

DRAFT FINAL REPORT ADDITIONAL SITE INVESTIGATION

TONAWANDA COKE CORPORATION TONAWANDA, NEW YORK

> Prepared by: Conestoga-Rovers & Associates

651 Colby Drive Waterloo, Ontario Canada N2V 1C2

Office: (519) 884-0510 Fax: (519) 884-0525

web: <u>http://www.CRAworld.com</u>

NOVEMBER 1992 Ref. No. 2428 (5)

TABLE OF CONTENTS

1.0

	<u>Page</u>
INTRODUCTION	1

2.0	TEST	PIT INVESTIGATION	2
3.0	MON	ITORING WELL INSTALLATIONS	4
4.0		JNDWATER SAMPLING	
	4.1 4.2	ROUND 4 (JULY 1991) SAMPLING ROUND 5 (JULY 1992) SAMPLING	
5.0	SURF	ACE WATER/SEDIMENT SAMPLING	7
6.0	ANA	LYTICAL RESULTS	8
	6.1	SOIL SAMPLES	8
	6.2	GROUNDWATER SAMPLES	10
	6.2.1	Round 4 Sampling	11
	6.2.2	Round 5 Sampling	13
	6.3	SURFACE WATER SAMPLES	
	6.4	SEDIMENT SAMPLES	17
7.0	SURF	ACE WATER FLOW PATTERNS	19
8.0	MISC	ELLANEOUS TASKS	20
	8.1	WETLANDS DEFINITION	
	8.2	SSI PARAMETER SELECTION REVIEW	
	8.3	ANALYTICAL DATA QUALITY REVIEW	
	8.4	EVALUATION OF TENTATIVELY IDENTIFIED COMPOUNDS	
	8.5	SUBSURFACE UTILITIES	22
9.0	SITE	HYDROGEOLOGY	23
10.0	CON	CLUSIONS AND RECOMMENDATIONS	24

LIST OF TABLES

Following Report

- TABLE 2.1TEST PIT STRATIGRAPHIC SUMMARIES
- TABLE 2.2AIR MONITORING (HNu) SUMMARY
- TABLE 3.1MONITORING WELL COMPLETION DETAILS
- TABLE 4.1ROUND 4 WELL SAMPLING SUMMARY
- TABLE 4.2ROUND 5 WELL SAMPLING SUMMARY
- TABLE 5.1ROUND 3 SURFACE WATER SAMPLING
SUMMARY
- TABLE 5.2ROUND 2 SEDIMENT SAMPLING SUMMARY
- TABLE 6.1TEST PIT SOIL SAMPLEANALYTICAL RESULTS
- TABLE 6.2ROUND 4 GROUNDWATER ANALYTICAL
RESULTS SSIs
- TABLE 6.3ROUND 4 GROUNDWATER ANALYTICAL
RESULTS METALS
- TABLE 6.4ROUND 5 GROUNDWATER ANALYTICAL
RESULTS
- TABLE 6.5ROUND 3 SURFACE WATER ANALYTICAL
RESULTS
- TABLE 6.6ROUND 2 SEDIMENT ANALYTICAL RESULTS
- TABLE 9.1GROUNDWATER ELEVATIONS

LIST OF APPENDICES

- APPENDIX A STRATIGRAPHIC AND INSTRUMENTATION LOGS
- APPENDIX B WELL PURGING LOGS
- APPENDIX C SURFACE WATER AND SEDIMENT LOGS
- APPENDIX D ANALYTICAL DATA
- APPENDIX E QA/QC REPORTS

LIST OF PLANS

PLAN 1 ADDITIONAL WELLS/TEST PITS

LIST OF FIGURES

Following <u>Report</u>

FIGURE 9.1 OVERBURDEN GROUNDWATER CONTOURS

1.0 INTRODUCTION

An Additional Site Investigation of the Tonawanda Coke Corporation (TCC) facility located on River Road in Tonawanda, New York was recently completed by Conestoga-Rovers & Associates (CRA). This investigation was conducted in order to supplement existing information regarding the hydrogeological and geochemical characteristics of the Site and to confirm the conclusions of the report entitled "Final Report - Supplemental Site Investigation". With the exception of limited data which raise questions about surface water and sediment cyanide contamination in and near the southeast corner of the Site, data collected during this Additional Site Investigation further support the conclusion of the Supplemental Site Investigation Report that an RI/FS is unwarranted because the Site does not pose a significant threat to public health or the environment.

This report summarizes the additional field work conducted in June and July 1991 and July 1992, in accordance with the Additional Work Plan for Supplemental Site Investigation which was submitted to the New York State Department of Environmental Conservation (NYSDEC) in October 1990. The work included test pit excavations, monitoring well installations, soil and water sampling for chemical analysis and other miscellaneous tasks. The previously established protocols from the Supplemental Site Investigation were utilized for all the above work activities including equipment cleaning and health and safety.

2.0 <u>TEST PIT INVESTIGATION</u>

On July 13 and 14, 1991, nine test pits were excavated at the TCC facility using a backhoe. The purpose of these excavations was to refine the definition of physical and chemical conditions and chemistry at the TCC Site.

A summary of the materials encountered during the test pit excavations is presented in Table 2.1.

Three test pits (TP-AA, TP-BB and TP-CC) were excavated along the coal field boundary as shown on Plan 1. These test pits were excavated to determine the thickness of overburden above native clay in the area so that a monitoring well could be installed in the deepest fill area. This was done to refine the definition of hydrogeological conditions and chemistry in the fill in this area of the plant. However, it was discovered that the greatest thickness of fill at the three test pit locations was at TP-AA where 1.8 feet of fill was observed. Therefore, another well was not installed in this location as the existing well, MW16-89, was determined to be representative of typical conditions.

A second set of three test pits (TP-X, TP-Y and TP-Z) was installed in locations shown on Plan 1 to more comprehensively characterize the waste/fill in the area of Area 108. Test pits TP-X and TP-Y were installed to native clay. Test pit TP-Z was terminated at 12.5 ft. BGS when a black vegetative mud unit was encountered. A chemical sample of only the black mud from TP-Z as well as a composite sample of test pits TP-X, TP-Y and TP-Z were taken for chemical analysis prior to backfilling. The samples were submitted for analysis

of the full Target Compound List and Target Analyte List of parameters including cyanide.

As a result of the discovery of the black vegetative mud unit in test pit TP-Z, additional test pits and a borehole were installed to further define both the vertical and areal extent of the unit. Three test pits (TP-DD, TP-EE and TP-FF) were excavated in locations shown on Plan 1. During the excavation of test pit TP-EE, a similar black mud unit was encountered and therefore, the third test pit (TP-FF) was excavated further west. Also, a borehole (BHZ-91) was drilled adjacent to test pit TP-Z in order to determine the depth of the black mud unit and the depth to the top of the native clay surface. Appendix A contains the stratigraphic log for this borehole.

During excavation of the test pits, background readings and air readings over the open hole were taken with an HNu Photoionization Detector. The readings observed are presented in Table 2.2.

3.0 MONITORING WELL INSTALLATIONS

Three monitoring wells were installed at or directly adjacent to the Site. One monitoring well (MW18-91) was installed on June 19, 1991 along the western boundary of the Site, north of MW-7, to assess the depth of alluvial materials or fill overlying the native clay at Area 108 and to monitor the groundwater leaving the Site via those materials. This well was installed to the native clay and screened in the alluvium. As recommended in the Supplemental Site Investigation Final Report, two other monitoring wells (MW19-91 and MW20-91) were installed on June 18, 1991 off Site to the northeast to determine the extent of the cyanide presence in the groundwater in that area. The monitoring well completion details are summarized on Table 3.1.

A fourth monitoring well was proposed for installation to replace MW16-89 in order to refine the definition of hydrogeological and chemical conditions at the southern edge of the coal field. However, since the test pits excavated in this area indicated a maximum fill depth of only 1.8 feet, MW16-89 was determined to be representative of the typical conditions in this area and another well was not installed.

The stratigraphic and instrumentation logs for the new well installations are found in Appendix A. Each of the monitoring wells was developed following drilling and installation.

4.0 <u>GROUNDWATER SAMPLING</u>

4.1 ROUND 4 (JULY 1991) SAMPLING

Following the installation and development of the new monitoring wells, the wells were purged and sampled for the Site Specific Indicator (SSI) parameters. This sampling event took place during the week of July 15, 1991, approximately one month following the well installations. In addition to the newly installed monitoring wells, MW8-89 and MW10-89 were included in this sampling event (denoted as Round 4) as a second set of analytical data had not previously been obtained for these wells.

Prior to purging and sampling, water level measurements were taken at all existing and newly installed monitoring wells. During purging activities, pH, conductivity and temperature readings were obtained and recorded. Purge logs for all wells included in the Round 4 sampling are presented in Appendix B.

Full sample sets were collected from wells MW18-91 and MW19-91. However, purging of MW20-91 indicated that there was insufficient sample volume available. A sufficient volume of water was also not available at wells MW8-89 and MW10-89. Although a new well was not installed adjacent to MW16-89, this well was revisited and a sample collected for analysis of TAL metals only. Due to laboratory error, two wells were revisited for replacement sample collection. MW16-89 was resampled for metals on July 19 and MW19-91 was resampled for PAHs on July 25. Table 4.1 summarizes the Round 4 groundwater sampling activities.

All collected groundwater samples were submitted to Advanced Environmental Services, Inc. (AES) for analysis of the Site-Specific Indicator (SSI) parameters, as determined during the previous Supplemental Site Investigation.

4.2 ROUND 5 (JULY 1992) SAMPLING

TCC also decided to conduct another sampling event to complete and update the existing data base. This sampling event took place during the week of July 6, 1992, approximately one year after the previous sampling event. In addition to resampling the most recent well installations, MW18-81 through MW20-91, seven other boundary wells were revisited to provide additional analytical data to confirm the absence of chemicals leaving the Site via the groundwater regime. Purge logs for all wells included during the Round 5 sampling are presented in Appendix B.

Full sample sets were collected from wells MW-7, MW11-89, MW14-89, MW16-89 and MW18-91 through MW20-91. A sufficient volume of water was not available at wells MW9-89, MW10-89 and MW15-89. Table 4.2 summarizes the Round 5 groundwater sampling activities.

5.0 SURFACE WATER/SEDIMENT SAMPLING

Due to concern expressed by the DEC over the correlation of CRA surface water and sediment sampling locations with previous DEC investigative sampling programs, TCC agreed to resample the surface water/sediment sampling locations in the southeast corner of the property. Although it was hoped that DEC personnel would verify the previous sampling locations, the DEC declined to send a representative during this additional surface water/sediment sampling event completed on July 8, 1992.

The surface water samples to be resampled were SW-11 through SW-15 along with sediment samples collected at SW-11 and SW-14, as shown on Plan 1. Although there was no surface water present at the SW-11 location sampled previously, a sediment sample was collected at this location and a surface water sample was collected 25 feet to the north and 25 feet to the west of the original location.

The collected samples were submitted for analysis of the SSI parameter list. Appendix C contains the surface water and sediment sampling logs. Table 5.1 summarizes the Round 3 surface water sampling activities while Table 5.2 summarizes the Round 2 sediment sampling activities.

6.0 ANALYTICAL RESULTS

Analysis of the samples collected during the Additional Site Investigation activities was performed by Advanced Environmental Services and reported to CRA following each sampling event. Appendix D presents the analytical data for the test pit soil, groundwater, surface water and sediment samples. Samples were submitted to the laboratory using a blind identification numbering system as identified on the previous sampling summary tables.

Upon receipt of each analytical data report, CRA performed a Quality Assurance/Quality Control (QA/QC) assessment of the data and the laboratory procedures. Although various qualifiers were required for some of the sample data, most of the sample data and associated QA/QC data was considered acceptable. A detailed discussion of the QA/QC data review and the QA/QC data for each sampling event is presented in Appendix E.

6.1 <u>SOIL SAMPLES</u>

One composite test pit soil sample from TP-X, TP-Y and TP-Z was submitted for analysis while an additional sample of only the black mud found at TP-Z was also submitted for analysis. These samples were both analyzed for the full Target Compound List (TCL)/Target Analyte List (TAL) parameters to more comprehensively characterize the alluvium/fill in the area of Area 108. A summary of the analytical results for the two soil samples is presented in Table 6.1 indicating only the detected compounds for each parameter group.

Table 6.1 shows that five detected VOCs were detected in the sample taken from the black mud in TP-Z. These same five detected VOCs were present in the composite sample, however, the concentrations in the composite sample were lower. Therefore, it appears that the VOC contamination noted in the composite sample was contributed solely by the black mud found in TP-Z.

Table 6.1 shows that there is a number of PAH compounds present in both the composite and black mud samples. Each of the PAH compounds identified in the recently collected samples were also identified in the test pit soil samples collected in the Area 108 area during the previous Supplemental Site Investigation. (It should be noted that the higher detection limits reported for the analytical data in Appendix A are due to the dilution of the sample matrix in order to quantify the presence of PAH compounds present.) Although some other PAH compounds were detected during the previous Supplemental Site Investigation, those compounds were not found in the samples from this investigation because all of the previously reported concentrations were below the detection levels achievable for this investigation.

Upon examination of the PAH concentrations present in the two discrete samples, it appears that the chemistry present was from the black mud found in TP-Z. For the parameters found in both the black mud and composite samples, the concentrations reported for the composite sample are approximately one-third or less of those reported for the black mud sample. As the composite sample contained approximately equal portions of the three test pit soils, the chemicals present can be accounted for solely on the basis of the soils collected from TP-Z. The concentrations of PAH compounds detected in the

black mud sample but not in the composite were never greater than three times the detection limit. Therefore, these chemicals can also be assumed to result solely from TP-Z soils, despite the higher detection limits used.

Table 6.1 also lists the detected inorganic analytes, specifically the heavy metals. Cyanide was not detected in either sample above the detection level of 0.1 mg/kg.

6.2 <u>GROUNDWATER SAMPLES</u>

During the Supplemental Site Investigation, analysis of the initial round of groundwater samples collected was performed for the full TCL/TAL parameters. Following review of this data, a set of Site-Specific Indicator (SSI) parameters was developed. The following list of SSI parameters was used for groundwater analyses during this Additional Site Investigation:

- VOCs 1,2-Dichloroethene (total)
 - 1,1,1-Trichloroethane
 - Benzene
 - Toluene
 - Ethylbenzene
 - Total Xylenes

PAHs

Cyanide

Hexavalent Chromium

Oil and Grease

6.2.1 Round 4 Sampling

Table 6.2 presents a summary of the detected SSI compounds for the two groundwater samples collected.

MW18-91 was installed in the northwest corner of Area 108, adjacent to the Niagara River. Analysis of the sample from this well indicated the presence of one VOC parameter (cis-1,2-dichloroethene) as well as cyanide and oil and grease. In comparison with the closest wells, MW-7 to the south along the River and MW8-89 to the southwest within Area 108, the chemistry found in the groundwater at MW18-91 is generally lower in concentration than that detected in those other two wells during previous sampling events. The cyanide, oil and grease and dichloroethene concentrations are all similar or lower than those found previously in the neighboring wells, while none of the other previously identified VOCs were detected in the MW18-91 sample. Moreover, all of the substances detected in MW18-91 were present at concentrations below the most stringent maximum contaminant level (MCL). Finally, the absence of any PAH compounds at MW18-91 is similar to the previous results documented for MW7 and MW8-89.

MW19-91 was installed off-Site within the ConRail track area, northeast of the TCC facility. This well was installed to investigate the possibility of cyanide migration across the Site boundary in this area. A second well, MW20-91, did not have sufficient groundwater recharge to produce the necessary sample volume for complete analysis. The cyanide concentration reported for MW19-91 (4 μ g/L) is up to two orders of magnitude lower than that previously found at the adjacent on-Site wells, MW-2 and MW13-89, and well

below the most stringent MCL (100 μ g/L). The absence of any VOC parameters is also similar to that previously reported at these neighboring boundary wells.

In the MW19-91 sample, PAH compounds were present at concentrations equivalent to or below the most stringent MCL; oil and grease was also found. The previous Supplemental Site Investigation sampling results showed that no PAH compounds were even detected at the boundary wells, MW-2 and MW13-89, while many of the PAH compounds found at MW-3 and MW3R-89, further to the south, were below the drinking water standards. MW-3 and MW3R-89 are located in the center of the groundwater mound and are adjacent to the coal piles in Area 110. But the total PAH concentration found off-Site at MW19-91 exceeds those found on Site at MW-3 and MW3R-89 by more than an order of magnitude and no PAH presence was detected at the boundary wells MW-2 and MW13-89, which are between MW19-91 and MW-3/MW3R-89. The presence of oil and grease at these wells is similar to the PAH presence, further indicating that the chemicals found off-Site are not related to the TCC Site conditions.

Table 6.3 presents the detected TAL metal compounds found at well MW16-89. This well was not sampled in the first round of groundwater sampling because the well was dry. Subsequent sampling at MW16-89 was solely for analysis of SSI parameters. Therefore no indication of metals presence was available for this boundary well. Several metals compounds were detected above the most stringent MCLs, including iron, manganese and sodium. Both iron and manganese are prevalent metal compounds which were also observed above MCLs at the other six wells sampled for TAL metals. The sodium concentration found at MW16-89 is similar to that found previously at MW14-89

and MW17-89 and although the levels are above the most stringent MCL for people on severely restricted sodium diets, they do not exceed the 270,000 µg/L level specified for consumption by people on moderately restricted sodium diets. The concentration of cadmium only slightly exceeds the most stringent MCL. However, the difference is less than an order of magnitude and within the range of potential analytical error.

6.2.2 <u>Round 5 Sampling</u>

Table 6.4 presents a summary of the detected SSI compounds for the eight Round 5 groundwater samples collected.

Only one VOC parameter, acetone, was detected and then only in two of the eight samples. In both instances, the presence of acetone had not been detected previously during the two 1989 sampling events at MW11-89 and the one 1991 sampling event at MW19-91. Although the quality control validation did not indicate any specific sample contamination problems, acetone results from the Supplemental Site Investigation have previously been qualified as likely due to lab contamination. No other VOC parameters were detected in any of the eight samples.

Only one sample revealed any PAH compounds to be present. At MW19-91, 12 PAHs were present in concentrations ranging from 11 to 57 μ g/L. These concentrations are more than an order of magnitude lower than the previous 1991 results and, as discussed in the previous subsection, this PAH presence is not related to TCC Site conditions, as the boundary wells MW-2

and MW13-89 do not contain PAHs. Also, the other off-Site well, MW20-91, does not contain any PAH compounds above the detection limits.

Cyanide was detected in seven of the eight groundwater samples. However, the concentrations were equal or less than those previously reported and all were well below the most stringent MCL. The cyanide concentrations in the two new off-Site wells, MW19-91 and MW20-91, were $4 \mu g/L$ and ND, respectively. This confirms the previous conclusion that the cyanide found on Site has not migrated off Site via the groundwater regime in any significant manner.

Oil and grease was detected above 1,000 µg/L at four well locations; MW11-89, MW16-89, MW19-91 and MW20-91. Oil and grease had previously been observed at MW16-89 and MW19-91 at similar or higher concentrations. While no previous data are available for MW20-91, this well is adjacent to MW19-91 and the concentrations reported are similar. Only at MW11-89 is the newly acquired data significantly different from previous data in that oil and grease was previously non-detect. However, the concentration of this compound detected at MW11-89 is similar to that found at MW16-89.

In summary, the groundwater analytical results from the additional investigation activities indicated no significant off-Site contamination of groundwater due to TCC Site conditions. These recent results further support the conclusions made in the Supplemental Site Investigation Report.

6.3 <u>SURFACE WATER SAMPLES</u>

Table 6.5 presents a summary of the detected compounds for the six surface water samples collected.

Only one VOC parameter, acetone, was detected and only in one of the six samples. Acetone was also detected previously at SW-14 during the sampling on October 19, 1989, but the concentration was noted to be estimated due to potential field contamination. Despite this possible acetone presence at SW-14, acetone was not detected downstream at SW-13 and SW-11. All other VOC compounds were not detected in any of the six samples. These results are similar to those of the previous Supplemental Site Investigation.

No BNA compounds, including PAHs, were detected in any of the six surface water samples collected. The previous Supplemental Site Investigation results indicated low-level pyrene concentrations at SW-12, SW-14 and SW-15, with no pyrene detected downstream at SW-11 and SW-13. The source of the previously detected pyrene was unknown, however, its presence was no longer detected during this recent sampling event.

Only two metals, iron and manganese, were detected above the most stringent MCL ($300 \mu g/L$ for each). Manganese concentrations above the MCL were reported for five of the six samples with the highest concentration ($3,910 \mu g/L$) being detected at SW-14. The concentrations reduce towards SW-11, further downstream, where the concentration is only 140 $\mu g/L$, less than the most stringent MCL.

Iron concentrations exceeding the most stringent groundwater MCL were reported in all six surface samples with the highest concentration also occurring at SW-14 (161,000 μ g/L). As with manganese, the iron concentrations reduce towards SW-11 (1,370 μ g/L) and, although this concentration is still above the most stringent MCL, the difference is less than an order of magnitude and within the range of potential analytical error.

Cyanide was only detected above the most stringent MCL (100 μ g/L) on one occasion. At SW-11, the cyanide concentration was reported to be 138 μ g/L which is only slightly above the MCL and within the range of potential analytical error. This presence is unexplained as all of the upstream locations had cyanide concentrations below the MCL, with the immediate upstream sampling location, SW-13, reporting non-detect. It should be noted that the 100 μ g/L level is derived from a water supply sources regulation (10 NYCRR Part 170) while the Class GA groundwater standard (6 NYCRR Part 703.5) is 200 μ g/L. The surface water in the wetlands to the southeast of the TCC plant is not used as a source of water supply.

Hexavalent chromium was only detected in one sample, SW-14, and this was below the most stringent groundwater MCL. Oil and grease was detected at low levels at only two locations, SW-11 and SW-12.

In summary, the detected concentrations in the surface waters to the southeast of the TCC plant were similar or lower than those reported in the Supplemental Site Investigation. Some elevated metals presence appears to originate in the area of SW-14 and there is an elevated cyanide presence in the SW-11 sample.

6.4 <u>SEDIMENT SAMPLES</u>

Table 6.6 presents a summary of the detected SSI compounds for the three sediment samples (includes one duplicate) collected.

For the SSI VOCs, the sediment at SW-14 contained more methylene chloride during this sampling event as compared with the Supplemental Site Investigation, but the presence of benzene, toluene and xylenes was now non-detect. It should be noted that the methylene chloride detection is suspect as the round one field blank also contained this parameter. At SW-11 the concentrations of the chemicals present are much lower than previously reported and this location is downstream of SW-14.

For the PAHs, the sediment results from the most recent sampling event are slightly lower in concentration at both SW-11 and SW-14 from the conditions observed two to three years ago.

Both sample locations indicated the presence of cyanide in the sediment soils where none was present previously. This cyanide presence should be investigated by additional sediment and surface water samples. A specific proposal for additional sampling is being developed for submittal.

7.0 SURFACE WATER FLOW PATTERNS

During a recent precipitation event, observations of surface water movement were made by TCC personnel across the TCC Site to confirm the surface water flow patterns. Surface water within the building/plant area of the Site is collected by the below ground sewer system and directed to the sewer outfall west of the Site. The topography in the southeast corner of the Site suggests a general surface water flow direction towards the low marshy area with the collected water outletting to the west. At the south boundary of the Site, approximately 500 feet east of River Road, there are two large underground culverts which direct all the surface water, both from TCC to the east and surrounding areas to the south, towards the north and under the adjacent Allied property. The surface water outletting from these two culverts then joins other TCC surface water drainage pathways prior to crossing River Road and traveling through Area 108 to the Niagara River. Plan 1 illustrates the general surface water flow directions observed which are identical to those used in the assumptions for the Supplemental Site Investigation Report.

8.0 MISCELLANEOUS TASKS

8.1 WETLANDS DEFINITION

Before beginning field work, CRA obtained maps showing DEC designated State wetlands to ensure proper wetlands definition. The designated wetlands area, BW-6, southeast of the TCC Site has been added to the enclosed Plan 1.

8.2 SSI PARAMETER SELECTION REVIEW

The SSI parameter list has been reviewed to ensure that it includes any parameters which were detected in groundwater and soil samples collected during the Phase II Site Investigation and USGS Sampling Programs. The only detected compounds from these programs not included on the SSI parameter list are carbon disulfide and phenols. However, neither of these parameters were detected in groundwater samples collected during Round 1 of the Supplemental Site Investigation in which groundwater samples were analyzed for the full TCL/TAL parameters. As a result, the SSI parameter list is appropriate for all subsequent groundwater and soil analyses.

8.3 ANALYTICAL DATA QUALITY REVIEW

Prior to groundwater, surface water and sediment sampling, the analytical data quality objectives were reevaluated to ensure that future

analytical detection levels are below or equivalent to groundwater standards. The detection levels used for the Supplemental Site Investigation were compared with the most stringent Maximum Contaminant Level (MCL) of the following New York State Groundwater Standards:

40 CFR 141, Sanitary Code Part 5, 6 NYCRR Part 703.5, and 10 NYCRR Part 170.

The detection levels used were usually below or equivalent to the most stringent groundwater standards. Several instances of a higher detection level were reported for VOCs. However, subsequent analyses used lower detection levels and the parameters in question were still reported as ND.

The four regulatory documents listed above are all designed to suit different purposes. The first one is a federal regulation on primary drinking water standards. The second is a New York State Department of Health drinking water supply regulation. The third is a New York State Department of Environmental groundwater standards document. The fourth is a New York State regulation with regards to water supply sources.

8.4 EVALUATION OF TENTATIVELY IDENTIFIED COMPOUNDS

During the initial sampling events of the Supplemental Site Investigation, the analytical samples were analyzed for the complete set of TCL and TAL parameters except the pesticide fraction and the data were reported by Contract Laboratory Procedures (CLP). This reported data included a listing of any Tentatively Identified Compounds (TICs) detected in the analyzed samples. For the groundwater samples, only a few TICs were reported (3 VOCs and 15 BNAs) and the majority of the TICs reported for the BNAs were listed as unknown under the compound name. For the soil samples, only 5 VOC TICs were reported. In addition, 21 specific BNA TICs plus 51 unknown BNA TICs were reported for the soil samples. Most of the specific BNA TICs were PAH isomers and, as the corresponding soil sample results indicated elevated PAH concentrations, these other compounds were not necessary.

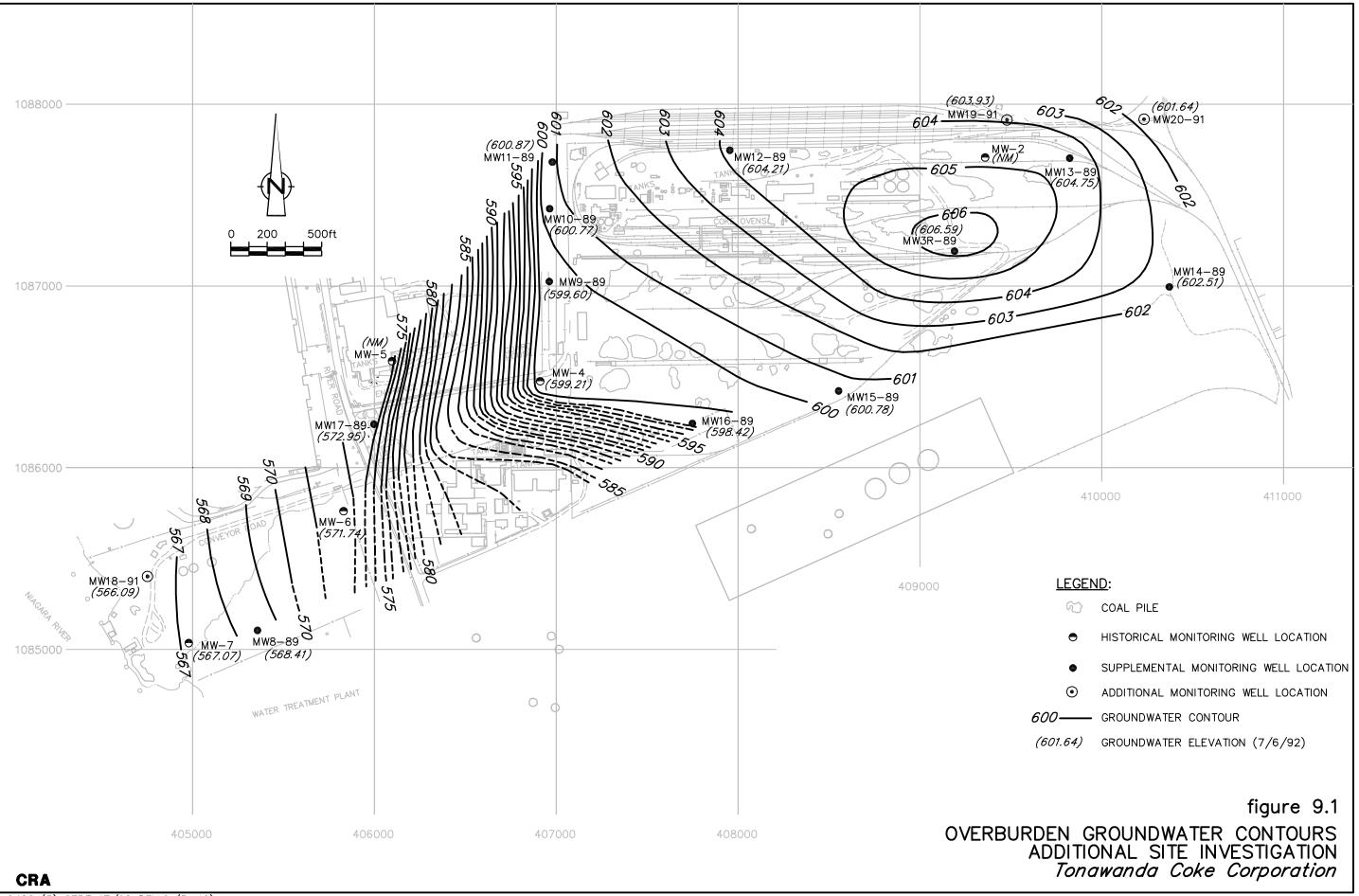
In summary, the evaluation of the TICs (mostly unknowns) indicated no additional parameters need to be added to the SSI parameter list.

8.5 <u>SUBSURFACE UTILITIES</u>

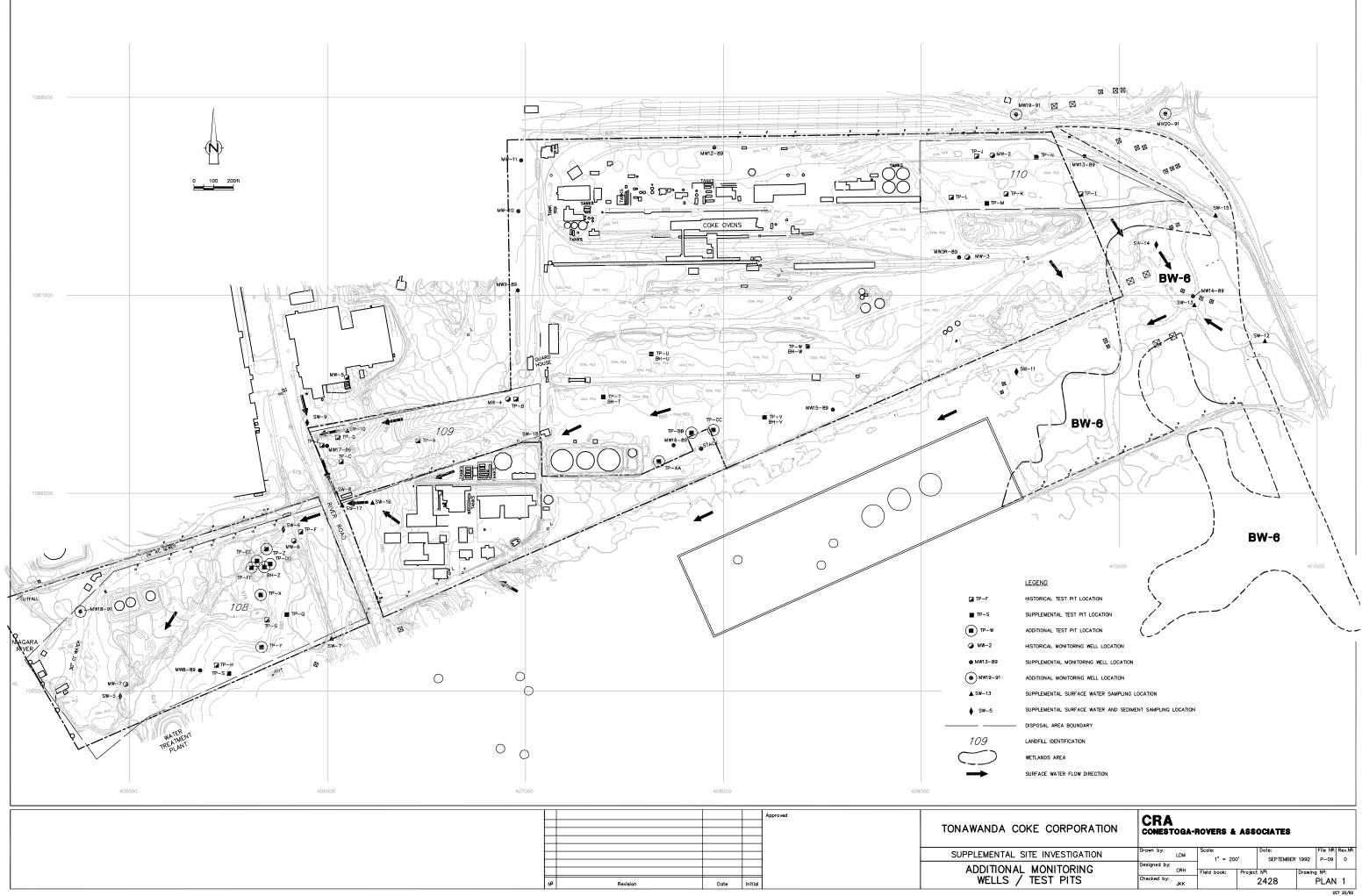
CRA has reviewed the TCC maps with regards to subsurface utilities beneath the Site. Besides the known sewers beneath the main plant facilities, the only identified utilities on the TCC Site are two lines along the north side of Area 108, west of River Road. These two lines, a 30-inch diameter cast iron watermain and a 36-inch diameter reinforced concrete sewer run east-west along the property line and do not traverse any of the known disposal areas of Area 108. The locations of these utilities are illustrated on the enclosed Plan 1.

9.0 SITE HYDROGEOLOGY

As part of the data collection activities of the Additional Site Investigation, groundwater level monitoring was performed on April 15, 1992 and July 6, 1992. These levels were obtained in order to confirm the groundwater flow pattern presented in the Supplemental Site Investigation Report. Table 9.1 presents these groundwater elevations.


From Table 9.1 it can be seen that the groundwater elevations obtained this year are very similar to those recorded in 1989, as reported in the Supplemental Site Investigation Report. Figure 9.1 illustrates the overburden groundwater contours at the Site, based on the most recent data available.

10.0 CONCLUSIONS AND RECOMMENDATIONS


Following completion of the Additional Site Investigation at the TCC Site, the following conclusions have been formulated:

- VOCs and PAHs detected in the soil sample from TP-Z and a composite sample from TP-X, TP-Y and TP-Z appear to be localized to a depressed area centered around the TP-Z area. The area was apparently historically a low swampy area which collected the drainage from both the TCC facility and the oil processing areas south of the TCC facility. The groundwater samples from wells MW-2 and MW18-91 along the Niagara River have not exhibited any VOC or PAH presence exceeding the most stringent MCL, indicating no significant migration of this localized chemical presence to the Niagara River.
- Cyanide was found off-Site at MW19-91 at a concentration significantly lower than those found on-Site and well below the most stringent MCL, indicating no significant migration of cyanide across the Site boundary in this area.
- PAH and oil and grease presence northeast of the Site is not directly related to TCC and most likely due to the presence of the railroad tracks in the area, as discussed in the Supplemental Site Investigation Report.
- Cyanide found in the surface water and sediment samples collected from the low marshy area southeast of the Site should be verified and investigated further by additional sampling.

- With the exception of limited data which raise questions about surface water and sediment cyanide contamination in and near the southeast corner of the Site, data collected during the activities of the Additional Site Investigation further support the conclusion of the Supplemental Site Investigation report that the TCC Site does not pose a significant risk to public health or the environment.

2428 (5) SEPT 17/92 REV.0 (P-10)

SITE INVESTIGATION	Drawn by:	LDM	Scale: 1" = 200	·	Date: SEPTEMBER		File №: P-09	Rev.№: 0
	Designed by:	CRH	Field book:	Project	Nº:	Drawing	Nº:	
' TEST PITS	Checked by:	ЈКК			2428		PLAN	1
							07	7 20 /02

TABLE 2.1

.

TEST PIT STRATIGRAPHIC SUMMARIES TONAWANDA COKE CORPORATION

<i>TP-X</i> 0 to 1.0 ft BGS 1.0 to 8.0 ft BGS 8.0 to 13.0 ft BGS 13.0 to 15.0 ft BGS 15.0 ft BGS	- - -	Brown, black and tan SILT, some fine to medium sand and cinders, FILL PLASTIC, BRICKS and WOOD, some black silt and tar paper, little glass, moist Black SILT with vegetation, NATIVE Black SILT and fine SAND, little clay, wet Bottom of test pit
<i>TP-Y</i> 0 to 3.5 ft BGS 3.5 to 7.0 ft BGS 7.0 to 9.0 ft BGS 9.0 ft BGS	- - -	Brown SILT and fine SAND, little roots and vegetation, FILL Black CINDERS, some brick, wood and plastic, trace foundry core Reddish brown CLAY, little silt, NATIVE Bottom of test pit
TP-Z 0 to 11.5 ft BGS 11.5 to 12.5 ft BGS 12.5 ft BGS	- -	Brown and black SILT, some fine sand,bricks and concrete, little medium and coarse sand, trace wood, plastic, wire, metal, roots and vegetation, dry to moist, FILL Black vegetative MUD, some vegetation, wet, NATIVE** Bottom of test pit
<i>TP-AA</i> 0 to 1.6 ft BGS 1.6 to 1.8 ft BGS 1.8 ft BGS	- -	COAL, grain size range from coarse sand to coarse gravel Reddish-Brown CLAY with trace silt, NATIVE Bottom of test pit
TP-BB 0 to 1.2 ft BGS 1.2 to 1.4 ft BGS 1.4 ft BGS	- -	COAL, grain size range from coarse sand to coarse gravel Reddish-brown CLAY with trace silt, NATIVE Bottom of test pit

TABLE 2.1

TEST PIT STRATIGRAPHIC SUMMARIES TONAWANDA COKE CORPORATION

TP-CC		
0 to 0.8 ft BGS	-	COAL, grain size range from coarse sand to coarse gravel
0.8 to 1.0 ft BGS	-	Reddish-brown CLAY with trace silt, NATIVE
1.0 ft BGS	-	Bottom of test pit
TP-DD		
0 to 13.0 ft BGS	-	Black SILT and fine SAND, some bricks and concrete, little wood and clay, trace roots and vegetation, moist, FILL
13.0 to 13.5 ft BGS	-	Black VEGETATION, wet, NATIVE
13.5 to 15.5 ft BGS	-	Dark brown SILT, little fine to medium sand, trace clay, moist
15.5 to 16.5 ft BGS		Gray fine SAND, some silt, little medium sand, moist
16.5 ft BGS	-	Bottom of test pit
TP-EE		
0 to 11.0 ft BGS	-	Black SILT with red and white bricks, little wood, clay and sand, trace plastic and metal, moist, FILL
11.0 to 12.5 ft BGS	-	Black VEGETATION, wet, NATIVE
12.5 ft BGS	-	Bottom of test pit
TP-FF		
0 to 14.5 ft BGS	-	Black SILT and fine to medium SAND, some bricks and wood, little plastic and paper, moist, FILL
14.5 to 15.0 ft BGS	-	Black VEGETATION, wet, NATIVE
15.0 to 15.5 ft BGS	-	Dark gray SILT, little clay, trace wood, moist
15.5 ft BGS	-	Bottom of test pit

Note:

** - HNU readings of 140 ppm above background, abandoned test pit and backfilled due to high readings

TABLE 2.2

AIR MONITORING (HNU) SUMMARY TONAWANDA COKE CORPORATION

Test Pit/Well		Background	Highest Reading
Location	Date	Reading	Over Open Hole
TP-X	6-14-91	0.9	*
TP-Y	6-14-91	1	3.5
TP-Z	6-14-91	1.2	140
TP-DD	6-14-91	*	4
TP-EE	6-14-91	*	25
BH-TP-Z	6-17-91	3	0.5
MW18-91	6-17-91	1.1	0
MW18-91	6-18-91	1.6	0
MW18-91	6-19-91	1.8	0
MW19-91	6-18-91	1.6	0.6
MW20-91	6-18-91	1.8	0.7

Notes:

* - HNu readings not recorded

No HNu readings were reported for TP-AA, TP-BB, TP-CC and TP-FF

TABLE 3.1

MONITORING WELL COMPLETION DETAILS TONAWANDA COKE CORPORATION

Well No.	Ground Elevation (ft. AMSL)	Top of Casing (ft. AMSL)	Depth of Hole (ft. BGS)	Screened Interval (ft. AMSL)	Sandpack Interval (ft. AMSL)	Bentonite Plug Interval (ft. AMSL)
MW18-91	570.2	572.20	22.0	562.2 - 552.2	566.7 - 548.2	569.2 - 566.7
MW19-91	505.4	607.17	4.0	603.6 - 601.6	603.9 - 601.4	604.9 - 603.9
MW20-91	603.5	605.33	4.0	602.0 - 600.0	602.0 - 599.5	603.0 - 602.0

Notes:

AMSL	Above mean sea level (based on NGVD 1929 datum).
BGS	Below ground surface.

TABLE 4.1

ROUND 4 WELL SAMPLING SUMMARY TONAWANDA COKE CORPORATION

Sample		Sample	Sample	Shipping	Chain-of-Custody	
Location	Sample Number	Date	Time	Date	Number	Comments
MW16-89	W-2428-BC-002	7-18-91	0900	7-18-91	012141	Sample for metals only.
	W-2428-JOS-002	7-19-91	0930	7-19-91	012142	Resample due to lab error.
MW18-91	W-2428-BC-001	7-16-91	1230	7-16-91	012140	
MW19-91	W-2428-BC-003	7-18-91	0930	7-18-91	012141	
	W-2428-BC-003R	7-25-91	1130	7-25-91	012143	Resample for PAHs due to lab error.

.

TABLE 4.2

ROUND 5 WELL SAMPLING SUMMARY TONAWANDA COKE CORPORATION

Sample Location	Sample Number	Sample Date	Sample Time	Shipping Date	Chain-of-Custody Number	Comments
MW-7	W-2428-792-04	7-7-92	1430	7-7-92	20787	
	W-2428-792-05	7-7-92	1630	7-7-92	20787	Blind Duplicate
MW11-89	W-2428-792-18	7-9-92	1100	7-9-92	20791	
MW14-89	W-2428-792-19	7-10-92	0900	7-10-92	20792	
MW16-89	W-2428-792-17	7-9-92	1000	7-9-92	20791	
MW18-91	W-2428-792-03	7-7-92	1500	7-7-92	20787	Plus MS/MSD
MW19-91	W-2428-792-02	7-6-02	1645	7-6-92	20786	
MW20-91	W-2428-792-01	7-6-92	1545	7-6-92	20786	
Rinse Blank	W-2428-792-06	7-7-92	1515	7-7-92	20788	

TABLE 5.1

ROUND 3 SURFACE WATER SAMPLING SUMMARY TONAWANDA COKE CORPORATION

Sample Location	Sample Number	Sample Date	Sample Time	Shipping Date	Chain-of-Custody Number	Comments
SW-11	SW-2428-792-16	7-9-92	0915	7-9-92	20791	
SW-12	SW-2428-792-12	7-8-92	1130	7-8-92	20790	Plus MS/MSD
SW-13	SW-2428-792-13	7-8-92	1200	7-8-92	20790	
SW-14	SW-2428-792-09	7-8-92	1030	7-8-92	20789	
SW-15	SW-2428-792-07 SW-2428-792-08	7-8-92 7-8-92	1000 1015	7-8-92 7-8-92	20789 20789	 Blind Duplicate

TABLE 5.2

ROUND 2 SURFACE WATER SAMPLING SUMMARY TONAWANDA COKE CORPORATION

Sample Location	Sample Number	Sample Date	Sample Time	Shipping Date	Chain-of-Custody Number	Comments
SW-11	SD-2428-792-15	7-8-92	1415	7-8-92	20790	
SW-14	SD-2428-792-10 SD-2428-792-11	7-8-92 7-8-92	1035 1040	7-8-92 7-8-92	20790 20790	 Blind Duplicate

.

•

.

.

.

TEST PIT SOIL SAMPLE ANALYTICAL RESULTS TONAWANDA COKE CORPORATION

Test Pit #	TP-X,Y,Z	TP-Z	Background
Sample Type	COMPOSITE	GRAB	Surface Soil
Date	6-14-91	6-14-91	Concentrations
TCL VOCs (mg/kg)			
Benzene	2.8	66	
Toluene	6.4	140	
Ethylbenzene	22	60	
m/p-Xylene	6.4	100	
o-Xylene	8	98	
TCL BNAs (mg/kg)			
Naphthalene	92	270	
Phenanthrene	62	180	
Anthracene	ND(33)	74	
Fluoranthene	67	150	,
Pyrene	44	99	
Benzo(a)Anthracene	ND(33)	57	
Chrysene	ND(33)	47	
Benzo(b)Fluoranthene	ND(33)	40	
Benzo(k)Fluoranthene	ND(33)	45	
Benzo(a)Pyrene	ND(33)	47	
2-Methylnaphthalene	ND(33)	86	
Dibenzofuran	ND(33)	69	
Fluorene	ND(33)	85	

TEST PIT SOIL SAMPLE ANALYTICAL RESULTS TONAWANDA COKE CORPORATION

Test Pit #	TP-X,Y,Z COMPOSITE	TP-Z GRAB	Background
Sample Type			Surface Soil
Date	6-14-91	6-14-91	Concentrations
TAL Metals (mg/kg)			
Aluminum	15,000	22,500	4,500-100,000
Arsenic	10.1	240	<1-9.3
Barium	16.2	46.7	10-3,000
Cadmium	1.05	ND(0.05)	`
Calcium	9,490	496	
Chromium	24.1	16.7	7-1,500
Copper	50.7	64	3-300
Iron	32,000	77,100	5,000-50,000
Lead	108	172	<10-70
Magnesium	4,250	3,480	
Manganese	245	190	20-3,000
Mercury	4	3.5	0.02-1.50
Nickel	362	83	<5-150
Potassium	875	1,590	
Selenium	1.43	ND(0.5)	
Silver	1.74	23.3	0.2-3.2
Sodium	365	488	
Vanadium	1.6	13.8	0.7-98
Zinc	145	204	<5-300

Note: ND(#) - Not detected above quantifiable limits stated in parentheses

ROUND 4 GROUNDWATER ANALYTICAL RESULTS - SSIs TONAWANDA COKE CORPORATION

Well # Date Units	MW18-91 7-16-91 μg/L	MW19-91 7-18-91 μg/L	Most Stringent MCL μg/L
SSI VOCs			
cis-1,2-Dichloroethene	7.68	ND(1)	5
SSI BNAs			
Acenaphthene	ND(5)	<80**D	50
Acenphthylene	ND(5)	<80**D	50
Anthracene	ND(5)	174D	50
Benzo(a)anthracene	ND(5)	493D	50
Benzo(a)pyrene	ND(5)	563D	ND
Benzo(b)&(k)fluoranthene	ND(5)	418D	50
Benmzo(g,h,i)perylene	ND(5)	714D	50
Chrysene	ND(5)	478D	50
Dibenzo(a,h)anthracene	ND(5)	405D	50
Fluoranthene	ND(5)	805D	50
Fluorene	ND(5)	11 7 D	50
Indeno(1,2,3-cd)pyrene	ND(5)	553D	50
Napthalene	ND(5)	<80**D	50
Phenanthrene	ND(5)	511D	50
Pyrene	ND(5)	685D	50
Other Compounds			
Cyanide	36	12	100
Oil and Grease	3,800	44,000	

Notes:

ND(#)	-	Not detected above quantifiable limits stated in parentheses.
**	-	High quantifiable limits due to the necessary dilution of the sample.
D	-	The associated value exceeded the NYSDOH Drinking Water Standards
		(Sanitary Code Part 5)

Well # Date Units	MW16-89 7-16-91 μg/L	Most Stringent MCL µg/L
TAL Metals		
Arsenic	10	25
Cadmium	19A	10
Calcium	361,000	
Chromium	25	50
Copper	157	200
Iron	160,000A	300
lead	6	25
Magnesium	183,000	
Manganese	11,200A	300
Mercury	0.7	2
Nickel	73	
Potassium	5,880	
Silver	16	50
Sodium	183,000B	20,000*
Vanadium	4	
Zinc	30	300

ROUND 4 GROUNDWATER ANALYTICAL RESULTS - METALS TONAWANDA COKE CORPORATION

Notes:

All other TAL metals were not detected.

- ND(#) Not detected above quantifiable limits stated in parentheses.
- A The associated value exceeded NYSDEC Class GA Groundwater Standards (6NYCRR Part 703.5).
- B The associated value exceeded NYSDOH Drinking Water Standards (Sanitary Code Part 5).
- Water containing more than 20,000 µg/L of sodium should not be used for drinking by people on severely restricted sodium diets (270,000 µg/L for moderately restricted sodium diets).

ROUND 5 GROUNDWATER ANALYTICAL RESULTS TONAWANDA COKE CORPORATION

Well # Date Units	MW-7 7-7-92 μg/L	MW-7 dup. 7-7-92 μg/L	MW11-89 7-9-92 μg/L	MW14-89 7-10-92 μg/L	MW16-89 7-9-92 μg/L	MW18-91 7-7-92 μg/L	MW19-91 7-6-92 μg/L	MW20-91 7-6-92 μg/L	Most Stringent MCL µg/L
SSI VOCs									
Acetone	ND(50)	ND(50)	685D	ND(50)	ND(50)	ND(50)	76D	ND(50)	50
SSI BNAs									
Acenaphthylene	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	16	ND(10)	50
Anthracene	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	17	ND(10)	50
Benzo(a)anthracene	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	31	ND(10)	50
Benzo(a)pyrene	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	29A	ND(10)	50
Benzo(b)&(k)fluoranthene	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	26	ND(10)	50
Chrysene	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	31	ND(10)	50
Dibenzofuran	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	11	ND(10)	50
Fluoranthene	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	57D	ND(10)	50
Fluorene	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	17	ND(10)	50
Phenanthrene	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	55D	ND(10)	50
Pyrene	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	57D	ND(10)	50
Other Compounds									
Cyanide	37	26	4	8	6	40	4	ND(1)	100
Oil and Grease	ND(1,000)	ND(1,000)	8,300	ND(1,000)	9,100	ND(1,000)	2,200	2,200	

..

Notes:

.

ND(#) - Not detected above quantifiable limits stated in parentheses.

- A The associated value exceeded NYSDEC Class GA Groundwater Standards (6NYCRR Part 703.5).
- D The associated value exceeded the NYSDOH Drinking Water Standards (Sanitary Code Part 5)

ROUND 3 SURFACE WATER ANALYTICAL RESULTS TONAWANDA COKE CORPORATION

Surface Water # Date Units	SW-11 7-9-92 μg/L	SW-12 7-8-92 μg/L	SW-13 7-8-92 μg/L	SW-14 7-8-92 μg/L	SW-15 7-8-92 μg/L	SW-15 dup. 7-8-92 μg/L	Most Stringent MCL μg/L
VOCs							
Acetone	ND(50)	ND(50)	ND(50)	364 D	ND(50)	ND(50)	50
BNAs							
All compounds	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	50
Metals							
Aluminum	330	10	ND(5)	8,100	540	400	
Arsenic	ND(2)	ND(2)	ND(2)	ND(2)	3	3	25
Barium	10	40	40	10	3	3	1,000
Calcium	113,000	101,000	105,000	489,000	106,000	106,000	
Chromium	ND(10)	ND(10)	ND(10)	10	ND(10)	ND(10)	50
Cobalt	ND(5)	ND(5)	ND(5)	30	ND(5)	5	
Copper	20	ND(10)	ND(10)	20	ND(10)	ND(10)	200
Iron	1,370 AD	3,360 AD	1,090 AD	161,000 AD	4,580 AD	4,330 AD	300
Lead	4	5	ND(2)	7	8	4	25
Magnesium	21,300	17,300	17,300	64,800	18,100	18,300	
Manganese	140	480 AD	470 AD	3,910 AD	600 AD	600 AD	300
Nickel	ND(20)	ND(20)	ND(20)	100	ND(20)	ND(20)	
Potassium	900	340	890	10,100	3,270	3,550	
Selenium	4	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	
Silver	ND(5)	ND(5)	ND(5)	ND(5)	10	9	
Sodium	7,870	8,630	7,940	11,600	12,200	12,300	20,000
Vanadium	10	10	10	80	20	20	
Zinc	40	20	10	450	ND(10)	ND(10)	300

ROUND 3 SURFACE WATER ANALYTICAL RESULTS TONAWANDA COKE CORPORATION

Surface Water #	SW-11	SW-12	SW-13	SW-14	SW-15	SW-15 dup.	Most
Date	7-9-92	7-8-92	7-8-92	7-8-92	7-8-92	7-8-92	Stringent MCL
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L
Other Compounds							
Cyanide	138	ND(4)	ND(4)	12	30	28	100
Oil and Grease	2,000	1,900	ND(1,000)	ND(1,000)	ND(1,000)	ND(1,000)	
Hexavalent Chromium	ND(10)	ND(10)	ND(10)	30	ND(10)	ND(10)	50

Notes:

ND(#) - Not detected above quantifiable limits stated in parentheses.

A - The associated value exceeded NYSDEC Class GA Groundwater Standards (6NYCRR Part 703.5).

D - The associated value exceeded the NYSDOH Drinking Water Standards (Sanitary Code Part 5)

ROUND 2 SEDIMENT ANALYTICAL RESULTS TONAWANDA COKE CORPORATION

Sediment # Date	SW-11 7-8-92	SW-14 7-8-92	SW-14 dup. 7-8-92
Units	µg/kg	µg/kg	µg/kg
SSI VOCs		,	
Methylene Chloride	40.1	2,620	2,090
Toluene	11.8	ND(500)	ND(500)
SSI BNAs			
Acenaphthylene	ND(330)	680	790
Anthracene	ND(330)	1,000	940
Benzo(a)anthracene	ND(330)	4,700	4,700
Benzo(b)fluoranthene	480	5,900	6,200
Benzo(k)fluoranthene	440	7,300	5,900
Chrysene	340	5,400	5,300
Fluoranthene	400	7,200	6,700
Fluorene	ND(330)	510	580
Phenanthrene	ND(330)	4,400	4,100
Pyrene	460	9,200	8,000
Other Compounds			
Cyanide	2,400	30,300	21,900

Notes:

.

ND(#) - Not detected above quantifiable limits stated in parentheses.

TABLE 9.1

GROUNDWATER ELEVATIONS TONAWANDA COKE CORPORATION

	Top of Casing	Groundwater Elevation		
Well Number	Elevation	4-15-92	7-6-92	
MW-2	609.57	NM	NM	
MW-3	610.49	NM	605.23	
MW3R-89	611.16	606.99	606.59	
MW-4	602.84	NM	599.21	
MW-5	580.56	574.56	NM	
MW-6	579.78	573.36	571.74	
MW-7	575.15	NM	567.07	
MW8-89	578.99	569.74	568.41	
MW9-89	604.92	599.92	599.60	
MW10-89	605.54	601.12	600.77	
MW11-89	603.77	600.60	600.87	
MW12-89	609.19	604.02	604.21	
MW13-89	608.39	605.47	604.75	
MW14-89	605.57	NM	602.51	
MW15-89	605.99	601.99	600.78	
MW16-89	603.46	599.71	598.42	
MW17-89	579.15	574.48	572.95	
MW18-91	572.20	566.03	566.09	
MW19-91	607.17	604.84	603.93	
MW20-91	605.33	602.50	601.64	

APPENDIX A

STRATIGRAPHIC AND INSTRUMENTATION LOGS

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

PROJECT NAME: TONAWANDA COKE CORPORATION

PROJECT NO .: 2428

CLIENT: TONAWANDA COKE CORPORATION

LOCATION: WEST OF RIVER ROAD IN SITE 108

HOLE DESIGNATION: BHZ-91 DATE COMPLETED: JUNE 17, 1991 DRILLING METHOD: 4 1/4" ID HSA CRA SUPERVISOR: J. WILLIAMS

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR	SAMPL	
ft BGS	GROUND SURFACE	579.4		U T M A B T E	N A L U
	Black fine SAND, some silt, some brick fragments, little wood, dry, FILL				24
2.5	Black SILT and fine SAND, little fine to coarse gravel, concrete and brick, trace wood,	577.4		255	14
5.0	moist Dark brown SILT, little clay and fine to coarse gravel, trace fine sand, concrete and cinders, moist	575.4		355	4
7.5	Brown SILT, some clay and cinders, little fine to coarse gravel, trace wood, moist			455	3
/.5	Black fine SAND, little silt and clay, trace fine to medium gravel, moist	571.4		555	4
10.0	Gray fine to coarse GRAVEL and CONCRETE FRAGMENTS, wet	569.4	BOREHOLE	6SS	8
12.5	Black VEGETATION, some silt and clay, little fine to medium gravel, wet, NATIVE	566.9		755	7
15.0	Same, except no gravel, brown and black	667.4		855	6
17.5	Gray SILT, some vegetation, little clay and fine sand, wet	563.4	BENTONITE GROUT	955	3
	Gray fine SAND, some silt, little vegetation, wet	561.4		1055	2
20.0	Same, except trace silt, no vegetation			1155	3
22.5	Same, except fine to medium grained			1255	5
25.0	Same, except medium to coarse grained, little fine to coarse gravel			1355	5
27.5	Gray coarse SAND and fine GRAVEL, WET			14SS	3
27.5	Gray fine GRAVEL, little coarse sand, wet			1555	4
30.0	Same, except fine to coarse grained, some medium to coarse sand	5470		1655	5.
32.5	Gray CLAY, trace fine gravel, moist END OF HOLE @ 32.0 FT. BGS	547.9 547.4			L L
NOT	ES: MEASURING POINT ELEVATIONS MAY CHAN	GE; REFER	TO CURRENT ELEVATION 1	ABLE	
	CHEMICAL ANALYSIS O WATER I		STATIC WATER LEVEL	T	

(L-24)

	STRATIGRAPHIC AND IN (OVERBU	STRUME RDEN)	NTATION LOG	(L	-25)
PROJE	CT NAME: TONAWANDA COKE CORORATION		HOLE DESIGNATION:	MW18-91	
PROJE	CT NO.: 2428		DATE COMPLETED:		91
CLIENT	TONAWANDA COKE CORORATION		DRILLING METHOD:		
LOCATI				J. WILLIAMS	54
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS				
t BGS	STRATIGRAFHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION		<u>کر</u>
	REFERENCE ELEVATION (Top of Riser) GROUND SURFACE	572.20 570.2	67	U T M A E F	V A L U E
	Black COAL, moist, FILL	569.7			
2.5	Gray coarse GRAVEL, some concrete, moist Gray fine to coarse GRAVEL, little coarse sand, moist to wet		BENTONÍTE GROUT BENTONITE PELLET SEAL	1SS X 2SS X	32 94
	Crow fine SAND some site liter a	566.2			94
5.0	Gray fine SAND, some silt, little clay and vegetation, moist, NATIVE Same, except little silt, no clay			355	2
7.5	Dark gray fine to medium SAND, little vegetation, trace silt, wet		2"∉ BLACK IRON PIPE	4SS	2
10.0	Same, except no vegetation			555	7
	Same, except no silt		BOREHOLE	6SS X	6
12.5			WELL SCREEN	7SS 📈	13
15.0			BOREHOLE BOREHOLE SAND PACK WELL SCREEN	855	7
17.5				955	11
20.0	· · · ·				9
		548.2	8888 8888 888	11SS	15
22.5	END OF HOLE 22.0 FT. BGS NOTES: 1. At completion a 2.0" ID observation	540.2	<u>SCREEN DETAILS:</u> Screened Interval:		
25.0	well was installed to 18.0 ft BGS.		8.0 to 18.0' BGS Length -10.0' Diameter -2.0"		
27.5			Slot # 10 Material —Stainless Steel Sand pack interval: 3.5 to 22.0' BGS		
50.0			Material —QROC #2		
2.5					
NOTES	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER	TO CURRENT ELEVATION TA	BLE	
		OUND 🔽			

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

PROJECT NAME: TONAWANDA COKE CORPORATION

PROJECT NO .: 2428

CLIENT: TONAWANDA COKE CORPORATION

LOCATION: OFFSITE, NORTH OF SITE 110

HOLE DESIGNATION: MW19-91 DATE COMPLETED: JUNE 18, 1991 DRILLING METHOD: 4 1/4" ID HSA CRA SUPERVISOR: J. WILLIAMS

DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMPLE INSTALLATION ft AMSL N 'N ft BGS UMBER A L U A T E 607.17 605.4 REFERENCE POINT (Top of Riser) GROUND SURFACE Black COAL, some cinders, little red brick, little coarse gravel, moist, FILL CEMENT/ ÷, BENTONITE GROUT 1SS 14 BENTONITE - 1.0 PELLET SEAL 2"# BLACK IRON PIPE 603.4 - 2.0 Black fine to coarse GRAVEL, some coal and SAND PACK cinders, moist 8"6 **2SS** 4 - 3.0 BOREHOLE 602.1 Reddish brown CLAY, little silt, moist, NATIVE WELL SCREEN 601.4 - 4.0 END OF HOLE @ 4.0 FT. BGS NOTES: SCREEN DETAILS: At completion a 2.0" ID observation 1. Screened Interval: 1.8 to 3.8' BGS well was installed to 3.8 ft BGS. - 5.0 Length -2.0' Diameter -2.0" Slot # 10 6.0 Material -Stainless Steel Sand pack interval: 1.5 to 4.0' BGS Material -QROC #2 - 7.0 - 8.0 - 9.0 - 10.0 - 11.0 - 12.0 - 13.0 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES: WATER FOUND 🔽 STATIC WATER LEVEL T GRAIN SIZE ANALYSIS

(L-26)

		(OVERBU		TATION DOG	(-	-2/)
PROJEC	CT NAME:	TONAWANDA COKE CORPORATION		HOLE DESIGNATION:	MW20-91	
PROJEC	CT NO.:	2428		DATE COMPLETED:	JUNE 18, 19	91
CLIENT:	:	TONAWANDA COKE CORPORATION		DRILLING METHOD:	4 1/4" ID H	SA
LOCATI	ON:	OFFSITE, NORTHEAST OF SITE 110		CRA SUPERVISOR:	J. WLLIAMS	
DEPTH ft BGS	STRATIGR	APHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION	SAMPL	E N.
		REFERENCE POINT (Top of Riser)	605.33 603.5	T		L U E
- 1.0 - 2.0 - 3.0 - 4.0 - 5.0 - 6.0 - 7.0 - 8.0 - 9.0 - 10.0 - 11.0 - 11.0 - 12.0 - 13.0	Black C coarse Reddish END OF NOTES:	GROUND SURFACE OAL, some gravel and cinders, little on and roots, moist, FILL OAL, some cinders, some medium to gravel, moist brown CLAY, little silt, moist HOLE @ 4.0 FT. BGS At completion a 2.0" ID observation well was installed to 3.5 ft BGS.	603.5	SCREEN DETAILS: Screened Interval: 1.5 to 3.5' BGS Length -2.0' Slot # 10 Material -Stainless Steel Sand pack interval: 1.5 to 4.0' BGS Material -QROC #2	R 1SS 2SS	Ē 12 6
NOT		EASURING POINT ELEVATIONS MAY CHAN	GE; REFER			<u> </u>

I

(L-27)

1

APPENDIX B

WELL PURGING LOGS

ROUND 4

Well Number:	MW 8-89	Date:	7/15 to 7/17/91
Well Type:	Overburden	Well Diameter:	2.0 in.
Initial Depth to Water:	8.73 ft. BGS	Well Screen Length:	2 ft.
Well Depth:	10.06 ft. BGS	Screen Slot Size:	#10
One Well Volume:	0.18 gal.	Conducted By:	B. Carpenter
Required Number of Well Volumes:	5		
Required Purge Volume:	0.90 gal.		
Purging Method:	Peristaltic Pump		
0.0			

	Cumulative Volumes		Conductivity	Temperature	Turbidity	
Time	Removed(gal)	PH	(umhos/cm)	(°C).	(NTU)	Notes
7/15/91						
1318	0.2	6.53	1400	25.5		Purged 0.2 gallons, well went dry
7/16/91						
1240	0.4	7.00	1300	24.1	39.1	Purged 0.2 gallons, well went dry
7/17/91						
1015	0.6	6.48	1590	24.0	41.2	Purged 0.2 gallons, well went dry

.

Comments:

Initial water quality: black, much suspended material, petroleum odor. Final water quality: black, much suspended material, petroleum odor. Sample attempted 7/18/91, insufficient volume due to dry well. Well development and purging occured coincidentally. Turbidity not recorded on 7/15/91.

ROUND 4

Well Number:	MW 10-89	Date:	7/15 to 7/17/91
Well Type:	Overburden	Well Diameter:	2.0 in.
Initial Depth to Water:	3.59 ft. BGS	Well Screen Length:	2 ft.
Well Depth:	4.50 ft. BGS	Screen Slot Size:	#10
One Well Volume:	0.12 gal.	Conducted By:	B. Carpenter
Required Number of Well Volumes: Required Purge Volume: Purging Method:	5 0.60 gal. SS Bailer		

Time	Cumulative Volumes Removed(gal)	рН	Conductivity (umhos/cm)	Temperature (°C)	Turbidity (NTU)	Notes
7/15/91 	0.12	7.46	600	21.3		Purged 0.12 gallons, well went dry.
7/17/91 	0.22	7.61	430		28.7	Purged 0.10 gallons, well went dry.

Comments: Initial water quality: dark brown, very cloudy, much suspended material, no odor.

Final water quality: dark brown, very cloudy, much suspended material, no odor.

Sample attempted 7/18/91, insufficient volume due to dry well.

7/16/91 water level 4.18 ft. BGS, no water purged.

7/18/91 water level 4.14 ft. BGS, no water purged.

Turbidity not recorded 7/15/91.

Temperature not recorded 7/17/91.

ROUND 4

Well Number:	MW 16-89	Date:	7/15 to 7/17/91
Well Type:	Overburden	Well Diameter:	2.0 in.
Initial Depth to Water:	1.44 ft. BGS	Well Screen Length:	2 ft.
Well Depth:	3.50 ft. BGS	Screen Slot Size:	#10
One Well Volume:	0.33 gal.	Conducted By:	B. Carpenter
Required Number of Well Volumes:	5		-
Required Purge Volume:	1.65 gal.		
Purging Method:	Peristaltic Pump		
	•		

Time	Cumulative Volumes Removed(gal)	рН	Conductivity (umhos/cm)	Temperature (°C)	Turbidity (NTU)	Notes
7/15/01						
7/15/91 1545	0.50	6.48	1850	24.4		Purged 0.5 gallons, well went dry
7/16/91	0.00	0.10	1000			r urgeu olo ganono, wen went ury
1130	1.00	6.29	1910	23.1	24.4	Purged 0.5 gallons, well went dry
7/17/91						
900	1.20	6.07	1800	26.4	11.3	Purged 0.2 gallons, well went dry

Comments:

Initial water quality: black, very cloudy, much suspended material, no odor. Final water quality: brown/black, slightly cloudy, trace suspended material, no odor. Sampled 7/18/91 for metals only. Resampled 7/19/91 due to lab error. Turbidity not recorded 7/15/91.

ROUND 4

Well Number:	MW 18-91	Date:	7/15 to 7/16/91
Well Type:	Overburden	Well Diameter:	2.0 in.
Initial Depth to Water:	4.12 ft. BGS	Well Screen Length:	2 ft.
Well Depth:	18.00 ft. BGS	Screen Slot Size:	#10
One Well Volume:	2.22 gal.	Conducted By:	B. Carpenter
Required Number of Well Volumes:	5		
Required Purge Volume:	11.1 gal.		
Purging Method:	Peristaltic Pump		

	Volumes		Conductivity	Temperature	Turbidity	•
Time	Removed(gal)	PН	(umhos/cm)	(°C)	(NTU)	Notes
7/15/91				с.		
1400	2.50	7.51	230	26.3		
1405	5.00	7.58	200	26.3		
1408	7.50	7.84	360	24.8		
1410	10.00	7.95	370	24.8		
1413	12.50	7.96	490	23.2		
7/16/91						
1140	15.00	8.11	470	24.1	11.4	
1144	17.50	8.24	480	25.2	13.0	
1148	20.00	8.32	220	26.7	50.5	
1153	22.50	8.40	380	23.3	8.6	
1159	25.00	8.23	480	24.5	8.7	

Comments:

Initial water quality: grey, very cloudy, some suspended material, no odor. Final water quality: clear, colorless, no suspended material, no odor. Well development and purging occurred coincidentally. Malfunction in turbidimeter on 7/15/91.

ROUND 4

MW 19-91	Date:	7/15 - 7/17/01
	Date.	7/15 to 7/17/91
Overburden	Well Diameter:	2.0 in.
1.96 ft. BGS	Well Screen Length:	2 ft.
3.98 ft. BGS	Screen Slot Size:	#10
0.32 gal.	Conducted By:	B. Carpenter
5		-
1.60 gal.		
SS Bailer		
	1.96 ft. BGS 3.98 ft. BGS 0.32 gal. 5 1.60 gal.	1.96 ft. BGSWell Screen Length:3.98 ft. BGSScreen Slot Size:0.32 gal.Conducted By:51.60 gal.

Time	Cumulative Volumes Removed(gal)	рН	Conductivity (umhos/cm)	Temperature (°C)	Turbidity (NTU)	Notes
7/15/91						
1610	0.50	7.67	200	25.8		Purged 0.5 gallons, well went dry.
7/16/91						
1300	1.00	7.04	240	25.3	17.2	Purged 0.5 gallons, well went dry.
7/17/91						
945	1.30	6.65	210	25.0	20.3	Purged 0.3 gallons, well went dry

Comments:

Initial water quality: grey, very cloudy, much suspended material, no odor. Final water quality: grey-brown, very cloudy, much suspended material, no odor. Sampled 7/18/91. Resampled 7/25/91 for PAH due to lab error. Turbidity not measured 7/15/91.

ROUND 4

Well Number:	MW 20-91	Date:	7/15 to 7/17/91 2.0 in.
Well Type:	Overburden	Well Diameter:	
Initial Depth to Water:	2.54 ft. BGS	Well Screen Length:	2 ft.
Well Depth:	3.67 ft. BGS	Screen Slot Size:	#10
One Well Volume:	0.18 gal.	Conducted By:	B. Carpenter
Required Number of Well Volumes:	5		
Required Purge Volume:	0.90 gal.		
Purging Method:	SS Bailer		

Time	Cumulative Volumes Removed(gal)	рН	Conductivity (umhos/cm)	Temperature (°C)	Turbidity (NTU)	Notes
7/15/91						
1615	0.18	7.42	300	24.8		Purged 0.18 gallons, well went dry.
7/16/91						
1305	0.31	6.58	370	25.0	109.3	Purged 0.13 gallons, well went dry.
7/17/91						
1000	0.41	6.37	300	25.7	186.4	Purged 0.10 gallons, well went dry.

Comments:

Initial water quality: grey, very cloudy, much suspended material, no odor.

Final water quality: grey, very cloudy, much suspended material, no odor.

Sample attempted 7/18/91, insufficient volume due to dry well.

Turbidity not measured 7/15/91.

Well development and purging occurred coincidentally.

\$

ROUND 5

Well Number:	MW-7	Date:	7/7/92
Well Type:	Overburden	Well Diameter:	2.0 in.
Initial Depth to Water:	6.58 ft. BGS	Well Screen Length:	2 ft.
Well Depth:	12.15 ft. BGS	Screen Slot Size:	#10
One Well Volume:	0.91 gal.	Conducted By:	J. Williams
Required Number of Well Volumes:	5		G.Gill
Required Purge Volume:	4.55 gal.		
Purging Method:	Peristaltic Pump		

Volumes			Conductivity	Temperature	Turbidity		
Time	Removed(gal)	pН	(umhos/cm)	(°C)	(NTU)	Notes	
7/7/92							
1448	1.0	6.84	1070	12.9	8.4		
1453	2.0	6.74	1090	12.3	5.8		
1457	3.0	6.76	1090	12.2	2.5		

Comments: Initial water quality: clear, no odor. Final water quality: clear, no odor.

Sampled 7/7/92.

ROUND 5

Well Number:	MW 9-89	Date:	7/6 to 7/8/92
Well Type:	Overburden	Well Diameter:	2.0 in.
Initial Depth to Water:	2.92 ft. BGS	Well Screen Length:	2 ft.
Well Depth:	4.00 ft. BGS	Screen Slot Size:	#10
One Well Volume:	0.18 gal.	Conducted By:	J. Williams
Required Number of Well Volumes:	5		G.Gill
Required Purge Volume:	0.90 gal.		
Purging Method:	Peristaltic Pump		

	Cumulative Volumes		Conductivity	Temperature	Turbidity	
Time	Removed(gal)	pН	(umhos/cm)	(°C)	(NTU)	Notes
7/6/92						
1400	0.2	6.54	2900	16.3	64	Purged 0.2 gallons, well went dry
7/7/92						
0915	0.4	7.25	2560	14.9	50	Purged 0.2 gallons, well went dry.
7/8/92						
1440	0.6	6.85	2390	15.0	84	Purged 0.2 gallons, well went dry.

•

Comments:

Initial water quality: mostly clear, some silt.

Final water quality: cloudy, slight odor.

.

Sample attempted 7/9/92, insufficient volume due to dry well.

ROUND 5

MW 10-89	Date:	7/6 to 7/8/92
Overburden	Well Diameter:	2.0 in.
2.85 ft. BGS	Well Screen Length:	2 ft.
4.50 ft. BGS	Screen Slot Size:	#10
0.22 gal.	Conducted By:	J. Williams
5		G.Gill
1.10 gal.		
Peristaltic Pump		
	Overburden 2.85 ft. BGS 4.50 ft. BGS 0.22 gal. 5 1.10 gal.	OverburdenWell Diameter:2.85 ft. BGSWell Screen Length:4.50 ft. BGSScreen Slot Size:0.22 gal.Conducted By:51.10 gal.

Time	Cumulative Volumes Removed(gal)	рН	Conductivity (umhos/cm)	Temperature (°C)	Turbidity (NTU)	Notes
7/6/92						
1345	0.25	6.51	1200	15.5	28.5	Purged 0.25 gallons, well went dry.
7/7/92						
0930	0.50	7.74	1050	15.3	46.5	Purged 0.25 gallons, well went dry.
7/8/92						
1500	0.75	7.06	1020	14.6	15.0	Purged 0.25 gallons, well went dry.

Comments:

Initial water quality: grey, cloudy, slight odor.

Final water quality: clear, slight odor.

Sample attempted 7/9/92, insufficient volume due to dry well.

ROUND 5

Well Number:	MW 11-89	Date:	7/6 to 7/8/92
Well Type:	Overburden	Well Diameter:	2.0 in.
Initial Depth to Water:	0.90 ft. BGS	Well Screen Length:	2 ft.
Well Depth:	3.50 ft. BGS	Screen Slot Size:	#10
One Well Volume:	0.42 gal.	Conducted By:	J. Williams
Required Number of Well Volumes:	5		G.Gill
Required Purge Volume:	2.1 gal.		
Purging Method:	Peristaltic Pump		
	•		

Time	Cumulative Volumes Removed(gal)	рН	Conductivity (umhos/cm)	Temperature (°C)	Turbidity (NTU)	Notes
7/6/92						
1315	0.5	5.76	1700	16.2	102	Purged 0.5 gallons, well went dry.
7/7/92						
0935	1.0	7.94	940	16.3	34	Purged 0.5 gallons, well went dry.
7/8/92						0 0 ,
1450	1.4	7.43	930	15.8	31	Purged 0.4 gallons, well went dry.

.

Comments:

Initial water quality: black to cloudy, silty, no odor. Final water quality: cloudy, slight odor. Sampled 7/9/92.

ROUND 5

Well Number:	MW 14-89	Date:	7/6 to 7/9/92
Well Type:	Overburden	Well Diameter:	2.0 in.
Initial Depth to Water:	1.00 ft. BGS	Well Screen Length:	2 ft.
Well Depth:	4.00 ft. BGS	Screen Slot Size:	#10
One Well Volume:	0.50 gal.	Conducted By:	J. Williams
Required Number of Well Volumes:	5		G.Gill
Required Purge Volume:	2.50 gal.		
Purging Method:	Peristaltic Pump		

Cumulative Volumes			Conductivity Temperature		Turbidity	
Time	Removed(gal)	pН	(umhos/cm)	(°C)	(NTU)	Notes
7/7/92						
1100	0.50	7.25	1650	16.5	152.0	Purged 0.5 gallons, well went dry.
7/8/92						
1515	1.00	7.13	1640	15.8	108.0	Purged 0.5 gallons, well went dry.
7/9/92						
1120	1.50	7.25	1790	15.6	152.0	Purged 0.5 gallons, well went dry.
1120	1.50	7.20	1770	10.0	102.0	i argea dio ganono, wen wen

Comments: Initial water quality: brown, opaque, slight odor. Final water quality: cloudy to clear, no odor.

Sampled 7/10/92.

ROUND 5

Well Number:	MW 15-89	Date:	7/6 to 7/8/92
Well Type:	Overburden	Well Diameter:	2.0 in.
Initial Depth to Water:	2.91 ft. BGS	Well Screen Length:	2 ft.
Well Depth:	4.00 ft. BGS	Screen Slot Size:	#10
One Well Volume:	0.18 gal.	Conducted By:	J. Williams
Required Number of Well Volumes:	5		G.Gill
Required Purge Volume:	0.90 gal.		
Purging Method:	Peristaltic Pump		

	Cumulative Volumes		Conductivity	Temperature	Turbidity	
Time	Removed(gal)	pН	(umhos/cm)	(°C)	(NTU)	Notes
7/6/92						•
1415	0.20	4.7	3320	16.5	>200	Purged 0.2 gallons, well went dry.
7/7/92						
0955	0.25	5.53	2670	16.3	>200	Purged 0.05 gallons, well went dry
7/8/92						
1420	0.25					Well dry.

.

Comments:

Initial water quality: rust brown, silty, slight odor.

Final water quality: orange brown, cloudy, slight odor.

•

Sample attempted 7/10/92, insufficient volume due to dry well.

ROUND 5

Well Number:	MW 16-89	Date:	7/6 to 7/8/92
Well Type:	Overburden	Well Diameter:	2.0 in.
Initial Depth to Water:	1.94 ft. BGS	Well Screen Length:	2 ft.
Well Depth:	3.50 ft. BGS	Screen Slot Size:	#10
One Well Volume:	0.25 gal.	Conducted By:	J. Williams
Required Number of Well Volumes:	5		G.Gill
Required Purge Volume:	1.25 gal.		
Purging Method:	Peristaltic Pump		

Time	Cumulative Volumes Removed(gal)	pН	Conductivity (umhos/cm)	Temperature (°C)	Turbidity (NTU)	Notes
7/6/92						
1430	0.25	5.74	2850	16.0	71.0	Purged 0.25 gallons, well went dry.
7/7/92						0 0 7 7
1005	0.45	7.27	2500	16.0	93.0	Purged 0.2 gallons, well went dry.
7/8/92						
1430	0.65	6.78	22.30	15.7	64.0	Purged 0.2 gallons, well went dry.

Comments:

Initial water quality: grey, cloudy, slight odor. Final water quality: brown, cloudy, slight odor. Sampled 7/9/92.

ROUND 5

MW 18-91	Date:	7/7/92
Overburden	Well Diameter:	2.0 in.
4.11 ft. BGS	Well Screen Length:	2 ft.
18.00 ft. BGS	Screen Slot Size:	#10
2.26 gal.	Conducted By:	J. Williams
5		G.Gill
11.3 gal.		
Peristaltic Pump		
	Overburden 4.11 ft. BGS 18.00 ft. BGS 2.26 gal. 5 11.3 gal.	OverburdenWell Diameter:4.11 ft. BGSWell Screen Length:18.00 ft. BGSScreen Slot Size:2.26 gal.Conducted By:511.3 gal.

Time	Cumulative Volumes Removed(gal)	рН	Conductivity (umhos/cm)	Temperature (°C)	Turbidity (NTU)	Notes	
7/7/92							
1322	2.50	9.36	690	12.9	10.2		
1336	5.00	9.29	680	12.4	5.2		
1342	7.50	9.55	660	12.0	3.4		

Comments:

Initial water quality: clear, sulphur odor. Final water quality: clear, sulphur odor. Sampled 7/7/92.

ROUND 5

Well Number:	MW 19-91	Date:	7/6/92
Well Type:	Overburden	Well Diameter:	2.0 in.
Initial Depth to Water:	1.47 ft. BGS	Well Screen Length:	2 ft.
Well Depth:	3.98 ft. BGS	Screen Slot Size:	#10
One Well Volume:	0.41 gal.	Conducted By:	J. Williams
Required Number of Well Volumes:	5		G.Gill
Required Purge Volume:	2.05 gal.		
Purging Method:	Peristaltic Pump		
Purging Method:	Peristance Pump		

Time	Volumes Removed(gal)	pН	Conductivity (umhos/cm)	Temperature (°C)	Turbidity (NTU)	Notes
			·····			
7/6/92						
1610	0.25			18.5		
1613	0.50			17.5		
1616	0.75			17.0		
1618	1.00			17.2		
1620	1.25			17.4		

Comments:

Initial water quality: opaque, slight odor.

Final water quality: grey, cloudy, no odor.

Sampled 7/6/92.

Conductivity and pH meters not reading properly.

Turbidity not measured.

ROUND 5

Well Number:	MW 20-91	Date:	7/6/92
Well Type:	Overburden	Well Diameter:	2.0 in.
Initial Depth to Water:	1.86 ft. BGS	Well Screen Length:	2 ft.
Well Depth:	3.67 ft. BGS	Screen Slot Size:	#10
One Well Volume:	0.30 gal.	Conducted By:	J. Williams
Required Number of Well Volumes:	5		G.Gill
Required Purge Volume:	1.50 gal.		
Purging Method:	Peristaltic Pump		

	Volumes		Conductivity	Temperature	Turbidity	
Time	Removed(gal)	pН	(umhos/cm)	(°C)	(NTU)	Notes
7/6/92						
1505	0.30	6.9	940	18.7		
1530	0.60	6.75	752	18.8		
1535	1.00	6.3	785	19.1		
1540	1.30	6.6	860	19.1		
1545	1.60	6.64	820	19.1		

Comments:

Initial water quality: clear, no odor. Final water quality: clear, no odor. Sampled 7/6/92. Turbidity not measured.

APPENDIX C

SURFACE WATER AND SEDIMENT LOGS

SURFACE WATER LOG - TONAWANDA COKE CORPORATION - ROUND 3

Surface H2O Number: Date Sampled: Conducted by: Location: SW-11 7/9/92 J. Williams / B. Carpenter 25 ft. north and 25 ft. west of SD-11.

Water Quality:

Comments:

Sample attempt was made 7/8/92 by J.W./G.G. but location selected to sample was dry.

SURFACE WATER LOG - TONAWANDA COKE CORPORATION - ROUND 3

Surface H2O Number: Date Sampled: Conducted by: Location: SW-12 7/8/92 J. Williams / G. Gill 110 ft. west from where access road turns away from trucks. Right hand side of road 10 ft. in. Location is staked.

Water Quality:

Clear, swampy odor, vegetation, sheen in areas.

Comments:

Duplicate sample collected for MS/MSD.

SURFACE WATER LOG - TONAWANDA COKE CORPORATION - ROUND 3

Surface H2O Number: Date Sampled: Conducted by: Location: SW-13 7/8/92 J. Williams / G. Gill From MW-14, 100 ft. south along access road on left side of road, 3 ft. off road.

Water Quality:

Clear, sheen in areas, swampy odor, vegetation.

Comments:

SURFACE WATER LOG - TONAWANDA COKE CORPORATION - ROUND 3

Surface H2O Number: Date Sampled: Conducted by: Location: SW-14 7/8/92 J. Williams / G. Gill 55 ft. south of old east-west fence and 100 ft. east of old north-south fence at old SW-14 location.

Water Quality:

Clear, slight odor.

Comments:

SURFACE WATER LOG - TONAWANDA COKE CORPORATION - ROUND 3

Surface H2O Number: Date Sampled: Conducted by: Location: SW-15 7/8/92 J. Williams / G. Gill Facing east at split in railroad tracks, 25 ft. past old gate, 15 ft. left of railroad tracks. Location marked with a stake.

Water Quality:

Clear, weedy, slight odor.

Comments:

Duplicate sample collected.

SEDIMENT LOG - TONAWANDA COKE CORPORATION - ROUND 2

Sample Location Number: Date Sampled: Conducted by: Location: SD-11 7/8/92 J. Williams / G. Gill 100 ft. east of centre power tower (1st set of power towers south-east of 3 old trunks.)

Sample Description:

Comments:

SEDIMENT LOG - TONAWANDA COKE CORPORATION - ROUND 2

Sample Location Number: Date Sampled: Conducted by: Location: SD-14 7/8/92 J. Williams / G. Gill 55 ft. south of old east-west fence and 100 ft. east of old north-south fence at old SW-14 location.

Sample Description:

Comments:

Duplicate sample collected.

APPENDIX D

ANALYTICAL DATA

APPENDIX D.1

JUNE 1991 SOILS DATA

PAGE 8

ADVANCED ENVIRONMENTAL SERVICES, INC.

LABORATORY REPORT

JOB# 911979

Type of Analysis; O Client: C		A.E.S. Job Code: FIK Units: mg/kg, ppm (as received)				
· · · · · · · · · · · · · · · · · · ·		A.E.S. Lab No Customer ID	4984 TP-X,Y,Z	4985 TP-Z		
Analytical Parameter(s)	Method No.	Practical xx Quantifiable Limit	06/14/91 COMPOSITE	06/14/91 GRAB		
TCL VOLATILES	SW 846 8240					
Chloromethane	SW 846 8240	1.2	BQL*	BQL		
Vinyl Chloride	SW 846 8240	1.2				
Chloroethane	SW 846 8240	1.2				
Bromomethane	SW 846 8240	1.2	11			
Acetone	SW 846 8240	12	"			
1,1-Dichloroethene	SW 846 8240	1.2	11			
Carbon Disulfide	SW 846 8240	1.2		···· ··· ··· ··· ··· ··· ··· ··· ··· ·		
Methylene Chloride	SW 846 8240	10	"			
trans-1,2-Dichloroethene	SW 846 8240	1.2	"			
1,1-Dichloroethane	SW 846 8240	1.2	"	·		
Vinyl acetate	SW 846 8240	1.2				
2-Butanone	SW 846 8240	12				
Chloroform	SW 846 8240	1.2		····· ··· ··· ··· ··· ··· ··· ··· ···		
l, 1, 1-Trichloroethane	SW 846 8240	1.2	······································			

* Below Quantifiable Limits ** High limits due to sample matrix; dilution was measury.

PAGE 9

JOB# 911979

Type of Analysis: ORGANICS Client: CONESTOGA-ROVERS & ASSOCIATES

A.E.S. Job Code: FIK

Units: mg/kg, ppm (as received)

		A.E.S. Lab No Customer ID		4985 TP-2		
Analytical Parameter(s)	Method No.	Practical ** Quantifiable Limit	06/14/91 COMPOSITE	06/14/91 GPAB		
Carbon Tetrachloride	SW 846 8240	1.2	BQL *	BQL		
Benzene	SW 846 8240	1.2	2.8			
1,2-Dichloroethane	SW 846 8240	1.2	BQL	BQL		
Trichloroethene	SW 846 8240	1.2	"			
1,2-Dichloropropane	SW 846 8240	1.2				
Bromodichloromethane	SW 846 8240	1.2		u	· ·	
2-Chloroethyl vinyl ether	SW 846 8240	1.2	"			
4-Methyl-2-pentanone	SW 846 8240	12	"	"		
cis-1,3-Dichloropropene	SW 846 8240	1.2				
Toluene	SW 846 8240	1.2	6.4	140		
trans-1,3-Dichloropropene	SW 846 8240	1.2	BQL	BQL		
1,1,2-Trichloroethane	SW 846 8240	1.2	"		· ·	
letrachloroethene	SW 846 8240	1.2	"			
Chlorodibromomethane	SW 846 8240	1.2				
Chlorobenzene	SW 846 8240	1.2			-	
E thyl benzene	SW 846 8240	1.2	22	60		

* Below Quantifiable Limits.

.

** High limits due to sample matrix; dilution was necessary.

. AGE 🕓 💄

JOB# 911979

Type of Analysis: ORGANICS Client: CONESTOGA-ROVERS & ASSOCIATES

.

A.E.S. Job Code: FIK Units: mg/kg, ppm (as received)

		A.E.S. Lab No Customer 1D	4984 TP-X,Y,Z	4985 TP - Z	
Analytical Parameter(s)	Method No.	Practical ** Quantifiable Limit	06/14/91	06/14/91	
			COMPOSITE	GRAB	
Bromoform	SW 846 8240	1.2	BQL *	BQL	
1,1,2,2-Tetrachloroethane	SW 846 8240	1.2	**	64	
2-Hexanone	SW 846 8240	12	"	u	
m/p-Xylene	SW 846 8240	1.2	6.4	100	
o-Xylene	SW 846 8240	1.2	8.0	98	
Styrene	SW 846 8240	1.2	BQL	BQL	
			-		
					 -
			_		 _

* Below Quantifiable Limits

** High limits due to sample matrix; dilution was necessary.

PAGE 1

JOB# 911979

Client: CONESTOGA-ROVERS & ASSOCIATES

A.E.S. Job Code: FIK Units: mg/kg, ppm

		A.E.S. Lab No Customer ID	4984 TP-X,Y,Z	4985 TP-Z	
Analytical Parameter(s)	Method No.	★★ Practical Quantifiable Limit	06/14/91 COMPOSITE	06/14/91 GRAB	
ICL SEMI-VOLATILES	SW 846 8270				
N-Nitrosodimethylamine	SW 846 8270	33	BQL *	BQL	
Aniline	SW 846 8270	33	11	81	
Phenol	SW 846 8270	33	0		
Bis(2-chloroethyl) ether	SW 846 8270	33	88		
2-Chlorophenol	SW 846 8270	33	"	10	
1,3-Dichlorobenzene	SW 846 8270	33	55		
1,4-Dichlorobenzene	SW 846 8270	33	11	80	
Benzyl Alcohol ,	SW 846 8270	33	"	14	
1,2-Dichlorobenzene	SW 846 8270	33		18	
2-Methylphenol	SW 846 8270	33		11	
bis(2-Chloroisopropyl) ether	SW 846 8270	33	11	11	
4-Methylphenol	SW 846 8270	33	"		
N-Nitrosodinpropylamine	SW 846 8270	33	11	18	
Hexachloroethane	SW 846 8270	33	81 -	**	

High limits due to sample matrix, dilution was necessary. **

Type of Analysis: ORGANICS

Below quantifiable limits. *

PAGE 2

JOB# 911979

A.E.S. Job Code: FIK

Units: mg/kg, ppm

		A.E.S. Lab No Customer 1D	4984 1P-X,Y,Z	4985 TP - Z	
Analytical Parameter(s)	Method No.	Practical ★★ Quantifiable Limit	06/14/91 COMPOSITE	06/14/91 Grab	
li trobenzêne	SW 846 8270	33	BQL *	BQL	
sophorone	SW 846 8270	33	11		
2-Nitrophenol	SW 846 8270	33	11	11	
2,4-Dimethylphenol	SW 846 8270	33		11	
Bis(2-chloroethoxy) methane	SW 846 8270	33	81	"	
Benzoic Acid	SW 846 8270	99	"	"	
2,4-Dichlorophenol	SW 846 8270	33	**	11	
1,2,4-Trichlorobenzene	SW 846 8270	33	88		
Naphthalene	SW 846 8270	33	92	270	
4-Chloroaniline	SW 846 8270	33	BQL	BQL	
Hexachlorobutadiene	SW 846 8270	33	11		
Hexachlorobenzene	SW 846 8270	33	· II		
Pentachlorophenol	SW 846 8270	99	"		
Phenanthrene	SW 846 8270	33	62	180	
Anthracene	SW 846 8270	33	BQL	74	
Di-n-Butylphthalate	SW 846 8270	33	11	BQL	

High limits due to sample matrix, dilution was necessary. **

Type of Analysis: ORGANICS Client: CONESTOGA-ROVERS & ASSOCIATES

Below Quantifiable Limits. *

JOB# 911979

Type of Analysis: ORGANICS Client: CONESTOGA-ROVERS & ASSOCIATES A.E.S. Job Code: FIK Units: mg/kg, ppm

		A.E.S. Lab No Customer ID	4984 TP-X,Y,Z	4985 TP-Z	
Analytical Parameter(s)	Method No.	★★ Practical Quantifiable Limit	06/14/91	06/14/91	
			COMPOSITE	GRAB	
Fluoranthene	SW 846 8270	33	67	150	
Benzidine	SW 846 8270	99	BQL *	BQL	
Pyrene	SW 846 8270	33	44	99	
Butylbenzylphthalate	SW 846 8270	33	BQL	BQL	
3,3-Dichlorobenzidine	SW 846 8270	99	**	"	
Benzo (a) Anthracene	SW 846 8270	33	11	57	
bis(2-ethylhexyl) Phthalate	SW 846 8270	33	64	BQL	
Chrysene	SW 846 8270	33	"	47	
Di-n-octylphthalate	SW 846 8270	33	"	BQL	
Benzo (b) fluoranthene	SW 846 8270	33	11	40	
Benzo (k) fluoranthene	SW 846 8270	33	11	45	
Benzo (a) pyrene	SW 846 8270	33	88	47	
Indeno (1,2,3-cd) pyrene	SW 846 8270	33	и.	BQL	
Dibenzo (a,h) anthracene	SW 846 8270	33	80	И	
Benzo (g,h,i) perylene	SW 846 8270	33	14	11	
4-Chloro-3-Methylphenol	SW 846 8270	33	11		

** High limits due to sample matrix, dilution was necessary.

* Below Quantifiable Limits.

JOB# 911979

Type of Analysis: ORGANICS Client: CONESTOGA-ROVERS & ASSOCIATES

A.E.S. Job Code: FIK Units: mg/kg, ppm

		A.E.S. Lab No Customer ID	4984 TP-X,Y,Z	4985 TP-Z	
Analytical Parameter(s)	Method No.	** Practical Quantifiable Limit	06/14/91	06/14/91	
			- COMPOSITE	GRAB	
2-Methylnaphthalene	SW 846 8270	33	BQ⊥×	86	
Hexachlorocyclopentadiene	SW 846 8270	33		BQL	
2,4,6-Trichlorophenol	SW 846 8270	33	81	84	
2,4,5-Trichlorophenol	SW 846 8270	33	"	11	
2-Chloromaphthalene	SW 846 8270	33	"	14	
2-Nitroaniline	SW 846 8270	33	11	80	
Dimethylphthalate	SW 846 8270	33	**	11	
2,6-Dinitrotoluene	SW 846 8270	33	11		
Acenaphthylene	SW 846 8270	33	'n	11	
3-Nitroaniline	SW 846 8270	33	11	10	
Acenaphthene	SW 846 8270	33	11	88	
2,4-Dinitrophenol	SW 846 8270	99	64	84	
Dibenzofuran	SW 846 8270	33	11	69	
2,4-Dinitrotoluene	SW 846 8270	33	11	BQL	
4-Nitrophenol	SW 846 8270	99	11	84	
Diethylphthalate	SW 846 8270	33	ui		

** High limits due to sample matrix; dilution was necessary.

* Below Quantifiable Limits.

JOB# 911979

Type of Analysis: ORGANICS Client: CONESTOGA-ROVERS & ASSOCIATES

A.E.S. Job Code: FIK Units: mg/kg, ppm

		A.E.S. Lab No Customer ID	4984 TP-X,Y,Z	4985 TP - Z	
Analytical Parameter(s)	Method No.	Practical ** Quantifiable Limit	06/14/91 COMPOSITE	06/14/91 GRAB	
4-Chlorophenyl-phenylether	SW 846 8270	. 33	BQL *	BQL	
Fluorene	SW 846 8270	33	88	85	
4-Nitroaniline	SW 846 8270	33	36	BQL	
4,6-Dinitro-2-methylphenol	SW 846 8270	99	14		
N-Nitrosodiphenylamine	SW 846 8270	33	**	11	
1,2-Diphenylhydrazine	SW 846 8270	33	11	"	
4-Bromophenyl-phenylether	SW 846 8270	33	11		

.

FOOTNOTES

**High limits due to sample matrix; dilution was necessary.
* Below Quantifiable Limits.

٩

PAGE 4

JOB# 911979

Type of Analysis: ORGANICS Client: CONESTOGA-ROVERS & ASSOCIATES

A.E.S. Job Code: FIK

Units: mg/kg, ppm (as received)

		A.E.S. Lab No Customer ID		4985 TP-Z	
Analytical Parameter(s)	Method No.	Practical Quantifiable Limit	06/14/91 COMPOSITE	06/14/91 grab	
TCL PESTICIDES AND PCB'S	SW 846 8080				
			•		
alpha BHC	SW 846 8080	2.50	BQL*	<5.00 **	
beta BHC	SW 846 8080	2.50	11	<5.00 **	
delta BHC	SW 846 8080	2.50		<5.00 **	
gamma BHC (lindane)	SW 846 8080	2.50	14	<5.00 **	
Heptachlor	SW 846 8080	2.50	11	<5.00 **	
Aldrin	SW 846 8080	2.50		<5.00 **	
Heptachlor epoxide	SW 846 8080	2.50	11	<5.00 **	
Endosulfan I	SW 846 8080	2.50	BQL *	<5.00 **	
Dieldrin	SW 846 8080	2.50	11	<5.00 **	
4,4'-DDE	SW 846 8080	2.50	11	<5.00 **	
Endrin	SW 846 8080	2.50	11	<5.00 **	
Endosulfan II	SW 846 8080	2.50		<5.00 **	
4,4'-DDD	SW 846 8080	2.50		<5.00 **	

* Below Quantifaible Limits

** High limits due to sample matrix; dilution was necessary.

JOB# 911979

A.E.S. Job Code: FIK

Type of Analysis: ORGANICS Client: CONESTOGA-ROVERS & ASSOCIATES Units: mg/kg, ppm (as received)

		A.E.S. Lab No Customer 1D	4984 TP-X,Y,Z	4985 TP - Z	
Analytical Parameter(s)	Method No.	Practical Quantifiable Limit	06/14/91 COMPOSITE	06/14/91 Grab	
Endosulfan Sulfate	SW 846 8080	2.50	BQL*	<5.00 **	
	SW 846 8080	2.50	"	<5.00 **	
4,4°-DDT	SW 846 8080	2.50	11	<5.00 **	
Endrin Ketone	SW 846 8080	12.5	н	<25.0 **	
Methoxychlor	SW 846 8080	25.0		<50.0 **	
Chlordane	SW 846 8080	125		<250 **	
Toxaphene	SW 846 8080	25.0	11	<50.0 **	
PCB 1016		25.0	11	<50.0 **	
РСВ 1221	SW 846 8080	25.0		<50.0 **	
PCB 1232	SW 846 8080			<50.0 **	
PCB 1242	SW 846 8080	25.0	BQL *	<50.0 **	
PCB 1248	SW 846 8080	25.0		<50.0 **	 -
РСВ 1254	SW 846 8080	25.0			 -
PCB 1260	SW 846 8080	25.0	11	<50.0 **	

FOOTNOTES

* Below Quantifiable Limits.

Constitution and an end of the second se

** High quantifiable limits due to the necessary dilution of the sample.

JOB# 911979

Type of Ar	nalysis: INORGANICS Client: CONESTOGA-ROVERS & ASSOCIATES	A.E.S. Job Code: FIK Units: mg/kg				
		A.E.S. Lab No Customer ID	4984 TP-X,Y,Z	4985 TP-Z		
Analytical Parameter(s)	Method No.	Practical Quantifiable Limit	06/14/91 COMPOSITE	06/14/91 grab		
Aluminum	SW 846 7020	500	15100	22500		
Antimony	SW 846 7041	2.00	BQL *	BQL		
Arsenic	SW 846 7060	0.50	10.1	240		
Barium	SW 846 7081	1.00	16.2	46.7		
Beryllium	SW 846 7091	0.100	BQL	BQL		
Cadıni um	SW 846 7131	0.05	1.05	BQL		1 11.11.11.11.11.11.11.11.11.11.11.11.11
Calcium	SW 846 7140	25.0	9490	496		
Chromium	SW 846 7191	0.500	24.1	16.7		
Copper	SW 846 7210	20.0	50.7	64.0		
Cobal t	SW 846 7201	· 0.500	BQL	BQL		
Iron	SW 846 7380	30.0	32900	77100		
Lead	SW 846 7421	0.500	108	172		
Magnesium	SW 846 7450	100	4250	3480		
Manganese	SW 846 7460	10.0	245	190		
Мегсигу	SW 846 7471	0.500	4.00	3.50		
Mercury	SW 846 7471	0.500	4.00	3.00		

* Below Quantifiable Limits

•

.

PAGE 1

JOB# 911979

.

Туре оf	Type of Analysis: INORGANICS Client: CONESTOGA-ROVERS & ASSOCIATES		A.E.S. Job Code: FIK Units: mg/kg				
		A.E.S. Lab No Customer ID	4984 TP-X,Y,Z	4985 TP-2			
Analytical Parameter(s)	Method No.	Practical Quantifiable Limit	06/14/91 COMPOSITE	06/14/91 grab			
Mercury	SW 846 7471	0.500	4.00	3.50			
Nickel	SW 846 7521	0.500	362	83.0			

Nickel	38 040 721				
Potassium	SW 846 7610	100	875	1590	
Selenium	SW 846 7740	0.50	1.43	BQL	
Silver	SW 846 7761	0.100	1.74	23.3	
Sodium	SW 846 7770	3.00	365	488	
Thallium	SW 846 7841	0.500	BQL *	BQL	
Vanadium	SW 846 7911	1.00	1.60	13.8	
Zinc	SW 846 7950	5.00	145	204	
Total Cyanide	SW 846 9012	0.1	BQL	BQL	
linge channe					

FOOTNOTES

* Below Quantifiable Limits.

PAGE 2

APPENDIX D.2

JULY 1991 WATER DATA

2186 Liberty Drive P.O. Box 165 Niagara Falls, NY 14304

TONAWANDA COKE

Report Prepared For

\$

CONESTOGA-ROVERS & ASSOCIATES

August 6, 1991

The Constants

人間を見ているの

AES Report FIK

COMMITMENT TO **HONESTY - QUALITY - SERVICE**

QA/QC Verification

The following report, as well as the supporting data, have been carefully reviewed for accuracy, adherence to the cited methods, and completeness. All data contained in this report was generated in accordance with the AES Laboratory Quality Assurance/Quality Control Program.

Denise R. Tuhovak

Organics Supervisor

Paul T. McMahon Quality Control Officer

Gary L. (Amato Technical Supervisor

Joseph J. Curtis Castomer Service Representative

CUST SAMPLE ID: W-2428-BC-001 COLLECTION DATE: 07/16/91

COLLECTION METHOD: SAMPLE TYPE: WATER

١	Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
	Cyanide, Total (on water)	0.036	mg/l		0.004	EPA 335.3
	Hexavalent Chromium, Total	BQL *	mg/l		0.01	EPA 7196

FOOTNOTES

Below Quantifiable Limits.

CUST SAMPLE ID: W-2428-BC-001 COLLECTION DATE: 07/16/91

LABORATORY JOB NO: 912326 LABORATORY REFERENCE NO: 5948

ORGANIC ANALYSIS

COLLECTION METHOD: SAMPLE TYPE: WATER

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
VOLATILE HALOCARBONS					SW 846 8010
trans-1,2-Dichloroethene	BQL *	ug/l,ppb		1.00	SW 846 8010
Methylene Chloride	BQL	ug/l,ppb		5.00	SW 846 8010
cis-1,2-Dichloroethene	7.68	ug/l,ppb		1.00	SW 846 8010
Surrogate Recoveries	122	*		1.00	SW 846 8010
Surrogate Recoveries	103	×	•••	1.00	SW 846 8010
VOLATILE AROMATICS					SW 846 8020
lenzene	BQL *	ug/l,ppb		1.00	SW 846 8020
oluene	BQL	ug/l,ppb	· •••	1.00	SW 846 8020
thylbenzene	BQL	ug/l,ppb		1.00	SW 846 8020
/p-Xylene	BQL	ug/l,ppb		1.00	SW 846 8020
-Xylene	BQL	ug/l,ppb		1.00	SW 846 8020
urrogate Recoveries	134	*		1.00	SW 846 8020

FOOTNOTES

* Below Quantifiable Limits.

CUST SAMPLE ID: W-2428-BC-001 COLLECTION DATE: 07/16/91

LABORATORY JOB NO: 912326 LABORATORY REFERENCE NO: 5948 ORGANIC ANALYSIS

COLLECTION METHOD: SAMPLE TYPE: WATER

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
OLYNUCLEAR AROMATIC HYDROCARBONS					SW 846 8100
Acenaphthene	BQL *	ug/l,ppb	•••	5.00	SW 846 8100
Acenaphthylene	BQL	ug/l,ppb	•••	5.00	SW 846 8100
Anthracene	BQL	ug/l,ppb		5.00	SW 846 8100
Benzo(a)Anthracene	BQL	ug/l,ppb		5.00	SW 846 8100
Benzo(a)Pyrene	BQL	ug/l,ppb		5.00	SW 846 8100
Benzo(b)Fluoranthene	BQL	ug/l,ppb		5.00	SW 846 8100
Benzo(k)Fluoranthene	BQL	ug/l,ppb		5.00	SW 846 8100
Benzo(g,h,i)Perylene	BQL	ug/l,ppb	•••	5.00	SW 846 8100
Chrysene	BQL	ug/l,ppb		5.00	SW 846 8100
)ibenzo(a,h)Anthracene	BQL	ug/l,ppb	•••	5.00	SW 846 8100
fluoranthene	BQL	ug/l,ppb	•••	5.00	SW 846 8100
Fluorene	BQL	ug/l,ppb	•••	5.00	SW 846 8100
Indeno(1,2,3-c,d)Pyrene	BQL	ug/l,ppb	·	5.00	SW 846 8100
laphthalene	BQL	ug/l,ppb	•••	5.00	SW 846 8100
Phenanthrene	BQL	ug/l,ppb	•••	5.00	SW 846 8100
^o yrene	BQL	ug/l,ppb	•••	5.00	SW 846 8100
RGANICS					
il & Grease	3.8	mg/l,ppm	1.0		SM 503A

FOOTNOTES

Below Quantifiable Limits.

CUST SAMPLE ID: COLLECTION DATE:

COLLECTION METHOD: SAMPLE TYPE:

LABORATORY JOB NO: 912326 LABORATORY REFERENCE NO:

INORGANIC ANALYSIS METHOD BLANK

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical	·	
Cyanide, Total (on water)	BQL *	mg/l		0.004	EPA 335.3	
Hexavalent Chronium, Total	BÇL	mg/l		0.01	EPA 7196	
						
			<u> </u>			
					· · · · · · · · · · · · · · · · · · ·	
	· ·					

.

FOUNDIES:

* Below Quantifiable Limits.

CUST SAMPLE ID: COLLECTION DATE:

LABORATORY JOB NO: 912326 LABORATORY REFERENCE NO:

ORGANIC ANALYSIS METHOD BLANK

COLLECTION METHOD: SAMPLE TYPE:

ſ

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
VOLATTLE HALOCARBONS					SW 846 8010
trans-1,2-Dichloroethene	BQL *	ug/l,pdb		1.00	SW 846 8010
Methylene Chlaride	BQL	ug/l,pb		5.00	SW 846 8010
cis-1,2-Dichlaroethene	BCL	ug/l,pb		1.00	SW 846 8010
Surrogate Recoveries	110	8		1.00	SW 846 8010
Surrogate Recoveries	114	8		1.00	SW 846 8010
			· · · · · ·		
VOLATILE AROMATICS					SW 846 8020
Benzene	BQL	ug/l,ppb		1.00	SW 846 8020
Toluene	BCL	ug/1,pt		1.00	SW 846 8020
Ethylbenzene	BQL	ug/l,pb		1.00	SW 846 8020
m/p-Xylene	BQL	ug/l,ppb		1.00	SW 846 8020
o-Xylere	EQL.	ug/l,ppb		1.00	SW 846 8020
Surrogate Recoveries	114	8		1.00	SW 846 8020

ROINOIES:

* Below Quantifiable Limits.

CUST SAMPLE ID:

COLLECTION DATE:

COLLECTION METHOD:

SAMPLE TYPE:

LABORATORY JOB NO: 912326 LABORATORY REFERENCE NO: CREANIC ANALYSIS

METHOD BLANK

Practical Method Quantifiable Analytical Detection Analytical Limit Method Units Limits Results Parameters FOLMULIEAR ARMATIC HYDROCAREONS SW 846 8100 5.00 ECL * ug/l,pb Acenachthene SW 846 8100 5.00 EL ug/l,ppb Acenaphthylene SW 846 8100 5.00 ECL ug/l,ppb Anthracene 5.00 SW 846 8100 EL ug/l,mb Benzo(a)Anthracene 5.00 SW 846 8100 EL ug/1,pbBenzo(a)Pyrene -5.00 SW 846 8100 EL ug/l,ppb Benzo(b)Fluoranthene 5.00 SW 846 8100 BL Benzo(k)Fluoranthene ug/1,ppb 5.00 SW 846 8100 BL ug/l,ppb Benzo(g,h,i)Perylene SW 846 8100 5.00 EL ug/l,ppb Chrysene 5.00 SW 846 8100 Dibenzo(a,h)Anthracene EL ug/l,ppb SW 846 8100 5.00 Fluoranthene EL ug/l,ppb SW 846 8100 5.00 Fluorene EL ug/l,ppb SW 846 8100 5.00 Indeno(1,2,3-c,d)Pyrene EL ug/l,ppb SW 846 8100 5.00 Nachthalene EL ug/l,pbSW 846 8100 5.00 Phenanthrene ET ug/l,pbSW 846 8100 5.00 Pyrene EL ug/l,pb ORGANICS SM 503A Oil & Grease 1.0 mg/l,ppm ND **

ROINDIES:

* Below Quantifiable Limits.

** Not Detected.

JOB# 912326

PAGE 1

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CONESTOGA-ROVERS & ASSOCIATES			A.E.S. Job Code: FIK Units: ug/l or ppb				
Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery#	
2-Fluorobiphenyl (surrogate)	Meth.Blank	H2O	29.2	BQL **	40.0	73	
2-Fluorobiphenyl (surrogate)	5948	H2O	30.4	BQL	40.0	76	

.

* % Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / "Spike" Added Concentration)

* If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

FOOTNOTES

****** Below Quantifiable Limits.

.

QUALITY CONTROL SUMMARY

PARAMETER(S)	Type of QC	AES Number	Acceptance <u>Criteria</u>	Analyst Initial
Cyanide	EPA		Acceptable	TS
Hexavalent Chromium	INDSID		Acceptable	AW

•

.

QUALITY CONTROL SUMMARY

Conestoga - Rovers & Associates

FIK

PARAMETER(S)	Type of QC	AES Number	Acceptance <u>Criteria</u>	Analyst <u>Initial</u>
Volatile Halocarbons ,801	0 SPK	5963	ok	
Volatile Halcoarbons 801		5963		Œ
Volatile Archatics 802	0 SEK	5963	ok	Œ
Volatile Aronatics 802		×	ok 🛛	Œ
		5963	<u>ok</u>	· CF
	_			

QUALITY CONTROL SUMMARY

Conestoga - Rovers & Associates

FIK

PARAMETER(S)	Type of QC	AES Number	Acceptance <u>Criteria</u>	Analyst <u>Initial</u>
8100	SPK	5936	ok _	SWC
8100	SID	, 	ck	SWC

CRA Consulting CONESTOGA-ROV 651 Colby Drive, Water	ERS & ASSOCIAT	ES	D TO (Laborat	-	name):
CHAIN OF REC	CUSTODY ORD	PROJECT NP: PI	ROJECT NAME:	14	(dra
SAMPLER'S SIGNATUR	RE <u>RUD</u>	(allersty (San)	SAMPLE	N ^P OF CONTAINERS	REMARK
SEQ. SAMPLE Nº.	DATE TIME	SAMPLE LOCATOIN		CONT	-
W-2428-11-101	7-16-91 1250	+CL	Likk	7	VA 80
				2	int CB
				4	Auticic
	i	<u>+</u>	· ·	4	CH + GM
		1		+	
		N. The second se			· .
			1 i		
			N N		
X			1		
$ / \langle $			<u> </u>		
-		· · · · · · · · · · · · · · · · · · ·	/\		Х
$-$ A $ \times$ +			<u>↓ </u>		
-/		+/	+	┼──┤	
- <u>/</u>		\	+/	╂──┤	
				$\left \right $	7
		1			
				1	
		TOTAL NUMBER OF CO	ONTAINERS	E	
ANTICIPATED CHEMIC		(LICULA			
RELINQUISHED BY:	ath la Caliba		RECEIVED	۶Y÷、 ۱	- 5
	(SIGN) -	1-1-191 1431	<u>}</u>	Ø	hiters)
				2.	
RELINQUISHED BY:		DATE/TIME	RECEIVED E	21.	
RELINQUISHED BY:				,. 3—	(SIGN)
	(Sign)			3—	(SQN)
[2]		—	_	3—	
[2] RELINQUISHED BY:	(SIGN) (SIGN)	—	_	3— IY:	(SGN) (SGN)
2 RELINQUISHED BY: 3 ADDITIONAL SIGNATUR SHEET REQUIRED	(SIGN) (SIGN) RE		RECEIVED E	3	(Sign)
2 RELINQUISHED BY: 3 ADDITIONAL SIGNATUR SHEET REQUIRED METHOD OF SHIPMENT	(SIGN) (SIGN) RE T:		RECEIVED E	3- 3Y: 4-	(SIGN) RY_BY: DATE
2 RELINQUISHED BY: 3 ADDITIONAL SIGNATUR SHEET REQUIRED METHOD OF SHIPMENT	(SIGN) (SIGN) RE T: SHIPPE	DATE/TIME	RECEIVED E	3 BY: 4 RATOR	(SQN) RY BY: DATE
2 RELINQUISHED BY: 3 ADDITIONAL SIGNATUR SHEET REQUIRED METHOD OF SHIPMENT	(SIGN) (SIGN) RE T: SHIPPE JPON RECEIPT:	DATE/TIME	RECEIVED E	3 BY: 4 RATOR	(SIGN)

· _ ر

TONAWANDA COKE

Report Prepared For

CONESTOGA-ROVERS & ASSOCIATES

August 8, 1991

AES Report FIK

COMMITMENT TO

QUALITY

SERVICE

CUST SAMPLE ID: W-2428-BC-003 COLLECTION DATE: 07/18/91

LABORATORY JOB NO: 912351 LABORATORY REFERENCE NO: 6022 INORGANIC ANALYSIS

COLLECTION METHOD: SAMPLE TYPE: WATER

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Cyanide, Total (on water)	0.012	mg/l		0.004	EPA 335.3
Hexavalent Chromium, Total	BQL *	mg/l		0.01	EPA 7196

*

ě.

FOOTNOTES

Below Quantifiable Limits.

CUST SAMPLE ID: W-2428-BC-003 COLLECTION DATE: 07/18/91

LABORATORY JOB NO: 912351 LABORATORY REFERENCE NO: 6022 ORGANIC ANALYSIS

COLLECTION METHOD: SAMPLE TYPE: WATER

	i				
Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
VOLATILE HALOCARBONS					SW 846 8010
trans-1,2-Dichloroethene	BQL *	ug/l,ppb		1.00	SW 846 8010
Methylene Chloride	BQL	ug/l,ppb		5.00	SW 846 8010
cis-1,2-Dichloroethene	BQL	ug/l,ppb		1.00	SW 846 8010
Surrogate Recovery	105	×		1.00	SW 846 8010
Surrogate Recovery	100	*		1.00	SW 846 8010
VOLATILE AROMATICS					SW 846 8020
Benzene	BQL	ug/l,ppb		1.00	SW 846 8020
Toluene	BQL	ug/l,ppb		1.00	SW 846 8020
Ethylbenzene	BQL	ug/l,ppb		1.00	SW 846 8020
m/p-Xylene	BQL	ug/l,ppb	•••	1.00	SW 846 8020
o-Xylene	BQL	ug/l,ppb		1.00	SW 846 8020
Surrogate Recovery	105	x		1.00	SW 846 8020
ORGANICS					SM 503A
Oil & Grease	- 44	mg/l,ppm	1.0		SM 503A

FOOTNOTES

* Below Quantifiable Limits.

~1

CUST SAMPLE ID: W-2428-BC-003 COLLECTION DATE: 07/18/91

COLLECTION METHOD: SAMPLE TYPE: WATER

1

LABORATORY JOB NO: 912351 LABORATORY REFERENCE NO: 6022 ORGANIC ANALYSIS

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
POLYNUCLEAR AROMATIC HYDROCARBONS					SW 846 8100
······································					
Acenaphthene	<80.0 *	ug/l,ppb		10.0	SW 846 8100
Acenaphthylene	<80.0 *	ug/l,ppb		10.0	SW 846 8100
Anthracene	174	ug/l,ppb		10.0	SW 846 8100
Benzo(a)Anthracene	493	ug/l,ppb		10.0	SW 846 8100
Benzo(a)Pyrene	563	ug/l,ppb		10.0	SW 846 8100
Benzo(b) and Benzo (k)Fluoranthene	418	ug/l,ppb		10.0	SW 846 8100
Benzo(g,h,i)Peryl ene	714	ug/l,ppb		10.0	SW 846 8100
Chrysene	478	ug/l,ppb		10.0	SW 846 8100
Dibenzo(a,h)Anthracene	405	ug/l,ppb		10.0	SW 846 8100
Fluoranthene	805	ug/l,ppb		10.0	SW 846 8100
Fluorene	117	ug/l,ppb		10.0	SW 846 8100
Indeno(1,2,3-c,d)Pyrene	553	ug/l,ppb	•••	10.0	SW 846 8100
Naphthalene	<80.0 *	ug/l,ppb	•••	10.0	SW 846 8100
Phenanthrene	511	ug/l,ppb	•••	10.0	SW 846 8100
Pyrene	685	ug/l,ppb		10.0	SW 846 8100
Surrogate Recovery	102	X		10.0	SW 846 8100

FOOTNOTES

High Quantifiable Limits due to the necessary dilution of the sample.

CUST SAMPLE ID: W-2428-8C-003R COLLECTION DATE: 07/25/91

COLLECTION METHOD:

SAMPLE TYPE: WATER

ORGANIC ANALYSIS

Nethod Prectidel Analytical Analytical Detection Quantifiable Parameters Results Units Limits Limit Method POLYNUCLEAR AROMATIC HYDROCARBONS SH 846 8100 Acenaphthene <0.0 * ug/l,ppb ... 10.0 SW 846 8100 Acenaphthylene <0.0 * ug/l,ppb ---10_0 SH 846 8100 . Anthracene 176 ug/l,ppb ... 10.0 SH 846 8100 Senzo(a)Anthracene 493 ug/l,ppb 10.0 ... SW 846 8100 Senzo(a)Pyrene 563 ug/l,ppb 10.0 ---SW 846 8100 Senzo(b) and Benzo (k)Fluoranthene 418 ug/1,pob ... 10.0 SV 846 8100 Benzo(g,h,i)Perylene 714 ug/l,ppb 10.0 ... SW 846 8100 Chrysene 478 ug/l,ppb ... 10.0 i SW 846 8100 Dibenzo(a,h)Anthracene 405 ug/l,ppb ... 10.0 SH 846 8100 Fluoranthene 805 ug/l,ppb ... 10.0 SU 846 8100 Fluorene 117 ug/l,ppb ... 10.0 SH 846 8100 Indeno(1,2,3-c,d)Pyrene 553 ug/l,ppb ... 10.0 SH 846 8100 Naphthalene <80.0 * ug/l,ppb ... 10.0 SW 846 8100 Phonenthrene 511 ug/l,ppb ... 10.0 SM 846 8100 Pyrene 685 ug/1,ppb ... 10.0 SH 846 8100 Surrogate Recovery 102 X ... 10.0 SW 846 8100

FOOTHOTES

High Quantifiable Limits due to the necessary dilution of the sample.

لرب

CUST SAMPLE ID: COLLECTION DATE:

COLLECTION METHOD: SAMPLE TYPE: LABORATORY JOB NO: 912351 LABORATORY REFERENCE NO: INCREANIC ANALYSIS

METHOD BLANK

malytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Hethod
Cyanide, Total (on water)	BQL *	mg/l		0.004	EPA 335.3
Hexavalent Chronium, Total	BQL	mg/l		0.01	EPA 7196
· ·					
			-		
					· · · · · · · · · · · · · · · · · · ·
4 -					
			-		
:		1	1		
7					
-					<u>.</u>
	+				
, 					
					· · · · · · · · · · · · · · · · · · ·
	1				

"JOINOIES:

Below Quantifiable Limits.

COLLECTION DATE: 7/31/91

LABORATORY JOB NO: 912351 LABORATORY REFERENCE NO:

COLLECTION METHOD: SAMPLE TYPE: ORGANIC ANALYSIS

METHOD BLANK

		•			MELICU BLANK
nalytical arameters	Analytical Results	Units	Method Detection Limits	Practical	
VILATTLE HALOCAPEONS					SW 846 8010
trans-1,2-Dichloroethene	BOL *	ug/l,ppb		1.00	SW 846 8010
Methylene Chloride	BCL	ug/1,pb		5.00	SW 846 8010
cis-1,2-Dichlarcethene	BCL	ug/1,ppb		1.00	SW 846 8010
Surrougite Recovery	130	8		1.00	SW 846 8010
Surrogate Recovery	104	8		1.00	SW 846 8010
VOLATTLE AROMATICS					SN 846 8020
Benzene	BQL	ug/l,pd		1.00	SW 846 8020
Toluene	BIL	ug/l,ppb		1.00	SW 846 8020
Ethylbenzene	BCL	ug/l,ppb		1.00	SW 846 8020
n/o-Xylene	BCL	ug/l,ppb		1.00	SW 846 8020
o-Xylene	BCL	ug/l,ppb		1.00	SW 846 8020
Surrogate Recovery	119	8		1.00	SW 846 8020
·					
ORGANICS					SM 503A
Oil & Grease	ND **	ng/1,pm	1.0		SM 503A
					<u> </u>
					· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·

ROINOIES:

* Below Quantifiable Limits.

** None Detected.

ſ

PAGE

QUALITY CONTROL SUMMARY						
Type of Quality Control	AES Number	Acceptance Criteria	Analyst Initials			
EPA IND. STD.		Acceptable Acceptable	TS Aw			

QUALITY CONTROL SUMMARY							
Type of Quality Control	AES Number	Acceptance Criteria	Analyst Initials				
Volatile Halocarbons-Ref. Std. Volatile Aromatics-Ref. Std.	6022 6022	Acceptable Acceptable	KSR KSR				

.

•

.

•

· - - • • • • • • •

the state of the second state of the second state of the

,

QUALITY CONTROL SUMMARY									
Type of Quality Control	AES Number	Acceptance Criteria	Analyst Initials						
8100's-Reference Standard	•••	Acceptable	SH						

 \int

2186 Liberty Drive P.O. Box 165 Niagara Falls, NY 14304

TONAWANDA COKE

Report Prepared For

CONESTOGA-ROVERS & ASSOCIATES

August 9, 1991

COMMITMENT TO HONESTY - QUALITY - SERVICE

AES Report FIK

QA/QC Verification

The following report, as well as the supporting data, have been carefully reviewed for accuracy, adherence to the cited methods, and completeness. All data contained in this report was generated in accordance with the AES Laboratory Quality Assurance Quality Control Program.

Denise R. Tuhovak Organics Supervisor

Paul McMah Τ.

Quality Control Officer

Technical Supervisor

Jbseph J. Cyrtis Customer Service Representative

JOB# 912359

Type of Analysis: INORGANICS Client: CONESIOGA-ROVERS & ASSOCIATES

A.E.S. Job Code: FIK Units: mg/l

, 		A.E.S. Lab No Customer ID				
Analytical Parameter(s)	Method No.	Practical Quantifiable Limit	07/19/91	METELD BLANK		
Aluminum – TAL Metal	SW 846 7020	0.20	ND *	N)		
Antimony - TAL Metal	SW 846 7041	0.005	ND	ND		
Arsenic - TAL Metal	SW 846 7060	0.002	0.010	ND		
Barium - TAL Metal	SW 846 7080	0.20	ND	N)		
Beryllium - TAL Metal	SW 846 7090	0.005	ND	ŇD		
Cadmium - TAL Metal	SW 846 7130	0.005	0.019	ND		
alcium - TAL_Metal	SW 846 7140	0.25	361	ND		
hromium - TAL Metal	SW 846 7191	0.002	0.025	ND	-	
obalt - TAL Metal	SW 846 7200	0.05	ND	ND	-	
Copper - TAL Metal	SW 846 7210	0.025	0.157	N)	-	
ron - TAL Metal	SW 846 7380	0.10	160	N)	-	
ead - TAL Metal	SW 846 7421	0.002	0.006	ND	· · · · · · · · · · · · · · · · · · ·	
agnesium – TAL Metal	SW 846 7450	5.00	183	ND		
anganese – TAL Metal	SW 846 7460	0.015	11.2	N)		
ercury - TAL Metal	SW 846 7471	0.0002	0.0007	N)		
ickel - TAL Metal	SW 846 7520	0.040	0.073	N)		

* None Detected.

PAGE 1

Type of Analysis: INORGANICS Client: CONESTOGA-ROVERS & ASSOCIATES

A.E.S. Job Code: FIK Units: mg/l

		A.E.S. Lab No Customer 1D	6039 W-2428-JOS-00			
Analytical Parameter(s)	Method No.	Practical Quantifiable Limit	07/19/91	METHOD BLANK		
Potassium - TAL Metal	SW 846 7610	5.00	5.88	ND		
Selenium - TAL Metal	SW 846 7740	0.002	ND *	ND		
Silver - TAL Metal	SW 846 7760	0.01	0.016	ND	······	
Sodium - TAL Metal	SW 846 7770	5.00	183	ND		
Thallium - TAL Metal	SW 846 7841	0.002	ND	ŇD		
Vanadium - TAL Metal	SW 846 7911	0.003	0.004	ND		
Zinc - TAL Metal	SW 846 7950	0.02	0.03	ND		

FOOTNOTES

* None Detected.

•

QUALITY CONTROL SUMMARY

Type of Quality Control	AES Number	Acceptance Criteria	Analyst Initials
Ind. (Fe) Std.	Spex-2	Acceptable	MLD
Method Blank	4.1.3 N/H	Acceptable	DJM
EPA (Cr) Std.	378	Acceptable	MM
Method Blank	4.1.3 N/H	Acceptable	MM
EPA (TL) Std.	989	Acceptable	MM
Method Blank	4.1.3 N/H	Acceptable	MM
EPA (V) Std.	989	Acceptable	MM
Method Blank	4.1.3 N/H	Acceptable	MM
EPA (Se) Std.	1085	Acceptable	MM
Method Blank	4.1.3 N/H	Acceptable	MM

ADVANCED ENVIRONMENTAL SERVICES, INC.

51

٢

 $\left[\right]$

 $\left(\right)$

 $\left(\right)$

 $\left(\right)$

 $\left[\right]$

 \int

QUALITY CONTROL SUMMARY									
Type of Acceptance Analyst									
Quality Control	AES Number	Criteria	Initials						
Ind. (Be) Std.	Spex-2	Acceptable	MW						
Method Blank	4.1.3 N/H	Acceptable	MW						
EPA (Cd) Std.	1085	Acceptable	DJM						
Method Blank	4.1.3 N/H	Acceptable	DJM						
EPA (Sb) Std.	9 89	Acceptable	MM						
Method Blank	4.1.3 N/H	Acceptable	MM						
Ind. (Na) Std.	Chk. Std.	Acceptable	DJM						
Method Blank	4.1.3 N/H	Acceptable	DJM						
¹ Ind. (Zn) Std.	Spex-1	Acceptable	DJM						
Method Blank	4.1.3 N/H	Acceptable	DJM						
_l EPA (Ca) Std.	686	Acceptable	DJM						
Method Blank	4.1.3 N/H	Acceptable	DJM						
Ind. (Cu) Std.	Spex-1	Acceptable	DJM						
Method Blank	4.1.3 N/H	Acceptable	MLD						
EPA (Ba) Std.	1085	Acceptable	MW						
Method Blank	4.1.3 N/H	Acceptable	MW						
EPA (Mg) Std.	686	Acceptable	MW						
Method Blank	4.1.3 N/H	Acceptable	MW						
EPA (K) Std.	686	Acceptable	MLC						
Method Blank	4.1.3 N/H	Acceptable	MLD						
EPA (Ag) Std.	1085	Acceptable	MLC						
Method Blank	4.1.3 N/H	Acceptable	MLG						
EPA (As) Std.	378	Acceptable	MM						
Method Blank	4.1.3 N/H	Acceptable	MM						
Ind. (Al) Std.	Spex-2	Acceptable	MW						
Method blank	4.1.3 N/H	Acceptable	MW						
Ind. (Ni) Std.	Spex-1	Acceptable	MLD						
Method Blank	4.1.3 N/H	Acceptable	DJM						
Ind. (Mn) Std.	Spex-2	Acceptable	DJM						
Method Blank	4.1.3 N/H	Acceptable	DJM						
EPA (Pb) Std.	1085	Acceptable	MM						
Method Blank	4.1.3 N/H	Acceptable	MM						
EPA (Hg) Std.	378	Acceptable	DM						
Lab Blank	0.5 Nitric	Acceptable	DM						
Ind. (Co) Std.	Spex-2	Acceptable	DIM						
Method Blank	4.1.3 N/H	Acceptable	DJM						

PAGE 2

•									. 5899	
CRA Consul CONESTOGA-R 651 Colby Drive, W	OVERS & A	SSOCIATE o Canada Na	E S 2V 1C2			TO (Laborat				
CHAIN O	F CUS CORD	TODY		NP:	PRO	JECT NAME:				
			2428		70,	NAWANOA		KE .	Co.	
SAMPLER'S SIGNA		- Joh	(SIQN)		-	SAMPLE	AF INERS		REMARKS	
SEQ. SAMPLE N	DATE	TIME	SAMPLE L	OCATOI	V	TYPE	NP OF CONTAINERS		NEMARAS	
W-2428-Jo	5-22 = 7/19/9	0830	HNO	· · · · · ·	\rightarrow	GLOUNDWATER		100	al METAL	
				·				000	METAL	
						bottle is	ha	F F	-u1(
					+					
					+		-+			
ANTICIPATED CHEN	ICAL HAZARDS		TOTAL NUMB	ER UF	CONT	AINERS	/			
		UNKNOW	JN .							
ELINQUISHED BY:	1151	11.	,DAT	E/TIME		RECEIVED BY	<i>.</i>			
	(SIGN)			102	5		эД	Jarc	(SQN)	
ELINQUISHED BY:			DAT	E/TIME		RECEIVED BY				
2	(SIGN)		-			G	<u>3</u> —		(SIGN)	
ELINQUISHED BY:			DAT	E/TIME		RECEIVED BY			<u> </u>	
3-	(SIGN)		-	1			З	((SIGN)	
DDITIONAL SIGNAT HEET REQUIRED									-	
IETHOD OF SHIPME	INT:	SHIPPED	BY:	RE	CEIVE	ED FOR LABOR	ATOR	Y BY.	DATE/TIME	
HANO PANER	ĊD	-		(9	21	arcia Jeu	\cap		7-14.91 10/30	
ONDITION OF SEAL		T:				R OPENED BY:	ϵ		DATE/TIME	
ENERAL CONDITION	OF COOLER:				GN)					
YELLOW -	CRA OFFICE RECEIVING LA CRA LABORA	BORATORY	COPY	(3	un()					
· · · · · · · · · · · · · · · · · · ·	SHIPPERS	URT CUPY					N	12	012142	

Ò

APPENDIX D.3

JULY 1992 WATER/SOILS DATA

CONESTOGA-ROVERS & ASSOCIATES

TONAWANDA COKE

Prepared By:

RVICES INC.

"A Company Dedicated to Honesty, Quality and Service"

QA/QC Verification

The following report, as well as the supporting data, have been carefully reviewed for accuracy, adherence to the cited methods, and completeness. All data contained in this report was generated in accordance with the AES Laboratory Quality Assurance/Quality Control Program.

Tukovet

Denise R. Tuhovak Organics Supervisor

dn

Linda A. Ratka Report Validator

Paul T. McMahon Quality Control Officer

Curtis

Joseph J. Curtis Project Manager

All "Total" results on soil matrices are calculated on a dry weight basis, unless otherwise noted.

The following are standard abbreviations:

- **BQL Below Quantifiable Limits**
- ND None Detected
- NG No Growth of Colonies
- NR Not Requested

CUST SAMPLE ID: W-2428-792-01 COLLECTION DATE(S): 07/06/92

LABORATORY JOB NO: 922460 LABORATORY REFERENCE NO: 17219

COLLECTION METHOD: SAMPLE TYPE: Groundwater

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Total Cyanide	ND	mg/l	0.004		EPA 335.3
Hexavalent Chromium, Total	ND	mg∕l	0.01		EPA 7196
Oil and Grease, Gravimetric	2.2	mg∕l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	BQL	µg∕l		50.0	SW 846 8240
1,2-Dichloroethene (Total)	BQL	µg∕l		5.00	SW 846 8240
1,1,1-Trichloroethane	BQL	µg∕l		5.00	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL	µg∕l		5.00	SW 846 8240
Ethylbenzene	BQL	µg∕l		5.00	SW 846 8240
Total Xylene	BQL	µg∕l		5.00	SW 846 8240
Naphthalene	BQL	µg∕l		10	SW 846 8270
2-Methylnaphthalene	BQL	µg∕l		10	SW 846 8270
Acenaphthylene	BQL	μg/l		10	SW 846 8270
Acenaphthene	BQL	µg∕l		10	SW 846 8270
Fluorene	BQL	µg∕l		10	SW 846 8270
Phenanthrene	BQL	µg∕l		10	SW 846 8270
Anthracene	BQL	µg∕l		10	SW 846 8270
Fluoranthene	BQL	µg∕l		10	SW 846 8270
Pyrene	BQL	µg∕l		10	SW 846 8270
Benzo (a) anthracene	BQL	µg∕l		10	SW 846 8270
Chyrsene	BQL	µg∕l		10	SW 846 8270

PAGE 1

CUST	SAMPLE I	(D:	W-2428-792-01
COLLECTIO	DN DATE(S	S):	07/06/92

LABORATORY JOB NO: 922460 LABORATORY REFERENCE NO: 17219

COLLECTION METHOD:

SAMPLE TYPE: Groundwater

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Benzo (b) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (k) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (a) pyrene	BQL	µg∕l		10	SW 846 8270
Dibenzofuran	BQL	µg∕l		10	SW 846 8270
Benzo (g,h,i) perylene	BQL	µg∕l		10	SW 846 8270
Indeno (1,2,3-cd)pyrene	BQL	µg∕l		10	SW 846 8270
2-Chloronaphthalene	BQL	μg/l		10	SW 846 8270

CUST SAMPLE ID: W-2428-792-02 COLLECTION DATE(S): 07/06/92

LABORATORY JOB NO: 922460 LABORATORY REFERENCE NO: 17220

COLLECTION METHOD:

SAMPLE TYPE: Groundwater

			Method	Practical	
Analytical Parameters	Analytical Results	Units	Detection Limits	Quantifiable Limit	Method
Total Cyanide	0.004	mg/l	0.004		EPA 335.3
Hexavalent Chromium, Total	ND	mg∕l	0.01		EPA 7196
Oil and Grease, Gravimetric	2.2	mg/l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	76.0	µg∕l		50.0	SW 846 8240
1,2-Dichloroethene (Total)	BQL	µg∕l		5.00	SW 846 8240
1,1,1-Trichloroethane	BQL	µg/l		5.00	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL	µg∕l		5.00	SW 846 8240
Ethylbenzene	BQL	µg∕l		5.00	SW 846 8240
Total Xylene	BQL	µg∕l		5.00	SW 846 8240
Naphthalene	BQL	µg∕l		10	SW 846 8270
2-Methylnaphthalene	BQL	µg∕l		10	SW 846 8270
Acenaphthylene	16	µg∕l		10	SW 846 8270
Acenaphthene	BQL	µg∕l	•••	10	SW 846 8270
Fluorene	17	µg∕l		10	SW 846 8270
Phenanthrene	55	µg∕l		10	SW 846 8270
Anthracene	17	µg∕l		10	SW 846 8270
Fluoranthene	57	µg∕l		10	SW 846 8270
Pyrene	57	µg∕l		10	SW 846 8270
Benzo (a) anthracene	31	µg∕l		10	SW 846 8270
Chyrsene	31	µg∕l		10	SW 846 8270

CUST SAMPLE ID: W-2428-792-02 COLLECTION DATE(S): 07/06/92

LABORATORY JOB NO: 922460 LABORATORY REFERENCE NO: 17220

COLLECTION METHOD: SA

AMPLE	TYPE: Groundwater		
	Method Analytical Detection	Practical Quantifiable	

Analytical Parameters	Analytical Results	Units	Detection	Quantifiable	Method
Benzo (b) fluoranthene	26	µg∕l		10	SW 846 8270
Benzo (k) fluoranthene	26	µg∕l		10	SW 846 8270
Benzo (a) pyrene	29	µg∕l		10	SW 846 8270
Dibenzofuran	11	µg∕l		10	SW 846 8270
Benzo (g,h,i) perylene	BQL	µg∕l		10	SW 846 8270
Indeno (1,2,3-cd)pyrene	BQL	µg∕l		10	SW 846 8270
2-Chloronaphthalene	BQL	µg∕l		10	SW 846 8270

CUST SAMPLE ID: METHOD BLANK #1

LABORATORY JOB NO: 922460

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method		
Total Cyanide	ND	mg∕l	0.004		EPA 335.3		
Hexavalent Chromium, Total	ND	mg∕l	0.01		EPA 7196		
Oil and Grease, Gravimetric	ND	mg/l	1.0		SM 503A		
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240		
Acetone	BQL	µg∕l		50.0	SW 846 8240		
1,2-Dichloroethene (Total)	BQL	µg∕l		5.00	SW 846 8240		
1,1,1-Trichloroethane	BQL	µg∕l		5.00	SW 846 8240		
Benzene	BQL	µg∕l		5.00	SW 846 8240		
Toluene	BQL	µg∕l		5.00	SW 846 8240		
Ethylbenzene	BQL	µg∕l		5.00	SW 846 8240		
Total Xylene	BQL	µg∕l		5.00	SW 846 8240		
Naphthalene	BQL	µg/l		10	SW 846 8270		
2-Methylnaphthalene	BQL	µg∕l		10	SW 846 8270		
Acenaphthylene	BQL	µg∕l		10	SW 846 8270		
Acenaphthene	BQL	µg∕l		10	SW 846 8270		
Fluorene	BQL	µg∕l		10	SW 846 8270		
Phenanthrene	BQL	µg∕l		10	SW 846 8270		
Anthracene	BQL	µg∕l		10	SW 846 8270		
Fluoranthene	BQL	µg∕l		10	SW 846 8270		
Pyrene	BQL	µg∕l		10	SW 846 8270		
Benzo (a) anthracene	BQL	µg∕l		10	SW 846 8270		
Chyrsene	BQL	µg∕l		10	SW 846 8270		

٠

PAGE 5

CUST SAMPLE ID: METHOD BLANK #1

Practical Method Analytical Detection Quantifiable Analytical Method Units Limit Parameters Results Limits µg∕l BQL - - -10 SW 846 8270 Benzo (b) fluoranthene BQL - - -10 SW 846 8270 Benzo (k) fluoranthene µg/l BQL µg/l - - -10 SW 846 8270 Benzo (a) pyrene 10 BQL µg/l - - -SW 846 8270 Dibenzofuran BQL µg/l • • • 10 SW 846 8270 Benzo (g,h,i) perylene 10 SW 846 8270 Indeno (1,2,3-cd)pyrene BQL µg/l ---10 SW 846 8270 2-Chloronaphthalene BQL µg/l ...

PAGE 1

JOB# 922460

Type of Analysis: SURROGATE RECOVERIES #1 Client Name: Conestoga-Rovers & Associates

.

A.E.S. Job Code: FIK

Units: Percent (%)

i

	A.E.S. Lab Number Customer ID	. 17219 . W-2428-792-01	17220 W-2428-792-02		
Analytical Parameter(s)	Method No.	Acceptable Limits	07/06/92	07/06/92	
2-Fluorophenol	SW 846 8270	21-100	54	48	
Phenol-d6	SW 846 8270	10-94	46	45	
2,4,6-Trichlorophenol	SW 846 8270	10-123	71	56	<u> </u>
Nitrobenzene-d5	SW 846 8270	35-114	68	68	
2-Fluorobiphenyl	SW 846 8270	43-116	62	67	
Terphenyl-d14	SW 846 8270	33-141	65	80	 · · · · · · · · · · · · · · · · · · ·
1,2-Dichloroethane-d4	SW 846 8240	76-114	108	105	
Toluene-d8	SW 846 8240	88-110	103	107	
4-Bromofluorobenzene	SW 846 8240	86-115	104	106	· · · · · · · · · · · · · · · · · · ·

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Independent Standards #1

A.E.S. Job Code: FIK Units: mg/l

g/l

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
Hexavalent Chromium		Independent Standard	0.98	1.00	NONE	98
Cyanide		EPA	0.45	0.50	NONE	90
Oil & Grease		Independent Standard	27		28	96

* % Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / Added Spike Concentration) If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

JOB# 922460

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Independent Standards #1

A.E.S. Job Code: FIK Units: µg/l,ppb

Analytical Sample Observed Original Added Percent Parameters No. Type Concentration Concentration Concentration Recovery* Phenol ---Independent Standard 62.1 ---100 62 2-Chlorophenol ---Independent Standard 83.9 ---100 84 1,4-Dichlorobenzene ---Independent Standard 77.6 ---100 78 N-Nitrosodipropylamine ---Independent Standard 97.6 ---100 98 1,2,4-Trichlorobenzene ---Independent Standard 78.7 - - -100 79 4-Chloro-3-Methylphenol ---Independent Standard 85.8 - - -100 86 Acenaphthene ---Independent Standard 87.3 - - -100 87 4-Nitrophenol - - -Independent Standard 61.9 ---100 62 2,4-Dinitrotoluene - - -Independent Standard 116 ---100 116 Pentachlorophenol - - -Independent Standard 88.3 ... 100 88 Pyrene • • • Independent Standard 100 - - -100 100

* % Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / Added Spike Concentration)
 If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

CUST SAMPLE ID: W-2428-792-03 COLLECTION DATE(S): 07/07/92

LABORATORY JOB NO: 922530 LABORATORY REFERENCE NO: 17364

COLLECTION METHOD: SAMPLE TYPE: Groundwater

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Total Cyanide	0.040	mg/l	0.004		EPA 335.3
Hexavalent Chromium, Total	ND	mg∕l	0.01		EPA 7196
Oil and Grease, Gravimetric	ND	mg/l	1.0		SM 503A
Methylene chloride	BQL	µg/l	•••	10.0	SW 846 8240
Acetone	BQL	µg∕l		50.0	SW 846 8240
1,2-Dichloroethene (Total)	BQL	µg∕l		5.00	SW 846 8240
1,1,1-Trichloroethane	BQL	µg∕l		5.00	SW 846 8240
Benzene	BQL	µg∕l	••••	5.00	SW 846 8240
Toluene	BQL	µg∕l	•••	5.00	SW 846 8240
Ethylbenzene	BQL	µg∕l		5.00	SW 846 8240
Total Xylene	BQL	µg∕l		5.00	SW 846 8240
Naphthalene	BQL	µg∕l	•••	10	SW 846 8270
2-Methylnaphthalene	BQL	µg∕l		10	SW 846 8270
Acenaphthylene	BQL	µg∕l		10	SW 846 8270
Acenaphthene	BQL	µg∕l		10	SW 846 8270
Fluorene	BQL	µg∕l	•••	10	SW 846 8270
Phenanthrene	BQL	µg∕l		10	SW 846 8270
Anthracene	BQL	µg∕l		10	SW 846 8270
Fluoranthene	BQL	µg∕l		10	SW 846 8270
^o yrene	BQL	µg∕l		10	SW 846 8270
Benzo (a) anthracene	BQL	µg∕l		10	SW 846 8270
Chyrsene	BQL	µg/l		10	SW 846 8270

PAGE 1

CUST SAMPLE ID: W-2428-792-03 COLLECTION DATE(S): 07/07/92

LABORATORY JOB NO: 922530 LABORATORY REFERENCE NO: 17364

COLLECTION METHOD:

SAMPLE TYPE: Groundwater

LABORATORY	REFERENCE	NO:	17

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Benzo (b) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (k) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (a) pyrene	BQL	µg/l		10	SW 846 8270
Dibenzofuran	BQL	µg∕l		10	SW 846 8270
Benzo (g,h,i) perylene	BQL	µg∕l		10	SW 846 8270
Indeno (1,2,3-cd)pyrene	BQL	µg∕l		10	SW 846 8270
2-Chloronaphthalene	BQL	µg∕l		10	SW 846 8270

•

CUST SAMPLE ID: W-2428-792-04 COLLECTION DATE(S): 07/07/92

LABORATORY JOB NO: 922530 LABORATORY REFERENCE NO: 17365

COLLECTION METHOD:

SAMPLE TYPE: Groundwater

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Total Cyanide	0.037	mg/l	0.004		EPA 335.3
Hexavalent Chromium, Total	ND	mg∕l	0.01		EPA 7196
Oil and Grease, Gravimetric	ND	mg/l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	BQL	µg∕l		50.0	SW 846 8240
1,2-Dichloroethene (Total)	BQL	µg∕l		5.00	SW 846 8240
1,1,1-Trichloroethane	BQL	µg∕l		5.00	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL	µg/l		5.00	SW 846 8240
Ethylbenzene	BQL	µg/l		5.00	SW 846 8240
Total Xylene	BQL	µg∕l		5.00	SW 846 8240
Naphthalene	BQL	µg/l		10	SW 846 8270
2-Methylnaphthalene	BQL	µg∕l		10	SW 846 8270
Acenaphthylene	BQL	µg∕l		10	SW 846 8270
Acenaphthene	BQL	µg∕l		10	SW 846 8270
fluorene	BQL	µg∕l		10	SW 846 8270
Phenanthrene	BQL	µg∕l		10	SW 846 8270
Anthracene	BQL	µg∕l		10	SW 846 8270
Fluoranthene	BQL	µg∕l		10	SW 846 8270
Pyrene	BQL	µg∕l		10	SW 846 8270
Benzo (a) anthracene	BQL	µg∕l		10	SW 846 8270
Chyrsene	BQL	µg∕l		10	SW 846 8270

CUST SAMPLE ID: W-2428-792-04 COLLECTION DATE(S): 07/07/92

LABORATORY JOB NO: 922530 LABORATORY REFERENCE NO: 17365

COLLECTION METHOD:

SAMPLE TYPE: Groundwater

Method Practical

Analytical Parameters	Analytical Results	Units	Detection Limits	Quantifiable Limit	Method
Benzo (b) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (k) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (a) pyrene	BQL	µg∕l		10	SW 846 8270
Dibenzofuran	BQL	µg∕l		10	SW 846 8270
Benzo (g,h,i) perylene	BQL	µg∕l		10	SW 846 8270
Indeno (1,2,3-cd)pyrene	BQL	µg∕l		10	SW 846 8270
2-Chloronaphthalene	BQL	µg∕l		10	SW 846 8270

PAGE 4

CUST SAMPLE ID: W-2428-792-05 COLLECTION DATE(S): 07/07/92

LABORATORY JOB NO: 922530 LABORATORY REFERENCE NO: 17366

COLLECTION METHOD: SAMPLE TYPE: Groundwater

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical	Method
Total Cyanide	0.026	mg∕l	0.004		EPA 335.3
Hexavalent Chromium, Total	ND	mg/l	0.01		EPA 7196
Oil and Grease, Gravimetric	ND	mg/l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	BQL	µg∕l		50.0	SW 846 8240
1,2-Dichloroethene (Total)	BQL	µg∕l		5.00	SW 846 8240
1,1,1-Trichloroethane	BQL	µg∕l		5.00	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL	µg∕l		5.00	SW 846 8240
Ethylbenzene	BQL	µg∕l		5.00	SW 846 8240
Total Xylene	BQL	µg∕l		5.00	SW 846 8240
Naphthalene	BQL	µg∕l		10	SW 846 8270
2-Methylnaphthalene	BQL	µg∕l		10	SW 846 8270
Acenaphthylene	BQL	µg∕l		10	SW 846 8270
Acenaphthene	BQL	µg∕l		10	SW 846 8270
Fluorene	BQL	µg∕l	•••	10	SW 846 8270
Phenanthrene	BQL	µg∕l		10	SW 846 8270
Anthracene	BQL	µg∕l		10	SW 846 8270
Fluoranthene	BQL	µg∕l		10	SW 846 8270
Pyrene	BQL	µg∕l		10	SW 846 8270
Benzo (a) anthracene	BQL	µg∕l		10	SW 846 8270
Chyrsene	BQL	µg∕l		10	SW 846 8270

CUST SAMPLE ID: W-2428-792-05 COLLECTION DATE(S): 07/07/92

LABORATORY JOB NO: 922530 LABORATORY REFERENCE NO: 17366

COLLECTION METHOD: SAMPLE TYPE: Groundwater

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Benzo (b) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (k) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (a) pyrene	BQL	µg∕l		10	SW 846 8270
Dibenzofuran	BQL	µg∕l		10	SW 846 8270
Benzo (g,h,i) perylene	BQL	µg∕l		10	SW 846 8270
Indeno (1,2,3-cd)pyrene	BQL	µg∕l		10	SW 846 8270
2-Chloronaphthalene	BQL	μg/l		10	SW 846 8270

CUST SAMPLE ID: W-2428-792-06 COLLECTION DATE(S): 07/07/92

LABORATORY JOB NO: 922530 LABORATORY REFERENCE NO: 17367

COLLECTION METHOD: SAMPLE TYPE: Groundwater

Analytical	Analytical		Method Detection	Practical Quantifiable	
Parameters	Results	Units	Limits	Limit	Method
Total Cyanide	ND	mg∕l	0.004		EPA 335.3
Hexavalent Chromium, Total	ND	mg/l	0.01		EPA 7196
Oil and Grease, Gravimetric	ND	mg/l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	BQL	µg∕l	•••	50.0	SW 846 8240
1,2-Dichloroethene (Total)	BQL	µg∕l		5.00	SW 846 8240
1,1,1-Trichloroethane	BQL	µg∕l		5.00	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL	µg∕l		5.00	SW 846 8240
Ethylbenzene	BQL	µg∕l		5.00	SW 846 8240
Total Xylene	BQL	µg∕l		5.00	SW 846 8240
Naphthalene	BQL	µg∕l		10	SW 846 8270
2-Methylnaphthalene	BQL	µg∕l		10	SW 846 8270
Acenaphthylene	BQL	µg∕l		10	SW 846 8270
Acenaphthene	BQL	µg∕l		10	SW 846 8270
Fluorene	BQL	µg∕l		10	SW 846 8270
Phenanthrene	BQL	μg/l		10	SW 846 8270
Anthracene	BQL	µg∕l		10	SW 846 8270
Fluoranthene	BQL	µg∕l		10	SW 846 8270
oyrene	BQL	µg∕l		10	SW 846 8270
Senzo (a) anthracene	BQL	µg∕l		10	SW 846 8270
Chyrsene	BQL	µg∕l		10	SW 846 8270

CUST SAMPLE ID: W-2428-792-06 COLLECTION DATE(S): 07/07/92

LABORATORY JOB NO: 922530 LABORATORY REFERENCE NO: 17367

COLLECTION METHOD:

SAMPLE TYPE: Groundwater

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Benzo (b) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (k) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (a) pyrene	BQL	µg∕l		10	SW 846 8270
Dibenzofuran	BQL	µg∕l		10	SW 846 8270
Benzo (g,h,i) perylene	BQL	µg∕l		10	SW 846 8270
Indeno (1,2,3-cd)pyrene	BQL	µg∕l		10	SW 846 8270
2-Chloronaphthalene	BQL	µg∕l		. 10	SW 846 8270

PAGE 8

CUST SAMPLE ID: METHOD BLANK #2

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Total Cyanide	ND	mg/l	0.004		EPA 335.3
Hexavalent Chromium, Total	ND	mg∕l	0.01		EPA 7196
Oil and Grease, Gravimetric	ND	mg/l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	BQL	µg∕l		50.0	SW 846 8240
1,2-Dichloroethene (Total)	BQL	µg∕l		5.00	SW 846 8240
1,1,1-Trichloroethane	BQL	µg∕l	•••	5.00	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL	µg∕l		5.00	SW 846 8240
Ethylbenzene	BQL	µg∕l		5.00	SW 846 8240
Total Xylene	BQL	µg∕l		5.00	SW 846 8240
Naphthalene	BQL	μg/l		10	SW 846 8270
2-Methylnaphthalene	BQL	µg∕l		10	SW 846 8270
Acenaphthylene	BQL	µg∕l		10	SW 846 8270
Acenaphthene	BQL	µg∕l		10	SW 846 8270
fluorene	BQL	µg∕l		10	SW 846 8270
Phenanthrene	BQL	µg∕l		10	SW 846 8270
Anthracene	BQL	µg∕l	•••	10	SW 846 8270
Fluoranthene	BQL	µg∕l		10	SW 846 8270
Pyrene	BQL	µg∕l		10	SW 846 8270
Benzo (a) anthracene	BQL	µg∕l		10	SW 846 8270
Chyrsene	BQL	µg/l	•••	10	SW 846 8270

CUST SAMPLE ID: METHOD BLANK #2

PAGE 10

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Benzo (b) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (k) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (a) pyrene	BQL	µg∕l		10	SW 846 8270
Dibenzofuran	BQL	µg/l		10	SW 846 8270
Benzo (g,h,i) perylen e	BQL	µg/l		10	SW 846 8270
Indeno (1,2,3-cd)pyrene	BQL	µg∕l		10	SW 846 8270
2-Chloronaphthalene	BQL	µg∕l	•••	10	SW 846 8270

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

PAGE 1

JOB# 922530

Type of Analysis: SURROGATE RECOVERIES #2 Client Name: Conestoga-Rovers & Associates

A.E.S. Job Code: FIK Units: Percent (%)

		17364 W-2428-792-03	17365 W-2428-792-04	17366 W-2428-792-05	17367 W-2428-792-06	
Analytical Parameter(s)	Method No.	Practical Quantifiable Limit	07/07/92	07/07/92	07/07/92	07/07/92
2-Fluorophenol	SW 846 8270	21.100	•			
		21-100	34	54	51	49
Phenol-dó	SW 846 8270	10-94	33	48	44	44
2,4,6-Tribromophenol	SW 846 8270	10-123	64	63	59	59
Nitrobenzene-d5	SW 846 8270	35-114	61	79	73	65
2-Fluorobiphenyl	SW 846 8270	43-116	67	74	71	65
Terphenyl-d14	SW 846 8270	33-141	65	71	69	61
1,2-Dichloroethane-d4	SW 846 8240	76-114	100	105	102	104
Toluene	SW 846 8240	88-110	106	107	107	104
4-Bromofluorobenzene	SW 846 8240	86-115	104	104	104	103

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Matrix Spike and Independent Standards #2

A.E.S. Job Code: FIK Units: mg/l

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
Hexavalent Chromium	17274	Matrix Spike	1.03	ND	1.00	103
Hexavalent Chromium	17274	Matrix Spike Dup	1.02	ND	1.00	102
Hexavalent Chromium		Independent Standard	1.00	1.00	NONE	100
Cyanide	17274	Analytical Spike **	0.256	0.040	0.200	108
Cyanide		EPA	0.45	0.50	NONE	90
Oil & Grease, Gravimetric	17364	Matrix Spike	20	ND	20	100
Oil & Grease, Gravimetric	17364	Matrix Spike Dup	38	ND	40	95
Oil & Grease, Gravimetric		Independent Standard	49		50	98

* % Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / Added Spike Concentration)

If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

FOOTNOTES

** Matrix spike was not performed due to matrix interferences in sample. An analytical spike was performed instead.

100

100

88

100

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Matrix Spike and Independent Standards #2

- - -

Pentachlorophenol

Pyrene

A.E.S. Job Code: FIK Units: µg/l,ppb

- - -

- - -

Analytical Sample Observed Original Added Percent Parameters No. Type Concentration Concentration Concentration Recovery* Phenol - - -Independent Standard 62.1 ---100 62 2-Chlorophenol - - -Independent Standard 83.9 ... 100 84 1,4-Dichlorobenzene - - -Independent Standard 77.6 ... 100 78 N-Nitrosodipropylamine ... Independent Standard 97.6 . . . 100 98 1,2,4-Trichlorobenzene - - -Independent Standard 78.7 - - -100 79 4-Chloro-3-Methylphenol - - -Independent Standard 85.8 ... 100 86 Acenaphthene - - -Independent Standard 87.3 - - -100 87 4-Nitrophenol - - -Independent Standard 61.9 - - -100 62 2,4-Dinitrotoluene Independent Standard ---116 - - -100 116

Independent Standard

Independent Standard

* % Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / Added Spike Concentration) If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

88.3

JOB# 922530

50.0

50.0

50.0

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Matrix Spike and Independent Standards #2

--- .

- - -

- - -

Benzene

Toluene

Chlorobenzene

A.E.S. Job Code: FIK Units: µg/l,ppb

- - -

...

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
1,1-Dichloroethene	17364	Matrix Spike	58.7	BQL	50.0	117
Trichloroethene	17364	Matrix Spike	45.2	BQL	50.0	90
Benzene	17364	Matrix Spike	. 53.2	BQL	50.0	106
Toluene	17364	Matrix Spike	49.4	BQL	50.0	99
Chlorobenzene	17364	Matrix Spike	48.7	BQL	50.0	97
1,1-Dichloroethene	17364	Matrix Spike Dup	58.4	BQL	50.0	117
Trichloroethene	17364	Matrix Spike Dup	44.0	BQL	50.0	88
Benzene	17364	Matrix Spike Dup	52.6	BQL	50.0	105
Toluene	17364	Matrix Spike Dup	49.6	BQL	50.0	99
Chlorobenzene	17364	Matrix Spike Dup	48.1	BQL	50.0	96
,1-Dichloroethene		Independent Standard	57.5		50.0	115
Trichloroethene		Independent Standard	44.2		50.0	88

Independent Standard

Independent Standard

Independent Standard

% Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / Added Spike Concentration) * If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

51.2

50.6

49.9

PAGE 3

102

101

JOB# 922530

.....

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Matrix Spike and Independent Standards #2

.

A.E.S. Job Code: FIK

Units: µg/l

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
Phenol	17364	Matrix Spike	95.5	BQL	200	48
2-Chlorophenol	17364	Matrix Spike	130	BQL	200	65
1,4-Dichlorobenzene	17364	Matrix Spike	75.6	BQL.	100	76
N-Nitrosodipropylamine	17364	Matrix Spike	92.6	BQL	100	. 93
1,2,4-Trichlorobenzene	17364	Matrix Spike	82.8	BQL	100	83
4-Chloro-3-Methylphenol	17364	Matrix Spike	148	BQL	200	74
Acenaphthene	17364	Matrix Spike	81.4	BQL	100	81
4-Nitrophenol	17364	Matrix Spike	81.2	BQL	200	41
2,4-Dinitrotoluene	17364	Matrix Spike	109	BQL	100	109
Pentachlorophenol	17364	Matrix Spike	178	BQL	200	89
Pyrene	17364	Matrix Spike	82.1	BQL	100	82
Phenol	17364	Matrix Spike Dup	102	BQL	200	51
2-Chlorophenol	17364	Matrix Spike Dup	136	BQL	200	68
1,4-Dichlorobenzene	17364	Matrix Spike Dup	83.3	BQL	100	83
N-Nitrosodipropylamine	17364	Matrix Spike Dup	104	BQL	100	104
1,2,4-Trichlorobenzene	17364	Matrix Spike Dup	84.4	BQL	100	84

* % Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / "Spike" Added Concentration)

* If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

=====

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Matrix Spike and Independent Standards #2

A.E.S. Job Code: FIK

Units: µg/l

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
4-Chloro-3-Methylphenol	17364	Matrix Spike Dup	147	BQL	200	74
Acenaphthene	17364	Matrix Spike Dup	85.5	BQL	100	86
4-Nitrophenol	17364	Matrix Spike Dup	77.6	BQL	200	39
2,4-Dinitrotoluene	17364	Matrix Spike Dup	106	BQL	100	106
Pentachlorophenol	17364	Matrix Spike Dup	166	BQL	200	83
Pyrene	17364	Matrix Spike Dup	111	BQL	100	

* X Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / Added Spike Concentration) If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

JOB# 922530

ADVANCED ENVIRONMENTAL SERVICES LABORATORY REPORT

CUST SAMPLE ID: W-2428-792-17 COLLECTION DATE(S): 07/09/92

COLLECTION METHOD: SAMPLE TYPE: Groundwater

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Total Cyanide	0.006	mg/l	0.004		EPA 335.3
Hexavalent Chromium, Total	ND	mg∕l	0.01		EPA 7196
Oil and Grease, Gravimetric	9.1	mg∕l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	BQL	µg∕l		50.0	SW 846 8240
1,2-Dichloroethene (Total)	BQL	µg∕l		5.00	SW 846 8240
1,1,1-Trichloroethane	BQL	µg∕l	•••	5.00	SW 846 8240
Benzene	BQL	µg/l		5.00	SW 846 8240
Toluene	BQL	µg∕l		5.00	SW 846 8240
Ethylbenzene	BQL	µg∕l		5.00	SW 846 8240
Total Xylene	BQL	µg∕l		5.00	SW 846 8240
Naphthalene	BQL	µg∕l		10	SW 846 8270
2-Methylnaphthalene	BQL	µg∕l		10	SW 846 8270
Acenaphthylene	BQL	µg∕l		10	SW 846 8270
Acenaphthene	BQL	µg∕l		10	SW 846 8270
Fluorene	BQL	µg∕l		10	SW 846 8270
Phenanthrene	BQL	µg∕l		10	SW 846 8270
Anthracene .	BQL	µg∕l		10	SW 846 8270
Fluoranthene	BQL	µg∕l		10	SW 846 8270
Pyrene	BQL	µg∕l		10	SW 846 8270
Benzo(a)anthracene	BQL	µg∕l		10	SW 846 8270
Chrysene	BQL	µg∕l		10	SW 846 8270

PAGE 1

LABORATORY JOB NO: 922510 LABORATORY REFERENCE NO: 17313

CUST SAMPLE ID: W-2428-792-17 COLLECTION DATE(S): 07/09/92

LABORATORY JOB NO: 922510 LABORATORY REFERENCE NO: 17313

COLLECTION METHOD: SAMPLE TYPE: Groun

LE	TYPE:	Groundwater

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Benzo(b)fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo(k)fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo(a)pyrene	BQL	µg/l		10	SW 846 8270
Dibenzofuran	BQL	µg∕l		10	S₩ 846 8270
Benzo(g,h,i)perylene	BQL	µg∕l		10	SW 846 8270
Indeno (1,2,3-cd)pyrene	BQL	µg∕l		10	SW 846 8270
2-Chloronaphthalene	BQL	μg/l		10	SW 846 8270

CUST SAMPLE ID: W-2428-792-18 COLLECTION DATE(S): 07/09/92

LABORATORY JOB NO: 922510 LABORATORY REFERENCE NO: 17314

COLLECTION METHOD:

SAMPLE TYPE: Groundwater

·					
Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Total Cyanide	0.004	mg∕l	0.004		EPA 335.3
Hexavalent Chromium, Total	ND	mg∕l	0.01		EPA 7196
Oil and Grease, Gravimetric	8.3	mg/l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		50.0	SW 846 8240
Acetone	685	µg/l		5.00	SW 846 8240
1,2-Dichloroethene (Total)	BQL	µg∕l		5.00	SW 846 8240
1,1,1-Trichloroethane	BQL	µġ∕l		5.00	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL	µg∕l		5.00	SW 846 8240
Ethylbenzene	BQL	µg∕l		5.00	SW 846 8240
Total Xylene	BQL	µg∕l		5.00	SW 846 8240
Naphthalene	BQL	µg∕l	••••	10	SW 846 8270
2-Methylnaphthalene	BQL	μg/l		10	SW 846 8270
Acenaphthylene	BQL	µg∕l		10	SW 846 8270
Acenaphthene	BQL	µg∕l	•••	10	SW 846 8270
Fluorene	BQL	µg∕l		10	SW 846 8270
Phenanthrene	BQL	µg/l		10	SW 846 8270
Anthracene	BQL	µg∕l	•	10	SW 846 8270
Fluoranthene	BQL	µg∕l		10	SW 846 8270
Pyrene	BQL	µg∕l		10	SW 846 8270
Benzo (a) anthracen e	BQL	µg∕l		10	SW 846 8270
Chyrsene	BQL	µg∕l		10	SW 846 8270

CUST SAMPLE ID: W-2428-792-18 COLLECTION DATE(S): 07/09/92

LABORATORY JOB NO: 922510 LABORATORY REFERENCE NO: 17314

COLLECTION METHOD: SAMPLE TYPE: Groundwater

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Benzo (b) fluoranthene	BQL	µg/l		10	SW 846 8270
Benzo (k) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (a) pyrene	BQL	µg∕l		10	SW 846 8270
Dibenzofuran	BQL	µg∕l		10	SW 846 8270
Benzo (g,h,i) perylene	BQL	µg∕l		10	SW 846 8270
Indeno (1,2,3-cd)pyrene	BQL	µg∕l		10	SW 846 8270
2-Chloronaphthalene	BQL	µg∕l		10	SW 846 8270

CUST SAMPLE ID: METHOD BLANK #3

```
LABORATORY JOB NO: 922510
```

.

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Total Cyanide	ND	mg/l	0.004		EPA 335.3
Hexavalent Chromium, Total	ND	mg/l	0.01		EPA 7196
Oil and Grease, Gravimetric	ND	mg/l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	BQL	µg∕l	•••	50.0	SW 846 8240
1,2-Dichloroethene (Total)	BQL	µg∕l		5.00	SW 846 8240
1,1,1-Trichloroethane	. BQL	µg∕l		5.00	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL	µg∕l		5.00	SW 846 8240
Ethylbenzene	BQL	µg∕l		5.00	SW 846 8240
Total Xylene	BQL	µg∕l	•••	5.00	SW 846 8240
Naphthalene	BQL	µg∕l		10	SW 846 8270
2-Methylnaphthalene	BQL	µg∕l		10	SW 846 8270
Acenaphthylene	BQL	µg∕l	•••	10	SW 846 8270
Acenaphthene	BQL	µg∕l	•••	10	SW 846 8270
Fluorene	BQL	µg∕l		10	SW 846 8270
Phenanthrene	BQL	µg∕l		10	SW 846 8270
Anthracene	BQL	µg∕l		10	SW 846 8270
Fluoranthene	BQL	µg∕l		10	SW 846 8270
byrene	BQL	µg∕l		10	SW 846 8270
Senzo (a) anthracene	BQL	µg∕l	•••	10	SW 846 8270
Chyrsene	BQL	μg/l		10	SW 846 8270

CUST SAMPLE ID: METHOD BLANK #3

LABORATORY JOB NO: 922510

			Method	Practical	
Analytical Parameters	Analytical Results	Units	Detection Limits	Quantifiable Limit	Method
Benzo (b) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (k) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (a) pyrene	BQL	µg∕l		10	SW 846 8270
Dibenzofuran	BQL	µg∕l		10	SW 846 8270
Benzo (g,h,i) perylene	BQL	µg∕l		10	SW 846 8270
Indeno (1,2,3-cd)pyrene	BQL	µg∕l		10	SW 846 8270
2-Chloronaphthalene	BQL	µg/l		10	SW 846 8270

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

PAGE 1

JOB# 922510

Type of Analysis: SURROGATE RECOVERIES #3 Client Name: Conestoga-Rovers & Associates

A.E.S. Job Code: FIK Units: Percent (%)

		A.E.S. Lab Number. Customer ID.	17313 W-2428-792-17	17314 W-2428-792-18		1
Analytical Parameter(s)	Method No.	Practical Quantifiable Limit	07/09/92	07/09/92		
2-Fluorophenol	SW 846 8270	21-100	59	60		+
Phenol-d6	SW 846 8270	10-94	52	52		
2,4,6-Tribromophenol	SW 846 8270	10-123	62	63		-
Nitrobenzene-d5	SW 846 8270	35-114	79	78		
2-Fluorobiphenyl	SW 846 8270	43-116	78	84	······································	
Tetrphenyl-d14	SW 846 8270	33-141	78	86		-
1,2-Dichloroethane-d4	SW 846 8240	76-114	101	109		
Toluene-d8	SW 846 8240	88-110	105	106		
4-Bromofluorobenzene	SW 846 8240	86-115	102	104		

JOB# 922510

۰.

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Independent Standards #3

A.E.S. Job Code: FIK Units: mg/l

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
Hexavalent Chromium		Independent Standard	0.99	1.00	NONE	99
Cyanide		Independent Standard	0.45	0.50	NONE	90
Oil & Grease, Gravimetric		Independent Standard	28		· 28	100

* % Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / Added Spike Concentration) If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

PAGE 2

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Independent Standards #3

.

A.E.S. Job Code: FIK Units: µg/l,ppb

Analytical	Sample		Observed	Original	Added	Percent
Parameters	No.	Туре	Concentration	Concentration	Concentration	Recovery*
1,1-Dichloroethene		Independent Standard	62.6	BQL	50.0	125
Trichloroethene		Independent Standard	44.8	BQL	50.0	90
Benzene		Independent Standard	52.1	BQL	50.0	104
Toluene		Independent Standard	48.9	BQL	50.0	98
Chlorobenzene		Independent Standard	48.8	BQL	50.0	98
Phenol		Independent Standard	117	BQL	200	58
2-Chlorophenol		Independent Standard	140	BQL	200	70
1,4-Dichlorobenzene		Independent Standard	82.8	BQL	100	83
N-Nitrosodipropylamine		Independent Standard	96.7	BQL	100	97
1,2,4-Trichlorobenzene		Independent Standard	86.9	BQL	100	87
4-Chloro-3-Methylphenol		Independent Standard	151	BQL	200	76
Acebaphthene		Independent Standard	84.1	BQL	100	84
4-Nitrophenol		Independent Standard	101	BQL	200	50
2,4-Dinitrotoluene		Independent Standard	98.7	BQL	100	99
Pentachlorophenol		Independent Standard	163	BQL	200	82
^o yrene		Independent Standard	96.1	BQL	100	96

ADVANCED ENVIRONMENTAL SERVICES LABORATORY REPORT

CUST SAMPLE ID: W-2428-792-19 COLLECTION DATE(S): 07/10/92

LABORATORY JOB NO: 922512 LABORATORY REFERENCE NO: 17316

COLLECTION METHOD:

SAMPLE TYPE: Groundwater

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Total Cyanide	0.008	mg∕l	0.004		EPA 335.3
Hexavalent Chromium, Total	ND	mg∕l	0.01		EPA 7196
		·			
Oil and Grease, Gravimetric	ND	mg/l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	BQL	µg∕l		50.0	SW 846 8240
1,2-Dichloroethene (Total)	BQL	µg∕l		5.00	SW 846 8240
1,1,1-Trichloroethane	BQL	µg∕l		5.00	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL	µg∕l		5.00	SW 846 8240
Ethylbenzene	BQL	µg∕l		5.00	SW 846 8240
Total Xylene	BQL	µg∕l		5.00	SW 846 8240
<u> </u>					
Naphthalene	BQL	µg∕l		10	SW 846 8270
2-Methylnaphthalene	BQL	µg∕l		10	SW 846 8270
Acenaphthylene	BQL	µg∕l		10	SW 846 8270
Acenaphthene	BQL	µg∕l		10	SW 846 8270
Fluorene	BQL	µg∕l		10	SW 846 8270
Phenanthrene	BQL	µg∕l		10	SW 846 8270
Anthracene	BQL	µg∕l		10	SW 846 8270
Fluoranthene	BQL	µg∕l		10	SW 846 8270
Pyrene	BQL	µg∕l		10	SW 846 8270
Benzo (a) anthracene	BQL	µg∕l		10	SW 846 8270
Chyrsene	BQL	µg/l		10	SW 846 8270

ADVANCED ENVIRONMENTAL SERVICES LABORATORY REPORT

CUST SAMPLE ID: W-2428-792-19 COLLECTION DATE(S): 07/10/92

LABORATORY JOB NO: 922512

COLLECTION METHOD:

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Benzo (b) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (k) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (a) pyrene	BQL	µg∕l		10	SW 846 8270
Dibenzofuran	BQL	µg∕l		10	SW 846 8270
Benzo (g,h,i) perylene	BQL	µg∕l		10	SW 846 8270
Indeno (1,2,3-cd)pyrene	BQL	µg∕l		10	SW 846 8270
2-Chloronaphthalene	BQL	µg∕l	•••	10	SW 846 8270

.

LABORATORY REFERENCE NO: 17316

SAMPLE TYPE: Groundwater

CUST SAMPLE ID: METHOD BLANK #4

LABORATORY JOB NO: 922512

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Total Cyanide	ND	mg/l	0.004		EPA 335.3
Hexavalent Chromium, Total	ND	mg/l	0.01		EPA 7196
Oil and Grease, Gravimetric	ND	mg∕l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	BQL	μg/l		50.0	SW 846 8240
1,2-Dichloroethene (Total)	BQL	µg∕l		5.00	SW 846 8240
1,1,1-Trichloroethane	BQL	µg∕l		5.00	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL	µg∕l		5.00	SW 846 8240
Ethylbenzene	BQL	µg∕l		5.00	SW 846 8240
Total Xylene	BQL	µg∕l		5.00	SW 846 8240
Naphthalene	BQL	µg∕l		10	SW 846 8270
2-Methylnaphthalene	BQL	µg∕l		10	SW 846 8270
Acenaphthylene	BQL	µg∕l		10	SW 846 8270
Acenaphthene	BQL	µg∕l		10	SW 846 8270
Fluorene	BQL	µg∕l		10	SW 846 8270
Phenanthrene	BQL	µg∕l		10	SW 846 8270
Anthracene	BQL	µg∕l		10	SW 846 8270
Fluoranthene	BQL	µg∕l		10	SW 846 8270
Pyrene	BQL	µg∕l		10	SW 846 8270
Benzo (a) anthracene	BQL	µg∕l	•••	10	SW 846 8270

BQL

Chyrsene

µg/l

10

SW 846 8270

CUST SAMPLE ID: METHOD BLANK #4

LABORATORY JOB NO: 922512

.

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Benzo (b) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (k) fluoranthene	BQL	µg∕l		10	SW 846 8270
Benzo (a) pyrene	BQL	µg∕l		10	SW 846 8270
Dibenzofuran	BQL	µg∕l		10	SW 846 8270
Benzo (g,h,i) perylene	BQL	µg∕l	•••	10	SW 846 8270
Indeno (1,2,3-cd)pyrene	BQL	µg∕l		10	SW 846 8270
2-Chloronaphthalene	BQL	µg/l		10	SW 846 8270

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

PAGE 1

JOB# 922512

Type of Analysis: SURROGATE RECOVERIES #4 Client Name: Conestoga-Rovers & Associates

A.E.S. Job Code: FIK Units: Percent (%)

		A.E.S. Lab Number. Customer ID.	17316 W-2428-792-19		
Analytical Parameter(s)	Method No.	Practical Quantifiable Limit	07/10/92		
2-Fluorophenol	,•	21-100	• 56	· · ·	
Phenol - dó	SW 846 8270	. 10-94	48		
2,4,6-Tribromophenol	SW 846 8270	10-123	57		
Nitrobenzene-d5	SW 846 8270	35-114	78		
2-Fluorobiphenyl	SW 846 8270	43-116	80	 	
Terphenyl-d14	SW 846 8270	33-141	85		
1,2-Dichloroethane-d4	SW 846 8240	76-114	100		
Toluene	SW 846 8240	88-110	108		
4-Bromofluorobenzene	SW 846 8240	86-115	99		

JOB# 922512

PAGE 1

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

A.E.S. Job Code: FIK Client: Conestoga-Rovers & Associates Type of Analysis: Independent Standards #4

Units: mg/l

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
Hexavalent Chromium		Independent Standard	0.51	0.50	NONE	102
Cyanide		Independent Standard	0.45	0.50	NONE	90
Dil and Grease, Gravimetric		Independent Standard	49		50	98

% Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / Added Spike Concentration) * If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Independent Standards #4

A.E.S. Job Code: FIK Units: µg/l,ppb

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
1,1-Dichloroethene		Ref. Standard	67.8		50.0	136
Trichloroethene		Ref. Standard	54.4		50.0	109
Benzene		Ref. Standard	62.5		50.0	125
oluene		Ref. Standard	59.6		50.0	119
Chlorobenzene		Ref. Standard	60.9		50.0	122
Phenol		Independent Standard	117		200	58
2-Chlorophenol		Independent Standard	140		200	70
,4-Dichlorobenzene		Independent Standard	82.8		100	83
I-Nitrosodipropylamine		Independent Standard	96.7		100	97
1,2,4-Trichlorobenzene		Independent Standard	86.9		100	87
G-Chloro-3-Methylphenol		Independent Standard	151		200	76
Acenaphthene		Independent Standard	84.1		100	84
-Nitrophenol		Independent Standard	101		200	50
2,4-Dinitrotoluene		Independent Standard	98.7		100	99
entachlorophenol		Independent Standard	163		200	82
yrene		Independent Standard	96.1		100	96

LABORATORY JOB NO: 922505 LABORATORY REFERENCE NO: 17303

CUST SAMPLE ID: SW-2428-792- 07 COLLECTION DATE(S): 07/08/92

			a staal	
Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
0.54	mg/l	0.05		SW 846 6010
		0.05		SW 846 6010
		0.002		SW 846 7060
		0.002		SW 846 6010
				SW 846 7000
				SW 846 6010
				SW 846 6010
				SW 846 6010
				SW 846 6010
				SW 846 6010
				SW 846 6010
4.58		-		SW 846 7421
0.008				SW 846 6010
18.1				SW 846 6010
0.60				SW 846 7470
ND				SW 846 6010
ND	mg/l			SW 846 6010
3.27	mg/l			SW 846 7740
ND	mg/l			SW 846 6010
0.01	mg/l			SW 846 6010
12.2	mg/l			SW 846 7841
ND	mg/l			SW 846 6010
0.02	mg∕l			SW 846 6010
ND	mg/l	0.01		
				EPA 335.3
	Results 0.54 ND 0.003 0.03 0.03 ND 0.008 18.1 0.60 ND ND	Results Units 0.54 mg/l ND mg/l 0.003 mg/l 0.03 mg/l ND mg/l <	Analytical Results Units Limits 0.54 mg/l 0.05 ND mg/l 0.05 0.003 mg/l 0.002 0.03 mg/l 0.002 ND mg/l 0.002 ND mg/l 0.001 ND mg/l 0.001 ND mg/l 0.001 ND mg/l 0.001 ND mg/l 0.01 ND mg/l 0.002 ND mg/l 0.002	Analytical Results Detection Limits Quantifiable Limit 0.54 mg/l 0.05 0.03 mg/l 0.05 0.003 mg/l 0.002 0.03 mg/l 0.002 0.03 mg/l 0.002 0.03 mg/l 0.002 ND mg/l 0.001 ND mg/l 0.01 ND mg/l 0.002 ND mg/l 0.002 ND mg/l 0.002 ND mg/l 0.002 ND mg/l 0.02 ND mg/l 0.002 <t< td=""></t<>

CUST SAMPLE ID: SW-2428-792- 07 COLLECTION DATE(S): 07/08/92

COLLECTION METHOD:

SAMPLE TYPE: Surface Water

LABORATORY JOB NO: 922505 LABORATORY REFERENCE NO: 17303

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
exavalent Chromium, Total	ND	mg/l	0.01		EPA 7196
il and Grease, Gravimetric	. ND	mg∕l	1.0		SM 503A
ethylene chloride	BQL	μg/l		10.0	SW 846 8240
Cetone	BQL	µg∕l	•••	50.0	SW 846 8240
enzene	BQL	µg∕l		5.00	SW 846 8240
	BQL	µg∕l		5.00	SW 846 8240
luoranthene	BQL	µg∕l			
/rene	BQL	μg/l		10	SW 846 8270
enol	BQL	µg∕l		10	SW 846 8270
Methylphenol	BQL	µg∕l		10	SW 846 8270

CUST SAMPLE ID: SW-2428-792- 08 COLLECTION DATE(S): 07/08/92

LABORATORY JOB NO: 922505 LABORATORY REFERENCE NO: 17304

COLLECTION METHOD: SAMPLE TYPE: Surface Water

[
Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Aluminum	0.40	mg/l	0.05		SW 846 6010
Antimony	ND	mg/l	0.05		SW 846 6010
Arsenic	0.003	mg∕l	0.002		SW 846 7060
Barium	0.06	mg/l	0.002		SW 846 6010
Beryllium	ND	mg∕l	0.001	•••	SW 846 7000
Cadmium	ND	mg/l	0.004		SW 846 6010
Calcium	106	mg∕l	0.01		SW 846 6010
Chromium	ND	mg/l	0.01	· •••	SW 846 6010
Cobalt	0.005	mg/l	0.005		SW 846 6010
Copper	ND	mg/l	0.01	•••	SW 846 6010
Iron	4.33	mg/l	0.01		SW 846 6010
Lead	0.004	mg/l	0.002		SW 846 7421
Magnesium	18.3	mg∕l	0.03		SW 846 6010
Manganese	0.60	mg/l	0.002		SW 846 6010
lercury	ND	mg/l	0.0005		SW 846 7470
Nickel	ND	mg/l	0.02	•••	SW 846 6010
Potassium	3.55	mg∕l	0.40		SW 846 6010
Selenium	ND	mg/l	0.002		SW 846 7740
Silver	0.009	mg/l	0.005		SW 846 6010
Sodium	12.3	mg/l	0.10		SW 846 6010
hallium	ND	mg/l	0.002		SW 846 7841
anadium	0.02	mg/l	0.01		SW 846 6010
inc	ND	mg∕l	0.01		SW 846 6010
atal Cyanida					
otal Cyanide	0.028	mg∕l	0.004		EPA 335.3

ADVANCED ENVIRONMENTAL SERVICES LABORATORY REPORT

CUST SAMPLE ID: SW-2428-792- 08 COLLECTION DATE(S): 07/08/92 COLLECTION METHOD:

SAMPLE TYPE: Surface Water

LABORATORY JOB NO: 922505 LABORATORY REFERENCE NO: 17304

Analytical					
Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	
Hexavalent Chromium, Total	ND				Method
		mg/l	0.01		EPA 7196
Oil and Grease, Gravimetric	ND	·			
		mg/l	1.0		SM 503A
ethylene chloride					
cetone	BQL	µg/l		10.0	SW 846 8240
enzene	BQL	µg∕l		50.0	SW 846 8240
oluene	BQL	µg∕l		5.00	
	BQL	µg∕l		5.00	SW 846 8240
uoranthene					SW 846 8240
rene	BQL	µg∕l		10	
enol	BQL	µg∕l			SW 846 8270
	BQL	#g/l		10	SW 846 8270
lethylphenol	BQL	μg/l		10	SW 846 8270

ADVANCED ENVIRONMENTAL SERVICES LABORATORY REPORT

CUST SAMPLE ID: SW-2428-792- 09 COLLECTION DATE(S): 07/08/92

LABORATORY JOB NO: 922505 LABORATORY REFERENCE NO: 17305

COLLECTION METHOD:

SAMPLE TYPE: Surface Water

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Aluminum	8.10	mg/l	0.05		SW 846 6010
Antimony	ND	mg∕l	0.05		SW 846 6010
Arsenic	ND	mg/l	0.002	•••	SW 846 7060
Barium	0.01	mg∕l	0.002	•••	SW 846 6010
Beryllium	ND	mg∕l	0.001		SW 846 7000
Cadmium	ND	mg∕l	0.004	•••	SW 846 6010
Calcium	489	mg/l	0.01		SW 846 6010
Chromium	0.01	mg∕l	0.01	•••	SW 846 6010
Cobalt	0.03	mg∕l	0.005		SW 846 6010
Copper	0.02	mg∕l	0.01	•••	SW 846 6010
Iron	161	mg∕l	0.01		SW 846 6010
Lead	0.007	mg∕l	0.002		SW 846 7421
lagnesium	64.8	mg/l	0.03		SW 846 6010
langanese	3.91	mg∕l	0.002		SW 846 6010
lercury	ND	mg∕l	0.0005		SW 846 7470
lickel	0.10	mg∕l	0.02		SW 846 6010
Potassium	10.1	mg∕l	0.40		SW 846 6010
Selenium	ND	mg/l	0.002		SW 846 7740
Silver	ND	mg∕l	0.005		SW 846 6010
Sodium	11.6	mg∕l	0.10		SW 846 6010
hallium	ND	mg∕l	0.002		SW 846 7841
'anadium	0.08	mg∕l	0.01		SW 846 6010
inc	0.45	mg/l	0.01		SW 846 6010
otal Cyanide	0.012	mg/l	0.004		EPA 335.3

CUST SAMPLE ID: SW-2428-792- 09 COLLECTION DATE(S): 07/08/92

LABORATORY JOB NO: 922505 LABORATORY REFERENCE NO: 17305

COLLECTION METHOD: SAMPLE TYPE: Surface Water

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Hexavalent Chromium, Total	0.03	mg/l	0.01		EPA 7196
Oil and Grease, Gravimetric	ND	mg∕l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	364	µg∕l		50.0	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL	µg∕l		5.00	SW 846 8240
Fluoranthene	BQL	µg∕l		10	SW 846 8270
Pyrene	BQL	µg∕l		10	SW 846 8270
Phenol	BQL	µg∕l		10	SW 846 8270
2-Methylphenol	BQL	µg/l		10	SW 846 8270

CUST SAMPLE ID: SW-2428-792- 12 COLLECTION DATE(S): 07/08/92

LABORATORY JOB NO: 922505 LABORATORY REFERENCE NO: 17306

COLLECTION METHOD: SAMPLE TYPE: Surface Water

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Aluminum	0.10	mg/l	0.05		SW 846 6010
Antimony	ND	mg/l	0.05		SW 846 6010
Arsenic	ND	mg/l	0.002		SW 846 7060
Barium	0.04	mg/l	0.002		SW 846 6010
Beryllium	ND	mg∕l	0.001		SW 846 7000
Cadmium	ND	mg/l	0.004		SW 846 6010
Calcium	101	mg/l	0.01	•••	SW 846 6010
Chromium	ND	mg/l	0.01		SW 846 6010
Cobalt	ND	mg∕l	0.005		SW 846 6010
Copper	ND	mg/l	0.01		SW 846 6010
Iron	3.36	mg/l	0.01		SW 846 6010
Lead	0.005	mg/l	0.002		SW 846 7421
Magnesium	17.3	mg/l	0.03		SW 846 6010
Manganese	0.48	mg/l	0.002		SW 846 6010
Mercury	ND	mg/l	0.0005		SW 846 7470
Nickel	ND	mg/l	0.02	•••	SW 846 6010
Potassium	0.34	mg/l	0.40		SW 846 6010
Selenium	ND	mg/l	0.002		SW 846 7740
Silver	ND	mg/l	0.005		SW 846 6010
Sodium	8.63	mg/l	0.10		SW 846 6010
Thallium	ND	mg/l	0.002		SW 846 7841
Vanadium	0.01	mg/l	0.01		SW 846 6010
Zinc	0.02	mg/l	0.01		SW 846 6010
Total Cyanide	NĎ	mg/l	0.004		EPA 335.3

ADVANCED ENVIRONMENTAL SERVICES LABORATORY REPORT

CUST SAMPLE ID: SW-2428-792- 12 COLLECTION DATE(S): 07/08/92

LABORATORY REFERENCE NO: 17306

COLLECTION METHOD:

SAMPLE TYPE: Surface Water

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Hexavalent Chromium, Total	ND	mg∕l	0.01		EPA 7196
Oil and Grease, Gravimetric	1.9	mg/l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	BQL	µg∕l		50.0	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL	µg∕l	•••	5.00	SW 846 8240
Fluoranthene	BQL	µg∕l		10	SW 846 8270
Pyrene	BQL	µg∕l		10	SW 846 8270
Phenol	BQL	µg∕l		10	SW 846 8270
2-Methylphenol	BQL	µg∕l		10	SW 846 8270

LABORATORY JOB NO: 922505

ADVANCED ENVIRONMENTAL SERVICES LABORATORY REPORT

CUST SAMPLE ID: SW-2428-792- 13 COLLECTION DATE(S): 07/08/92

COLLECTION METHOD:

SAMPLE TYPE: Surface Water

			Method	Practical	
Analytical Parameters	Analytical Results	Units	Detection Limits		Method
Aluminum	ND	mg/l	0.05		SW 846 6010
Antimony	ND	mg∕l	0.05	•••	SW 846 6010
Arsenic	ND	mg∕l	0.002		SW 846 7060
Barium .	0.04	mg∕l	0.002		SW 846 6010
Beryllium	ND	mg∕l '	0.001		SW 846 7000
Cadmium	ND	mg∕l	0.004		SW 846 6010
Calcium	105	mg∕l	0.01		SW 846 6010
Chromium	ND	mg∕l	0.01		SW 846 6010
Cobalt	ND	mg/l	0.005	•••	SW 846 6010
Copper	ND	mg∕l	0.01	•••	SW 846 6010
Iron	1.09	mg∕l	0.01	•••	SW 846 6010
Lead	ND	mg∕l	0.002		SW 846 7421
Magnesium	17.3	mg/l	0.03		SW 846 6010
Manganese	0.47	mg/l	0.002		SW 846 6010
Mercury	ND	mg/l	0.0005		SW 846 7470
Nickel	ND	mg∕l	0.02		SW 846 6010
Potassium	0.89	mg/l	0.40		SW 846 6010
Selenium	ND	mg∕l	0.002		SW 846 7740
Silver	ND	mg/l	0.005		SW 846 6010
Sodium	7.94	mg∕l	0.10		SW 846 6010
Thallium	ND	mg/l	0.002		SW 846 7841
Vanadium	0.01	mg/l	0.01		SW 846 6010
Zinc	0.01	mg/l	0.01		SW 846 6010
Total Cyanide	ND	mg/l	0.004		EPA 335.3

LABORATORY JOB NO: 922505 LABORATORY REFERENCE NO: 17307

CUST SAMPLE ID: SW-2428-792- 13 COLLECTION DATE(S): 07/08/92 LABORATORY JOB NO: 922505 LABORATORY REFERENCE NO: 17307

COLLECTION METHOD: SAMPLE TYPE: Surface Water

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Hexavalent Chromium, Total	ND	mg/l	0.01		EPA 7196
		-			
Oil and Grease, Gravimetric	ND	mg/l	1.0		SM 503A
Methylene chloride	BQL	µg∕l	•••	10.0	SW 846 8240
Acetone	BQL	µg∕l		50.0	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL	µg∕l		5.00	SW 846 8240
Fluoranthene	BQL	µg∕l		10	SW 846 8270
Pyrene	BQL	µg∕l		10	SW 846 8270
Phenol	BQL	µg∕l		10	SW 846 8270
2-Methylphenol	BQL	µg∕l		10	SW 846 8270

CUST SAMPLE ID: METHOD BLANK #5

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Aluminum	ND	mg∕l	0.05		SW 846 6010
Antimony	ND	mg∕l	0.05		SW 846 6010
Arsenic	ND	mg∕l	0.002		SW 846 7060
Barium	ND	mg/l	0.002		SW 846 6010
Beryllium	ND	mg∕l	0.001		SW 846 7000
Cadmium	ND	mg∕l	0.004		SW 846 6010
Calcium	ND	mg/l	0.01	•••	SW 846 6010
Chromium	ND	mg/l	0.01	•••	SW 846 6010
Cobalt	ND	mg/l	0.005		SW 846 6010
Соррег	ND	mg/l	0.01		SW 846 6010
Iron	ND	mg∕l	0.01	•••	SW 846 6010
Lead	ND	mg∕l	0.002		SW 846 7421
Magnesium	ND	mg∕l	0.03	•••	SW 846 6010
Manganese	ND	mg∕l	0.002		SW 846 6010
Mercury	ND	mg∕l	0.0005		SW 846 7470
Nickel	ND	mg∕l	0.02		SW 846 6010
Potassium	ND	mg∕l	0.40		SW 846 6010
Selenium	ND	mg∕l	0.002		SW 846 7740
Silver	ND	mg/l	0.005		SW 846 6010
Sodium	ND	mg/l	0.10		SW 846 6010
Thallium	ND	mg∕l	0.002		SW 846 7841
Vanadium	ND	mg∕l	0.01		SW 846 6010
Zinc	ND	mg∕l	0.01		SW 846 6010
				· · · ·	
Total Cyanide	ND	mg∕l	0.004		EPA 335.3

CUST SAMPLE ID: METHOD BLANK #5

LABORATORY JOB NO: 922505

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Hexavalent Chromium, Total	ND	mg/l	0.01		EPA 7196
Oil and Grease, Gravimetric	ND	mg∕l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	BQL	µg∕l	•••	50.0	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
foluene	BQL	µg∕l		5.00	SW 846 8240
luoranthene	BQL	µg∕l		10	SW 846 8270
Yrene	BQL	µg∕l	•••	10	SW 846 8270
henol	BQL	µg∕l		10	SW 846 8270
-Methylphenol	BQL	µg∕l		10	SW 846 8270

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

PAGE 1

JOB# 922505

Type of Analysis: SURROGATE RECOVERIES #5 Client Name: Conestoga-Rovers & Associates

A.E.S. Job Code: FIK

Units: Percent (%)

		A.E.S. Lab Number Customer ID	SW-2428-792-	17304 SW-2428-792-	17305 Sw-2428-792-	17306 SW-2428-702
Analytical Parameter(s)	Method No.	Practical Quantifiable Limit	- 07 07/08/92	08 07/08/92	09	SW-2428-792- 12 07/08/92
2-fluorophenol	SW 846 8270	21.444				
Phenol-d6		21-100	39	47	53	51
2,4,6-Tribromophenol	SW 846 8270	10-94	34	41	47	44
litrobenzene-d5	SW 846 8270	10-123	48	59	70	
	SW 846 8270	35-114	53	71		74
- Fluorobiphenyl	SW 846 8270	43-116			82	83
erphenyl-d14	SW 846 8270		53	70	82	79
,2-Dichloroethane-d4		33-141	52	74	82	80
oluene-d8	SW 846 8240	76-114	100	107	107	100
	SW 846 8240	88-110	104	105		
-Bromofluorobenzene	SW 846 8240	86-115	102		102	96
			102	108	107	105

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

PAGE 2

JOB# 922505

Type of Analysis: SURROGATE RECOVERIES #5 Client Name: Conestoga-Rovers & Associates

A.E.S. Job Code: FIK Units: Percent (%)

		AFS			(%)	
Analytical		A.E.S. Lab Number Customer ID	. SW-2428-792-	1		
Parameter(s)	Method No.	Practical Quantifiable	13 07/08/92			
2-Fluorophenol		Limit				1
Phenol-d6	SW 846 8270	21-100				
,4,6-Tribromophenol	SW 846 8270	10-94	47		i	· .
i trobenzene-d5	SW 846 8270	10-123	41			
Fluorobiphenyl	SW 846 8270	35-114	64			
rphenyl-d14	SW 846 8270	43-116	81			
2-Dichloroethane-d4	SW 846 8270	33-141	80			
luene-d8	SW 846 8240		85			
Promofluorobenzene	SW 846 8240	76-114	103			
	SW 846 8240	88-110	100			
	040 8240	86-115	107			

PAGE 1

	of Analysis: Matrix Spike an	d Independent Standards #5	A.	E.S. Job Code: FIK Units: mg/	l	
Analytical Parameters	Sample					
	No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent
Aluminum	EPA	Independent Standard	00.4			Recovery*
Antimony	EPA	Independent Standard	98.4	100	NONE	98
Arsenic	EPA	Independent Standard	98.9	100	NONE	99
Barium	EPA		0.051	0.050	NONE	102
Beryllium	EPA	Independent Standard	51.7	50.0	NONE	103
Cadmium	EPA	Independent Standard	106.2	100	NONE	106
alcium	EPA	Independent Standard	98.2	100	NONE	
hromium		Independent Standard	99.7	100	NONE	100
obalt	EPA	Independent Standard	93.0	100	NONE	
opper	EPA	Independent Standard	91.7	100	NONE	93
ron	EPA	Independent Standard	99.2	100		92
ead	EPA	Independent Standard	91.7	100	NONE	99
-	1085-1	EPA	0.053	0.051	NONE	92
agnesium	EPA	Independent Standard	96.5		NONE	104
anganese	EPA	Independent Standard	96.2	100	NONE	96
ercury	EPA	Independent Standard		100	NONE	96
ckel	EPA	Independent Standard	0.0076	0.0076	NONE	100
	l	macpendent Standard	91.2	100	NONE	91

*

*

- % Recovery = 100 x ((Observed Concentration "background" Original Concentration) / "Spike" Added Concentration)
- If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

Client: Conestoga-Rovers & Associates Type of Analysis: Matrix Spike and Independent Standards #5

*

A.E.S. Job Code: FIK

Units: mg/l

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
Potassium	EPA	Independent Standard	953	1,000	NONE	95
elenium	EPA	Independent Standard	0.045	0.046	NONE	98
ilver	EPA	Independent Standard	100	100	NONE	100
odium	EPA	Independent Standard	95.2	100	NONE	95
hallium	EPA	Independent Standard	0.048	0.052	NONE	92
anadium	EPA	Independent Standard	101	100	NONE	101
inc	EPA	Independent Standard	92.8	100	NONE	93
luminum	17306	Matrix Spike	19.7	0.10	20.0	98
luminum	17306	Matrix Spike Dup	20.0	0.10	20.0	100
ntímony	17306	Matrix Spike	10.0	ND	10.0	100
ntimony	17306	Matrix Spike Dup	10.0	ND	10.0	100
rsenic	17306	Matrix Spike	0.040	ND	0.050	80
rsenic	17306	Matrix Spike Dup	0.044	ND	0.050	88
arium	17306	Matrix Spike	9.64	0.04	10.0	96
arium	17306	Matrix Spike Dup	9.78	0.04	10.0	. 98
eryllium	17306	Matrix Spike	1.01	ND	1.00	101

% Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / "Spike" Added Concentration)

* If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

PAGE 2

PAGE 3

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY ------

Client: Conestoga-Rovers & Associates Type of Analysis: Matrix Spike and Independent Standards #5

A.E.S. Job Code: FIK Units: mg/l

nalytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
Beryllium	17306	Matrix Spike Dup	1.03	ND	1.00	103
admium	17306	Matrix Spike	1.01	ND	1.00	101
admium	17306	Matrix Spike Dup	1.02	ND	1.00	102
alcium	17306	Matrix Spike	199	101	100	98
alcium	17306	Matrix Spike Dup	201	101	100	100
hromium	17306	Matrix Spike	4.72	ND	5.00	94
hromium	17306	Matrix Spike Dup	4.78	ND	5.00	96
Cobalt	17306	Matrix Spike	3.79	ND	4.00	95
obal t	17306	Matrix Spike Dup	3.83	ND	4.00	96
Copper	17306	Matrix Spike	3.99	ND	4.00	100
Copper	17306	Matrix Spike Dup	4.04	ND	4.00	101
ron	17306	Matrix Spike	7.26	3.36	4.00	98
ron	17306	Matrix Spike Dup	7.35	3.36	4.00	100
ead	17306	Matrix Spike	0.066	0.005	0.050	122
ead	17306	Matrix Spike Dup	0.051	0.005	0.050	92
lagnesium	17306	Matrix Spike	119	17.3	100	102

X Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / "Spike" Added Concentration) *

If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration) *

Client: Conestoga-Rovers & Associates Type of Analysis: Matrix Spike and Independent Standards #5

A.E.S. Job Code: FIK Units: mg/l

Analytical Darameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
lagnesium	17306	Matrix Spike Dup	119	17.3	100	102
langanese	17306	Matrix Spike	2.41	0.48	2.00	96
langanese	17306	Matrix Spike Dup	2.44	0.48	2.00	98
lercury	17306	Matrix Spike	0.0091	ND	0.0100	91
lercury	17306	Matrix Spike Dup	0.0094	ND	0.0100	94
lickel	17306	Matrix Spike	3.82	ND	4.00	96
lickel	17306	Matrix Spike Dup	3.88	ND	4.00	97
otassium	17306	Matrix Spike	98.9	0.34	100	99
otassium	17306	Matrix Spike Dup	100	0.34	100	100
elenium	17306	Matrix Spike	0.053	ND	0.050	106
elenium	17306	Matrix Spike Dup	0.051	ND	0.050	102
Bilver	17306	Matrix Spike	1.82	ND	2.00	91
lilver	17306	Matrix Spike Dup	1.84	ND	.2.00	92
odium	17306	Matrix Spike	111	8.63	100	102
odium	17306	Matrix Spike Dup	114	8.63	100	105
hallium	17306	Matrix Spike	0.050	ND	0.050	100

* % Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / "Spike" Added Concentration)

* If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

JOB# 922505

PAGE 5

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Matrix Spike and Independent Standards #5

.

A.E.S. Job Code: FIK Units: mg/l

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
Thallium	17306	Matrix Spike Dup	0.052	ND	0.050	104
Vanadium	17306	Matrix Spike	9.57	0.01	10.0	96
Vanadium	17306	Matrix Spike Dup	9.64	0.01	10.0	96
linc	17306	Matrix Spike	Matrix Spike 0.55 0.		0.50	106
Zinc	17306	Matrix Spike Dup	0.55	0.02	0.50	106
Hexavalent Chromium	17306	Matrix Spike	1.06	ND	1.00	106
Hexavalent Chromium	17306	Matrix Spike Dup	1.06 ND		1.00	106
lexavalent Chromium		Independent Standard	0.98	1.00	NONE	98
Cyanide	17306	Matrix Spike	0.189	ND	0.200	94
Cyanide	17306	Matrix Spike Dup	0.190	ND	0.200	95
Cyanide		Independent Standard	0.45	0.50	NONE	90
Dil & Grease, Gravimetric	17306	Matrix Spike	31	1.9	32	91
Dil & Grease, Gravimetric	17306	Matrix Spike Dup	27	1.9	29	87
Dil & Grease, Gravimetric		Independent Standard	28		28	100

% Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / Added Spike Concentration) * If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

PAGE 6

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Matrix Spike and Independent Standards #5

×

A.E.S. Job Code: FIK Units: µg/l,ppb

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
1,1-Dichloroethene	17306	Matrix Spike	69.4	BQL	50.0	139
Trichloroethene	17306	Matrix Spike	52.5	BQL	50.0	105
Benzene	17306	Matrix Spike	61.7	BQL	50.0	123
Toluene	17306	Matrix Spike	59.0	BQL	50.0	118
Chlorobenzene	17306	Matrix Spike	57.4	BQL	50.0	115
1,1-Dichloroethene	17306	Matrix Spike Dup	59.0	BQL	50.0	118
Trichloroethene	17306	Matrix Spike Dup	44.5	BQL	50.0	89
Benzene	17306	Matrix Spike Dup	51.3	BQL	50.0	103
Toluene	17306	Matrix Spike Dup	49.9	BQL	50.0	100
Chlorobenzene	17306	Matrix Spike Dup	49.4	BQL	50.0	99
1,1-Dichloroethene		Independent Standard	64.5		50.0	129
Trichloroethene		Independent Standard	49.4		50.0	99
Benzene		Independent Standard	58.3		50.0	117
Toluene		Independent Standard	54.2		50.0	108
Chlorobenzene		Independent Standard	55.0		50.0	110
Phenol	17306	Matrix Spike	111	BQL	200	55

% Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / "Spike" Added Concentration)

* If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

JOB# 922505

Client: Conestoga-Rovers & Associates Type of Analysis: Matrix Spike and Independent Standards #5

Analytical Parameters	Sample		Units: µg/l,ppb					
	No.	Туре	Observed Concentration	Original	Added			
2-Chlorophenol	17306		Concentration Concentration Conce		Concentration	Percent Recovery*		
1,4-Dichlorobenzene	17306	Matrix Spike	165	ROL				
V-Nitrosodipropylamine		Matrix Spike	95.1 BQL		200	83		
,2,4-Trichlorobenzene	17306	Matrix Spike		BQL	100	95		
-Chloro-3-Methylphenol	17306	Matrix Spike	103	103 BQL		103		
	17306		102	BQL	100			
cenaphthene	17306	Matrix Spike	186 BQL			102		
Nitrophenol		Matrix Spike	98.3		200	93		
4-Dinitrotoluene	17306	Matrix Spike	114	BQL	100	98		
ntachlorophenol	17306	Matrix Spike		BQL	200	57		
rene	17306	Matrix Spike	103	BQL	100	103		
	17306		193	BQL	200			
enol	17306	Matrix Spike	105	BQL		97		
Chlorophenol		Matrix Spike Dup	103		100	105		
-Dichlorobenzene	17306	Matrix Spike Dup		BQL	200	52		
Description of the second s	17306	Matrix Spike Dup	167	BQL	200	83		
litrosodipropylamine	17306		99.6	BQL	100			
,4-Trichlorobenzene	17306	Matrix Spike Dup	103	BQL	100	100		
hloro-3-Methylphenol		Matrix Spike Dup	109	BQL		103		
	17306	Matrix Spike Dup	190		100	109		
			170	BQL	200	95		

*

% Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / "Spike" Added Concentration) If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

JOB# 922505

PAGE 8

Client: Conestoga-Rovers & Associates Type of Analysis: Matrix Spike and Independent Standards #5

 A.E.S. Job Code: FIK Units: µg/l,ppb

Analytical Parameters	Sample					
Acenaphthene	No.	Туре	Observed Concentration	Original Concentration	Added	Percent
	17306			Concentration	Concentration	Recovery*
4-Nitrophenol		Matrix Spike Dup	102	001		
2,4-Dinitrotoluene	17306	Matrix Spike Dup		BQL	100	102
	17306	Matrix Spike Dup	103	BQL	200	51
Pentachlorophenol	17306		104	BQL	100	21
Pyrene		Matrix Spike Dup	Spike Dup 102		100	104
Phenot	17306	Matrix Spike Dup	192 BQL		200	96
De Ch Le and	•••	Independent Standard	103	BQL	100	103
2-Chlorophenol			117	BQL	200	
,4-Dichlorobenzene		Independent Standard	140	BQL		58
-Nitrosodipropylamine		Independent Standard	82.8	BQL	200	70
		Independent Standard		BQL	100	83
,2,4-Trichlorobenzene			96.7	BQL	100	
-Chloro-3-Methylphenol		Independent Standard	86.9	BQL		97
enaphthene		Independent Standard	151	BQL	100	87
		Independent Standard		BQL	200	76
Nitrophenol			84.1	BQL	100	
4-Dinitrotoluene		Independent Standard	101	BQL		84
ntachlorophenol		Independent Standard	98.7		200	50
			70.1	BQL	100	99
rene		Independent Standard	163	BQL	200	
		Independent Standard	96.1		200	82
				BQL	100	96

CUST SAMPLE ID: SW-2428-792- 16 COLLECTION DATE(S): 07/09/92

LABORATORY JOB NO: 922511 LABORATORY REFERENCE NO: 17315

COLLECTION METHOD: SAMPLE TYPE: Surface Water

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Aluminum	0.33	mg∕l	0.05		SW 846 6010
Antimony	ND	mg/l	0.05		SW 846 6010
Arsenic	ND	mg/l	0.002		SW 846 7060
Barium	0.01	mg∕l	0.002		SW 846 6010
Beryllium	ND	mg/l	0.001		SW 846 6010
Cadmium	ND	mg/l	0.004		SW 846 6010
Calcium	113	mg∕l	0.01		SW 846 6010
Chromium	ND	mg/l	0.01		SW 846 6010
Cobalt	ND	mg∕l	0.005		SW 846 6010
Copper	0.02	mg∕l	0.01		SW 846 6010
l ron	1.37	mg/l	0.01		SW 846 6010
ead	0.004	mg/l	0.002		SW 846 7421
lagnesium	21.3	mg∕l	0.03		SW 846 6010
anganese	0.14	mg∕l	0.002		SW 846 6010
ercury	ND .	mg∕l	0.0005	••••	SW 846 6010
ickel	ND	mg/l	0.02		SW 846 6010
otassium	0.90	mg/l	0.40		SW 846 6010
elenium	0.004	mg/l	0.002		SW 846 7740
ilver	ND	mg∕l	0.005	••••	SW 846 6010
odium	7.87	mg∕l	0.10		SW 846 6010
nallium	ND	mg/l	0.002		SW 846 7841
unadium	0.01	mg/l	0.01	•••	SW 846 6010
nc	0.04	mg/l	0.01		SW 846 6010
tal Cyanide	0.138	mg/l	0.004		EPA 335.3

PAGE 1

ADVANCED ENVIRONMENTAL SERVICES LABORATORY REPORT

CUST SAMPLE ID: SW-2428-792- 16 COLLECTION DATE(S): 07/09/92

COLLECTION METHOD:

SAMPLE TYPE: Surface Water

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
exavalent Chromium, Total	ND	mg∕l	0.01		EPA 7196
and Grease, Gravimetric	2.0	mg∕l	1.0		SM 503A
ylene chloride	BQL	µg∕l		10.0	SW 846 8240
cone	BQL	µg∕l		50.0	SW 846 8240
ene	BQL	μg/l μg/l		5.00	SW 846 8240
		F3/ \		5.00	SW 846 8240
ne	BQL	µg∕l		10	SW 846 8270
	BQL BQL	μg/l μg/l		10	SW 846 8270
hylphenol	BQL	μg/l		10	SW 846 8270

• - -

10

SW 846 8270

µg/l

PAGE 2

LABORATORY JOB NO: 922511 LABORATORY REFERENCE NO: 17315

ADVANCED ENVIRONMENTAL SERVICES LABORATORY REPORT

CUST SAMPLE ID: METHOD BLANK #6

LABORATORY JOB NO: 922511

Analytical Parameters		Anal Res	ytical	l Uni		Method Detectio	Prae D Quant	ctical tifiable	
Aluminum				Uni		Limits	Lin	nit	Method
Antimony			ND	mg/l		0.05			
Arsenic	senic		ID	mg,	11	0.05			SW 846 6010
Barium		N	D	mg/	11	0.002			SW 846 6010
Beryllium		N	D	mg/	1	0.002			SW 846 7060
Cadmium		ND		mg/	.	0.001		-	SW 846 6010
Calcium		ND		mg/l		0.004			SW 846 6010
Chromium		ND		mg/l		0.01	•••		SW 846 6010
Cobalt		ND	\rightarrow	mg/l			•••		SW 846 6010
Copper		ND		mg/l		0.01	•••		SW 846 6010
Iron		ND		mg/l		0.005	•••		SW 846 6010
Lead		ND	\rightarrow	mg/l		.01	•••		SW 846 6010
Magnesium		ND		 mg/l		.01			SW 846 6010
		ND	-+			.002			SW 846 7421
langanese		ND	+	mg/l		03	•••		SW 846 6010
ercury		ND	-	mg/l	+	002		1	SW 846 6010
ickel		ND		mg/l	0.0	005	•••		SW 846 7470
otassium		ND	+	mg/[0.0	2		1.	SW 846 6010
lenium		ND		ng/l	0.4	0		+	SW 846 6010
lver		-		ng/l	0.0	02	• • •	1	
dium		ND	m	g/l	0.00	15	•••	+	SW 846 7740
llium		ND		9/L	0.10		•••		SW 846 6010
adium		ND	mg	71	0.00	2	••••		SW 846 6010
		ND	mg,	/1	0.01				SW 846 7841
		ND	mg,	11	0.01				W 846 6010
l Cyanide								S	W 846 6010
		ID D	mg/	1	0.004				,

۶, _

CUST SAMPLE ID: METHOD BLANK #6

Analytical	Analytical		Method	Practical Quantifiable	
Parameters	Results	Units	Limits	Limit	Method
Hexavalent Chromium, Total	ND	mg/l	0.01		EPA 7196
Dil and Grease, Gravimetric	ND	mg∕l	1.0		SM 503A
Methylene chloride	BQL	µg∕l		10.0	SW 846 8240
Acetone	BQL	µg∕l		50.0	SW 846 8240
Benzene	BQL	µg∕l		5.00	SW 846 8240
Toluene	BQL .	µg∕l		5.00	SW 846 8240
Fluoranthene	BQL	µg∕l		10	SW 846 8270
Pyrene	BQL	µg∕l		10	SW 846 8270
Phenol	BQL	µg∕l		10	SW 846 8270
2-Methylphenol	BQL	µg∕l		10	SW 846 8270

PAGE 4

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

PAGE 1

JOB# 922511

Type of Analysis: SURROGATE RECOVERIES #6 Client Name: Conestoga-Rovers & Associates

A.E.S. Job Code: FIK Units: Percent (%)

		A.E.S. Lab Number. Customer ID.	SW-2428-792-	1	i .	
Analytical Parameter(s)	Method No.	Practical Quantifiable Limit	16 07/09/92			
2-Fluorophenol	SW 846 827	0 21-100	56			
Phenol-dó	SW 846 827	0 10-94	48			· · · · · ·
2,4,6-Tribromophenol	SW 846 827	0 10-123	69			
Nitrobenzene-d5	SW 846 827	0 35-114	77			
2-Fluorbiphenyl	SW 846 827	0 43-116	72			
Terphenyl-d14	SW 846 827	0 33-141	70			
1,2-Dichloroethane-d4	SW 846 824	0 76-114	102			
Toluene-d8	SW 846 824	0 88-110	105			
4-Bromofluorobenzene	SW 846 824	0 86-115	108			

JOB# 922511

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Independent Standards #6

A.E.S. Job Code: FIK

Units: mg/l

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
Aluminum	EPA	Independent Standard	98.4	100	NONE	98
Antimony	EPA	Independent Standard	98.9	100	NONE	99
Arsenic	EPA	Independent Standard	0.051	0.050	NONE	102
Barium	EPA	Independent Standard	51.7	50.0	NONE	103
Beryllium	EPA	Independent Standard	106	100	NONE .	106
Cadmium	EPA	Independent Standard	98.2	100	NONE	98
Calcium	EPA	Independent Standard	99.7	100	NONE	100
Chromium	EPA	Independent Standard	93.0	100	NONE	93
Cobalt	EPA	Independent Standard	91.7	100	NONE	92
Copper	EPA	Independent Standard	99.2	100	NONE	99
Iron	EPA	Independent Standard	91.7	100	NONE	92
Lead	EPA	Independent Standard	0.051	0.051	NONE	100
Magnesium	EPA	Independent Standard	96.5	100	NONE	97
Manganese	EPA	Independent Standard	96.2	100	NONE	96
Mercury	EPA	Independent Standard	0.0076	0.0076	NONE	100
Nickel	EPA	Independent Standard	91.2	100	NONE	91

* % Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / "Spike" Added Concentration)

* If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

PAGE 1

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY CONTROL QUALITY CONTROL - ACCURACY

Client: Conestoga-Rovers & Associates Type of Analysis: Independent Standards #6

A.E.S. Job Code: FIK Units: mg/l

Analytical Sample **Observed** Original Added Percent Parameters No. Type Concentration Concentration Concentration Recoverv* Potassium EPA Independent Standard 953 100 NONE 95 Selenium EPA Independent Standard 0.045 0.046 NONE 98 Silver EPA Independent Standard 100 100 NONE 100 Sodium EPA Independent Standard 95.2 100 NONE 95 Thallium EPA Independent Standard 0.056 0.052 NONE 108 Vanadium EPA Independent Standard 101 100 NONE 101 Zinc EPA Independent Standard 92.8 100 NONE 93 Hexavalent Chromium - - -Independent Standard 0.99 1.00 NONE 99 Cyanide - - -Independent Standard 0.45 0.50 NONE 90 Oil & Grease, Gravimetric - - -Independent Standard 49 - - -50 98

% Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / Added Spike Concentration) If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

JOB# 922511 PAGE 3

Client: Conestoga-Rovers & Associates Type of Analysis: Independent Standards #6

A.E.S. Job Code: FIK Units: µg/l,ppb

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
1,1-Dichloroethene		Independent Standard	62.4		50.0	125
Trichloroethene		Independent Standard	47.8		50.0	96
Benzene		Independent Standard	56.6		50.0	113
Toluene		Independent Standard	55.8		50.0	112
Chlorobenzene		Independent Standard	55.2		50.0	112
Phenol		Independent Standard	117		200	
2-Chlorophenol		Independent Standard	140		200	70
1,4-Dichlorobenzene		Independent Standard	82.8		100	83
N-Nitrosodipropylamine		Independent Standard	96.7	•••	100	97
1,2,4-Trichlorobenzène		Independent Standard	86.9		100	87
4-Chloro-3-Methylphenol		Independent Standard	151		200	76
Acenaph thene		Independent Standard	84.1		100	
4-Nitrophenol		Independent Standard	101			
2,4-Dinitrophenol		Independent Standard	98.7		200	50
Pentachlorophenol					100	99
		Independent Standard	163		200	82
Pyrene		Independent Standard	96.1		100	96

CUST SAMPLE ID: SD-2428-792- 10 COLLECTION DATE(S): 07/08/92

LABORATORY JOB NO: 922504 LABORATORY REFERENCE NO: 17300

.

COLLECTION METHOD:

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Cyanide, Total	30.3	mg/kg	0.2		SW 846 9012
Hexavalent Chromium, Total	<1.0 *	mg/kg	0.1		EPA 7196
Oil & Grease, Soxhlet	0.0002	%	0.0001		SM 503D
Methylene chloride	2.62	mg/kg		1.00	SW 846 8240
1,2-Dichloroethene (Total)	BQL	mg/kg		0.50	SW 846 8240
Benzene	BQL	mg/kg		0.50	SW 846 8240
Toluene	BQL	mg/kg		0.50	SW 846 8240
Total Xylenes	BQL	mg/kg	·	0.50	SW 846 8240
Ethylbenzene	BQL	mg/kg		0.50	SW 846 8240
Acenaphthylene	0.68	mg/kg	••••	0.33	SW 846 8270
Phenanthrene	4.4	mg/kg		0.33	SW 846 8270
Pyrene	9.2	mg/kg		0.33	SW 846 8270
Anthracene	1.0	mg/kg		0.33	SW 846 8270
Benzo (a) anthracene	4.7	mg/kg		0.33	SW 846 8270
Benzo (b) fluoranthene	5.9	mg/kg		0.33	SW 846 8270
Benzo (k) fluoranthene	7.3	mg/kg	•••	0.33	SW 846 8270
Chyrsene	5.4	mg/kg		0.33	SW 846 8270
Fluoranthene	7.2	mg/kg		0.33	SW 846 8270
fluorene	0.51	mg/kg		0.33	SW 846 8270

SAMPLE TYPE: Sediment

FOOTNOTES

* Diluted 1:10 due to matrix interference.

CUST SAMPLE ID: SD-2428-792- 11 COLLECTION DATE(S): 07/08/92

LABORATORY JOB NO: 922504 LABORATORY REFERENCE NO: 17301

COLLECTION METHOD: SAMPLE TYPE: Sediment

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Cyanide, Total	21.9	mg/kg	0.2		SW 846 9012
Hexavalent Chromium, Total	<1.0 *	mg/kg	0.1		EPA 7196
Oil & Grease, Soxhlet	0.0012	%	0.0001		SM 503D
Methylene chloride	2.09	mg/kg		1.00	SW 846 8240
1,2-Dichloroethene (Total)	BQL	mg/kg		0.50	SW 846 8240
Benzene	BQL	mg/kg		0.50	SW 846 8240
Toluene	BQL	mg/kg		0.50	SW 846 8240
Total Xylenes	BQL	mg/kg		0.50	SW 846 8240
Ethylbenzene	BQL	mg/kg		0.50	SW 846 8240
Acenaphthylene	0.79	mg/kg		0.33	SW 846 8270
Phenanthrene	4.1	mg/kg		0.33	SW 846 8270
Pyrene	8.0	mg/kg		0.33	SW 846 8270
Anthracene	0.94	mg/kg		0.33	SW 846 8270
Benzo (a) anthracene	4.7	mg/kg		0.33	SW 846 8270
Benzo (b) fluoranthene	6.2	mg/kg		0.33	SW 846 8270
Benzo (k) fluoranthene	5.9	mg/kg		0.33	SW 846 8270
Chyrsene	5.3	mg/kg		0.33	SW 846 8270
Fluoranthene	6.7	mg/kg		0.33	SW 846 8270
fluorene	0.58	mg/kg		0.33	SW 846 8270

FOOTNOTES

* Diluted 1:10 due to matrix interference.

ADVANCED ENVIRONMENTAL SERVICES LABORATORY REPORT

CUST SAMPLE ID: SD-2428-792- 15 COLLECTION DATE(S): 07/08/92

COLLECTION METHOD: SAMPLE TYPE: Sediment

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Cyanide, Total	2.40	mg/kg	0.2		SW 846 9012
Hexavalent Chromium, Total	<1.0 *	mg/kg	0.1		EPA 7196
Oil & Grease, Soxhlet	ND	%	0.0001		SM 503D
Methylene chloride	40.1	µg/kg		10.0	SW 846 8240
1,2-Dichloroethene (total)	BQL	µg/kg	•••	5.00	SW 846 8240
Benzene	BQL	µg/kg	•••	5.00	SW 846 8240
Toluene	11.8	µg/kg		5.00	SW 846 8240
Total Xylenes	BQL	µg/kg		5.00	SW 846 8240
Ethylbenzene	BQL	µg∕kg		5.00	SW 846 8240
Acenaphthylene	BQL	mg/kg		0.33	SW 846 8270
Phenanthrene	BQL	mg/kg		0.33	SW 846 8270
Pyrene	0.46	mg/kg		0.33	SW 846 8270
Anthracene	BOL	mg/kg	•••	0.33	SW 846 8270
Benzo (a) anthracene	BQL	mg/kg		0.33	SW 846 8270
Benzo (b) fluoranthene	0.48	mg/kg	•••	0.33	SW 846 8270
Benzo (k) fluoranthene	0.44	mg/kg		0.33	SW 846 8270
Chyrsene	0.34	mg/kg		0.33	SW 846 8270
Fluoranthene	0.40	mg/kg		0.33	SW 846 8270
fluorene	BQL	mg/kg		0.33	SW 846 8270

* Diluted 1:10 due to matrix interference.

LABORATORY JOB NO: 922504 LABORATORY REFERENCE NO: 17302

CUST SAMPLE ID: METHOD BLANK #7

LABORATORY JOB NO: 922504

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
Cyanide, Total	ND	mg/kg	0.2		SW 846 9012
Hexavalent Chromium, Total	ND	mg/kg	0.1		EPA 7196
Oil & Grease, Soxhlet	ND	%	0.0001		SM 503D
Methylene chloride	BQL	mg/kg		1.00	SW 846 8240
1,2-Dichloroethene (Total)	BQL	mg/kg		0.50	SW 846 8240
Benzene	BQL	mg/kg	、	0.50	SW 846 8240
Toluene	BQL	mg/kg		0.50	SW 846 8240
Total Xylenes	BQL	mg/kg		0.50	SW 846 8240
Ethylbenzene	BQL	mg/kg		0.50	SW 846 8240
Acenaphthylene	BQL	mg/kg		0.33	SW 846 8270
Phenanthrene	BQL	mg/kg	• •••	0.33	SW 846 8270
Pyrene	BQL	mg/kg	•••	0.33	SW 846 8270
Anthracene	BQL	mg/kg		0.33	SW 846 8270
Benzo (a) anthracene	BQL	mg/kg		0.33	SW 846 8270
Benzo (b) fluoranthene	BQL	mg/kg		0.33	SW 846 8270
Benzo (k) fluoranthene	BQL	mg/kg		0.33	SW 846 8270
Chyrsene	BQL	mg/kg		0.33	SW 846 8270
Fluoranthene	BQL	mg/kg		0.33	SW 846 8270
Fluorene	BQL	mg/kg		0.33	SW 846 8270

.

CUST SAMPLE ID: METHOD BLANK #7

LABORATORY JOB NO: 922504

LABORATORI	JUD	NO:	76620

Analytical Parameters	Analytical Results	Units	Method Detection Limits	Practical Quantifiable Limit	Method
		onnes			Method
Methylene chloride	BQL	µg/kg		10.0	SW 846 8240
trans-1,2-Dichloroethene	BQL	µg/kg		5.00	SW 846 8240
Benzene	BQL	µg/kg		5.00	SW 846 8240
Toluene	BQL	µg/kg		5.00	SW 846 8240
Ethylbenzene	BQL	µg/kg		5.00	SW 846 8240
m-Xylene	BQL	µg/kg		5.00	SW 846 8240
o/p-Xylene	BQL	µg/kg		5.00	SW 846 8240

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

PAGE 1

JOB# 922504

Type of Analysis: SURROGATE RECOVERIES #7 Client Name: Conestoga-Rovers & Associates

A.E.S. Job Code: FIK Units: Percent (%)

		A.E.S. Lab Number. Customer ID.	SD-2428-792-	17301 SD-2428-792-	17302 SD-2428-792-	
Analytical Parameter(s)	Method No.	Practical Quantifiable Limit	10 07/08/92	11 07/08/92	15 07/08/92	
2-Fluorophenol	SW 846 8270	25-121	58	62	59	
Phenol - dó	SW 846 8270	24-113	70	73	70	
2,4,6-Tribromophenol	SW 846 8270	19-122	62	62	65	
Nitrobenzene-d5	SW 846 8270	23-120	78	. 79	78	
2-Fluorobiphenyl	SW 846 8270	30-115	75	81	78	
Terphenyl-d14	SW 846 8270	18-137	100	90	89	
1,2-Dichloroethane-d4	SW 846 8240	70-121	104	87	95	· · · · · · · · · · · · · · · · · · ·
Toluene-d8	SW 846 8240	81-117	102	79	112	
4-Bromofluorobenzene	SW 846 8240	74-121	100	79	. 84	

Client: Conestoga-Rovers & Associates Type of Analysis: Independent Standards #7

A.E.S. Job Code: FIK Units: mg/kg

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
Hexavalent Chromium		Independent Standard	10.1	10.0	NONE	101
Cyanide		Independent Standard	22	25	NONE	88
Soxhlet (%)		Independent Standard	0.0822	0.0710	NONE	116

* % Recovery = 100 x ((Observed Concentration - "background" Original Concentration) / Added Spike Concentration)
 If Added=NONE: % Recovery = 100 x (Observed Concentration / "background" Original Concentration)

Client: Conestoga-Rovers & Associates Type of Analysis: Independent Standards #7

A.E.S. Job Code: FIK

Units: mg/kg,ppm

Analytical Parameters	Sample No.	Туре	Observed Concentration	Original Concentration	Added Concentration	Percent Recovery*
1,1-Dichloroethene		Independent Standard	5.51		5.00	110
Trichloroethene		Independent Standard	4.65		5.00	93
Benzene	·	Independent Standard	5.60		5.00	112
Toluene		Independent Standard	5.39		5.00	108
Chlorobenzene		Independent Standard	5.27		5.00	105
Phenol		Independent Standard	2.4	· • • •	3.3	73
2-Chlorophenol		Independent Standard	3.2		3.3	<u>9</u> 7
1,4-Dichlorobenzene		Independent Standard	3.0		3.3	91
N-Nitrosodipropylamine	·	Independent Standard	3.7	•	3.3	112
1,2,4-Trichlorobenzene		Independent Standard	3.1		3.3	94
4-Chloro-3-Methylphenol		Independent Standard	3.1		3.3	94
Acenaphthene		Independent Standard	3.1		3.3	94
4-Nitrophenol		Independent Standard	2.2		3.3	67
2,4-Dinitrotoluene		Independent Standard	4.2		3.3	127
Pentachlorophenol		Independent Standard	3.4		3.3	103
Pyrene		Independent Standard	3.7		3.3	112

PAGE 2

Advanced Environmental Services Sample Traceability Report Inorganics Analysis # /

.

AES Job Code933440AES Job No.FZK

			Sample Prep			Analysis	
AES Sample Number	Sample Date	Method Number	Date	Analyst	Method Number	Date	Analyst
17219-20					7196	7-6-92	DTR
17219-20	7-6-92	412B	7-8-92	cw	335.3	7-10-92	DTR T.AL
· · · · · · · · · · · · · · · · · · ·	· ·						
			,				
			· · · ·				

Sample Traceability Report Organics Analysis # 1

1 Job _____ + K

AES Job No. 973460

4.50			Sample Prep		1	Analysis	
AES Sample Number	Sample Date	Method Number	Date	Analyst	Method Number	Date	Analyst
17219	7-6-92				SM1503A	7-9-92	G/ SK.
17220	7-6-92		<u> </u>		SM 50.3A	7-9-92	4/ LR.
17219-20	7-6-92 7/6/92	8270 (3510)	7-8-92	4/xx	8270	7-16-97	JF
17219-20	7/6/92				82.40	7-16-92 7/14/92	KSA

Advanced Environmental Services Inc.

Sample Traceability Report

AES Job Code

AES Job Code FIK AES Job Number 972504

Organics Analysis #2

			Extraction			Analysis	
AES Sample Number	Sample Date	Method Number	Date	Analyst	Method	Date	Analyst
17300-17302	7/8/92	8270 (3550)	7-13-92	¥	Number	7/16/92	JF
17300	7/8/92		,	0	8240	7/16/92 7/16/92	KR
17301					- /	1	KR
17302)		<u> </u>		7/16/92 7/20/92	KR
						.,	
							· ·

Ivar Env.....nentar services Sample Traceability Report Inorganics Analysis #2

AES Job Code <u>FIK</u> AES Job No. 922504

.

AES Sample Number	Sample Date	Method	Sample Prep Date			Analysis	
17300-02		Number		Analyst	Method Number	Date	Analyst
17300-02		11:50			7196	7-9-92	DIR
17300	73-92	767	715-92	CW	9012	7-16-92	m)
17301	78.00				5036	7-2017	$\overline{(b)}$
7301-02	7-8.92				573D	71790	α
17300	7-8-92				5030	7-28-92	CG)
					503 D	7-28-9	cd_
							×
				· ·			

Sample Traceability Report Inorganics Analysis #3

AES Job Code FIK

AES Job No. 922505

1.70			Sample Prep		Analysis		
AES Sample Number	Sample Date	Method Number	Date	Analyst	Method Number	Date	Analyst
17306	3-8-95	3005	7-10-42	Augly Duroran	7470	7-13-92	DIR
17304-05	1/	3010	7-10-92	Punly Ponorcos	7470	7-13-92	
17303	1/	3070	7-10-95	Puula Ponduan	7470	7-13-R	DTR
17307	1(774017060	3-10-92	Puula Ponoras	,7470	7-13.52	DIR
17306-7	"				1740	7-14-92	CO
17303-07	"				6010	7-15-92	WC
	11				7060	7-10-92	Co
	11				1481	7-10-92.	(1)
	1				7421	7-15-92	CO
17.306	1				6010	7-16-92	NAIC
17303-17307	J.F-90.				60010	7-16-92	WC
	•						

Advanced Environmental Services Sample Traceability Report Inorganics Analysis #3

AES Job Code FIK AES Job No. 922505

AES Sample Number	Sample Date	Method Number	Sample Pre Date	Applyst		Analysis	
17303-07		Number			Method Number	Date	Analyst
17303-07 17303-07 7303-04	7/8/92	11100			7196	7-8-92	DTR
7303-01	7-8-9	11215	7-10-92	av	335.3	7-16-92	m)
		4123	7-10-92	CW	33573	7-10-92	1
	4						
							•
					· · ·		

Advanced Environmental Services Inc.

Sample Traceability Report

AES Job Code FIK AES Job Number 922505

Organics Analysis #3

			Extraction		T	Analysis	
AES Sample Number	Sample Date	Method Number	Date	Analyst	Method	Date	Analyst
17303	7/8/92	3510	7-10-92	MM	Number 82.70	7/14/92	JF
17304	ĺ					7/15/92	
17305						7/15/92	
17306						1/14/92	
17307						7/15/92	
17303-07	7-8-92		,	~	Sm 503 A	7-15-92	GILR
17303-07	7/8/92	_			8240	7-15 - 7/16/92	KSR
							· · · · ·

..... Historia SEVIC **ь**н v Sample Traceability Report Organics Analysis #4

> . .

A . Job Lun , It

. .

AES Job No. 9225/0

4.50			Sample Prep	·	Т	Analysis	
A ES Sample Number	Sample Date	Method Number	Date	Analyst	Method Number	Date	Analyst
17313	7-9-92		7-10-92	My	8270	7/15/92	F
17314	7-9-92	L			L	7/16/92	JP.
17313	7/9/92		(8240		
M314	7/9/92		_	<u> </u>	8240	7/14/92	KSR
17313	7-9-92				5175D3A		
17314	7-9-92				sm sD3A	7-15-92 7-15-92	CLI LK
							0
	· .						
						· · ·	

Advanced Environmental Services Sample Traceability Report Inorganics Analysis #4

ς.

AES Job Code <u>FIK</u>

. •

			Sample Prep	······································	Analysis				
AES Sample Number	Sample Date	Method Number	Date	Analyst	Method Number	Date	Analyst		
17313-14					7146	7-9-92	MTR		
17313-14 17313-14	7-9-92	412B	7-15-9.2	CW	335.3	7-9-9.2	nd		
						*•			
					-				
					-				
				· · · · · · · · · · · · · · · · · · ·					

Auniced an iron al St. ...es Sample Traceability Report Inorganics Analysis #5

> . .

AES Juu Code FIA

AES Job No. 932510

			Sample Prep		<u> </u>	Analysis	
AES Sample Number	Sample Date	Method Number	Date	Analyst	Method Number	Date	Analyst
17315	7-9-92	3010	7-10-92	Ruli Ronaun	7470	7/13/92	ATR
		3005	7-10-92	Paylie Dunones	7740	7-14-92	CO
17315	11	3020	7-10-907	Paula Porous	6010	7-15-92	AIC
17315	.!/	774017060	7-10-93.	Puula Dono-on	6010	7-16-92	JVa,
					7421	7-14-92	CO
					7481	7-10-92	CO
2					7060	7-10-92	Ċð
							1 m (10 1 m) (10
			· · · · · · · · · · · · · · · · · · ·				
					· · · ·		
	•					······	

Auvanced Environmental Services Sample Traceability Report Inorganics Analysis #5

Г

AES Job Code FIK AES Job No. _ 9225-1/

	A ES	Sample	Method	Sample Pre	ep			
ł	Sample Number	Date	Number	Date	Analyst	Method	Analysis	
	17315					Number	Date	Analyst
┝	17315 17315	7-9-9.2	412B	7-16-9-	e cw	7194 335 3	7-9-93	DTR
┝						205 5	7-16-12	Tw
	•							
-								
		,						

Sample Traceability Report Organics Analysis #5

AES Job Code	FIK
AES Job No.	922511

. .

AES	Sample	Sample Prep			Analysis		
Sample Number	Date	Method Number	Date	Analyst	Method Number	Date	Analyst
17315	7/9/92	3510	7/10/92	MM	82.70		
17315	7-9-92		\frown	$\overline{}$	SM503A	7-14-92 7-14-92	
17315	7 9 92	· .			8240	7/17/92	Fin
					0010	111 //92	- AJ/C
							· · · · · · · · · · · · · · · · · · ·
	·						
					-		

Advanced Environmental Services Sample Traceability Report Organics Analysis #C

· . ·

AES Job Code FIK AES Job No. 922510

AES		1	Comercia			, •	
Sample Number	Sample Date	Method Number	Sample Prep Date	Analyst	Method	Analysis Date	1
17316	7-10-92	3510	7-10-92		Number		A nalyst
17316	7-10-92	(MM	8270	7-16-92	-11-
173/6	7-10-92 7/10/92				SM 503A	7-14-92	Cf + La
	1110/92				8240	7-14-92 7/18/92_	KJA

A ced iron al S es Sample Traceability Report Inorganics Analysis #6

.

NES Jus Code III

AES Job No. 922512

.

			Sample Prep		1	Analysis	·····
AES Sample Number	Sample Date	Method Number	Date	Analyst	Method Number	Date	Analyst
17316					7196	7-10-92	10702
17316 17319	7/10/92	412B	7/16/92-	EAR	3353	7-10-92 7-16-92	197R Mi
							-u
	4		-				
					-	۰.	· · ·
			· · · · · · · · · · · · · · · · · · ·				
					-		
					-		
			· · · · ·				
	•						
					-		•

Advanced Environmental Services Sample Traceability Report Inorganics Analysis #7

•••

AES Job Code FIK

0

AES Job No. 922530

AES	Sample	Method	Sample Prep	1		Analysis	
Sample Number	Date	Number	Date	Analyst	Method Number	Date	Analyst
17364	7-7-92		7-9-9,2	Ch	335.3	7-10-92	J.IL
17365-67	7-7-92	412B	7-9-9.2	CW	5353	7-10-92 7-10-92	-1 dg
	7-7-92	HIZB	7-15-92	CU)			1.717
17364	7-7-92	4123	7-20-92	CW			-
17.364-67	7-7-72				7196	7-7-92	DTR.
				•		2.	
	-			1			
		a.					

Advanced Environmental Services Inc.

Sample Traceability Report

AES Job Code <u>FIK</u> AES Job Number 922 481 922530

.

Organics Analysis #7

			Extraction	·		Analysis	
AES Sample Number	Sample Date	Method Number	Date	Analyst	Method Number	Date	Analyst
17364-67	7/7/92	8270 (3510)	7/8/92	8/11	8270	-7/14/92	JF
17364-67 17364-67	7/7/92				SM 503A	7/14/92	G/ya
17364-67	7/7/92				8240	7/15/92	KS/
					-		
				· ·			

CRA Consultin ONESTOGA-RO 51 Colby Drive, Wat	VEHS & A	SSOCIAT Io Canada N	ES 12V 1C2	SHIF	PED	TO (Labora	tory	' nam	e):
HAIN OF	CUS	TODY	PROJECT	N ^e :		JECT NAME:			
AMPLER'S SIGNATU		that it							
0		ALU	(SIGN)	an)			NP OF CONTAINERS		REMARKS
SAMPLE Nº	DATE	TIME	SAMPLE L	SAMPLE LOCATOIN		TYPE	2 200		
W-2428-792-01	7/0/92	15-15				GIN	21	Hand	VOC (8240)
							11	IL	PAH
+							11	IL C	yunide ~ j Nac
V	V							12	oil + grease
W-2428792-02	7/6/92	1645						500ml	Cr 6t
1	1	1				G/W		Homi	
							-	11	РАН
							1× 1×		yan. de w/ Na OF
V V	Y	1					1.8	500-	(1+grease w/ Cr Gr
++									
++									
++									
1									
			TOTAL NUMB	ER OF		AINERS			
TICIPATED CHEMICA	L HAZARDS	:				AINERS	12		
		U,	Known						
INQUISHED BY	the to 1 VI	1	DATE			RECEIVED B			
	(SIGN)	~ <u>~</u>	- 7/6/92		.5		3-		as Mullison
NQUISHED BY:						RECEIVED BY		((SIGN)
[2]	(SIGN)					1	r: 3)		
NQUISHED BY:							-	(Sign)
3	(SICN)		- UAIE			RECEIVED BY	_		
TIONAL SIGNATURE							•)	(Sign)
ET REQUIRED									
HOD OF SHIPMENT:		SHIDDEE							
				RE	ECEIVE	ED FOR LABOR	ATOR	Y BY:	DATE/TIME
000 / 076			6.6	(S	IGN) —				
DITION OF SEAL UP		T:					DATE/TIME		
RAL CONDITION OF	COOLER:	· .		(5	IGN)				
		OPY							

GOLDEN ROD - SHIPPERS

Nº 20786

CO	RA Consultin	ng Engineers			SHIPPED TO (Laboratory name):					
651	Colby Drive, Wat	terioo, Ontar	rio Canada N2	S 2V_1C2		AES				
	HAIN OF	CUS	TODY	PROJECT N 24/28	INCOLOT NAME:					
SAN	PLER'S SIGNAT		ton tal.	The .		Tonananda		eke		
SEQ.			1	(SIQN)		- SAMPLE TYPE	N ^R OF CONTAINERS	REMARKS		
<u></u> №		DATE	ПМЕ	SAMPLE LO	OCATOIN		2 IN CON 2			
	50-2428-792-11 50-2428-792-11					Soil	11	12 YUC, PAH, CA,		
	SW-2428-772-12			· · · ·		Soil	11	12 VOC, PAH, CA		
	the second	exkept	1	6.2		Surface Water	2x	HOMI VOC (82		
i		- apopro					12	16 oil agrease		
							1.	12 cyanide w/		
							12 1	L bn/ac		
	V	V	V				1x 5	conl Crot		
	5ac	27 (2.0	+ MS/MS	<u>م</u>				coon TAI meta		
	5m-2428-792-13	7/8/92	1200	V			14	MS/MSD		
		1	1					lum VOC (3240		
							1. 1.	L oil+grease		
							1x 12	- cyanide w		
							11 12	bn/ac		
		\checkmark	V			V V		son! Cr "		
5	0-2428-792-15	7/8/92	1415	· · · · · · · · · · · · · · · · · · ·			11 5	00-1 THI neta.		
						Soil	1 1	L VOC, PAH Cn.		
							-			
						+	31			
·			T	OTAL NUMBER	R OF CO	INTAINERS C				
ANTIC	PATED CHEMICA	L HAZARDS	:				52			
			Unknow	vn			P	aje 20fZ		
RELINC	QUISHED BY:	1.1.11	\overline{n}	DATE	TIME					
		(SIGN)	K	7/8/921		RECEIVED BY	-	eta Lewin Ce		
RELINC	UISHED BY:	,				-		(SIGN)		
	2	1010-1		DATE/	IME	RECEIVED BY	-			
RELING	UISHED BY:	(SIGN)				- 3	Ŋ	(SIGN)		
	3			DATE/	TIME	RECEIVED BY:				
100/-		(SIGN)				-)			
ADDITIO	NAL SIGNATURE REQUIRED							(SIGN)		
METHOR	OF SHIPMENT:									
			SHIPPED B		RECE	IVED FOR LABORA	TORY	BY: DATE/TIME		
	Avto		JJW /	G.G.	(SIGN)		•			
CONDITI	ON OF SEAL UP	ON RECEIPT								
· · ·	CONDITION OF					LER OPENED BY:		DATE/TIME		
GENERA	L CONDITION OF	COULER:			1					

20/90

CRA Consulting Engineers CONESTOGA-ROVERS & ASSOCIA 651 Colby Drive, Waterloo, Ontario Canada		SHIP	,	TO ES		tory	name):	
CHAIN OF CUSTODY	PROJECT	Nº:	PRO	JECT	NAME:			
RECORD	2428	2428 7.			unda	_ (Coke	
SAMPLER'S SIGNATURE	h		SAMPLE			ERS		
SEQ. SAMPLE Nº DATE TIME	(SIGN)	LOCATO	IN		TYPE	NP OF CONTAINERS	REMARKS	
Sw-2428-792-16 7/9/92 0915				iv.faz.	e water	2	40-1 VCC (8240)	
					+		12 cyanide w/ NeiCH	
							12 oil-grase with	:1
						1	12 bn/az Soon Cr6t	
					4	/x /x	Such Cr Gr Such I TAI Metals a	i.L.
N-2468-742-17 7/9/92 /000				G	/N	2x	40~1 VCC (8240)	~~~~~
					1	1×	12 Gymicie N/NaOH	(
						1x	12 oil + grease w/ +	
						18	12 PAH	
			V 1x 500 m					
W-2428-792-18 7/9/92 1100	W-2428-792-18 7/9/92 1100				W	2x	40ml Var (8240)	
						1×	12 Cyanide W/Nat	
							12 Gil + grease with	401
		*****			/	18	16 PAH 500-1 Cr 6+	
						للأ	500~1 Cr 6+	
	TOTAL NUME	BER OF	CONT	AINE	RS	19		
ANTICIPATED CHEMICAL HAZARDS:	Ynknown	\						
RELINQUISHED BY:	DA	TE/TIME		RE	CEIVED E	IY.		-
(SIGN)	<u> </u>	2/3.	20			\otimes	Storifs Feder	
RELINQUISHED BY	DAT	TE/TIME		RE	CEIVED B	Y:		
[2] (SKGN)								
RELINQUISHED BY:		TE/TIME		RF	CEIVED B		(SIGN)	
[3](SIGN)							(SIGN)	
ADDITIONAL SIGNATURE						(201)		
METHOD OF SHIPMENT: SHIPP	ED BY:	R	RECEIV	L ED F	OR LABO	RATO	RY BY: DATE/TIME	
Avto Juh		(SIGN) -						
CONDITION OF SEAL UPON RECEIPT:				PENED BY	<i>(</i> •	DATE/TIME		
GENERAL CONDITION OF COOLER:	(SIGN)							
WHITE-CRA OFFICE COPYYELLOW-RECEIVING LABORATOPINK-CRA LABORATORY COGOLDEN ROD-SHIPPERS	RY COPY PY		,			N	20791	

		g Engineers			SHIP	PED) TO (Labord	atory no	ime):
651 0	IESTOGA-RO Colby Drive, Wate	erloo, Ontari	o Canada N	E S 2V 1C2			AES		
CH	AIN_OF	CUS	TODY	PROJECT	VP:	PRO	OJECT NAME:		
		ORD		2428			Tonaway	da C	oke
	PLER'S SIGNATU	RE	M //	(SIGN)			SAMPLE		
SEQ. Nº.	SAMPLE Nº.	DATE TIME		SAMPLE L	OCATOI	N	TYPE	NP OF CONTAINERS	REMARKS
	<u>1-2429-792-14</u>	7/10/92	0900				G/W	2× 40	~1 VOC (82
					· · · · ·	-+		1x 10	cyande 1
	V	V	V					1/ 1/	<u>oil + gilaye</u> PAH
	~		- V				\checkmark		ond Cr6
						+			
						-+			
						+			
	ATED CUEWOU		Т	OTAL NUMBE	ROFC	ONT	AINERS	6	
	ATED CHEMICAL	HAZARDS:							
RELINQU	JISHED BY:	4111	<u> </u>	10m	1		1		
· .		(SIGN)		DATE, 7/10/92	1070	2	RECEIVED BY		CIA (en)
RELINQU	ISHED BY.	(0.0.0)					RECEIVED BY	ש <i>(</i>	(SIGN)
	2	(SIGN)							
RELINQU	ISHED BY:			DATE/	TIME	_	RECEIVED BY:	-	(SIGN)
	3	(SIGN)				_	4		(50)
HEET R	AL SIGNATURE								
ETHOD	OF SHIPMENT:		Shipped B	Y:	BEC				
	Auto		JJW/	•	(SIGA		D FOR LABORA	TORY BY	
ONDITIO	N OF SEAL UPC	N RECEIPT:	l.				R OPENED BY:		
	CONDITION OF	COOLER:			(SIGN				DATE/TIME
WHITE YELLOW PINK	- REC	OFFICE CO EIVING LABO LABORATO	RATORY C	OPY		,			
GOLDEN	ROD - SHIP	PERS	T COPY				N	1º 2	0792

CON	RA Consulting NESTOGA-RO Colby Drive, Wate	VERS & AS		SHI	PED	TO (Labora	tory	name)			
CH	IAIN OF	CUS	TODY	PROJECT	N ^p :	PRO	JECT NAME:				
		ORD		2428		1	mawanc	Ja	Cur	Ke	
SAM	PLER'S SIGNATU		the All				SAMPLE	VERS			
SEQ. Nº.	SAMPLE Nº.	DATE	TIME	(SIGN)		OIN	TYPE	N [®] OF CONTAINERS	F	REMARKS	
	W-2428-792-03	7/7/92	1500				G/N	2x	40-1	VUC (8240)	
	1	├ ── ├ ──						11	11 4	inide wink Or	1
								1.	IL P		
	V V		\checkmark					1x		1+gleese w Cr6+	HC
	W-2428-792-03	.some	as a	DOVE EXC	int	MSX	MSD	12	500m/ MS	IMSD	
	w-2428-792-04		1430				G/W			VOC (8240)	
		· •						İx	1	anide w/Nabh	
								Ix		AH	
	· · · · · · · · · · · · · · · · · · ·							18	16 0	1+ GIERSE W	HC
	W-2423-792-05 7/7/92 1630								500-1	Cr 6t	
	W-2723 712 02						<u>G/W</u>	$\frac{2x}{1x}$		VOC (8240)	0
								1x		<u>yani'de w/Na</u> H	M
										1+ grease w	1 H
	- V		V					lx	500-1	Cr 6+	
				TOTAL NUM		E CONT		110			
ANTI	CIPATED CHEMIC	AL HAZARD	I S:					40 30		= 1072	
			Unk	nown				ç	(page		
RELI	NQUISHED BY	the	W.	DA	TE/TIM	íE	RECEIVED	BY	, <		
	jū-	(SIGN)	lb	- 7/7/72	-11	630			Jaicia	SGN)	
RELIN	NQUISHED BY:	(0.0.0)		DA	TE/TIM	IE	RECEIVED	BY:	(.	SiGN	
	[2]	(SIGN)		-				<u> </u>		SIGN)	
RELIN	NQUISHED BY:		· · · · · · · · · · · · · · · · · · ·	DA	TE/TIM	E	RECEIVED	BY:	(;		
	3	(SIGN)						(4)		SGN)	
	TONAL SIGNATUR T REQUIRED						_		(.		
METH	OD OF SHIPMEN	T:	SHIPPET			RECEN	VED FOR LABO			DATE/TIME	
CONF	DITION OF SEAL			1/ G.G.		(SIGN) -					
	RAL CONDITION (COOL (SIGN) -	ER OPENED B	Y:			
	LOW - H	CRA OFFICE RECEIVING L CRA LABOR	ABORATOR	Y COPY) ງ	0787	

GOLDEN ROD - SHIPPERS

N= 20/0/

CO	RA _{Consultin} NESTOGA-RO Colby Drive, Wate	VERS & A	SSOCIATE	ES 2V 1C2		D TO (Labor AES		nam	e):
	AIN OF				e: PR	OJECT NAME:			
•		ORD		2428 Tonawande (Cak	· _
SAM	PLER'S SIGNATU	RE	the tak	R	I	T	÷	1	
SEQ.	SAMPLE Nº.	DATE	TIME	(SION) SAMPLE LO		SAMPLE TYPE	NP. OF CONTAINERS		REMARKS
	N-2428-792-06	717/97	1515			G/W			
							1×	40~	VOC (8240)
							IA.	11	<u>cyanide ~/N</u> PAH
							1×	11_	oil+grease
	¥	<u>v</u>	V			V	1×	500 -	-1 Cr 6t
								200 -	<u>SI</u>
					•				
							┼──┼		
				· · · · · · · · · · · · · · · · · · ·			+		
							+		
							+		
							┝──┼		
									·
				TOTAL NUMBER	R OF CON	TAINERS	ا سنداد		
ANTIC	PATED CHEMICA	L HAZARDS	: :				HE	ic	
			, Un	Known			567	itse z	0F2
RELIN	QUISHED BY	10 1.11	<i>II</i> · · · ·		/				
	/ī];	MI Alleh		DATE/ 7/7/92	/ IME // 2.0	RECEIVED B	``		Tende
		(SIGN)			000		Qué	ura (SIGN)
KELIN(UISHED BY.			DATE/	TIME	RECEIVED B	Y:		.,
	2	(SIGN)					3—		
ELINC	NUISHED BY:			DATE/	TIME	RECEIVED B		(!	SIGN)
	3	(SIGN)					-		
יידוחס	DNAL SIGNATURE							(5	IGN)
HEET	REQUIRED								
IETHO	D OF SHIPMENT:		SHIPPED	L BY:	RECEN	L	ATOD	PV.	DATE/TIME
	Auto		TOW/				UR .		
ONDIT	ION OF SEAL UP				(SIGN) -				
	L CONDITION OF		1:		COOL	ER OPENED BY	:		DATE/TIME
		CUULER:			1				
					(SIGN) -				

	Colby Drive, Wat					4ES				
CF	HAIN_OF		IODY	PROJECT Nº:		OJECT NA				
	REC	CORD		2428	1	Ma Wal	nda	6	ke	
SAN	MPLER'S SIGNATU		the plill	(Sign)		SAM	IPLE	F NERS		
SEQ.	SAMPLE Nº.	DATE	ПМЕ	SAMPLE LOC	ATOIN	- TY	PE	NP OF CONTAINERS		REMARKS
	5N-2428-792-0	7 7/8/92	1000	·		Surf. A	luter	2 x	40-1	100 (8240
	<u> </u>	<u> </u>				1				il+ grase w
	ļ	_		-						aide w/ NEO
										Cr 6t -
	+							1x	500-1	Cr 6+ -
		V (all						1×		TAL metals
	5in-2428-792-08	7/8/92	1215					2 x	400	VOC (8240
	+	<u> </u>	+ + + + + + + + + + + + + + + + + + +					1×	16 0.	1+ grease N
								1*	16 c	yan. de wi
								1×	16 1	bn/ac
	l V		v							Cr 6t
						· }		/x	500-1	TAL metals
	5W-2428-792-09	7/8/92	1030							VOC (8240)
								1×	16 01	1+ grease NI
										vanide w/ a
								18		bn/ae
						~				Cr 6t
•		V				Ý		11	500-1	THE metal
	· · · · ·			TOTAL NUMBER	OF CO	TAINERS		21		
ANT	ICIPATED CHEMIC	AL HAZARD	S:						2:10/	of 2
			Unki	own				ľ	70	
RELI	NQUISHED BY:	- 11	nn ·	DATE/	TIME	PEC	EIVED B	<u>v.</u>		
		Alil Mu	ll'	- 7/3/721				6	arei	E Leaville
REI I	NQUISHED BY	(SIGN)				-			. (SIGN)
الالتيار				DATE/	IIME	REC	eived B	_		
0.00		(SIGN)				-		3	(SIGN)
RELI	NQUISHED BY:			DATE/	TIME	RECE	EIVED B	_		
	3	(SiGN)		·]		-		4 —	(SIGN)
ADDI SHEE	TIONAL SIGNATUR	RE								<u></u>
METH	OD OF SHIPMEN	T:	SHIPPED	BY:	RECE	IVED FOR				DATE/TIME
	Auto		/ <i>G</i> , <i>G</i> ,						I IME	
					(SIGN)				
	DITION OF SEAL		PT:		coc	DLER OPE	NED BY	' :		DATE/TIME
JENE	RAL CONDITION		(SIGN)					1.		

APPENDIX E

QA/QC REPORTS

APPENDIX E.1

JUNE 1991 SOILS REPORT

MEMO

To:Rick HoekstraFrom:Tracy VonahReference No.2428Date:7/19/91Re:Analytical Data Assessment and Validation
Soil Samples
Tonawanda Coke
June 1991

The following memo details an assessment and validation of analytical results reported by Advanced Environmental Services (AES) for two soil samples collected at the Tonawanda Coke Site during June 1991 for Target Compound List (TCL) Volatile Organic Compounds (VOCs), TCL Base/Neutral Acid Extractables (BNAs), TCL pesticides/PCBs (Pest/PCB), Target Analyte List (TAL) Metals and Cyanide.

Evaluation of the data was based on information derived from the finished data sheets and Chain of Custody forms, blank data and recovery data for surrogate spikes. The assessment of analytical and in-house data included checks for: adherence to accuracy and precision criteria, transmittal errors, and anomalously high and low parameter values.

The QA/QC criteria by which these data have been assessed are outlined in the relevant Methods and the document entitled, "Functional Guidelines for Evaluating Organics and Inorganics Analyses", (February 1, 1988), prepared by the United States Environmental Protection Agency (USEPA) Data Review Work Group, hereinafter referred to as the "Guidelines".

Based on a review of this data set and related quality control data, the following are noted:

1. <u>SAMPLE HOLDING TIMES</u>

As noted in the relevant methods, the maximum holding times for the respective parameters are listed in the following:

VOCs	7 days from VTSR ¹ to analysis
BNAs	5 days from VTSR to extraction 40 days from VTSR to analysis
Metals	6 months from collection to analysis
Mercury	26 days from VTSR to analysis
Cyanide	14 days from collection to analysis

Comparison of the collection dates of all samples (from the notation appearing on the Chain of Custody documents) with the reported dates of analysis showed that both samples were analyzed prior to expiration of their prescribed holding times.

2. <u>SURROGATE SPIKE RECOVERIES</u>

Laboratory performance on individual samples is assessed on the basis of surrogate spike recoveries. Fortifying the sample with a known amount of the surrogate prior to sample preparation serves as an indicator of the efficiency of analyte extraction, dissolution, or other matrix modifying techniques. Based on the surrogate recoveries reported, the following observations were noted:

A. <u>TCL VOCs</u>

In accordance with Method 8240, the surrogate compounds 4-bromofluorobenzene, toluene-d8, and 1,2-dichloroethane-d4 were added to the samples submitted for the analysis of TCL VOCs prior to analysis. All samples yielded surrogate recoveries within the control limits established by the laboratory. Therefore qualification of TCL VOC data was not required on this basis.

B. <u>TCL BNAs</u>

In accordance with Method 8270, the surrogate compounds 1,4dichlorbenzene-d4, naphthalene d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12, and perylene-d12 were added to the samples submitted for TCL BNA analyses. However, the surrogates were diluted out due to sample matrix interference.

¹ VTSR - Validated Time of Sample Receipt.

Therefore, laboratory performance based on surrogate spike recoveries could not be assessed for these analyses.

3. METHOD BLANK ANALYSES

The purpose of assessing the results of method blank analyses is to determine the existence and magnitude of sample contamination problems. The method blanks for TCL VOCs, TCL BNAs, TAL metals, and cyanide all showed non-detected quantities of the analytes of interest, indicating that contamination attributable to laboratory conditions was minimal during these analyses.

4. ACCURACY AND PRECISION CRITERIA - TAL METALS

Based on a review of the quality control summary provided by AES for metals, it was noted that the laboratory found all matrix spikes to have recoveries within the established control limits, and all duplicate sample analyses to have adequate reproducibility. Therefore, qualification of the associated data on these bases was not required.

5. <u>CONCLUSION</u>

Based on the assessment detailed in the foregoing, the data produced by AES is acceptable for its intended uses.

APPENDIX E.2

JULY 1991 WATER REPORT

MEMO

То:	Rick Hoekstra	WAT. FILE COPY				
From:	Tracy Vonah/js					
Reference No.:	2428					
Date:	8/19/91					
Re:	Analytical Data Assessment and Va Groundwater Samples Tonawanda Coke July 1991	lidation				
Copies to:	B. Clegg					

The following memo details an assessment and validation of analytical results reported by Advanced Environmental Services (AES) for three groundwater samples collected at the Tonawanda Coke Site during July 1991.

Evaluation of the data was based on information derived from the finished data sheets and Chain of Custody forms, blank data and recovery data for surrogate spikes. The assessment of analytical and in-house data included checks for: adherence to accuracy and precision criteria, transmittal errors, and anomalously high and low parameter values.

A summary of the samples submitted for analysis and the analytical parameters analyzed for is presented in Table 1. The QA/QC criteria by which these data have been assessed are outlined in the relevant Methods listed in Table 1 and the USEPA Functional Guidelines for Evaluating Organic and Inorganics Analyses, hereinafter referred to as the "Guidelines".

1. SAMPLE HOLDING TIMES

Based on the criteria outlined in the relevant methods and NYSDEC sample holding time protocols, the following sample holding time requirements have been established:

VOCs

7 days from Validated Time of Sample Receipt (VTSR) to analysis (14 days when preserved with HCl) 5 days from VTSR to extraction 40 days from VTSR to analysis

Metals

6 months from collection to analysis (mercury 26 days from VTSR to analysis)

Oil and Grease	26 days from VTSR to analysis
Cyanide	12 days from VTSR to analysis
Hexavalent Chromium	24 hours from collection to analysis

By comparing the sampling date of all samples (from the notation appearing on the chain of custody documents) with the reported dates of extraction and/or analysis, it is noted that all samples submitted for VOCs, PAHs, metal, oil and grease, cyanide, and hexavalent chromium were extracted and/or analyzed prior to expiration of their prescribed holding times.

2. <u>SURROGATE SPIKE RECOVERIES</u>

Laboratory performance on individual samples is established by spiking activities. All samples submitted for VOC and PAH determinations were fortified with surrogate compounds prior to sample preparation. Based on the surrogate recoveries reported, the following observations were noted:

A. <u>GC Volatile Organic Compounds (Methods 8010, 8020)</u>

The surrogate compounds bromochloromethane, 1,4-dichlorobutane, and a,a,a-trifluorotoluene were added to the samples submitted for GC VOC analysis.

One sample, W-2428-BC-003 demonstrated a surrogate recovery for a,a,a-trifluorotoluene of 105 percent, below the laboratory control limits of 113-142 percent. In accordance with the "Guidelines", the following qualification of associated data is recommended:

- i) all positive results should be flagged as estimated (data qualifier J) indicating a low bias in sample results; and
- ii) all practical quantitation limits for negative results should be flagged as estimated (data qualifier J), indicating a low bias in sample results.

Presented in the following is qualification of the affected sample data:

PAHs

Sample I.D.	Matrix	Parameter	Concentration (µg/L)	Qualifier
W-2428-BC-003	Water	VOCs Benzene Toluene Ethyl Benzene m/p-Xylene o-Xylene	ND(1.00) ND(1.00) ND(1.00) ND(1.00) ND(1.00)] J J

All remaining samples submitted for GC VOC analyses demonstrated surrogate recoveries within the laboratory control limits. This indicated acceptable laboratory performance for these samples.

B. <u>Polynuclear Aromatic Hydrocarbons (PAHs)</u>

Both samples submitted for PAH determinations were spiked with the surrogate compound 2-fluorobiphenyl prior to sample extraction. Both samples yielded surrogate recoveries within the laboratory control limits. This indicated acceptable laboratory performance for these samples.

3. METHOD BLANK ANALYSES

The purpose of assessing the results of method blank analyses to determine the existence and magnitude of sample contamination problems. All laboratory blanks analyzed in conjunction with the groundwater samples were prepared from deionized water. Inspection of the laboratory blank analyses for GC VOCs, PAHs, oil and grease, TAL metals, cyanide, and hexavalent chromium yielded non-detected concentrations of these analytes. This indicated that contamination attributable to laboratory conditions was minimal for these analyses.

4. <u>ACCURACY AND PRECISION CRITERIA - GC-VOCS</u>

Based on a review of the quality control summary provided by AES for GC-VOCs, it was noted that the laboratory found all matrix spikes to have recoveries within the established control limits, and all duplicate sample analyses to have adequate reproducibility. Therefore, qualification of the associated data on these bases was not required.

5. <u>CONCLUSION</u>

Based on the assessment detailed in the foregoing, the data produced by AES - is acceptable for its intended uses, with the specific qualifications noted herein.

SUMMARY OF ANAYTICAL PROGRAM JULY 1991 GROUNDWATER SAMPLES TONAWANDA COKE CORPORATION

Analytical Parameter

Methodology

Associated Samples

W-2428-BC-001

W-2428-BC-003²

W-2428-BC-003R

Volatile Organic Compounds¹ (VOCs)

8010/8020 USEPA SW-846 (3rd Edition)

Polynuclear Aromatic Hydrocarbons (PAHs) 8100 USEPA SW-846 (3rd Edition)

Hexavalent Chromium

7196 USEPA SW-846 (3rd Edition)

Cyanide

335.3 Methods for Chemical Analysis of Water and Wastes (3/83)

Oil and Grease

503A Standard Methods for the Examination of Water and Wastewater (16th Edition)

TAL-Metals

6010/7000 Series USEPA SW-846 (3rd Edition) W-2428-JOS-002

Notes:

- ¹ trans-1,2-dichloroethene, methylene chloride, cis-1,2-dichloroethene, benzene, toluene, ethyl benzene, m/p-xylene, o-xylene.
- 2 Sample W-2428-BC-003 for PAHs was lost in a laboratory accident. Sample W-2428-BC-003R was analyzed for PAHs only.

APPENDIX E.3

JULY 1992 WATER/SOILS REPORT

MEMO

То:	Rick Hoekstra
From:	Lisa Reyes/js
Reference No.:	2428
Date:	8/11/92
Re:	Analytical Data Assessment and Validation Groundwater, Surface Water and Sediment Samples Tonawanda Coke July 1992

The following memo details an assessment and validation of analytical results reported by Advanced Environmental Services (AES) for sediment, surface water, and groundwater samples collected at the Tonawanda Coke Site during July 1992.

Evaluation of the data was based on information derived from the finished data sheets and chain of custody forms, blank data and recovery data for surrogate and matrix spikes. The assessment of analytical and in-house data included checks for: adherence to accuracy and precision criteria, transmittal errors, and anomalously high and low parameter values.

A summary of the samples submitted for analysis and the analytical parameters analyzed for is presented in Table 1. The quality assurance/quality control (QA/QC) criteria by which these data have been assessed are outlined in the relevant Methods listed in Table 1 and the United States Environmental Protection Agency (USEPA) Functional Guidelines for Evaluating Organic and Inorganics Analyses, hereinafter referred to as the "Guidelines".

1.0 SAMPLE HOLDING TIMES

Based on the criteria outlined in the relevant methods and New York State Department of Environmental Conservation (NYSDEC) sample holding time protocols, the following sample holding time requirements have been established for water and sediment matrices:

VOCs	7 days from VTSR ¹ to analysis (14 days when preserved with HCl)
BNAs	5 days from VTSR to extraction 40 days from VTSR to analysis
Metals	6 months from collection to analysis (mercury 26 days from VTSR to analysis)
Oil and Grease	26 days from VTSR to analysis
Cyanide	12 days from VTSR to analysis
Hexavalent Chromium	24 hours from collection to analysis

By comparing the sampling date of all samples (from the notation appearing on the chain of custody documents) with the reported dates of extraction and/or analysis, it is noted that all samples submitted for volatile organic compounds (VOCs), base/neutral acid extractables (BNAs), metals, oil and grease, cyanide, and hexavalent chromium were extracted and/or analyzed prior to expiration of their prescribed holding times.

2.0 SURROGATE SPIKE RECOVERIES

Laboratory performance on individual samples is established by spiking activities. All samples submitted for VOC and BNA determinations were fortified with surrogate compounds prior to sample preparation. Based on the surrogate recoveries reported, the following observations were noted:

2.1 <u>VOC ANALYSES</u>

Organic compounds added to samples prior to VOC determination consisted of the following: 1,2-dichloroethane-d₄, toluene-d₈, and 4-bromofluorobenzene. Percent recovery for all surrogates were within laboratory control limits for samples submitted herein. This indicates acceptable laboratory performance for these samples.

2.2 <u>BNA ANALYSES</u>

The surrogate compounds 2-fluorophenol, phenol-d₆, 2,4,6-trichlorophenol, nitrobenzene-d5, 2-fluorobiphenyl, and terphenyl-d14 were used for BNA

¹ VTSR - Verified Time of Sample Receipt.

analyses. All samples submitted for analyses demonstrated surrogate recoveries within laboratory control limits. This indicates acceptable laboratory performance for these samples.

3.0 METHOD BLANK ANALYSES

The purpose of assessing the results of method blank analyses is to determine the existence and magnitude of sample contamination problems. Inspection of the laboratory blank analyses for VOCs, BNAs, oil and grease, Target Analyte List (TAL) metals, cyanide, and hexavalent chromium yielded non-detected concentrations of these analytes. This indicated that contamination attributable to laboratory conditions was minimal for these analyses.

4.0 BLANK SPIKE ANALYSES

The recoveries of blank spike analyses are used to assess the analytical accuracy achieved by the laboratory as blank spike analyses are independent of potential matrix effects. Blank spike analyses were performed with all parameters listed in Table 1, but referred to by AES as independent standards. A review of the blank spike data provided by AES indicates the following.

4.1 ORGANICS (VOCS AND BNAS)

In accordance with control limits established by the method for matrix spike recoveries, the following blank spikes yielded percent recoveries outside the control limits:

Sample I.D. ⁽¹⁾	Matrix	Compound	Control Limits (Percent)	Percent Recovery
IS#1	Groundwater	2,4-Dinitrotoluene ⁽²⁾	24-96	116
IS#2	Groundwater	2,4-Dinitrotoluene	24-96	116
IS#3	Groundwater	2,4-Dinitrotoluene	24-96	99
IS#4	Groundwater	2,4-Dinitrotoluene	24-96	99
IS#5	Surface Water	2,4-Dinitrotoluene	24-96	99
IS#6	Surface Water	2,4-Dinitrotoluene	24-96	99
IS#7	Sediment	2,4-Dinitrotoluene	28-89	127

(1) IS - Independent Standards.

(2) BNA Compound.

2,4-Dinitrotoluene was not analyzed in any of the samples submitted for this round, therefore qualification was not necessary. All other compounds for

VOC and BNA analyses yielded percent recovery within method control limits as per matrix.

4.2 INORGANICS (CYANIDE, HEXAVALENT CHROMIUM, OIL AND GREASE, AND TAL METALS

In accordance with the "Guidelines", inorganic spike recoveries must be within the advisory control limits of 80 to 120 percent. In addition to blank spike analyses, AES also performed reference standard analyses to confirm analytical accuracy of the method. All inorganic blank spike (internal standards) and reference standard recoveries were within the control limits (80 to 120 percent). This indicates acceptable laboratory performance for these samples.

5.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) ANALYSES

The recoveries of MS/MSD analyses are used to assess the analytical recovery on an individual sample basis, while relative percent difference (RPD) between MS and MSD indicates the analytical precision achieved for that sample. MS/MSD analyses were performed at a minimum frequency of one per 20 investigative samples for all parameters listed in Table 1. Samples W-2428-792-03 (AES #17364) and SW-2428-792-12 (AES #17306) were analyzed as MS/MSD samples. In accordance to the analytical methods and the "Guidelines", the following were noted.

5.1 ORGANICS (VOCS AND BNAS)

Each compound per matrix was evaluated for MS/MSD recovery and RPD in accordance to the analytical method. All VOC spike compounds yielded recoveries within the stipulated control limits. The following BNA compounds yielded recoveries outside the method control limits:

Sample I.D.	Matrix	Compound	<u>Percent</u> MS	<u>Recovery</u> MSD	RPD	<u>Control La</u> MS/MSD (Percent)	<u>imits</u> RPD (Percent)
W-2428-792-03 SW-2428-792-12	Groundwater Surface Water	2,4-Dinitrotoluene 1,2,4-Trichlorobenzene 2,4-Dinitrotoluene 1,4-Dichlorobenzene	109* 102* 103* 95	106* 109* 104* 100*	3 7 1 5	24-96 39-98 24-96 36-97	38 28 38 28

Outlying percent recovery for MS/MSD analyses.

Qualification of investigative samples was not necessary because outliers noted above were not analyzed in any samples submitted. All RPD values for organic MS/MSD analyses were within method control limits.

5.2 INORGANICS (CYANIDE, HEXAVALENT CHROMIUM, OIL AND GREASE, <u>AND TAL METALS</u>

MS/MSD analyses were not performed on sample W-2428-792-03 for cyanide and hexavalent chromium, yet yielded acceptable MS/MSD recoveries for sample SW-2428-792-12 for the same parameters. In accordance to the "Guidelines", control limits for MS/MSD recoveries should not exceed 75 to 125 percent. All inorganic MS/MSD recoveries for both water samples yielded acceptable recoveries. However, lead analysis for sample SW-2428-792-12 yielded an RPD value (28 percent) greater than the "Guidelines" control limit of 20 percent for waters. This indicates variability within the method of analysis. No qualification was assigned due to the acceptability of both MS/MSD recoveries of 122 percent and 92 percent. All other RPD values for inorganic MS/MSD analyses were less than 20 percent.

6.0 <u>CONCLUSION</u>

Based on the assessment detailed in the foregoing, the investigative sample data produced by AES are acceptable without qualification.

SUMMARY OF ANALYTICAL PROGRAM **GROUNDWATER SAMPLES** TONAWANDA COKE CORPORATION JULY 1992

Analytical Parameter	Methodology	Associated Samples			
Selected Volatile Organic Compo (VOCs)	unds ⁽¹⁾ 8240 USEPA SW-846 (3rd Edition)				
Selected Base/Neutral Acid Extractables ⁽²⁾ (BNAs)	8270 USEPA SW-846 (3rd Edition)	W-2428-792-01 W-2428-792-02			
Hexavalent Chromium	7196 USEPA SW-846 (3rd Edition)	W-2428-792-17 W-2428-792-18 W-2428-792-19			
Cyanide	335.3 Methods for Chemical Analysis of Water and Wastes (3/83)	W-2428-792-06 W-2428-792-03 W-2428-792-04			
Oil and Grease	503A Standard Methods for the Examination of Water and Wastewater (16th Edition)	W-2428-792-05			

Notes:

(1) 1,2-Dichloroethene (total), methylene chloride, acetone, benzene, toluene, ethyl benzene, xylene (total), 1,1,1-trichloroethane. (2)

कुम् ्र ह

া ক্রাক্ষেত্রী হৈ শ

 $\simeq \phi_{P}$

Naphthalene, 2-methylnaphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoroanthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzofuran, benzo(g,h,i)perylene, indeno(1,2,3-c,d)pyrene, 2-chloronaphthalene.

SUMMARY OF ANALYTICAL PROGRAM SURFACE WATER SAMPLES TONAWANDA COKE CORPORATION JULY 1992

Analytical Parameter

Methodology

. . .

Associated Samples

Selected Volatile Organic Compounds⁽¹⁾ 8240 USEPA (VOCs)

Selected Base/Neutral Acid Extractables⁽²⁾ (BNAs)

. (*16**.

Hexavalent Chromium

8270 USEPA SW-846 (3rd Edition)

7196 USEPA SW-846 (3rd Edition)

Cyanide

Oil and Grease

TAL Metals

٠.,-

335.3 Methods for Chemical Analysis of Water and Wastes (3/83)

503A Standard Methods for the Examination of Water and Wastewater (16th Edition) SW-2428-792-12 SW-2428-792-13 SW-2428-792-16 SW-2428-792-07 SW-2428-792-08 SW-2428-792-09

5.00

a' l'

Ĉ I,

6010/7000 Series USEPA SW-846 (3rd Edition)

Notes:

(1) Methylene chloride, acetone, benzene, and toluene.

26.1

الألفين الن

⁽²⁾ Fluoranthene, pyrene, phenol, 2-methylphenol.

SUMMARY OF ANALYTICAL PROGRAM SEDIMENT SAMPLES TONAWANDA COKE CORPORATION JULY 1992

Analytical Parameter

Methodology

8240 USEPA

SW-846 (3rd Edition)

8270 USEPA SW-846

(3rd Edition)

7196 USEPA SW-846

(3rd Edition)

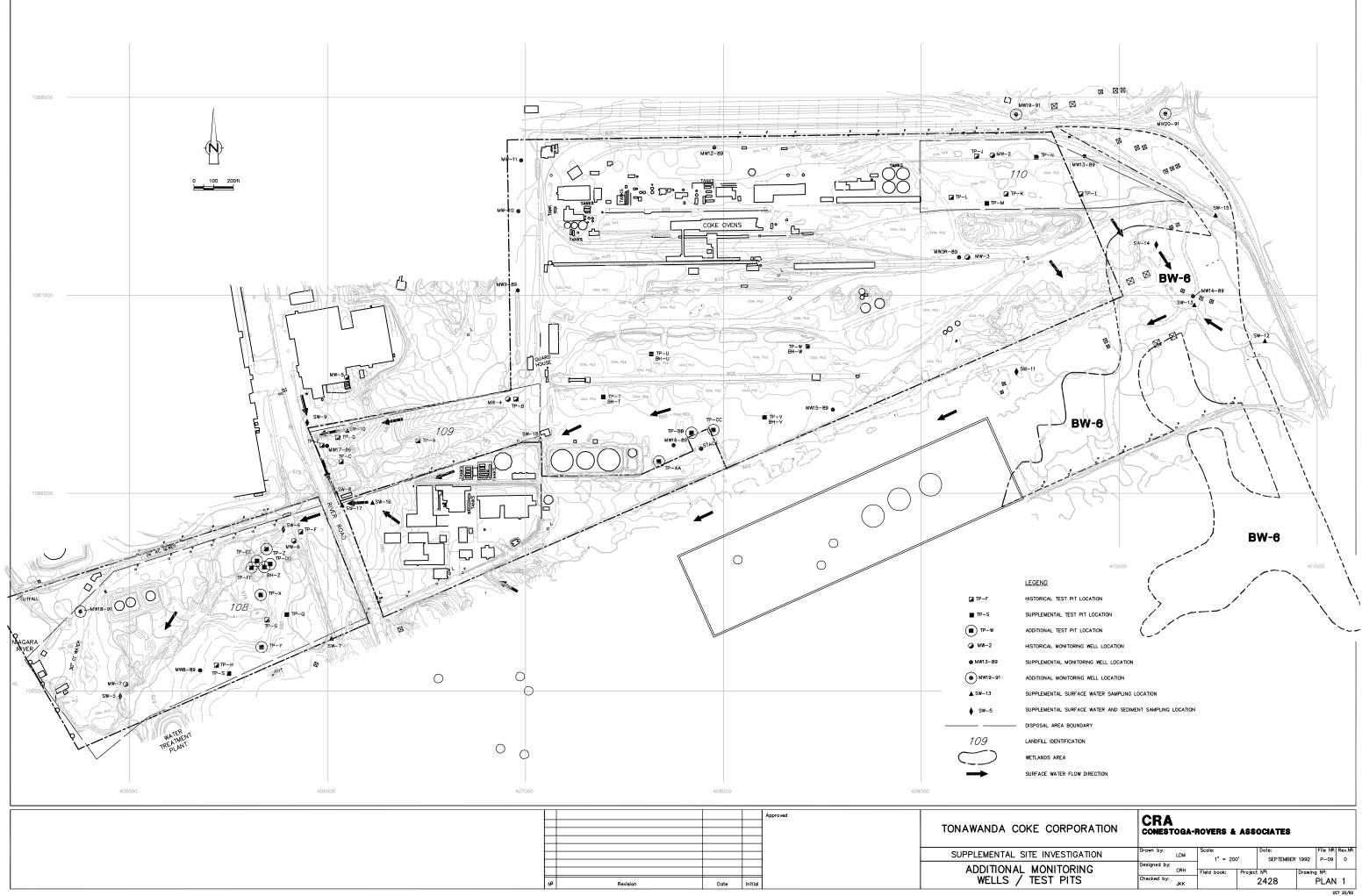
Associated Samples

Selected Volatile Organic Compounds⁽¹⁾ (VOCs)

Selected Base / Neutral Acid Extractables⁽²⁾ (BNAs)

Hexavalent Chromium

Cyanide


Oil and Grease

9012 USEPA SW-846 (3rd Edition)

503D Standard Methods for the Examination of Water and Wastewater (16th Edition) SD-2428-792-10 SD-2428-792-11 SD-2428-792-15

Notes:

Methylene chloride, 1,2-dichloroethene (total), benzene, toluene, total xylenes, ethylbenzene.
 Acenaphthylene, phenanthrene, pyrene, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, fluoranthene, fluorene.

SITE INVESTIGATION	Drawn by:	LDM	Scale: 1" = 200'		Date: SEPTEMBER 1992		File №: P-09	Rev.№: 0
	Designed by:	CRH	Field book:	Project	Nº:	Drawing	Nº:	
' TEST PITS	Checked by:	ЈКК			2428		PLAN	1
							07	7 20 /02