Attachment A AMS Letter Report of Findings

May 27, 2022

Ryan Herrell Laborers Way, LLC 700 Second Street Encinitas, California 92024 rherrell@zephyrpartners.com

Re: Radiological Gamma Walkover Survey
310 Ship Canal Parkway Development – Subplot 4

Dear Mr. Herrell:

Laborers Way, LLC has requested that C&S Engineers provide environmental investigation and consulting services related to the 310 Ship Canal Parkway Development (Site or Subplot 4), which is a part of the newly proposed Buffalo Lakeside Commerce Park in Buffalo, New York. The parcel is currently vacant and is approximately 5.1 acres in size. A survey of the property and the current defined BCP boundary can be seen on **Figure 1**.

BACKGROUND

Laborers Way, LLC is in the early stages of redeveloping Subplot 4 into a commercial use facility and intends to enter the parcel in the Brownfield Cleanup Program (BCP). Recent correspondence with the New York State Department of Environmental Conservation (NYSDEC) has raised concerns regarding the potential existence of radiological impacted material at the Site due to similar contamination found at nearby developments. The NYSDEC has requested a screening and assessment of radiological impacts on the Site. Laborers Way, LLC does not currently intend to remove any soils from the Site as a part of development nor is disposal of radiologically impacted material planned as a part of their current budget.

Due to the potential financial burdens of the management and possible disposal of radiologically impacted material, Laborers Way, LLC has opted to complete a Radiological Survey of the parcel to preliminarily assess the presence and magnitude of radiologically impacted material at the Site.

METHODOLOGY

Advanced Construction Services, Inc. (ACS), a qualified radiological consulting firm, performed an area specific radiological survey across the entire 5.1-acre BCP parcel on May 5 through May 18, 2022. A radiological technician from ACS completed a gamma walkover survey of any accessible areas within the Site Boundary to evaluate these areas for elevated radiation. A Ludlum Model 2221 ratemeter with a 44-10 probe (sodium iodide) was utilized to facilitate identification of areas of elevated radiation, which were then recorded on a map of the site. A known limitation of this approach is that the scan assesses conditions from the surface to depths up to 18 inches, below which any radiation is shielded by the overlying materials.

Following the field survey. Austin Master Services (AMS) was contracted to map and interpret the cumulative scan data collected by ACS in the field. **Attachment A** contains AMS' letter report of findings: *Surface Scan Measurements for 310 Ship Canal Parkway Site.* **Figures 2** and **3** have been pulled from Attachment A and are presented for discussion purposes.

FINDINGS

A summarization of ACS' and AMS' findings have been described below:

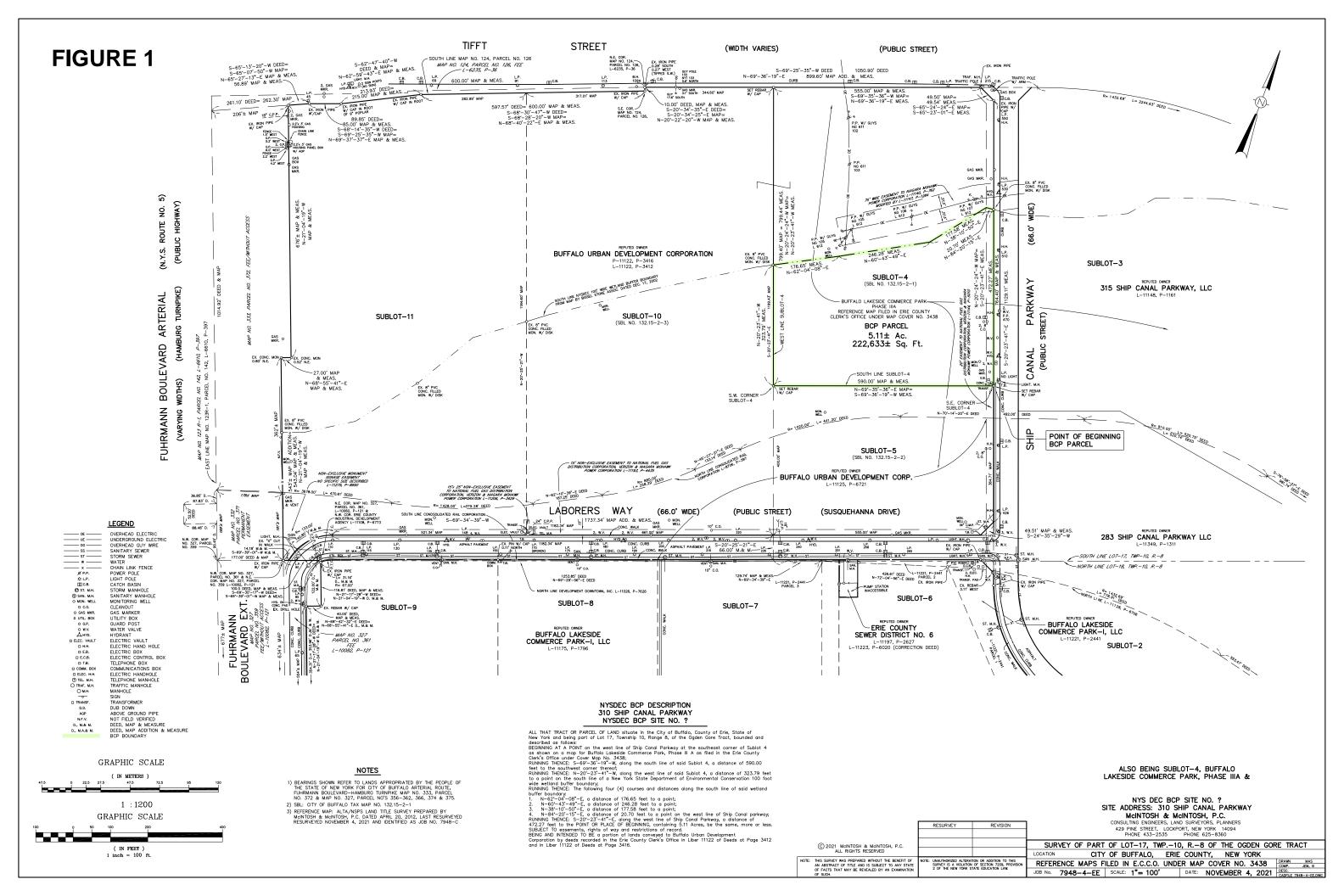
- Surface soils on the property were noted as a mixture of grass bearing soils and material noted as resembling slag.
- Background counts were collected in a grass area approximately 50 yards away from the Site each day. The daily background average was found to be 4425 counts per minute (cpm).
- ACS' instrumentation logged over 28,000 readings and geolocated the readings onto aerial
 photographs, which are attached as **Figures 2** and **3.** The majority of the radiological readings
 collected during the gamma walkover survey ranged from approximately 5,000 cpm to over
 18,500 cpm.
- AMS derived an Upper Tolerance Level (UTL) of 7,868 cpm. The was UTL used to delineate where
 contamination at concentrations greater than background were likely to be found. Most of the
 readings taken on the Site were above the UTL.
- Based upon the readings, AMS concluded that the Site has a relatively consistent and extensive
 layer of radiological impacted material at the surface. However, further interpreting the data as
 shown on Figure 3 indicates that a majority of the Site appears to be at or just above two times
 the background level, which is the typical threshold used to evaluate the significance of
 radiological impacts.
- **Figure 3** depicts the areas shown to be greater than three times background in yellow and red. These areas are located in the south western and southeastern corners of the Site.

RECOMMENDATIONS

Review of the findings presented by AMS in **Attachment A** details the presence of radiologically impacted material across the Site. The presence of radiologically impacted material is not uncommon on sites which are known to contain slag material from former steel operations. Given the site history and noted slag material on the property at depths of up to 10 feet, the readings collected by ACS during their gamma walkover survey are not surprising.

The proposed redevelopment for 310 Ship Canal Parkway is a commercial/warehouse use. Review of the grading plans (also generated by C&S, Engineers) details that redevelopment grading will be balanced onsite and no material is planned to be hauled offsite. Additionally, redevelopment plans indicate that over 95% of the new redevelopment will be capped with competent hardscape or newly poured concrete building foundations. These areas as designed are expected to provide at least 18 inches of shielding through imported subbase, pavement, concrete, etc. Given this information and considering the relatively low levels of surface radiological impacts (below 19,000 cpm), C&S' expects that the future use and required engineering controls (capping) of the BCP will adequately shield workers and visitors on the Site from elevated radiological levels.

It is assumed that proper dust monitoring and suppression techniques will be used during ground intrusive activities on the Site. This should actively mitigate exposure to construction workers and those near the Site at the time of construction from migrating dust.


Because this investigation only included a surficial gamma walkover survey, C&S recommends the onsite monitoring be completed by a qualified radiological technician during all excavation work planned at depths deeper than 18 inches (i.e., foundation and utility line excavation).

Sincerely,

C&S Engineers, INC.

Daniel E. Riker, P.G.

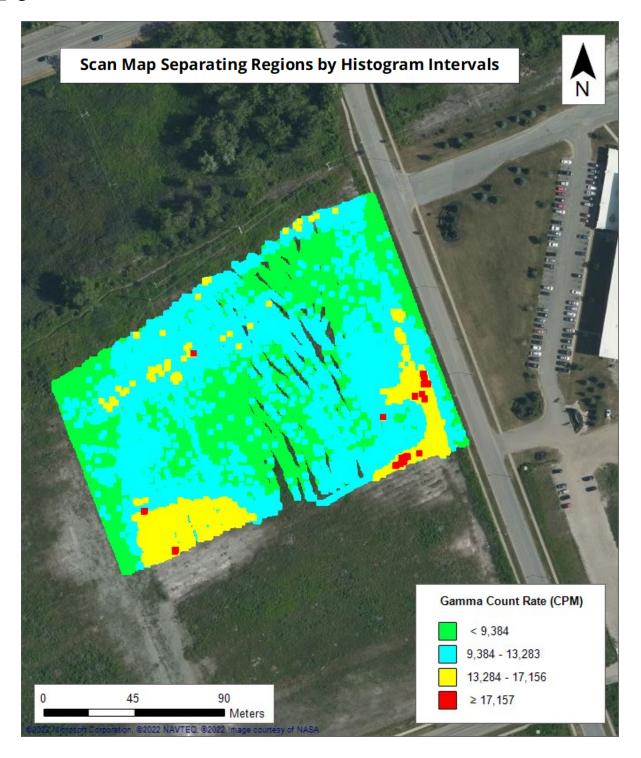

Department Manager – Environmental Services

FIGURE 2

FIGURE 3

Austin Master Services Letter Report of Findings

Surface Scan Measurements of 310 Ship Canal Parkway Site

740-609-3806 Main Number

5/27/2022

Raj Chopra ACS, Inc. PO Box 986 Grand Island NY 14072

Re: Surface Scan Measurements for 310 Canal Parkway Site

Dear Mr. Chopra:

In May of 2022, ACS was contracted to perform surface radiological scans of one property located at 310 Ship Canal, Buffalo (Lackawanna), NY. The data was forwarded to Austin Master Services, LLC (AMS) Certified Health Physicist for review and assessment. This report provides a summary of the results of that scan assessment.

Prior to scanning the 310 Ship Canal site, background count rate data for the 2"x 2" Nal detector being used for the scans was obtained. This background data is shown in Attachment 2 to this report. <u>EPA's ProUCL</u>, a statistical software program, was used assess the quality of the background data collected. The data was normally distributed and considered to be of sufficient quality to use as background count rate data for comparison with the scan data.

For the gamma "walk over" survey a Ludlum 2221 ratemeter and Ludlum 44-10 sodium iodide detector (the same detector used for the background measurements) were placed in data logging mode and connected to ERG's proprietary GPS system to allow simultaneous logging of gamma count rates and the easting and northing coordinates.

The "walk-over" process involves scanning the surface at a rate of 0.5 m/s with the detector to ground surface distance of 10 cm. The scan rate is an industry standard in keeping with EPA/NRC guidance in their Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)¹.During scanning the data logger will log both the location count rate but also the GPS UTM easting and northing coordinates.

The results were then transferred to an aerial photograph of the site and exhibited as colors based on use of background data to develop "bins" of count rate data. The first scan map shown in Attachment 1 was coded by using intervals related to the Upper Tolerance Level (UTL) of the background and the six sigma value above the background mean.

¹ NUREG-1575, Rev. 1 EPA 402-R-97-016, Rev. 1 DOE/EH-0624, Rev. 1 (August 2000)

Martins Ferry, OH 740-609-3806 Main Number

In Attachment 1 the first scan map figure shown indicates the site has a fairly extensive cover that contains radioactive materials greater than normal background concentrations. The Upper Tolerance Level (UTL) was used to delineate where contamination at concentrations greater than background were likely to be found. This is in keeping with use of the UTL as a measure when a contaminant is found to occur naturally in the soil and a means is needed to distinguish between natural background radioactivity and that occurring due to human activity.

Because the site was known to contain radiological contaminants from steel slag used as fill, ACS's client also requested a map that would provide a better delineation of the areas significant levels of contamination. Intervals were then established using the Histogram data shown in Attachment 2 and a second map focusing on higher count rate values was created. The second scan map shown Attachment 1 has several sub areas (those in yellow and red) within the scan footprint that are greater than three times the background count rate.

After review of the data, AMS notes the following regarding scan uncertainties, conclusions, and recommendations:

Uncertainties:

- 1. If contaminants are present at depths greater than 18 inches or under an asphalt surface the scan data may result in a false-negative conclusion relative to whether contamination is present.
- If the contaminants present, do not decay by emission of a gamma photon then
 detection of those contaminants is not possible. This is an unlikely scenario in that
 most of the historical contamination from steel slag in the Lackawanna area is the
 result of uranium, thorium and their decay progeny being present, and those decay
 chains all have significant photon emissions.

Please call or email me with any questions or concerns.

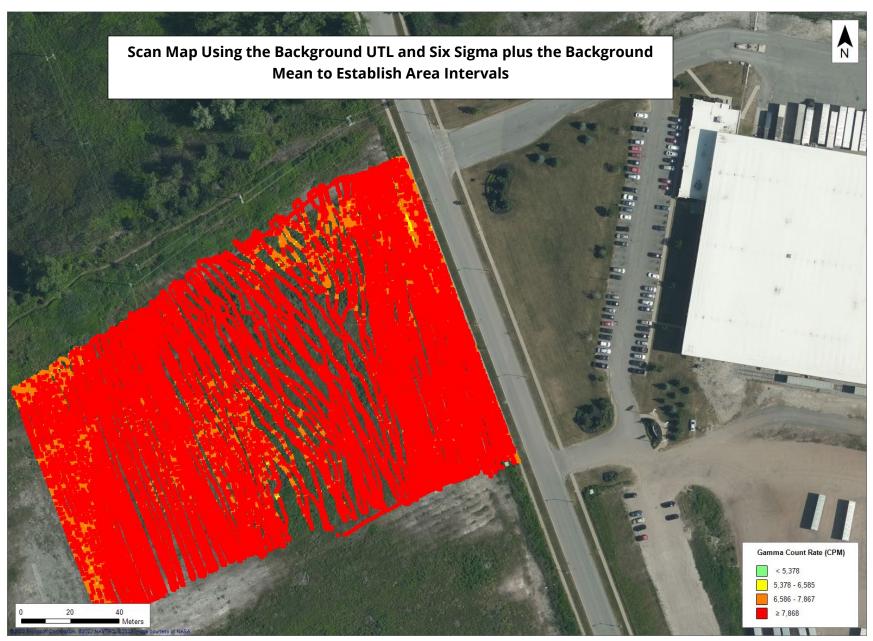
Respectfully,

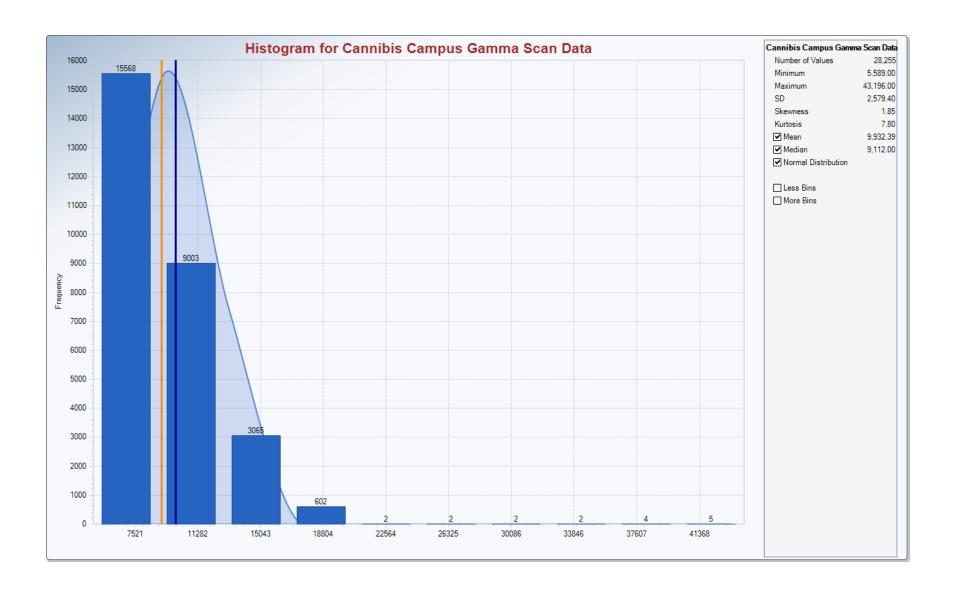
Peter Collopy, CHP, CIH, CSP

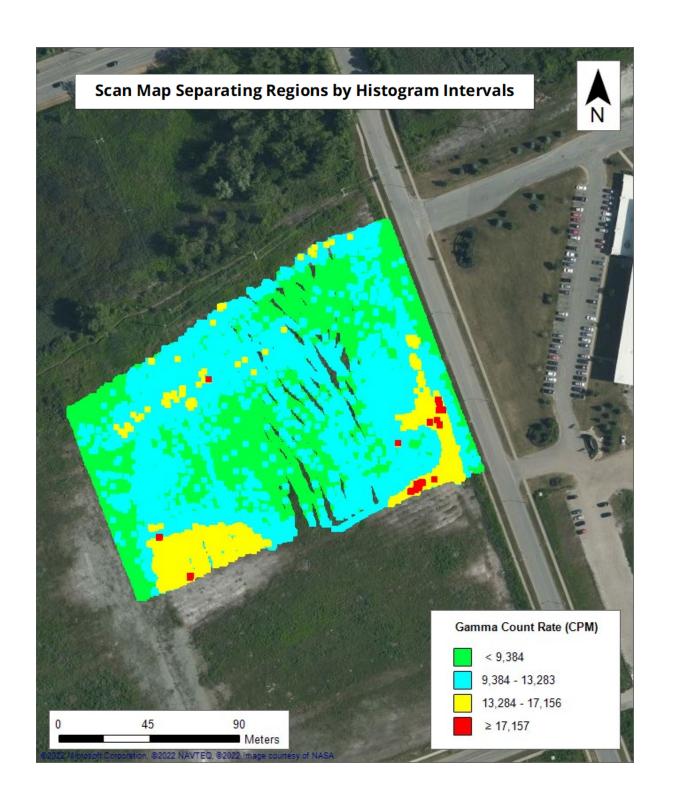
Peter Collopy

AMS Radiation Safety Officer

Martins Ferry, OH 740-609-3806 Main Number

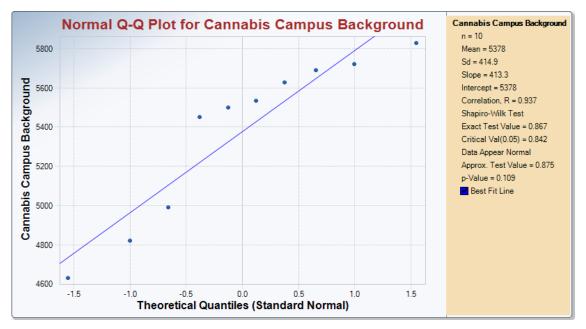

Enclosures:


Attachment 1: Surface Scan Measurements Map and Histogram Attachment 2: Background Measurements and Calculations


Attachment 3: Instrument Quality Assurance Data

cc: Patrick Horkman, NRRPT

Attachment 1 310 Canal Parkway Gamma Scan Map and Data Histogram


Attachment 2 Background Data and Calculations

50% gravel/50% grass

Background for Cannabis Campus

1 minut reading (cpm)

	0 (-1
#1	5721
#2	5533
#3	4628
#4	5688
#5	5829
#6	5499
#7	4818
#8	5450
#9	5627
#10	4990
Mean (υ)	5378
$S_D(\sigma)$	415
UTL	6586
) + 6 σ	7868

Cannabis Campus Background	ProUCL Cal	culation for	Background UTL				
General Statistics							
Total Nur	mber of Observations	10	Number of Distinct Observations	10			
	Minimum	4628	First Quartile	5105			
	Second Largest	5721	Median	5516			
	Maximum	5829	Third Quartile				
	Mean	5378	SD	414.9			
C	oefficient of Variation	0.0772	Skewness	-0.922			
	Mean of logged Data	8.587	SD of logged Data				
	Critical Values	for Background T	hreshold Values (BTVs)				
Tolerand	e Factor K (For UTL)	2.911	d2max (for USL)				
		Normal GOF	Test				
Shap	iro Wilk Test Statistic	0.867	Shapiro Wilk GOF Test				
5% Shapi	ro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level				
Lilliefors Test Statistic		0.269	Lilliefors GOF Test				
5% Lilliefors Critical Value		0.262	Data Not Normal at 5% Significance Level				
	Data appear App	roximate Norma	l at 5% Significance Level				
	Background S	Statistics Assumi	ng Normal Distribution				
95% UTL	with 95% Coverage	6586	90% Percentile (z)	5910			
	95% UPL (t)	6176	95% Percentile (z)	6061			
	95% USL	6281	99% Percentile (z)	6344			

Attachment 3 Instrument Quality Assurance Information

Inst.# 271429/PR373560					
QC Daily Source					
Date	Result (cpm)	P/F			
5/5/2022	4219	Pass			
5/6/2022	4332	Pass			
5/7/2022	4406	Pass			
5/9/2022	4391	Pass			
5/10/2022	4287	Pass			
5/11/2022	4351	Pass			
5/12/2022	4309	Pass			
5/13/2022	4406	Pass			
5/14/2022	4228	Pass			
5/16/2022	4289	Pass			
5/17/2022	4173	Pass			
5/18/2022	4246	Pass			

Inst.# 271	1429/PR373560	Source Ser. #	BKG
Initial So	urce Readings	Nuclide	N/A
Date	Result (cpm)		
5/5/2022	4247		
5/5/2022	4448		
5/5/2022	4563		
5/5/2022	4664		
5/5/2022	4322		
5/5/2022	4636		
5/5/2022	4293		
5/5/2022	4411		
5/5/2022	4348		
5/5/2022	4318		
	Average		
	4425		

Inst.# 271429/PR373560					
QC Daily Source					
Date	Result (cpm)	P/F			
5/5/2022	105989	Pass			
5/6/2022	104323	Pass			
5/7/2022	104989	Pass			
5/9/2022	105237	Pass			
5/10/2022	105129	Pass			
5/11/2022	104993	Pass			
5/12/2022	105884	Pass			
5/13/2022	106256	Pass			
5/14/2022	105439	Pass			
5/16/2022	105129	Pass			
5/17/2022	105883	Pass			
5/18/2022	109217	Pass			

Inst.# 27	Inst.# 271429/PR373560		May-91
Initial So	urce Readings	Nuclide	Cs-137
Date	Result (cpm)		
5/5/2022	111969	1	
5/5/2022	109881		
5/5/2022	108167		
5/5/2022	113940		
5/5/2022	103649		
5/5/2022	99840		
5/5/2022	104553		
5/5/2022	106887		
5/5/2022	102914		
5/5/2022	108419		
	Average		
	107022		

Certificate of Calibration

Environmental Restoration Group, Inc. 8809 Washington St NE, Suite #150 Albuquerque, NM 87113 (505) 298-4224 www.ERGoffice.com

Calibration and Voltage Plateau

26.4	Manufacturar	Ludlum	Model Number:	2221		Serial Number:	271429	
	Manufacturer:	Ludlum	Model Number:	44-10		Serial Number:	PR373560	
Detector:	Manufacturer:	Ludium	Wiodel Number.		/ 2 50/2).	✓ 500 V ✓ 100	00 V 🗸 1500 V	
✓ Geotrop✓ Meter ZSource Dis	oonse Check ism eroed	 ▼ THR/WIN O ▼ Reset Check ▼ Audio Check ▼ Battery Check □ 6 inches □ Below 	k	Cable Length	: □ 39-	einch ☐ 60-inch Barometric Pre Tempera Relative Hum	Other: ssure: 24.36 ature: 74 idity: 20	inches Hg °F %
Pulser	Ludlum 500-1	l sn 201932 N	Iultimeter	n/a	Inst	trument found with	in tolerance:	Yes N
Range/Mul	tiplier Refe	erence Setting	"As Found Reading	g" Meter	Reading	Integrated 1-N	In. Count Log S	Scale Count
x 100	0	400	400		400	40065	0	400
x 100	0	100	100		100			100
x 100)	400	400		400	4006	5	400
x 100)	100	100		100	L.,		100
x 10		400	400		400	4007		400
x 10		100	100		100			100
					400	400		400
x 1		400	400			400		
x 1		100	100		100			100
Count Tir		1.0						
High Vol	tage Source (Counts Backgrou	nd Counts Net Coun	ts		Vo	ltage Plateau	
700	2844			1		20000		
750	4211	399	38118			70000		
800	5174	63:	55 45394			50000		
850	5631	1 804	48267			40000		
900	5917	79 880	50372			30000		
950	6015	57 885	54 51303			20000		
1000	6095	58 908				10000		
1050	6147					0		
1100	6221					a a	00,00,00	00
				_		10 80	000 100 100	1500
1150	6184							
1200	6213		52842					
	ded HV (VDC) 1,100						
Additional (Comments:							
Source 1 C	Cs-137 sn:4097	-03 5.2μCi (1/4/12	2) button		Total E	efficiency: n/a	4π Efficienc	y: n/a
Source 2					Total E	Efficiency: n/a	4π Efficienc	y: n/a
Instrument Eff radionuclide sp	iciency is calculate becific and are calculate and are not intende	ed as net counts ÷ sour culated using source co	SO-7503/NUREG 1575 (M. rec 2π emission rate. The 4π bunts and background count thency calculation method or	efficiency is calcust at the recommen	lated as net ded operatin	counts \div source 4π acting HV. The provided of	vity. The provided eff	ficiencies are ral information

Reviewed By:

Date: