Environmental

Advantage

Environmental Advantage, Inc. 3636 N. Buffalo Road Orchard Park, New York 14127 Industrial Compliance, Hazardous Materials Management, Site Assessment/Remediation

January 17, 2022

Megan Kuczka, DER Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203

Re: Monitoring and Sampling Summary (3rd Quarter 2021) Revised Site Management Plan, Post Installation Monitoring & Inspection MOD-PAC CORP. Site, 1801 Elmwood Avenue, Buffalo, New York

Dear Ms. Kuczka:

In accordance with Section 4.4 Post-Remediation Media Monitoring and Sampling of the Site Management Plan (SMP)¹ for NYSDEC Site #C915314, Environmental Advantage, Inc. (EA), has completed the 2021 third quarter of the Sub-Slab Depressurization (SSD) systems post-installation inspections, monitoring, sampling/analysis and system maintenance. All information and data collected within the first six months of the SSD systems post-installation activities were summarized and included in the Site's Final Engineering Report (FER), and served as the basis for the required tasks as identified in the SMP. Additionally, a summary letter report² was submitted to the Department on March 31, 2020, which provided the results of the post-installation maintenance and monitoring of the SSD systems completed from late-September 2019 through March 2020 by Hazard Evaluations, Inc. (HEI). EA has completed all post-installation maintenance and monitoring since March 2020. EA has prepared this summary letter report which provides the results of the postinstallation maintenance, inspection and monitoring of the SSD systems completed from July 1, 2021 through September 30, 2021. The attachments to this letter report include figures (Attachment A), summary tables (Attachment B), field notes (Attachment C), and analytical laboratory reports (Attachment D).

After discussions with the Department, New York State Department of Health (NYSDOH) representatives, and Matrix Environmental Technologies, Inc. (METI), the engineering firm responsible for the design and annual inspection and certification of the SSD systems, it was determined that monthly gauging and quarterly groundwater sampling of the Site's four groundwater monitoring wells subject to the remedial program was warranted to investigate the apparent seasonal correlation to maintaining a negative pressure of at least 0.002 inches water column (WC) in the sub-slab. To this regard, monthly monitoring well water level gauging commenced in March 2021, and quarterly groundwater sampling commenced in July 2021, three

Ph: 716-667-3130 Fax: 716-667-3156 www.envadvantage.com

^{1 &}quot;Site Management Plan for MOD-PAC Site, 1801 Elmwood Avenue, City of Buffalo, Erie County, New York, Site No. C915314" prepared by C&S Engineers, Inc., December 2019.

^{2 &}quot;SSDS Monitoring and Sampling Summary (1st Quarter 2020)" prepared by Hazard Evaluations, Inc. (HEI), dated March 2020.

months after the SMP required annual groundwater sampling event. In addition to monthly gauging and quarterly groundwater sampling, monthly vacuum readings were collected for any vapor monitoring point (VMP) that failed to achieve the minimum negative pressure of at least 0.002 inches WC during quarterly SSD inspections. The monthly non-compliant VMP monitoring is continued for any affected VMP until that VMP achieves the minimum negative pressure as designed. The locations of the groundwater monitoring wells and SSD systems are shown on Figure 1.

SSDS Installation

The SSD systems at the MOD-PAC CORP. (MPC) Site were installed to mitigate potential vapor migration into the building by maintaining a negative pressure of at least 0.002 inches water column (WC) in the sub-slab of three target areas; Area A the finished product storage area, Area B the cold storage garage, and Area C the facility maintenance area, as shown in Figures 2A – 2C provided in Attachment A.


These locations were selected based on elevated sub-slab vapor and/or indoor air sampling results detected during investigations completed in December 2017, April 2018 and May 2018. The SSD systems were installed during September 2019, and all systems were operational and tested by October 25, 2019. Post-installation maintenance, inspection and monitoring were completed in accordance with the NYSDEC-approved Work Plan prepared by METI³.

Post-Installation SSD Maintenance and Monitoring

In accordance with the Work Plan prepared by METI, system checks were completed in all areas on a weekly basis for the first month of systems operation (September through October 2019), monthly for the following two months (November and December 2019), and quarterly thereafter (beginning January 2020). Routine monitoring includes the identification and repair of any leaks, operational status checks of blowers and fans, documentation of manifold settings and vacuum point at each vapor extraction point, and documentation of vacuum at each monitoring point. Non-routine maintenance, including carbon change outs, will be completed as necessary based on analytical data of pre- and post-carbon samples. Area-specific findings during the Q3 2021 monitoring event are summarized in Table 1, and historical data are presented in Table 2A for Area A, Table 2B for Area B, and Table 2C for Area C, all of which are provided in Attachment B.

Pre- and post-carbon air samples were collected from Area A on a monthly basis for the initial three months of system operation (October, November, and December 2019) and were reduced to a quarterly frequency thereafter (beginning in January 2020). All samples were submitted for laboratory analysis of volatile organic compounds (VOCs) via Environmental Protection Agency (EPA) Method TO-15. Air sample results are summarized in Table 3 provided in Attachment B. In addition, pre-

^{3 &}quot;Work Plan for Sub-Slab Depressurization Systems" prepared by Matrix Environmental Technologies, Inc., dated February 2019.

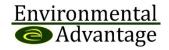
and post-carbon photoionization detector (PID) readings were collected from Area A, as well as from Areas B and C effluent, on a weekly basis for the first month of systems operation and since that time have been collected on a monthly basis.

SSD Area A – Finished Product Storage Area

During the Q3 2021 monitoring event, manometer readings for all VMPs in Area A achieved the minimum negative pressure of at least 0.002 inches WC in the sub-slab. VMP-6A is no longer monitored during inspections, as this VMP has been verified as a dead point, as described in Section 5.1 – 'Area A Testing' of METI's "System Start-up Report and Operation and Maintenance Plan" as provided within Appendix H – Operation and Maintenance Manual of the SMP.

Within this system, pre-carbon PID readings ranged from 0 to 0.3 ppm, and post-carbon PID readings were consistently 0.0 parts per million (ppm) throughout the monitoring period. Pre- and post-carbon air samples were collected on September 8, 2021 and analyzed for VOCs via EPA Method TO-15. Post-carbon analytical data exhibited lower concentrations of chlorinated compounds when compared to pre-carbon concentrations with the exception of cis-1,2-Dichloroethene. Most non chlorinated compounds yielded slightly higher concentrations in the post-carbon sample when compared to pre-carbon concentrations, however, overall VOCs reduction was 97.41 percent. Based on these results, carbon replacement is warranted and will be scheduled prior to the next monitoring event. Air sample results for Q3 2021 are summarized in Table 3, with historical air sample results summarized in Table 4, provided in Attachment B.

Although replacement is warranted, air analytical results indicated the carbon is still adequately removing the bulk of the VOCs detected, as the total reduction of VOCs from the pre-carbon to post-carbon was 97.41 percent for the quarter. This indicates the carbon is both adequately removing and breaking down the detected VOCs. The complete analytical laboratory report is provided in Attachment D.


SSD Area B - Cold Storage Area

During the Q3 2021 monitoring event, manometer readings for all VMPs did achieve the minimum 0.002 inches WC in the sub-slab. System effluent PID readings were 0.0 ppm throughout the monitoring period. Air samples were not collected during the current monitoring period. Based on previous air sampling results obtained, a determination was made that a carbon system did not need to be installed on this emission point.

SSD Area C - Maintenance Area

During the Q3 2021 monitoring event, manometer readings for all VMPs met the minimum 0.002 inches WC in the sub-slab. System effluent PID readings were consistently 0.0 throughout the current monitoring period for EW-1C, EW-2C, and EW-3C.

⁴ Matrix Environmental Technologies, Inc. 'Sub-Slab Depressurization System Start-up Report and Operation and Maintenance Plan, December 12, 2019.

-

Groundwater Monitoring

During the Q2 2021 monitoring period, water table elevation measurements collected in April, May and June 2021 ranged from 4.13 feet below grade to 6.80 feet below grade; water table elevations were the highest in April 2021 and the lowest in June 2021. During the current monitoring period water table elevation measurements collected in July, August, and September 2021 ranged from 3.35 feet below grade to 6.95 feet below grade. During this monitoring year, water table elevations were the highest in September 2021 and the lowest in July 2021. Please Note: Water table elevations were measured from the top of the riser pipe for each respective well. Historical groundwater monitoring results are summarized in Table 5 provided in Attachment B.

Groundwater samples were collected on July 1, 2021, from the four monitoring wells included in the remedial program: MW - 3, MW - 11, MW - 12, and MW - 13. All samples were submitted for laboratory analysis of Target Compound List (TCL) VOCs via EPA Method 8260. Groundwater sample results are summarized in Table 6 in Attachment B. Five chlorinated VOCs (CVOCs) and one non-chlorinated VOC were detected in the groundwater samples. Cis-1,2- dichloroethene, trans-1,2dichloroethene, trichloroethene (TCE), and vinyl chloride were detected at concentrations that exceed the TOGS 1.1.1 Groundwater Effluent Limitations⁵. 1,1dichloroethene and benzene were also detected; however, at concentrations below the TOGS 1.1.1 Limitations. MW - 3 and MW - 11 exhibited the highest recorded level of TCE since groundwater monitoring was initiated in 2018; however, in July 2021 the groundwater levels were the lowest recorded in both MW - 3 and MW - 11. MW - 12 exhibited non-detect VOCs concentrations as has been characteristic of this particular well, and MW - 13 has rebounded to close to pre-remedy levels of TCE. Historical groundwater monitoring and sampling data results are summarized in Table 6 in Attachment B. The complete analytical laboratory report is provided in Attachment D.

Corrective Measures

During the July 1, 2021 monthly monitoring event, the fan at EW-2 was observed to be not functioning properly. Both METI and MPC personnel inspected the fan and found that the newly installed timer for the fan was malfunctioning, causing the fan to shut off. The timer was repaired by METI, and as of July 9, 2021 the fan has been operating continuously without interruption.

During the Q3 2021 monitoring event in September, EA noted that vapor trenches for EW-2B, EW-8B and EW-3C have a few minor cracks present. However, there is no evidence of air leakage in the trenches at this time. EA recommends reepoxying the cracks in the vapor trench, and will forward this recommendation to the Site owner.

⁵ NYSDEC "Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" dated June 1998.

-

During the Quarterly Inspections completed on June 11, 2021 and September 8, 2021, all vapor monitoring points (VMPs) met the minimum 0.002 inches WC negative pressure in the sub-slab as required, including VMP-1C and VMP-4C which had exhibited readings of 0.000 inches WC in March 2021, and VMP-5B, which had exhibited a 0.000 inches WC readings in March and April 2021. Fan malfunction was found to be the cause of the non-compliant readings at VMP-1C and VMP-4C, and a new fan was installed at EW-1C on May 19, 2021 as previously reported. Once the new fan was installed at EW-1C, VMP-1C and VMP-4C immediately achieved the minimum negative pressure as designed. A cause has not been determined for the non-compliant readings at VMP-5B, the apparent seasonal correlation to maintaining a negative pressure of at least 0.002 inches water column (WC) in the sub-slab of the three target areas is still under investigation.

Conclusions and Scheduling

During the Q3 2021 monitoring period, all manometers met the minimum 0.002 inches WC in the sub-slab and all of the SSD systems appeared to be functioning properly.

Post-carbon analytical data collected during Q3 2021 yielded lower quantity of chlorinated compounds compared to pre-carbon quantities with the exception of cis-1,2-Dichloroethene. Most non-chlorinated compounds yielded slightly higher quantities in post-carbon compared to pre-carbon, however, overall total VOCs reduction was 97.41 percent. Based on these results, carbon replacement is warranted and will be scheduled prior to the next monitoring event. Previous carbon replacement was completed on September 23, 2020, therefore carbon life for the treatment system in Area A has been consistent at approximately 1 year. Continued system inspections, monitoring, and sampling will be completed for the fourth quarter of 2021.

As previously postulated, the apparent seasonal correlation to maintaining a negative pressure of at least 0.002 inches water column (WC) in the sub-slab of the three target areas is still under investigation. This condition may be associated with changing groundwater levels at the Site, based on historical data. Water table levels monitored in the eastern portion of the Site in April 2020 and 2021 were at an approximate depth of five feet below grade (4.73 feet and 5.18 feet, respectively). Water table levels monitored in June and September 2021 were at an average depth of 5.65 feet and 4.75 feet below grade, respectively. If the groundwater surface rises to even a limited extent during the winter/early spring months, the vadose zone beneath the SSD systems becomes very limited, which apparently leads to some level of upward draw by the SSD system, possibly creating areas of blockage beneath the building floors. Some continuing evidence for this condition has been provided as all manometer readings collected during the summer and fall months of 2019, 2020 and 2021 met the minimum 0.002 inches WC in the sub-slab zones. EA is still monitoring this relationship for the foreseeable future.

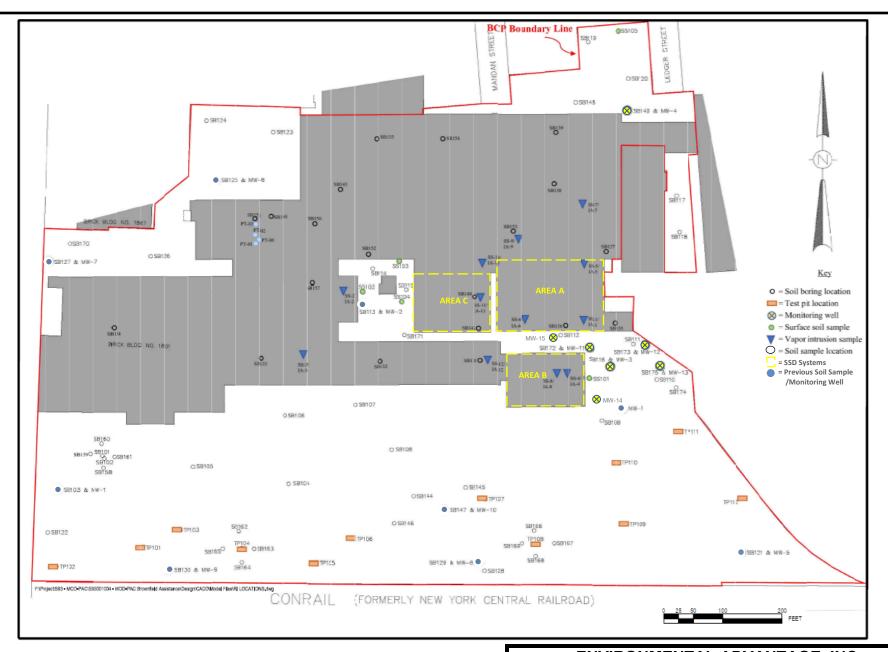
If you have any questions regarding this information presented above, please contact me directly for further information.

Very truly yours, ENVIRONMENTAL ADVANTAGE, INC.

C. Mark Hanna, CHMM

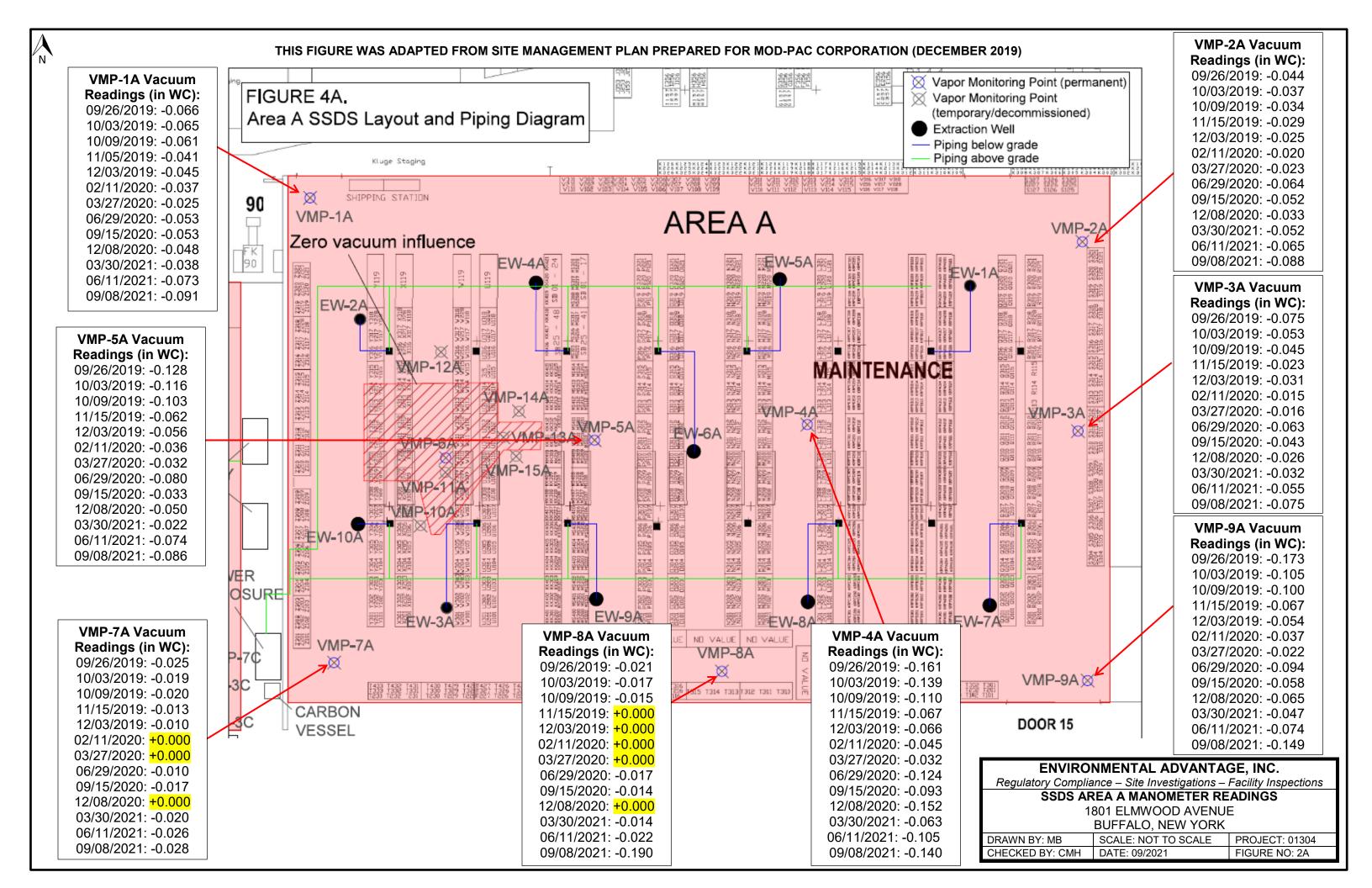
President

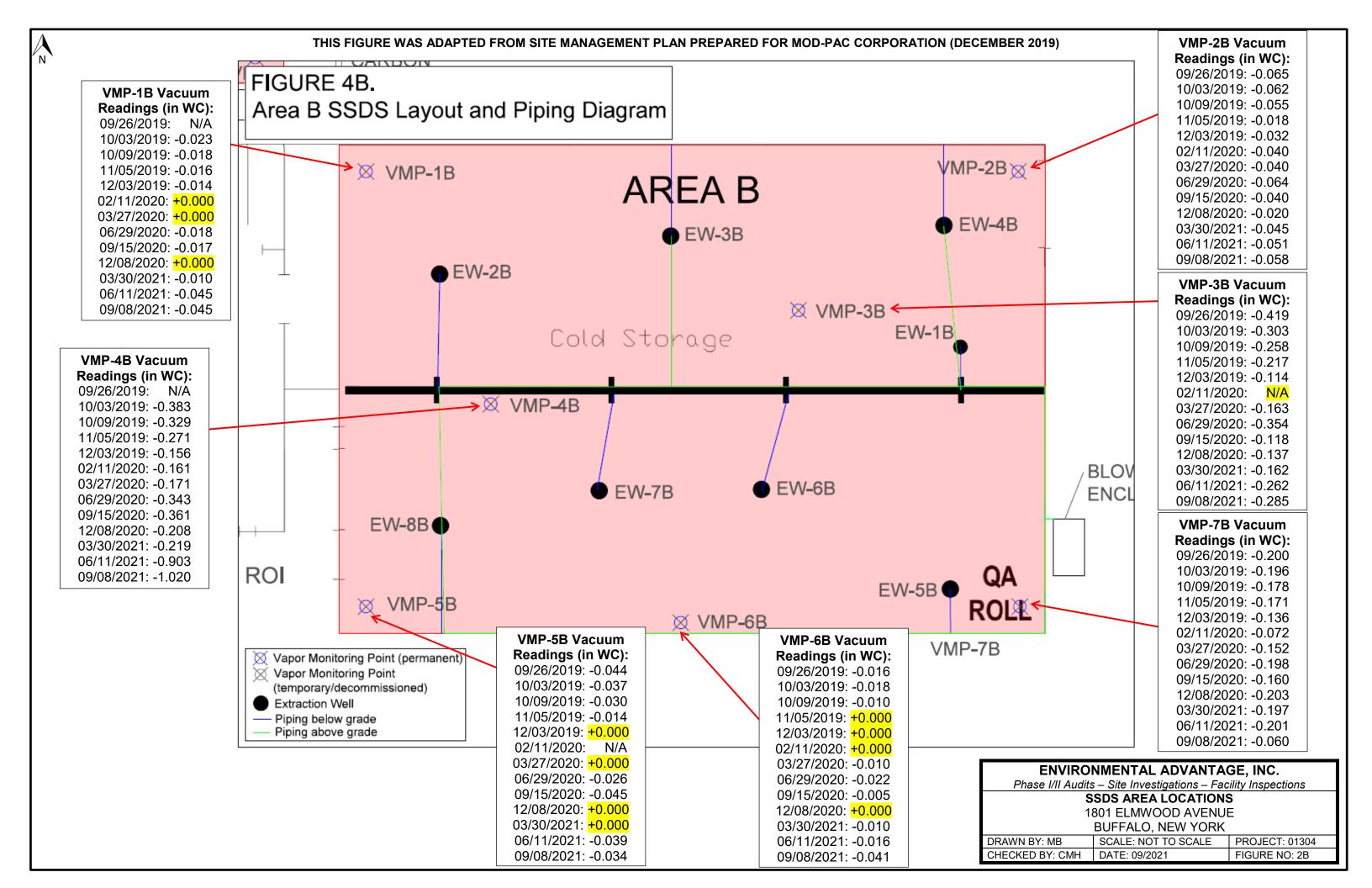
Attachments

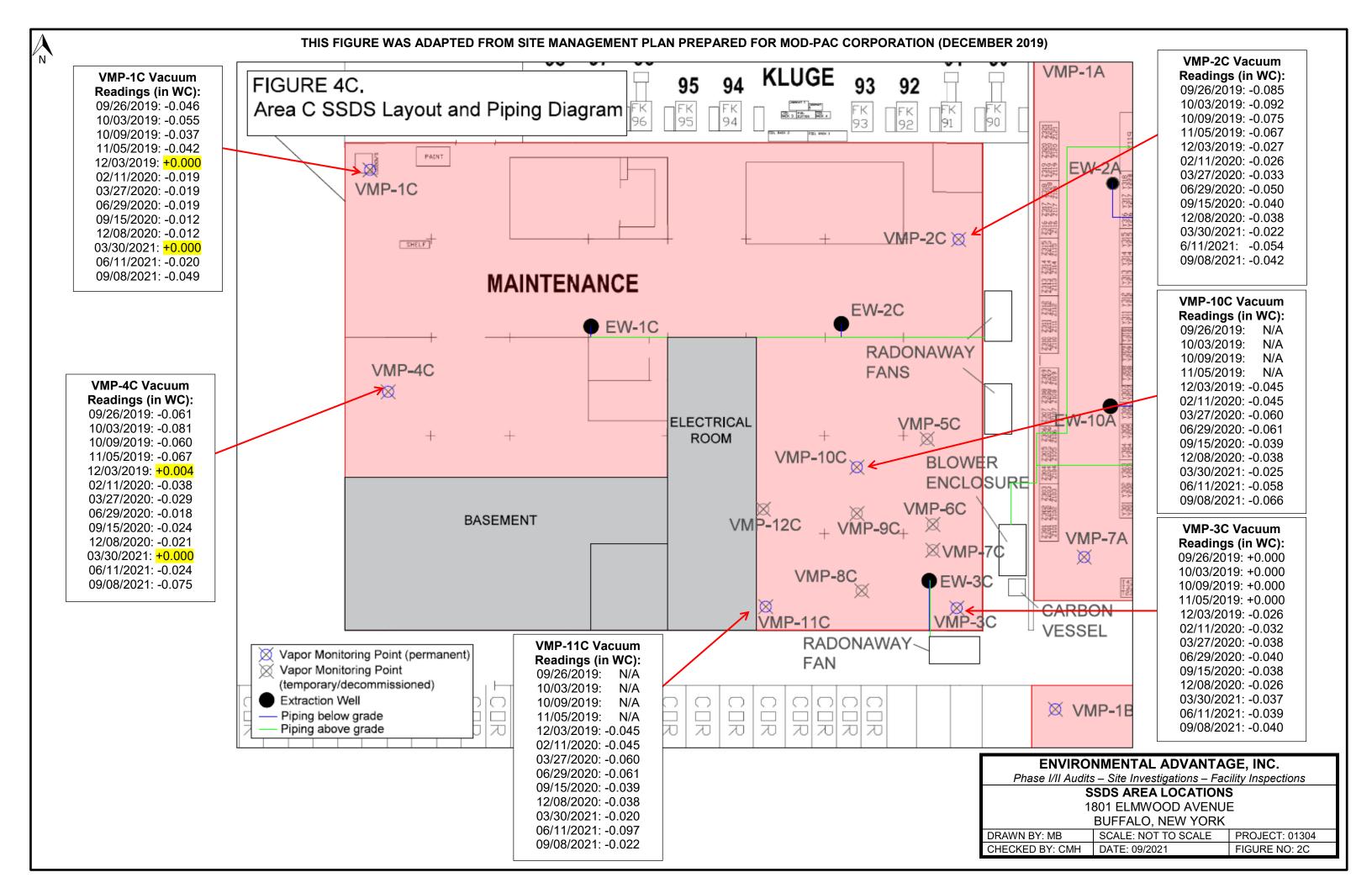


ATTACHMENT A

Figures




ENVIRONMENTAL ADVANTAGE, INC.


Regulatory Compliance – Site Investigations – Facility Inspections

BCP SITE PLAN MOD-PAC, CORP. 1801 ELMWOOD AVENUE BUFFALO, NEW YORK

DRAWN BY: MB SCALE: NOT TO SCALE PROJECT: 01304
CHECKED BY: CMH DATE: 11/2021 FIGURE NO: 1

ATTACHMENT B

Tables

Table 1

MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY SSDS Post Installation Monitoring Results Q3 2021 Summary

Area A - Finished Product Storage Area

Date	Extraction Wells (in WC)										Blower	Pre-carbon PID	Post-carbon PID
Date	EW-1A	EW-2A	EW-3A	EW-4A	EW-5A	EW-6A	EW-7A	EW-8A	EW-9A	EW-10A	(PSI)	Reading (ppm)	Reading (ppm)
9/8/2021	17	17	18	18	17	0	18	18	18	18	16	0.3	0.0

Date		Vapor Monitoring Points (in WC)										
	VMP-1A	VMP-2A	VMP-3A	VMP-4A	VMP-5A	VMP-7A	VMP-8A	VMP-9A				
9/8/2021	-0.091	-0.088	-0.075	-0.140	-0.086	-0.028	-0.190	-0.149				

Area B - Cold Storage Garage

Date	Blower	System Effluent PID								
Date	EW-1B	EW-2B	EW-3B	EW-4B	EW-5B	EW-6B	EW-7B	EW-8B	(PSI)	Reading (ppm)
9/8/2021	20	21	22	23	22	22	21	21	19	0.0

Date		Vapor Monitoring Points (in WC)										
Date	VMP-1B	VMP-2B	VMP-3B	VMP-4B	VMP-5B	VMP-6B	VMP-7B					
9/8/2021	-0.045	-0.058	-0.285	-1.020	-0.034	-0.041	-0.060					

Area C - Maintenance Area

Date	Extract	ion Wells (in WC)	System Effluent PID Reading (ppm)				
	EW-1C	EW-2C	EW-3C	EW-1C	EW-2C	EW-3C		
9/8/2021	29	31	30	0.0	0.0	0.0		

Date	Vapor Monitoring Points (in WC)									
Date	VMP-1C	VMP-2C	VMP-3C	VMP-4C	VMP-10C	VMP-11C				
9/8/2021	-0.049	-0.042	-0.040	-0.075	-0.066	-0.022				

Note:

1. in WC = inches water column; PSI = pounds per square inch; ppm = parts per million;

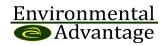


Table 2A
MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY
SSDS Post Installation Monitoring Results
Area A - Finished Product Storage Area

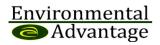
Dete				Е	xtraction V	Vells (in Wo	C)				Blower	Pre-carbon PID	Post-carbon PID
Date	EW-1A	EW-2A	EW-3A	EW-4A	EW-5A	EW-6A	EW-7A	EW-8A	EW-9A	EW-10A	(PSI)	Reading (ppm)	Reading (ppm)
9/26/2019	14.5	14.5	15.5	14.5	15	1	14.5	15	14.5	15.5	12	3.3	1.5
10/3/2019	14	14	15	14	14	1	14	15	14	15	12	52.6	12.7
10/9/2019	13	13.5	14	13.5	13.5	1	13.5	14	13.5	14.5	13	0.0	0.0
11/5/2019	11.5	12	12.5	11.5	12	1	12	12	11.5	12.5	10	4.7	0.5
12/3/2019	11	11.5	12	11	11.5	1	11.5	11.5	11.5	12	10	1.0	0.1
1/22/2020												0.2	0.0
2/11/2020	10	10.5	11	10.5	11	1	11	11	10.5	11.5	9	0.5	0.0
3/27/2020	10	10	11	10.5	11	1	10.5	10.5	10	11	8	47.8	27.1
6/29/2020	13	13	13.5	13	13	1	13	13	13	13.5	14	0.4	0.4
7/31/2020												0.0	0.0
8/28/2020												0.0	0.0
9/15/2020	13.5	14	14.5	14	14	1	14	14.5	14.5	15	14	2.7	1.1
10/15/2020												7.8	4.6
11/4/2020												0.0	0.0
12/8/2020	12.5	13	13.5	13	13	1	13	14	13	14	12	0.6	0.0
1/4/2021												0.4	0.0
2/18/2021												1.0	0.0
3/30/2021	13	14	14	14	14	0	14	14	14	15	12	0.0	0.0
4/14/2021												0.4	0.0
5/20/2021												0.4	0.0
6/11/2021	16	16	16	16	16	0	16	17	17	17	15	0.1	0.0
7/1/2021											16	0.0	0.0
8/25/2021											18	0.0	0.0
9/8/2021	17	17	18	18	17	0	18	18	18	18	16	0.3	0.0

Date				Vapor Mon	itoring Poi	nts (in WC)			
Date	VMP-1A	VMP-2A	VMP-3A	VMP-4A	VMP-5A	VMP-6A	VMP-7A	VMP-8A	VMP-9A
9/26/2019	- 0.066	- 0.044	- 0.075	- 0.161	- 0.128	+ 0.000	- 0.025	- 0.021	- 0.173
10/3/2019	- 0.065	- 0.037	- 0.053	- 0.139	- 0.116	+ 0.000	- 0.019	- 0.017	- 0.105
10/9/2019	- 0.061	- 0.034	- 0.045	- 0.110	- 0.103	+ 0.000	- 0.020	- 0.015	- 0.100
11/5/2019	- 0.041	- 0.029	- 0.023	- 0.067	- 0.062	+ 0.010	- 0.013	+ 0.000	- 0.067
12/3/2019	- 0.045	- 0.025	- 0.031	- 0.066	- 0.056	+ 0.020	- 0.010	+ 0.000	- 0.054
2/11/2020	- 0.037	- 0.020	- 0.015	- 0.045	- 0.036	+ 0.015	+ 0.000	+ 0.000	- 0.037
3/27/2020	- 0.025	- 0.023	- 0.016	- 0.032	- 0.032	+ 0.010	+ 0.000	+ 0.000	- 0.022
6/29/2020	- 0.053	- 0.064	- 0.063	- 0.124	- 0.080	Removed	- 0.010	- 0.017	- 0.094
9/15/2020	- 0.053	- 0.052	- 0.043	- 0.093	- 0.033	Removed	- 0.017	- 0.014	- 0.058
12/8/2020	-0.048	-0.033	-0.026	-0.152	-0.05	Removed	+0.000	+0.000	-0.065
3/30/2021	-0.038	-0.052	-0.032	-0.063	-0.022	Removed	-0.020	-0.014	-0.047
6/11/2021	-0.073	-0.065	-0.055	-0.105	-0.074	Removed	-0.026	-0.022	-0.074
9/8/2021	-0.091	-0.088	-0.075	-0.140	-0.086	Removed	-0.028	-0.190	-0.149

Note:

Advantage

- 1. Yellow shading indicates that samples did not meet the minimum 0.002 inches WC
- 2. Blank space indicates that data was not collected
- Environmental Single Pounds per square inch; ppm = parts per million;


Table 2B MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY SSDS Post Installation Monitoring Results Area B - Cold Storage Garage

Date			E	xtraction V	Vells (in Wo	C)			Blower	System Effluent
Date	EW-1B	EW-2B	EW-3B	EW-4B	EW-5B	EW-6B	EW-7B	EW-8B	(PSI)	PID Reading (ppm)
9/26/2019	13	13.5	13.5	14.5	13.5	14	13	12	10.5	1.3
10/3/2019	13	13.5	13.5	14	13.5	14	13	12	10	1.4
10/9/2019	12.5	13	13	13.5	13	13.5	12	12	10	0.0
11/5/2019	12	13	12.5	13	12.5	13	11.5	11	9	0.5
12/3/2019	11	11	11	11.5	11	11.5	10.5	10	8	0.1
1/22/2020										0.0
2/11/2020	12.5	13	13	13.5	13	13.5	12	11.5	9	0.0
3/27/2020	14	15	14	15	15	15	14	13.5	10	0.0
6/29/2020	16	12	17	12.5	17	17	16	15.5	16	0.0
7/31/2020										0.0
8/28/2020										0.0
9/15/2020	17	18	17	18	18	18	17	16.5	16	2.7
10/15/2020										0.3
11/4/2020										0.0
12/8/2020	16.5	17	17	17	17	17	16.5	16	13	0.4
1/4/2021										0.0
2/18/2021										0.0
3/30/2021	16	17	17	17	17	17	16	16	12	0.0
4/14/2021										0.0
5/20/2021										0.1
6/11/2021	18	18	19	20	19	19	18	18	18	0.0
7/1/2021									18	0.0
8/25/2021									20	0.0
9/8/2021	20	21	22	23	22	22	21	21	19	0.0

Date		,	Vapor Mon	itoring Poi	nts (in WC))	
Date	VMP-1B	VMP-2B	VMP-3B	VMP-4B	VMP-5B	VMP-6B	VMP-7B
9/26/2019	N/A	- 0.065	- 0.419	N/A	- 0.044	- 0.016	- 0.200
10/3/2019	- 0.023	- 0.062	- 0.303	- 0.383	- 0.037	- 0.018	- 0.196
10/9/2019	- 0.018	- 0.055	- 0.258	- 0.329	- 0.030	- 0.010	- 0.178
11/5/2019	- 0.016	- 0.018	- 0.217	- 0.271	- 0.014	+ 0.000	- 0.171
12/3/2019	- 0.014	- 0.032	- 0.114	- 0.156	+ 0.000	+ 0.000	- 0.136
2/11/2020	+ 0.000	- 0.040	N/A	- 0.161	N/A	+ 0.000	- 0.072
3/27/2020	+ 0.000	- 0.040	- 0.163	- 0.171	+ 0.000	- 0.010	- 0.152
6/29/2020	- 0.018	- 0.064	- 0.354	- 0.343	- 0.026	- 0.022	- 0.0198
9/15/2020	- 0.017	- 0.041	- 0.118	- 0.361	- 0.045	- 0.005	- 0.160
12/8/2020	+0.000	-0.02	-0.137	-0.208	+0.000	+0.000	-0.203
3/30/2021	- 0.010	- 0.045	- 0.162	- 0.219	+0.000	- 0.010	- 0.197
4/14/2021	NG	NG	NG	NG	+0.000	NG	NG
5/20/2021	NG	NG	NG	NG	-0.014	NG	NG
6/11/2021	-0.045	-0.051	-0.262	-0.903	-0.039	-0.016	-0.201
9/8/2021	-0.045	-0.058	-0.285	-1.020	-0.034	-0.041	-0.060

Note:

- 1. Yellow shading indicates that samples did not meet the minimum 0.002 inches WC
- 2. N/A indicates the VMP was not accessible during the time of the system check
- 3. Blank space indicates that data was not collected
- 4. in WC = inches water column; PSI = pounds per square inch; ppm = parts per million;
- 5. NG = Not Gauged

Table 2C MOD-PAC CORP., 1801 Elmwood Ave, Buffalo, NY SSDS Post Installation Monitoring Results Area C - Maintenance Area

Doto	Extrac	ction Wells (in WC)	Fan Syster	Fan System Effluent PID Reading (ppm)					
Date	EW-1C	EW-2C	EW-3C	EW-1C	EW-2C	EW-3C				
9/26/2019	43	40		1.4	0.7					
10/3/2019	44	45		1.0	4.5					
10/9/2019	44.5	45.5		0.0	0.0					
11/5/2019	44	46		0.0	0.4					
12/3/2019		39	28		1.2	0.4				
1/22/2020					0.4	0.0				
2/11/2020	31	30	27.5	0.2	0.0	0.0				
3/27/2020	29	32	28	0.0	0.0	0.0				
6/29/2020	27	31	29	0.0	0.0	0.0				
7/31/2020				0.0	0.0	0.0				
8/28/2020				0.0	0.0	0.0				
9/15/2020	28.5	31	29	0.0	0.0	0.0				
10/15/2020				0.0	0.0	0.0				
11/4/2020				0.0	0.0	0.0				
12/8/2020	31	31	29	0.0	0.0	0.0				
1/4/2021				0.0	0.0	0.0				
2/18/2021						0.0				
3/30/2021		32	30		0.0	0.0				
4/14/2021					0.1	0.0				
5/20/2021				0.0	0.0	0.0				
6/11/2021	23	31	30	0.0	0.0	0.0				
7/1/2021				0.0	0.0	0.0				
8/25/2021				0.0	0.0	0.0				
9/8/2021	29	31	30	0.0	0.0	0.0				

Data		V	apor Monito	ring Points (in WC)	
Date	VMP-1C	VMP-2C	VMP-3C	VMP-4C	VMP-10C	VMP-11C
9/26/2019	- 0.046	- 0.085	+ 0.000	- 0.061		
10/3/2019	- 0.055	- 0.092	+ 0.000	- 0.081		
10/9/2019	- 0.037	- 0.075	+ 0.000	- 0.060		
11/5/2019	- 0.042	- 0.067	+ 0.000	- 0.067		
12/3/2019	+ 0.000	- 0.027	- 0.026	+ 0.004	- 0.045	- 0.018
2/11/2020	- 0.019	- 0.026	- 0.032	- 0.038	- 0.045	- 0.020
3/27/2020	- 0.019	- 0.033	- 0.038	- 0.029	- 0.060	- 0.021
6/29/2020	- 0.019	- 0.050	- 0.040	- 0.018	- 0.061	- 0.044
9/15/2020	- 0.012	- 0.040	- 0.038	- 0.024	- 0.039	- 0.017
12/8/2020	-0.012	-0.038	-0.026	-0.021	-0.038	-0.016
3/30/2021	+ 0.000	- 0.022	- 0.037	+ 0.000	- 0.025	- 0.020
6/11/2021	-0.020	-0.054	-0.039	-0.024	-0.058	-0.097
9/8/2021	-0.049	-0.042	-0.040	-0.075	-0.066	-0.022

Note

- 1. Yellow shading indicates that samples did not meet the minimum 0.002 inches WC
- 2. Blank space indicates that data was not collected
- 3. in WC = inches water column; PSI = pounds per square inch; ppm = parts per million;
- 4. Please note that a blower is not included within the extraction system of Area C and that the extraction system is operated by fans.

Table 3 MOD-PAC, Corp. 1801 Elmwood Avenue, Buffalo, NY Summary of Air Analytical Testing Results

Parameter AREA A-PRE(090821) Volatile Organic Compounds (ug/m³) 1,1,1-Trichloroethane	AREA A- POST(090821)
	1 001(000021)
1,1,1-Trichloroethane	
1,1,2,2-Tetrachloroethane	
1,1,2-Trichloro-1,2,2-Trifluoroethane	
1,1,2-Trichloroethane	
1,1-Dichloroethane	
1,1-Dichloroethene	
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 42.4	53.1
1,2-Dibromoethane	55.1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	
1,2-Dichlorobenzene	
1,2-Dichloroethane	
1,2-Dichloroethene (total) 1,2-Dichloropropane	
1,3,5-Trimethylbenzene 10.2	13.6
1,3-Butadiene	
1,3-Dichlorobenzene	
1,3-Dichloropropene, Total	
1,4-Dichlorobenzene 1,4-Dioxane	
2,2,4-Trimethylpentane	1.37
2-Butanone 2.53	
2-Hexanone	
3-Chloropropene	
4-Ethyltoluene 6 4-Methyl-2-pentanone	8.26 3.53
Acetone 38.2	40.4
Benzene 2.75	5.46
Benzyl chloride	
Bromodichloromethane	
Bromoform Bromomethane	
Carbon disulfide 3.83	12.5
Carbon tetrachloride	
Chlorobenzene	
Chloroethane	40.7
Chloroform 31.5 Chloromethane	42.7 0.564
cis-1,2-Dichloroethene 10.1	13.7
cis-1,3-Dichloropropene	
Cyclohexane	1.29
Dibromochloromethane	0.44
Dichlorodifluoromethane 2.64 Ethyl Acetate	2.14
Ethyl Alcohol 49.7	64.1
Ethylbenzene 9.64	16.8
Heptane 1.98	3.74
Hexachlorobutadiene	05.0
iso-Propyl Alcohol 38.8 Methyl tert butyl ether	95.9
Methylene chloride 2.62	
n-Hexane 4.16	61.3
o-Xylene 20.1	31.3
p/m-Xylene 48.6 Styrene 1.29	79.1
Styrene 1.29 tert-Butyl Alcohol 2.26	1.23 8.94
Tetrachloroethene 2.28	0.04
Tetrahydrofuran 2.14	3.19
Toluene 36.6	62.2
trans-1,2-Dichloroethene	0.841
trans-1,3-Dichloropropene Trichloroethene 559	1.27
Trichlorofluoromethane 6.07	4.08
Vinyl bromide	
Vinyl chloride	

Notes

- Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report in the Appendix.
- 2. Analytical testing for VOCs via TO-15 completed by Alpha Analytical.
- 3. Results present in ug/m³ or microgram per cubic meter.
- Parameters shaded in red indicate analytes of concern (Target VOCs)
- 5. Results in red indicate higher post-carbon readings over pre-carbon readings
- 6. Blank results = No Value Above Detection Limit

Table 4 MOD-PAC, Corp. 1801 Elmwood Avenue, Buffalo, NY Summary of Air Analytical Testing Results

	Octobe	r 2019 - L1	946093	Novemb	er 2019 - L	1952487	Decemb	er 2019 - L	.1957660	Februai	ry 2020 - L	2006152	June 2 L202		Septemb L203	er 2020 - 8512	020	Decemb L205		March L211		June L213	2021 - 1935		oer 2021 - 18116
Parameter	AREA A - PRE	AREA A- POST	AREA B	AREA A- PRE (110519)	AREA A- POST (110519)	AREA-B (110519)	AREA A- PRE (120319)	AREA A- POST (120319)	AREA B (120319)	AREA A- PRE (021120)	AREA A- POST (021120)	AREA B (120319)	AREA A- PRE (063020)	AREA A- POST (063020)	AREA A- PRE (091520)	AREA A- POST (091520)	9/2	AREA A- PRE (120820)	AREA A- POST (120820)	AREA A- PRE (033021)	AREA A- POST (033021)	AREA A- PRE (061121)	AREA A- POST (061121)	AREA A- PRE (090821)	AREA A- POST (090821)
Volatile Organics in Air (ug/m3	3)																								
1,1,1-Trichloroethane	1.11																								
1,1-Dichloroethene									0.793															<u> </u>	<u> </u>
1,2,4-Trimethylbenzene	2.5									48.5	30.2	56	21.8	21.5	64.4	63.4		29.7	23.7	34.4	28.8	46.1	38.9	42.4	53.1
1,2-Dichloroethene (total)	94.8		4.52	35.5			41.6	5.55	0.979																
1,3,5-Trimethylbenzene	1									7.87	4.7	10.2	5.7	4.75	14.5	17.2		8.95	6.44	12.4	9.54	14.2	11.2	10.2	13.6
2,2,4-Trimethylpentane											0.976	2.98			3.13							3.14			1.37
2-Butanone	9.88		3.07	4.13			5.28			4.04			6.25	2.45				2.16		2.98		3.89		2.53	
4-Ethyltoluene										14.5	9.49	21.8	4.22	3.87	12.4	10.9		3.95	2.79	6.1	4.46	10.7	8.26	6	8.26
4-Methyl-2-pentanone																				9.71		4.47		(3.53
Acetone	59.4	10.5	22.7	49.9		69.8	75.5	4.44	13.3	87.4		53.4	100	10.6	26.6	9.95		195	12.3	73.6	12.5	73.6	20.7	38.2	40.4
Benzene	0.891									5.34	2.5	10.4		0.987	4.79	2.43		1.42	0.69	2.25	1.03	10.7	4.98	2.75	5.46
Bromodichloromethane				9.71																					
Carbon disulfide								0.835			21.5		5.82	6.42	4.42	2.21		1.45	0.931	2.42	0.944	7.41	2.68	3.83	12.5
Carbon tetrachloride									1.26																
Chloroform	14.4			9.86			20.3	1.69		17	1.51		16.7	31.8	20.7	17.5		27.1	1.35	38.4	12.6	46.7	59.6	31.5	42.7
Chloromethane	0.591	0.745		0.00			20.0	0.603	0.785		0.446	1.21		0.77	20.1	0.438		0.626	0.630	0.648	0.766		0.558	<u> </u>	0.564
cis-1.2-Dichloroethene	88.8	0.7 10	4.52	33.5			41.6	5.55	0.979	22.5	12.5		26.1	63	19.2	21.7		15.1	0.000	11.2	11.3	11.7	29.1	10.1	13.7
Cyclohexane	4.23		4.02	2		2.52	41.0	0.00	0.070	1.61	12.0	0.847	20.1	- 00	2.54	0.823		2.1		1.41	11.0	2.42	20.1	10.1	1.29
Dichlorodifluoromethane	1.99	1.78	1.98	2.13		2.02		2.1	2.93	1.01	1.47	1.99		2.15	2.04	1.61	5	2.41	2.38	1.95	2.04	2.06	1.87	2.64	2.14
Ethyl Acetate	1.55	1.70	1.90	2.13				2.1	2.53		1.47	1.99		2.10		1.01	H وا	2.41	2.30	3.27	3.13	4.4	4.14	2.04	2.14
Ethyl Alcohol	14.3	23.4	16	22.2		61.6	43.5	34.5	10.3	63.7	40.9	30.1	143	112	106	81.8	분	91	57.1	71.6	86.7	87.8	61.6	49.7	64.1
Ethylbenzene	1.58	23.4	0.973	2.32		01.0	3.54	34.3	10.3	37.6	20	60.4	6.65	5.13	17.9	13.6	ΙžΗ	16.8	5.08	15.9	6.91	19.1	11.5	9.64	16.8
Heptane	14.3		2.35	9.51		6.27	18.2		1.25	16.6	1.01	14.1	5.7	1.25	6.31	1.31	¥ -	24.9	3.00	7.38	0.836	6.64	1.94	1.98	3.74
iso-Propyl Alcohol	44	48.2	2.33	103		742	275	1.96	7.03	157	9.44	44.2	191	472	83.8	34.4	2	371	32.9	253	164	95.9	533	38.8	95.9
Methylene chloride	9.21	13.2	9.87	3.68	5.45	5.35	213	4.45	3.61	137	9.44	44.2	191	4/2	03.0	34.4	δ F	3/ 1	32.9	233	1.79	93.9	555	6.62	90.9
n-Hexane	6.06	5.08	1.72	5.22	1.89	3.98	28.2	1.2	1.54	20.7	0.948	6.1	12.2	2.59	29.3	3.67	R -	18.1	2.31	33.7	5.15	73.7	14.9	4.12	61.3
	1.55	5.06	1.72	2.35	1.09	2.81	3.14	1.2	1.54	46.5	26.9	64.7	12.2	10.2	33.1	26.6	<u> </u>	25.5	10.5	28.9	14.9	30.9	20.4	20.1	31.3
o-Xylene									0.07								-								
p/m-Xylene	5.3		4.34	8.08		9.6	11.7		2.07	138 2.78	77.7	181 0.873	28.1 3.17	23	83.4	65.6	⊢	69.9	25.4	71.2	33.9	89 1.9	57.8	48.6 1.29	79.1
Styrene				2.04		F 07	7.04									0.856	⊢	2.14		F 4F			1.14		1.23
tert-Butyl Alcohol	2.12		77.3	3.64		5.67 31.4	7.31	1.97	10.4	7.64		1.7 10.6	11.9 5.78	E 0	4.05	2.2		9.31 1.69		5.15 4.12		3.58 2.63		2.26	8.94
Tetrachloroethene	2.12			40.4			40		12.4	5.04	4.70			5.8	4.95	2.3				4.12		2.03	0.40	2.28	2.40
Tetrahydrofuran	47.2		9.53	12.1		4.98	13	7.73	0.07	5.84	4.72	2.01	5.43	106	05.0	6.55		1.55	44.5	20.0	00.4	00.5	2.43	2.14	3.19
Toluene	1.89		1.55	6.1		8.55	12.7		2.07	131	66.3	168	23.2	15.8	65.6	45.2	_	31.3	11.5	39.2	20.1	93.5	52	36.6	62.2
trans-1,2-Dichloroethene	6.03		554	2		000	4000	0.40	404	050	3.33	70.5	000	2.67	700	1.12		0.852	40.0	070	1.03	400	1.72	550	0.841
Trichloroethene	2630	0.00	554	978	0.07	236	1030	2.48	104	656	10.8	79.5	983	17.2	736	133		508	19.3	378	22	469	29.3	559	1.27
Trichlorofluoromethane	1.48	3.62	2.69	4.70	2.67	0.55		3.47	1.42		1.78	1.37	10.2	10.7	3.36	4.40		1.4	2.51	1.69	1.79	3.53	3.47	6.07	4.08
Vinyl bromide				1.78		2.55			ļ			ļ													<u> </u>
Vinyl chloride	l			1.04		1.49											L		,						<u> </u>
Total Target VOCs	2,731.24	13.20	645.69	1,016.22	5.45	274.24	1,071.60	14.45	123.04	678.50	23.30	90.10	1,014.88	86.00	760.15	157.00	L	524.79	19.30	393.32	35.09	483.33	58.40	578.00	14.97
Percent Decrease Pre to Post Carbon (%)	-99	.52	NA	-99	9.46	NA	-98	3.65	NA	-96	5.57	NA	-91	.53	-79	.35		-96	.32	-91	.08	-87	.92	-97	7.41
Percent Decrease From Baseline (10/2019 Pre)	N	A	NA	-62	2.79	NA	-60).77	NA	-75	i.16	NA	-62	2.84	-72	2.17		-80	.79	-85	5.60	-82	30	-78	3.84

Notes:

- 1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report in appendix.
- 2. Analytical testing for VOCs via TO-15 completed by Alpha Analytical.
- 3. Results present in ug/m³ or microgram per cubic meter.
- 4. Samples were collected during a 8-hour sample duration.
- 5. Parameters shaded in red indicate analytes of concern (Target VOCs).
- Results in red indicate post carbon result higher than pre carbon result.
- 7. Blank results = No Value Above Detection Limit (ND = Non-detect).
- 8. In some instances where the pre-sample is ND and the post sample presents a reportable value, the ND pre-sample may be due to sample dilution. Refer to analytical reports for dilution factors.

Table 5 Historical Groundwater Monitoring Data Summary MOD-PAC CORP.

Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	Trichloroethene (µg/L)	% Increase/ Decrease TCE
					NY-TOGS-GA (5 µg/L)	
MW - 3	2/5/18	600.71	5.05	595.66	280	Baseline
	4/15/20	600.71	um Permanganete inj 5.54	595.17	, 2019 - October 10, 201 370	
	3/10/21	600.71	5.54 6.10	595.17	NT	32.14 N/A
	3/30/21	600.71	5.95	594.76	NT	N/A
	4/14/21	600.71	5.98	594.73	340	21.43
	5/20/21	600.71	6.10	594.61	NT	N/A
	6/11/21	600.71	6.12	594.59	NT	N/A
	7/1/21	600.71	6.30	594.41	400	42.86
	8/25/21	600.71	5.80	594.91	NT	N/A
	9/22/21	600.71	5.45	595.26	NT	N/A
MW - 11	2/5/18	600.41	4.66	595.75	40	Baseline
					, 2019 - October 10, 201	
	4/15/20	600.41	5.27	595.14	45	12.50
	3/10/21	600.41	5.82	594.59	NT NT	N/A
	3/30/21	600.41	5.74	594.67	NT 46	N/A
	4/14/21 5/20/21	600.41 600.41	5.74 5.84	594.67 594.57	16 NT	-60.00
	6/11/21	600.41	5.84 5.85	594.57 594.56	NT NT	N/A N/A
	7/1/21	600.41	6.00	594.56	47	17.50
	8/25/21	600.41	5.58	594.83	NT	N/A
	9/22/21	600.41	5.32	595.09	NT NT	N/A
MW - 12	2/5/18	600.50	4.52	595.98	0.44	Baseline
					, 2019 - October 10, 201	
	4/15/20	600.50	4.41	596.09	ND	-100.00
	3/10/21	600.50	5.03	595.47	NT	N/A
	3/30/21	600.50	4.86	595.64	NT	N/A
	4/14/21	600.50	4.86	595.64	ND	-100.00
	5/20/21	600.50	5.05	595.45	NT	N/A
	6/11/21	600.50	5.10	595.40	NT	N/A
	7/1/21	600.50	5.35	595.15	ND NT	-100.00
	8/25/21 9/22/21	600.50 600.50	4.80 4.40	595.70 596.10	NT NT	N/A N/A
MW - 13	2/5/18	600.31	4.40	595.87	160	Baseline
IVIVV - 13	2/3/10				, 2019 - October 10, 201	
	4/15/20	600.31	3.70	596.61	140	-12.50
	3/10/21	600.31	4.25	596.06	NT	N/A
	3/30/21	600.31	4.10	596.21	NT	N/A
	4/14/21	600.31	4.13	596.18	95	-40.63
	5/20/21	600.31	4.32	E0E 00		
1	6/11/21			595.99	NT	N/A
, i		600.31	4.40	595.91	NT	N/A
	7/1/21	600.31	4.40 4.60	595.91 595.71	NT 150	N/A -6.25
	7/1/21 8/25/21	600.31 600.31	4.40 4.60 4.10	595.91 595.71 596.21	NT 150 NT	N/A -6.25 N/A
ANNA 44	7/1/21 8/25/21 9/22/21	600.31	4.40 4.60 4.10 3.35	595.91 595.71	NT 150 NT NT	N/A -6.25 N/A N/A
MW - 14	7/1/21 8/25/21 9/22/21 3/10/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76	595.91 595.71 596.21	NT 150 NT NT NT	N/A -6.25 N/A N/A N/A
MW - 14	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72	595.91 595.71 596.21	NT 150 NT NT NT	N/A -6.25 N/A N/A N/A N/A
MW - 14	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72 6.73	595.91 595.71 596.21	NT	N/A -6.25 N/A N/A N/A N/A N/A
MW - 14	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72 6.73 6.75	595.91 595.71 596.21	NT 150 NT	N/A -6.25 N/A N/A N/A N/A N/A N/A
MW - 14	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21 6/11/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72 6.73 6.75 6.80	595.91 595.71 596.21	NT 150 NT	N/A -6.25 N/A N/A N/A N/A N/A N/A
MW - 14	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72 6.73 6.75 6.80 6.95	595.91 595.71 596.21	NT	N/A -6.25 N/A N/A N/A N/A N/A N/A N/A N/A
MW - 14	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21 8/25/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72 6.73 6.75 6.80 6.95 6.50	595.91 595.71 596.21	NT	N/A -6.25 N/A
	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72 6.73 6.75 6.80 6.95 6.50 6.15	595.91 595.71 596.21	NT	N/A -6.25 N/A N/A N/A N/A N/A N/A N/A N/A N/A
MW - 14	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21 8/25/21 9/22/21 3/10/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72 6.73 6.75 6.80 6.95 6.50 6.15 5.42	595.91 595.71 596.21	NT	N/A -6.25 N/A
	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21 8/25/21 9/22/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72 6.73 6.75 6.80 6.95 6.50 6.15	595.91 595.71 596.21	NT	N/A -6.25 N/A N/A N/A N/A N/A N/A N/A N/A N/A
	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21 8/25/21 9/22/21 3/10/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72 6.73 6.75 6.80 6.95 6.50 6.15 5.42	595.91 595.71 596.21	NT	N/A -6.25 N/A
	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21 8/25/21 9/22/21 3/10/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72 6.73 6.75 6.80 6.95 6.50 6.15 5.42 5.32	595.91 595.71 596.21	NT	N/A -6.25 N/A
	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72 6.73 6.75 6.80 6.95 6.50 6.15 5.42 5.32 5.34	595.91 595.71 596.21	NT	N/A -6.25 N/A
	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21 6/11/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72 6.73 6.75 6.80 6.95 6.50 6.15 5.42 5.32 5.34 5.40 5.60	595.91 595.71 596.21	NT 150 NT	N/A -6.25 N/A
	7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21 6/11/21 7/1/21 8/25/21 9/22/21 3/10/21 3/30/21 4/14/21 5/20/21	600.31 600.31	4.40 4.60 4.10 3.35 6.76 6.72 6.73 6.75 6.80 6.95 6.50 6.15 5.42 5.32 5.34 5.40	595.91 595.71 596.21	NT	N/A -6.25 N/A

Notes:

- 1. NG = Not Gauged 2. ND = Non-Detect
- 3. NT = Not tested
- 4. N/A = Not Applicable
- 5. Water Levels measured from top of riser
- 6. Blue Shading = Result exceeds NY-TOGS-GA for TCE
- 7. RED BOLDED = Percent increase of TCE from Baseline
- 8. 7/16/19 Post Pilot Sudy and 10/24/19 Post Injection Data excluded because water levels were not collected during these events

Table 6
Historical Groundwater Monitoring and Sampling Data Summary
MOD-PAC CORP.

Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	1,1- Dichloroethene (µg/L)	2-Butanone (µg/L)	Acetone (μg/L)	Benzene (µg/L)	cis-1,2- Dichloroethene (µg/L)	e (µg/L)	Trichloroet hene (µg/L)	Vinyl chloride (µg/L)	Total VOCs (μg/L)	% Increase/ Decrease TCE
		NY-TOGS-	GA (µg/L)		5	50	50	1	5	5	5	2		
MW - 3	2/5/18	600.71	5.05	595.66	ND	ND	ND	ND	80	14	280	13	387.0	Baseline
	7/16/2019*	600.71	NG	NG	ND	ND	38	ND	ND	ND	ND	ND	38.0	-100.00
					Potassium Pe					tober 10, 201				
	10/24/19	600.71	NG	NG	ND	ND	ND	ND	30	3	220	ND	253.0	-21.43
	4/15/20	600.71	5.54	595.17	ND	ND	6.40	ND	57	7.3	370	3.7	444.4	32.14
	4/14/21	600.71	5.98	594.73	0.88	ND	ND	ND	82	8.8	340	5.6	440.5	21.43
	7/1/21	600.71	6.30	594.41	2.0	ND	ND	0.41	140	16	400	8.1	566.5	42.86
MW - 11	2/5/18	600.41	4.66	595.75	ND	ND	9.4	ND	3.1	2.9	40	5.6	61.0	Baseline
	7/16/2019*	600.41	NG	NG	ND	ND	4.5	ND	14	25	20	9.8	73.3	-50.00
					Potassium Pe					tober 10, 201				
	10/24/19	600.41	NG	NG	ND	150	920	ND	ND	ND	16	ND	1086.0	-60.00
	4/15/20	600.41	5.27	595.14	ND	2.20	11	0.21	7	10	45	9	84.4	12.50
	4/14/21	600.41	5.74	594.67	ND	ND	ND	ND	8	9.4	16	5.7	39.1	-60.00
	7/1/21	600.41	6.00	594.41	0.35	ND	ND	0.25	13	17	47	10	87.6	17.50
MW - 12	2/5/18	600.50	4.52	595.98	ND	ND	2.2	ND	ND	ND	0.44	ND	2.64	Baseline
	7/16/2019*	600.50	NG	NG	ND	ND	3	ND	ND	ND	ND	ND	3.0	-100.00
					Potassium Pe					tober 10, 201				
	10/24/19	600.50	NG	NG	ND	ND	ND	ND	ND	ND	ND	ND	ND	-100.00
	4/15/20	600.50	4.41	596.09	ND	ND	11	ND	ND	ND	ND	ND	11.0	-100.00
	4/14/21	600.50	4.86	595.64	ND	ND	ND	ND	ND	ND	ND	ND	ND	-100.00
	7/1/21	600.50	5.35	595.15	ND	ND	ND	ND	ND	ND	ND	ND	ND	-100.00
MW - 13	2/5/18	600.31	4.44	595.87	ND	ND	ND	ND	180	4.1	160	25	369.1	Baseline
	7/16/2019*	600.31	NG	NG	ND	ND	ND	ND	400	3.9	78	56	537.9	-51.25
					Potassium Pe	rmanganet	e Injectior	s Octobe		tober 10, 201	9			
	10/24/19	600.31	NG	NG	ND	ND	28	ND	97	2	240	2	369.0	50.00
	4/15/20	600.31	3.70	596.61	0.73	ND	3.2	ND	200	4.4	140	55	403.3	-12.50
	4/14/21	600.31	4.13	596.18	0.69	ND	ND	ND	150	1.70	95	70	317.4	-40.63
	7/1/21	600.31	4.60	595.71	1.50	ND	ND	0.18	210	3.90	150	88	453.6	-6.25

Notes:

- 1. NG = Not Gauged
- 2. ND = Non-Detect
- 3. NT = Not tested
- 4. N/A = Not Applicable
- 5. Water Levels measured from top of riser
- 6. Blue Shading = Result exceeds NY-TOGS-GA for TCE
- 7. **RED BOLDED** = Percent increase of TCE from Baseline
- 8. * = Sampling completed after initial Potassium Permanganate Injection Pilot Study (June 27 28, 2019)

ATTACHMENT C

Field Notes

MOD-PAC Corp., Buffalo, NY Sub-Slab Depressurization System (SSDS) Monthly Monitoring

EA Representative: Eric Betzold	
Date of Inspection: July 1, 2021	
Area A Monthly Monitoring Checklist: 1. Pre-Carbon OVM Reading (ppm): 0.0 2. Post-Carbon OVM Reading (ppm): 0.0 Notes: Blower operating at 16 PSI.	
Area B Monthly Monitoring Checklist: 1. OVM Reading (ppm):	
	-
Area C Monthly Monitoring Checklist: 1. EW-1C OVM Reading (ppm): 0.0 2. EW-2C OVM Reading (ppm): 0.0 3. EW-3C OVM Reading (ppm): 0.0	
Notes: No deficiencies.	

MOD-PAC Corp., Buffalo, NY Sub-Slab Depressurization System (SSDS) Monthly Monitoring

EA Representative: Eric Betzold	
Date of Inspection: August 25, 2021	
Area A Monthly Monitoring Checklist: 1. Pre-Carbon OVM Reading (ppm): 0.0 2. Post-Carbon OVM Reading (ppm): 0.0 Notes: Blower operating at 18 PSI.	
Area B Monthly Monitoring Checklist: 1. OVM Reading (ppm):	
Area C Monthly Monitoring Checklist: 1. EW-1C OVM Reading (ppm): 0.0 2. EW-2C OVM Reading (ppm): 0.0 3. EW-3C OVM Reading (ppm): 0.0	
Notes: No deficiencies.	

MOD-PAC Corp., Buffalo, NY Sub-Slab Depressurization System (SSDS) Quarterly Monitoring

EA Representative: _	Eric Betzold
Date of Inspection:	9/08/2021

Area A

Extraction Well Location	EW-1A	EW-2A	EW-3A	EW-4A	EW-5A	EW-6A	EW-7A	EW-8A	EW-9A	EW-10A
Magnehelic Pressure Gauge Reading (InH ₂ 0)	17	17	18	18	17	0	18	18	18	18

Vapor Monitoring Point Location	VMP-1A	VMP-2A	VMP-3A	VMP-4A	VMP-5A	VMP-7A	VMP-8A	VMP-9A
Manometer Reading (InH₂0)	-0.091	-0.088	-0.075	-0.140	-0.086	-0.028	-0.190	-0.149

General Monitoring Checklist:

1.	Pre-Carbon OVM Reading (ppm):	0.3
_	D (O O)/MD ' ' '	0.0

Post-Carbon OVM Reading (ppm): 0.0
 Blower Gauge Reading in inches of water (InH₂0): 16

4. Lubricate Blower fan bearing (Y/N): ___Y
5. Quarterly pre- and post-carbon Tedlar Bag samples taken (Y/N)? ___Y

General Comments (leaks, defective gauges/fans, positive pressure readings?): None

Area B

Extraction Well Location	EW-1B	EW-2B	EW-3B	EW-4B	EW-5B	EW-6B	EW-7B	EW-8B
Magnehelic Pressure Gauge Reading (InH₂0)	20	21	22	23	22	22	21	21

Vapor Monitoring Point Location	VMP-1B	VMP-2B	VMP-3B	VMP-4B	VMP-5B	VMP-6B	VMP-7B
Manometer Reading (InH ₂ 0)	-0.045	-0.058	-0.285	-1.020	-0.034	-0.041	-0.060

General Monitoring Checklist: 1. OVM Reading (ppm):0.0 2. Blower Gauge Reading in inches of water (InH ₂ 0):19 3. Lubricate Blower fan bearing (Y/N): Y
General Comments (leaks, defective gauges/fans, positive pressure readings?):
EW-2B trench has few cracks present. However, there are no leaks present. EA recommends to re-epoxy the cracks and the missing small chunk

Area C

Extraction Well Location	EW-1C	EW-2C	EW-3C
Magnehelic Pressure Gauge Reading (InH₂0)	29	31	30
OVM Reading (ppm)	0.0	0.0	0.0

Vapor Monitoring Point Location	VMP-1C	VMP-2C	VMP-3C	VMP-4C	VMP-10C	VMP-11C
Manometer Reading (InH₂0)	-0.049	-0.042	-0.040	-0.075	-0.066	-0.022

General Comments (leaks, defective gauges/fans, positive pressure readings?):
Stress crack noted at EW-3c vapor trench.

of concrete. Same is recommended for EW-8 trench.

ATTACHMENT D

Analytical Laboratory Reports

ANALYTICAL REPORT

Lab Number: L2148116

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna Phone: (716) 667-3130

Project Name: Q3 2021 SSDS MONITORING

Project Number: 01304 Report Date: 09/13/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: Q3 2021 SSDS MONITORING

Project Number: 01304

Lab Number:

L2148116

Report Date:

09/13/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2148116-01	AREA A-PRE(090821)	SOIL_VAPOR	MPE BUFFALO NY	09/08/21 11:10	09/08/21
L2148116-02	AREA A-POST(090821)	SOIL_VAPOR	MPE BUFFALO NY	09/08/21 11:05	09/08/21

Project Name:Q3 2021 SSDS MONITORINGLab Number:L2148116Project Number:01304Report Date:09/13/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:09132116:03

Project Name: Q3 2021 SSDS MONITORING Lab Number: L2148116
Project Number: 01304 Report Date: 09/13/21

Case Narrative (continued)

Volatile Organics in Air

L2148116-01D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L2148116-01, -02: Samples were transferred from a Tedlar bag into a fused silica lined canister upon receipt in order to extend the holding time for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/13/21

Christopher J. Anderson

AIR

Project Name: Q3 2021 SSDS MONITORING

Project Number: 01304

Lab Number:

L2148116

Report Date: 09/13/21

SAMPLE RESULTS

Lab ID: L2148116-01 D

Client ID: AREA A-PRE(090821)
Sample Location: MPE BUFFALO NY

Date Collected: 09/08/21 11:10

Date Received: 09/08/21
Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/12/21 22:10

Analyst: RY

		Vdqq		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.534	0.286		2.64	1.41			1.429
Chloromethane	ND	0.286		ND	0.591			1.429
Freon-114	ND	0.286		ND	2.00			1.429
Vinyl chloride	ND	0.286		ND	0.731			1.429
1,3-Butadiene	ND	0.286		ND	0.633			1.429
Bromomethane	ND	0.286		ND	1.11			1.429
Chloroethane	ND	0.286		ND	0.755			1.429
Ethanol	26.4	7.14		49.7	13.5			1.429
Vinyl bromide	ND	0.286		ND	1.25			1.429
Acetone	16.1	1.43		38.2	3.40			1.429
Trichlorofluoromethane	1.08	0.286		6.07	1.61			1.429
Isopropanol	15.8	0.714		38.8	1.76			1.429
1,1-Dichloroethene	ND	0.286		ND	1.13			1.429
Tertiary butyl Alcohol	0.745	0.714		2.26	2.16			1.429
Methylene chloride	0.754	0.714		2.62	2.48			1.429
3-Chloropropene	ND	0.286		ND	0.895			1.429
Carbon disulfide	1.23	0.286		3.83	0.891			1.429
Freon-113	ND	0.286		ND	2.19			1.429
trans-1,2-Dichloroethene	ND	0.286		ND	1.13			1.429
1,1-Dichloroethane	ND	0.286		ND	1.16			1.429
Methyl tert butyl ether	ND	0.286		ND	1.03			1.429
2-Butanone	0.857	0.714		2.53	2.11			1.429
cis-1,2-Dichloroethene	2.55	0.286		10.1	1.13			1.429

L2148116

Project Name: Q3 2021 SSDS MONITORING Lab Number:

Project Number: 01304 Report Date: 09/13/21

SAMPLE RESULTS

 Lab ID:
 L2148116-01 D
 Date Collected:
 09/08/21 11:10

 Client ID:
 AREA A-PRE(090821)
 Date Received:
 09/08/21

Client ID: AREA A-PRE(090821) Date Received: 09/08/21
Sample Location: MPE BUFFALO NY Field Prep: Not Specified

Sample Depth:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Ethyl Acetate	ND	0.714		ND	2.57			1.429
Chloroform	6.46	0.286		31.5	1.40			1.429
Tetrahydrofuran	0.727	0.714		2.14	2.11			1.429
1,2-Dichloroethane	ND	0.286		ND	1.16			1.429
n-Hexane	1.18	0.286		4.16	1.01			1.429
1,1,1-Trichloroethane	ND	0.286		ND	1.56			1.429
Benzene	0.862	0.286		2.75	0.914			1.429
Carbon tetrachloride	ND	0.286		ND	1.80			1.429
Cyclohexane	ND	0.286		ND	0.984			1.429
1,2-Dichloropropane	ND	0.286		ND	1.32			1.429
Bromodichloromethane	ND	0.286		ND	1.92			1.429
1,4-Dioxane	ND	0.286		ND	1.03			1.429
Trichloroethene	104	0.286		559	1.54			1.429
2,2,4-Trimethylpentane	ND	0.286		ND	1.34			1.429
Heptane	0.484	0.286		1.98	1.17			1.429
cis-1,3-Dichloropropene	ND	0.286		ND	1.30			1.429
4-Methyl-2-pentanone	ND	0.714		ND	2.93			1.429
trans-1,3-Dichloropropene	ND	0.286		ND	1.30			1.429
1,1,2-Trichloroethane	ND	0.286		ND	1.56			1.429
Toluene	9.71	0.286		36.6	1.08			1.429
2-Hexanone	ND	0.286		ND	1.17			1.429
Dibromochloromethane	ND	0.286		ND	2.44			1.429
1,2-Dibromoethane	ND	0.286		ND	2.20			1.429
Tetrachloroethene	0.336	0.286		2.28	1.94			1.429
Chlorobenzene	ND	0.286		ND	1.32			1.429
Ethylbenzene	2.22	0.286		9.64	1.24			1.429

L2148116

Project Name: Lab Number: Q3 2021 SSDS MONITORING

Report Date:

Project Number: 01304 09/13/21

SAMPLE RESULTS

Lab ID: L2148116-01 D Client ID: AREA A-PRE(090821)

Sample Location: MPE BUFFALO NY Date Collected: 09/08/21 11:10

Date Received: 09/08/21 Field Prep: Not Specified

Sample Depth:

		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mans	sfield Lab								
p/m-Xylene	11.2	0.571		48.6	2.48			1.429	
Bromoform	ND	0.286		ND	2.96			1.429	
Styrene	0.304	0.286		1.29	1.22			1.429	
1,1,2,2-Tetrachloroethane	ND	0.286		ND	1.96			1.429	
o-Xylene	4.63	0.286		20.1	1.24			1.429	
4-Ethyltoluene	1.22	0.286		6.00	1.41			1.429	
1,3,5-Trimethylbenzene	2.07	0.286		10.2	1.41			1.429	
1,2,4-Trimethylbenzene	8.62	0.286		42.4	1.41			1.429	
Benzyl chloride	ND	0.286		ND	1.48			1.429	
1,3-Dichlorobenzene	ND	0.286		ND	1.72			1.429	
1,4-Dichlorobenzene	ND	0.286		ND	1.72			1.429	
1,2-Dichlorobenzene	ND	0.286		ND	1.72			1.429	
1,2,4-Trichlorobenzene	ND	0.286		ND	2.12			1.429	
Hexachlorobutadiene	ND	0.286		ND	3.05			1.429	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	102		60-140
chlorobenzene-d5	107		60-140

Project Name: Q3 2021 SSDS MONITORING Lab Number: L2148116

Project Number: 01304 Report Date: 09/13/21

SAMPLE RESULTS

Lab ID: Date Collected: 09/08/21 11:05

Client ID: AREA A-POST(090821) Date Received: 09/08/21
Sample Location: MPE BUFFALO NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/12/21 22:49

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.432	0.200		2.14	0.989			1
Chloromethane	0.273	0.200		0.564	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	34.0	5.00		64.1	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	17.0	1.00		40.4	2.38			1
Trichlorofluoromethane	0.726	0.200		4.08	1.12			1
Isopropanol	39.0	0.500		95.9	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	2.95	0.500		8.94	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	4.01	0.200		12.5	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	0.212	0.200		0.841	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	3.46	0.200		13.7	0.793			1

Project Name: Q3 2021 SSDS MONITORING Lab Number: L2148116

Project Number: 01304 Report Date: 09/13/21

SAMPLE RESULTS

Lab ID: L2148116-02

Client ID: AREA A-POST(090821)
Sample Location: MPE BUFFALO NY

Date Collected: 09/08/21 11:05

Date Received: 09/08/21 Field Prep: Not Specified

Sample Depth:

оапріє Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	8.74	0.200		42.7	0.977			1
Tetrahydrofuran	1.08	0.500		3.19	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	17.4	0.200		61.3	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	1.71	0.200		5.46	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	0.374	0.200		1.29	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	0.237	0.200		1.27	1.07			1
2,2,4-Trimethylpentane	0.294	0.200		1.37	0.934			1
Heptane	0.912	0.200		3.74	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	0.862	0.500		3.53	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	16.5	0.200		62.2	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	3.86	0.200		16.8	0.869			1

Date Collected:

L2148116

09/08/21 11:05

Project Name: Q3 2021 SSDS MONITORING Lab Number:

Project Number: 01304 Report Date: 09/13/21

SAMPLE RESULTS

Lab ID: L2148116-02

Client ID: AREA A-POST(090821) Date Received: 09/08/21 Sample Location: MPE BUFFALO NY Field Prep: Not Specified

Sample Depth:

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
p/m-Xylene	18.2	0.400		79.1	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	0.290	0.200		1.23	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	7.21	0.200		31.3	0.869			1
4-Ethyltoluene	1.68	0.200		8.26	0.983			1
1,3,5-Trimethylbenzene	2.76	0.200		13.6	0.983			1
1,2,4-Trimethylbenzene	10.8	0.200		53.1	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	106		60-140
Bromochloromethane	108		60-140
chlorobenzene-d5	113		60-140

Project Name: Q3 2021 SSDS MONITORING Lab Number: L2148116

Project Number: 01304 Report Date: 09/13/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 09/12/21 15:23

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab for samp	ole(s): 01	-02 Batch:	: WG15454	160-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: Q3 2021 SSDS MONITORING Lab Number: L2148116

Project Number: 01304 Report Date: 09/13/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 09/12/21 15:23

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for samp	ole(s): 01-	-02 Batch	: WG15454	60-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: Q3 2021 SSDS MONITORING Lab Number: L2148116

Project Number: 01304 Report Date: 09/13/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 09/12/21 15:23

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	ield Lab for samp	le(s): 01-	02 Batch	n: WG15454	60-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Lab Control Sample Analysis Batch Quality Control

Project Name: Q3 2021 SSDS MONITORING

Project Number: 01304

Lab Number: L2148116

Report Date: 09/13/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG154546	0-3				
Dichlorodifluoromethane	89		-		70-130	-		
Chloromethane	100		-		70-130	-		
Freon-114	97		-		70-130	-		
Vinyl chloride	85		-		70-130	-		
1,3-Butadiene	94		-		70-130	-		
Bromomethane	83		-		70-130	-		
Chloroethane	88		-		70-130	-		
Ethanol	88		-		40-160	-		
Vinyl bromide	99		-		70-130	-		
Acetone	74		-		40-160	-		
Trichlorofluoromethane	93		-		70-130	-		
Isopropanol	78		-		40-160	-		
1,1-Dichloroethene	86		-		70-130	-		
Tertiary butyl Alcohol	79		-		70-130	-		
Methylene chloride	103		-		70-130	-		
3-Chloropropene	96		-		70-130	-		
Carbon disulfide	113		-		70-130	-		
Freon-113	120		-		70-130	-		
trans-1,2-Dichloroethene	89		-		70-130	-		
1,1-Dichloroethane	96		-		70-130	-		
Methyl tert butyl ether	103		-		70-130	-		
2-Butanone	106		-		70-130	-		
cis-1,2-Dichloroethene	94		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: Q3 2021 SSDS MONITORING

Project Number: 01304

Lab Number: L2148116

Report Date: 09/13/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG154546	0-3				
Ethyl Acetate	96		-		70-130	-		
Chloroform	93		-		70-130	-		
Tetrahydrofuran	103		-		70-130	-		
1,2-Dichloroethane	91		-		70-130	-		
n-Hexane	94		-		70-130	-		
1,1,1-Trichloroethane	107		-		70-130	-		
Benzene	95		-		70-130	-		
Carbon tetrachloride	103		-		70-130	-		
Cyclohexane	94		-		70-130	-		
1,2-Dichloropropane	106		-		70-130	-		
Bromodichloromethane	98		-		70-130	-		
1,4-Dioxane	95		-		70-130	-		
Trichloroethene	103		-		70-130	-		
2,2,4-Trimethylpentane	98		-		70-130	-		
Heptane	116		-		70-130	-		
cis-1,3-Dichloropropene	115		-		70-130	-		
4-Methyl-2-pentanone	118		-		70-130	-		
trans-1,3-Dichloropropene	99		-		70-130	-		
1,1,2-Trichloroethane	114		-		70-130	-		
Toluene	99		-		70-130	-		
2-Hexanone	121		-		70-130	-		
Dibromochloromethane	112		-		70-130	-		
1,2-Dibromoethane	119		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: Q3 2021 SSDS MONITORING

Project Number: 01304

Lab Number: L2148116

Report Date:

09/13/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG154546	60-3				
Tetrachloroethene	111		-		70-130	-		
Chlorobenzene	111		-		70-130	-		
Ethylbenzene	111		-		70-130	-		
p/m-Xylene	112		-		70-130	-		
Bromoform	127		-		70-130	-		
Styrene	119		-		70-130	-		
1,1,2,2-Tetrachloroethane	111		-		70-130	-		
o-Xylene	115		-		70-130	-		
4-Ethyltoluene	116		-		70-130	-		
1,3,5-Trimethylbenzene	119		-		70-130	-		
1,2,4-Trimethylbenzene	124		-		70-130	-		
Benzyl chloride	118		-		70-130	-		
1,3-Dichlorobenzene	131	Q	-		70-130	-		
1,4-Dichlorobenzene	126		-		70-130	-		
1,2-Dichlorobenzene	127		-		70-130	-		
1,2,4-Trichlorobenzene	136	Q	-		70-130	-		
Hexachlorobutadiene	118		-		70-130	-		

Project Name: Q3 2021 SSDS MONITORING Lab Number: L2148116

Project Number: 01304 Report Date: 09/13/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

NA Absent

Container Info	Container Information			Final	Temp		Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C Pres	Seal	Date/Time	Analysis(*)
L2148116-01A	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA		Υ	Absent		TO15-LL(30)
L2148116-01X	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA		Υ	Absent		TO15-LL(30)
L2148116-02A	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA		Υ	Absent		TO15-LL(30)
L2148116-02X	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA		Υ	Absent		TO15-LL(30)

Project Name: Lab Number: Q3 2021 SSDS MONITORING L2148116 01304 **Report Date: Project Number:** 09/13/21

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

MS

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:Q3 2021 SSDS MONITORINGLab Number:L2148116Project Number:01304Report Date:09/13/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:Q3 2021 SSDS MONITORINGLab Number:L2148116Project Number:01304Report Date:09/13/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:Q3 2021 SSDS MONITORINGLab Number:L2148116Project Number:01304Report Date:09/13/21

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	VSIDE V	Cor semestro conserva-											S	erial_l	No:091	32116:03	3
		R ANALY	SIS	PAG	BE	of	Date R	ec'd in La	b: 9	19	12	1	ALP	HA Jo	b #: [15	48116
ALPHA	CHAIN OF CUS	Project	Information	on	976	WEST STREET	-	rt Inform	200		100	2000	-	S 115 70	ormatio	-	GR (MI)
320 Forbes Blvd, Ma	ansfield, MA 02048 FAX: 508-822-3288	Project N			SCAC	M'1	150			1	0.00	A CHEE					01304
Client Informatio			ocation: M	2021 PER.	26	אנאן <i>א</i>			- elses								
Client: Co. A	durada a Ta	Project #	0130		raid	101	1	Criteria Ch (Default basi		latory Criti	eria Indica	ted)					
Address: 7/2/	ovantage Inc		lanager: /	Jack Has	n + 1	Manya	. XEM	Other Form	nats:	eport)			Reg	ulator	y Requi	rements	Report Limits
orchard B	ack NIV 1017	ALPHA	lanager: /	1-17-	1147 1	144/ 32	Add	ditional De	liverable	5.			State	Fed	Progr	am	Res / Comm
Phone: 716-6	lark, NY 14/2 667-3130	Turn-A	round Tim	ne		T. H.	Repor	t to: (if differen	nt than Project	Manager)							
Fax: 716 - 6																	
	a envaduante	Standa	ırd 🚨	RUSH (ant): cor	nörmed if pre-a	pprived()								ANA	LYSIS		
	ve been previously analyzed		e:	1	Γime:								17	19	/2/	//	
Other Project S	pecific Requirement	s/Comments:					-						///	Part HCs	10 10 1	//	
Project-Specific	Target Compound	List: 🗆										/	///		fortams (/	
15		All Co	lumn	s Bel	ow I	Must	Bel	Fille	d O	ıt			SIM	Sases & Morr	///	/	
ALPHA Lab ID (Lab Use Only)	Sample ID	- 2 Mileson Continue	COL Start Time	LECTION	Initial	Final	Sample	Sampler'		ID	I D - Flo	m 70-75	APH Succession	Sumdes & Men	//=	male Con	nments (i.e. PID
	Area A-Prelos					Vacuum	Matrix*	Initials	Size 5L	Can	Controll	X	ŤŤ		1	0.3	2012
012	Area A-Post	9/0/21 9/0/2	11-100	II. Dan			sv	EB	5L	_	-	V				0.0	
00	Area 11- (UST)	ואוסוו (מסטוט	[1:05am	[[.#>@n	1/2		20	20	52	, S					+	0.01	IM
												+++		-	++-		
						-		-	-			+++	-	+	+-		
						-						++		-			
									_					1			
									-				-	-	-		
								_				-		-	+		
												\perp		1	1		
*SAMPL	E MATRIX CODES		nt Air (Indoor por/Landfill (se Specify				1.		Containe	Туре		5 L 7046	r		con	npletely. Sa	early, legibly and imples can not be urnaround time
		Relinqu	ished By:		Da	te/Time	1	Rece	eived By:			,	Date/Tim		clor	ck will not st	art until any ambi- olved. All samples
		que By	A A -			11425	n	111	1	t	2	9/08	21 /4	4:24	5 sub		subject to Alpha's
Page 24 of 24 (2)	5-Sep-15)	Herety	Mari	-	9/9/	21 16:10	1	1	All all	7	5	9/9	210	415		e reverse sid	
		T. Hudle		9	19/21	1830	0	5			-9	1912	0	630			

ANALYTICAL REPORT

Lab Number: L2136084

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna
Phone: (716) 667-3130

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304 Report Date: 07/26/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

 Lab Number:
 L2136084

 Report Date:
 07/26/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2136084-01	MW-12 (070121)	WATER	MPC BUFFALO, NY	07/01/21 11:30	07/02/21
L2136084-02	MW-11 (070121)	WATER	MPC BUFFALO, NY	07/01/21 12:40	07/02/21
L2136084-03	MW-3 (070121)	WATER	MPC BUFFALO, NY	07/01/21 13:25	07/02/21
L2136084-04	MW-13 (070121)	WATER	MPC BUFFALO, NY	07/01/21 13:50	07/02/21

Project Name:JULY 2021 SMP GW SAMPLINGLab Number:L2136084Project Number:01304Report Date:07/26/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: JULY 2021 SMP GW SAMPLING Lab Number: L2136084
Project Number: 01304 Report Date: 07/26/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/26/21

Jufani Morrissey-Tiffani Morrissey

ORGANICS

VOLATILES

L2136084

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

SAMPLE RESULTS

.

Lab Number:

Report Date: 07/26/21

Lab ID: L2136084-01 Date Collected: 07/01/21 11:30

Client ID: MW-12 (070121) Date Received: 07/02/21 Sample Location: MPC BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/11/21 23:54

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

07/26/21

Report Date:

Project Name: JULY 2021 SMP GW SAMPLING Lab Number: L2136084

Project Number: 01304

L2136084-01

SAMPLE RESULTS

Date Collected: 07/01/21 11:30

Client ID: MW-12 (070121) Date Received: 07/02/21 Sample Location: MPC BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	90	70-130	
4-Bromofluorobenzene	87	70-130	
Dibromofluoromethane	123	70-130	

L2136084

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

SAMPLE RESULTS

Lab Number:

Report Date: 07/26/21

Lab ID: L2136084-02 Date Collected: 07/01/21 12:40

Client ID: MW-11 (070121) Date Received: 07/02/21 Sample Location: MPC BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/11/21 23:31

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.25	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	10		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.35	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	17		ug/l	2.5	0.70	1
Trichloroethene	47		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: JULY 2021 SMP GW SAMPLING Lab Number: L2136084

Project Number: 01304 Report Date: 07/26/21

SAMPLE RESULTS

Lab ID: L2136084-02 Date Collected: 07/01/21 12:40

Client ID: MW-11 (070121) Date Received: 07/02/21 Sample Location: MPC BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	13		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	120		70-130	

70-130

70-130

L2136084

07/26/21

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2136084-03 D2 Date Collected: 07/01/21 13:25

Client ID: MW-3 (070121) Date Received: 07/02/21 Sample Location: MPC BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/13/21 22:56

Analyst: JC

4-Bromofluorobenzene

Dibromofluoromethane

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Trichloroethene	400		ug/l	5.0	1.8	10
Surrogate			% Recovery	Qualifier		eptance riteria
1,2-Dichloroethane-d4			99		-	70-130
Toluene-d8			91		-	70-130

90

127

L2136084

07/01/21 13:25

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

SAMPLE RESULTS

Report Date: 07/26/21

Lab Number:

Date Collected:

Lab ID: L2136084-03 D

Client ID: MW-3 (070121)
Sample Location: MPC BUFFALO, NY

Date Received: 07/02/21
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/11/21 23:08

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	5.0	1.4	2
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
Chloroform	ND		ug/l	5.0	1.4	2
Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Dibromochloromethane	ND		ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Tetrachloroethene	ND		ug/l	1.0	0.36	2
Chlorobenzene	ND		ug/l	5.0	1.4	2
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane	ND		ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
Bromoform	ND		ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Benzene	0.41	J	ug/l	1.0	0.32	2
Toluene	ND		ug/l	5.0	1.4	2
Ethylbenzene	ND		ug/l	5.0	1.4	2
Chloromethane	ND		ug/l	5.0	1.4	2
Bromomethane	ND		ug/l	5.0	1.4	2
Vinyl chloride	8.1		ug/l	2.0	0.14	2
Chloroethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene	2.0		ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	16		ug/l	5.0	1.4	2
Trichloroethene	410	Е	ug/l	1.0	0.35	2
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2

07/26/21

Project Name: JULY 2021 SMP GW SAMPLING Lab Number: L2136084

Project Number: 01304

L2136084-03

SAMPLE RESULTS

Date Collected: 07/01/21 13:25

Report Date:

Client ID: MW-3 (070121) Date Received: 07/02/21 Sample Location: MPC BUFFALO, NY Field Prep: Not Specified

D

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	140		ug/l	5.0	1.4	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	ND		ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
Bromochloromethane	ND		ug/l	5.0	1.4	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl Acetate	ND		ug/l	4.0	0.47	2
Cyclohexane	ND		ug/l	20	0.54	2
1,4-Dioxane	ND		ug/l	500	120	2
Freon-113	ND		ug/l	5.0	1.4	2
Methyl cyclohexane	ND		ug/l	20	0.79	2

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	117	70-130	

L2136084

07/01/21 13:50

Project Name: JULY 2021 SMP GW SAMPLING

L2136084-04

MW-13 (070121)

MPC BUFFALO, NY

Project Number: 01304

SAMPLE RESULTS

Report Date: 07/26/21

Lab Number:

Date Collected: 07/01/2

Date Received: 07/02/21
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/11/21 22:45

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.18	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	88		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	1.5		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	3.9		ug/l	2.5	0.70	1
Trichloroethene	150		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: JULY 2021 SMP GW SAMPLING Lab Number: L2136084

Project Number: 01304 Report Date: 07/26/21

SAMPLE RESULTS

Lab ID: L2136084-04 Date Collected: 07/01/21 13:50

Client ID: MW-13 (070121) Date Received: 07/02/21 Sample Location: MPC BUFFALO, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

i alaliletei	resuit	Qualifici	Office			Dilation Lactor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	260	Е	ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	121	70-130	

L2136084

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

SAMPLE RESULTS

Report Date: 07/26/21

Lab Number:

Lab ID: L2136084-04 D

Client ID: MW-13 (070121) Sample Location: MPC BUFFALO, NY Date Collected: 07/01/21 13:50 Date Received: 07/02/21 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/12/21 10:55

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
cis-1,2-Dichloroethene	210		ug/l	12	3.5	5

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	111		70-130
Toluene-d8	99		70-130
4-Bromofluorobenzene	102		70-130
Dibromofluoromethane	104		70-130

Project Number: 01304 Report Date: 07/26/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/13/21 19:51

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	03 Batch:	WG1523079-10
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: 01304 Report Date: 07/26/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/13/21 19:51

Analyst: LAC

olatile Organics by GC/MS - We	stborough Lab	for sample(s): 03	Batch:	WO4500070 40
			Daton.	WG1523079-10
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Number: 01304 Report Date: 07/26/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/13/21 19:51

Analyst: LAC

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 03 Batch: WG1523079-10

		Acceptance		
Surrogate	%Recovery (Qualifier Criteria		
1,2-Dichloroethane-d4	98	70-130		
Toluene-d8	94	70-130		
4-Bromofluorobenzene	88	70-130		
Dibromofluoromethane	122	70-130		

L2136084

Project Name: JULY 2021 SMP GW SAMPLING Lab Number:

Project Number: 01304 Report Date: 07/26/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/21 16:06

Analyst: AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-04 Batch:	WG1523079-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2136084

Project Name: JULY 2021 SMP GW SAMPLING Lab Number:

Project Number: 01304 Report Date: 07/26/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/21 16:06

Analyst: AJK

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-04 Batch:	WG1523079-5	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.27	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.40	

Project Number: 01304 Report Date: 07/26/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/21 16:06

Analyst: AJK

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-04 Batch: WG1523079-5

		Acceptance		
Surrogate	%Recovery Qua	lifier Criteria		
1,2-Dichloroethane-d4	93	70-130		
Toluene-d8	91	70-130		
4-Bromofluorobenzene	92	70-130		
Dibromofluoromethane	115	70-130		

Project Number: 01304 Report Date: 07/26/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/21 09:34

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	04 Batch:	WG1523377-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: 01304 Report Date: 07/26/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/21 09:34

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Westh	orough Lab	for sampl	e(s): 04	Batch:	WG1523377-5
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
Methyl Acetate	ND		ug/l	2.0	0.23
Cyclohexane	ND		ug/l	10	0.27
1,4-Dioxane	ND		ug/l	250	61.
Freon-113	ND		ug/l	2.5	0.70
Methyl cyclohexane	ND		ug/l	10	0.40

Project Number: 01304 Report Date: 07/26/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/21 09:34

Analyst: LAC

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 04 Batch: WG1523377-5

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	102	70-130
Dibromofluoromethane	103	70-130

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

Lab Number: L2136084

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04 Batch: W0	G1523079-3 WG1523079-4		
Methylene chloride	100		100	70-130	0	20
1,1-Dichloroethane	95		96	70-130	1	20
Chloroform	100		100	70-130	0	20
Carbon tetrachloride	100		110	63-132	10	20
1,2-Dichloropropane	110		100	70-130	10	20
Dibromochloromethane	100		110	63-130	10	20
1,1,2-Trichloroethane	90		99	70-130	10	20
Tetrachloroethene	120		120	70-130	0	20
Chlorobenzene	100		100	75-130	0	20
Trichlorofluoromethane	150		150	62-150	0	20
1,2-Dichloroethane	92		100	70-130	8	20
1,1,1-Trichloroethane	100		100	67-130	0	20
Bromodichloromethane	100		110	67-130	10	20
trans-1,3-Dichloropropene	84		90	70-130	7	20
cis-1,3-Dichloropropene	95		100	70-130	5	20
Bromoform	76		81	54-136	6	20
1,1,2,2-Tetrachloroethane	100		100	67-130	0	20
Benzene	110		110	70-130	0	20
Toluene	96		100	70-130	4	20
Ethylbenzene	96		99	70-130	3	20
Chloromethane	99		94	64-130	5	20
Bromomethane	110		110	39-139	0	20
Vinyl chloride	110		100	55-140	10	20

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

Lab Number: L2136084

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04 Batch: W	/G1523079-3	3 WG1523079-4			
Chloroethane	120		120		55-138	0	20	
1,1-Dichloroethene	100		100		61-145	0	20	
trans-1,2-Dichloroethene	100		110		70-130	10	20	
Trichloroethene	100		100		70-130	0	20	
1,2-Dichlorobenzene	110		120		70-130	9	20	
1,3-Dichlorobenzene	120		110		70-130	9	20	
1,4-Dichlorobenzene	120		110		70-130	9	20	
Methyl tert butyl ether	88		97		63-130	10	20	
p/m-Xylene	105		110		70-130	5	20	
o-Xylene	105		110		70-130	5	20	
cis-1,2-Dichloroethene	110		110		70-130	0	20	
Styrene	105		105		70-130	0	20	
Dichlorodifluoromethane	120		120		36-147	0	20	
Acetone	94		110		58-148	16	20	
Carbon disulfide	94		96		51-130	2	20	
2-Butanone	120		100		63-138	18	20	
4-Methyl-2-pentanone	78		85		59-130	9	20	
2-Hexanone	86		94		57-130	9	20	
Bromochloromethane	130		140	Q	70-130	7	20	
1,2-Dibromoethane	100		120		70-130	18	20	
1,2-Dibromo-3-chloropropane	88		95		41-144	8	20	
Isopropylbenzene	100		100		70-130	0	20	
1,2,3-Trichlorobenzene	110		110		70-130	0	20	

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

Lab Number:

L2136084 07/26/21

Report Date:

Parameter	LCS %Recovery	Qual	_	SD covery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 B	Batch:	WG1523079-3	WG1523079-4				
1,2,4-Trichlorobenzene	110		1	110		70-130	0		20	
Methyl Acetate	94		1	110		70-130	16		20	
Cyclohexane	100		1	100		70-130	0		20	
1,4-Dioxane	154		1	144		56-162	7		20	
Freon-113	110		1	110		70-130	0		20	
Methyl cyclohexane	110		1	110		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	99	70-130
Toluene-d8	92	95	70-130
4-Bromofluorobenzene	88	88	70-130
Dibromofluoromethane	113	109	70-130

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

Lab Number: L2136084

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (03 Batch: \	NG1523079-8	WG1523079-9				
Methylene chloride	93		89		70-130	4		20	
1,1-Dichloroethane	92		88		70-130	4		20	
Chloroform	100		100		70-130	0		20	
Carbon tetrachloride	99		110		63-132	11		20	
1,2-Dichloropropane	100		99		70-130	1		20	
Dibromochloromethane	100		100		63-130	0		20	
1,1,2-Trichloroethane	95		93		70-130	2		20	
Tetrachloroethene	110		110		70-130	0		20	
Chlorobenzene	96		97		75-130	1		20	
Trichlorofluoromethane	130		120		62-150	8		20	
1,2-Dichloroethane	100		98		70-130	2		20	
1,1,1-Trichloroethane	110		93		67-130	17		20	
Bromodichloromethane	100		98		67-130	2		20	
trans-1,3-Dichloropropene	85		85		70-130	0		20	
cis-1,3-Dichloropropene	92		91		70-130	1		20	
Bromoform	86		74		54-136	15		20	
1,1,2,2-Tetrachloroethane	110		96		67-130	14		20	
Benzene	100		98		70-130	2		20	
Toluene	90		90		70-130	0		20	
Ethylbenzene	89		92		70-130	3		20	
Chloromethane	91		92		64-130	1		20	
Bromomethane	120		110		39-139	9		20	
Vinyl chloride	91		88		55-140	3		20	

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

Lab Number: L2136084

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	03 Batch: WG	1523079-8	WG1523079-9				
Chloroethane	100		100		55-138	0		20	
1,1-Dichloroethene	95		98		61-145	3		20	
trans-1,2-Dichloroethene	98		98		70-130	0		20	
Trichloroethene	100		97		70-130	3		20	
1,2-Dichlorobenzene	120		110		70-130	9		20	
1,3-Dichlorobenzene	110		100		70-130	10		20	
1,4-Dichlorobenzene	110		100		70-130	10		20	
Methyl tert butyl ether	90		84		63-130	7		20	
p/m-Xylene	95		100		70-130	5		20	
o-Xylene	95		95		70-130	0		20	
cis-1,2-Dichloroethene	99		99		70-130	0		20	
Styrene	95		100		70-130	5		20	
Dichlorodifluoromethane	110		100		36-147	10		20	
Acetone	90		90		58-148	0		20	
Carbon disulfide	91		89		51-130	2		20	
2-Butanone	100		140	Q	63-138	33	Q	20	
4-Methyl-2-pentanone	89		96		59-130	8		20	
2-Hexanone	100		100		57-130	0		20	
Bromochloromethane	130		130		70-130	0		20	
1,2-Dibromoethane	110		100		70-130	10		20	
1,2-Dibromo-3-chloropropane	100		96		41-144	4		20	
Isopropylbenzene	100		92		70-130	8		20	
1,2,3-Trichlorobenzene	140	Q	100		70-130	33	Q	20	

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

Lab Number:

L2136084

Report Date:

07/26/21

<u>Par</u>	ameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Vola	atile Organics by GC/MS - Westborough La	ab Associated	sample(s): 0	3 Batch: W	G1523079-8	WG1523079-9				
	1,2,4-Trichlorobenzene	120		110		70-130	9		20	
	Methyl Acetate	96		93		70-130	3		20	
	Cyclohexane	92		94		70-130	2		20	
	1,4-Dioxane	128		118		56-162	8		20	
	Freon-113	110		100		70-130	10		20	
	Methyl cyclohexane	98		97		70-130	1		20	

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qua	I %Recovery Qual	Criteria
1,2-Dichloroethane-d4	98	102	70-130
Toluene-d8	96	96	70-130
4-Bromofluorobenzene	92	86	70-130
Dibromofluoromethane	116	111	70-130

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

Lab Number: L2136084

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	4 Batch: WO	G1523377-3	WG1523377-4				
Methylene chloride	91		94		70-130	3		20	
1,1-Dichloroethane	92		98		70-130	6		20	
Chloroform	92		96		70-130	4		20	
Carbon tetrachloride	92		94		63-132	2		20	
1,2-Dichloropropane	88		94		70-130	7		20	
Dibromochloromethane	85		87		63-130	2		20	
1,1,2-Trichloroethane	79		84		70-130	6		20	
Tetrachloroethene	83		89		70-130	7		20	
Chlorobenzene	87		90		75-130	3		20	
Trichlorofluoromethane	93		97		62-150	4		20	
1,2-Dichloroethane	97		100		70-130	3		20	
1,1,1-Trichloroethane	85		90		67-130	6		20	
Bromodichloromethane	88		92		67-130	4		20	
trans-1,3-Dichloropropene	85		89		70-130	5		20	
cis-1,3-Dichloropropene	89		93		70-130	4		20	
Bromoform	75		81		54-136	8		20	
1,1,2,2-Tetrachloroethane	95		100		67-130	5		20	
Benzene	90		95		70-130	5		20	
Toluene	88		91		70-130	3		20	
Ethylbenzene	88		93		70-130	6		20	
Chloromethane	110		110		64-130	0		20	
Bromomethane	150	Q	160	Q	39-139	6		20	
Vinyl chloride	98		100		55-140	2		20	

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

Lab Number: L2136084

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	.ab Associated	sample(s):	04 Batch: WG15	523377-3	WG1523377-4			
Chloroethane	120		120		55-138	0		20
1,1-Dichloroethene	84		88		61-145	5		20
trans-1,2-Dichloroethene	90		92		70-130	2		20
Trichloroethene	78		84		70-130	7		20
1,2-Dichlorobenzene	85		88		70-130	3		20
1,3-Dichlorobenzene	87		90		70-130	3		20
1,4-Dichlorobenzene	86		88		70-130	2		20
Methyl tert butyl ether	95		100		63-130	5		20
p/m-Xylene	85		90		70-130	6		20
o-Xylene	90		90		70-130	0		20
cis-1,2-Dichloroethene	88		87		70-130	1		20
Styrene	90		90		70-130	0		20
Dichlorodifluoromethane	130		140		36-147	7		20
Acetone	100		87		58-148	14		20
Carbon disulfide	96		97		51-130	1		20
2-Butanone	82		86		63-138	5		20
4-Methyl-2-pentanone	75		82		59-130	9		20
2-Hexanone	82		92		57-130	11		20
Bromochloromethane	91		95		70-130	4		20
1,2-Dibromoethane	82		90		70-130	9		20
1,2-Dibromo-3-chloropropane	70		83		41-144	17		20
Isopropylbenzene	88		93		70-130	6		20
1,2,3-Trichlorobenzene	80		84		70-130	5		20

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304

Lab Number: L2136084

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 04	Batch: WG	1523377-3	WG1523377-4			
1,2,4-Trichlorobenzene	83		86		70-130	4		20
Methyl Acetate	86		99		70-130	14		20
Cyclohexane	88		96		70-130	9		20
1,4-Dioxane	78		92		56-162	16		20
Freon-113	96		100		70-130	4		20
Methyl cyclohexane	90		94		70-130	4		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	111	112	70-130
Toluene-d8	99	99	70-130
4-Bromofluorobenzene	103	99	70-130
Dibromofluoromethane	108	104	70-130

Project Name: JULY 2021 SMP GW SAMPLING

Project Number: 01304 Report D

Report Date: 07/26/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	oler pH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2136084-01A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)	
L2136084-01B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)	
L2136084-01C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)	
L2136084-02A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)	
L2136084-02B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)	
L2136084-02C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)	
L2136084-03A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)	
L2136084-03B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)	
L2136084-03C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)	
L2136084-04A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)	
L2136084-04B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)	
L2136084-04C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)	

Project Number: 01304 Report Date: 07/26/21

GLOSSARY

Acronyms

LCSD

LOD

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid Phase Microsystraction (SPME)

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.
 Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:JULY 2021 SMP GW SAMPLINGLab Number:L2136084Project Number:01304Report Date:07/26/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:JULY 2021 SMP GW SAMPLINGLab Number:L2136084Project Number:01304Report Date:07/26/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:07262117:26

Project Name: JULY 2021 SMP GW SAMPLING Lab Number: L2136084
Project Number: 01304 Report Date: 07/26/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:07262117:26

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

NEW YORK CHAIN OF CUSTODY Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-920 FAX: 508-898-9193 Client Information Client: Env. Advantage Toc Address: 3(0310 N. B.) FCalo Rd Orc Nord Park NY 14127 Phone: 716 667-3130 NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Bivd TEL: 508-822-9300 FAX: 508-822-9300 FAX: 508-822-9300 FAX: 508-822-9300 Client Information Project Information Project Name: July Zo21 SMP Gw Sampling Project Location: MPC Buffalo NY Project Information Project Manager: Mark Hanna + Mary Szustak Orc Nord Park NY 14127 ALPHAQuote #: Phone: 716 667-3130 Turn-Around Time Fax: 716-667-3156 Email: Manage envadyontage of Rush (only if pre approved) # of Days:							Date Rec'd in Lab					ALPHA Job # L 0 13 6 084 Billing Information Same as Client Info Po# 013 b 4 Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other:	
Please specify Metals	requirements/comm 11 y ema:1 adVantage,co	results to e					18260 TCL NY	515				Done Lab to do Preservation Lab to do (Please Specify below)	o t a b c t t
ALPHA Lab ID (Lab Use Only)		(070121)	Date 7/1/21	Time	Sample Matrix	Sampler's Initials	× ×	_		_	<u> </u>	Sample Specific Comments	3
-02 -03 -04	MW-11 MW-3	(070121) (070121) (070121)	7/1/21	12:42Fm 1:25Fm 1:50Fm	GW GW	EB EB EB	XXXX						
Preservative Code:	Container Code	Worth and Codiffication I											\pm
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Mansfield: Certification N Relinquished	504	reservative	2			Date/Time 12/2/235		Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)			