD-<br>TI(180) |
| L2040459-03B   | Glass 120ml/4oz unpreserved            | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-PAH(14),TS(7)                                                                          |
| L2040459-04A   | Glass 60mL/2oz unpreserved             | Α      | NA      |       | 2.0   | Υ    | Absent |           | HOLD-METAL(180),HOLD-HG(28)                                                                   |
| L2040459-05A   | Glass 120ml/4oz unpreserved            | Α      | NA      |       | 2.0   | Υ    | Absent |           | BA-TI(180),AS-TI(180),AG-TI(180),CR-<br>TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD-<br>TI(180) |
| L2040459-05B   | Glass 120ml/4oz unpreserved            | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-PAH(14),TS(7)                                                                          |
| L2040459-06A   | Glass 60mL/2oz unpreserved             | Α      | NA      |       | 2.0   | Υ    | Absent |           | HOLD-METAL(180),HOLD-HG(28)                                                                   |
| L2040459-07A   | Glass 120ml/4oz unpreserved            | Α      | NA      |       | 2.0   | Υ    | Absent |           | BA-TI(180),AS-TI(180),AG-TI(180),CR-<br>TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD-<br>TI(180) |
| L2040459-07B   | Glass 120ml/4oz unpreserved            | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-PAH(14),TS(7)                                                                          |
| L2040459-08A   | Metals Only-Glass 60mL/2oz unpreserved | A      | NA      |       | 2.0   | Υ    | Absent |           | BA-TI(180),AS-TI(180),AG-TI(180),CR-<br>TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD-<br>TI(180) |
| L2040459-08B   | Glass 120ml/4oz unpreserved            | Α      | NA      |       | 2.0   | Υ    | Absent |           | NYCP51-PAH(14),TS(7)                                                                          |



**Project Name:** Lab Number: 1155 NIAGARA ST L2040459 **Project Number:** T0550-020-001 **Report Date:** 10/01/20

#### GLOSSARY

#### **Acronyms**

LCSD

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

**EDL** - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

**EMPC** - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** 

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers



 Project Name:
 1155 NIAGARA ST
 Lab Number:
 L2040459

 Project Number:
 T0550-020-001
 Report Date:
 10/01/20

#### **Footnotes**

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

## Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: DU Report with 'J' Qualifiers



 Project Name:
 1155 NIAGARA ST
 Lab Number:
 L2040459

 Project Number:
 T0550-020-001
 Report Date:
 10/01/20

#### **Data Qualifiers**

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers



 Project Name:
 1155 NIAGARA ST
 Lab Number:
 L2040459

 Project Number:
 T0550-020-001
 Report Date:
 10/01/20

#### REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

## **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance Title: Certificate/Approval Program Summary

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

ID No.:17873

Revision 17

## Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

**SM4500**: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

## **Mansfield Facility**

**SM 2540D:** TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

**EPA TO-12** Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

#### Mansfield Facility:

### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

| Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-920 FAX: 508-898-9193  Westborough in Ma 01581 1 Swalkup Dr. TEL: 508-898-920 FAX: 508-898-920 FAX: 508-898-9193  Client Information  Client: TURNESY  Address: 2558  AMBUKA TRAC  Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 14150: 275 Cooper Ave, Suite 105  Project Information  Project Name: ILSS N I ALLAGA  Project Location: ILSS N I ALLAGA  Project # 10550-020-001  (Use Project name as Project #)  Project Manager: MICE LESPKOWS |                                                                                                                             |                                                                   | St        | Page                  |        |             | Date R<br>in La<br>rerables<br>ASP-A<br>EQuIS | b            | ☐ AS         | SP-B<br>Quils (4 File) | ALPHA Job #  120 045 0  Billing Information  Same as Client Info | 7                                                                   |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------|-----------------------|--------|-------------|-----------------------------------------------|--------------|--------------|------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|
| Client Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chicago III and                                                                                                             |                                                                   |           |                       |        |             | 70                                            | Other        |              | 202220                 |                                                                  |                                                                     |                                                  |
| Client: TUKNKEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             | (Use Project name as Pro                                          | oject#)   |                       |        |             | Regi                                          | ulatory R    | equireme     | nt                     | NE ATT                                                           | Disposal Site Information                                           |                                                  |
| Address: 2558 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AMBIKA TEPK                                                                                                                 | Project Manager: MINE                                             |           | SKI                   |        | 1.50        |                                               | NY TOG       | s            | □ NY                   | Part 375                                                         | Please identify below location                                      | n of                                             |
| BUFFALO;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             | ALPHAQuote #:                                                     |           |                       | -      |             | ╗                                             | AWQ St       | andards      | □ NY                   | CP-51                                                            | applicable disposal facilities.                                     | 20.70                                            |
| Phone: 716 - 856 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0579                                                                                                                        | Turn-Around Time                                                  | 1220 TV   |                       |        |             |                                               | NY Rest      | ricted Use   | Ot                     | her                                                              | Disposal Facility:                                                  |                                                  |
| Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             | Standard                                                          | X         | Due Date              | :      |             |                                               | NY Unre      | stricted Use | 9                      |                                                                  | □ NJ 💢 NY                                                           |                                                  |
| Email: m/esakowst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ciabm-tk.com                                                                                                                | Rush (only if pre approved)                                       |           | # of Days             | E.     |             |                                               | NYC Se       | wer Dischar  | rge                    |                                                                  | Other:                                                              |                                                  |
| These samples have b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | een previously analyz                                                                                                       | ed by Alpha                                                       |           |                       |        |             | ANA                                           | LYSIS        |              |                        |                                                                  | Sample Filtration                                                   | T                                                |
| Other project specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             | nents:                                                            |           | u                     |        |             |                                               | RCKA METAL   |              |                        |                                                                  | □ Done □ Lab to do Preservation □ Lab to do  (Please Specify below) | o t a l B o t                                    |
| ALPHA Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sa                                                                                                                          | ample ID                                                          | Colle     | ection                | Sample | Sampler     | s of                                          | , v          |              |                        |                                                                  |                                                                     | t                                                |
| (Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             | mpio 15                                                           | Date      | Time                  | Matrix | Initials    | 10                                            | 2            |              |                        |                                                                  | Sample Specific Comments                                            |                                                  |
| 40459 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TP-1 1-2A                                                                                                                   |                                                                   | 9/23/20   | 756                   | Solc   | CS          | X                                             | ×            |              |                        |                                                                  |                                                                     | 2                                                |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TP-2 1-31                                                                                                                   |                                                                   | L L       | 817                   |        | 1           | 78                                            | ×            |              |                        |                                                                  |                                                                     | 2                                                |
| 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             | SA Z-3 C+                                                         |           | 915                   |        |             | ×                                             | ×            |              |                        |                                                                  |                                                                     | 2                                                |
| 704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tp-3 5-                                                                                                                     |                                                                   |           | 920                   |        |             |                                               | ×            |              |                        |                                                                  | HOLD                                                                | 1                                                |
| 705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TP-4 2-4                                                                                                                    |                                                                   |           | 1005                  |        |             | *                                             | ×            |              |                        |                                                                  |                                                                     | 2                                                |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TP-5 5-                                                                                                                     | 7 <del>ft</del>                                                   |           | 1023                  |        |             |                                               | ×            |              |                        |                                                                  | Hold                                                                | 1                                                |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             | 1 (4                                                              |           | 1200                  |        |             | ×                                             | ×            |              |                        |                                                                  |                                                                     | 2                                                |
| 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TP-11 1-5                                                                                                                   | 54                                                                | ¥         | 1231                  | *      | 4           | ×                                             | ×            |              |                        |                                                                  |                                                                     | 2                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                   |           |                       |        |             |                                               |              |              |                        |                                                                  |                                                                     |                                                  |
| Preservative Code: A = None B = HCl C = HNO <sub>3</sub> D = H <sub>2</sub> SO <sub>4</sub> E = NaOH F = MeOH G = NaHSO <sub>4</sub> H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> K/E = Zn Ac/NaOH O = Other                                                                                                                                                                                                                                                                                                        | Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle | Westboro: Certification N Mansfield: Certification N Relinquished | lo: MA015 | Qate 9/23/20 C1/24/20 | /Time  | Preservativ | e A                                           | A + ived gy: | AAL          | 9/2:                   | Pate/Time<br>1/70 /632<br>1/20 0/:34                             |                                                                     | will not<br>ies are<br>ING<br>NT<br>EES<br>PHA'S |