

October 6, 2023

Benjamin McPherson, P.E.
Professional Engineer 1 (Environmental)
Division of Environmental Remediation
New York State Department of Environmental Conservation
700 Delaware Avenue
Buffalo, New York 14209

Subject: Carbon Efficiency

In Situ Solidification

Riverview Innovation & Technology Campus

3875 River Road

Town of Tonawanda, New York

Site No. C915353

Dear Mr. McPherson,

As you are aware, the bench-scale testing being conducted for the Pre-design Investigations is well underway. To date, combinations of Lime Kiln Dust (LKD) and breeze and Portland cement and breeze have been effective for all samples except those from the Tar Management Area (Source Area Solidification Interim Remedial Measure Work Plan [Solidification Work Plan], October 5, 2023). Additional testing of samples from the Tar Management Area will be conducted in the near future.

Breeze has been a critical component of the bench-scale tests as both an absorbent and aggregate. The New York State Department of Environmental Conservation (NYSDEC) requested testing of the breeze for total organic carbon to investigate whether the breeze is adsorbing organic compounds into the materials matrix as well as absorbing liquid phases.

Analytical testing of the breeze showed the total organic carbon content was 78-percent (Attachment A). The availability of total organic carbon in the breeze as an adsorption agent is unknown. To determine if there is a third mechanism (in addition to hydration of the binding agent and absorption) affecting the efficiency of the stabilization process, Inventum conducted adsorption trials. The tests allowed evaluation of the effect of direct contact between site groundwater and the breeze, absent the hydration and binding agent mechanisms.

A bulk sample was collected from Sump #2 adjacent to the light oil area. An aliquot of the bulk sample and a sample of breeze were submitted for Volatile Organic Compounds (VOC) via EPA method 8260, Semi-volatile Organic Compounds (SVOC) via EPA method 8270, Ammonia (350.1) and Cyanide (335.1) analyses.

Photograph No. 1 Test Setup

The breeze in each sample vessel was saturated with groundwater from the Sump #2 bulk sample. Multiple trials were tested as in the initial tests the breeze absorbed all the liquid, producing no sample for analytical testing. This result in itself was informative in demonstrating the high capacity of the breeze to absorb and hold liquid.

As a basis for comparison five samples were tested:

- BreezeTest-01-09132023 Raw water from Sump 2
- BreezeTest-02-09152023 Sump 2 water after 24-hours in contact with breeze
- BreezeTest-03-09152023 Sump 2 water after 24-hours in contact with breeze
- BreezeTest-04-09152023 Sump 2 water after 24-hours in contact with clean gravel
- BreezeTest-05-09152023 Distilled water after 24-hours in contact with clean gravel

The laboratory report is presented in Attachment A. A summary table of the pre- and post-testing groundwater quality (detections only) is shown below:

	Class GA Ambient Water Quality Standards and Guidance Values	Units		eTest-01- 132023		zeTest-02- 0152023		zeTest-03- 0152023		zeTest-04- 9152023		zeTest-05- 152023
	Sar	nple Date	9/1	3/2023	9/:	15/2023	9/:	15/2023	9/	15/2023	9/:	15/2023
	Sample Do	escription	Su	mp 2		2 & Breeze mple 01		2 & Breeze mple 02	Sump	2 & Gravel		ed Water & Gravel
TCL VOCs (SW8260C)												
Acetone	50	ug/l	236		19.4		17.1		24.4		14.1	
Benzene	1	ug/l	519		<1.00	U	<1.00	U	<1.00	U	<1.00	U
Toluene	5	ug/l	67.2		<2.00	U	<2.00	U	<2.00	U	<2.00	
m,p-Xylene	5	ug/l	44.8		<2.00	U	<2.00	U	<2.00	U	<2.00	U
Total VOCs	-	ug/l	867		19.4		17.1		24.4		14.1	
Percent Difference	-	%	-		97.8		98.0		97.2		-	
TCL SVOCs (SW8270D)												
Phenanthrene	-	ug/l	<10.0	U	<10.0	U	<10.0	U	<10.0	U	17.5	
Cyanide (SW9012B)												
Cyanide	0.20	mg/l	0.200		0.0560		0.0930		0.140		<0.010	U
Percent Difference	-	%	-		72.0		53.5		30.0		-	
Ammonia (SM4500)				l .								
Ammonia, as N	2	mg/l	7.7		1.2		1.5		4.0		<0.1	U
Percent Difference	-	%	-		84.4		80.5		48.1		-	

The testing demonstrates that introduction of the water into either the breeze or gravel matrix reduces the concentrations of VOCs. The fact the laboratory detected acetone in the distilled water sample suggests laboratory contamination and effectively 100% removal of VOCs associated with the coke and by-product processing at the Site. The effectiveness of the breeze over an inert aggregate is demonstrated by more effective removal of cyanide and ammonia.

A summary of the breeze analyses (detections only) is shown below.

- Breeze-08172023 Coke breeze used in the initial solidification testing trials.
- BreezeTest-06-09152023 Coke breeze used in the adsorption trials.

		CAMPLE ID.	BREEZE-(08172023	BREEZETEST-06-09152023		
		SAMPLE ID:	122/17	700-01	234271		
	COL	8/17/		9/15/2023 0 - 2' BGS			
	COLLECTION DATE:		0-2				
ANALYTE		AMPLE DEPTH:	Coke E				
	NY-RESC	MPLE MATRIX:			Coke Br	eeze	
	NY-RESC	NY-RESI	Breeze u		Breeze u	sed in	
	(mg/kg)	(mg/kg)	solidificat sca		Adsorption bench scale.		
VOLATILE ORGANICS BY GC/MS							
cis-1,2-Dichloroethene	500	1000	0.0032		<0.008	U	
Ethylbenzene	390	780	0.00028	J	<0.008	U	
o-Xylene			0.00036	J	<0.008	U	
p/m-Xylene			0.00084	J	<0.008	U	
Toluene	500	1000	0.0012		<0.008	U	
SEMIVOLATILE ORGANICS BY GC/MS							
2-Methylnaphthalene			1.3		0.765		
3-Methylphenol/4-Methylphenol	500	1000	0.15	J	<0.272	U	
Acenaphthene	500	1000	0.64	J	1.13		
Acenaphthylene	500	1000	2.7		<0.272	U	
Anthracene	500	1000	4		0.985		
Benzo(a)anthracene	5.6	11	9.1		3.43		
Benzo(a)pyrene	1	1.1	9.5		6.43		
Benzo(b)fluoranthene	5.6	11	12		6.32		
Benzo(ghi)perylene	500	1000	6		5.01		
Benzo(k)fluoranthene	56	110	2.9		3.05		
Biphenyl			0.34	J	<0.272	U	
Carbazole			1.3		0.32		
Chrysene	56	110	9.8		4.21		
Dibenzo(a,h)anthracene	0.56	1.1	1.5		1.5		
Dibenzofuran	350	1000	1.7		0.326		
Fluoranthene	500	1000	24		<0.272	U	
Fluorene	500	1000	2.9		<0.272	U	
Indeno(1,2,3-cd)pyrene	5.6	11	5.6		3.78		
Naphthalene	500	1000	5		1.19		
Phenanthrene	500	1000	18		2.8		
Phenol	500	1000	0.15	J	<0.272	U	
Pyrene	500	1000	18		4.52	-	
TOTAL METALS							
Aluminum, Total			1760		NS		
Arsenic, Total	16	16	5.38		NS		
Barium, Total	400	10000	35.5		NS		
Beryllium, Total	590	2700	0.268	J	NS		
Calcium, Total			4740		NS		
Chromium, Total			5.44		NS		
Cobalt, Total			2.36		NS		
Copper, Total	270	10000	17.1		NS		
Iron, Total			6210		NS		
Lead, Total	1000	3900	8.57		NS		
Magnesium, Total	-		991		NS		
Manganese, Total	10000	10000	76.2		NS		
Mercury, Total	2.8	5.7	0.075	J	NS		
Nickel, Total	310	10000	5.17		NS		
Potassium, Total			233		NS		
Selenium, Total	1500	6800	1.12	J	NS		
Sodium, Total			116	J	NS		
Vanadium, Total Zinc, Total	10000	10000	4.08 23.6		NS NS		
Zinc, rotai	10000	10000	23.0		CFI		
GENERAL CHEMISTRY						_	
Cyanide, Total	27	10000	0.75	J	<0.50	U	
Nitrogen, Ammonia			9.1		<10.0	U	
Solids, Total			85.3		NS		
TOTAL ORGANIC CARBON Total Organic Carbon (%)			70		NC		
Total Organic Carbon (%)			78		NS		

The breeze contains numerous SVOCs, none of which were detected in the effluent water of the adsorption testing. This confirms that the SVOCs are immobile and do not leach from the breeze when in contact with water.

The benefit of using breeze is that it will provide both immediate and long-term absorption of coal related compounds in the solidified mass. The material is available and will be tested in accordance with the Solidification Work Plan prior to use.

Please let us know if you have any comments or questions.

Sincerely yours,

John P. Black

Partner

Attachment

Ecc: John Yensan, OSC

Dan Flanagan, OSC Roxanne Birx, Inventum Peter Zaffram, Inventum Angela Martin, NYSDOH Andrea Caprio, NYSDEC

Engineering Certification

I, John P. Black certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this report of the Carbon Efficiency testing was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Respectfully Submitted,

Inventum Engineering, P.C.

Date:

License No:

John P Black, P.E.

It is a violation of the laws of New York for any person, unless acting under the direction of a Licensed Professional Engineer, to alter any item or any portion of this document in any way. If an item bearing the seal of a Licensed Professional Engineer is altered, the altering Engineer shall affix to the item his/her seal and notation "altered by" followed by his/her signature and the date of such alternation, and a specific description of the alteration.

Attachment A – Laboratory Reports

ANALYTICAL REPORT

Lab Number: L2347700

Client: Inventum Engineering

441 Carlisle Drive

Suite C

Herndon, NY 20170

ATTN: John Black Phone: (571) 752-6562

Project Name: RITC

Project Number: BENCH SCALE-TOC

Report Date: 08/31/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: RITC

Project Number: BENCH SCALE-TOC

Lab Number:

L2347700

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2347700-01	BREEZE-08172023	SEDIMENT	3875 RIVER ROAD	08/17/23 11:35	08/17/23
L2347700-02	SS-BCP-24-02-08172023	SEDIMENT	3875 RIVER ROAD	08/17/23 11:45	08/17/23
L2347700-03	SS-BCP-24-04-08172023	SEDIMENT	3875 RIVER ROAD	08/17/23 11:45	08/17/23
L2347700-04	SS-BCP-24-06-08172023	SEDIMENT	3875 RIVER ROAD	08/17/23 11:48	08/17/23

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:RITCLab Number:L2347700Project Number:BENCH SCALE-TOCReport Date:08/31/23

Case Narrative (continued)

Report Submission

August 31, 2023: This final report includes the results of all requested analyses.

August 28, 2023: This is a preliminary report. August 24, 2023: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

Total Metals

L2347700-01: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by the sample matrix.

Cyanide, Total

The WG1817873-3 LCSD recovery for cyanide, total (77%), associated with L2347700-01 and -02, is outside our in-house acceptance criteria, but within the vendor-certified acceptance limits. The results of the original analyses are reported.

The WG1817875-3 LCSD recovery for cyanide, total (76%), associated with L2347700-03 and -04, is outside our in-house acceptance criteria, but within the vendor-certified acceptance limits. The results of the original analyses are reported.

Nitrogen, Ammonia

The WG1817932-3 Laboratory Duplicate RPD for nitrogen, ammonia (150%), performed on L2347700-01, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the

Project Name:RITCLab Number:L2347700Project Number:BENCH SCALE-TOCReport Date:08/31/23

Case Narrative (continued)

native sample.

Total Organic Carbon

WG1820886: The required batch QC was prepared; however, the native sample required a different reporting method; therefore, the associated QC results could not be reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/31/23

Custen Walker Cristin Walker

ORGANICS

VOLATILES

L2347700

Project Name: RITC Lab Number:

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

SAMPLE RESULTS

Lab ID: L2347700-01 Date Collected: 08/17/23 11:35

Client ID: BREEZE-08172023 Date Received: 08/17/23
Sample Location: 3875 RIVER ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Sediment
Analytical Method: 1,8260D
Analytical Date: 08/23/23 14:03

Analyst: AJK Percent Solids: 85%

Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/kg	5.8	2.6	1
1,1-Dichloroethane	ND		ug/kg	1.2	0.17	1
Chloroform	ND		ug/kg	1.7	0.16	1
Carbon tetrachloride	ND		ug/kg	1.2	0.27	1
1,2-Dichloropropane	ND		ug/kg	1.2	0.14	1
Dibromochloromethane	ND		ug/kg	1.2	0.16	1
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.31	1
Tetrachloroethene	ND		ug/kg	0.58	0.23	1
Chlorobenzene	ND		ug/kg	0.58	0.15	1
Trichlorofluoromethane	ND		ug/kg	4.6	0.80	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.30	1
1,1,1-Trichloroethane	ND		ug/kg	0.58	0.19	1
Bromodichloromethane	ND		ug/kg	0.58	0.13	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.32	1
cis-1,3-Dichloropropene	ND		ug/kg	0.58	0.18	1
Bromoform	ND		ug/kg	4.6	0.28	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.58	0.19	1
Benzene	ND		ug/kg	0.58	0.19	1
Toluene	1.2		ug/kg	1.2	0.63	1
Ethylbenzene	0.28	J	ug/kg	1.2	0.16	1
Chloromethane	ND		ug/kg	4.6	1.1	1
Bromomethane	ND		ug/kg	2.3	0.67	1
Vinyl chloride	ND		ug/kg	1.2	0.39	1
Chloroethane	ND		ug/kg	2.3	0.52	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.28	1
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.16	1
Trichloroethene	ND		ug/kg	0.58	0.16	1
1,2-Dichlorobenzene	ND		ug/kg	2.3	0.17	1

Project Name: Lab Number: **RITC** L2347700

Project Number: Report Date: BENCH SCALE-TOC 08/31/23

SAMPLE RESULTS

Lab ID: L2347700-01 Date Collected: 08/17/23 11:35

Client ID: Date Received: 08/17/23 BREEZE-08172023 Sample Location: Field Prep: 3875 RIVER ROAD Not Specified

Sample Depth:

1.4-Dichlorobenzene	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.4-Dichlorobenzene ND ug/kg 2.3 0.20 1 Methyl tert butyl ether ND ug/kg 2.3 0.23 1 p/m-Xylene 0.84 J ug/kg 2.3 0.65 1 o-Xylene 0.36 J ug/kg 1.2 0.34 1 cis-1,2-Dichloroethene 3.2 ug/kg 1.2 0.20 1 Styrene ND ug/kg 1.2 0.23 1 Dichlorodifluoromethane ND ug/kg 1.2 0.23 1 Acetone ND ug/kg 1.2 0.23 1 Carbon disulfide ND ug/kg 1.2 5.6 1 Carbon disulfide ND ug/kg 1.2 5.6 1 Carbon disulfide ND ug/kg 1.2 5.6 1 4-Methyl-2-pentanone ND ug/kg 1.2 1.5 1 2-Hexanone ND ug/kg 1.2 1	Volatile Organics by GC/MS - West	borough Lab					
1,4-Dichlorobenzene ND ug/kg 2.3 0.20 1 Methyl tert butyl ether ND ug/kg 2.3 0.23 1 p/m-Xylene 0.84 J ug/kg 2.3 0.65 1 o-Xylene 0.36 J ug/kg 1.2 0.34 1 cis-1,2-Dichloroethene 3.2 ug/kg 1.2 0.20 1 Styrene ND ug/kg 1.2 0.23 1 Dichlorodifluoromethane ND ug/kg 12 1.0 1 Acetone ND ug/kg 12 5.6 1 Carbon disulfide ND ug/kg 12 5.6 1 2-Butanone ND ug/kg 12 5.3 1 4-Methyl-2-pentanone ND ug/kg 12 1.5 1 2-Hexanone ND ug/kg 12 1.4 1 Bromochloromethane ND ug/kg 1.2 0.32	1,3-Dichlorobenzene	ND		ug/kg	2.3	0.17	1
Dichiorodifluoromethane ND	1,4-Dichlorobenzene	ND		ug/kg	2.3	0.20	1
o-Xylene 0.36 J ug/kg 1.2 0.34 1 cis-1,2-Dichloroethene 3.2 ug/kg 1.2 0.20 1 Styrene ND ug/kg 1.2 0.23 1 Dichlorodifluoromethane ND ug/kg 12 1.0 1 Acetone ND ug/kg 12 5.6 1 Carbon disulfide ND ug/kg 12 5.6 1 Carbon disulfide ND ug/kg 12 5.3 1 2-Butanone ND ug/kg 12 2.6 1 4-Methyl-2-pentanone ND ug/kg 12 1.5 1 2-Hexanone ND ug/kg 12 1.4 1 Bromochloromethane ND ug/kg 2.3 0.24 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.5 1.2 1 Isopropylbenzene ND ug/kg 2.3 0.37 1	Methyl tert butyl ether	ND		ug/kg	2.3	0.23	1
Styrene ND	p/m-Xylene	0.84	J	ug/kg	2.3	0.65	1
ND	o-Xylene	0.36	J	ug/kg	1.2	0.34	1
Dichlorodifluoromethane	cis-1,2-Dichloroethene	3.2		ug/kg	1.2	0.20	1
Acetone ND ug/kg 12 5.6 1 Carbon disulfide ND ug/kg 12 5.3 1 2-Butanone ND ug/kg 12 2.6 1 4-Methyl-2-pentanone ND ug/kg 12 1.5 1 2-Hexanone ND ug/kg 12 1.4 1 Bromochloromethane ND ug/kg 2.3 0.24 1 1,2-Dibromoethane ND ug/kg 1.2 0.32 1 1,2-Dibromoe3-chloropropane ND ug/kg 3.5 1.2 1 Isopropylbenzene ND ug/kg 1.2 0.13 1 Isopropylbenzene ND ug/kg 2.3 0.37 1 1,2,3-Trichlorobenzene ND ug/kg 2.3 0.32 1 Methyl Acetate ND ug/kg 2.3 0.32 1 Methyl Acetate ND ug/kg 4.6 1.1 1	Styrene	ND		ug/kg	1.2	0.23	1
Carbon disulfide ND ug/kg 12 5.3 1 2-Butanone ND ug/kg 12 2.6 1 4-Methyl-2-pentanone ND ug/kg 12 1.5 1 2-Hexanone ND ug/kg 12 1.4 1 Bromochloromethane ND ug/kg 2.3 0.24 1 1,2-Dibromoethane ND ug/kg 1.2 0.32 1 1,2-Dibromoethane ND ug/kg 3.5 1.2 1 1,2-Dibromoethane ND ug/kg 3.5 1.2 1 1,2-Dibromoethane ND ug/kg 3.5 1.2 1 1,2-Dibromoethane ND ug/kg 1.2 0.13 1 1,2-Dibromoethane ND ug/kg 2.3 0.37 1 1,2,3-Trichlorobenzene ND ug/kg 2.3 0.37 1 1,2,4-Trichlorobenzene ND ug/kg 4.6 1.1 1	Dichlorodifluoromethane	ND		ug/kg	12	1.0	1
2-Butanone ND ug/kg 12 2.6 1 4-Methyl-2-pentanone ND ug/kg 12 1.5 1 2-Hexanone ND ug/kg 12 1.4 1 Bromochloromethane ND ug/kg 2.3 0.24 1 1,2-Dibromoethane ND ug/kg 1.2 0.32 1 1,2-Dibromoethane ND ug/kg 3.5 1.2 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.5 1.2 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.5 1.2 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.5 1.2 1 1,2,3-Trichlorobenzene ND ug/kg 2.3 0.37 1 1,2,3-Trichlorobenzene ND ug/kg 2.3 0.37 1 1,2,4-Trichlorobenzene ND ug/kg 2.3 0.32 1 Methyl Acetate ND ug/kg 4.6 1.1 1 Cyclohexane ND ug/kg 4.6 1.1 1 1,4-Dioxane ND ug/kg 93 41. 1 Freon-113 ND ug/kg 93 41. 1	Acetone	ND		ug/kg	12	5.6	1
4-Methyl-2-pentanone ND ug/kg 12 1.5 1 2-Hexanone ND ug/kg 12 1.4 1 Bromochloromethane ND ug/kg 2.3 0.24 1 1,2-Dibromoethane ND ug/kg 1.2 0.32 1 1,2-Dibromoethane ND ug/kg 3.5 1.2 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.5 1.2 1 Isopropylbenzene ND ug/kg 1.2 0.13 1 1,2,3-Trichlorobenzene ND ug/kg 2.3 0.37 1 1,2,4-Trichlorobenzene ND ug/kg 2.3 0.37 1 1,2,4-Trichlorobenzene ND ug/kg 2.3 0.32 1 1,2,4-Trichlorobenzene ND ug/kg 2.3 0.32 1 1,2,4-Trichlorobenzene ND ug/kg 3.5 1.1 1 1,2,4-Trichlorobenzene ND ug/kg 3.5 1.2 1 1,4-Dioxane ND ug/kg 4.6 1.1 1 1.5 1 1.4 1 1.5 1 1.5 1 1.5 1 1.5 1 1.5 1 1.4 1 1.5 1 1.4 1 1.5 1 1.5 1 1.5 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.5 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.5 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.5 1 1.4 1 1.5 1 1.5 1 1.5 1 1.4 1 1.5 1	Carbon disulfide	ND		ug/kg	12	5.3	1
2-Hexanone ND ug/kg 12 1.4 1 Bromochloromethane ND ug/kg 2.3 0.24 1 1,2-Dibromoethane ND ug/kg 1.2 0.32 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.5 1.2 1 Isopropylbenzene ND ug/kg 1.2 0.13 1 1,2,3-Trichlorobenzene ND ug/kg 2.3 0.37 1 1,2,4-Trichlorobenzene ND ug/kg 2.3 0.37 1 1,2,4-Trichlorobenzene ND ug/kg 2.3 0.32 1 Methyl Acetate ND ug/kg 4.6 1.1 1 Cyclohexane ND ug/kg 12 0.63 1 1,4-Dioxane ND ug/kg 93 41. 1 Freon-113 ND ug/kg 93 41. 1	2-Butanone	ND		ug/kg	12	2.6	1
Bromochloromethane ND ug/kg 2.3 0.24 1 1,2-Dibromoethane ND ug/kg 1.2 0.32 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.5 1.2 1 1,2-Dibromo-3-chloropropane ND ug/kg 1.2 0.13 1 1,2,3-Trichlorobenzene ND ug/kg 2.3 0.37 1 1,2,4-Trichlorobenzene ND ug/kg 2.3 0.32 1 Methyl Acetate ND ug/kg 4.6 1.1 1 Cyclohexane ND ug/kg 12 0.63 1 1,4-Dioxane ND ug/kg 93 41 1 Freon-113 ND ug/kg 4.6 0.80 1	4-Methyl-2-pentanone	ND		ug/kg	12	1.5	1
1,2-Dibromoethane ND ug/kg 1.2 0.32 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.5 1.2 1 Isopropylbenzene ND ug/kg 1.2 0.13 1 1,2,3-Trichlorobenzene ND ug/kg 2.3 0.37 1 1,2,4-Trichlorobenzene ND ug/kg 2.3 0.32 1 Methyl Acetate ND ug/kg 4.6 1.1 1 Cyclohexane ND ug/kg 12 0.63 1 1,4-Dioxane ND ug/kg 93 41. 1 Freon-113 ND ug/kg 4.6 0.80 1	2-Hexanone	ND		ug/kg	12	1.4	1
1,2-Dibromo-3-chloropropane ND ug/kg 3.5 1.2 1 Isopropylbenzene ND ug/kg 1.2 0.13 1 1,2,3-Trichlorobenzene ND ug/kg 2.3 0.37 1 1,2,4-Trichlorobenzene ND ug/kg 2.3 0.32 1 Methyl Acetate ND ug/kg 4.6 1.1 1 Cyclohexane ND ug/kg 12 0.63 1 1,4-Dioxane ND ug/kg 93 41 1 Freon-113 ND ug/kg 4.6 0.80 1	Bromochloromethane	ND		ug/kg	2.3	0.24	1
Sopropylbenzene ND ug/kg 1.2 0.13 1 1,2,3-Trichlorobenzene ND ug/kg 2.3 0.37 1 1,2,4-Trichlorobenzene ND ug/kg 2.3 0.32 1 Methyl Acetate ND ug/kg 4.6 1.1 1 Cyclohexane ND ug/kg 12 0.63 1 1,4-Dioxane ND ug/kg 93 41 1 Freon-113 ND ug/kg 4.6 0.80 1	1,2-Dibromoethane	ND		ug/kg	1.2	0.32	1
1,2,3-Trichlorobenzene ND ug/kg 2.3 0.37 1 1,2,4-Trichlorobenzene ND ug/kg 2.3 0.32 1 Methyl Acetate ND ug/kg 4.6 1.1 1 Cyclohexane ND ug/kg 12 0.63 1 1,4-Dioxane ND ug/kg 93 41 1 Freon-113 ND ug/kg 4.6 0.80 1	1,2-Dibromo-3-chloropropane	ND		ug/kg	3.5	1.2	1
1,2,4-Trichlorobenzene ND ug/kg 2.3 0.32 1 Methyl Acetate ND ug/kg 4.6 1.1 1 Cyclohexane ND ug/kg 12 0.63 1 1,4-Dioxane ND ug/kg 93 41 1 Freon-113 ND ug/kg 4.6 0.80 1	Isopropylbenzene	ND		ug/kg	1.2	0.13	1
Methyl Acetate ND ug/kg 4.6 1.1 1 Cyclohexane ND ug/kg 12 0.63 1 1,4-Dioxane ND ug/kg 93 41. 1 Freon-113 ND ug/kg 4.6 0.80 1	1,2,3-Trichlorobenzene	ND		ug/kg	2.3	0.37	1
Cyclohexane ND ug/kg 12 0.63 1 1,4-Dioxane ND ug/kg 93 41. 1 Freon-113 ND ug/kg 4.6 0.80 1	1,2,4-Trichlorobenzene	ND		ug/kg	2.3	0.32	1
1,4-Dioxane ND ug/kg 93 41. 1 Freon-113 ND ug/kg 4.6 0.80 1	Methyl Acetate	ND		ug/kg	4.6	1.1	1
Freon-113 ND ug/kg 4.6 0.80 1	Cyclohexane	ND		ug/kg	12	0.63	1
*9**9	1,4-Dioxane	ND		ug/kg	93	41.	1
Methyl cyclohexane ND ug/kg 4.6 0.70 1	Freon-113	ND		ug/kg	4.6	0.80	1
	Methyl cyclohexane	ND		ug/kg	4.6	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	117	70-130	
Dibromofluoromethane	101	70-130	

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/23/23 08:25

Analyst: AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01 Batch:	WG1819331-5
Methylene chloride	ND	ug/kṣ	g 5.0	2.3
1,1-Dichloroethane	ND	ug/kṣ	g 1.0	0.14
Chloroform	ND	ug/k	g 1.5	0.14
Carbon tetrachloride	ND	ug/k	g 1.0	0.23
1,2-Dichloropropane	ND	ug/k	g 1.0	0.12
Dibromochloromethane	ND	ug/k	g 1.0	0.14
1,1,2-Trichloroethane	ND	ug/k	g 1.0	0.27
Tetrachloroethene	ND	ug/k	g 0.50	0.20
Chlorobenzene	ND	ug/k	g 0.50	0.13
Trichlorofluoromethane	ND	ug/k	g 4.0	0.70
1,2-Dichloroethane	ND	ug/k	g 1.0	0.26
1,1,1-Trichloroethane	ND	ug/k	g 0.50	0.17
Bromodichloromethane	ND	ug/k	g 0.50	0.11
trans-1,3-Dichloropropene	ND	ug/k	g 1.0	0.27
cis-1,3-Dichloropropene	ND	ug/k	g 0.50	0.16
Bromoform	ND	ug/k	g 4.0	0.25
1,1,2,2-Tetrachloroethane	ND	ug/k	g 0.50	0.17
Benzene	ND	ug/k	g 0.50	0.17
Toluene	ND	ug/k	g 1.0	0.54
Ethylbenzene	ND	ug/k	g 1.0	0.14
Chloromethane	ND	ug/k	g 4.0	0.93
Bromomethane	ND	ug/k	g 2.0	0.58
Vinyl chloride	ND	ug/k	g 1.0	0.34
Chloroethane	ND	ug/k	g 2.0	0.45
1,1-Dichloroethene	ND	ug/k	g 1.0	0.24
trans-1,2-Dichloroethene	ND	ug/k	g 1.5	0.14
Trichloroethene	ND	ug/k	g 0.50	0.14
1,2-Dichlorobenzene	ND	ug/k	g 2.0	0.14
1,3-Dichlorobenzene	ND	ug/k	g 2.0	0.15

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/23/23 08:25

Analyst: AJK

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - We	stborough Lab	for sample(s): 01	Batch:	WG1819331-5
1,4-Dichlorobenzene	ND	ug/kg	2.0	0.17
Methyl tert butyl ether	ND	ug/kg	2.0	0.20
p/m-Xylene	ND	ug/kg	2.0	0.56
o-Xylene	ND	ug/kg	1.0	0.29
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.18
Styrene	ND	ug/kg	1.0	0.20
Dichlorodifluoromethane	ND	ug/kg	10	0.92
Acetone	ND	ug/kg	10	4.8
Carbon disulfide	ND	ug/kg	10	4.6
2-Butanone	ND	ug/kg	10	2.2
4-Methyl-2-pentanone	ND	ug/kg	10	1.3
2-Hexanone	ND	ug/kg	10	1.2
Bromochloromethane	ND	ug/kg	2.0	0.20
1,2-Dibromoethane	ND	ug/kg	1.0	0.28
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.0	1.0
Isopropylbenzene	ND	ug/kg	1.0	0.11
1,2,3-Trichlorobenzene	ND	ug/kg	2.0	0.32
1,2,4-Trichlorobenzene	ND	ug/kg	2.0	0.27
Methyl Acetate	ND	ug/kg	4.0	0.95
Cyclohexane	ND	ug/kg	10	0.54
1,4-Dioxane	ND	ug/kg	80	35.
Freon-113	ND	ug/kg	4.0	0.69
Methyl cyclohexane	ND	ug/kg	4.0	0.60

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/23/23 08:25

Analyst: AJK

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1819331-5

		Acceptance
Surrogate	%Recovery Qu	ualifier Criteria
1,2-Dichloroethane-d4	114	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	97	70-130
Dibromofluoromethane	107	70-130

Project Name: RITC

Project Number: BENCH SCALE-TOC

Lab Number: L2347700

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	819331-3	WG1819331-4				
Methylene chloride	97		91		70-130	6		30	
1,1-Dichloroethane	102		93		70-130	9		30	
Chloroform	88		81		70-130	8		30	
Carbon tetrachloride	95		83		70-130	13		30	
1,2-Dichloropropane	97		92		70-130	5		30	
Dibromochloromethane	102		98		70-130	4		30	
1,1,2-Trichloroethane	106		102		70-130	4		30	
Tetrachloroethene	115		101		70-130	13		30	
Chlorobenzene	102		97		70-130	5		30	
Trichlorofluoromethane	112		96		70-139	15		30	
1,2-Dichloroethane	96		93		70-130	3		30	
1,1,1-Trichloroethane	98		87		70-130	12		30	
Bromodichloromethane	94		89		70-130	5		30	
trans-1,3-Dichloropropene	99		98		70-130	1		30	
cis-1,3-Dichloropropene	98		98		70-130	0		30	
Bromoform	93		92		70-130	1		30	
1,1,2,2-Tetrachloroethane	97		92		70-130	5		30	
Benzene	99		93		70-130	6		30	
Toluene	103		94		70-130	9		30	
Ethylbenzene	106		97		70-130	9		30	
Chloromethane	108		95		52-130	13		30	
Bromomethane	95		86		57-147	10		30	
Vinyl chloride	114		94		67-130	19		30	

Project Name: RITC

Project Number: BENCH SCALE-TOC

Lab Number: L2347700

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01	Batch: WG1	819331-3 V	NG1819331-4		
Chloroethane	101		91		50-151	10	30
1,1-Dichloroethene	106		92		65-135	14	30
trans-1,2-Dichloroethene	102		94		70-130	8	30
Trichloroethene	108		99		70-130	9	30
1,2-Dichlorobenzene	101		94		70-130	7	30
1,3-Dichlorobenzene	105		98		70-130	7	30
1,4-Dichlorobenzene	103		98		70-130	5	30
Methyl tert butyl ether	96		94		66-130	2	30
p/m-Xylene	110		101		70-130	9	30
o-Xylene	106		99		70-130	7	30
cis-1,2-Dichloroethene	97		79		70-130	20	30
Styrene	110		105		70-130	5	30
Dichlorodifluoromethane	115		96		30-146	18	30
Acetone	95		97		54-140	2	30
Carbon disulfide	104		90		59-130	14	30
2-Butanone	86		90		70-130	5	30
4-Methyl-2-pentanone	95		90		70-130	5	30
2-Hexanone	94		91		70-130	3	30
Bromochloromethane	98		84		70-130	15	30
1,2-Dibromoethane	104		102		70-130	2	30
1,2-Dibromo-3-chloropropane	108		100		68-130	8	30
Isopropylbenzene	107		95		70-130	12	30
1,2,3-Trichlorobenzene	98		97		70-130	1	30

Project Name: RITC

Project Number:

BENCH SCALE-TOC

Lab Number:

L2347700

Report Date:

08/31/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	<u>, </u>		•		WG1819331-4	7.0.2			
1,2,4-Trichlorobenzene	99		98		70-130	1		30	
Methyl Acetate	102		94		51-146	8		30	
Cyclohexane	110		72		59-142	42	Q	30	
1,4-Dioxane	99		88		65-136	12		30	
Freon-113	112		96		50-139	15		30	
Methyl cyclohexane	107		92		70-130	15		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	96	96	70-130
Toluene-d8	102	102	70-130
4-Bromofluorobenzene	96	94	70-130
Dibromofluoromethane	90	90	70-130

SEMIVOLATILES

Project Name: RITC Lab Number: L2347700

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

SAMPLE RESULTS

Lab ID: L2347700-01 D Date Collected: 08/17/23 11:35

Client ID: BREEZE-08172023 Date Received: 08/17/23
Sample Location: 3875 RIVER ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Sediment Extraction Method: EPA 3546
Analytical Method: 1.8270E Extraction Date: 08/20/23 04:30

Analytical Method: 1,8270E Extraction Date: 08/20/23 04:30
Analytical Date: 08/21/23 16:03

Analyst: JG Percent Solids: 85%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Acenaphthene	640	J	ug/kg	770	99.	5
Hexachlorobenzene	ND		ug/kg	580	110	5
Bis(2-chloroethyl)ether	ND		ug/kg	860	130	5
2-Chloronaphthalene	ND		ug/kg	960	95.	5
3,3'-Dichlorobenzidine	ND		ug/kg	960	260	5
2,4-Dinitrotoluene	ND		ug/kg	960	190	5
2,6-Dinitrotoluene	ND		ug/kg	960	160	5
Fluoranthene	24000		ug/kg	580	110	5
4-Chlorophenyl phenyl ether	ND		ug/kg	960	100	5
4-Bromophenyl phenyl ether	ND		ug/kg	960	150	5
Bis(2-chloroisopropyl)ether	ND		ug/kg	1200	160	5
Bis(2-chloroethoxy)methane	ND		ug/kg	1000	96.	5
Hexachlorobutadiene	ND		ug/kg	960	140	5
Hexachlorocyclopentadiene	ND		ug/kg	2700	870	5
Hexachloroethane	ND		ug/kg	770	160	5
Isophorone	ND		ug/kg	860	120	5
Naphthalene	5000		ug/kg	960	120	5
Nitrobenzene	ND		ug/kg	860	140	5
NDPA/DPA	ND		ug/kg	770	110	5
n-Nitrosodi-n-propylamine	ND		ug/kg	960	150	5
Bis(2-ethylhexyl)phthalate	ND		ug/kg	960	330	5
Butyl benzyl phthalate	ND		ug/kg	960	240	5
Di-n-butylphthalate	ND		ug/kg	960	180	5
Di-n-octylphthalate	ND		ug/kg	960	330	5
Diethyl phthalate	ND		ug/kg	960	89.	5
Dimethyl phthalate	ND		ug/kg	960	200	5
Benzo(a)anthracene	9100		ug/kg	580	110	5
Benzo(a)pyrene	9500		ug/kg	770	230	5

Project Name: RITC Lab Number: L2347700

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

SAMPLE RESULTS

Lab ID: L2347700-01 D Date Collected: 08/17/23 11:35

Client ID: BREEZE-08172023 Date Received: 08/17/23
Sample Location: 3875 RIVER ROAD Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Benzo(b)fluoranthene	12000		ug/kg	580	160	5
Benzo(k)fluoranthene	2900		ug/kg	580	150	5
Chrysene	9800		ug/kg	580	100	5
Acenaphthylene	2700		ug/kg	770	150	5
Anthracene	4000		ug/kg	580	190	5
Benzo(ghi)perylene	6000		ug/kg	770	110	5
Fluorene	2900		ug/kg	960	93.	5
Phenanthrene	18000		ug/kg	580	120	5
Dibenzo(a,h)anthracene	1500		ug/kg	580	110	5
Indeno(1,2,3-cd)pyrene	5600		ug/kg	770	130	5
Pyrene	18000		ug/kg	580	95.	5
Biphenyl	340	J	ug/kg	2200	120	5
4-Chloroaniline	ND		ug/kg	960	170	5
2-Nitroaniline	ND		ug/kg	960	180	5
3-Nitroaniline	ND		ug/kg	960	180	5
4-Nitroaniline	ND		ug/kg	960	400	5
Dibenzofuran	1700		ug/kg	960	91.	5
2-Methylnaphthalene	1300		ug/kg	1200	120	5
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	960	100	5
Acetophenone	ND		ug/kg	960	120	5
2,4,6-Trichlorophenol	ND		ug/kg	580	180	5
p-Chloro-m-cresol	ND		ug/kg	960	140	5
2-Chlorophenol	ND		ug/kg	960	110	5
2,4-Dichlorophenol	ND		ug/kg	860	150	5
2,4-Dimethylphenol	ND		ug/kg	960	320	5
2-Nitrophenol	ND		ug/kg	2100	360	5
4-Nitrophenol	ND		ug/kg	1300	390	5
2,4-Dinitrophenol	ND		ug/kg	4600	450	5
4,6-Dinitro-o-cresol	ND		ug/kg	2500	460	5
Pentachlorophenol	ND		ug/kg	770	210	5
Phenol	150	J	ug/kg	960	140	5
2-Methylphenol	ND		ug/kg	960	150	5
3-Methylphenol/4-Methylphenol	150	J	ug/kg	1400	150	5
2,4,5-Trichlorophenol	ND		ug/kg	960	180	5
Carbazole	1300		ug/kg	960	93.	5
Atrazine	ND		ug/kg	770	340	5
Benzaldehyde	ND		ug/kg	1300	260	5

Project Name: RITC Lab Number: L2347700

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

SAMPLE RESULTS

Lab ID: L2347700-01 D Date Collected: 08/17/23 11:35

Client ID: BREEZE-08172023 Date Received: 08/17/23
Sample Location: 3875 RIVER ROAD Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Caprolactam	ND		ug/kg	960	290	5
2,3,4,6-Tetrachlorophenol	ND		ug/kg	960	190	5

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	28	25-120
Phenol-d6	36	10-120
Nitrobenzene-d5	69	23-120
2-Fluorobiphenyl	86	30-120
2,4,6-Tribromophenol	51	10-136
4-Terphenyl-d14	77	18-120

Project Name: RITC

Project Number: BENCH SCALE-TOC

Lab Number: L2347700

Report Date: 08/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/21/23 14:06

Analyst: MG

Extraction Method: EPA 3546
Extraction Date: 08/20/23 04:30

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG1817942-1
Acenaphthene	ND		ug/kg		130	17.
Hexachlorobenzene	ND		ug/kg		99	18.
Bis(2-chloroethyl)ether	ND		ug/kg		150	22.
2-Chloronaphthalene	ND		ug/kg		160	16.
3,3'-Dichlorobenzidine	ND		ug/kg		160	44.
2,4-Dinitrotoluene	ND		ug/kg		160	33.
2,6-Dinitrotoluene	ND		ug/kg		160	28.
Fluoranthene	ND		ug/kg		99	19.
4-Chlorophenyl phenyl ether	ND		ug/kg		160	18.
4-Bromophenyl phenyl ether	ND		ug/kg		160	25.
Bis(2-chloroisopropyl)ether	ND		ug/kg		200	28.
Bis(2-chloroethoxy)methane	ND		ug/kg		180	17.
Hexachlorobutadiene	ND		ug/kg		160	24.
Hexachlorocyclopentadiene	ND		ug/kg		470	150
Hexachloroethane	ND		ug/kg		130	27.
Isophorone	ND		ug/kg		150	22.
Naphthalene	ND		ug/kg		160	20.
Nitrobenzene	ND		ug/kg		150	24.
NDPA/DPA	ND		ug/kg		130	19.
n-Nitrosodi-n-propylamine	ND		ug/kg		160	26.
Bis(2-ethylhexyl)phthalate	ND		ug/kg		160	57.
Butyl benzyl phthalate	ND		ug/kg		160	42.
Di-n-butylphthalate	ND		ug/kg		160	31.
Di-n-octylphthalate	ND		ug/kg		160	56.
Diethyl phthalate	ND		ug/kg		160	15.
Dimethyl phthalate	ND		ug/kg		160	35.
Benzo(a)anthracene	ND		ug/kg		99	19.
Benzo(a)pyrene	ND		ug/kg		130	40.
Benzo(b)fluoranthene	ND		ug/kg		99	28.

Project Name: RITC

Project Number: BENCH SCALE-TOC

Lab Number: L2347700

Report Date: 08/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/21/23 14:06

Analyst: MG

Extraction Method: EPA 3546
Extraction Date: 08/20/23 04:30

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	sample(s):	01	Batch:	WG1817942-1	
Benzo(k)fluoranthene	ND		ug/kg		99	26.	
Chrysene	ND		ug/kg		99	17.	
Acenaphthylene	ND		ug/kg		130	26.	
Anthracene	ND		ug/kg		99	32.	
Benzo(ghi)perylene	ND		ug/kg		130	19.	
Fluorene	ND		ug/kg		160	16.	
Phenanthrene	ND		ug/kg		99	20.	
Dibenzo(a,h)anthracene	ND		ug/kg		99	19.	
Indeno(1,2,3-cd)pyrene	ND		ug/kg		130	23.	
Pyrene	ND		ug/kg		99	16.	
Biphenyl	ND		ug/kg		380	22.	
4-Chloroaniline	ND		ug/kg		160	30.	
2-Nitroaniline	ND		ug/kg		160	32.	
3-Nitroaniline	ND		ug/kg		160	31.	
4-Nitroaniline	ND		ug/kg		160	68.	
Dibenzofuran	ND		ug/kg		160	16.	
2-Methylnaphthalene	ND		ug/kg		200	20.	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg		160	17.	
Acetophenone	ND		ug/kg		160	20.	
2,4,6-Trichlorophenol	ND		ug/kg		99	31.	
p-Chloro-m-cresol	ND		ug/kg		160	25.	
2-Chlorophenol	ND		ug/kg		160	20.	
2,4-Dichlorophenol	ND		ug/kg		150	27.	
2,4-Dimethylphenol	ND		ug/kg		160	55.	
2-Nitrophenol	ND		ug/kg		360	62.	
4-Nitrophenol	ND		ug/kg		230	68.	
2,4-Dinitrophenol	ND		ug/kg		800	77.	
4,6-Dinitro-o-cresol	ND		ug/kg		430	80.	
Pentachlorophenol	ND		ug/kg		130	36.	

L2347700

Lab Number:

Project Name: RITC

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/21/23 14:06

Analyst: MG

Extraction Method: EPA 3546
Extraction Date: 08/20/23 04:30

arameter	Result	Qualifier Units	RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for sample(s):	01 Batch:	WG1817942-1	
Phenol	ND	ug/kg	160	25.	
2-Methylphenol	ND	ug/kg	160	26.	
3-Methylphenol/4-Methylphenol	ND	ug/kg	240	26.	
2,4,5-Trichlorophenol	ND	ug/kg	160	32.	
Carbazole	ND	ug/kg	160	16.	
Atrazine	ND	ug/kg	130	58.	
Benzaldehyde	ND	ug/kg	220	45.	
Caprolactam	ND	ug/kg	160	50.	
2,3,4,6-Tetrachlorophenol	ND	ug/kg	160	33.	

Surrogate	%Recovery Qua	Acceptance alifier Criteria
2-Fluorophenol	94	25-120
Phenol-d6	97	10-120
Nitrobenzene-d5	83	23-120
2-Fluorobiphenyl	113	30-120
2,4,6-Tribromophenol	119	10-136
4-Terphenyl-d14	119	18-120

Project Name: RITC

Project Number: BENCH SCALE-TOC

Lab Number: L2347700

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS	- Westborough Lab Associ	ated sample(s):	01 Batch:	WG1817942-2	2 WG1817942-3		
Acenaphthene	72		87		31-137	19	50
Hexachlorobenzene	88		101		40-140	14	50
Bis(2-chloroethyl)ether	64		76		40-140	17	50
2-Chloronaphthalene	83		95		40-140	13	50
3,3'-Dichlorobenzidine	90		102		40-140	13	50
2,4-Dinitrotoluene	89		103		40-132	15	50
2,6-Dinitrotoluene	91		100		40-140	9	50
Fluoranthene	80		90		40-140	12	50
4-Chlorophenyl phenyl ether	82		96		40-140	16	50
4-Bromophenyl phenyl ether	85		98		40-140	14	50
Bis(2-chloroisopropyl)ether	62		76		40-140	20	50
Bis(2-chloroethoxy)methane	66		77		40-117	15	50
Hexachlorobutadiene	83		104		40-140	22	50
Hexachlorocyclopentadiene	92		110		40-140	18	50
Hexachloroethane	60		72		40-140	18	50
Isophorone	67		76		40-140	13	50
Naphthalene	72		88		40-140	20	50
Nitrobenzene	66		76		40-140	14	50
NDPA/DPA	80		92		36-157	14	50
n-Nitrosodi-n-propylamine	67		78		32-121	15	50
Bis(2-ethylhexyl)phthalate	81		96		40-140	17	50
Butyl benzyl phthalate	76		87		40-140	13	50
Di-n-butylphthalate	77		91		40-140	17	50

Project Name: RITC

Project Number: BENCH SCALE-TOC

Lab Number: L2347700

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Assoc	iated sample(s):	01 Batch:	WG1817942-2	2 WG1817942-3		
Di-n-octylphthalate	82		97		40-140	17	50
Diethyl phthalate	77		89		40-140	14	50
Dimethyl phthalate	84		93		40-140	10	50
Benzo(a)anthracene	81		95		40-140	16	50
Benzo(a)pyrene	83		107		40-140	25	50
Benzo(b)fluoranthene	75		93		40-140	21	50
Benzo(k)fluoranthene	76		100		40-140	27	50
Chrysene	79		95		40-140	18	50
Acenaphthylene	83		93		40-140	11	50
Anthracene	79		92		40-140	15	50
Benzo(ghi)perylene	82		103		40-140	23	50
Fluorene	78		92		40-140	16	50
Phenanthrene	77		91		40-140	17	50
Dibenzo(a,h)anthracene	84		105		40-140	22	50
Indeno(1,2,3-cd)pyrene	85		106		40-140	22	50
Pyrene	79		90		35-142	13	50
Biphenyl	86		97		37-127	12	50
4-Chloroaniline	63		73		40-140	15	50
2-Nitroaniline	95		106		47-134	11	50
3-Nitroaniline	81		91		26-129	12	50
4-Nitroaniline	83		94		41-125	12	50
Dibenzofuran	80		95		40-140	17	50
2-Methylnaphthalene	79		92		40-140	15	50

Project Name: RITC

Project Number: BENCH SCALE-TOC

Lab Number: L2347700

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Associa	ated sample(s):	01 Batch:	WG1817942-2	2 WG1817942-3			
1,2,4,5-Tetrachlorobenzene	89		106		40-117	17		50
Acetophenone	72		85		14-144	17		50
2,4,6-Trichlorophenol	94		108		30-130	14		50
p-Chloro-m-cresol	74		82		26-103	10		50
2-Chlorophenol	75		87		25-102	15		50
2,4-Dichlorophenol	90		100		30-130	11		50
2,4-Dimethylphenol	73		81		30-130	10		50
2-Nitrophenol	87		103		30-130	17		50
4-Nitrophenol	70		80		11-114	13		50
2,4-Dinitrophenol	66		75		4-130	13		50
4,6-Dinitro-o-cresol	107		120		10-130	11		50
Pentachlorophenol	99		108		17-109	9		50
Phenol	74		82		26-90	10		50
2-Methylphenol	76		86		30-130.	12		50
3-Methylphenol/4-Methylphenol	75		86		30-130	14		50
2,4,5-Trichlorophenol	101		108		30-130	7		50
Carbazole	78		90		54-128	14		50
Atrazine	80		86		40-140	7		50
Benzaldehyde	103		126		40-140	20		50
Caprolactam	71		79		15-130	11		50
2,3,4,6-Tetrachlorophenol	91		103		40-140	12		50

Project Name: RITC Batch Quality Con

Lab Number:

L2347700

Project Number: BENCH SCALE-TOC

Report Date:

08/31/23

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1817942-2 WG1817942-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	76	84	25-120
Phenol-d6	79	86	10-120
Nitrobenzene-d5	69	79	23-120
2-Fluorobiphenyl	90	98	30-120
2,4,6-Tribromophenol	108	119	10-136
4-Terphenyl-d14	83	91	18-120

METALS

08/17/23 11:35

Date Collected:

Project Name: RITC Lab Number: L2347700

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

SAMPLE RESULTS

Lab ID: L2347700-01

Client ID: BREEZE-08172023 Date Received: 08/17/23
Sample Location: 3875 RIVER ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Sediment

Percent Solids: 85% Dilution Date Date Prep Analytical Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analy

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mar	nsfield Lab										
Aluminum, Total	1760		mg/kg	9.15	2.47	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Antimony, Total	ND		mg/kg	4.58	0.348	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Arsenic, Total	5.38		mg/kg	0.915	0.190	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Barium, Total	35.5		mg/kg	0.915	0.159	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Beryllium, Total	0.268	J	mg/kg	0.458	0.030	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Cadmium, Total	ND		mg/kg	0.915	0.090	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Calcium, Total	4740		mg/kg	9.15	3.20	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Chromium, Total	5.44		mg/kg	0.915	0.088	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Cobalt, Total	2.36		mg/kg	1.83	0.152	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Copper, Total	17.1		mg/kg	0.915	0.236	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Iron, Total	6210		mg/kg	4.58	0.826	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Lead, Total	8.57		mg/kg	4.58	0.245	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Magnesium, Total	991		mg/kg	9.15	1.41	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Manganese, Total	76.2		mg/kg	0.915	0.146	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Mercury, Total	0.075	J	mg/kg	0.086	0.056	1	08/22/23 17:1	8 08/28/23 17:42	EPA 7471B	1,7471B	DMB
Nickel, Total	5.17		mg/kg	2.29	0.221	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Potassium, Total	233		mg/kg	229	13.2	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Selenium, Total	1.12	J	mg/kg	1.83	0.236	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Silver, Total	ND		mg/kg	0.458	0.259	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Sodium, Total	116	J	mg/kg	183	2.88	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Thallium, Total	ND		mg/kg	1.83	0.288	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Vanadium, Total	4.08		mg/kg	0.915	0.186	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS
Zinc, Total	23.6		mg/kg	4.58	0.268	2	08/22/23 16:4	3 08/30/23 19:02	EPA 3050B	1,6010D	JTS

Project Name: RITC

Project Number: BENCH SCALE-TOC

Lab Number:

L2347700

Report Date: 08/31/23

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sa	mple(s):	01 Batch	n: WG18	818746-	1				
Aluminum, Total	ND		mg/kg	4.00	1.08	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Antimony, Total	0.922	J	mg/kg	2.00	0.152	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Arsenic, Total	ND		mg/kg	0.400	0.083	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Barium, Total	ND		mg/kg	0.400	0.070	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Beryllium, Total	ND		mg/kg	0.200	0.013	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Cadmium, Total	ND		mg/kg	0.400	0.039	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Calcium, Total	ND		mg/kg	4.00	1.40	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Chromium, Total	ND		mg/kg	0.400	0.038	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Cobalt, Total	0.091	J	mg/kg	0.800	0.066	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Copper, Total	ND		mg/kg	0.400	0.103	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Iron, Total	0.751	J	mg/kg	2.00	0.361	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Lead, Total	ND		mg/kg	2.00	0.107	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Magnesium, Total	ND		mg/kg	4.00	0.616	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Manganese, Total	ND		mg/kg	0.400	0.064	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Nickel, Total	ND		mg/kg	1.00	0.097	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Potassium, Total	ND		mg/kg	100	5.76	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Selenium, Total	ND		mg/kg	0.800	0.103	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Silver, Total	ND		mg/kg	0.200	0.113	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Sodium, Total	1.46	J	mg/kg	80.0	1.26	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Thallium, Total	0.198	J	mg/kg	0.800	0.126	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Vanadium, Total	ND		mg/kg	0.400	0.081	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS
Zinc, Total	ND		mg/kg	2.00	0.117	1	08/22/23 16:43	08/30/23 18:55	1,6010D	JTS

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Mar	nsfield Lab for sample(s):	01 Batch	n: WG18	318748-	1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	08/22/23 17:18	08/28/23 17:22	1,7471B	DMB

Project Name: RITC Lab Number: L2347700

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: RITC

Project Number:

BENCH SCALE-TOC

Lab Number:

L2347700

Report Date:

08/31/23

arameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sampl	e(s): 01 Batch: \	WG1818746-2	SRM Lot N	lumber: D1	19-540			
Aluminum, Total	79		-		48-152	-		
Antimony, Total	174		-		10-190	-		
Arsenic, Total	104		-		83-117	-		
Barium, Total	102		-		82-118	-		
Beryllium, Total	102		-		83-117	-		
Cadmium, Total	94		-		82-117	-		
Calcium, Total	101		-		81-118	-		
Chromium, Total	104		-		82-119	-		
Cobalt, Total	100		-		83-117	-		
Copper, Total	96		-		84-116	-		
Iron, Total	110		-		60-140	-		
Lead, Total	102		-		82-118	-		
Magnesium, Total	92		-		76-124	-		
Manganese, Total	115		-		82-118	-		
Nickel, Total	98		-		82-117	-		
Potassium, Total	92		-		70-130	-		
Selenium, Total	106		-		79-121	-		
Silver, Total	102		-		80-120	-		
Sodium, Total	99		-		74-126	-		
Thallium, Total	100		-		81-119	-		
Vanadium, Total	98		-		79-121	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: RITC

Project Number:

BENCH SCALE-TOC

Lab Number:

L2347700

Report Date:

08/31/23

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associate	ed sample(s): 01 Batch: WG181	8746-2 SRM Lot Numbe	r: D119-540		
Zinc, Total	104	-	80-120	-	
Total Metals - Mansfield Lab Associate	ed sample(s): 01 Batch: WG181	8748-2 SRM Lot Numbe	r: D119-540		
Mercury, Total	100	-	73-127	-	

Matrix Spike Analysis Batch Quality Control

Project Name: RITC

Project Number: BENCH SCALE-TOC

Lab Number: L2347700

Report Date: 08/31/23

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits		Qual	RPD Limits
Total Metals - Mansfield	Lab Associated sar	mple(s): 01	QC Batch	ID: WG181874	16-3	QC Sample	e: L2347595-01	Client ID: MS S	Sample		
Aluminum, Total	6260	183	8150	1030	Q	-	-	75-125	-		20
Antimony, Total	ND	45.8	47.6	104		-	-	75-125	-		20
Arsenic, Total	5.05	11	16.6	105		-	-	75-125	-		20
Barium, Total	66.5	183	246	98		-	-	75-125	-		20
Beryllium, Total	0.507	4.58	5.11	100		-	-	75-125	-		20
Cadmium, Total	ND	4.85	4.39	90		-	-	75-125	-		20
Calcium, Total	2310	915	3350	114		-	-	75-125	-		20
Chromium, Total	28.2	18.3	41.1	70	Q	-	-	75-125	-		20
Cobalt, Total	6.15	45.8	49.1	94		-	-	75-125	-		20
Copper, Total	11.5	22.9	34.7	101		-	-	75-125	-		20
Iron, Total	12400	91.5	12700	328	Q	-	-	75-125	-		20
Lead, Total	60.5	48.5	116	114		-	-	75-125	-		20
Magnesium, Total	3790	915	2410	0	Q	-	-	75-125	-		20
Manganese, Total	240	45.8	252	26	Q	-	-	75-125	-		20
Nickel, Total	42.2	45.8	54.4	27	Q	-	-	75-125	-		20
Potassium, Total	580	915	1550	106		-	-	75-125	-		20
Selenium, Total	0.219J	11	10.9	99		-	-	75-125	-		20
Silver, Total	ND	4.58	4.69	102		-	-	75-125	-		20
Sodium, Total	55.7J	915	941	103		-	-	75-125	-		20
Thallium, Total	ND	11	10.9	99		-	-	75-125	-		20
Vanadium, Total	25.6	45.8	69.9	97		-	-	75-125	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: RITC

Project Number: BENCH SCALE-TOC

Lab Number:

L2347700

Report Date:

08/31/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La	ab Associated sam	ple(s): 01	QC Batch	ID: WG1818746-3	QC Sample	: L2347595-01	Client ID: MS Sa	ample	
Zinc, Total	51.2	45.8	94.3	94	-	-	75-125	-	20
Total Metals - Mansfield La	ab Associated sam	ple(s): 01	QC Batch	ID: WG1818748-3	QC Sample	: L2347595-01	Client ID: MS Sa	ample	
Mercury, Total	ND	1.7	1.77	104	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: RITC

Project Number: BENCH SCALE-TOC

 Lab Number:
 L2347700

 Report Date:
 08/31/23

arameter	Native Sample D	ouplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1818746	i-4 QC Sample: L	.2347595-01 (Client ID: D	UP Sample	
Aluminum, Total	6260	6160	mg/kg	2		20
Antimony, Total	ND	ND	mg/kg	NC		20
Arsenic, Total	5.05	4.99	mg/kg	1		20
Barium, Total	66.5	63.9	mg/kg	4		20
Beryllium, Total	0.507	0.486	mg/kg	4		20
Cadmium, Total	ND	ND	mg/kg	NC		20
Chromium, Total	28.2	20.1	mg/kg	34	Q	20
Cobalt, Total	6.15	4.40	mg/kg	33	Q	20
Copper, Total	11.5	15.8	mg/kg	32	Q	20
Iron, Total	12400	11700	mg/kg	6		20
Lead, Total	60.5	56.7	mg/kg	6		20
Manganese, Total	240	219	mg/kg	9		20
Nickel, Total	42.2	9.12	mg/kg	129	Q	20
Selenium, Total	0.219J	0.261J	mg/kg	NC		20
Silver, Total	ND	0.160J	mg/kg	NC		20
Thallium, Total	ND	ND	mg/kg	NC		20
Vanadium, Total	25.6	25.9	mg/kg	1		20
Zinc, Total	51.2	45.1	mg/kg	13		20

Lab Number:

Lab Duplicate Analysis

Batch Quality Control

L2347700

08/31/23 **Project Number:** BENCH SCALE-TOC Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG18187	748-4 QC Sample: L	_2347595-01	Client ID: DUP Sample	
Mercury, Total	ND	ND	mg/kg	NC	20

Project Name:

RITC

INORGANICS & MISCELLANEOUS

Project Name: RITC Lab Number: L2347700

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

SAMPLE RESULTS

Lab ID: L2347700-01 Date Collected: 08/17/23 11:35

Client ID: BREEZE-08172023 Date Received: 08/17/23 Sample Location: 3875 RIVER ROAD Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon -	Mansfield Lal	b								
Total Organic Carbon	78.0		%	0.010	0.010	1	-	08/28/23 08:43	1,9060A	SPP
General Chemistry - We	estborough La	ab								
Solids, Total	85.3		%	0.100	NA	1	-	08/18/23 13:45	121,2540G	ROI
Cyanide, Total	0.75	J	mg/kg	1.1	0.24	1	08/19/23 16:00	08/21/23 15:14	1,9010C/9012B	KEP
Nitrogen, Ammonia	9.1		mg/kg	8.3	3.1	1	08/20/23 10:40	08/20/23 17:22	121,4500NH3-BH	AVT

Project Name: RITC Lab Number: L2347700

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

SAMPLE RESULTS

Lab ID: L2347700-02 Date Collected: 08/17/23 11:45

Client ID: SS-BCP-24-02-08172023 Date Received: 08/17/23 Sample Location: 3875 RIVER ROAD Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab									
Solids, Total	93.0		%	0.100	NA	1	-	08/18/23 13:45	121,2540G	ROI
Cyanide, Total	29		mg/kg	2.0	0.43	2	08/19/23 16:00	08/21/23 16:11	1,9010C/9012B	KEP
Nitrogen, Ammonia	9.9		mg/kg	8.0	3.0	1	08/20/23 10:40	08/20/23 17:25	121,4500NH3-BH	I AVT

Project Name: RITC Lab Number: L2347700

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

SAMPLE RESULTS

Lab ID: L2347700-03 Date Collected: 08/17/23 11:45

Client ID: SS-BCP-24-04-08172023 Date Received: 08/17/23 Sample Location: 3875 RIVER ROAD Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab									
Solids, Total	89.0		%	0.100	NA	1	-	08/18/23 13:45	121,2540G	ROI
Cyanide, Total	53		mg/kg	5.3	1.1	5	08/19/23 16:00	08/21/23 16:13	1,9010C/9012B	KEP
Nitrogen, Ammonia	150		mg/kg	7.3	2.7	1	08/20/23 10:40	08/20/23 17:26	121,4500NH3-BH	I AVT

Project Name: RITC Lab Number: L2347700

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

SAMPLE RESULTS

Lab ID: L2347700-04 Date Collected: 08/17/23 11:48

Client ID: SS-BCP-24-06-08172023 Date Received: 08/17/23 Sample Location: 3875 RIVER ROAD Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab									
Solids, Total	91.9		%	0.100	NA	1	-	08/18/23 13:45	121,2540G	ROI
Cyanide, Total	25		mg/kg	2.0	0.43	2	08/19/23 16:00	08/21/23 16:14	1,9010C/9012B	KEP
Nitrogen, Ammonia	20		mg/kg	6.4	2.4	1	08/20/23 10:40	08/20/23 17:27	121,4500NH3-BH	AVT

Project Name: RITC Lab Number: L2347700

Project Number: BENCH SCALE-TOC Report Date: 08/31/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for	sample(s): 01	I-02 Ba	itch: WC	G1817873-	1			
Cyanide, Total	ND	mg/kg	0.86	0.18	1	08/19/23 16:00	08/21/23 15:10	1,9010C/9012E	3 KEP
General Chemistry - W	estborough Lab for	sample(s): 03	3-04 Ba	itch: WC	G1817875-	1			
Cyanide, Total	ND	mg/kg	0.86	0.18	1	08/19/23 16:00	08/21/23 15:10	1,9010C/9012E	3 KEP
General Chemistry - W	estborough Lab for	sample(s): 01	I-04 Ba	itch: WC	G1817932-	1			
Nitrogen, Ammonia	ND	mg/kg	7.5	0.02	1	08/20/23 10:40	08/20/23 17:19	121,4500NH3-BI	H AVT
Total Organic Carbon -	Mansfield Lab for s	ample(s): 01	Batch:	WG182	20886-1				
Total Organic Carbon	ND	%	0.010	0.010	1	-	08/28/23 08:43	1,9060A	SPP

Lab Control Sample Analysis Batch Quality Control

Project Name:

RITC

Project Number: BENCH SCALE-TOC Lab Number:

L2347700

Report Date:

08/31/23

Parameter	LCS %Recovery Q	LCSD lual %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 0	1-02 Batch: WG1	1817873-2 WC	G1817873-3			
Cyanide, Total	87	77	Q	80-120	15		35
General Chemistry - Westborough Lab	Associated sample(s): 0	3-04 Batch: WG1	1817875-2 WC	G1817875-3			
Cyanide, Total	87	76	Q	80-120	15		35
General Chemistry - Westborough Lab	Associated sample(s): 0	1-04 Batch: WG1	1817932-2				
Nitrogen, Ammonia	93	-		83-115	-		20
Total Organic Carbon - Mansfield Lab	Associated sample(s): 01	Batch: WG1820	886-2				
Total Organic Carbon	96	-		75-125	-		25

Matrix Spike Analysis Batch Quality Control

Project Name: RITC

Project Number: BENCH SCALE-TOC

Lab Number:

L2347700

Report Date:

08/31/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD ual Limits
General Chemistry - Westbo BREEZE-08172023	orough Lab Assoc	ciated samp	le(s): 01-02	QC Batch II	D: WG1817873	-4 WG1817873-5	QC Sample: L23	47700-01	Client ID:
Cyanide, Total	0.75J	12	12	97	12	98	75-125	0	35
General Chemistry - Westbo Sample	orough Lab Assoc	ciated samp	le(s): 03-04	QC Batch II	D: WG1817875	-4 WG1817875-5	QC Sample: L23	47803-04	Client ID: N
Cyanide, Total	ND	10	9.8	96	10	95	75-125	2	35
General Chemistry - Westbo 08172023	orough Lab Assoc	ciated samp	le(s): 01-04	QC Batch II	D: WG1817932	4 QC Sample:	L2347700-01 Cli	ent ID: BF	REEZE-
Nitrogen, Ammonia	9.1	390	350	88		-	55-144	-	20

L2347700

Lab Duplicate Analysis Batch Quality Control

Project Name: RITC

Project Number: BENCH SCALE-TOC Lab Number:

08/31/23 Report Date:

Parameter	Native Samp	ole Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-04	QC Batch ID: WG1817424-1	QC Sample:	L2347609-01	Client ID:	DUP Sample
Solids, Total	88.3	88.6	%	0		20
General Chemistry - Westborough Lab 7	Associated sample(s): 01-04	QC Batch ID: WG1817932-3	QC Sample:	L2347700-01	Client ID:	BREEZE-
Nitrogen, Ammonia	9.1	63	mg/kg	150	Q	20

Project Name: RITC

Lab Number: L2347700 **Project Number:** BENCH SCALE-TOC **Report Date:** 08/31/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Information			Initial		Temp			Frozen		
	Container ID	Container Type	Cooler	pH pH deg C Pres Seal		Seal	Date/Time	Analysis(*)		
	L2347700-01A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.3	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI-TI(180),TL-TI(180),AL- TI(180),SB-TI(180),ZN-TI(180),PB-TI(180),SE- TI(180),CU-TI(180),CO-TI(180),V-TI(180),FE- TI(180),HG-T(28),MN-TI(180),MG-TI(180),CA- TI(180),NA-TI(180),K-TI(180),CD-TI(180)
	L2347700-01B	Vial Large Septa unpreserved (4oz)	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
	L2347700-01C	Glass 120ml/4oz unpreserved	Α	NA		2.3	Υ	Absent		A2-TOC-9060(28)
	L2347700-01D	Glass 250ml/8oz unpreserved	Α	NA		2.3	Υ	Absent		TCN-9010(14),NYTCL-8270(14),TS(7),NH3-4500(28)
	L2347700-01E	Glass 250ml/8oz unpreserved	Α	NA		2.3	Υ	Absent		TCN-9010(14),NYTCL-8270(14),TS(7),NH3-4500(28)
	L2347700-01X	Vial MeOH preserved split	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
	L2347700-01Y	Vial Water preserved split	Α	NA		2.3	Υ	Absent	18-AUG-23 13:49	NYTCL-8260-R2(14)
	L2347700-01Z	Vial Water preserved split	Α	NA		2.3	Υ	Absent	18-AUG-23 13:49	NYTCL-8260-R2(14)
	L2347700-02A	Glass 120ml/4oz unpreserved	Α	NA		2.3	Υ	Absent		TCN-9010(14),TS(7),NH3-4500(28)
	L2347700-02B	Glass 120ml/4oz unpreserved	Α	NA		2.3	Υ	Absent		TCN-9010(14),TS(7),NH3-4500(28)
	L2347700-03A	Glass 120ml/4oz unpreserved	Α	NA		2.3	Υ	Absent		TCN-9010(14),TS(7),NH3-4500(28)
	L2347700-03B	Glass 120ml/4oz unpreserved	Α	NA		2.3	Υ	Absent		TCN-9010(14),TS(7),NH3-4500(28)
	L2347700-04A	Glass 120ml/4oz unpreserved	Α	NA		2.3	Υ	Absent		TCN-9010(14),TS(7),NH3-4500(28)
	L2347700-04B	Glass 120ml/4oz unpreserved	Α	NA		2.3	Υ	Absent		TCN-9010(14),TS(7),NH3-4500(28)

Project Name: Lab Number: **RITC** L2347700 **Project Number: BENCH SCALE-TOC Report Date:** 08/31/23

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:RITCLab Number:L2347700Project Number:BENCH SCALE-TOCReport Date:08/31/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:RITCLab Number:L2347700Project Number:BENCH SCALE-TOCReport Date:08/31/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:RITCLab Number:L2347700Project Number:BENCH SCALE-TOCReport Date:08/31/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 20

Published Date: 6/16/2023 4:52:28 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

Ethyltoluene

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

					39										
ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ay	05	Page				Rec'd	8	10	1	3	ALPHA Job# 234770	50
Westborough, MA 01581	Mansfield, MA 02048	Project Information	THE REAL PROPERTY.	1 5 15			Deliv	erable	5					Billing Information	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: RET	- C				ПП	ASP-	A			ASP-	В	Same as Client In	ifo
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 38	e 8:	11-F P			1 🗟		S (1 Fi	le)	_		S (4 File)	PO#	
Oliver Information		Project Locations 36	5 15	VEI IV	200		18	Other					J (11 110)		
Client Information			SCALE .	- 10 C			P50000	_		erenta (inc	10	mile Si	CONTRACTOR OF THE PARTY OF	Diseased Site Informati	2262
Client: TNVENTU	-0.0711	(Use Project name as Pro					Regu	DAMES IN	Requir	remen				Disposal Site Informati	on
Address: 441 Ca		Project Manager: 3	OHN B	LACK			1 🗆	NY TO				NY Pa		Please identify below loca	
HERNDON W	A	ALPHAQuote #:					╛	AWQ	Standar	ds		NY CP	2-51	applicable disposal facilitie	is.
Phone: 716 - 553	3-5129	Turn-Around Time						NY Re	stricted	Use		Other		Disposal Facility:	
Fax:		Standard		Due Date:	8		B	NY Ur	restricte	ed Use				□ NJ 🔀 N	Y
Email: Roxane Bie	Y-PINVOHUMENA.UM	Rush (only if pre approved)	×	# of Days:	5		13	NYCS	Sewer D	ischar	ge			Other:	
These samples have b							ANA	LYSIS		0	7	-1		Sample Filtration	T
Other project specific							4	1	0	او	350	- 21			0
			-				1 3	5260	17	#	300	901		Done Lab to do	a
ANEED REPO	DE (D) MON	DAY 0/28	TA ME	· · ·	. 2.		RC ANIC	83	00		1	À		Preservation	1
Please specify Metals	or TAI	N24	ALME	TALS DO) NOT KE	PLITE BUSI	. 5	S	~	3	¥	=		Lab to do	В
Please specify metals	OF TAL.				117		8		SVOCS	E	Z	ANIB			0
							د ا	5	8	3	MONI	>-		(Please Specify below	v) t
ALPHA Lab ID	Sar	mple ID	Colle	ection	Sample	Sampler's	TOTA	1	_	TAV METAUS,		0			1
(Lab Use Only)	001	inpie io	Date	Time	Matrix	Initials	1/2	10	12	14	AM	4		Sample Specific Comme	nts e
17100-01	BREEZE-09	8172023	8 17 23	1135	RB=	PSD	×	×	×	×	×	×			
-02	55-BCP-24-1	02-08172023	017/12	1145	50	RB					X	×			
-01 -03	CC - 2010 - 24 -	04-08172023	0/10/22	1105	SD	PB		\vdash			X	×			
	C 200 24	01-08110023	211163	11 48	SD	RB		Н	-	\rightarrow		X	-		
	05-001-21-	06-08/72023	Shills	1170	30	100		-	-	\rightarrow	X	\sim			
						_	<u> </u>	-	-	-	\rightarrow	-			-
								\vdash	_	_	_	_			
NOTE TO STATE OF															
MELLA SALA															
Carrier Carrier															
	Container Code	Westboro: Certification No	: MA935		10000		1950	27.		\neg				Please print clearly, I	logibly
	P = Plastic A = Amber Glass	Mansfield: Certification No	MA015		Con	tainer Type	A	$A \mid$.	- 1		- 1		and completely. Sam	
	V = Vial	mananara continuation no					-	7	-	\rightarrow	\dashv	\neg		not be logged in and	.7
	G = Glass				P	reservative	A	A						turnaround time clock	1001011111111111111
T	B = Bacteria Cup C = Cube			427375			0.000		_	-	_			start until any ambigu	
	O = Other	Relinquished B	y:	Date/1				ed By:		_	0)	Date/		resolved. BY EXECU THIS COC, THE CLI	251 150 ACC
1-14020203	E = Encore	18	~	8/17/2	3125	MA	1/6	NY		\rightarrow	8/	1//23	1253	HAS READ AND AG	
AF - FILLIAMON	D = BOD Bottle	MAILME		8/7/23	1255	1					8/18	123	0100	TO BE BOUND BY A	
) = Other		,-												TERMS & CONDITIO	ONS.
orm No: 01-25 HC (rev. 30-	-Sept-2013)													(See reverse side.)	

documented on the final report or are noted below.

Analytical Report For

Inventum Engineering, P.C.

For Lab Project ID

234271

Referencing

Breeze Water Testing *Prepared*Monday, September 25, 2023

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or

Emily Found of Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-01-09132023

Lab Sample ID: 234271-01 **Date Sampled:** 9/13/2023 16:15

Matrix: Groundwater Date Received 9/15/2023

Ammonia-N

<u>Analyte</u> <u>Result</u> <u>Units</u> <u>Qualifier</u> <u>Date Analyzed</u>

Ammonia 7.7 mg/L 9/19/2023

Method Reference(s): EPA 350.1 Rev 2.0

Subcontractor ELAP ID: 10709

Total Cyanide

Analyte Result Units Qualifier Date Analyzed

Cyanide, Total **0.200** mg/L 9/19/2023

Method Reference(s): EPA 335.4 Rev 1.0

Subcontractor ELAP ID: 10709

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Anal	<u>yzed</u>
1,1-Biphenyl	< 10.0	ug/L		9/20/2023	17:23
1,2,4,5-Tetrachlorobenzene	< 10.0	ug/L		9/20/2023	17:23
1,2,4-Trichlorobenzene	< 10.0	ug/L		9/20/2023	17:23
1,2-Dichlorobenzene	< 10.0	ug/L		9/20/2023	17:23
1,3-Dichlorobenzene	< 10.0	ug/L		9/20/2023	17:23
1,4-Dichlorobenzene	< 10.0	ug/L		9/20/2023	17:23
2,2-Oxybis (1-chloropropane)	< 10.0	ug/L		9/20/2023	17:23
2,3,4,6-Tetrachlorophenol	< 10.0	ug/L		9/20/2023	17:23
2,4,5-Trichlorophenol	< 10.0	ug/L		9/20/2023	17:23
2,4,6-Trichlorophenol	< 20.0	ug/L		9/20/2023	17:23
2,4-Dichlorophenol	< 10.0	ug/L		9/20/2023	17:23
2,4-Dimethylphenol	< 10.0	ug/L		9/20/2023	17:23
2,4-Dinitrophenol	< 20.0	ug/L		9/20/2023	17:23
2,4-Dinitrotoluene	< 10.0	ug/L		9/20/2023	17:23
2,6-Dinitrotoluene	< 10.0	ug/L		9/20/2023	17:23
2-Chloronaphthalene	< 10.0	ug/L		9/20/2023	17:23
2-Chlorophenol	< 10.0	ug/L		9/20/2023	17:23

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-01-09132023

Lab Sample ID: 234271-01 **Date Sampled:** 9/13/2023 16:15

Matrix: Groundwater Date Received 9/15/2023

2-Methylnapthalene	< 10.0	ug/L	9/20/2023 17:23
2-Methylphenol	< 10.0	ug/L	9/20/2023 17:23
2-Nitroaniline	< 20.0	ug/L	9/20/2023 17:23
2-Nitrophenol	< 10.0	ug/L	9/20/2023 17:23
3&4-Methylphenol	< 10.0	ug/L	9/20/2023 17:23
3,3'-Dichlorobenzidine	< 10.0	ug/L	9/20/2023 17:23
3-Nitroaniline	< 20.0	ug/L	9/20/2023 17:23
4,6-Dinitro-2-methylphenol	< 20.0	ug/L	9/20/2023 17:23
4-Bromophenyl phenyl ether	< 10.0	ug/L	9/20/2023 17:23
4-Chloro-3-methylphenol	< 10.0	ug/L	9/20/2023 17:23
4-Chloroaniline	< 10.0	ug/L	9/20/2023 17:23
4-Chlorophenyl phenyl ether	< 10.0	ug/L	9/20/2023 17:23
4-Nitroaniline	< 20.0	ug/L	9/20/2023 17:23
4-Nitrophenol	< 20.0	ug/L	9/20/2023 17:23
Acenaphthene	< 10.0	ug/L	9/20/2023 17:23
Acenaphthylene	< 10.0	ug/L	9/20/2023 17:23
Acetophenone	< 10.0	ug/L	9/20/2023 17:23
Anthracene	< 10.0	ug/L	9/20/2023 17:23
Atrazine	< 25.0	ug/L	9/20/2023 17:23
Benzaldehyde	< 10.0	ug/L	9/20/2023 17:23
Benzo (a) anthracene	< 10.0	ug/L	9/20/2023 17:23
Benzo (a) pyrene	< 10.0	ug/L	9/20/2023 17:23
Benzo (b) fluoranthene	< 10.0	ug/L	9/20/2023 17:23
Benzo (g,h,i) perylene	< 10.0	ug/L	9/20/2023 17:23
Benzo (k) fluoranthene	< 10.0	ug/L	9/20/2023 17:23
Bis (2-chloroethoxy) methane	< 10.0	ug/L	9/20/2023 17:23
Bis (2-chloroethyl) ether	< 10.0	ug/L	9/20/2023 17:23
Bis (2-ethylhexyl) phthalate	< 10.0	ug/L	9/20/2023 17:23
Butylbenzylphthalate	< 10.0	ug/L	9/20/2023 17:23
Caprolactam	< 10.0	ug/L	9/20/2023 17:23

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-01-09132023

Lab Sample ID: 234271-01 **Date Sampled:** 9/13/2023 16:15

Matrix: Groundwater Date Received 9/15/2023

Carbazole	< 10.0	ug/L	9/20/2023	17:23
Chrysene	< 10.0	ug/L	9/20/2023	17:23
Dibenz (a,h) anthracene	< 10.0	ug/L	9/20/2023	17:23
Dibenzofuran	< 10.0	ug/L	9/20/2023	17:23
Diethyl phthalate	< 10.0	ug/L	9/20/2023	17:23
Dimethyl phthalate	< 20.0	ug/L	9/20/2023	17:23
Di-n-butyl phthalate	< 10.0	ug/L	9/20/2023	17:23
Di-n-octylphthalate	< 10.0	ug/L	9/20/2023	17:23
Fluoranthene	< 10.0	ug/L	9/20/2023	17:23
Fluorene	< 10.0	ug/L	9/20/2023	17:23
Hexachlorobenzene	< 10.0	ug/L	9/20/2023	17:23
Hexachlorobutadiene	< 10.0	ug/L	9/20/2023	17:23
Hexachlorocyclopentadiene	< 10.0	ug/L	9/20/2023	17:23
Hexachloroethane	< 10.0	ug/L	9/20/2023	17:23
Indeno (1,2,3-cd) pyrene	< 10.0	ug/L	9/20/2023	17:23
Isophorone	< 10.0	ug/L	9/20/2023	17:23
Naphthalene	< 10.0	ug/L	9/20/2023	17:23
Nitrobenzene	< 10.0	ug/L	9/20/2023	17:23
N-Nitroso-di-n-propylamine	< 10.0	ug/L	9/20/2023	17:23
N-Nitrosodiphenylamine	< 10.0	ug/L	9/20/2023	17:23
Pentachlorophenol	< 20.0	ug/L	9/20/2023	17:23
Phenanthrene	< 10.0	ug/L	9/20/2023	17:23
Phenol	< 10.0	ug/L	9/20/2023	17:23
Pyrene	< 10.0	ug/L	9/20/2023	17:23

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-01-09132023

Lab Sample ID: 234271-01 **Date Sampled:** 9/13/2023 16:15

Matrix: Groundwater Date Received 9/15/2023

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
2,4,6-Tribromophenol	70.0	49 - 127		9/20/2023	17:23
2-Fluorobiphenyl	36.7	10 - 107		9/20/2023	17:23
2-Fluorophenol	28.1	10.6 - 109		9/20/2023	17:23
Nitrobenzene-d5	57.5	41 - 106		9/20/2023	17:23
Phenol-d5	21.4	10 - 109		9/20/2023	17:23
Terphenyl-d14	67.1	49.6 - 120		9/20/2023	17:23

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 9/20/2023 Data File: B66927.D

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 40.0	ug/L	9/20/2023 19:04
1,1,2,2-Tetrachloroethane	< 40.0	ug/L	9/20/2023 19:04
1,1,2-Trichloroethane	< 40.0	ug/L	9/20/2023 19:04
1,1-Dichloroethane	< 40.0	ug/L	9/20/2023 19:04
1,1-Dichloroethene	< 40.0	ug/L	9/20/2023 19:04
1,2,3-Trichlorobenzene	< 100	ug/L	9/20/2023 19:04
1,2,4-Trichlorobenzene	< 100	ug/L	9/20/2023 19:04
1,2-Dibromo-3-Chloropropane	< 200	ug/L	9/20/2023 19:04
1,2-Dibromoethane	< 40.0	ug/L	9/20/2023 19:04
1,2-Dichlorobenzene	< 40.0	ug/L	9/20/2023 19:04
1,2-Dichloroethane	< 40.0	ug/L	9/20/2023 19:04
1,2-Dichloropropane	< 40.0	ug/L	9/20/2023 19:04
1,3-Dichlorobenzene	< 40.0	ug/L	9/20/2023 19:04
1,4-Dichlorobenzene	< 40.0	ug/L	9/20/2023 19:04
1,4-Dioxane	< 200	ug/L	9/20/2023 19:04
2-Butanone	< 200	ug/L	9/20/2023 19:04
2-Hexanone	< 100	ug/L	9/20/2023 19:04
4-Methyl-2-pentanone	< 100	ug/L	9/20/2023 19:04

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-01-09132023

Lab Sample ID: 234271-01 **Date Sampled:** 9/13/2023 16:15

Matrix: Groundwater Date Received 9/15/2023

Acetone	236	ug/L	9/20/2023 19:04
Benzene	519	ug/L	9/20/2023 19:04
Bromochloromethane	< 100	ug/L	9/20/2023 19:04
Bromodichloromethane	< 40.0	ug/L	9/20/2023 19:04
Bromoform	< 100	ug/L	9/20/2023 19:04
Bromomethane	< 40.0	ug/L	9/20/2023 19:04
Carbon disulfide	< 40.0	ug/L	9/20/2023 19:04
Carbon Tetrachloride	< 40.0	ug/L	9/20/2023 19:04
Chlorobenzene	< 40.0	ug/L	9/20/2023 19:04
Chloroethane	< 40.0	ug/L	9/20/2023 19:04
Chloroform	< 40.0	ug/L	9/20/2023 19:04
Chloromethane	< 40.0	ug/L	9/20/2023 19:04
cis-1,2-Dichloroethene	< 40.0	ug/L	9/20/2023 19:04
cis-1,3-Dichloropropene	< 40.0	ug/L	9/20/2023 19:04
Cyclohexane	< 200	ug/L	9/20/2023 19:04
Dibromochloromethane	< 40.0	ug/L	9/20/2023 19:04
Dichlorodifluoromethane	< 40.0	ug/L	9/20/2023 19:04
Ethylbenzene	< 40.0	ug/L	9/20/2023 19:04
Freon 113	< 40.0	ug/L	9/20/2023 19:04
Isopropylbenzene	< 40.0	ug/L	9/20/2023 19:04
m,p-Xylene	44.8	ug/L	9/20/2023 19:04
Methyl acetate	< 40.0	ug/L	9/20/2023 19:04
Methyl tert-butyl Ether	< 40.0	ug/L	9/20/2023 19:04
Methylcyclohexane	< 40.0	ug/L	9/20/2023 19:04
Methylene chloride	< 100	ug/L	9/20/2023 19:04
o-Xylene	< 40.0	ug/L	9/20/2023 19:04
Styrene	< 100	ug/L	9/20/2023 19:04
Tetrachloroethene	< 40.0	ug/L	9/20/2023 19:04
Toluene	67.2	ug/L	9/20/2023 19:04
trans-1,2-Dichloroethene	< 40.0	ug/L	9/20/2023 19:04

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-01-09132023

Lab Sample ID: 234271-01 **Date Sampled:** 9/13/2023 16:15

Matrix: Groundwater Date Received 9/15/2023

trans-1,3-Dichloropropene	< 40.0	ug/L	9/20/2023 19:04
Trichloroethene	< 40.0	ug/L	9/20/2023 19:04
Trichlorofluoromethane	< 40.0	ug/L	9/20/2023 19:04
Vinyl chloride	< 40.0	ug/L	9/20/2023 19:04

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
1,2-Dichloroethane-d4	106	79.7 - 118		9/20/2023	19:04
4-Bromofluorobenzene	98.9	80.1 - 112		9/20/2023	19:04
Pentafluorobenzene	97.0	88 - 115		9/20/2023	19:04
Toluene-D8	109	88.2 - 113		9/20/2023	19:04

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z19680.D

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-02-09152023

Lab Sample ID: 234271-02 **Date Sampled:** 9/15/2023 9:00

Matrix: Groundwater Date Received 9/15/2023

Ammonia-N

<u>Analyte</u> <u>Result</u> <u>Units</u> <u>Qualifier</u> <u>Date Analyzed</u>

Ammonia **1.2** mg/L 9/19/2023

Method Reference(s): EPA 350.1 Rev 2.0

Subcontractor ELAP ID: 10709

Total Cyanide

Analyte Result Units Qualifier Date Analyzed

Cyanide, Total **0.0560** mg/L 9/19/2023

Method Reference(s): EPA 335.4 Rev 1.0

Subcontractor ELAP ID: 10709

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date Analyzed
1,1-Biphenyl	< 10.0	ug/L	9/20/2023 17:52
1,2,4,5-Tetrachlorobenzene	< 10.0	ug/L	9/20/2023 17:52
1,2,4-Trichlorobenzene	< 10.0	ug/L	9/20/2023 17:52
1,2-Dichlorobenzene	< 10.0	ug/L	9/20/2023 17:52
1,3-Dichlorobenzene	< 10.0	ug/L	9/20/2023 17:52
1,4-Dichlorobenzene	< 10.0	ug/L	9/20/2023 17:52
2,2-Oxybis (1-chloropropane)	< 10.0	ug/L	9/20/2023 17:52
2,3,4,6-Tetrachlorophenol	< 10.0	ug/L	9/20/2023 17:52
2,4,5-Trichlorophenol	< 10.0	ug/L	9/20/2023 17:52
2,4,6-Trichlorophenol	< 20.0	ug/L	9/20/2023 17:52
2,4-Dichlorophenol	< 10.0	ug/L	9/20/2023 17:52
2,4-Dimethylphenol	< 10.0	ug/L	9/20/2023 17:52
2,4-Dinitrophenol	< 20.0	ug/L	9/20/2023 17:52
2,4-Dinitrotoluene	< 10.0	ug/L	9/20/2023 17:52
2,6-Dinitrotoluene	< 10.0	ug/L	9/20/2023 17:52
2-Chloronaphthalene	< 10.0	ug/L	9/20/2023 17:52
2-Chlorophenol	< 10.0	ug/L	9/20/2023 17:52

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-02-09152023

Lab Sample ID: 234271-02 **Date Sampled:** 9/15/2023 9:00

Matrix: Groundwater Date Received 9/15/2023

2-Methylnapthalene	< 10.0	ug/L	9/20/2023 17:52
2-Methylphenol	< 10.0	ug/L	9/20/2023 17:52
2-Nitroaniline	< 20.0	ug/L	9/20/2023 17:52
2-Nitrophenol	< 10.0	ug/L	9/20/2023 17:52
3&4-Methylphenol	< 10.0	ug/L	9/20/2023 17:52
3,3'-Dichlorobenzidine	< 10.0	ug/L	9/20/2023 17:52
3-Nitroaniline	< 20.0	ug/L	9/20/2023 17:52
4,6-Dinitro-2-methylphenol	< 20.0	ug/L	9/20/2023 17:52
4-Bromophenyl phenyl ether	< 10.0	ug/L	9/20/2023 17:52
4-Chloro-3-methylphenol	< 10.0	ug/L	9/20/2023 17:52
4-Chloroaniline	< 10.0	ug/L	9/20/2023 17:52
4-Chlorophenyl phenyl ether	< 10.0	ug/L	9/20/2023 17:52
4-Nitroaniline	< 20.0	ug/L	9/20/2023 17:52
4-Nitrophenol	< 20.0	ug/L	9/20/2023 17:52
Acenaphthene	< 10.0	ug/L	9/20/2023 17:52
Acenaphthylene	< 10.0	ug/L	9/20/2023 17:52
Acetophenone	< 10.0	ug/L	9/20/2023 17:52
Anthracene	< 10.0	ug/L	9/20/2023 17:52
Atrazine	< 25.0	ug/L	9/20/2023 17:52
Benzaldehyde	< 10.0	ug/L	9/20/2023 17:52
Benzo (a) anthracene	< 10.0	ug/L	9/20/2023 17:52
Benzo (a) pyrene	< 10.0	ug/L	9/20/2023 17:52
Benzo (b) fluoranthene	< 10.0	ug/L	9/20/2023 17:52
Benzo (g,h,i) perylene	< 10.0	ug/L	9/20/2023 17:52
Benzo (k) fluoranthene	< 10.0	ug/L	9/20/2023 17:52
Bis (2-chloroethoxy) methane	< 10.0	ug/L	9/20/2023 17:52
Bis (2-chloroethyl) ether	< 10.0	ug/L	9/20/2023 17:52
Bis (2-ethylhexyl) phthalate	< 10.0	ug/L	9/20/2023 17:52
Butylbenzylphthalate	< 10.0	ug/L	9/20/2023 17:52
Caprolactam	< 10.0	ug/L	9/20/2023 17:52

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-02-09152023

Lab Sample ID: 234271-02 **Date Sampled:** 9/15/2023 9:00

Matrix: Groundwater Date Received 9/15/2023

Carbazole	< 10.0	ug/L	9/20/2023	17:52
Chrysene	< 10.0	ug/L	9/20/2023	17:52
Dibenz (a,h) anthracene	< 10.0	ug/L	9/20/2023	17:52
Dibenzofuran	< 10.0	ug/L	9/20/2023	17:52
Diethyl phthalate	< 10.0	ug/L	9/20/2023	17:52
Dimethyl phthalate	< 20.0	ug/L	9/20/2023	17:52
Di-n-butyl phthalate	< 10.0	ug/L	9/20/2023	17:52
Di-n-octylphthalate	< 10.0	ug/L	9/20/2023	17:52
Fluoranthene	< 10.0	ug/L	9/20/2023	17:52
Fluorene	< 10.0	ug/L	9/20/2023	17:52
Hexachlorobenzene	< 10.0	ug/L	9/20/2023	17:52
Hexachlorobutadiene	< 10.0	ug/L	9/20/2023	17:52
Hexachlorocyclopentadiene	< 10.0	ug/L	9/20/2023	17:52
Hexachloroethane	< 10.0	ug/L	9/20/2023	17:52
Indeno (1,2,3-cd) pyrene	< 10.0	ug/L	9/20/2023	17:52
Isophorone	< 10.0	ug/L	9/20/2023	17:52
Naphthalene	< 10.0	ug/L	9/20/2023	17:52
Nitrobenzene	< 10.0	ug/L	9/20/2023	17:52
N-Nitroso-di-n-propylamine	< 10.0	ug/L	9/20/2023	17:52
N-Nitrosodiphenylamine	< 10.0	ug/L	9/20/2023	17:52
Pentachlorophenol	< 20.0	ug/L	9/20/2023	17:52
Phenanthrene	< 10.0	ug/L	9/20/2023	17:52
Phenol	< 10.0	ug/L	9/20/2023	17:52
Pyrene	< 10.0	ug/L	9/20/2023	17:52

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-02-09152023

Lab Sample ID: 234271-02 **Date Sampled:** 9/15/2023 9:00

Matrix: Groundwater Date Received 9/15/2023

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
2,4,6-Tribromophenol	87.8	49 - 127		9/20/2023	17:52
2-Fluorobiphenyl	35.3	10 - 107		9/20/2023	17:52
2-Fluorophenol	48.5	10.6 - 109		9/20/2023	17:52
Nitrobenzene-d5	53.1	41 - 106		9/20/2023	17:52
Phenol-d5	39.9	10 - 109		9/20/2023	17:52
Terphenyl-d14	72.6	49.6 - 120		9/20/2023	17:52

Method Reference(s): EPA 8270D

EPA 3510C

 Preparation Date:
 9/20/2023

 Data File:
 B66928.D

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		9/20/2023 19:24
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		9/20/2023 19:24
1,1,2-Trichloroethane	< 2.00	ug/L		9/20/2023 19:24
1,1-Dichloroethane	< 2.00	ug/L		9/20/2023 19:24
1,1-Dichloroethene	< 2.00	ug/L		9/20/2023 19:24
1,2,3-Trichlorobenzene	< 5.00	ug/L		9/20/2023 19:24
1,2,4-Trichlorobenzene	< 5.00	ug/L		9/20/2023 19:24
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		9/20/2023 19:24
1,2-Dibromoethane	< 2.00	ug/L		9/20/2023 19:24
1,2-Dichlorobenzene	< 2.00	ug/L		9/20/2023 19:24
1,2-Dichloroethane	< 2.00	ug/L		9/20/2023 19:24
1,2-Dichloropropane	< 2.00	ug/L		9/20/2023 19:24
1,3-Dichlorobenzene	< 2.00	ug/L		9/20/2023 19:24
1,4-Dichlorobenzene	< 2.00	ug/L		9/20/2023 19:24
1,4-Dioxane	< 10.0	ug/L		9/20/2023 19:24
2-Butanone	< 10.0	ug/L		9/20/2023 19:24
2-Hexanone	< 5.00	ug/L		9/20/2023 19:24
4-Methyl-2-pentanone	< 5.00	ug/L		9/20/2023 19:24

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-02-09152023

Lab Sample ID: 234271-02 **Date Sampled:** 9/15/2023 9:00

Matrix: Groundwater Date Received 9/15/2023

				_
Acetone	19.4	ug/L	9/20/2023 19:2-	4
Benzene	< 1.00	ug/L	9/20/2023 19:2-	4
Bromochloromethane	< 5.00	ug/L	9/20/2023 19:2-	4
Bromodichloromethane	< 2.00	ug/L	9/20/2023 19:24	4
Bromoform	< 5.00	ug/L	9/20/2023 19:24	4
Bromomethane	< 2.00	ug/L	9/20/2023 19:24	4
Carbon disulfide	< 2.00	ug/L	9/20/2023 19:24	4
Carbon Tetrachloride	< 2.00	ug/L	9/20/2023 19:24	4
Chlorobenzene	< 2.00	ug/L	9/20/2023 19:24	4
Chloroethane	< 2.00	ug/L	9/20/2023 19:24	4
Chloroform	< 2.00	ug/L	9/20/2023 19:24	4
Chloromethane	< 2.00	ug/L	9/20/2023 19:24	4
cis-1,2-Dichloroethene	< 2.00	ug/L	9/20/2023 19:24	4
cis-1,3-Dichloropropene	< 2.00	ug/L	9/20/2023 19:24	4
Cyclohexane	< 10.0	ug/L	9/20/2023 19:2-	4
Dibromochloromethane	< 2.00	ug/L	9/20/2023 19:2-	4
Dichlorodifluoromethane	< 2.00	ug/L	9/20/2023 19:2-	4
Ethylbenzene	< 2.00	ug/L	9/20/2023 19:2-	4
Freon 113	< 2.00	ug/L	9/20/2023 19:2-	4
Isopropylbenzene	< 2.00	ug/L	9/20/2023 19:2-	4
m,p-Xylene	< 2.00	ug/L	9/20/2023 19:2-	4
Methyl acetate	< 2.00	ug/L	9/20/2023 19:2-	4
Methyl tert-butyl Ether	< 2.00	ug/L	9/20/2023 19:2-	4
Methylcyclohexane	< 2.00	ug/L	9/20/2023 19:2-	4
Methylene chloride	< 5.00	ug/L	9/20/2023 19:2-	4
o-Xylene	< 2.00	ug/L	9/20/2023 19:2-	4
Styrene	< 5.00	ug/L	9/20/2023 19:2-	4
Tetrachloroethene	< 2.00	ug/L	9/20/2023 19:2-	4
Toluene	< 2.00	ug/L	9/20/2023 19:2-	4
trans-1,2-Dichloroethene	< 2.00	ug/L	9/20/2023 19:2-	4

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-02-09152023

Lab Sample ID: 234271-02 **Date Sampled:** 9/15/2023 9:00

Matrix: Groundwater Date Received 9/15/2023

trans-1,3-Dichloropropene	< 2.00	ug/L	9/20/2023 19:24
Trichloroethene	< 2.00	ug/L	9/20/2023 19:24
Trichlorofluoromethane	< 2.00	ug/L	9/20/2023 19:24
Vinyl chloride	< 2.00	ug/L	9/20/2023 19:24

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
1,2-Dichloroethane-d4	112	79.7 - 118		9/20/2023	19:24
4-Bromofluorobenzene	97.4	80.1 - 112		9/20/2023	19:24
Pentafluorobenzene	95.1	88 - 115		9/20/2023	19:24
Toluene-D8	109	88.2 - 113		9/20/2023	19:24

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z19681.D

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-03-09152023

Lab Sample ID: 234271-03 **Date Sampled:** 9/15/2023 9:10

Matrix: Groundwater Date Received 9/15/2023

Ammonia-N

<u>Analyte</u> <u>Result</u> <u>Units</u> <u>Qualifier</u> <u>Date Analyzed</u>

Ammonia **1.5** mg/L 9/19/2023

Method Reference(s): EPA 350.1 Rev 2.0

Subcontractor ELAP ID: 10709

Total Cyanide

Analyte Result Units Qualifier Date Analyzed

Cyanide, Total **0.0930** mg/L 9/19/2023

Method Reference(s): EPA 335.4 Rev 1.0

Subcontractor ELAP ID: 10709

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	<u>vzed</u>
1,1-Biphenyl	< 10.0	ug/L		9/20/2023	18:20
1,2,4,5-Tetrachlorobenzene	< 10.0	ug/L		9/20/2023	18:20
1,2,4-Trichlorobenzene	< 10.0	ug/L		9/20/2023	18:20
1,2-Dichlorobenzene	< 10.0	ug/L		9/20/2023	18:20
1,3-Dichlorobenzene	< 10.0	ug/L		9/20/2023	18:20
1,4-Dichlorobenzene	< 10.0	ug/L		9/20/2023	18:20
2,2-Oxybis (1-chloropropane)	< 10.0	ug/L		9/20/2023	18:20
2,3,4,6-Tetrachlorophenol	< 10.0	ug/L		9/20/2023	18:20
2,4,5-Trichlorophenol	< 10.0	ug/L		9/20/2023	18:20
2,4,6-Trichlorophenol	< 20.0	ug/L		9/20/2023	18:20
2,4-Dichlorophenol	< 10.0	ug/L		9/20/2023	18:20
2,4-Dimethylphenol	< 10.0	ug/L		9/20/2023	18:20
2,4-Dinitrophenol	< 20.0	ug/L		9/20/2023	18:20
2,4-Dinitrotoluene	< 10.0	ug/L		9/20/2023	18:20
2,6-Dinitrotoluene	< 10.0	ug/L		9/20/2023	18:20
2-Chloronaphthalene	< 10.0	ug/L		9/20/2023	18:20
2-Chlorophenol	< 10.0	ug/L		9/20/2023	18:20

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-03-09152023

Lab Sample ID: 234271-03 **Date Sampled:** 9/15/2023 9:10

Matrix: Groundwater Date Received 9/15/2023

2-Methylnapthalene	< 10.0	ug/L	9/20/2023 18:20
2-Methylphenol	< 10.0	ug/L	9/20/2023 18:20
2-Nitroaniline	< 20.0	ug/L	9/20/2023 18:20
2-Nitrophenol	< 10.0	ug/L	9/20/2023 18:20
3&4-Methylphenol	< 10.0	ug/L	9/20/2023 18:20
3,3'-Dichlorobenzidine	< 10.0	ug/L	9/20/2023 18:20
3-Nitroaniline	< 20.0	ug/L	9/20/2023 18:20
4,6-Dinitro-2-methylphenol	< 20.0	ug/L	9/20/2023 18:20
4-Bromophenyl phenyl ether	< 10.0	ug/L	9/20/2023 18:20
4-Chloro-3-methylphenol	< 10.0	ug/L	9/20/2023 18:20
4-Chloroaniline	< 10.0	ug/L	9/20/2023 18:20
4-Chlorophenyl phenyl ether	< 10.0	ug/L	9/20/2023 18:20
4-Nitroaniline	< 20.0	ug/L	9/20/2023 18:20
4-Nitrophenol	< 20.0	ug/L	9/20/2023 18:20
Acenaphthene	< 10.0	ug/L	9/20/2023 18:20
Acenaphthylene	< 10.0	ug/L	9/20/2023 18:20
Acetophenone	< 10.0	ug/L	9/20/2023 18:20
Anthracene	< 10.0	ug/L	9/20/2023 18:20
Atrazine	< 25.0	ug/L	9/20/2023 18:20
Benzaldehyde	< 10.0	ug/L	9/20/2023 18:20
Benzo (a) anthracene	< 10.0	ug/L	9/20/2023 18:20
Benzo (a) pyrene	< 10.0	ug/L	9/20/2023 18:20
Benzo (b) fluoranthene	< 10.0	ug/L	9/20/2023 18:20
Benzo (g,h,i) perylene	< 10.0	ug/L	9/20/2023 18:20
Benzo (k) fluoranthene	< 10.0	ug/L	9/20/2023 18:20
Bis (2-chloroethoxy) methane	< 10.0	ug/L	9/20/2023 18:20
Bis (2-chloroethyl) ether	< 10.0	ug/L	9/20/2023 18:20
Bis (2-ethylhexyl) phthalate	< 10.0	ug/L	9/20/2023 18:20
Butylbenzylphthalate	< 10.0	ug/L	9/20/2023 18:20
Caprolactam	< 10.0	ug/L	9/20/2023 18:20

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-03-09152023

Lab Sample ID: 234271-03 **Date Sampled:** 9/15/2023 9:10

Matrix: Groundwater Date Received 9/15/2023

Carbazole	< 10.0	ug/L	9/20/2023	18:20
Chrysene	< 10.0	ug/L	9/20/2023	18:20
Dibenz (a,h) anthracene	< 10.0	ug/L	9/20/2023	18:20
Dibenzofuran	< 10.0	ug/L	9/20/2023	18:20
Diethyl phthalate	< 10.0	ug/L	9/20/2023	18:20
Dimethyl phthalate	< 20.0	ug/L	9/20/2023	18:20
Di-n-butyl phthalate	< 10.0	ug/L	9/20/2023	18:20
Di-n-octylphthalate	< 10.0	ug/L	9/20/2023	18:20
Fluoranthene	< 10.0	ug/L	9/20/2023	18:20
Fluorene	< 10.0	ug/L	9/20/2023	18:20
Hexachlorobenzene	< 10.0	ug/L	9/20/2023	18:20
Hexachlorobutadiene	< 10.0	ug/L	9/20/2023	18:20
Hexachlorocyclopentadiene	< 10.0	ug/L	9/20/2023	18:20
Hexachloroethane	< 10.0	ug/L	9/20/2023	18:20
Indeno (1,2,3-cd) pyrene	< 10.0	ug/L	9/20/2023	18:20
Isophorone	< 10.0	ug/L	9/20/2023	18:20
Naphthalene	< 10.0	ug/L	9/20/2023	18:20
Nitrobenzene	< 10.0	ug/L	9/20/2023	18:20
N-Nitroso-di-n-propylamine	< 10.0	ug/L	9/20/2023	18:20
N-Nitrosodiphenylamine	< 10.0	ug/L	9/20/2023	18:20
Pentachlorophenol	< 20.0	ug/L	9/20/2023	18:20
Phenanthrene	< 10.0	ug/L	9/20/2023	18:20
Phenol	< 10.0	ug/L	9/20/2023	18:20
Pyrene	< 10.0	ug/L	9/20/2023	18:20

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-03-09152023

Lab Sample ID: 234271-03 **Date Sampled:** 9/15/2023 9:10

Matrix: Groundwater Date Received 9/15/2023

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	<u>alyzed</u>
2,4,6-Tribromophenol	90.3	49 - 127		9/20/2023	18:20
2-Fluorobiphenyl	36.5	10 - 107		9/20/2023	18:20
2-Fluorophenol	32.5	10.6 - 109		9/20/2023	18:20
Nitrobenzene-d5	52.8	41 - 106		9/20/2023	18:20
Phenol-d5	33.4	10 - 109		9/20/2023	18:20
Terphenyl-d14	78.3	49.6 - 120		9/20/2023	18:20

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 9/20/2023 Data File: 866929.D

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L	9/20/2023 19:43
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	9/20/2023 19:43
1,1,2-Trichloroethane	< 2.00	ug/L	9/20/2023 19:43
1,1-Dichloroethane	< 2.00	ug/L	9/20/2023 19:43
1,1-Dichloroethene	< 2.00	ug/L	9/20/2023 19:43
1,2,3-Trichlorobenzene	< 5.00	ug/L	9/20/2023 19:43
1,2,4-Trichlorobenzene	< 5.00	ug/L	9/20/2023 19:43
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	9/20/2023 19:43
1,2-Dibromoethane	< 2.00	ug/L	9/20/2023 19:43
1,2-Dichlorobenzene	< 2.00	ug/L	9/20/2023 19:43
1,2-Dichloroethane	< 2.00	ug/L	9/20/2023 19:43
1,2-Dichloropropane	< 2.00	ug/L	9/20/2023 19:43
1,3-Dichlorobenzene	< 2.00	ug/L	9/20/2023 19:43
1,4-Dichlorobenzene	< 2.00	ug/L	9/20/2023 19:43
1,4-Dioxane	< 10.0	ug/L	9/20/2023 19:43
2-Butanone	< 10.0	ug/L	9/20/2023 19:43
2-Hexanone	< 5.00	ug/L	9/20/2023 19:43
4-Methyl-2-pentanone	< 5.00	ug/L	9/20/2023 19:43

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-03-09152023

Lab Sample ID: 234271-03 **Date Sampled:** 9/15/2023 9:10

Matrix: Groundwater Date Received 9/15/2023

				_
Acetone	17.1	ug/L	9/20/2023 19:43	}
Benzene	< 1.00	ug/L	9/20/2023 19:43	}
Bromochloromethane	< 5.00	ug/L	9/20/2023 19:43	}
Bromodichloromethane	< 2.00	ug/L	9/20/2023 19:43	}
Bromoform	< 5.00	ug/L	9/20/2023 19:43	3
Bromomethane	< 2.00	ug/L	9/20/2023 19:43	}
Carbon disulfide	< 2.00	ug/L	9/20/2023 19:43	3
Carbon Tetrachloride	< 2.00	ug/L	9/20/2023 19:43	3
Chlorobenzene	< 2.00	ug/L	9/20/2023 19:43	3
Chloroethane	< 2.00	ug/L	9/20/2023 19:43	3
Chloroform	< 2.00	ug/L	9/20/2023 19:43	}
Chloromethane	< 2.00	ug/L	9/20/2023 19:43	}
cis-1,2-Dichloroethene	< 2.00	ug/L	9/20/2023 19:43	}
cis-1,3-Dichloropropene	< 2.00	ug/L	9/20/2023 19:43	}
Cyclohexane	< 10.0	ug/L	9/20/2023 19:43	3
Dibromochloromethane	< 2.00	ug/L	9/20/2023 19:43	3
Dichlorodifluoromethane	< 2.00	ug/L	9/20/2023 19:43	3
Ethylbenzene	< 2.00	ug/L	9/20/2023 19:43	3
Freon 113	< 2.00	ug/L	9/20/2023 19:43	3
Isopropylbenzene	< 2.00	ug/L	9/20/2023 19:43	3
m,p-Xylene	< 2.00	ug/L	9/20/2023 19:43	3
Methyl acetate	< 2.00	ug/L	9/20/2023 19:43	3
Methyl tert-butyl Ether	< 2.00	ug/L	9/20/2023 19:43	3
Methylcyclohexane	< 2.00	ug/L	9/20/2023 19:43	3
Methylene chloride	< 5.00	ug/L	9/20/2023 19:43	3
o-Xylene	< 2.00	ug/L	9/20/2023 19:43	}
Styrene	< 5.00	ug/L	9/20/2023 19:43	}
Tetrachloroethene	< 2.00	ug/L	9/20/2023 19:43	}
Toluene	< 2.00	ug/L	9/20/2023 19:43	}
trans-1,2-Dichloroethene	< 2.00	ug/L	9/20/2023 19:43	}

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-03-09152023

Lab Sample ID: 234271-03 **Date Sampled:** 9/15/2023 9:10

Matrix: Groundwater Date Received 9/15/2023

trans-1,3-Dichloropropene	< 2.00	ug/L	9/20/2023 19:43
Trichloroethene	< 2.00	ug/L	9/20/2023 19:43
Trichlorofluoromethane	< 2.00	ug/L	9/20/2023 19:43
Vinyl chloride	< 2.00	ug/L	9/20/2023 19:43

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	<u>alyzed</u>
1,2-Dichloroethane-d4	107	79.7 - 118		9/20/2023	19:43
4-Bromofluorobenzene	93.9	80.1 - 112		9/20/2023	19:43
Pentafluorobenzene	97.9	88 - 115		9/20/2023	19:43
Toluene-D8	110	88.2 - 113		9/20/2023	19:43

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z19682.D

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-04-09152023

Lab Sample ID: 234271-04 **Date Sampled:** 9/15/2023 9:20

Matrix: Groundwater Date Received 9/15/2023

Ammonia-N

Analyte Result Units Qualifier Date Analyzed

Ammonia **4.0** mg/L 9/19/2023

Method Reference(s): EPA 350.1 Rev 2.0

Subcontractor ELAP ID: 10709

Total Cyanide

Analyte Result Units Qualifier Date Analyzed

Cyanide, Total **0.140** mg/L 9/19/2023

Method Reference(s): EPA 335.4 Rev 1.0

Subcontractor ELAP ID: 10709

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>vzed</u>
1,1-Biphenyl	< 10.0	ug/L		9/20/2023	18:49
1,2,4,5-Tetrachlorobenzene	< 10.0	ug/L		9/20/2023	18:49
1,2,4-Trichlorobenzene	< 10.0	ug/L		9/20/2023	18:49
1,2-Dichlorobenzene	< 10.0	ug/L		9/20/2023	18:49
1,3-Dichlorobenzene	< 10.0	ug/L		9/20/2023	18:49
1,4-Dichlorobenzene	< 10.0	ug/L		9/20/2023	18:49
2,2-Oxybis (1-chloropropane)	< 10.0	ug/L		9/20/2023	18:49
2,3,4,6-Tetrachlorophenol	< 10.0	ug/L		9/20/2023	18:49
2,4,5-Trichlorophenol	< 10.0	ug/L		9/20/2023	18:49
2,4,6-Trichlorophenol	< 20.0	ug/L		9/20/2023	18:49
2,4-Dichlorophenol	< 10.0	ug/L		9/20/2023	18:49
2,4-Dimethylphenol	< 10.0	ug/L		9/20/2023	18:49
2,4-Dinitrophenol	< 20.0	ug/L		9/20/2023	18:49
2,4-Dinitrotoluene	< 10.0	ug/L		9/20/2023	18:49
2,6-Dinitrotoluene	< 10.0	ug/L		9/20/2023	18:49
2-Chloronaphthalene	< 10.0	ug/L		9/20/2023	18:49
2-Chlorophenol	< 10.0	ug/L		9/20/2023	18:49

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-04-09152023

Lab Sample ID: 234271-04 **Date Sampled:** 9/15/2023 9:20

Matrix: Groundwater Date Received 9/15/2023

2-Methylnapthalene	< 10.0	ug/L	9/20/2023	18:49
2-Methylphenol	< 10.0	ug/L	9/20/2023	18:49
2-Nitroaniline	< 20.0	ug/L	9/20/2023	18:49
2-Nitrophenol	< 10.0	ug/L	9/20/2023	18:49
3&4-Methylphenol	< 10.0	ug/L	9/20/2023	18:49
3,3'-Dichlorobenzidine	< 10.0	ug/L	9/20/2023	18:49
3-Nitroaniline	< 20.0	ug/L	9/20/2023	18:49
4,6-Dinitro-2-methylphenol	< 20.0	ug/L	9/20/2023	18:49
4-Bromophenyl phenyl ether	< 10.0	ug/L	9/20/2023	18:49
4-Chloro-3-methylphenol	< 10.0	ug/L	9/20/2023	18:49
4-Chloroaniline	< 10.0	ug/L	9/20/2023	18:49
4-Chlorophenyl phenyl ether	< 10.0	ug/L	9/20/2023	18:49
4-Nitroaniline	< 20.0	ug/L	9/20/2023	18:49
4-Nitrophenol	< 20.0	ug/L	9/20/2023	18:49
Acenaphthene	< 10.0	ug/L	9/20/2023	18:49
Acenaphthylene	< 10.0	ug/L	9/20/2023	18:49
Acetophenone	< 10.0	ug/L	9/20/2023	18:49
Anthracene	< 10.0	ug/L	9/20/2023	18:49
Atrazine	< 25.0	ug/L	9/20/2023	18:49
Benzaldehyde	< 10.0	ug/L	9/20/2023	18:49
Benzo (a) anthracene	< 10.0	ug/L	9/20/2023	18:49
Benzo (a) pyrene	< 10.0	ug/L	9/20/2023	18:49
Benzo (b) fluoranthene	< 10.0	ug/L	9/20/2023	18:49
Benzo (g,h,i) perylene	< 10.0	ug/L	9/20/2023	18:49
Benzo (k) fluoranthene	< 10.0	ug/L	9/20/2023	18:49
Bis (2-chloroethoxy) methane	< 10.0	ug/L	9/20/2023	18:49
Bis (2-chloroethyl) ether	< 10.0	ug/L	9/20/2023	18:49
Bis (2-ethylhexyl) phthalate	< 10.0	ug/L	9/20/2023	18:49
Butylbenzylphthalate	< 10.0	ug/L	9/20/2023	18:49
Caprolactam	< 10.0	ug/L	9/20/2023	18:49

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-04-09152023

Lab Sample ID: 234271-04 **Date Sampled:** 9/15/2023 9:20

Matrix: Groundwater Date Received 9/15/2023

Carbazole	< 10.0	ug/L	9/20/2023	18:49
Chrysene	< 10.0	ug/L	9/20/2023	18:49
Dibenz (a,h) anthracene	< 10.0	ug/L	9/20/2023	18:49
Dibenzofuran	< 10.0	ug/L	9/20/2023	18:49
Diethyl phthalate	< 10.0	ug/L	9/20/2023	18:49
Dimethyl phthalate	< 20.0	ug/L	9/20/2023	18:49
Di-n-butyl phthalate	< 10.0	ug/L	9/20/2023	18:49
Di-n-octylphthalate	< 10.0	ug/L	9/20/2023	18:49
Fluoranthene	< 10.0	ug/L	9/20/2023	18:49
Fluorene	< 10.0	ug/L	9/20/2023	18:49
Hexachlorobenzene	< 10.0	ug/L	9/20/2023	18:49
Hexachlorobutadiene	< 10.0	ug/L	9/20/2023	18:49
Hexachlorocyclopentadiene	< 10.0	ug/L	9/20/2023	18:49
Hexachloroethane	< 10.0	ug/L	9/20/2023	18:49
Indeno (1,2,3-cd) pyrene	< 10.0	ug/L	9/20/2023	18:49
Isophorone	< 10.0	ug/L	9/20/2023	18:49
Naphthalene	< 10.0	ug/L	9/20/2023	18:49
Nitrobenzene	< 10.0	ug/L	9/20/2023	18:49
N-Nitroso-di-n-propylamine	< 10.0	ug/L	9/20/2023	18:49
N-Nitrosodiphenylamine	< 10.0	ug/L	9/20/2023	18:49
Pentachlorophenol	< 20.0	ug/L	9/20/2023	18:49
Phenanthrene	< 10.0	ug/L	9/20/2023	18:49
Phenol	< 10.0	ug/L	9/20/2023	18:49
Pyrene	< 10.0	ug/L	9/20/2023	18:49

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-04-09152023

Lab Sample ID: 234271-04 **Date Sampled:** 9/15/2023 9:20

Matrix: Groundwater Date Received 9/15/2023

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	<u>alyzed</u>
2,4,6-Tribromophenol	92.7	49 - 127		9/20/2023	18:49
2-Fluorobiphenyl	36.4	10 - 107		9/20/2023	18:49
2-Fluorophenol	49.2	10.6 - 109		9/20/2023	18:49
Nitrobenzene-d5	54.8	41 - 106		9/20/2023	18:49
Phenol-d5	41.3	10 - 109		9/20/2023	18:49
Terphenyl-d14	78.6	49.6 - 120		9/20/2023	18:49

Method Reference(s): EPA 8270D

EPA 3510C

 Preparation Date:
 9/20/2023

 Data File:
 B66930.D

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Anal	yzed
1,1,1-Trichloroethane	< 2.00	ug/L		9/20/2023	20:02
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		9/20/2023	20:02
1,1,2-Trichloroethane	< 2.00	ug/L		9/20/2023	20:02
1,1-Dichloroethane	< 2.00	ug/L		9/20/2023	20:02
1,1-Dichloroethene	< 2.00	ug/L		9/20/2023	20:02
1,2,3-Trichlorobenzene	< 5.00	ug/L		9/20/2023	20:02
1,2,4-Trichlorobenzene	< 5.00	ug/L		9/20/2023	20:02
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		9/20/2023	20:02
1,2-Dibromoethane	< 2.00	ug/L		9/20/2023	20:02
1,2-Dichlorobenzene	< 2.00	ug/L		9/20/2023	20:02
1,2-Dichloroethane	< 2.00	ug/L		9/20/2023	20:02
1,2-Dichloropropane	< 2.00	ug/L		9/20/2023	20:02
1,3-Dichlorobenzene	< 2.00	ug/L		9/20/2023	20:02
1,4-Dichlorobenzene	< 2.00	ug/L		9/20/2023	20:02
1,4-Dioxane	< 10.0	ug/L		9/20/2023	20:02
2-Butanone	< 10.0	ug/L		9/20/2023	20:02
2-Hexanone	< 5.00	ug/L		9/20/2023	20:02
4-Methyl-2-pentanone	< 5.00	ug/L		9/20/2023	20:02

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-04-09152023

Lab Sample ID: 234271-04 **Date Sampled:** 9/15/2023 9:20

Matrix: Groundwater Date Received 9/15/2023

Acetone	24.4	ug/L	9/20/2023 20:02	
Benzene	< 1.00	ug/L	9/20/2023 20:02	
Bromochloromethane	< 5.00	ug/L	9/20/2023 20:02	
Bromodichloromethane	< 2.00	ug/L	9/20/2023 20:02	
Bromoform	< 5.00	ug/L	9/20/2023 20:02	
Bromomethane	< 2.00	ug/L	9/20/2023 20:02	
Carbon disulfide	< 2.00	ug/L	9/20/2023 20:02	
Carbon Tetrachloride	< 2.00	ug/L	9/20/2023 20:02	
Chlorobenzene	< 2.00	ug/L	9/20/2023 20:02	
Chloroethane	< 2.00	ug/L	9/20/2023 20:02	
Chloroform	< 2.00	ug/L	9/20/2023 20:02	
Chloromethane	< 2.00	ug/L	9/20/2023 20:02	
cis-1,2-Dichloroethene	< 2.00	ug/L	9/20/2023 20:02	
cis-1,3-Dichloropropene	< 2.00	ug/L	9/20/2023 20:02	
Cyclohexane	< 10.0	ug/L	9/20/2023 20:02	
Dibromochloromethane	< 2.00	ug/L	9/20/2023 20:02	
Dichlorodifluoromethane	< 2.00	ug/L	9/20/2023 20:02	
Ethylbenzene	< 2.00	ug/L	9/20/2023 20:02	
Freon 113	< 2.00	ug/L	9/20/2023 20:02	
Isopropylbenzene	< 2.00	ug/L	9/20/2023 20:02	
m,p-Xylene	< 2.00	ug/L	9/20/2023 20:02	
Methyl acetate	< 2.00	ug/L	9/20/2023 20:02	
Methyl tert-butyl Ether	< 2.00	ug/L	9/20/2023 20:02	
Methylcyclohexane	< 2.00	ug/L	9/20/2023 20:02	
Methylene chloride	< 5.00	ug/L	9/20/2023 20:02	
o-Xylene	< 2.00	ug/L	9/20/2023 20:02	
Styrene	< 5.00	ug/L	9/20/2023 20:02	
Tetrachloroethene	< 2.00	ug/L	9/20/2023 20:02	
Toluene	< 2.00	ug/L	9/20/2023 20:02	
trans-1,2-Dichloroethene	< 2.00	ug/L	9/20/2023 20:02	

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-04-09152023

Lab Sample ID: 234271-04 **Date Sampled:** 9/15/2023 9:20

Matrix: Groundwater Date Received 9/15/2023

trans-1,3-Dichloropropene	< 2.00	ug/L	9/20/2023 20:02
Trichloroethene	< 2.00	ug/L	9/20/2023 20:02
Trichlorofluoromethane	< 2.00	ug/L	9/20/2023 20:02
Vinyl chloride	< 2.00	ug/L	9/20/2023 20:02

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	<u>alyzed</u>
1,2-Dichloroethane-d4	110	79.7 - 118		9/20/2023	20:02
4-Bromofluorobenzene	95.9	80.1 - 112		9/20/2023	20:02
Pentafluorobenzene	96.1	88 - 115		9/20/2023	20:02
Toluene-D8	108	88.2 - 113		9/20/2023	20:02

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z19683.D

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-05-09152023

Lab Sample ID: 234271-05 **Date Sampled:** 9/15/2023 9:25

Matrix: Groundwater Date Received 9/15/2023

Ammonia-N

Analyte Result Units Qualifier Date Analyzed

Ammonia <0.1 mg/L 9/19/2023

Method Reference(s): EPA 350.1 Rev 2.0

Subcontractor ELAP ID: 10709

Total Cyanide

Analyte Result Units Qualifier Date Analyzed

Cyanide, Total <0.010 mg/L 9/21/2023

Method Reference(s): EPA 335.4 Rev 1.0

Subcontractor ELAP ID: 10709

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>vzed</u>
1,1-Biphenyl	< 10.0	ug/L		9/20/2023	19:17
1,2,4,5-Tetrachlorobenzene	< 10.0	ug/L		9/20/2023	19:17
1,2,4-Trichlorobenzene	< 10.0	ug/L		9/20/2023	19:17
1,2-Dichlorobenzene	< 10.0	ug/L		9/20/2023	19:17
1,3-Dichlorobenzene	< 10.0	ug/L		9/20/2023	19:17
1,4-Dichlorobenzene	< 10.0	ug/L		9/20/2023	19:17
2,2-Oxybis (1-chloropropane)	< 10.0	ug/L		9/20/2023	19:17
2,3,4,6-Tetrachlorophenol	< 10.0	ug/L		9/20/2023	19:17
2,4,5-Trichlorophenol	< 10.0	ug/L		9/20/2023	19:17
2,4,6-Trichlorophenol	< 20.0	ug/L		9/20/2023	19:17
2,4-Dichlorophenol	< 10.0	ug/L		9/20/2023	19:17
2,4-Dimethylphenol	< 10.0	ug/L		9/20/2023	19:17
2,4-Dinitrophenol	< 20.0	ug/L		9/20/2023	19:17
2,4-Dinitrotoluene	< 10.0	ug/L		9/20/2023	19:17
2,6-Dinitrotoluene	< 10.0	ug/L		9/20/2023	19:17
2-Chloronaphthalene	< 10.0	ug/L		9/20/2023	19:17
2-Chlorophenol	< 10.0	ug/L		9/20/2023	19:17

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-05-09152023

Lab Sample ID: 234271-05 **Date Sampled:** 9/15/2023 9:25

Matrix: Groundwater Date Received 9/15/2023

2-Methylnapthalene	< 10.0	ug/L	9/20/2023	19:17
2-Methylphenol	< 10.0	ug/L	9/20/2023	19:17
2-Nitroaniline	< 20.0	ug/L	9/20/2023	19:17
2-Nitrophenol	< 10.0	ug/L	9/20/2023	19:17
3&4-Methylphenol	< 10.0	ug/L	9/20/2023	19:17
3,3'-Dichlorobenzidine	< 10.0	ug/L	9/20/2023	19:17
3-Nitroaniline	< 20.0	ug/L	9/20/2023	19:17
4,6-Dinitro-2-methylphenol	< 20.0	ug/L	9/20/2023	19:17
4-Bromophenyl phenyl ether	< 10.0	ug/L	9/20/2023	19:17
4-Chloro-3-methylphenol	< 10.0	ug/L	9/20/2023	19:17
4-Chloroaniline	< 10.0	ug/L	9/20/2023	19:17
4-Chlorophenyl phenyl ether	< 10.0	ug/L	9/20/2023	19:17
4-Nitroaniline	< 20.0	ug/L	9/20/2023	19:17
4-Nitrophenol	< 20.0	ug/L	9/20/2023	19:17
Acenaphthene	< 10.0	ug/L	9/20/2023	19:17
Acenaphthylene	< 10.0	ug/L	9/20/2023	19:17
Acetophenone	< 10.0	ug/L	9/20/2023	19:17
Anthracene	< 10.0	ug/L	9/20/2023	19:17
Atrazine	< 25.0	ug/L	9/20/2023	19:17
Benzaldehyde	< 10.0	ug/L	9/20/2023	19:17
Benzo (a) anthracene	< 10.0	ug/L	9/20/2023	19:17
Benzo (a) pyrene	< 10.0	ug/L	9/20/2023	19:17
Benzo (b) fluoranthene	< 10.0	ug/L	9/20/2023	19:17
Benzo (g,h,i) perylene	< 10.0	ug/L	9/20/2023	19:17
Benzo (k) fluoranthene	< 10.0	ug/L	9/20/2023	19:17
Bis (2-chloroethoxy) methane	< 10.0	ug/L	9/20/2023	19:17
Bis (2-chloroethyl) ether	< 10.0	ug/L	9/20/2023	19:17
Bis (2-ethylhexyl) phthalate	< 10.0	ug/L	9/20/2023	19:17
Butylbenzylphthalate	< 10.0	ug/L	9/20/2023	19:17
Caprolactam	< 10.0	ug/L	9/20/2023	19:17

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-05-09152023

Lab Sample ID: 234271-05 **Date Sampled:** 9/15/2023 9:25

Matrix: Groundwater Date Received 9/15/2023

Carbazole	< 10.0	ug/L	9/20/2023	19:17
Chrysene	< 10.0	ug/L	9/20/2023	19:17
Dibenz (a,h) anthracene	< 10.0	ug/L	9/20/2023	19:17
Dibenzofuran	< 10.0	ug/L	9/20/2023	19:17
Diethyl phthalate	< 10.0	ug/L	9/20/2023	19:17
Dimethyl phthalate	< 20.0	ug/L	9/20/2023	19:17
Di-n-butyl phthalate	< 10.0	ug/L	9/20/2023	19:17
Di-n-octylphthalate	< 10.0	ug/L	9/20/2023	19:17
Fluoranthene	< 10.0	ug/L	9/20/2023	19:17
Fluorene	< 10.0	ug/L	9/20/2023	19:17
Hexachlorobenzene	< 10.0	ug/L	9/20/2023	19:17
Hexachlorobutadiene	< 10.0	ug/L	9/20/2023	19:17
Hexachlorocyclopentadiene	< 10.0	ug/L	9/20/2023	19:17
Hexachloroethane	< 10.0	ug/L	9/20/2023	19:17
Indeno (1,2,3-cd) pyrene	< 10.0	ug/L	9/20/2023	19:17
Isophorone	< 10.0	ug/L	9/20/2023	19:17
Naphthalene	< 10.0	ug/L	9/20/2023	19:17
Nitrobenzene	< 10.0	ug/L	9/20/2023	19:17
N-Nitroso-di-n-propylamine	< 10.0	ug/L	9/20/2023	19:17
N-Nitrosodiphenylamine	< 10.0	ug/L	9/20/2023	19:17
Pentachlorophenol	< 20.0	ug/L	9/20/2023	19:17
Phenanthrene	17.5	ug/L	9/20/2023	19:17
Phenol	< 10.0	ug/L	9/20/2023	19:17
Pyrene	< 10.0	ug/L	9/20/2023	19:17

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Inventum Engineering, P.C. Client:

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-05-09152023

Date Sampled: 9/15/2023 9:25 Lab Sample ID: 234271-05

Date Received 9/15/2023 **Matrix:** Groundwater

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
2,4,6-Tribromophenol	92.9	49 - 127		9/20/2023	19:17
2-Fluorobiphenyl	39.2	10 - 107		9/20/2023	19:17
2-Fluorophenol	34.6	10.6 - 109		9/20/2023	19:17
Nitrobenzene-d5	58.2	41 - 106		9/20/2023	19:17
Phenol-d5	24.1	10 - 109		9/20/2023	19:17
Terphenyl-d14	77.2	49.6 - 120		9/20/2023	19:17

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 9/20/2023

Data File: B66931.D

Volatile Organics

1,1,1-Trichloroethane < 2.00 ug/L 9/20/2023	20:21
1,1,2,2-Tetrachloroethane < 2.00 ug/L 9/20/2023	20:21
1,1,2-Trichloroethane < 2.00 ug/L 9/20/2023	
1,1-Dichloroethane < 2.00 ug/L 9/20/2023	20:21
1,1-Dichloroethene < 2.00 ug/L 9/20/2023	20:21
1,2,3-Trichlorobenzene < 5.00 ug/L 9/20/2023	20:21
1,2,4-Trichlorobenzene < 5.00 ug/L 9/20/2023	20:21
1,2-Dibromo-3-Chloropropane < 10.0 ug/L 9/20/2023	20:21
1,2-Dibromoethane < 2.00 ug/L 9/20/2023	20:21
1,2-Dichlorobenzene < 2.00 ug/L 9/20/2023	20:21
1,2-Dichloroethane < 2.00 ug/L 9/20/2023	20:21
1,2-Dichloropropane < 2.00 ug/L 9/20/2023	20:21
1,3-Dichlorobenzene < 2.00 ug/L 9/20/2023	20:21
1,4-Dichlorobenzene < 2.00 ug/L 9/20/2023	20:21
1,4-Dioxane < 10.0 ug/L 9/20/2023	20:21
2-Butanone < 10.0 ug/L 9/20/2023	20:21
2-Hexanone < 5.00 ug/L 9/20/2023	20:21
4-Methyl-2-pentanone < 5.00 ug/L 9/20/2023	20:21

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-05-09152023

Lab Sample ID: 234271-05 **Date Sampled:** 9/15/2023 9:25

Matrix: Groundwater Date Received 9/15/2023

Acetone	14.1	ug/L	9/20/2023 20:21	
Benzene	< 1.00	ug/L	9/20/2023 20:21	
Bromochloromethane	< 5.00	ug/L	9/20/2023 20:21	
Bromodichloromethane	< 2.00	ug/L	9/20/2023 20:21	
Bromoform	< 5.00	ug/L	9/20/2023 20:21	
Bromomethane	< 2.00	ug/L	9/20/2023 20:21	
Carbon disulfide	< 2.00	ug/L	9/20/2023 20:21	
Carbon Tetrachloride	< 2.00	ug/L	9/20/2023 20:21	
Chlorobenzene	< 2.00	ug/L	9/20/2023 20:21	
Chloroethane	< 2.00	ug/L	9/20/2023 20:21	
Chloroform	< 2.00	ug/L	9/20/2023 20:21	
Chloromethane	< 2.00	ug/L	9/20/2023 20:21	
cis-1,2-Dichloroethene	< 2.00	ug/L	9/20/2023 20:21	
cis-1,3-Dichloropropene	< 2.00	ug/L	9/20/2023 20:21	
Cyclohexane	< 10.0	ug/L	9/20/2023 20:21	
Dibromochloromethane	< 2.00	ug/L	9/20/2023 20:21	
Dichlorodifluoromethane	< 2.00	ug/L	9/20/2023 20:21	
Ethylbenzene	< 2.00	ug/L	9/20/2023 20:21	
Freon 113	< 2.00	ug/L	9/20/2023 20:21	
Isopropylbenzene	< 2.00	ug/L	9/20/2023 20:21	
m,p-Xylene	< 2.00	ug/L	9/20/2023 20:21	
Methyl acetate	< 2.00	ug/L	9/20/2023 20:21	
Methyl tert-butyl Ether	< 2.00	ug/L	9/20/2023 20:21	
Methylcyclohexane	< 2.00	ug/L	9/20/2023 20:21	
Methylene chloride	< 5.00	ug/L	9/20/2023 20:21	
o-Xylene	< 2.00	ug/L	9/20/2023 20:21	
Styrene	< 5.00	ug/L	9/20/2023 20:21	
Tetrachloroethene	< 2.00	ug/L	9/20/2023 20:21	
Toluene	< 2.00	ug/L	9/20/2023 20:21	
trans-1,2-Dichloroethene	< 2.00	ug/L	9/20/2023 20:21	

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-05-09152023

Lab Sample ID: 234271-05 **Date Sampled:** 9/15/2023 9:25

Matrix: Groundwater Date Received 9/15/2023

trans-1,3-Dichloropropene	< 2.00	ug/L	9/20/2023 20:21
Trichloroethene	< 2.00	ug/L	9/20/2023 20:21
Trichlorofluoromethane	< 2.00	ug/L	9/20/2023 20:21
Vinyl chloride	< 2.00	ug/L	9/20/2023 20:21

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	<u>alyzed</u>
1,2-Dichloroethane-d4	109	79.7 - 118		9/20/2023	20:21
4-Bromofluorobenzene	95.5	80.1 - 112		9/20/2023	20:21
Pentafluorobenzene	98.2	88 - 115		9/20/2023	20:21
Toluene-D8	109	88.2 - 113		9/20/2023	20:21

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z19684.D

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-06-09152023

Lab Sample ID: 234271-06 **Date Sampled:** 9/15/2023 9:30

Matrix: Solid Date Received 9/15/2023

Ammonia-N

Analyte Result Units Qualifier Date Analyzed

Ammonia <10.0 mg/Kg 9/19/2023

Method Reference(s): SM 4500 NH3 G - 2011

Subcontractor ELAP ID: 10709

Total Cyanide

Analyte Result Units Qualifier Date Analyzed

Cyanide, Total <0.50 mg/Kg 9/19/2023

Method Reference(s):EPA 9012BSubcontractor ELAP ID:10709

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>vzed</u>
1,1-Biphenyl	< 272	ug/Kg		9/20/2023	21:10
1,2,4,5-Tetrachlorobenzene	< 272	ug/Kg		9/20/2023	21:10
1,2,4-Trichlorobenzene	< 272	ug/Kg		9/20/2023	21:10
1,2-Dichlorobenzene	< 272	ug/Kg		9/20/2023	21:10
1,3-Dichlorobenzene	< 272	ug/Kg		9/20/2023	21:10
1,4-Dichlorobenzene	< 272	ug/Kg		9/20/2023	21:10
2,2-Oxybis (1-chloropropane)	< 272	ug/Kg		9/20/2023	21:10
2,3,4,6-Tetrachlorophenol	< 272	ug/Kg		9/20/2023	21:10
2,4,5-Trichlorophenol	< 272	ug/Kg		9/20/2023	21:10
2,4,6-Trichlorophenol	< 272	ug/Kg		9/20/2023	21:10
2,4-Dichlorophenol	< 272	ug/Kg		9/20/2023	21:10
2,4-Dimethylphenol	< 272	ug/Kg		9/20/2023	21:10
2,4-Dinitrophenol	< 1090	ug/Kg		9/20/2023	21:10
2,4-Dinitrotoluene	< 272	ug/Kg		9/20/2023	21:10
2,6-Dinitrotoluene	< 272	ug/Kg		9/20/2023	21:10
2-Chloronaphthalene	< 272	ug/Kg		9/20/2023	21:10
2-Chlorophenol	< 272	ug/Kg		9/20/2023	21:10

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-06-09152023

Lab Sample ID: 234271-06 **Date Sampled:** 9/15/2023 9:30

Matrix: Solid Date Received 9/15/2023

2-Methylnapthalene	765	ug/Kg	9/20/2023	21:10
2-Methylphenol	< 272	ug/Kg	9/20/2023	21:10
2-Nitroaniline	< 272	ug/Kg	9/20/2023	21:10
2-Nitrophenol	< 272	ug/Kg	9/20/2023	21:10
3&4-Methylphenol	< 272	ug/Kg	9/20/2023	21:10
3,3'-Dichlorobenzidine	< 272	ug/Kg	9/20/2023	21:10
3-Nitroaniline	< 272	ug/Kg	9/20/2023	21:10
4,6-Dinitro-2-methylphenol	< 364	ug/Kg	9/20/2023	21:10
4-Bromophenyl phenyl ether	< 272	ug/Kg	9/20/2023	21:10
4-Chloro-3-methylphenol	< 272	ug/Kg	9/20/2023	21:10
4-Chloroaniline	< 272	ug/Kg	9/20/2023	21:10
4-Chlorophenyl phenyl ether	< 272	ug/Kg	9/20/2023	21:10
4-Nitroaniline	< 272	ug/Kg	9/20/2023	21:10
4-Nitrophenol	< 272	ug/Kg	9/20/2023	21:10
Acenaphthene	1130	ug/Kg	9/20/2023	21:10
Acenaphthylene	< 272	ug/Kg	9/20/2023	21:10
Acetophenone	< 272	ug/Kg	9/20/2023	21:10
Anthracene	985	ug/Kg	9/20/2023	21:10
Atrazine	< 272	ug/Kg	9/20/2023	21:10
Benzaldehyde	< 272	ug/Kg	9/20/2023	21:10
Benzo (a) anthracene	3430	ug/Kg	9/20/2023	21:10
Benzo (a) pyrene	6430	ug/Kg	9/20/2023	21:10
Benzo (b) fluoranthene	6320	ug/Kg	9/20/2023	21:10
Benzo (g,h,i) perylene	5010	ug/Kg	9/20/2023	21:10
Benzo (k) fluoranthene	3050	ug/Kg	9/20/2023	21:10
Bis (2-chloroethoxy) methane	< 272	ug/Kg	9/20/2023	21:10
Bis (2-chloroethyl) ether	< 272	ug/Kg	9/20/2023	21:10
Bis (2-ethylhexyl) phthalate	< 272	ug/Kg	9/20/2023	21:10
Butylbenzylphthalate	< 272	ug/Kg	9/20/2023	21:10
Caprolactam	< 272	ug/Kg	9/20/2023	21:10

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-06-09152023

Lab Sample ID: 234271-06 **Date Sampled:** 9/15/2023 9:30

Matrix: Solid Date Received 9/15/2023

Carbazole	320	ug/Kg	9/20/2023 21:10
Chrysene	4210	ug/Kg	9/20/2023 21:10
Dibenz (a,h) anthracene	1500	ug/Kg	9/20/2023 21:10
Dibenzofuran	326	ug/Kg	9/20/2023 21:10
Diethyl phthalate	< 272	ug/Kg	9/20/2023 21:10
Dimethyl phthalate	< 272	ug/Kg	9/20/2023 21:10
Di-n-butyl phthalate	< 272	ug/Kg	9/20/2023 21:10
Di-n-octylphthalate	< 272	ug/Kg	9/20/2023 21:10
Fluoranthene	< 272	ug/Kg	9/20/2023 21:10
Fluorene	< 272	ug/Kg	9/20/2023 21:10
Hexachlorobenzene	< 272	ug/Kg	9/20/2023 21:10
Hexachlorobutadiene	< 272	ug/Kg	9/20/2023 21:10
Hexachlorocyclopentadiene	< 1090	ug/Kg	9/20/2023 21:10
Hexachloroethane	< 272	ug/Kg	9/20/2023 21:10
Indeno (1,2,3-cd) pyrene	3780	ug/Kg	9/20/2023 21:10
Isophorone	< 272	ug/Kg	9/20/2023 21:10
Naphthalene	1190	ug/Kg	9/20/2023 21:10
Nitrobenzene	< 272	ug/Kg	9/20/2023 21:10
N-Nitroso-di-n-propylamine	< 272	ug/Kg	9/20/2023 21:10
N-Nitrosodiphenylamine	< 272	ug/Kg	9/20/2023 21:10
Pentachlorophenol	< 543	ug/Kg	9/20/2023 21:10
Phenanthrene	2800	ug/Kg	9/20/2023 21:10
Phenol	< 272	ug/Kg	9/20/2023 21:10
Pyrene	4520	ug/Kg	9/20/2023 21:10

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-06-09152023

Lab Sample ID: 234271-06 **Date Sampled:** 9/15/2023 9:30

Matrix: Solid Date Received 9/15/2023

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	alyzed
2,4,6-Tribromophenol	28.8	35.1 - 95.9	*	9/20/2023	21:10
2-Fluorobiphenyl	31.0	10 - 156		9/20/2023	21:10
2-Fluorophenol	31.2	36 - 81.3	*	9/20/2023	21:10
Nitrobenzene-d5	27.6	31.5 - 83.8	*	9/20/2023	21:10
Phenol-d5	28.2	37.7 - 84	*	9/20/2023	21:10
Terphenyl-d14	29.3	40.5 - 99.5	*	9/20/2023	21:10

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 9/20/2023 Data File: B66935.D

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 8.00	ug/Kg	9/21/2023 14:17
1,1,2,2-Tetrachloroethane	< 8.00	ug/Kg	9/21/2023 14:17
1,1,2-Trichloroethane	< 8.00	ug/Kg	9/21/2023 14:17
1,1-Dichloroethane	< 8.00	ug/Kg	9/21/2023 14:17
1,1-Dichloroethene	< 8.00	ug/Kg	9/21/2023 14:17
1,2,3-Trichlorobenzene	< 20.0	ug/Kg	9/21/2023 14:17
1,2,4-Trichlorobenzene	< 20.0	ug/Kg	9/21/2023 14:17
1,2-Dibromo-3-Chloropropane	< 40.0	ug/Kg	9/21/2023 14:17
1,2-Dibromoethane	< 8.00	ug/Kg	9/21/2023 14:17
1,2-Dichlorobenzene	< 8.00	ug/Kg	9/21/2023 14:17
1,2-Dichloroethane	< 8.00	ug/Kg	9/21/2023 14:17
1,2-Dichloropropane	< 8.00	ug/Kg	9/21/2023 14:17
1,3-Dichlorobenzene	< 8.00	ug/Kg	9/21/2023 14:17
1,4-Dichlorobenzene	< 8.00	ug/Kg	9/21/2023 14:17
1,4-Dioxane	< 40.0	ug/Kg	9/21/2023 14:17
2-Butanone	< 40.0	ug/Kg	9/21/2023 14:17
2-Hexanone	< 20.0	ug/Kg	9/21/2023 14:17
4-Methyl-2-pentanone	< 20.0	ug/Kg	9/21/2023 14:17

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-06-09152023

Lab Sample ID: 234271-06 **Date Sampled:** 9/15/2023 9:30

Matrix: Solid Date Received 9/15/2023

Acetone	< 40.0	ug/Kg	9/21/2023 14:17
Benzene	< 8.00	ug/Kg	9/21/2023 14:17
Bromochloromethane	< 20.0	ug/Kg	9/21/2023 14:17
Bromodichloromethane	< 8.00	ug/Kg	9/21/2023 14:17
Bromoform	< 20.0	ug/Kg	9/21/2023 14:17
Bromomethane	< 8.00	ug/Kg	9/21/2023 14:17
Carbon disulfide	< 8.00	ug/Kg	9/21/2023 14:17
Carbon Tetrachloride	< 8.00	ug/Kg	9/21/2023 14:17
Chlorobenzene	< 8.00	ug/Kg	9/21/2023 14:17
Chloroethane	< 8.00	ug/Kg	9/21/2023 14:17
Chloroform	< 8.00	ug/Kg	9/21/2023 14:17
Chloromethane	< 8.00	ug/Kg	9/21/2023 14:17
cis-1,2-Dichloroethene	< 8.00	ug/Kg	9/21/2023 14:17
cis-1,3-Dichloropropene	< 8.00	ug/Kg	9/21/2023 14:17
Cyclohexane	< 40.0	ug/Kg	9/21/2023 14:17
Dibromochloromethane	< 8.00	ug/Kg	9/21/2023 14:17
Dichlorodifluoromethane	< 8.00	ug/Kg	9/21/2023 14:17
Ethylbenzene	< 8.00	ug/Kg	9/21/2023 14:17
Freon 113	< 8.00	ug/Kg	9/21/2023 14:17
Isopropylbenzene	< 8.00	ug/Kg	9/21/2023 14:17
m,p-Xylene	< 8.00	ug/Kg	9/21/2023 14:17
Methyl acetate	< 8.00	ug/Kg	9/21/2023 14:17
Methyl tert-butyl Ether	< 8.00	ug/Kg	9/21/2023 14:17
Methylcyclohexane	< 8.00	ug/Kg	9/21/2023 14:17
Methylene chloride	< 20.0	ug/Kg	9/21/2023 14:17
o-Xylene	< 8.00	ug/Kg	9/21/2023 14:17
Styrene	< 20.0	ug/Kg	9/21/2023 14:17
Tetrachloroethene	< 8.00	ug/Kg	9/21/2023 14:17
Toluene	< 8.00	ug/Kg	9/21/2023 14:17
trans-1,2-Dichloroethene	< 8.00	ug/Kg	9/21/2023 14:17

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Sample Identifier: BreezeTest-06-09152023

Lab Sample ID: 234271-06 **Date Sampled:** 9/15/2023 9:30

Matrix: Solid Date Received 9/15/2023

	_		-	0 .11		
Vinyl chloride	< 8.00	ug/Kg			9/21/2023	14:17
Trichlorofluoromethane	< 8.00	ug/Kg			9/21/2023	14:17
Trichloroethene	< 8.00	ug/Kg			9/21/2023	14:17
trans-1,3-Dichloropropene	< 8.00	ug/Kg			9/21/2023	14:17

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	<u>alyzed</u>
1,2-Dichloroethane-d4	101	72.3 - 128		9/21/2023	14:17
4-Bromofluorobenzene	71.9	70 - 123		9/21/2023	14:17
Pentafluorobenzene	97.5	80.7 - 124		9/21/2023	14:17
Toluene-D8	102	82.1 - 121		9/21/2023	14:17

Internal standard outliers indicate probable matrix interference

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z19701.D

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Matrix: Solid

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
1,1-Biphenyl	<262	ug/Kg		9/20/2023	19:45
1,2,4,5-Tetrachlorobenzene	<262	ug/Kg		9/20/2023	19:45
1,2,4-Trichlorobenzene	<262	ug/Kg		9/20/2023	19:45
1,2-Dichlorobenzene	<262	ug/Kg		9/20/2023	19:45
1,3-Dichlorobenzene	<262	ug/Kg		9/20/2023	19:45
1,4-Dichlorobenzene	<262	ug/Kg		9/20/2023	19:45
2,2-0xybis (1-chloropropane)	<262	ug/Kg		9/20/2023	19:45
2,3,4,6-Tetrachlorophenol	<262	ug/Kg		9/20/2023	19:45
2,4,5-Trichlorophenol	<262	ug/Kg		9/20/2023	19:45
2,4,6-Trichlorophenol	<262	ug/Kg		9/20/2023	19:45
2,4-Dichlorophenol	<262	ug/Kg		9/20/2023	19:45
2,4-Dimethylphenol	<262	ug/Kg		9/20/2023	19:45
2,4-Dinitrophenol	<1050	ug/Kg		9/20/2023	19:45
2,4-Dinitrotoluene	<262	ug/Kg		9/20/2023	19:45
2,6-Dinitrotoluene	<262	ug/Kg		9/20/2023	19:45
2-Chloronaphthalene	<262	ug/Kg		9/20/2023	19:45
2-Chlorophenol	<262	ug/Kg		9/20/2023	19:45
2-Methylnapthalene	<262	ug/Kg		9/20/2023	19:45
2-Methylphenol	<262	ug/Kg		9/20/2023	19:45
2-Nitroaniline	<262	ug/Kg		9/20/2023	19:45
2-Nitrophenol	<262	ug/Kg		9/20/2023	19:45
3&4-Methylphenol	<262	ug/Kg		9/20/2023	19:45
3,3'-Dichlorobenzidine	<262	ug/Kg		9/20/2023	19:45
3-Nitroaniline	<262	ug/Kg		9/20/2023	19:45
4,6-Dinitro-2-methylphenol	<524	ug/Kg		9/20/2023	19:45
4-Bromophenyl phenyl ether	<262	ug/Kg		9/20/2023	19:45
4-Chloro-3-methylphenol	<262	ug/Kg		9/20/2023	19:45

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Matrix: Solid

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
4-Chloroaniline	<262	ug/Kg		9/20/2023	19:45
4-Chlorophenyl phenyl ether	<262	ug/Kg		9/20/2023	19:45
4-Nitroaniline	<262	ug/Kg		9/20/2023	19:45
4-Nitrophenol	<262	ug/Kg		9/20/2023	19:45
Acenaphthene	<262	ug/Kg		9/20/2023	19:45
Acenaphthylene	<262	ug/Kg		9/20/2023	19:45
Acetophenone	<262	ug/Kg		9/20/2023	19:45
Anthracene	<262	ug/Kg		9/20/2023	19:45
Atrazine	<262	ug/Kg		9/20/2023	19:45
Benzaldehyde	<262	ug/Kg		9/20/2023	19:45
Benzo (a) anthracene	<262	ug/Kg		9/20/2023	19:45
Benzo (a) pyrene	<262	ug/Kg		9/20/2023	19:45
Benzo (b) fluoranthene	<262	ug/Kg		9/20/2023	19:45
Benzo (g,h,i) perylene	<262	ug/Kg		9/20/2023	19:45
Benzo (k) fluoranthene	<262	ug/Kg		9/20/2023	19:45
Bis (2-chloroethoxy) methane	<262	ug/Kg		9/20/2023	19:45
Bis (2-chloroethyl) ether	<262	ug/Kg		9/20/2023	19:45
Bis (2-ethylhexyl) phthalate	<262	ug/Kg		9/20/2023	19:45
Butylbenzylphthalate	<262	ug/Kg		9/20/2023	19:45
Caprolactam	<262	ug/Kg		9/20/2023	19:45
Carbazole	<262	ug/Kg		9/20/2023	19:45
Chrysene	<262	ug/Kg		9/20/2023	19:45
Dibenz (a,h) anthracene	<262	ug/Kg		9/20/2023	19:45
Dibenzofuran	<262	ug/Kg		9/20/2023	19:45
Diethyl phthalate	<262	ug/Kg		9/20/2023	19:45
Dimethyl phthalate	<262	ug/Kg		9/20/2023	19:45
Di-n-butyl phthalate	<262	ug/Kg		9/20/2023	19:45
Di-n-octylphthalate	<262	ug/Kg		9/20/2023	19:45

Inventum Engineering, P.C. Client:

Project Reference: Breeze Water Testing

Lab Project ID: 234271 **Matrix:** Solid

Semi-Volatile Organics (Acid/Base Neutrals)

m-voluthe organics (Acia/Base Ne	นน นเรา				
Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
Fluoranthene	<262	ug/Kg		9/20/2023	19:45
Fluorene	<262	ug/Kg		9/20/2023	19:45
Hexachlorobenzene	<262	ug/Kg		9/20/2023	19:45
Hexachlorobutadiene	<262	ug/Kg		9/20/2023	19:45
Hexachlorocyclopentadiene	<1050	ug/Kg		9/20/2023	19:45
Hexachloroethane	<262	ug/Kg		9/20/2023	19:45
Indeno (1,2,3-cd) pyrene	<262	ug/Kg		9/20/2023	19:45
Isophorone	<262	ug/Kg		9/20/2023	19:45
Naphthalene	<262	ug/Kg		9/20/2023	19:45
Nitrobenzene	<262	ug/Kg		9/20/2023	19:45
N-Nitroso-di-n-propylamine	<262	ug/Kg		9/20/2023	19:45
N-Nitrosodiphenylamine	<262	ug/Kg		9/20/2023	19:45
Pentachlorophenol	<524	ug/Kg		9/20/2023	19:45
Phenanthrene	<262	ug/Kg		9/20/2023	19:45
Phenol	<262	ug/Kg		9/20/2023	19:45
Pyrene	<262	ug/Kg		9/20/2023	19:45
Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	yzed
2,4,6-Tribromophenol	69.6	35.1 - 95.9		9/20/2023	19:45
2-Fluorobiphenyl	58.1	10 - 156		9/20/2023	19:45
2-Fluorophenol	54.4	36 - 81.3		9/20/2023	19:45

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date Anal</u>	<u>yzed</u>
2,4,6-Tribromophenol	69.6	35.1 - 95.9		9/20/2023	19:45
2-Fluorobiphenyl	58.1	10 - 156		9/20/2023	19:45
2-Fluorophenol	54.4	36 - 81.3		9/20/2023	19:45
Nitrobenzene-d5	50.3	31.5 - 83.8		9/20/2023	19:45
Phenol-d5	54.5	37.7 - 84		9/20/2023	19:45
Terphenyl-d14	68.0	40.5 - 99.5		9/20/2023	19:45

Method Reference(s): EPA 8270D

EPA 3546

Preparation Date: 9/20/2023 Data File: B66932.D QC Batch ID: QC2309020ABNS

QC Number: Blk 1

QC Report for Laboratory Control Sample

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Matrix: Solid

Semi-Volatile Organics (Acid/Base Neutrals)

	<u>Spike</u>	<u>Spike</u>	<u>LCS</u>	LCS %	% Rec	<u>LCS</u>	<u>Date</u>
<u>Analyte</u>	Added	<u>Units</u>	Result	Recovery	<u>Limits</u>	<u>Outliers</u>	Analyzed
1,2,4-Trichlorobenzene	2530	ug/Kg	1640	64.8	41.2 - 84.4		9/20/2023
1,4-Dichlorobenzene	2530	ug/Kg	1540	60.9	39.2 - 74.5		9/20/2023
2,3,4,6-Tetrachlorophenol	3790	ug/Kg	2700	71.4	46.8 - 91.6		9/20/2023
2,4,6-Trichlorophenol	3790	ug/Kg	2800	73.8	49.4 - 96.7		9/20/2023
2,4-Dichlorophenol	3790	ug/Kg	2650	70.0	49.9 - 90		9/20/2023
2,4-Dimethylphenol	3790	ug/Kg	2480	65.5	40.5 - 92.9		9/20/2023
2,4-Dinitrophenol	3790	ug/Kg	2020	53.5	10 - 76.8		9/20/2023
2,4-Dinitrotoluene	2530	ug/Kg	1850	73.4	37.8 - 99.2		9/20/2023
2-Chlorophenol	3790	ug/Kg	2510	66.2	48.2 - 82.9		9/20/2023
2-Nitrophenol	3790	ug/Kg	2440	64.5	45.2 - 85.7		9/20/2023
4,6-Dinitro-2-methylphenol	3790	ug/Kg	2740	72.3	22.6 - 92.8		9/20/2023
4-Chloro-3-methylphenol	3790	ug/Kg	2710	71.6	48.3 - 93.6		9/20/2023
4-Nitrophenol	3790	ug/Kg	2430	64.2	19.3 - 106		9/20/2023
Acenaphthene	2530	ug/Kg	1760	69.5	44.2 - 90.1		9/20/2023
N-Nitroso-di-n-propylamine	2530	ug/Kg	1560	61.7	36.5 - 87.1		9/20/2023
Pentachlorophenol	3790	ug/Kg	2970	78.3	33 - 110		9/20/2023

QC Report for Laboratory Control Sample

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Matrix: Solid

Semi-Volatile Organics (Acid/Base Neutrals)

	<u>Spike</u>	<u>Spike</u>	LCS	LCS %	% Rec	LCS	<u>Date</u>
<u>Analyte</u>	Added	<u>Units</u>	Result	Recovery	<u>Limits</u>	Outliers	Analyzed
Phenol	3790	ug/Kg	2490	65.6	45.5 - 83.9		9/20/2023
Pyrene	2530	ug/Kg	1960	77.7	47.9 - 101		9/20/2023

Method Reference(s): EPA 8270D

EPA 3546

 Preparation Date:
 9/20/2023

 Data File:
 B66933.D

 OC Number:
 LCS 1

QC Batch ID: QC2309020ABNS

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Matrix: Groundwater

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
1,1-Biphenyl	<10.0	ug/L		9/20/2023	16:55
1,2,4,5-Tetrachlorobenzene	<10.0	ug/L		9/20/2023	16:55
1,2,4-Trichlorobenzene	<10.0	ug/L		9/20/2023	16:55
1,2-Dichlorobenzene	<10.0	ug/L		9/20/2023	16:55
1,3-Dichlorobenzene	<10.0	ug/L		9/20/2023	16:55
1,4-Dichlorobenzene	<10.0	ug/L		9/20/2023	16:55
2,2-Oxybis (1-chloropropane)	<10.0	ug/L		9/20/2023	16:55
2,3,4,6-Tetrachlorophenol	<10.0	ug/L		9/20/2023	16:55
2,4,5-Trichlorophenol	<10.0	ug/L		9/20/2023	16:55
2,4,6-Trichlorophenol	<20.0	ug/L		9/20/2023	16:55
2,4-Dichlorophenol	<10.0	ug/L		9/20/2023	16:55
2,4-Dimethylphenol	<10.0	ug/L		9/20/2023	16:55
2,4-Dinitrophenol	<20.0	ug/L		9/20/2023	16:55
2,4-Dinitrotoluene	<10.0	ug/L		9/20/2023	16:55
2,6-Dinitrotoluene	<10.0	ug/L		9/20/2023	16:55
2-Chloronaphthalene	<10.0	ug/L		9/20/2023	16:55
2-Chlorophenol	<10.0	ug/L		9/20/2023	16:55
2-Methylnapthalene	<10.0	ug/L		9/20/2023	16:55
2-Methylphenol	<10.0	ug/L		9/20/2023	16:55
2-Nitroaniline	<20.0	ug/L		9/20/2023	16:55
2-Nitrophenol	<10.0	ug/L		9/20/2023	16:55
3&4-Methylphenol	<10.0	ug/L		9/20/2023	16:55
3,3'-Dichlorobenzidine	<10.0	ug/L		9/20/2023	16:55
3-Nitroaniline	<20.0	ug/L		9/20/2023	16:55
4,6-Dinitro-2-methylphenol	<20.0	ug/L		9/20/2023	16:55
4-Bromophenyl phenyl ether	<10.0	ug/L		9/20/2023	16:55
4-Chloro-3-methylphenol	<10.0	ug/L		9/20/2023	16:55

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Matrix: Groundwater

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
4-Chloroaniline	<10.0	ug/L		9/20/2023	16:55
4-Chlorophenyl phenyl ether	<10.0	ug/L		9/20/2023	16:55
4-Nitroaniline	<20.0	ug/L		9/20/2023	16:55
4-Nitrophenol	<20.0	ug/L		9/20/2023	16:55
Acenaphthene	<10.0	ug/L		9/20/2023	16:55
Acenaphthylene	<10.0	ug/L		9/20/2023	16:55
Acetophenone	<10.0	ug/L		9/20/2023	16:55
Anthracene	<10.0	ug/L		9/20/2023	16:55
Atrazine	<25.0	ug/L		9/20/2023	16:55
Benzaldehyde	<10.0	ug/L		9/20/2023	16:55
Benzo (a) anthracene	<10.0	ug/L		9/20/2023	16:55
Benzo (a) pyrene	<10.0	ug/L		9/20/2023	16:55
Benzo (b) fluoranthene	<10.0	ug/L		9/20/2023	16:55
Benzo (g,h,i) perylene	<10.0	ug/L		9/20/2023	16:55
Benzo (k) fluoranthene	<10.0	ug/L		9/20/2023	16:55
Bis (2-chloroethoxy) methane	<10.0	ug/L		9/20/2023	16:55
Bis (2-chloroethyl) ether	<10.0	ug/L		9/20/2023	16:55
Bis (2-ethylhexyl) phthalate	<10.0	ug/L		9/20/2023	16:55
Butylbenzylphthalate	<10.0	ug/L		9/20/2023	16:55
Caprolactam	<10.0	ug/L		9/20/2023	16:55
Carbazole	<10.0	ug/L		9/20/2023	16:55
Chrysene	<10.0	ug/L		9/20/2023	16:55
Dibenz (a,h) anthracene	<10.0	ug/L		9/20/2023	16:55
Dibenzofuran	<10.0	ug/L		9/20/2023	16:55
Diethyl phthalate	<10.0	ug/L		9/20/2023	16:55
Dimethyl phthalate	<20.0	ug/L		9/20/2023	16:55
Di-n-butyl phthalate	<10.0	ug/L		9/20/2023	16:55
Di-n-octylphthalate	<10.0	ug/L		9/20/2023	16:55

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Matrix: Groundwater

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
Fluoranthene	<10.0	ug/L		9/20/2023	16:55
Fluorene	<10.0	ug/L		9/20/2023	16:55
Hexachlorobenzene	<10.0	ug/L		9/20/2023	16:55
Hexachlorobutadiene	<10.0	ug/L		9/20/2023	16:55
Hexachlorocyclopentadiene	<10.0	ug/L		9/20/2023	16:55
Hexachloroethane	<10.0	ug/L		9/20/2023	16:55
Indeno (1,2,3-cd) pyrene	<10.0	ug/L		9/20/2023	16:55
Isophorone	<10.0	ug/L		9/20/2023	16:55
Naphthalene	<10.0	ug/L		9/20/2023	16:55
Nitrobenzene	<10.0	ug/L		9/20/2023	16:55
N-Nitroso-di-n-propylamine	<10.0	ug/L		9/20/2023	16:55
N-Nitrosodiphenylamine	<10.0	ug/L		9/20/2023	16:55
Pentachlorophenol	<20.0	ug/L		9/20/2023	16:55
Phenanthrene	<10.0	ug/L		9/20/2023	16:55
Phenol	<10.0	ug/L		9/20/2023	16:55
Pyrene	<10.0	ug/L		9/20/2023	16:55
Surrogate	Percent Recovery	<u>Limits</u>	Outliers	Date Anal	yzed
2,4,6-Tribromophenol	93.1	49 - 127		9/20/2023	16:55

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	<u>yzed</u>
2,4,6-Tribromophenol	93.1	49 - 127		9/20/2023	16:55
2-Fluorobiphenyl	36.8	10 - 107		9/20/2023	16:55
2-Fluorophenol	34.6	10.6 - 109		9/20/2023	16:55
Nitrobenzene-d5	58.7	41 - 106		9/20/2023	16:55
Phenol-d5	24.5	10 - 109		9/20/2023	16:55
Terphenyl-d14	85.8	49.6 - 120		9/20/2023	16:55

Method Reference(s): EPA 8270D

EPA 3510C

 Preparation Date:
 9/20/2023

 Data File:
 B66926.D

 QC Batch ID:
 QC2309020ABNW

QC Number: Blk 1

QC Report for Laboratory Control Sample

Client: Inventum Engineering, P.C.

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Groundwater

Matrix:

Semi-Volatile Organics (Acid/Base Neutrals)

	Spike	Spike	LCS	LCS %	% Rec	LCS	Date
Analyte	Added	Units	Result	Recovery	Limits	Outliers	Analyzed
1 2 4-Trichlorohenzene	50 O	119 /I.	31 9	63.8	166 - 116		9/21/2023
1,4-Dichlorobenzene	50.0	ug/L	29.8	59.5	10 - 107		9/21/2023
2,3,4,6-Tetrachlorophenol	75.0	ug/L	63.0	84.0	44.4 - 130		9/21/2023
2,4,6-Trichlorophenol	75.0	ug/L	64.8	86.3	49.3 - 129		9/21/2023
2,4-Dichlorophenol	75.0	ug/L	61.7	82.3	57.3 - 116		9/21/2023
2,4-Dimethylphenol	75.0	ug/L	59.6	79.4	42.4 - 123		9/21/2023
2,4-Dinitrophenol	75.0	ug/L	60.3	80.4	14.4 - 130		9/21/2023
2,4-Dinitrotoluene	50.0	ug/L	40.9	81.7	50.8 - 124		9/21/2023
2-Chlorophenol	75.0	ug/L	56.9	75.8	48.8 - 110		9/21/2023
2-Nitrophenol	75.0	ug/L	62.8	83.7	54.2 - 117		9/21/2023
4,6-Dinitro-2-methylphenol	75.0	ug/L	68.3	91.0	16.7 - 137		9/21/2023
4-Chloro-3-methylphenol	75.0	ug/L	61.7	82.3	59.1 - 117		9/21/2023
4-Nitrophenol	75.0	ug/L	26.8	35.8	10 - 124		9/21/2023
Acenaphthene	50.0	ug/L	38.8	77.6	43.3 - 115		9/21/2023
N-Nitroso-di-n-propylamine	50.0	ug/L	38.2	76.5	46.1 - 118		9/21/2023
	75.0	ug/L		97.0	36.1 - 158		9/21/2023
This money is most of a multiment of amount and about a solution in its antisety. The Obein of O.	included in the	antimate Tha C		المراجعة الم	atoda manaida additional amaila information including	motion in dividi	

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

QC Report for Laboratory Control Sample

Client: Inventum Engineering, P.C.

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Matrix: Groundwater

Semi-Volatile Organics (Acid/Base Neutrals)	/Base Neutrals)	Spike	Spike	TCS	LCS %	% Rec	LCS	Date
Analyte		Added	Units	Result	Recovery	Limits	Outliers	Analyzed
Phenol		75.0	ug/L	25.1	33.5	10 - 116		9/21/2023
Pyrene		50.0	ug/L	41.9	83.9	55.4 - 122		9/21/2023
Method Reference(s):	EPA 8270D							
Preparation Date:	9/20/2023							
Data File:	B66976.D							
QC Number:	LCS 1							
QC Batch ID:	QC2309020ABNW							

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Monday, September 25, 2023

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Matrix: Solid

Volatile Organics

<2.00 <2.00 <2.00	ug/Kg ug/Kg		9/21/2023	13:39
<2.00			9/21/2023	13:39
	ug/Kg			
<2.00	· ·		9/21/2023	13:39
	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
<5.00	ug/Kg		9/21/2023	13:39
<5.00	ug/Kg		9/21/2023	13:39
<10.0	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
<10.0	ug/Kg		9/21/2023	13:39
<10.0	ug/Kg		9/21/2023	13:39
<5.00	ug/Kg		9/21/2023	13:39
< 5.00	ug/Kg		9/21/2023	13:39
<10.0	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
< 5.00	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
< 5.00	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
<2.00	ug/Kg		9/21/2023	13:39
	<2.00 <2.00 <5.00 <5.00 <10.0 <2.00 <2.00 <2.00 <2.00 <2.00 <10.0 <10.0 <5.00 <10.0 <5.00 <10.0 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <5.00 <10.0 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00	<2.00	<pre><2.00</pre>	<2.00

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Matrix: Solid

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
Chloroethane	<2.00	ug/Kg		9/21/2023	13:39
Chloroform	<2.00	ug/Kg		9/21/2023	13:39
Chloromethane	<2.00	ug/Kg		9/21/2023	13:39
cis-1,2-Dichloroethene	<2.00	ug/Kg		9/21/2023	13:39
cis-1,3-Dichloropropene	<2.00	ug/Kg		9/21/2023	13:39
Cyclohexane	<10.0	ug/Kg		9/21/2023	13:39
Dibromochloromethane	<2.00	ug/Kg		9/21/2023	13:39
Dichlorodifluoromethane	<2.00	ug/Kg		9/21/2023	13:39
Ethylbenzene	<2.00	ug/Kg		9/21/2023	13:39
Freon 113	<2.00	ug/Kg		9/21/2023	13:39
Isopropylbenzene	<2.00	ug/Kg		9/21/2023	13:39
m,p-Xylene	<2.00	ug/Kg		9/21/2023	13:39
Methyl acetate	<2.00	ug/Kg		9/21/2023	13:39
Methyl tert-butyl Ether	<2.00	ug/Kg		9/21/2023	13:39
Methylcyclohexane	<2.00	ug/Kg		9/21/2023	13:39
Methylene chloride	< 5.00	ug/Kg		9/21/2023	13:39
o-Xylene	<2.00	ug/Kg		9/21/2023	13:39
Styrene	<5.00	ug/Kg		9/21/2023	13:39
Tetrachloroethene	<2.00	ug/Kg		9/21/2023	13:39
Toluene	<2.00	ug/Kg		9/21/2023	13:39
trans-1,2-Dichloroethene	<2.00	ug/Kg		9/21/2023	13:39
trans-1,3-Dichloropropene	<2.00	ug/Kg		9/21/2023	13:39
Trichloroethene	<2.00	ug/Kg		9/21/2023	13:39
Trichlorofluoromethane	<2.00	ug/Kg		9/21/2023	13:39
Vinyl chloride	<2.00	ug/Kg		9/21/2023	13:39

Inventum Engineering, P.C. Client:

Breeze Water Testing Project Reference:

Lab Project ID: 234271 **Matrix:** Solid

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	lyzed
1,2-Dichloroethane-d4	106	72.3 - 128		9/21/2023	13:39
4-Bromofluorobenzene	95.8	70 - 123		9/21/2023	13:39
Pentafluorobenzene	98.2	80.7 - 124		9/21/2023	13:39
Toluene-D8	110	82.1 - 121		9/21/2023	13:39

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z19699.D QC Batch ID: voas230921 QC Number: Blk 1

Client: Inventum Engineering, P.C.

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Solid

Matrix:

Volatile Organics

	Spike	Spike	LCS	LCS %	% Rec	LCS	Date
Analyte	Added	Units	Result	Recovery	Limits	Outliers	Analyzed
1.1.1-Trichloroethane	20.0	ug/Kg	20.0	99.9	69.1 - 120		9/21/2023
1,1,2,2-Tetrachloroethane	20.0	ug/Kg	19.7	98.7	21 - 179		9/21/2023
1,1,2-Trichloroethane	20.0	ug/Kg	20.5	102	64.1 - 126		9/21/2023
1,1-Dichloroethane	20.0	ug/Kg	19.9	99.5	75.4 - 113		9/21/2023
1,1-Dichloroethene	20.0	ug/Kg	19.2	95.8	71.2 - 116		9/21/2023
1,2-Dichlorobenzene	20.0	ug/Kg	18.8	94.1	76.4 - 116		9/21/2023
1,2-Dichloroethane	20.0	ug/Kg	20.4	102	69.4 - 121		9/21/2023
1,2-Dichloropropane	20.0	ug/Kg	19.9	99.5	74.7 - 115		9/21/2023
1,3-Dichlorobenzene	20.0	ug/Kg	18.6	93.1	77.3 - 114		9/21/2023
1,4-Dichlorobenzene	20.0	ug/Kg	18.3	91.6	77.5 - 112		9/21/2023
Benzene	20.0	ug/Kg	20.4	102	78.4 - 116		9/21/2023
Bromodichloromethane	20.0	ug/Kg	20.1	101	71.2 - 117		9/21/2023
Bromoform	20.0	ug/Kg	19.0	95.0	63.5 - 121		9/21/2023
Bromomethane	20.0	ug/Kg	21.1	106	61.6 - 128		9/21/2023
Carbon Tetrachloride	20.0	ug/Kg	19.6	98.2	67.2 - 121		9/21/2023
obenzene	20.0	ug/Kg	19.3		81.1 - 119		9/21/2023
				- 1 11	11		

Client: Inventum Engineering, P.C.

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Solid

Matrix:

Volatile Organics

	Spike	Spike	LCS	LCS %	% Rec	LCS	Date
Analyte	Added	Units	Result	Recovery	Limits	Outliers	Analyzed
Chloroethane	20.0	па/Ка	18.8 8	93.9	70.2 - 123		9/21/2023
Chloroform	20.0	ug/Kg	18.9	94.5	76.5 - 113		9/21/2023
Chloromethane	20.0	ug/Kg	15.4	77.1	53.8 - 125		9/21/2023
cis-1,3-Dichloropropene	20.0	ug/Kg	20.5	103	69.7 - 115		9/21/2023
Dibromochloromethane	20.0	ug/Kg	20.4	102	61.4 - 125		9/21/2023
Ethylbenzene	20.0	ug/Kg	19.1	95.3	75.5 - 117		9/21/2023
Methylene chloride	20.0	ug/Kg	22.4	112	65.8 - 125		9/21/2023
Tetrachloroethene	20.0	ug/Kg	18.7	93.7	61.1 - 125		9/21/2023
Toluene	20.0	ug/Kg	20.3	102	77.1 - 116		9/21/2023
trans-1,2-Dichloroethene	20.0	ug/Kg	19.5	97.6	75.4 - 116		9/21/2023
trans-1,3-Dichloropropene	20.0	ug/Kg	20.7	104	65.9 - 116		9/21/2023
Trichloroethene	20.0	ug/Kg	20.9	104	75.8 - 120		9/21/2023
Trichlorofluoromethane	20.0	ug/Kg	19.7	98.5	69 - 123		9/21/2023
Vinyl chloride	20.0	ug/Kg	19.1	95.4	64 - 127		9/21/2023

Client: Inventum Engineering, P.C.

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Solid

Matrix:

Volatile Organics

Analyte Added Spike Spike Units Result **LCS** Recovery LCS % Limits % Rec **Outliers** LCS **Analyzed** Date

Method Reference(s): EPA 8260C

EPA 5035A - L **Data File:** z19698.D **QC Number:** LCS 1

QC Batch ID:

voas230921

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Report Prepared Monday, September 25, 2023

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Matrix: Groundwater

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane	<2.00	ug/L		9/20/2023	13:17
1,1,2,2-Tetrachloroethane	<2.00	ug/L		9/20/2023	13:17
1,1,2-Trichloroethane	<2.00	ug/L		9/20/2023	13:17
1,1-Dichloroethane	<2.00	ug/L		9/20/2023	13:17
1,1-Dichloroethene	<2.00	ug/L		9/20/2023	13:17
1,2,3-Trichlorobenzene	<5.00	ug/L		9/20/2023	13:17
1,2,4-Trichlorobenzene	<5.00	ug/L		9/20/2023	13:17
1,2-Dibromo-3-Chloropropane	<10.0	ug/L		9/20/2023	13:17
1,2-Dibromoethane	<2.00	ug/L		9/20/2023	13:17
1,2-Dichlorobenzene	<2.00	ug/L		9/20/2023	13:17
1,2-Dichloroethane	<2.00	ug/L		9/20/2023	13:17
1,2-Dichloropropane	<2.00	ug/L		9/20/2023	13:17
1,3-Dichlorobenzene	<2.00	ug/L		9/20/2023	13:17
1,4-Dichlorobenzene	<2.00	ug/L		9/20/2023	13:17
1,4-Dioxane	<10.0	ug/L		9/20/2023	13:17
2-Butanone	<10.0	ug/L		9/20/2023	13:17
2-Hexanone	<5.00	ug/L		9/20/2023	13:17
4-Methyl-2-pentanone	<5.00	ug/L		9/20/2023	13:17
Acetone	<10.0	ug/L		9/20/2023	13:17
Benzene	<1.00	ug/L		9/20/2023	13:17
Bromochloromethane	<5.00	ug/L		9/20/2023	13:17
Bromodichloromethane	<2.00	ug/L		9/20/2023	13:17
Bromoform	<5.00	ug/L		9/20/2023	13:17
Bromomethane	<2.00	ug/L		9/20/2023	13:17
Carbon disulfide	<2.00	ug/L		9/20/2023	13:17
Carbon Tetrachloride	<2.00	ug/L		9/20/2023	13:17
Chlorobenzene	<2.00	ug/L		9/20/2023	13:17

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Matrix: Groundwater

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
Chloroethane	<2.00	ug/L		9/20/2023	13:17
Chloroform	<2.00	ug/L		9/20/2023	13:17
Chloromethane	<2.00	ug/L		9/20/2023	13:17
cis-1,2-Dichloroethene	<2.00	ug/L		9/20/2023	13:17
cis-1,3-Dichloropropene	<2.00	ug/L		9/20/2023	13:17
Cyclohexane	<10.0	ug/L		9/20/2023	13:17
Dibromochloromethane	<2.00	ug/L		9/20/2023	13:17
Dichlorodifluoromethane	<2.00	ug/L		9/20/2023	13:17
Ethylbenzene	<2.00	ug/L		9/20/2023	13:17
Freon 113	<2.00	ug/L		9/20/2023	13:17
Isopropylbenzene	<2.00	ug/L		9/20/2023	13:17
m,p-Xylene	<2.00	ug/L		9/20/2023	13:17
Methyl acetate	<2.00	ug/L		9/20/2023	13:17
Methyl tert-butyl Ether	<2.00	ug/L		9/20/2023	13:17
Methylcyclohexane	<2.00	ug/L		9/20/2023	13:17
Methylene chloride	< 5.00	ug/L		9/20/2023	13:17
o-Xylene	<2.00	ug/L		9/20/2023	13:17
Styrene	< 5.00	ug/L		9/20/2023	13:17
Tetrachloroethene	<2.00	ug/L		9/20/2023	13:17
Toluene	<2.00	ug/L		9/20/2023	13:17
trans-1,2-Dichloroethene	<2.00	ug/L		9/20/2023	13:17
trans-1,3-Dichloropropene	<2.00	ug/L		9/20/2023	13:17
Trichloroethene	<2.00	ug/L		9/20/2023	13:17
Trichlorofluoromethane	<2.00	ug/L		9/20/2023	13:17
Vinyl chloride	<2.00	ug/L		9/20/2023	13:17

Client: <u>Inventum Engineering, P.C.</u>

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Matrix: Groundwater

Volatile Organics

Analyte		Result	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed
Surrogate		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4		113	79.7 - 118		9/20/2023	13:17
4-Bromofluorobenzene		98.0	80.1 - 112		9/20/2023	13:17
Pentafluorobenzene		94.4	88 - 115		9/20/2023	13:17
Toluene-D8		109	88.2 - 113		9/20/2023	13:17
Method Reference(s):	EPA 8260C					

EPA 5030C

Data File:z19662.DQC Batch ID:voaw230920QC Number:Blk 1

Client: Inventum Engineering, P.C.

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Groundwater

Matrix:

Volatile Organics

	Spike	Spike	LCS	LCS %	% Rec	LCS	Date
Analyte	Added	Units	Result	Recovery	Limits	Outliers	Analyzed
1,1,1-Trichloroethane	20.0	ug/L	19.3	96.3	72.2 - 115		9/20/2023
1,1,2,2-Tetrachloroethane	20.0	ug/L	19.0	95.0	79.1 - 121		9/20/2023
1,1,2-Trichloroethane	20.0	ug/L	20.2	101	80.9 - 111		9/20/2023
1,1-Dichloroethane	20.0	ug/L	18.9	94.4	74.9 - 111		9/20/2023
1,1-Dichloroethene	20.0	ug/L	18.4	91.8	70.1 - 114		9/20/2023
1,2-Dichlorobenzene	20.0	ug/L	18.4	92.2	83.9 - 108		9/20/2023
1,2-Dichloroethane	20.0	ug/L	19.8	99.0	76.2 - 113		9/20/2023
1,2-Dichloropropane	20.0	ug/L	19.3	96.3	82 - 107		9/20/2023
1,3-Dichlorobenzene	20.0	ug/L	18.2	91.2	84.7 - 106		9/20/2023
1,4-Dichlorobenzene	20.0	ug/L	17.8	89.2	84.8 - 105		9/20/2023
Benzene	20.0	ug/L	19.5	97.4	82.6 - 111		9/20/2023
Bromodichloromethane	20.0	ug/L	19.2	95.9	79.8 - 106		9/20/2023
Bromoform	20.0	ug/L	18.0	90.2	76.1 - 112		9/20/2023
Bromomethane	20.0	ug/L	20.2	101	64.7 - 125		9/20/2023
Carbon Tetrachloride	20.0	ug/L	18.7	93.5	69.7 - 115		9/20/2023
Chlorobenzene	20.0	ug/L	18.7		88.3 - 111		9/20/2023
					111		

Client: Inventum Engineering, P.C.

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Groundwater

Matrix:

Volatile Organics

	Spike	Spike	LCS	LCS %	% Rec	LCS	Date
Analyte	Added	Units	Result	Recovery	Limits	Outliers	Analyzed
Chloroethane	20.0	T/an	18.6	93.0	70.6 - 119		9/20/2023
Chloroform	20.0	ug/L	18.7	93.3	77.1 - 112		9/20/2023
Chloromethane	20.0	ug/L	15.2	76.2	57.6 - 111		9/20/2023
cis-1,3-Dichloropropene	20.0	ug/L	19.9	99.7	79.2 - 106		9/20/2023
Dibromochloromethane	20.0	ug/L	19.6	98.1	75.6 - 111		9/20/2023
Ethylbenzene	20.0	ug/L	18.9	94.5	82.7 - 108		9/20/2023
Methylene chloride	20.0	ug/L	19.4	96.9	64.4 - 128		9/20/2023
Tetrachloroethene	20.0	ug/L	18.4	92.2	74.7 - 113		9/20/2023
Toluene	20.0	ug/L	19.9	99.5	81.3 - 111		9/20/2023
trans-1,2-Dichloroethene	20.0	ug/L	18.9	94.7	75.9 - 112		9/20/2023
trans-1,3-Dichloropropene	20.0	ug/L	19.5	97.3	75.7 - 108		9/20/2023
Trichloroethene	20.0	ug/L	19.9	99.6	82.4 - 113		9/20/2023
Trichlorofluoromethane	20.0	ug/L	18.8	93.8	69.8 - 118		9/20/2023
Vinyl chloride	20.0	ug/L	17.8	89.0	63 - 120		9/20/2023

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Client: Inventum Engineering, P.C.

Project Reference: Breeze Water Testing

Lab Project ID: 234271

Groundwater

Matrix:

Volatile Organics

Analyte Added Spike Spike Units Result **LCS** Recovery LCS % Limits % Rec **Outliers** LCS **Analyzed** Date

Method Reference(s): EPA 8260C

Data File: z19661.D CC Number: LCS 1

QC Batch ID:

voaw230920

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Report Prepared Monday, September 25, 2023

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

REPORT TO WANTE AND ME CONTROL SAME 23 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Turnaround Time Report Supplements Availability contingent upon lab approval; additional fees may apply. Standard 5 day Mone Required Mone Required 10 day Basic EDD Rush 3 day Category A Standard Mone Required Other Other Masse indicate package needed: Differ EDD Disase indicate date needed: Differ EDD Disase indicate EDD	DATE COLLECTED COLLECTED COLLECTED OF R R R R R R R R R R R R R R R R R R	S S S
OL-OII AR-AII PARADIGM LAB SAMPLE NUMBER NUMBER	Sampled By Received @ Lab By By signing this form, client agrees to Para	AG-Aqueous Liquid WG-Groundwater NG-Non-Aqueous Liquid NG-Non-Aqueous	REPORT TO: INVOICE TO: COMPANY: FANTUM FAVGINGER INVOICE TO: address: 44 0.48 U.S.L.E. D.P. ADDRESS: CITY: STATE: ZIP: PHONE: 585-734-8235 PHONE: FAX: Matrix Codes: INVOICE TO: COMPANY: SAME COMPANY: SAME ADDRESS: PHONE: 585-734-8235 PHONE: FAX:
203.8		PARADIGM LAB SAMPLE NUMBER NUMBER	on " a
Page 62 of 64			

See additional page for sample conditions.

2012

Chain of Custody Supplement

Client:	Inventum	Completed by:	2F
Lab Project ID:	234271	Date:	9/ 18 /23
	Per NELAC/ELAI	ition Requirements P 210/241/242/243/244	
Condition	NELAC compliance with the samp Yes	ole condition requirements upo No	on receipt N/A
Container Type			10/11
Comments			
Transferred to method- compliant container			-06
Headspace (<1 mL) Comments	pressure filtered all	Coul	
	acid washed glass	Ci Cu r	10 ugh a 0.7 um
Preservation	3,-04,-05 \ X -01 YOA NH3	VO.A Ammonia	SUDCA
Comments	transferred UDAs to	a preserved vi	al after Piltration
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
commence			
'emperature		\Rightarrow	
Comments	jū	PC	
ompliant Sample Quantity/T	уре		
Comments	/ \		

10 ∞ Sample Condition: Per NELAC/ELAP 210/241/242/243/244 PROJECT NAME/SITE NAME: Comments: Comments. **LAB USE ONLY BELOW THIS LINE** DATE PARADIGM 5 Receipt Parameter 88 Container Type: Holding Time: Preservation: Temperature TIME 5 2307 (So) (Chaine, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311 00 Z Z O C ATTN: COMMENTS: PHONE: COMPANY: ADDRESS: ឍ⊳៧០ 12000 120 - 06 - 06 1 × 300 × 3 REPRESION BISONS Bresidest-02-09152023 A. 2022/184-05-08 153018 Breeze 1 - 03 - 09 1 52023 Drestest -01-09132033 < NELAC Compliance Please email results to reporting@paradigmenv.com Reporting Paradigm Environmental SAMPLE LOCATION/FIELD ID REPORT TO: z z STATE: CHAIN OF CUSTODY Received @ Lab By Sampled By Received By Religiquished ZIP: Client ATTN: : SNOH CITY: ADDRESS: COMPANY: REQUESTED ANALYSIS Accounts Payable Same INVOICE TO: Date/Time Date/Time Daté/Time Date/Time STATE: ZIP: 200 Date Due: TURNAROUND TIME: (WORKING DAYS) LAB PROJECT #: REMARKS P.I.F. Š SE SE Total Cost ELAP ID: 1 CLIENT PROJEC PARADIGM LAB SAMPLE NUMBER