Environmental

Advantage

Environmental Advantage, Inc. 3636 N. Buffalo Road Orchard Park, New York 14127 Industrial Compliance, Hazardous Materials Management, Site Assessment/Remediation

June 29, 2023

Megan Kuczka, DER Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 700 Delaware Avenue Buffalo, New York 14209

Re: Periodic Review Report - April 2022 - 2023; DEC Site #C915312

Pierce Arrow Business Center, 155-157 Chandler Street, Buffalo, New York

Dear Ms. Kuczka:

In accordance with the Site Management Plan (NYSDEC Site Number: C915312), Section 7.2 Periodic Review Report, NYSDEC's March 14, 2023 letter to Mr. Rocco Termini regarding the preparation and submittal of a Site Management Periodic Review Report and IC/EC Certification, please find attached a Periodic Review Report that includes the appropriate certifications and the 2022-2023 Routine Progress Report.

If you have comments or questions regarding the contents of these documents, please contact me directly.

Very truly yours,

ENVIRONMENTAL ADVANTAGE, INC.

C. Mark Hanna, CHMM

President

Attachments

cc: R. Termini

J. Rothschild

J. Schenne

S. Selmer (NYSDOH)

01101\ CY2021-2022\Pierce Arrow Business Center - BCP #C915312 - PRR 2022-2023 - 052423

Periodic Review Report

April 27, 2022 - April 27, 2023 Reporting Period

Pierce Arrow Business Center

155-157 Chandler Street Buffalo, New York 14207

NYSDEC Site Number: C915312

Prepared by:

Environmental Advantage, Inc. 3636 North Buffalo Road Orchard Park, New York 14127 (716) 667-3130

> May 24, 2023 Revised June 29, 2023

TABLE OF CONTENTS

1.0	SITE OVER	RVIEW	1				
1.1	Site Sum	mary	1				
1.2	Site Rem	Site Remedial History					
1.3	Institution	nal and Engineering Controls	4				
1.4	Monitorin	g and Sampling Requirements	5				
2.0 S	SITE INSPE	CTION AND MONITORING RESULTS	6				
2.1	Site Inspe	ections	6				
2.2	Indoor Ai	r Sampling Results	7				
2.3	Groundw	ater Monitoring Well Decommissioning	8				
2.4	Data Usa	bility Summary	9				
2.5	Electronic	c Data Deliverables	9				
2.6	Certificat	ion Status	9				
3.0 C	ORRECTIV	Æ ACTIONS	10				
3.1	Supplemen	tal Soil Vapor Intrusion Investigation – June 2022	10				
3.2	July 2022	2 Ambient Air Sampling	11				
2	2.8.1 Ambi	ent Indoor Air	11				
3.3	Sub-Slab	Depressurization System Design Work Plan	12				
4.0 C	CONCLUSIC	NS AND RECOMENDATIONS	12				
Appe	ndices						
Appendix A		Figures					
Appendix B Appendix C		Site-Wide Inspections and Field notes Tables					
Appendix D		Laboratory Analytical Results					
Appendix E		Well Decommissioning Records	:44_1				
Appe	ndix F	Data Usability Summary Reports & EQuIS Data Submi Confirmations	ıttaı				
Appendix G		Institutional Controls/Engineering Controls Certification					

Figures

Figure 1	Site Location Map
Figure 2	Sub-Slab Mitigation Design & SMP Compliance Ambient Air
	Sampling Locations
Figure 3	Previous Monitoring Well Location Map
Figure 4	March 2022 and June 2022 Soil Vapor Intrusion Investigation
	Sampling Locations

Tables

Table 1	Indoor Air Analytical Testing Results Comparison – December 2022
Table 2	Indoor Air Analytical Testing Results – December 2018 through
	December 2022
Table 3	March 2022 and June 2022 Soil Vapor Intrusion Investigation
	Analytical Testing Results
Table 4	March 2022 and June 2022 Soil Vapor Intrusion Investigation
	Decision Matrices

Certifications

For each institutional or engineering control identified for the Site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by DER¹;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control;
- Access to the Site will continue to be provided to DER to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices;
- No new information has come to the remedial party (site owners) attention, including groundwater monitoring data from wells located at the Site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-Site contamination are no longer valid; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, C. Mark Hanna, CHMM, President of Environmental Advantage, Inc., 3636 N. Buffalo Road, Orchard Park, NY 14127, am certifying as Owner's/Remedial Party's Designated Site Representative.

0696	Mark Sauce	May 24, 2023	
CHMM Certification #	Signature	Date	

¹ "DER-10/Technical Guidance for Site Investigation and Remediation" prepared by New York State Department of Environmental Conservation (NYSDEC), dated May 3, 2020

1.0 SITE OVERVIEW

1.1 Site Summary

The Pierce Arrow Business Center Property ("Site") is an approximately 2.35 acre property located at 155-157 Chandler Street in the City of Buffalo, Erie County, New York. The Site location and boundaries are provided in Figure 1, located in Appendix A. The Site consists of an approximate 65,000-square foot building, 22,000-square foot courtyard within the central area of the building and an approximate 0.39 acre parking lot area. The Site is zoned D-C Flex Commercial, which permits Residential, Retail, and Service, and Light Industrial uses. The neighborhood surrounding the Site primarily includes light industrial, commercial, and residential properties.

1.2 <u>Site Remedial History</u>

The Site building was originally constructed in 1907 and utilized as a factory occupied by Linde Air Products until the early-1950s. Bell Aircraft Corp. occupied the Site in the early-to-mid 1950s, which was then purchased by Donald Rosen in 1958, who utilized the property for G & R Machinery (machine shop). The Site was purchased by Ontario Equipment Co. in 2005, and by R&M Leasing, LLC in February 2017.

Brownfield Cleanup Agreement (BCA Index No. C915312-02-17²) was executed on April 24, 2017 for the Site, which identified the property as Site # C915312 with the New York State Department of Environmental Conservation (NYSDEC) under the Brownfield Cleanup Program (BCP). An amendment to the BCA was later executed on September 21, 2017³. Hazard Evaluations Inc. (HEI), in association with Schenne & Associates (S&A), completed remedial investigation (RI) activities, as well as interim remedial measure (IRM) activities, in accordance with an RI/IRM Work Plan⁴, which was approved by NYSDEC on April 20, 2017. The RI and IRM work was done concurrently, with additional investigation or IRM work completed, as needed. A series of IRM work tasks were performed at the Site in order to remediate the on-Site concerns as detailed in the Final Remedial Investigation-Interim Remedial Measures-Alternative Analysis Report⁵ and Final Engineering Report⁶. IRM work tasks completed at the Site included the following:

² Brownfield Cleanup Agreement for the Pierce Arrow Business Center Site, executed between NYSDEC and R & M Leasing LLC and Signature Development WNY LLC, April 24, 2017.

³ Brownfield Cleanup Agreement Amendment for C915312, executed September 21, 2017. The amendment removed Signature Development WNY LLC, from the application, making R & M Leasing LLC the sole applicant. 4 Remedial Investigation-Interim Remedial Measures-Alternative Analysis Work Plan; Brownfield Cleanup Program For Pierce Arrow Business Center; 155-157 Chandler, Buffalo, New York, 14207; BCP # C915312", prepared by Hazard Evaluations, Inc., and Schenne & Associates, November 11, 2016 – Revised May 22, 2017. 5 "Final Remedial Investigation-Interim Remedial Measures-Alternative Analysis Report; Brownfield Cleanup Program For Pierce Arrow Business Center; 155-157 Chandler, Buffalo, New York, 14207; BCP # C915312", prepared by Hazard Evaluations, Inc., and Schenne & Associates, December 5, 2017.

^{6 &}quot;Final Engineering Report; Brownfield Cleanup Program for Pierce Arrow Business Center, 155-157 Chandler, Buffalo, New York 14207; BCP # C915312" prepared by Hazard Evaluations, Inc., and Schenne & Associates, December 2017.

Courtyard Area:

- Asbestos containing materials (ACMs) were identified within the courtyard area which resulted in the need to remove the top two inches of soil. A composite characterization sample was collected for landfill disposal. Test results identified PCBs at a concentration of 53 parts per million (ppm), which prompted further IRM work within the courtyard area.
- ACMs soils, which were identified by AMD Environmental, the Owner's representative, were excavated and disposed off-Site as PCBs-containing soil.
 The soils were disposed at a Waste Management facility in Emelle, Alabama.
- After the courtyard was deemed as ACMs free, additional soil excavations were completed under the guidance of HEI. Soil containing over 50 ppm of PCBs was excavated from the courtyard area and disposed off-Site.
- Additional materials removal was completed from the courtyard area, which included the following:
 - Brick was generated from pavers that were present within the courtyard. Concrete was generated from former pad areas, as well as from foundations within the courtyard area. The brick and concrete materials were disposed off-Site at a Waste Management facility in Chaffee, New York.
 - Further soil excavations were completed, generally to depths of 2 to 3 feet below original grade, into the native underlying clay soils. Soils that contained PCBs below 50 ppm, but over the Restricted Residential Use Soil Cleanup Objective (RRUSCO) standard of 1 ppm, were excavated and disposed at a Waste Management facility in Chaffee, New York.
- One 2,000-gallon gasoline underground storage tank (UST) was located within the courtyard area. The tank was uncovered and approximately 150 gallons of a gasoline/water mixture were pumped from the tank. Upon removal, the steel tank was cleaned and crushed for recycling at the Niagara Metals LLC scrap yard. A limited amount of impacted soil was present on the bottom and northern sidewall. The impacted soil was excavated and disposed off-Site at a Waste Management facility in Chaffee, New York.
- Three drainage structures or "pits" were also identified within the courtyard area. Each drainage structure was excavated and any associated impacted soil was removed and disposed off-Site at a Waste Management facility in Chaffee, New York.
- Historical records identified the potential for a 10,000-gallon above ground storage tank (AST) vault to be present near the former boiler room. During the removal of a concrete pad, the vault area was discovered under the concrete pad. Once the concrete was removed, the vault was found to be filled with brick and sand.
 - A sample of the sand material was analyzed for PCBs, which indicated a PCBs-concentration over 50 ppm. The sand and brick materials were subsequently removed from the vault and the materials were disposed off-Site at a Waste Management facility in Emelle, Alabama.

- A concrete footer was located within the vault, measuring approximately 18-inches wide and extending over four feet. The vault had a concrete floor/base that was approximately six inches thick. Due to the vault's proximity to the chimney, the vault footer was required to remain in place, as removal would risk compromising the structural stability of the chimney foundation.
- Sidewall and bottom samples were collected from the UST excavation area, former vault area, and the drainage structure or "pit" areas. Additionally, confirmatory soil samples were selected from the bottom of the excavation which occurred in the courtyard area. Soil sample results did not identify impacts above the RRUSCO.

Parking Lot Area:

- Due to the presence of metals and SVOCs within the fill material, the three to four feet of fill material within the parking lot area was scheduled for removal during the IRM work. Initial waste characterization samples identified portions of the parking lot at concentrations deemed as hazardous due to characteristic of lead toxicity. Additional delineation work was completed to evaluate areas with lead impacts.
- The lead soils were stabilized on-Site using the MAECTITE[®] stabilization process, a proprietary process completed by Sevenson Environmental. The stabilization process bound the lead, preventing further leaching. As such, the soil was able to be disposed as non-hazardous soil.
- The parking lot area was then excavated to a depth of three to four feet below grade to the underlying native clay soils. Approximately 2,200 tons of soil were excavated and disposed off-Site at a Waste Management facility in Chaffee, New York.
- Confirmatory soil samples were collected from the sidewall and bottom of the excavation within the parking lot area. Analytical test results did not identify compounds above RRUSCO.

Under Building Area:

- The Site was on a fast track for Site development. As such, HEI worked with the Site Owner to investigate and evaluate specific areas under the building proposed for future water and/or sewer lines. Additionally, sub-slab soil samples were collected and if impacts were identified, the soil was excavated. Concrete samples were also collected to determine if PCBs were present.
- During RI work, specific areas of impact were identified. For each area, the soil surrounding the area was excavated and sidewall and bottom samples were collected, which did not exhibit further exceedances. Soil from under the building was excavated and disposed off-Site at a Waste Management facility in Chaffee, New York.
- PCBs were identified within the concrete floor at various locations, specifically in the southwestern corner of the structure. The concrete was subsequently removed and disposed off-Site at a Waste Management facility in Chaffee,

New York. Confirmatory samples were collected from the adjoining concrete floor, which did not identify any PCBs concentrations above RRUSCO.

A Certificate of Completion was issued for the Site on December 27, 2017⁷.

1.3 Institutional and Engineering Controls

Since remaining contamination exists at the Site, Institutional Controls (ICs) and Engineering Controls (ECs) as outlined in the Site Management Plan (SMP)⁸ were required to protect human health and the environment, and include the following:

Institutional Controls:

- The property may be used for restricted residential, commercial, and/or industrial uses;
- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to Site management must be reported at the frequency and in a manner as defined in the SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement:
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 1, and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the Site are prohibited.

7 New York State Department of Environmental Conservation, "Certificate of Completion for the Pierce Arrow Business Center", dated December 27, 2017

8 "Pierce Arrow Business Center, 155-157 Chandler, Erie County, Buffalo, New York, Site Management Plan, NYSDEC Site Number: C915312", prepared by Hazard Evaluations, Inc., and Schenne & Associates, dated December 14, 2017.

Engineering Controls:

- Four (4) Sub-Slab Depressurization (SSD) systems were installed in the southwestern portion of the Site, in proximity to SS-3/IA-3 and SS-4/IA-4 sample locations. The system objectives and performance goals include the following elements:
 - Reduce and maintain indoor air concentrations to levels below the NYSDOH Soil Vapor Guidance Document Matrix A;
 - Maintain a minimum of 0.25 inches of water column in the four SSD systems, measured in the exhaust piping manometer located 5-feet above the finished floor, to limit vapors from entering the building's indoor air while also releasing the trapped vapor beneath the slab; and,
 - Demonstrate system effectiveness while maintaining continuous operation of the SSDS, with no significant non-operating time.

The SSD systems were installed in November 2017, with a system start date of November 8, 2017. SSD system locations within the building are identified in Figure 2, provided in Appendix A. The four (4) mitigation fans are individually monitored with a dedicated (air-flow) alarm system, which is mounted to the system pipe to alert users of a low or no flow condition. Each fan also includes an interior mounted manometer installed at eye level to provide a visual indication to the tenants that the system is operating. In the event that a fan loses power or vacuum an audible alarm with a blinking LED light will notify the tenant of the no air flow condition. The operation of the components of the remedy will continue until the remedial objectives have been achieved, or until the NYSDEC determines that continued operation is technically impracticable or not feasible.

1.4 **Monitoring and Sampling Requirements**

The Monitoring and Sampling Plan included in the SMP describes the measures for evaluating the overall performance and effectiveness of the remedy. The Monitoring Plan includes the following:

- Site-wide inspection performed a minimum of once per year, as noted in SMP.
- Evaluate the potential for soil vapor intrusion for any buildings developed on the Site, including provisions for mitigation of any impacts identified.
- Monitoring of the four (4) SSD systems including the following:
 - Annual visual inspection of the complete system conducted during each monitoring event. SSD system components are to be monitored including, but not limited to, fans and general system piping.
 - Annual indoor air sampling to assess the effectiveness of the four (4) SSD systems. The SSD system locations are shown in Figure 2 (Appendix A).
 - Previously, annual sampling and analysis of groundwater at one monitoring well (MW-3) for VOCs, using USEPA Method 8260 TCL was required. MW-3 was decommissioned as per CP-43 (Commissioner's Policy 43): Groundwater Monitoring Well Decommissioning Policy on October 13, 2022. The location of the former monitoring well is identified in Figure 3.

2.0 SITE INSPECTION AND MONITORING RESULTS

2.1 Site Inspections

In response to detections of trichloroethene (TCE) in the indoor air during the 2021-2022 monitoring period, on June 14, 2022, EA completed a Supplemental Soil Vapor Intrusion Investigation⁹. Additional sub-slab and indoor air samples were collected at areas located within the Buffalo Cider Hall, ODL Orthodontic Laboratory, and elevator shaft area of the building. The results of the investigation were submitted to the Department in the Supplemental Soil Vapor Intrusion Investigation Report – June 2022, dated September 21, 2022, as revised. Please refer to the June 2022 report for documents related to the Supplemental June Investigation. Please Note: An initial phase of the Soil Vapor Intrusion Investigation was completed during the previous 2021-2022 monitoring period as reported in the March 2022 Soil Vapor Intrusion Investigation Report (PRR)¹¹.

On December 19, 2022, EA completed a Site-wide inspection and collected annual SMP compliance indoor air samples at locations IA-1 through IA-6 to assure the SSD systems were operating properly as designed. Copies of the Site-wide inspection report with photographs, building inventory, and field notes are included in Appendix B. The following was noted during the SSD system inspection:

- The four SSD systems appeared to be functioning properly at the time of the inspection, as positive pressure differential readings were recorded as follows:
 - SSDS-1 operated at one-inch of water:
 - SSDS-2 operated at one-inch of water;
 - SSDS-3 operated at one-inch of water; and
 - SSDS-4 operated at one-inch of water.
- EA collected air sample canisters at six indoor locations and one outdoor location and submitted the air canisters to Alpha Analytical for VOCs analysis via USEPA method TO-15. Air testing results are described in Section 2.2.
- During the annual Site-wide inspection, no cracks or deterioration was noted in the concrete floor slabs in the vicinities of the various SSD Systems. All of the floor spans in these areas were installed during site development and consisted of new concrete sealed with epoxy coating.

^{9 &}quot;Supplemental Soil Vapor Intrusion Investigation Report – June 2022", prepared by Environmental Advantage, Inc., dated September 21, 2022.

^{10&}quot; March 2022 Soil Vapor Intrusion Investigation Report", prepared by Environmental Advantage, Inc., dated August 10, 2022.

¹¹ Periodic Review Report – April 2022 – Revised; DEC Site #C911532", prepared by Environmental Advantage, Inc., dated May 27, 2022, Revised August 15, 2022.

2.2 Indoor Air Sampling Results

Annual indoor air sampling is required to assess the effectiveness of the four (4) SSD systems. The SSD system locations, along with indoor air sampling locations, are included on Figure 2 (Appendix A).

As detailed in the previous 2021 – 2022 Periodic Review Report (PRR)¹², Soil Vapor Intrusion Investigation Work Plan dated March 15, 2022¹³, and March 2022 Soil Vapor Intrusion Investigation Report¹⁴, TCE was detected in the vicinity of SMP compliance sample location IA-6 in exceedance of its respective New York State Department of Health (NYSDOH) air guideline value (AGV) value of 2 ug/m³ and NYSDOH Soil Vapor/Indoor Air Matrix A as outlined in the Guidance for Evaluating Soil Vapor Intrusion in New York State¹⁵. This area, also known as the Buffalo Cider Hall, was subject to additional investigations in March 2022, June 2022, and July 2022 as detailed in the March 2022 Soil Vapor Intrusion Investigation Report and Supplemental Soil Vapor Intrusion Investigation Report – June 2022. Please refer to those individual reports for a summary of the March and June Investigations.

During the December 19, 2022 Annual SMP compliance air sampling event, EA collected six indoor and one outdoor air samples at locations IA-1 through IA-6, and OA-1 to assure the SSD systems were operating properly as designed, air sample locations from the December 2022 sampling event are shown on Figure 2. The samples were collected over an 8-hour period and were submitted for VOCs analysis via USEPA method TO-15 and compared to Table 3.1 - Air Guideline Values Derived by the NYSDOH and the Soil Vapor/Indoor Air Decision Matrices as published in the Guidance for Evaluating Soil Vapor Intrusion in the State of New York, as amended, and Table C2: "EPA 2001: Building Assessment and Survey Evaluation (BASE) Database" within Appendix C of the NYSDOH Guidance document. Indoor air analytical results are summarized on Tables 1 and 2 located in Appendix C and the laboratory reports are included in Appendix D. As shown on Table 1 and Table 2, 27 individual VOC parameters were detected within the six SMP compliance indoor air samples and one outdoor air sample. Most compounds were detected at concentrations below their respective NYSDOH Air Guideline Values (AGV), Matrix Values and USEPA commercial indoor and outdoor air background levels. However, the following results were noted:

o Carbon tetrachloride was detected in all six indoor air samples collected from locations IA-1 (121922) through IA-6 (121922) at concentrations below its respective guidance values. Carbon tetrachloride was also detected in the outdoor air sample OA-1 (121922).

¹² Periodic Review Report – April 2022 – Revised; DEC Site #C911532", prepared by Environmental Advantage, Inc., dated May 27, 2022, Revised August 15, 2022.

^{13 &}quot;Soil Vapor Intrusion Investigation Work Plan for Pierce Arrow Business Center" prepared by Environmental Advantage, Inc., dated March 15, 2022, approved by NYSDEC on April 1, 2022.

^{14&}quot; March 2022 Soil Vapor Intrusion Investigation Report", prepared by Environmental Advantage, Inc., dated August 10, 2022.

^{15 &}quot;Guidance for Evaluating Soil Vapor Intrusion in New York State" prepared by NYSDOH, October 2006, updated May 2017.

- o Cis-1,2-dichloroethene was detected in the IA-6 (121922) indoor air sample at a concentration below its respective guidance value. Cis-1,2-dichloroethene was not detected in the outdoor air sample OA-1 (121922).
- o Methylene chloride was detected in the IA-3 (121922) DUPLICATE indoor air sample only at a concentration below its respective guidance values. Methylene chloride was not detected in the outdoor air sample OA-1 (121922).
- o Tetrachloroethene (PCE) was detected in four of the six indoor air samples collected from IA-1 (121922), IA-2 (121922), IA-5 (121922), and IA-6 (121922), however at concentrations below its respective guidance values. PCE was not detected in the outdoor air sample OA-1 (121922).
- o TCE was detected in all six indoor air samples collected at concentrations ranging from 0.183 ug/m3 at IA-3 (121922) DUPLICTE to 4.11 ug/m3 at IA-6 (121922). The IA-6 (121922) location exceeds the respective NYSDOH AGV of 2 ug/m3, and Matrix Action Level of 1 ug/m3 and above for TCE. TCE was also detected in the outdoor air sample OA-1 (121922).
- o 1,1,1-trichloroethane, 1,1-dichloroethene, and vinyl chloride were not detected in any of the indoor or outdoor sample locations.

On January 30, 2023, Schenne & Associates Engineers & Geologists, submitted a Sub-Slab Depressurization System Design Work Plan to the Department to address the Soil Vapor Intrusion in the area known as the Buffalo Cider Hall and ODL Orthodontics Lab portions of the 155 Chandler complex. The Work Plan was subsequently revised based on Department comments and resubmitted on April 6, 2023. The Department approved the Work Plan on April 11, 2023.

2.3 Groundwater Monitoring Well Decommissioning

The one remaining groundwater monitoring well was decommissioned as per CP-43: 'Groundwater Monitoring Well Decommissioning Policy' on October 13, 2022. The location of the former monitoring well is identified in Figure 3. VOCs had not been detected at concentrations exceeding their respective Class GA criteria since IRM activities were completed in 2017. The Well Decommissioning Record is included in Appendix E.

As per the Final Engineering Report, the parking lot area was excavated to a depth of three to four feet below grade to the underlying native clay soils during remedial activities. Approximately 2,200 tons of soil was excavated and disposed off-Site at a Waste Management facility in Chaffee, New York. Community Air Monitoring Program (CAMP) monitoring was not conducted during well decommissioning activities because the PVC riser was broken off at 2-feet below grade, within the clean backfilled area. The broken off PVC riser was disposed in the municipal trash for the 155 Chandler site, with remainder of the well tremmie grouted to 20-feet below grade. The area was finished with an asphalt patch. No aggregate material was generated or imported during well decommissioning activities.

2.4 <u>Data Usability Summary</u>

The analytical data from the air samples collected from December 2022 were submitted for independent review, as required by NYSDEC. Vali-Data of WNY, LLC, located in Fulton, New York, completed the data usability summary reports (DUSRs). The DUSRs are provided in Appendix F and were prepared using guidance from the USEPA Region 2 Validation Standard Operating Procedures, USEPA National Functional Guidelines for Data Review, and professional judgement. DUSR's from the March 2022 SVI Investigation and June 2022 Supplemental SVI Investigation were evaluated in each respective report referenced above.

Indoor air samples were collected as described above and were evaluated as described below:

Ambient Air Samples December 2022 – Alpha Lab Report L2271489:

The results for six indoor air samples, one blind duplicate, and one outdoor air samples were processed for VOCs. In general, the samples were noted to be either usable or with minor qualifications. However, the following items were noted:

- VOCs data are acceptable for use except where qualified in Initial Calibration.
- Sample IA-5 (121922) was diluted due to high target analyte concentrations in the TO-15 analysis.
- All results were recorded to the reporting limits.
- All criteria were met in the field duplicate sample precision except Methylene Chloride was detected in IA-3 (121922) DUPLICATE but was not detected in IA-3 (121922).
- All criteria were met in the initial calibration except the %Rec of Benzyl chloride was outside QC limits in the Initial Calibration and the Initial Calibration Verification and should be qualified as estimated in the associated samples, blanks and spikes. Benzyl chloride was not detected at any of the sample locations.

2.5 Electronic Data Deliverables

As per NYSDEC, all aforementioned data were submitted electronically to the NYSDEC EQuIS system. Confirmation emails of successful data submittal are provided in Appendix F.

2.6 Certification Status

The completed Institutional and Engineering Controls Certification Form is included in Appendix G. <u>Please Note</u>: It is EA's opinion that the four SSD Systems are operating as designed and that the presence of PCE and TCE in the indoor air samples in the vicinity of IA-6 is not associated with the operation of those systems.

3.0 CORRECTIVE ACTIONS

3.1 <u>Supplemental Soil Vapor Intrusion Investigation – June 2022</u>

Expanding on the results obtained during the March 2022 Soil Vapor Intrusion Investigation, as detailed in the 2021 – 2022 PRR Report and March 2022 Soil Vapor Intrusion Investigation Report, additional investigation was completed in the Buffalo Cider Hall area of the Site building. On June 14, 2023, EA collected sub-slab and indoor air samples in the vicinity of two previously identified indoor air locations, IA-8 (120221) and IA-10 (032922), as well as the ODL tenant space between the cidery and the historical IA-5 location as illustrated on Figure 4. Additionally, sub-slab and indoor air samples were collected in a below grade storage area utilized by ODL Orthodontic Lab, which had not been identified until after the March 2022 Specifically, in the vicinity of the previous IA-8 (120221) location investigation. (cidery additional seating area), one (1) sub-slab vapor and a corresponding indoor air sample were collected approximately +/- 10-feet from the previous IA-8 location. At the previous IA-10 (032922) location (cidery "event area" room), one (1) sub-slab vapor and a corresponding indoor air sample were collected. In an identified belowgrade room identified as the "ODL storage area" on the opposite side of a wall from the previous SS-10 (032922) location, one (1) sub-slab vapor and a corresponding indoor air sample were collected. Also, in the ODL waiting room, approximately +/-50-feet from the previous IA-5 location, (1) sub-slab vapor and corresponding indoor air sample location was completed. In addition, one (1) indoor air sample was collected in the elevator shaft for the ODL elevator, one (1) outdoor ambient sample was collected from the rooftop directly adjacent to the HVAC units which service the cidery area of the building, and one (1) additional outdoor ambient air sample was collected directly outside of the cidery along the Chandler Street side of the building. Sampling locations are shown on Figure 4.

The June 2022 investigation revealed the following as reported in the June 2022 Supplemental Soil Vapor Intrusion Investigation Report:

<u>TCE</u> - The decision matrix from the NYSDOH guidance indicates that the SS-SS-12/IA-12 location/area would require mitigation due to the elevated subslab and corresponding indoor air concentrations. The SS-13/IA-13 location/area would require further monitoring. The SS-11/IA-11 location/area may possibly require monitoring or mitigation due to the elevated sub-slab concentrations, however the indoor air sample was non-detect for TCE with a reporting limit of 0.107 ug/m³ due to sample dilution.

<u>Carbon Tetrachloride</u> - The decision matrix from the NYSDOH guidance indicates that the SS-12/IA-12 locations/areas would require mitigation.

<u>PCE</u> - The decision matrix from the NYSDOH guidance indicates that the SS-8/IA-8 location/area would require mitigation and that the SS-11/IA-11 and SS-12/IA-12 locations/areas would require to Identify Source(s) and Resample or Mitigate. The SS-12(061422) sample exhibited elevated laboratory reporting limits due to sample dilution.

The results of both the March 2022 and June 2022 investigations are presented in Table 3. The results of both the March 2022 and June 2022 investigations applied to the NYSDOH decision matrices is presented in Table 4.

3.2 July 2022 Ambient Air Sampling

Based on the results of the combined March 2022 and June 2022 SVI investigations, a site meeting was scheduled for July 21, 2022 to identify potential areas for mitigation system installation. During the meeting, a previously unidentified segregated area located adjacent to the ODL basement storage area and below the cidery mezzanine event area was discovered. This segregated area appeared to be an inter-wall space, possibly due to the connection of two formerly separate buildings. This segregated area was identified through a 3-inch diameter former piping cutout in the floor in the northeast corner of the cidery mezzanine event area. It should be noted that the mezzanine area floor is not a concrete slab from which a sub-slab sample can be collected, as it is above grade, with the ODL Basement storage area directly underneath. The only access to the identified segregated area is the 3-inch piping cut out from which the area was discovered. Flashlights were used to inspect the segregated area, but no definitive details could be identified. The Department was notified and indoor air sampling was immediately scheduled for July 28, 2022¹⁶.

On July 28, 2022, two (2) additional ambient indoor air samples were collected from the cidery mezzanine area and the inter-wall space below the mezzanine. Sample IA-15(072822) was collected by inserting the sample tubing into the segregated space through the 3-inch former piping cutout, and extending down to approximately 5-feet below the ceiling of the closed off room. A second indoor air sample IA-16(072822) was collected in the cidery mezzanine event area located directly above the inter-wall space.

The results of the July sampling detected TCE at a concentration of 2.09 ug/m³, which exceeds the NYSDOH AGV of 2 ug/m³ and PCE at a concentration of 0.339 ug/m³ within the inter-wall space. Important to note is that this sample was collected through the 3-inch piping floor cutout in the closed off room where occupancy is not permitted. No accompanying sub-slab sample was able to be collected as there is no access to the room. In the cidery mezzanine area TCE was detected at a concentration of 0.145 ug/m³, and PCE was detected at a concentration of 0.244 ug/m³. No accompanying sub-slab sample was able to be collected as this is an elevated area with the ODL Basement storage area and inter-wall space Because accompanying sub-slab samples were not able to be located below. collected, the NYSDOH decision matrices could not be applied to this data. The results of the July 2022 sampling are presented on Table 3, with sampling locations depicted on Figure 4. Additional details about the July 2022 ambient air samples were included in the June 2022 Supplemental Soil Vapor Intrusion Investigation Report.

_

¹⁶Mary Szustak (EA) email message to Megan E. Kuczka (DEC), Monday July 25, 2022 4:06 PM.

3.3 Sub-Slab Depressurization System Design Work Plan

On January 30, 2023, Schenne & Associates Engineers & Geologists, submitted a Sub-Slab Depressurization System Design Work Plan to the Department to address the Soil Vapor Intrusion in the area known as the Buffalo Cider Hall and ODL Orthodontics Lab portions of the 155 Chandler complex. The Work Plan was subsequently revised based on Department comments and revised and resubmitted on April 6, 2023. The Department approved the Work Plan on April 11, 2023. The Pilot Study was completed on May 15-16, 2023, the results of which will be presented to the Department under separate cover.

4.0 CONCLUSIONS AND RECOMMENDATIONS

In general, all components of the Site Management Plan have been met during the current monitoring and reporting period. Based on consistent groundwater results at MW-3, where VOCs had not been detected at concentrations exceeding their respective Class GA criteria since IRM activities were completed in 2017, MW-3 was decommissioned in October 2022 as per CP-43 guidance. During the current monitoring and reporting period, no maintenance was performed on the SSD systems, and no maintenance needs were identified during the annual Site-wide inspection. Additionally, no change in use, groundwater use, or excavations were performed on-site, as reported to EA by Site management.

Annual air compliance monitoring at the IA-1, IA-2, and IA-3 locations have exhibited results below applicable NYSDOH guidance for all five consecutive annual Annual air compliance monitoring at the IA-4 location has monitoring events. exhibited results below applicable NYSDOH guidance for four consecutive annual monitoring events, with only the initial monitoring event in 2018 exhibiting results in exceedance of the maximum allowable indoor air concentrations for "No Further Action" from the Soil Vapor/Indoor Air Matrix A of the NYSDOH guidance 17. As noted in previous reports 18, during the initial post-SSD system monitoring and sampling event in December 2018, SSDS-1, SSDS-2, and SSDS-3 were not operating. It is also recommended that the IA-6 sampling location be relocated to inside the Buffalo Cider Hall area of the restaurant, where intrusion of PCE and TCE has been identified. Once corrective measures are completed in the Buffalo Cider Hall and ODL Orthodontic Lab areas of the 155 Chandler complex, additional annual verification sample locations will be recommended. No other changes to the SMP are recommended at this time. The annual Site-wide SSD system inspection will be completed by December 2023.

¹⁸ March 2022 Soil Vapor Intrusion Work Plan, March 2022 Soil Vapor Intrusion Investigation Report, and Supplemental Soil Vapor Intrusion Investigation Report – June 2022.

¹⁷ Based on information provided by the NYSDOH, when preforming verification sampling, the maximum allowable Indoor air concentrations for "No Further Action" on the NYSDOH Soil Vapor/Indoor Air Decision Matrices are used as a guideline since sub-slab vapor concentrations have previously been identified.

Although there have been exceedances of PCE and TCE within the indoor air in the Buffalo Cider Hall area of the Site building, the four (4) SSD systems continue to function properly as designed to mitigate soil vapor intrusion in the south-west corner of the building where the SSD systems are located. These SSD systems will be tested if, in the course of the system lifetime, significant changes are made to the system, and the system must be restarted. The SSD systems will be inspected and maintained at least annually. Additional inspections and/or sampling may occur when a suspected failure of the SSD system has been reported or an emergency occurs. The Operation & Maintenance Plan (O&M Plan) describes the measures necessary to operate, monitor and maintain the existing SSD systems and includes procedures for routine operation, shutdown, general maintenance and monitoring requirements, and record keeping. The O&M Plan is fully in place, with no deficiencies in compliance.

Results of the May 2023 Pilot Study will be reviewed by EA and the engineer on record in effort to design an appropriate mitigation system to address the vapor intrusion in the Buffalo Cider Hall area of the building. Proposed equipment will be presented to the Department and a Final SSDS Installation Report with final Piping and Instrumentation Diagrams (PI&D's) will be submitted to the Department for review. The vapor intrusion pathway was addressed in the Qualitative Exposure Assessment; therefore no changes are recommended at this time as mitigation is in the process of being completed. Ventilation in the building has been increased as evidenced by the installation of door vents in 2022, as well as the introduction of additional fresh air by opening windows and doors in the cidery area of the building while the mitigation system is being designed and installed. The requirements for Site closure have not yet been met, and no changes to the frequency of PRR submittals are recommended at this time.

APPENDIX A FIGURES

THIS DRAWING IS FOR ILLUSTRATIVE AND INFORMATIONAL PURPOSES ONLY AND WAS ADAPTED FROM USGS, BUFFALO NE & NW, NEW YORK 2013 QUADRANGLE

ENVIRONMENTAL ADVANTAGE, INC.				
	Regulatory Compliance – Site Investigations – Facility Inspections			
SITE LOCATION MAP				
155 & 157 CHANDLER STREET				
BUFFALO, NEW YORK				
R & M LEASING LLC				
BUFFALO, NEW YORK				
DRAWN BY: MB	SCALE: NOT TO SCALE	PROJECT: 01101		
CHECKED BY: CMH DATE: 04/2022 FIGURE NO: 1				

APPENDIX B SITE-WIDE INSPECTIONS AND FIELD NOTES

Site-Wide Inspection Form

Site: 155 Chandler Street Buffalo, NY	Date:	12/19/2022			
Inspector: Jason Kryszak	Weather: _	30°F Cloudy			
General site conditions at the time of the inspection: Normal operations.					
Are site management activities being confirmation sampling and a health and safet					
Do the implemented institutional controls corthe environment? Yes.					
Is the site currently in compliance with require Easement? Yes.					
Are site records complete and up-to-date?	Yes.				
Are the implemented Engineering Controls requirements of the SMP? Yes.					
SSDS Pressure Differential Readings:					
SSDS-1: 1.0"					
SSDS-2: 1.0"					
SSDS-3: 1.0"					
SSDS-4: 1.0"					
Deficiencies Observed / Corrective Actions R	lequired:	None			
Notes: All SSDS fans and alarms are functioning p	oroperly.				

Implemented Institutional Controls:

- 1. The property may <u>only</u> be used for restricted residential, commercial, and/or industrial use:
- 2. The use of groundwater is prohibited;
- 3. Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;
- 4. All activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- 5. Access to the site must be provided to agents, employees, or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement; and
- 6. Vegetable gardens and farming are prohibited at the property;

Implemented Engineering Controls

1. Sub-Slab Depressurization System

12/19/22 – View of SSDS #1 Manometer Enclosure

12/19/22 - View of SSDS #1 Manometer Reading

2.

4.

3. 12/19/22 – View of SSDS #2 Manometer Enclosure

12/19/22 - View of SSDS #2 Manometer Reading

12/19/22 - View of SSDS #3 Manometer Enclosure

6. 12/19/22 - View of SSDS #3 Manometer Reading

5.

7. 12/19/22 – View of SSDS #3 Manometer Enclosure

8. 12/19/22 – View of SSDS #4 (not enclosed)

12/19/22 - View of SSDS #4 Manometer Reading

10. 12/19/22 – View of SSDS #4 Piping

12/19/22 - Sample Location IA-1 (Utilant)

12. 12/19/22 – Sample Location IA-2 (Utilant)

11.

12/19/22 - Sample Location IA-3 (Barrel & Brine) 13.

14. 12/19/22 - Sample Location IA-4 (Anderson Tax)

12/19/22 - Sample Location IA-5 (ODL 15. Orthodontics)

12/19/22 - Sample Location IA-6 (Mailroom)

16.

12/19/22 - Sample Location OA-1 (Courtyard)

ioil Vapor Intrusion - S	p			
Site No.: C915	5312	Site Name :	PIERCE ARRON	, Business (c
Date: 12/19/	12022	Time:	08:00	
Structure Address :	155-157 CHA	BOYDUCK	ST BUFFALO	NY
Preparer's Name & Affili	ation: JASOM K	LRYSZA	<, ENVIRONMEN	TM CONSULTAT
Residential ? 🗌 Yes	☐ No Owner Occupied	? □ Yes □	No Owner Interviewed ?	☐ Yes ☐ No
Commercial ?	☐ No industrial? ☐	Yes □ No	Mixed Uses ? M∠Yes □	No
ldentify all non-resident せいり PROCESSかん Owner Name : <u>R</u> す <u>ハ</u>	ial use(s): <u>UTILANT (</u> SURVICES, LLC, DLAS/HG	ODL ORI	SOFTWARE) BARFUE MODOWITCS, GLAN Owner Phone: ()	BRINE (RESTAURANT) EKBIRD CIDERY
		Secondary C	wner Phone: ()_	
Owner Address (if differe	ent): <u>391 Washing</u>	6 70 24 ST.	BUFFALO, NY /	4203
Occupant Name : Sia	(VARIOUS COM	MERCINZ	- Occupant Phone : ()	<u>-</u>
		Secondary C	occupant Phone: ()	<u>-</u>
Number & Age of All Per	rsons Residing at this Loca	tion: App	ROX. 10 PEOPLE	(2nd FLOOR)
Additional Owner/Occup		N/A		
Describe Structure (style	e, number floors, size) : <u>R£f</u>	FURBISHUD	INDUSTRIAL USE	SPACE INTO
MIXED USE SITT	c. 1-2 STORIES,	BRICK EX	TERIOR, FLAT RU	BELL MEMBRATY
Approximate Year Built :	EARLY 1900'S			
• •	L-10-1	_	is the building Insulated?	Ø (Yes □ No
Lowest level :		– Basement [is the building Insulated? Crawlspace	Ø (Yes □ No
Lowest level :	☐ Slab-on-grade 🔼 [☐ Crawlspace	•
Lowest level : Describe Lowest Level (☐ Stab-on-grade 🔼 finishing, use, time spent in s	pace) : _ <i>Sm/</i>		Benery Room u
Lowest level : Describe Lowest Level (☐ Stab-on-grade 🔼 finishing, use, time spent in s	pace) : <u>SM/</u> . FI/~ISM	□ Crawlspace SCL (~ 15 × 20)β/	Benery Room u
Lowest level : Describe Lowest Level (Stab-on-grade	pace) : <u>SM/</u> . FI/HISM :	□ Crawlspace SCL (~ 15 × 20)β/	BEMENT ROOM UP
Lowest level: Describe Lowest Level (TO STORE FOUT Floor Type: A Concrete	Stab-on-grade	pace): SM/ FINISH : DAVerage	Crawlspace LL (~ 15'x 20')BI CONCRETE FLOC	SEMENT ROOM USE W/ FLOOR DRA
Lowest level: Describe Lowest Level (TO STORS FOUT Floor Type: A Concrete Floor Condition: Sumps/Drains?	Slab-on-grade	pace) : SM/ FINISH : Average Describe :	Crawispace Concrete From (some cracks) Poor (brown)	SEMENT ROOM USE W/ FLOOR DRA
Lowest level: Describe Lowest Level (TO STORS FOUT Floor Type: A Concrete Floor Condition: Sumps/Drains?	Slab-on-grade	pace) : SM/ FINISH : Average Describe :	Crawispace Concrete From (some cracks) Poor (brown)	SEMENT ROOM USE W/ FLOOR DRA
Lowest level: Describe Lowest Level (TO STORS FOUT Floor Type: A Concrete Floor Condition: Sumps/Drains?	Slab-on-grade	pace): SM/ FINISH : Describe:	Crawispace CL (~ 15 x 20) BI CONCRETE FLOCE (some cracks) Poor (brown) VARIOUS FLOOR D	SEMENT ROOM USE W/ FLOOR DRA
Lowest level: Describe Lowest Level (TO STOPE FOUT Floor Type: Concrete Floor Condition: Sumps/Drains? Identify other floor pene	Slab-on-grade	pace): SM/ FINISH Average Describe:	Crawispace CL (~ 15 x 20) BI CONCRETE FLOCE (some cracks) Poor (brown D) VARIOUS FLOOR D	SEMENT ROOM USE W/ FLOOR DRA
Lowest level: Describe Lowest Level (TO STORE FOUT Floor Type: A Concrete Floor Condition: Sumps/Drains? Identify other floor pene	Slab-on-grade	pace): SM/ FINISH Average Describe:	Crawispace CL (~ 15 x 20) BI CONCRETE FLOCE (some cracks) Poor (brown D) VARIOUS FLOOR D	SEMENT ROOM USE R W/ FLOOR DRA OKEN CONCRETE OF dirt) RAMS THROUGHO
Lowest level: Describe Lowest Level (TO STOPE FOUT Floor Type: Concrete Floor Condition: Sumps/Drains? Identify other floor pene	Slab-on-grade	pace): SM/ FINISH Average Describe: Poured Concrete CARAGE	Crawispace ALL (~ 15 x 20) BI CONCRETE FLOCE (some cracks) Poor (brown of the content of t	BEMENT ROOM UP R W/ FLOOR DRA OKEN CONCRETE OF dirt) RAMS THROUGHO AEKBIRD CIDERT
Lowest level: Describe Lowest Level (TO STOPE FOUT Floor Type: Concrete Floor Condition: Sumps/Drains? Identify other floor pene	Slab-on-grade	pace): SM/ FINISH Average Describe: Poured Concrete CARAGE verity (sump, c	Crawlspace ALL (~ 15 x 20) BI CONCRETE FLOC (some cracks) Poor (brown of the content of th	BEMENT ROOM UP R W/ FLOOR DRA OKEN CONCRETE OF dirt) RAMS THROUGHO AEKBIRD CIDERT
Lowest level: Describe Lowest Level (TO STORE FOUT Floor Type: A Concrete Floor Condition: Sumps/Drains? Identify other floor pener Wall Construction: Identify any wall penetra	Slab-on-grade	pace): SM/ FINISH : Describe: Poured Concrete CARAGE verity (sump, c	Crawlspace ALL (~ 15 x 20) BI CONCRETE FLOC (some cracks) Poor (brown of the content of th	BEMENT ROOM UP R W/ FLOOR DRA OKEN CONCRETE OF dirt) RAMS THROUGHO ARKBIRD CIDERT
Lowest level: Describe Lowest Level (TO STORE FOUT Floor Type: Concrete Floor Condition: Sumps/Drains? Identify other floor pener Wall Construction: Identify any wall penetra Identify water, moisture Heating Fuel:	Slab-on-grade	pace): SM/ FINISH Average Describe: Poured Concrete Verity (sump, c	Crawlspace CL (~ 15 x 20) BI CONCRETE FLOCE (some cracks) Poor (brown of the concrete of	BEMENT ROOM UP R W/ FLOOR DRA OKEN CONCRETE OF dirt) RAMS THROUGHO ARKBIRD CIDERT
Lowest level: Describe Lowest Level (TO STORE FOUT Floor Type: Concrete Floor Condition: Sumps/Drains? Identify other floor pener Wall Construction: Identify any wall penetra Identify water, moisture Heating Fuel: Heating System:	Slab-on-grade	pace): SM/ FINISH Average Describe: Poured Concrete Verity (sump, c	Crawlspace ALL (~ 15 x 20) BI CONCRETE FLOCE (some cracks) Poor (brown of the content of t	BEMENT ROOM UP R W/ FLOOR DRA OKEN CONCRETE OF dirt) RAMS THROUGHO ARKBIRD CIDERT
Lowest level: Describe Lowest Level (TO STOPE CONCRETE Floor Type: Concrete Floor Condition: Sumps/Drains? Identify other floor pener Wall Construction: Identify any wall penetra Identify water, moisture Heating Fuel: Heating System: Hot Water System: Clothes Dryer:	Slab-on-grade	pace): SM/ FI/VISM : Describe: Poured Concrete CARAGE verity (sump, c	Crawlspace ALL (~ 15 x 20) BI CONCRETE FLOCE (some cracks) Poor (brown of the content of t	SEMENT ROOM UP R W/ FLOOR DRA OKEN CONCRETE OF DIFT ARKBIRD CIDERT VE

Structure ID:				
	Structura	ın		

Describe factors that may affect indoor air quality (chemical use/storage, unvented heaters, smoking, w	
Attached garage? ☐ Yes Ø No Air fresheners? ☐ Yes ☐ No	
New carpet or furniture ? ☐ Yes No What/Where ?	
Recent painting or staining?	***
Any solvent or chemical-like odors?	
Last time Dry Cleaned fabrics brought in ? What / Where ?	
Oo any building occupants use solvents at work? ☑ Yes ☐ No ☐ Describe : OF A	. USES SMALL MAND ACCIONE FOR CLEANING
Any testing for Radon ? Yes Results :	
Radon System/Soil Vapor Intrusion Mitigation System present ?	
	-
4x SSDS INSTALLED IN 2017 AS EMEINERING CONT	NOT FOR SUT
Lowest Building Level Layout Sketch	
Lowest Building Level Layout Sketch	
╶╎╎┢┼┾╀╃┼╃╇╇╇╇┼┼╃┼┼╅╇╇╇╇╇╇╇	
BLACKBIRD CIDER	2 (422)
OA- (12/922)	
12900	
JA-5(121422) JA-5(121422) COURT YARD	
121) - 551S-)	1920
SSBS-1	
5509-1	
SSDS-2 HALLMY	
GREAT LANDS 5505-3	
AUDERSON THE BOUNT OF	
TAB(122222)	
JA3 (2.1472)	opticate
ldentify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.	
Measure the distance of all sample locations from identifiable features, and include on the layout sketch.	
Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch.	
Identify the locations of the following features on the layout sketch, using the appropriate symbols:	
B or F Boiler or Furnace o Other floor or wall penetrations (label appropriately HW Hot Water Heater xxxxxxx Perimeter Drains (draw inside or outside outer wall	,
FP Fireplaces ###### Areas of broken-up concrete	
WS Wood Stoves ● ss-1 Location & label of sub-slab vapor samples	
W/D Washer / Dryer ● IA-1 Location & label of indoor air samples	
S Sumps ● OA-1 Location & label of outdoor air samples	

Structure Sampling - Product Inventory

Homeowner Name & Address:	R&M LCASING	
Samplers & Company:	JASON KRYSZAK, ENV ADVANTAGE	Structure ID: <u>C9/ 5-3/5</u>
Site Number & Name:	C915312; PIERCE ARROW BUSINESSCEN	
Make & Model of PID:	HONEYAKL M, NI RAC 3000 Date	e of PID Calibration: <u>/2/14/2</u> 0 そこ
Identify any Changes fro	om Original Building Questionnaire: NON	

Product Name/Description	Quantity	Chemical Ingredients	PID Reading	Location
ACCTORE	3 HAND BOTTUS	ACETONE	0.0	NEAR SSDS-1
ACCTONE ISOPROPAMOL	1 HAND BOTTLE	ISOPPOPAMOL	0.0	MEAR SSDS-1
DPR-10 DENTAL RESIM	prosso prum	UNKNOWM	0.0	NEAR SSDS-
		NAV.		8.8° - 4.278
			^	
110		THE APPROXIMATION OF SAME ASSAULT.		
		:		
				1

Client: R&M Leasing	Project No.: 01101
Site Name & Address: Pierce Arrow B	usiness Center 155-157 Chandler St. Buffalo, NY
Person(s) Performing Sampling: <u>Jason</u>	Kryszak
Sample Identification: IA1 (121922)	
Sample Type: ■ Indoor Air (ambient)	□Outdoor Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 12/19/2022	Setup Time: 0810 Stop Time: 1610
Sample Depth: N/A	
Sample Height: 4'	-
Sampling Method(s) & Device(s): 2.7 lite	er Summa canister & regulator
Purge Volume: N/A	
Sample Volume: 2.7 L	
Sampling Canister Type & Size (if application)	able):2.7 L Summa
Canister # 384	Regulator #0813
Vacuum Pressure of Canister Pr	ior to Sampling:29.47
Vacuum Pressure of Canister Af	ter Sampling:7.34
Temperature in Sampling Zone: 70° F	
Apparent Moisture Content of Sampling 2	Zone: Low
Soil Type in Sampling Zone: N/A	
Standard Chain of Custody Procedures l	Jsed for Handling & Delivery of Samples to Laboratory:
■Yes □No. If r	no, provide reason(s) why?
Laboratory Name: Alpha Analytical	
Analysis: T0-15	
Comments: 0 PPM ambient air	

Sampler's Signature

Date: 12/19/2022

Client: R&M Leasing	Project No.: _01101
Site Name & Address: Pierce Arrow Busines	s Center 155-157 Chandler St. Buffalo, NY
Person(s) Performing Sampling: <u>Jason Krysz</u>	ak
Sample Identification: IA2 (121922)	
Sample Type: ■ Indoor Air (ambient) □Ou	tdoor Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 12/19/2022 Set	up Time: 0820 Stop Time: 1620
Sample Depth: N/A	
Sample Height: 4'	
Sampling Method(s) & Device(s): 2.7 liter Sum	nma canister & regulator
Purge Volume: N/A	
Sample Volume: 2.7 L	
Sampling Canister Type & Size (if applicable):	2.7 L Summa
Canister # 3422	Regulator # 01418
Vacuum Pressure of Canister Prior to	Sampling:29.69
Vacuum Pressure of Canister After Sa	mpling:7.74
Temperature in Sampling Zone: 70° F	
Apparent Moisture Content of Sampling Zone:	Low
Soil Type in Sampling Zone: N/A	
Standard Chain of Custody Procedures Used f	or Handling & Delivery of Samples to Laboratory:
■Yes □No. If no, pro	ovide reason(s) why?
Laboratory Name: Alpha Analytical	
Analysis: T0-15	
Comments: 0 PPM ambient air	

Sampler's Signature _ ____ Date: 12/19/2022

Client: R&M Leasing	Project No.: 01101	
Site Name & Address: Pierce Arrow Bu	usiness Center 155-157 Chandler St. Buffalo, NY	
Person(s) Performing Sampling: <u>Jason Kryszak</u>		
Sample Identification: <u>IA3 (121922)</u>		
Sample Type: ■ Indoor Air (ambient)	□Outdoor Air □Soil Vapor □Sub-slab Vapor	
Date of Collection: 12/19/2022	Setup Time: 0830 Stop Time: 1630	
Sample Depth: N/A		
Sample Height: 4'		
Sampling Method(s) & Device(s): 2.7 lite	er Summa canister & regulator	
Purge Volume: N/A		
Sample Volume: 2.7 L		
Sampling Canister Type & Size (if applica	able): 2.7 L Summa	
Canister # <u>3101</u>	Regulator # <u>0388</u>	
Vacuum Pressure of Canister Pri	for to Sampling:29.63	
Vacuum Pressure of Canister After Sampling:2.03		
Temperature in Sampling Zone: 70° F		
Apparent Moisture Content of Sampling Zone:		
Soil Type in Sampling Zone: N/A		
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:		
■Yes □No. If n	o, provide reason(s) why?	
Laboratory Name: Alpha Analytical		
Analysis: T0-15		
Comments: 0 PPM ambient air		
	_	
Sampler's Signature	Date: 12/19/2022	

Client: R&M Leasing	Project No.: 01101	
Site Name & Address: Pierce Arrow Bu	siness Center 155-157 Chandler St. Buffalo, NY	
Person(s) Performing Sampling: <u>Jason I</u>	Kryszak	
Sample Identification: <u>IA3 (121922) Du</u>	plicate	
Sample Type: ■ Indoor Air (ambient) [□Outdoor Air □Soil Vapor □Sub-slab Vapor	
Date of Collection: 12/19/2022	Setup Time: 0830 Stop Time: 1630	
Sample Depth: N/A		
Sample Height:4'		
Sampling Method(s) & Device(s): 2.7 liter	Summa canister & regulator	
Purge Volume: N/A		
Sample Volume: 2.7 L		
Sampling Canister Type & Size (if applica	ble):2.7 L Summa	
Canister #	Regulator #01687	
Vacuum Pressure of Canister Prior to Sampling:29.69		
Vacuum Pressure of Canister After Sampling:7.25		
Temperature in Sampling Zone: _70° F		
Apparent Moisture Content of Sampling Zone:		
Soil Type in Sampling Zone: N/A		
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:		
■Yes □ No. If no	o, provide reason(s) why?	
Laboratory Name: Alpha Analytical		
Analysis: T0-15		
Comments: 0 PPM ambient air		
Sampler's Signature	Date: 12/19/2022	

Client: R&M Leasing Project No.: _01101	
Site Name & Address: Pierce Arrow Business Center 155-157 Chandler St. Buffalo, NY	_
Person(s) Performing Sampling: <u>Jason Kryszak</u>	
Sample Identification: <u>IA4 (121922)</u>	
Sample Type: ■ Indoor Air (ambient) □ Outdoor Air □ Soil Vapor □ Sub-slab Vapor	
Date of Collection: 12/19/2022 Setup Time: 0845 Stop Time: 1645	
Sample Depth: N/A	
Sample Height: 4'	
Sampling Method(s) & Device(s): 2.7 liter Summa canister & regulator	_
Purge Volume: N/A	
Sample Volume: 2.7 L	
Sampling Canister Type & Size (if applicable): 2.7 L Summa	
Canister # 3406 Regulator # 01504	
Vacuum Pressure of Canister Prior to Sampling:29.74	
Vacuum Pressure of Canister After Sampling:5.38	
Temperature in Sampling Zone: _70° F	
Apparent Moisture Content of Sampling Zone:	
Soil Type in Sampling Zone: N/A	
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory	
■Yes □ No. If no, provide reason(s) why?	_
Laboratory Name: Alpha Analytical	
Analysis: T0-15	
Comments: 0 PPM ambient air	
Sampler's Signature Date: 12/19/2022	_

Client: R&M Leasing Project No.: 01101
Site Name & Address: Pierce Arrow Business Center 155-157 Chandler St. Buffalo, NY
Person(s) Performing Sampling: <u>Jason Kryszak</u>
Sample Identification: <u>IA5 (121922)</u>
Sample Type: ■ Indoor Air (ambient) □ Outdoor Air □ Soil Vapor □ Sub-slab Vapor
Date of Collection: 12/19/2022 Setup Time: 0817 Stop Time: 1617
Sample Depth: N/A
Sample Height:4'
Sampling Method(s) & Device(s): 2.7 liter Summa canister & regulator
Purge Volume: N/A
Sample Volume: 2.7 L
Sampling Canister Type & Size (if applicable): 2.7 L Summa
Canister # Regulator #
Vacuum Pressure of Canister Prior to Sampling:28.33
Vacuum Pressure of Canister After Sampling:3.91
Temperature in Sampling Zone: _70° F
Apparent Moisture Content of Sampling Zone:
Soil Type in Sampling Zone: <u>N/A</u>
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
■Yes □ No. If no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis:T0-15
Comments: 0 PPM ambient air
Sampler's Signature Date: 12/19/2022

Client: R&M Leasing	Project No.: <u>01101</u>
Site Name & Address: Pierce Arrow B	usiness Center 155-157 Chandler St. Buffalo, NY
Person(s) Performing Sampling:Jason	Kryszak
Sample Identification: <u>IA6 (121922)</u>	<u>.</u>
Sample Type: ■ Indoor Air (ambient)	□Outdoor Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 12/19/2022	Setup Time: 0800 Stop Time: 1606
Sample Depth: N/A	-
Sample Height:5'	_
Sampling Method(s) & Device(s): 2.7 lite	er Summa canister & regulator
Purge Volume: N/A	-
Sample Volume: 2.7 L	
Sampling Canister Type & Size (if applic	able): 2.7 L Summa
Canister # 180	Regulator # <u>02232</u>
Vacuum Pressure of Canister Pr	rior to Sampling:29.64
Vacuum Pressure of Canister Af	ter Sampling: 7.81
Temperature in Sampling Zone: 70° F	
Apparent Moisture Content of Sampling	Zone: Low
Soil Type in Sampling Zone: N/A	
Standard Chain of Custody Procedures	Used for Handling & Delivery of Samples to Laboratory:
■Yes □No. If r	no, provide reason(s) why?
Laboratory Name: Alpha Analytical	
Analysis: T0-15	
Comments: 0 PPM ambient air	
Sampler's Signature	Date: 12/19/2022

Client: R&M Leasing	Project No.: 01101
Site Name & Address: Pierce Arrow Bu	usiness Center 155-157 Chandler St. Buffalo, NY
	Kryszak
Sample Identification: <u>0A1 (121922)</u>	
Sample Type: ☐ Indoor Air (ambient)	■Outdoor Air □Soil Vapor □Sub-slab Vapor
Date of Collection: 12/19/2022	Setup Time: 0815 Stop Time: 1615
Sample Depth: N/A	
Sample Height: 4'	-
Sampling Method(s) & Device(s): 2.7 lite	er Summa canister & regulator
Purge Volume: N/A	
Sample Volume: 2.7 L	
Sampling Canister Type & Size (if applica	able):2.7 L Summa
Canister # <u>2023</u>	Regulator # <u>0964</u>
Vacuum Pressure of Canister Pri	ior to Sampling:29.96
Vacuum Pressure of Canister Aft	ter Sampling:6.79
Temperature in Sampling Zone: 30° F	
Apparent Moisture Content of Sampling 2	Zone: <u>Low</u>
Soil Type in Sampling Zone: N/A	
Standard Chain of Custody Procedures U	Jsed for Handling & Delivery of Samples to Laboratory:
■Yes □No. If n	no, provide reason(s) why?
Laboratory Name: Alpha Analytical	
Analysis: T0-15	
Comments: 0 PPM ambient air	
Sampler's Signature	Date: 12/19/2022

APPENDIX C TABLES

Table 1 Indoor Air Analytical Testing Results Comparison 155 & 157 Chandler Street, Buffalo, NY December 2022 Annual Sample

	Guida	nce Values - Ind	oor Air	1								
LOCATION	Table C2	NVCDOLL A:		IA-1 (121922)	IA-2 (121922)	IA-3 (121922)	IA-3 (121922) DUPLICATE	IA-4 (121922)	IA-5 (121922)	IA-6 (121922)	OA-1 (121922)	Table C2 Outdoor
LOCATION	Commercial Indoor Air	NYSDOH Air Guideline	NYSDOH	Indoor Air ´	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Outdoor Air ´	Air Guidance
SAMPLING DATE	Background	Value	Matrix Value	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	12/19/2022	Values
LAB SAMPLE ID	(90%)			L2271489-01	L2271489-02	L2271489-03	L2271489-04	L2271489-05	L2271489-06	L2271489-07	L2271489-08	
Volatile Organics in Air (ug/m³)												
1,1,1-Trichloroethane*	20.6	NV	10	ND	ND	ND	ND	ND	ND	ND	ND	2.6
1,1,2,2-Tetrachloroethane	NV	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	NV
1,1,2-Trichloroethane	<1.5	NV	NV	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<1.6
1,1-Dichloroethane 1,1-Dichloroethene*	<0.7 <1.4	NV NV	NV 1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.6 <1.4
1,2.4-Trichlorobenzene*	<6.8	NV	NV	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	<6.4
1,2,4-Trimethylbenzene	9.5	NV	NV	ND	ND	ND	ND	ND	ND	1.13	ND	5.8
1,2-Dibromoethane	<1.5	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	<1.6
1,2-Dichlorobenzene	<1.2	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	<1.2
1,2-Dichloroethane	<0.9	NV	NV	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	<0.8
1,2-Dichloropropane 1,3,5-Trimethylbenzene	<1.6 3.7	NV NV	NV NV	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<1.6 2.7
1,3-butadiene	<3.0	NV	NV	ND	ND	ND	ND	ND	ND	ND ND	ND	<3.4
1,3-Dichlorobenzene	<2.4	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	<2.2
1,4-Dichlorobenzene	5.5	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	1.2
1,4-Dioxane	NV NV	NV NV	NV	ND ND	0.782	ND	ND	ND ND	ND	ND	ND ND	NV
2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone)	NV 12	NV NV	NV NV	ND ND	ND 4.04	ND ND	ND ND	ND ND	ND 2.34	2.47 ND	ND ND	NV 11.3
2-Butanone (Methyl Ethyl Ketone)	NV	NV NV	NV NV	ND ND	4.04 ND	ND ND	ND ND	ND ND	2.34 ND	ND ND	ND ND	NV
3-Chloropropene	NV	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	NV
4-ethyltoluene	3.6	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	3.0
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	6	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	1.9
Acetone	98.9	NV	NV	9.74	20.2	176	162	877	2590 R1	54.6	6.25	43.7
Benzene Benzyl chloride	9.4 <6.8	NV NV	NV NV	ND ND	ND ND	ND ND	ND ND	ND ND	0.789 ND	1.73 ND	ND ND	6.6 <6.4
Bromodichloromethane	NV	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	NV
Bromoform	NV	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	NV
Bromomethane	<1.7	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	<1.6
Carbon disulfide	4.2	NV NV	NV	ND 0.007	5.92	1.8	1.53	ND 0.500	ND 0.50	ND 0.704	ND 0.404	3.7
Carbon tetrachloride* Chlorobenzene	<1.3 <0.9	NV NV	NV	0.667 ND	0.61 ND	0.591 ND	0.572 ND	0.528 ND	0.56 ND	0.761 ND	0.491 ND	0.7 <0.8
Chloroethane	<1.1	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	<1.2
Chloroform	1.1	NV	NV	ND	ND	3.83	3.48	ND	ND	ND	ND	0.6
Chloromethane	3.7	NV	NV	0.952	1.06	1.01	1.02	0.997	1.06	1.48	0.938	3.7
cis-1,2-Dichloroethene*	<1.9	NV NV	1	ND	ND	ND	ND	ND	ND	0.167	ND	<1.8
cis-1,3-Dichloropropene Cyclohexane	<2.3 NV	NV NV	NV NV	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.57	ND ND	<2.2 NV
Dibromochloromethane	NV	NV	NV	ND ND	ND	ND ND	ND	ND	ND	ND	ND	NV
Dichlorodifluoromethane	16.5	NV	NV	2.49	2.55	2.47	2.43	2.42	2.77	2.46	2.41	8.1
Ethanol	210	NV	NV	32.4	29.2	609	494	125	309	122	ND	57
Ethyl acetate	5.4	NV	NV	ND	ND	49.7	40.4	ND	2.28	ND	ND	1.5
Ethylbenzene Freon 113	5.7 NV	NV NV	NV NV	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.47 ND	ND ND	3.5 NV
Freon 114	NV	NV	NV	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	NV
Heptane	NV	NV	NV	ND	ND	ND	ND	ND	1.12	2.84	ND	NV
Hexachlorobutadiene	<6.8	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	<6.4
Isopropanol	250	NV	NV	4.99	3.83	134	118	602	2930 R1	57	3	16.5
Methylene chloride	11.5	NV 60	NV 10	ND ND	ND ND	ND ND	ND 3.25	ND ND	ND ND	ND ND	ND ND	6.2
Methylene chloride n-Hexane	10 10.2	60 NV	10 NV	ND ND	ND ND	ND ND	3.25 ND	ND ND	0.821	4.41	ND ND	6.1 6.4
o-Xylene	7.9	NV	NV	ND	ND	ND	ND ND	ND ND	ND	1.75	ND	4.6
p/m-Xylene	22.2	NV	NV	ND	ND	ND	ND	ND	ND	5.08	ND	12.8
Styrene	1.9	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	1.3
Tertiary butyl Alcohol	NV 15.0	NV 30	NV 10	ND 0.397	ND 0.333	ND	ND	ND	ND 0.17	ND 0.334	ND	NV 6.5
Tetrachloroethene* Tetrahydrofuran	15.9 NV	30 NV	10 NV	0.387 ND	0.332 15.7	ND ND	ND ND	ND 1.62	0.17 4.84	0.224 ND	ND ND	6.5 NV
Toluene	43	NV	NV	ND ND	ND	ND ND	ND ND	1.59	3.38	8.37	ND ND	33.7
trans-1,2-Dichloroethene	NV	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	NV
trans-1,3-Dichloropropene	<1.3	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	<1.4
Trichloroethene*	4.2	2	1	0.779	0.597	0.21	0.183	0.441	0.951	4.11	0.183	1.3
Trichlorofluoromethane	18.1	NV NV	NV	1.35 ND	1.24	1.2	1.18 ND	1.19 ND	1.21	1.2	1.16 ND	4.3
Vinyl Bromide Vinyl chloride*	NV <1.9	NV NV	N∨ 0.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NV <1.8
This cincinc	∖1. 3	1 N V	V.Z	110	110	110	140	140	140	110	110	\1.0

Notes:

- 1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.
- 2. Analytical testing for VOCs via TO-15 completed by Alpha Laboratories. * = samples analyzed for volatile organics in air by SIM.
- 3. Results present in ug/m³ or microgram per cubic meter.
 4. Samples were collected during a 8-hour sample duration.

- 5. 90th percentile values as presented in C2 (EPA 2001: Building assessment and survey evaluation (BASE) database Appendix C, in the NYSDOH Guidance Manual, as indicated for indoor and outdoor air only.
 6. Air Guideline Values from "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health. Updated September 2013 and August 2015.
 7. Grey shaded values represent exceedance of table C2 guidance values; yellow shaded values represents exceedance of NYSDOH Air Guideline Values; BOLDED = Exceedance of NYSDOH Matrix Guidelines.
- 8. Qualifiers: J = result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.
- 9. ND = Non Detect; NV = No Value; R1 = Analytical results are from sample re-analysis.
- 10. Red values represent updated values based on data validation.

Table 2 Indoor Air Analytical Testing Results 155 & 157 Chandler Street, Buffalo, NY December 2018 through December 2022

,	Cuide	naa Valuaa In	alaan Ain	T		1.0	Λ 4			1		14.0						14.0							10.4						
		nce Values - In	idoor Air			1/2	4-1 					IA-Z				14.0		IA-3			A 0 (404000)		10.4		IA-4		14 4 (400004)				
LOCATION	Table C2 Commercial Indoor Air	NYSDOH	Guideline	IA-1 Indoor Air	IA-1 (121219) Indoor Air	Duplicate Indoor Air	IA-1 (121120) Indoor Air	IA-1 (120221) Indoor Air	IA-1 (121922) Indoor Air	IA-2 Indoor Air		IA-2 (121120) Indoor Air	IA-2 (120221) Indoor Air	IA-2 (121922) Indoor Air	,	IA-3 121219) ndoor Air	(121120) C	3 (121120) Duplicate ndoor Air	3 (120221) Indoor Air	IA-3 (121922) Indoor Air	A-3 (121922) Duplicate Indoor Air	IA-4 Indoor Air	IA-4 Duplicate Indoor Air	IA-4 (121219) Indoor Air	IA-4 (121120) Indoor Air	IA-4 (120221) Indoor Air	IA-4 (120221) Duplicate Indoor Air	IA-4 (121922) Indoor Air			
SAMPLING DATE	Background	Matrix Value	Value	12/18/2018	12/12/2019		12/11/2020	12/2/2021	12/19/2022	12/18/2018	12/12/2019	12/11/2020	12/2/2021	12/19/2022					12/2/2021	12/19/2022		12/18/2018	12/18/2018	12/12/2019	12/11/2020	12/2/2021		12/19/2022			
LAB SAMPLE ID	(90%)				L1959919-06		1-, 11-0-0		L2271489-01				L2166417-10				,					L1852191-03									
Volatile Organics in Air (ug/m³)				-						-																					
1,1,1-Trichloroethane*	20.6	10	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
1,1-Dichloroethene* 1,4-Dioxane	<1.4 NV	1 NV	NV NV	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.782	ND ND	112	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			
2-Butanone (Methyl Ethyl Ketone)	12	NV	NV	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.04	ND ND		.,,,	1.58	ND	ND	ND	ND ND	ND ND	1.64	ND ND	ND ND	ND ND	ND ND			
Acetone	98.9	NV	NV	14.4	11.9	11.8 J	8.46 J	15.7	9.74	14.6	12.4	7.98 <mark>J</mark>	17.6	20.2	21.1			11.7 J	113	176	162	24.7	24	8.20	9.93 <mark>J</mark>	195	194	877			
Benzene	9.4	NV	NV NV	ND ND	0.744	0.824 J	0.684	ND ND	ND	ND ND	0.764	0.687	ND	ND 5.00	ND	0.00=		0.642	0.85	ND 1.0	ND	ND ND	ND	0.684	ND	ND ND	ND ND	ND			
Carbon disulfide Carbon tetrachloride*	4.2 <1.3	NV 1	NV NV	ND 0.591	ND 0.579	ND 0.572 J	ND 0.522	ND 0.579	ND 0.667	ND 0,566	ND 0.598	ND 0.516	ND 0.554	5.92 0.61	2.24 0.541			1.94 0.453	1.42 0.434	1.8 0.591	1.53 0.572	ND 0.711	ND 0.723	ND 0.516	ND 0.384	ND 0.472	ND 0.491	ND 0.528			
Chloroform	1.1	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND		ND	ND	ND	3.83	3.48	ND ND	ND	ND	ND	ND	5.66	ND			
Chloromethane	3.7	NV	NV	1.25	1.19	1.16 J	1.07	1.16	0.952	1.14	1.22	1.07	1.14	1.06	1.17			1.06	1.13	1.01	1.02	2.95	1.13	1.11	1.04	1.14	1.21	0.997			
cis-1,2-Dichloroethene* Dichlorodifluoromethane	<1.9 16.5	NV	NV NV	ND 1.63	ND 2.59	ND 2.59 J	ND 2.20	ND 2.78	ND 2.49	ND 1.68	ND 2.70	0.186 2.12	ND 2.82	ND 2.55	ND		ND 2.02	ND 2.06	ND 2.51	ND 2.47	ND 2.43	ND 1.78	ND 1.66	ND 2.57	ND 2.04	ND 2.61	ND 2.73	ND 2.42			
Ethanol	210	NV	NV NV	1.65	2.59	352 J	230	176	32.4	207	224	215	198	29.2	2.4 307		590		5310 R1	609	494	1.76	1.66	392	1.330	100	96.3	125			
Ethyl acetate	5.4	NV	NV	ND	6.85	7.03 J	6.45	ND	ND	ND ND	9.30	7.24	ND ND	ND ND	26.5	231	186	284	140	49.7	40.4	3.29	3.33	60.5	12.4	ND ND	ND	ND			
Ethylbenzene	5.7	NV	NV	2.49	0.869	0.873 J	1.02	ND ND	ND	2.32	0.877	1.33	ND ND	ND ND	2.76		ND	ND	ND	ND ND	ND	2.79	2.82	ND ND	ND ND	ND	ND	ND ND			
Heptane Isopropanol	NV 250	NV NV	NV NV	ND 11.9	ND 3.52	ND 3.39 J	ND 6.02	ND 20.5	ND 4.99	ND 11.3	ND 3.17	ND 5.60	ND 32	ND 3.83	ND 32.4		ND 6.83	ND 9.88	2.09 578 R1	ND 134	ND 118	ND 99.6	ND 97.8	ND 2.48	ND 7.18	2.49 1720 R1	2.7 1730 R1	ND 602			
Methylene chloride	10	10	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND ND	ND	ND	3.25	ND	ND	ND	ND	ND	ND	ND			
n-Hexane	10.2	NV	NV	ND	0.888	0.962 J	1.34	ND	ND	ND	1.01	1.32	ND	ND	0.811	• •=	ND	ND	0.754	ND	ND	1.26	1.32	ND	0.839	0.934	0.906	ND			
o-Xylene p/m-Xylene	7.9 22.2	NV NV	NV NV	3.12 9.56	1.22 3.36	1.29 J 3.33 J	1.83 4.34	ND ND	ND ND	3.09 9.38	1.22 3.32	1.47 4.18	0.943 2.21	ND ND	2.86			0.947 2.82	0.951 2.45	ND ND	ND ND	3.14 10.6	3.24 10.3	ND ND	ND 2.39	ND ND	ND ND	ND ND			
Tetrachloroethene*	15.9	10	30	0.753	0.651	0.387 J	0.427	ND ND	0.387	0.685	0.346	1.00	ND	0.332	0.332		ND	ND ND	ND	ND ND	ND ND	0.922	0.882	ND ND	0.156	ND ND	ND ND	ND ND			
Tetrahydrofuran	NV	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.27	15.7	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.62			
Toluene trans-1,2-Dichloroethene	43 NV	NV NV	NV NV	4.07 ND	1.53 ND	1.76 J ND	1.49 ND	ND ND	ND ND	1.21 ND	1.57 ND	1.43 ND	1.07 ND	ND ND	1.16 ND		1.41 ND	1.58 ND	0.946 ND	ND ND	ND ND	4.26 ND	5.8 ND	1.30 ND	1.15 0.932	1.23 ND	1.21 ND	1.59 ND			
Trichloroethene*	4.2	1	2	0.849	0.833	0.844 J	0.801	0.973	0.779	0.736	0.742	טא 0.790	0.865	0.597	0.489				0.118	0.21	0.183	1.34	1.37	ND ND	0.932	0.161	0.161	0.441			
Trichlorofluoromethane	18.1	NV	NV	1.33	1.25	1.29 J	1.19	1.33	1.35	1.3	1.29	1.15	1.33	1.24	1.12	1.27	1.15	ND	1.33	1.20	1.18	1.28	1.25	1.25	ND	1.24	1.28	1.19			
Vinyl chloride*	<1.9	0.2	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
	Guidar	nce Values - In	door Air	1				IA-5										IA-6									OA-1		T	Guidance Value	s - Outdoor A
	T 11 00																														
LOCATION	Table C2 Commercial Indoor Air	NYSDOH Matrix Value	Guideline	IA-5 Indoor Air	IA-5 (0219) Indoor Air	IA-5 (0219) Duplicate Indoor Air	IA-5 (0619) Indoor Air	IA-5 (0619) Duplicate Indoor Air	IA-5 (121219) Indoor Air		IA-5 (120221) I. Indoor Air	IA-5 (121922) Indoor Air	IA-6 Indoor Air	IA-6 (121219) Indoor Air	A-6 (022020) C	niniicate i	(121120) IA-6 loor Air Ir	ndoor Air	-6 (021821) Duplicate Indoor Air	IA-6 (033121) Indoor Air	A-6 (033121) Duplicate Indoor Air	IA-6 (061721) Indoor Air	IA-6 (120221) Indoor Air	IA-6 (121922) Indoor Air	OA-1 Outdoor Air	OA-1 (121219) Outdoor Air	` ,	OA-1 (120221) Outdoor Air	Outdoor Air	Table C2 Outdoor Air	Guideline
LOCATION SAMPLING DATE	Commercial Indoor Air Background	NYSDOH Matrix Value	Guideline	IA-5 Indoor Air 12/18/2018	,	Duplicate	Indoor Air	Duplicate	, ,	` '	Indoor Air		IA-6 Indoor Air	` ,	Indoor Air Ir	Ouplicate Indoor Air	door Air Ir	ndoor Air	Duplicate Indoor Air	Indoor Air	Duplicate Indoor Air	, ,	Indoor Air	` '		` '	,	Outdoor Air	Outdoor Air		
SAMPLING DATE	Commercial Indoor Air		Guideline	12/18/2018	Indoor Air 2/13/2019	Duplicate Indoor Air 2/13/2019	Indoor Air 6/21/2019	Duplicate Indoor Air 6/21/2019	12/12/2019	Indoor Air 12/11/2020	12/2/2021	Indoor Air 12/19/2022	12/18/2018	Indoor Air 12/12/2019	A-6 (022020) Indoor Air Ir Ir 2/20/2020 2/	Ouplicate Indoor Air Indoor Air Indoor 120/2020 12/1	11/2020 2	ndoor Air I	Duplicate Indoor Air 2/18/2021	Indoor Air 3/31/2021	Duplicate Indoor Air 3/31/2021	Indoor Air 6/17/2021	Indoor Air 12/2/2021	Indoor Air ´ 12/19/2022	Air 12/18/2018	Outdoor Air 12/12/2019	Outdoor Air 12/11/2020	Outdoor Air 12/2/2021	Outdoor Air G	Outdoor Air	Guidelin
SAMPLING DATE LAB SAMPLE ID	Commercial Indoor Air Background		Guideline		Indoor Air	Duplicate Indoor Air	Indoor Air 6/21/2019	Duplicate Indoor Air 6/21/2019	Indoor Air	Indoor Air 12/11/2020	12/2/2021	Indoor Air 12/19/2022	IA-6 Indoor Air	Indoor Air 12/12/2019	A-6 (022020) Indoor Air Ir Ir 2/20/2020 2/	Ouplicate Indoor Air Indoor Air Indoor 120/2020 12/1	door Air Ir	ndoor Air I	Duplicate Indoor Air 2/18/2021	Indoor Air 3/31/2021	Duplicate Indoor Air 3/31/2021	Indoor Air 6/17/2021	Indoor Air	Indoor Air ´ 12/19/2022	Air	Outdoor Air 12/12/2019	Outdoor Air 12/11/2020	Outdoor Air	Outdoor Air G	Outdoor Air	Guidelin
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane*	Commercial Indoor Air Background		Guideline	12/18/2018	Indoor Air 2/13/2019	Duplicate Indoor Air 2/13/2019	Indoor Air 6/21/2019	Duplicate Indoor Air 6/21/2019	12/12/2019	Indoor Air 12/11/2020	12/2/2021	Indoor Air 12/19/2022	12/18/2018	Indoor Air 12/12/2019	A-6 (022020) Indoor Air Ir Ir 2/20/2020 2/	Ouplicate Indoor Air Indoor Air Indoor 120/2020 12/1	11/2020 2	ndoor Air I	Duplicate Indoor Air 2/18/2021	Indoor Air 3/31/2021	Duplicate Indoor Air 3/31/2021	Indoor Air 6/17/2021	Indoor Air 12/2/2021	Indoor Air ´ 12/19/2022	Air 12/18/2018	Outdoor Air 12/12/2019	Outdoor Air 12/11/2020	Outdoor Air 12/2/2021	Outdoor Air G	Outdoor Air	Guidelin
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene	Commercial Indoor Air Background (90%)	Matrix Value	Guideline	12/18/2018 L1852191-01 ND ND	2/13/2019 L1905849-01 ND ND	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND	6/21/2019 L1927357-01 ND ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND	12/12/2019	12/11/2020 L2055692-01 ND ND	12/2/2021 L2166417-01 I ND ND	Indoor Air 12/19/2022	12/18/2018	12/12/2019 L1959919-05 ND ND	A-6 (022020) Indoor Air Ir Ir 2/20/2020 2/	Ouplicate IA-6 (Indicate Indicate Indic	11/2020 2/ 55692-05 L2 ^{-/} ND ND	ndoor Air I 2/18/2021 2 108109-01 L2 ND ND	Duplicate Indoor Air 2/18/2021	Indoor Air 3/31/2021	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND	Indoor Air 6/17/2021	Indoor Air 12/2/2021	12/19/2022 L2271489-07 ND ND	Air 12/18/2018	Outdoor Air 12/12/2019	Outdoor Air 12/11/2020 L2055692-08 ND ND	Outdoor Air 12/2/2021	Outdoor Air G 12/19/2022 L2271489-08 ND ND ND	Outdoor Air uidance Values 2.6 <1.4	Guidelin
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene*	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8		Guideline	12/18/2018	2/13/2019 L1905849-01 ND ND 0.127	Duplicate Indoor Air 2/13/2019	Indoor Air 6/21/2019	Duplicate Indoor Air 6/21/2019 L1927357-02	12/12/2019	Indoor Air 12/11/2020	12/2/2021 L2166417-01	Indoor Air 12/19/2022	12/18/2018	Indoor Air 12/12/2019	A-6 (022020) Indoor Air Ir Ir 2/20/2020 2/	Ouplicate IA-6 (Indicate Indicate Indic	11/2020 2	ndoor Air 1 2/18/2021	Duplicate Indoor Air 2/18/2021	Indoor Air 3/31/2021	Duplicate Indoor Air 3/31/2021	Indoor Air 6/17/2021	Indoor Air 12/2/2021	Indoor Air ´ 12/19/2022	Air 12/18/2018	Outdoor Air 12/12/2019	Outdoor Air 12/11/2020 L2055692-08 ND ND ND ND	Outdoor Air 12/2/2021	Outdoor Air G 12/19/2022 L2271489-08 ND ND ND ND ND ND ND N	Outdoor Air uidance Values 2.6	Guidelin
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene	Commercial Indoor Air Background (90%)	Matrix Value 10 1 NV	Guideline	12/18/2018 L1852191-01 ND ND	2/13/2019 L1905849-01 ND ND	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND ND 0.139	6/21/2019 L1927357-01 ND ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND	12/12/2019	12/11/2020 L2055692-01 ND ND ND	12/2/2021 L2166417-01 I	Indoor Air 12/19/2022	12/18/2018 L1852191-05 ND ND 0.103	12/12/2019 L1959919-05 ND ND ND	A-6 (022020) Indoor Air Ir	Ouplicate IA-6 (Indicate Indicate Indic	11/2020 2/ 55692-05 L2 ^{-/} ND ND ND	ndoor Air I 2/18/2021 2 108109-01 L2 ND ND	Duplicate Indoor Air 2/18/2021	Indoor Air 3/31/2021	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND	ND ND ND	12/2/2021 L2166417-08 ND ND ND	12/19/2022 L2271489-07 ND ND ND	Air 12/18/2018	Outdoor Air 12/12/2019	Outdoor Air 12/11/2020 L2055692-08 ND ND	Outdoor Air 12/2/2021	Outdoor Air G 12/19/2022 L2271489-08 ND ND ND	Outdoor Air uidance Values 2.6 <1.4	Guidelin
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5	10 1 NV NV NV NV	Guideline	12/18/2018 L1852191-01 ND ND 0.163 ND - ND	ND ND 0.127 ND 2.36 ND	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND ND 0.139 ND 2.50 ND	ND ND ND ND ND ND ND ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND	12/12/2019	12/11/2020	12/2/2021 L2166417-01 I ND ND ND ND ND ND ND	12/19/2022 L2271489-06 ND ND ND ND ND ND ND	12/18/2018 L1852191-05 ND ND 0.103 ND - ND	12/12/2019 L1959919-05 ND ND ND ND ND ND	A-6 (022020) Indoor Air Ir 2/20/2020 2/ L2007739-01 L20 ND	Duplicate IA-6 (Ind Ind Ind Ind Ind Ind Ind Ind Ind Ind	ND N	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20	ND N	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND ND ND ND 1.29	ND N	12/2/2021 L2166417-08 ND ND ND ND ND ND ND ND	12/19/2022 L2271489-07 ND ND ND ND ND 1.13 ND 2.47	Air 12/18/2018	Outdoor Air 12/12/2019	Outdoor Air 12/11/2020 L2055692-08 ND	Outdoor Air 12/2/2021 L2166417-05 ND	Outdoor Air G	Outdoor Air uidance Values 2.6 <1.4 <6.4 5.8	Guidelin
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone)	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2	10 1 NV NV	Guideline	12/18/2018 L1852191-01 ND ND 0.163 ND - ND - ND 4.63	ND ND 0.127 ND 2.36 ND 5.66	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16	Indoor Air	Duplicate Indoor Air 6/21/2019 L1927357-02 ND	12/12/2019	12/11/2020	12/2/2021	12/19/2022 L2271489-06 ND ND ND ND ND ND ND ND ND	12/18/2018 L1852191-05 ND ND 0.103 ND	12/12/2019 L1959919-05 ND ND ND ND ND	A-6 (022020) Indoor Air Ir	Duplicate IA-6 (Ind Ind Ind Ind Ind Ind Ind Ind Ind Ind	ND N	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND	Indoor Air 3/31/2021	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND ND ND 1.29 1.58	ND N	12/2/2021 L2166417-08 ND ND ND ND ND	12/19/2022 L2271489-07 ND ND ND ND 1.13	Air 12/18/2018	Outdoor Air 12/12/2019	Outdoor Air 12/11/2020 L2055692-08 ND	Outdoor Air 12/2/2021	Outdoor Air 12/19/2022 L2271489-08 ND	Outdoor Air uidance Values 2.6 <1.4 <6.4 5.8	Guidelin
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2	10 1 NV NV NV NV NV	Guideline	12/18/2018 L1852191-01 ND ND 0.163 ND - ND	ND ND 0.127 ND 2.36 ND	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND ND 0.139 ND 2.50 ND	ND ND ND ND ND ND ND ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND	12/12/2019	12/11/2020	12/2/2021 L2166417-01 I	12/19/2022 L2271489-06 ND ND ND ND ND ND ND	12/18/2018 L1852191-05 ND ND 0.103 ND - ND ND	ND N	A-6 (022020) Indoor Air Ir 2/20/2020 2/ L2007739-01 L20 ND	ND	ND N	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67	ND N	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND ND ND ND 1.29	ND N	Indoor Air 12/2/2021 L2166417-08 ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND 1.13 ND 2.47 ND	Air 12/18/2018	Outdoor Air 12/12/2019	Outdoor Air 12/11/2020 L2055692-08 ND	ND N	Outdoor Air G	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3	Guidelin
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4	10 1 NV	Guideline	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND	ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND AD AD AD	Indoor Air 12/12/2019 L1959919-02 ND	12/11/2020	12/2/2021 12/2/2021 12/66417-01 1	12/19/2022 L2271489-06 ND ND ND ND ND ND ND ND 2.34 ND 2590 R1 0.789	12/18/2018 L1852191-05 ND ND 0.103 ND - ND ND ND ND ND ND ND ND ND	ND N	ND	ND	ND N	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13	ND N	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND 1.29 1.58 ND 20.3 J 1.25	ND N	Indoor Air 12/2/2021 L2166417-08 ND ND ND ND ND ND ND ND ND N	12/19/2022	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	Outdoor Air 12/12/2019 L1959919-01 ND	Outdoor Air 12/11/2020 L2055692-08 ND	ND N	Outdoor Air 12/19/2022 L2271489-08 ND	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene* 1,2-Jichlorobenzene 2,2,4-trimethylbenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2	10 1 NV	Guideline	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND ND	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND	ND ND ND ND ND ND ND ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND AD AD AD AD	12/12/2019	12/11/2020	12/2/2021 12/2/2021 12/166417-01 1 1 1 1 1 1 1 1 1	12/19/2022 L2271489-06 ND ND ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND	12/18/2018 L1852191-05 ND ND 0.103 ND - ND ND ND ND Solution of the control of the co	ND N	ND N	ND	ND	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND	ND N	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND	ND N	Indoor Air 12/2/2021 L2166417-08 ND ND ND ND ND ND ND ND ND N	12/19/2022	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	Outdoor Air 12/12/2019 L1959919-01 ND	Outdoor Air 12/11/2020 L2055692-08 ND	ND N	Outdoor Air 12/19/2022 L2271489-08 ND	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4	10 1 NV	Guideline	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND	ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND AD AD AD	12/12/2019	12/11/2020	12/2/2021 12/2/2021 12/66417-01 1	12/19/2022 L2271489-06 ND ND ND ND ND ND ND ND 2.34 ND 2590 R1 0.789	12/18/2018 L1852191-05 ND ND 0.103 ND - ND ND ND ND ND ND ND ND ND	ND N	ND	ND	ND N	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13	ND N	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND 1.29 1.58 ND 20.3 J 1.25	ND N	Indoor Air 12/2/2021 L2166417-08 ND ND ND ND ND ND ND ND ND N	12/19/2022	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	Outdoor Air 12/12/2019 L1959919-01 ND	Outdoor Air 12/11/2020 L2055692-08 ND	ND N	Outdoor Air 12/19/2022 L2271489-08 ND	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene* 1,2-d-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene*	20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9	10 1 NV	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND ND 2.31 1.13 0.163	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND ND ND 0.96	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND ND 1.05 1.01 0.139	ND ND ND ND ND ND ND ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ORD ND ND ND ND ORD OR	12/12/2019	12/11/2020	12/2/2021 L2166417-01 I	12/19/2022 L2271489-06 ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND	12/18/2018 L1852191-05 ND ND 0.103 ND - ND ND ND ND ND ND ND ND ND ND	ND N	ND N	ND N	ND N	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND	ND N	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535	ND N	12/2/2021	ND ND ND 1.13 ND 2.47 ND ND ND 1.13 ND 0.761 1.48 0.167	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	ND N	ND N	ND N	ND N	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene* 1,2-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV	Natrix Value 10 1 NV	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND ND 2.31 1.13 0.163 ND	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND ND 1.05 1.01 0.139 ND	ND ND ND ND ND ND ND ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND AD 0.516 40.4 J 0.866 0.704 0.598 1.40 ND 1.03	12/12/2019	12/11/2020	12/2/2021 12/2/2021 1.18 0.266 ND 1.00	ND N	ND N	ND N	A-6 (022020) Indoor Air 2/20/2020 2/20/2020 L2007739-01 L20 ND ND ND ND ND ND ND ND ND N	ND N	ND N	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944	ND N	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13	ND N	12/2/2021	ND ND 1.13 ND 2.47 ND ND S4.6 1.73 ND 0.761 1.48 0.167 1.57	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	ND N	ND N	ND N	ND N	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene*	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV 16.5	Natrix Value 10 1 NV	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND ND 2.31 1.13 0.163	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND ND ND ND ND ND 2.44	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND ND 1.05 1.01 0.139	ND ND ND ND ND ND ND ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND AD AD ND N	12/12/2019	12/11/2020	12/2/2021 L2166417-01 I	12/19/2022 L2271489-06 ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND	12/18/2018 L1852191-05 ND ND 0.103 ND - ND ND ND ND ND ND ND ND ND ND	ND N	A-6 (022020) Indoor Air 2/20/2020 2/20/2020 L2007739-01 L20 ND ND ND ND ND ND ND ND ND N	ND N	ND N	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND	ND N	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091	ND N	12/2/2021	ND ND ND 1.13 ND 2.47 ND ND ND 1.13 ND 0.761 1.48 0.167	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	ND N	ND N	ND N	ND N	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene* 1,2-Jechlorobenzene 2,2,4-trimethylbenzene 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane Dichlorodifluoromethane Ethanol Ethyl acetate	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV	Natrix Value 10 1 NV	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND ND 2.31 1.13 0.163 ND	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND ND 1.05 1.01 0.139 ND 2.49	ND ND ND ND ND ND ND ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND AD 0.516 40.4 J 0.866 0.704 0.598 1.40 ND 1.03	ND N	Indoor Air	Indoor Air	ND N	ND N	ND N	ND	ND N	ND N	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND 0.688 2.02	ND N	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13 2.16	ND N	Indoor Air	ND ND ND 1.13 ND ND 2.47 ND ND ND 0.761 1.48 0.167 1.57 2.46	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	ND N	ND N	ND N	Outdoor Air 12/19/2022 L2271489-08 ND	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane Dichlorodifluoromethane Ethanol Ethyl acetate Ethylbenzene	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV 16.5 210 5.4 5.7	Notes that the second s	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND ND 2.31 1.13 0.163 ND 1.61 910 15.9 4.73	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND ND ND 0.127 ND 2.44 298 3.2 2	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND 1.05 1.01 0.139 ND 2.49 315 3.28 J 2.03	ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND 2.70 5.16 40.4 J 0.866 0.704 0.598 1.40 ND 1.03 2.53 667 6.45 8.69	12/12/2019	ND	12/2/2021 12/2/2021 12/66417-01 1	12/19/2022 L2271489-06 ND ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND	ND N	ND N	ND N	ND N	ND N	ND ND ND ND 1.87 ND 3.99 J 1.12 ND 0.434 0.898 ND ND ND 1.99 1.05 2.79 1.62	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND 0.688 2.02 104 2.56 1.73	ND 1.36 1.67 ND 21.3 J 1.30 ND 0.528 1.08 0.095 1.16 2.12 194 ND 1.15	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13 2.16 220 ND 1.09	ND N	12/2/2021	ND ND ND 1.13 ND ND 2.47 ND ND ND 54.6 1.73 ND 0.761 1.48 0.167 1.57 2.46 122 ND 1.47	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	ND N	ND N	ND N	Outdoor Air 12/19/2022 L2271489-08 ND	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV 8.1 57 1.5 3.5	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,2-Dichloroethene 1,2,4-Trichlorobenzene* 1,2-Dichlorobenzene 2,2,4-trimethylbenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane Dichlorodifluoromethane Ethanol Ethyl acetate Ethylbenzene Heptane	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV 16.5 210 5.4 5.7 NV	Notes that the second s	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND ND 2.31 1.13 0.163 ND 1.61 910 15.9 4.73 ND	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND ND 1.09 0.96 0.127 ND 2.44 298 3.2 2 ND	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND 1.05 1.01 0.139 ND 2.49 315 3.28 J 2.03 ND	ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND 2.70 5.16 40.4 J 0.866 0.704 0.598 1.40 ND 1.03 2.53 667 6.45 8.69 1.22	12/12/2019	Indoor Air	12/2/2021 12/2/2021 12/166417-01 1	12/19/2022 L2271489-06 ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND ND ND ND ND 1.12	12/18/2018 L1852191-05 ND ND 0.103 ND S.3 ND ND 0.598 1.06 0.103 ND 2.49 40.1 ND	ND N	A-6 (022020) Indoor Air 2/20/2020 2/20/2020 L2007739-01 L20 ND ND ND ND ND ND ND ND ND N	ND N	ND N	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND 0.688 2.02 104 2.56 1.73 1.08	ND N	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13 2.16 220 ND 1.09 2.28	ND N	12/2/2021	ND ND ND 1.13 ND ND 2.47 ND ND ND 0.761 1.48 0.167 1.57 2.46 122 ND	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	ND N	ND N	ND N	Outdoor Air 12/19/2022 L2271489-08 ND	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV 8.1 57 1.5	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane Dichlorodifluoromethane Ethanol Ethyl acetate Ethylbenzene Heptane Isopropanol	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV 16.5 210 5.4 5.7	Notes that the second s	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND ND 2.31 1.13 0.163 ND 1.61 910 15.9 4.73	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND ND ND 0.127 ND 2.44 298 3.2 2	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND 1.05 1.01 0.139 ND 2.49 315 3.28 J 2.03	ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND 2.70 5.16 40.4 J 0.866 0.704 0.598 1.40 ND 1.03 2.53 667 6.45 8.69	12/12/2019	ND	12/2/2021 12/2/2021 12/66417-01 1	12/19/2022 L2271489-06 ND ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND	ND N	ND N	A-6 (022020) Indoor Air 2/20/2020 2/20/2020 L2007739-01 L20 ND ND ND ND ND ND ND ND ND N	ND N	ND N	ND ND ND ND 1.87 ND 3.99 J 1.12 ND 0.434 0.898 ND ND ND 1.99 1.05 2.79 1.62	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND 0.688 2.02 104 2.56 1.73	ND 1.36 1.67 ND 21.3 J 1.30 ND 0.528 1.08 0.095 1.16 2.12 194 ND 1.15	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13 2.16 220 ND 1.09	ND N	Indoor Air	ND ND ND 1.13 ND ND 2.47 ND ND ND 54.6 1.73 ND 0.761 1.48 0.167 1.57 2.46 122 ND 1.47	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	Outdoor Air 12/12/2019 L1959919-01 ND ND ND ND ND ND ND ND ND N	ND N	ND N	Outdoor Air 12/19/2022 L2271489-08 ND	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV 8.1 57 1.5 3.5 NV	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,2-Dichloroethene 1,2,4-Trichlorobenzene* 1,2-Dichlorobenzene 2,2,4-trimethylbenzene 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane Dichlorodifluoromethane Ethanol Ethyl acetate Ethylbenzene Heptane Isopropanol Methylene chloride n-Hexane	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV 16.5 210 5.4 5.7 NV 250 10 10.2	10	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND 2.31 1.13 0.163 ND 1.61 910 15.9 4.73 ND 873 R1 ND 873 R1 ND 6.87	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND ND 0.127 ND 2.44 298 3.2 2 ND 215 ND 2.55	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND 1.05 1.01 0.139 ND 2.49 315 3.28 J 2.03 ND 228 ND 2.81	Indoor Air	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND 2.70 5.16 40.4 J 0.866 0.704 0.598 1.40 ND 1.03 2.53 667 6.45 8.69 1.22 1170 R1 2.01 4.79	12/12/2019	Indoor Air	12/2/2021 12/2/2021 12/66417-01 1	12/19/2022 L2271489-06 ND ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND 0.56 1.06 ND ND ND ND ND 2.77 309 2.28 ND 1.12 2930 R1 ND 0.821	ND N	ND	A-6 (022020) Indoor Air 2/20/2020 2/20/739-01 L20 ND ND ND ND ND ND ND ND ND N	ND N	ND	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND 0.688 2.02 104 2.56 1.73 1.08 1.93 J ND 3.41	ND ND ND ND ND ND 1.36 1.67 ND 21.3 J 1.30 ND 0.528 1.08 0.095 1.16 2.12 194 ND 1.15 2.45 79.2 ND 5.08	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13 2.16 220 ND 1.09 2.28 79.2 ND 4.79	ND	Indoor Air	Indoor Air	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	ND	ND N	ND N	Outdoor Air	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV 8.1 57 1.5 3.5 NV 16.5 6.1 6.4	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,1-Dichloroethene 1,2,4-Trichlorobenzene* 1,2-Dichlorobenzene 2,2,4-trimethylbenzene 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane Dichlorodifluoromethane Ethanol Ethyl acetate Ethylbenzene Heptane Isopropanol Methylene chloride n-Hexane o-Xylene	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV 16.5 210 5.4 5.7 NV 250 10 10.2 7.9	10	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND ND 2.31 1.13 0.163 ND 1.61 910 15.9 4.73 ND 873 R1 ND	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND ND 1.09 0.127 ND 2.44 298 3.2 2 ND 215 ND 2.55 2.4	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND 1.05 1.01 0.139 ND 2.49 315 3.28 J 2.03 ND 228 ND 2.81 2.44	ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND AD 2.70 5.16 40.4 J 0.866 0.704 0.598 1.40 ND 1.03 2.53 667 6.45 8.69 1.22 1170 R1 2.01 4.79 12.2	12/12/2019	ND	12/2/2021 12/2/2021 12/2/2021 12/2/2021 12/2/2021 12/2/2021 12/2/2021 12/2/2021 12/2/2021 12/2/2021 12/2	12/19/2022 L2271489-06 ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND ND ND 2.77 309 2.28 ND 1.12 2930 R1 ND 0.821 ND	12/18/2018 L1852191-05 ND ND 0.103 ND 0.598 1.06 0.103 ND 2.49 40.1 ND	ND	ND N	ND N	ND N	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND 0.688 2.02 104 2.56 1.73 1.08 1.93 J ND 3.41 2.30	ND ND ND ND ND 1.36 1.67 ND 21.3 J 1.30 ND 0.528 1.08 0.095 1.16 2.12 194 ND ND 1.15 2.45 79.2 ND 5.08 1.49	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13 2.16 220 ND 1.09 2.28 79.2 ND 4.79 1.45	ND	Indoor Air	Indoor Air	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	ND	ND N	ND N	Outdoor Air 12/19/2022 L2271489-08 ND O.491 0.938 ND	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV 8.1 57 1.5 3.5 NV 16.5 6.1 6.4 4.6	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane Dichlorodifluoromethane Ethanol Ethyl acetate Ethylbenzene Heptane Isopropanol Methylene chloride n-Hexane o-Xylene p/m-Xylene	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV 16.5 210 5.4 5.7 NV 250 10 10.2	10	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND ND 2.31 1.13 0.163 ND 1.61 910 15.9 4.73 ND 873 R1 ND 873 R1 ND 6.87	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND ND 0.127 ND 2.44 298 3.2 2 ND 215 ND 2.55	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND 1.05 1.01 0.139 ND 2.49 315 3.28 J 2.03 ND 228 ND 2.81	Indoor Air	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND 2.70 5.16 40.4 J 0.866 0.704 0.598 1.40 ND 1.03 2.53 667 6.45 8.69 1.22 1170 R1 2.01 4.79	12/12/2019	Indoor Air	12/2/2021 12/2/2021 12/66417-01 1	12/19/2022 L2271489-06 ND ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND 0.56 1.06 ND ND ND ND ND 2.77 309 2.28 ND 1.12 2930 R1 ND 0.821	ND N	ND	A-6 (022020) Indoor Air 2/20/2020 2/20/739-01 L20 ND ND ND ND ND ND ND ND ND N	ND N	ND N	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND 0.688 2.02 104 2.56 1.73 1.08 1.93 J ND 3.41	ND ND ND ND ND ND 1.36 1.67 ND 21.3 J 1.30 ND 0.528 1.08 0.095 1.16 2.12 194 ND 1.15 2.45 79.2 ND 5.08	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13 2.16 220 ND 1.09 2.28 79.2 ND 4.79	ND	Indoor Air	Indoor Air	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	ND	ND N	ND N	Outdoor Air	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV 8.1 57 1.5 3.5 NV 16.5 6.1 6.4	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane Dichlorodifluoromethane Ethanol Ethyl acetate Ethylbenzene Heptane Isopropanol Methylene chloride n-Hexane o-Xylene p/m-Xylene Styrene Tetrachloroethene*	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV 16.5 210 5.4 5.7 NV 250 10 10.2 7.9 22.2	10	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND 2.31 1.13 0.163 ND 1.61 910 15.9 4.73 ND 873 R1 ND 873 R1 ND 6.87 5.56 19	ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND ND 1.09 0.96 0.127 ND 2.44 298 3.2 2 ND 215 ND 215 ND 2.55 2.4 8.17 ND 0.353	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND 1.05 1.01 0.139 ND 2.49 315 3.28 J 2.03 ND 228 ND 228 ND 2.81 2.44 8.17 ND 0.319	ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND 2.70 5.16 40.4 J 0.866 0.704 0.598 1.40 ND 1.03 2.53 667 6.45 8.69 1.22 1170 R1 2.01 4.79 12.2 36.2 2.76 0.292	Indoor Air	Indoor Air	Indoor Air	12/19/2022 L2271489-06 ND ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND ND ND 2.77 309 2.28 ND 1.12 2930 R1 ND 0.821 ND ND ND ND ND ND O.821 ND	12/18/2018 L1852191-05 ND ND 0.103 ND	ND	ND	ND N	ND	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND 0.688 2.02 104 2.56 1.73 1.08 1.93 J ND 3.41 2.30 7.60 ND 0.210	ND 1.36 1.67 ND 21.3 J 1.30 ND 0.528 1.08 0.095 1.16 2.12 194 ND 1.15 2.45 79.2 ND 5.08 1.49 4.39 ND 0.353	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13 2.16 220 ND 1.09 2.28 79.2 ND 4.79 1.45 4.26 ND 0.319	ND	Indoor Air	Indoor Air	Air 12/18/2018 L1852191-08 ND	ND	ND N	ND N	Outdoor Air 12/19/2022 L2271489-08 ND	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV 8.1 57 1.5 3.5 NV 16.5 6.1 6.4 4.6 12.8	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane Dichlorodifluoromethane Ethyl acetate Ethyl acetate Ethylbenzene Heptane Isopropanol Methylene chloride n-Hexane o-Xylene p/m-Xylene Styrene Tetrachloroethene* Tetrahydrofuran	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV 16.5 210 5.4 5.7 NV 250 10 10.2 7.9 22.2 1.9 15.9 NV	10	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND ND 2.31 1.13 0.163 ND 1.61 910 15.9 4.73 ND 873 R1 ND 873 R1 ND 6.87 5.56 19 0.932 1.3 ND	2/13/2019	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND 1.05 1.01 0.139 ND 2.49 315 3.28 J 2.03 ND 228 ND 228 ND 2.81 2.44 8.17 ND 0.319 ND	ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND 2.70 5.16 40.4 J 0.866 0.704 0.598 1.40 ND 1.03 2.53 667 6.45 8.69 1.22 1170 R1 2.01 4.79 12.2 36.2 2.76 0.292 ND	Indoor Air	Indoor Air	Indoor Air	12/19/2022 L2271489-06 ND ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND ND ND 2.77 309 2.28 ND 1.12 2930 R1 ND 0.821 ND ND ND ND ND ND ND ND 1.12 4.84	12/18/2018 L1852191-05 ND ND O.103 ND	ND	A-6 (022020)	ND	ND	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND 0.688 2.02 104 2.56 1.73 1.08 1.93 J ND 3.41 2.30 7.60 ND 0.210 ND	ND ND ND ND ND 1.36 1.67 ND 21.3 J 1.30 ND 0.528 1.08 0.095 1.16 2.12 194 ND 1.15 2.45 79.2 ND 5.08 1.49 4.39 ND 0.353 1.86	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13 2.16 220 ND 1.09 2.28 79.2 ND 4.79 1.45 4.26 ND 0.319 1.55	ND	Indoor Air	Indoor Air	Air 12/18/2018 L1852191-08 ND	12/12/2019	12/11/2020	12/2/2021 12/2/2021 12/66417-05 12/2/2021 12/66417-05 12/2/2021	Outdoor Air 12/19/2022 L2271489-08 ND O.491 0.938 ND	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV 8.1 57 1.5 3.5 NV 16.5 6.1 6.4 4.6 12.8 1.3 6.5 NV	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane Dichlorodifluoromethane Ethanol Ethyl acetate Ethyl benzene Heptane Isopropanol Methylene chloride n-Hexane o-Xylene p/m-Xylene Styrene Tetrachloroethene* Tetrahydrofuran Toluene	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV 16.5 210 5.4 5.7 NV 250 10 10.2 7.9 22.2 1.9 15.9 NV 43	10	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND 2.31 1.13 0.163 ND 1.61 910 15.9 4.73 ND 873 R1 ND 873 R1 ND 6.87 5.56 19 0.932 1.3 ND 7.65	2/13/2019 L1905849-01 ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND ND 1.09 0.96 0.127 ND 2.44 298 3.2 2 ND 2.15 ND 215 ND 2.55 2.4 8.17 ND 0.353 ND 5.35	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND 1.05 1.01 0.139 ND 2.49 315 3.28 J 2.03 ND 228 ND 228 ND 2.81 2.44 8.17 ND 0.319 ND 5.39	ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND 2.70 5.16 40.4 J 0.866 0.704 0.598 1.40 ND 1.03 2.53 667 6.45 8.69 1.22 1170 R1 2.01 4.79 12.2 36.2 2.76 0.292 ND 8.63	Indoor Air	Indoor Air	ND	12/19/2022 L2271489-06 ND ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND ND ND 2.77 309 2.28 ND 1.12 2930 R1 ND 0.821 ND ND ND ND ND ND O.821 ND	12/18/2018 L1852191-05 ND ND ND 0.103 ND ND ND ND ND ND ND 0.598 1.06 0.103 ND 2.49 40.1 ND	ND	A-6 (022020) Indoor Air 2/20/2020 2/20/739-01 L20 ND ND ND ND ND ND ND ND ND N	ND	ND	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND 0.688 2.02 104 2.56 1.73 1.08 1.93 J ND 3.41 2.30 7.60 ND 0.210 ND 4.07	ND ND ND ND ND 1.36 1.67 ND 21.3 J 1.30 ND 0.528 1.08 0.095 1.16 2.12 194 ND 1.15 2.45 79.2 ND 5.08 1.49 4.39 ND 0.353 1.86 6.93	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13 2.16 220 ND 1.09 2.28 79.2 ND 4.79 1.45 4.26 ND 0.319 1.55 6.59	ND	Indoor Air	Indoor Air 12/19/2022 L2271489-07 ND ND ND ND 1.13 ND 2.47 ND ND 54.6 1.73 ND 0.761 1.48 0.167 1.57 2.46 122 ND 1.47 2.84 57 ND 4.41 1.75 5.08 ND 0.224 ND 8.37	Air 12/18/2018 L1852191-08 ND	12/12/2019	ND N	12/2/2021 12/2/2021 12/66417-05 12/2/2021 12/66417-05 12/2/2021	Outdoor Air 12/19/2022 L2271489-08 ND	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV 8.1 57 1.5 3.5 NV 16.5 6.1 6.4 4.6 12.8 1.3 6.5 NV 33.7	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,2-Dichloroethene 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane Dichlorodifluoromethane Ethanol Ethyl acetate Ethyl benzene Heptane Isopropanol Methylene chloride n-Hexane o-Xylene p/m-Xylene Styrene Tetrachloroethene* Tetrachloroethene* Tetrahydrofuran	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV 16.5 210 5.4 5.7 NV 250 10 10.2 7.9 22.2 1.9 15.9 NV	10	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND ND 2.31 1.13 0.163 ND 1.61 910 15.9 4.73 ND 873 R1 ND 873 R1 ND 6.87 5.56 19 0.932 1.3 ND	2/13/2019	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND 1.05 1.01 0.139 ND 2.49 315 3.28 J 2.03 ND 228 ND 228 ND 2.81 2.44 8.17 ND 0.319 ND 5.39 2.5 4.58	ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND 2.70 5.16 40.4 J 0.866 0.704 0.598 1.40 ND 1.03 2.53 667 6.45 8.69 1.22 1170 R1 2.01 4.79 12.2 36.2 2.76 0.292 ND	Indoor Air	Indoor Air	Indoor Air	12/19/2022 L2271489-06 ND ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND ND ND 2.77 309 2.28 ND 1.12 2930 R1 ND 0.821 ND ND ND ND ND ND ND ND 1.12 4.84	12/18/2018 L1852191-05 ND ND O.103 ND	ND	A-6 (022020) Indoor Air 2/20/2020 2/20/739-01 L20 ND ND ND ND ND ND ND ND ND N	ND	ND	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND 0.688 2.02 104 2.56 1.73 1.08 1.93 J ND 3.41 2.30 7.60 ND 0.210 ND	ND ND ND ND ND 1.36 1.67 ND 21.3 J 1.30 ND 0.528 1.08 0.095 1.16 2.12 194 ND 1.15 2.45 79.2 ND 5.08 1.49 4.39 ND 0.353 1.86	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13 2.16 220 ND 1.09 2.28 79.2 ND 4.79 1.45 4.26 ND 0.319 1.55	ND	Indoor Air	Indoor Air	Air 12/18/2018 L1852191-08 ND	12/12/2019	12/11/2020	12/2/2021 12/2/2021 12/66417-05 12/2/2021 12/66417-05 12/2/2021	Outdoor Air 12/19/2022 L2271489-08 ND O.491 0.938 ND	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV 8.1 57 1.5 3.5 NV 16.5 6.1 6.4 4.6 12.8 1.3 6.5 NV	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane Dichlorodifluoromethane Ethanol Ethyl acetate Ethylbenzene Heptane Isopropanol Methylene chloride n-Hexane o-Xylene p/m-Xylene Styrene Tetrachloroethene* Tetrahydrofuran Toluene trans-1,2-Dichloroethene	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV 16.5 210 5.4 5.7 NV 250 10 10.2 7.9 22.2 1.9 15.9 NV 43 NV	10	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND ND 2.31 1.13 0.163 ND 1.61 910 15.9 4.73 ND 873 R1 ND 873 R1 ND 6.87 5.56 19 0.932 1.3 ND 7.65 1.44	2/13/2019 L1905849-01 ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND ND 1.09 0.96 0.127 ND 2.44 298 3.2 2 ND 215 ND 215 ND 2.55 2.4 8.17 ND 0.353 ND 5.35 2.36	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND 1.05 1.01 0.139 ND 2.49 315 3.28 J 2.03 ND 228 ND 228 ND 2.81 2.44 8.17 ND 0.319 ND 5.39 2.5	ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND 2.70 5.16 40.4 J 0.866 0.704 0.598 1.40 ND 1.03 2.53 667 6.45 8.69 1.22 1170 R1 2.01 4.79 12.2 36.2 2.76 0.292 ND 8.63 5.95	Indoor Air	Indoor Air	ND	12/19/2022 L2271489-06 ND ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND ND ND 2.77 309 2.28 ND 1.12 2930 R1 ND 0.821 ND ND ND ND ND ND ND O.821 ND	12/18/2018 L1852191-05 ND ND 0.103 ND ND ND ND ND ND ND 0.5.3 ND ND 0.598 1.06 0.103 ND 2.49 40.1 ND	ND	A-6 (022020) Indoor Air 2/20/2020 2/20/739-01 L20 ND ND ND ND ND ND ND ND ND N	ND	ND	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND 0.688 2.02 104 2.56 1.73 1.08 1.93 J ND 3.41 2.30 7.60 ND 0.210 ND 0.210 ND 4.07 ND	ND ND ND ND ND ND 1.36 1.67 ND 21.3 J 1.30 ND 0.528 1.08 0.095 1.16 2.12 194 ND 1.15 2.45 79.2 ND 5.08 1.49 4.39 ND 0.353 1.86 6.93 ND	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13 2.16 220 ND 1.09 2.28 79.2 ND 1.45 4.26 ND 0.319 1.55 6.59 ND	ND	Indoor Air	Indoor Air 12/19/2022 L2271489-07 ND ND ND 1.13 ND 2.47 ND ND 54.6 1.73 ND 0.761 1.48 0.167 1.57 2.46 122 ND 1.47 2.84 57 ND 4.41 1.75 5.08 ND 0.224 ND 0.224 ND 8.37 ND	Air 12/18/2018 L1852191-08 ND ND ND ND ND ND ND ND ND N	12/12/2019	12/11/2020	12/2/2021	Outdoor Air 12/19/2022 L2271489-08 ND O.491 0.938 ND	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV 8.1 57 1.5 3.5 NV 16.5 6.1 6.4 4.6 12.8 1.3 6.5 NV 33.7 NV	NV N
SAMPLING DATE LAB SAMPLE ID Volatile Organics in Air (ug/m³) 1,1,1-Trichloroethane* 1,2,4-Trichlorobenzene* 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 2,2,4-trimethylpentane 2-Butanone (Methyl Ethyl Ketone) 4-Methyl-2-pentanone (Methyl Isobutyl Acetone Benzene Carbon disulfide Carbon tetrachloride* Chloromethane cis-1,2-Dichloroethene* Cyclohexane Dichlorodifluoromethane Ethanol Ethyl acetate Ethylbenzene Heptane Isopropanol Methylene chloride n-Hexane o-Xylene p/m-Xylene Styrene Tetrachloroethene* Tetrahydrofuran Toluene trans-1,2-Dichloroethene Trichloroethene* Trichloroethene* Trichloroethene* Trichloroethene* Trichloroethene* Trichloroethene*	Commercial Indoor Air Background (90%) 20.6 <1.4 <6.8 9.5 <1.2 NV 12 6 98.9 9.4 4.2 <1.3 3.7 <1.9 NV 16.5 210 5.4 5.7 NV 250 10 10.2 7.9 22.2 1.9 15.9 NV 43 NV 4.2	10	NV N	12/18/2018 L1852191-01 ND ND 0.163 ND - ND 4.63 19.8 46.3 ND ND ND 2.31 1.13 0.163 ND 1.61 910 15.9 4.73 ND 873 R1 ND 873 R1 ND 6.87 5.56 19 0.932 1.3 ND 7.65 1.44 9.46	2/13/2019 L1905849-01 ND ND 0.127 ND 2.36 ND 5.66 4.51 33.5 J ND ND 1.09 0.96 0.127 ND 2.44 298 3.2 2 ND 215 ND 215 ND 215 ND 2.55 2.4 8.17 ND 0.353 ND 5.35 2.36 4.54	Duplicate Indoor Air 2/13/2019 L1905849-02 ND ND 0.139 ND 2.50 ND 6.16 4.39 36.3 J ND ND 1.05 1.01 0.139 ND 2.49 315 3.28 J 2.03 ND 228 ND 228 ND 2.81 2.44 8.17 ND 0.319 ND 5.39 2.5 4.58	ND	Duplicate Indoor Air 6/21/2019 L1927357-02 ND ND ND ND ND ND ND 2.70 5.16 40.4 J 0.866 0.704 0.598 1.40 ND 1.03 2.53 667 6.45 8.69 1.22 1170 R1 2.01 4.79 12.2 36.2 2.76 0.292 ND 8.63 5.95 0.833	12/12/2019	Indoor Air	12/2/2021 12/2/2021 12/2/2021 12/2/2021 12/2/2021 12/2/2021 1.68 1.68 1.68 1.68 1.68 1.68 1.69 1.66 1.69 1.66 1.66 1.66 1.66 1.66 1.89 1.89 1.89 1.89 1.89 1.89 1.80 1.89 1.80 1.89 1.80 1.89 1.80 1.89 1.80 1.89 1.80	12/19/2022 L2271489-06 ND ND ND ND ND ND ND 2.34 ND 2590 R1 0.789 ND 0.56 1.06 ND ND ND 2.77 309 2.28 ND 1.12 2930 R1 ND 1.12 2930 R1 ND 0.821 ND ND ND ND 0.821 ND ND ND 0.17 4.84 3.38 ND 0.951 1.21	12/18/2018 L1852191-05 ND ND 0.103 ND 0.598 1.06 0.103 ND 2.49 40.1 ND	ND	A-6 (022020) Indoor Air 2/20/2020 2/20/2020 L2007739-01 L20 ND ND ND ND ND ND ND ND ND N	ND	ND	ND N	Duplicate Indoor Air 2/18/2021 2108109-02 ND ND ND 1.20 ND 0.943 1.67 ND 2.85 J 1.13 ND 0.465 0.944 ND 0.688 2.02 104 2.56 1.73 1.08 1.93 J ND 3.41 2.30 7.60 ND 0.210 ND 0.210 ND 4.07 ND 2.93	ND ND ND ND ND ND 1.36 1.67 ND 21.3 J 1.30 ND 0.528 1.08 0.095 1.16 2.12 194 ND 1.15 2.45 79.2 ND 5.08 1.49 4.39 ND 0.353 1.86 6.93 ND 14.0	Duplicate Indoor Air 3/31/2021 L2108109-01 ND ND ND ND ND 1.29 1.58 ND 20.3 J 1.25 ND 0.535 1.04 0.091 1.13 2.16 220 ND 1.09 2.28 79.2 ND 4.79 1.45 4.26 ND 0.319 1.55 6.59 ND 13.6	ND	Indoor Air	Indoor Air	Air 12/18/2018 L1852191-08 ND	Outdoor Air	12/11/2020	12/2/2021	Outdoor Air 12/19/2022 L2271489-08 ND	Out	2.6 <1.4 <6.4 5.8 <1.2 NV 11.3 1.9 43.7 6.6 3.7 0.7 3.7 <1.8 NV 8.1 57 1.5 3.5 NV 16.5 6.1 6.4 4.6 12.8 1.3 6.5 NV 33.7 NV 33.7 NV 1.3

^{1.} Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.

2. Analytical testing for VOCs via TO-15 completed by Alpha Laboratories. * = samples analyzed for volatile organics in air by SIM.

3. Results present in ug/m³ or microgram per cubic meter.

4. Samples were collected during a 8-hour sample duration.

5. 90th percentile values as presented in C2 (EPA 2001: Building assessment and survey evaluation (BASE) database Appendix C, in the NYSDOH Guidance Manual, as indicated for indoor and outdoor air only.

6. Air Guideline Values from "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health. Updated September 2013 and August 2015.

7. Grey shaded values represent exceedance of table C2 guidance values; yellow shaded values represents exceedance of NYSDOH Air Guideline Values; BOLDED = Exceedance of NYSDOH Matrix Guidelines.

8. Qualifiers: J = result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.

9. ND = Non Detect; NV = No Value; R1 = Analytical results are from sample re-analysis.

10. Red values represent updated values based on data validation.

Table 3 2022 Soil Vapor Intrusion Investigation Analytical Testing Results Pierce Arrow Business Center 155 Chandler Street, Buffalo, NY

				1			22.2		00.40	11.10	22.2		20.44		00.40		00.40	11.10			14.40	0.1.1	01.0	57.4	
LOCATION	Table C2		IA-7 (120221)	IA-8 (120221)	SS-7 (032922)	IA-7 (032922)	SS-9 (032922)	IA-9 (032922)	SS-10 (032922)	IA-10 (032922)	SS-8 (061422)	IA-8 (061422)	SS-11 (061422)	IA-11 (061422)	SS-12 (061422)	IA-12 (061422)	SS-13 (061422)	IA-13 (061422)	IA-14 (061422)	IA-15 (072822)	IA-16 (072822)	OA-1 (032922)	OA-2 (061422)	RT-1 (061422)	Table C2
SAMPLING DATE	Commercial	NYSDOH Air	12/2/2021	12/2/2021	3/29/2022	3/29/2022	3/29/2022	3/29/2022	3/29/2022	3/29/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	6/14/2022	7/28/2022	7/28/2022	3/29/2022	6/14/2022	6/14/2022	Commercial
SAMI LING DATE	Indoor Air	Guideline Value	L2166417-	12/2/2021	3/23/2022	3/29/2022	3/23/2022	3/23/2022	3/29/2022	3/29/2022	0/14/2022	0/14/2022	0/14/2022	0/14/2022	0/14/2022	0/14/2022	0/14/2022	0/14/2022	0/14/2022	1120/2022	L2240518-	3/23/2022	0/14/2022	0/14/2022	Outdoor Air
LAB SAMPLE ID	Background (90%)	Guidelline Value	06	L2166417-07	L2217738-07	L2217738-06	L2217738-02	I 2217738-03	L2217738-04	L2217738-05	L2231846-10	L2231846-09	L2231846-03	L2231846-04	L2231846-05	L2231846-06	L2231846-07	L2231846-08	L2231846- 11	L2240518-01	02	L2217738-01	L2231846-01	L2231846-02	Background (90%)
SAMPLE LOCATION	, (33)			t Installation		rage Closet		Seating Area		el/lEvent Area		ional Seating	Cidery Ev			nent Storage		eption Area	Elevator Shaft	Closed Room	Mezzanine	Courtvard	Chandler St.	Rooftop	3 (**)
Volatile Organics in Air (ug/m3)			1 000 1011	· motunation	elacij ele	rage Gleeck	Glasif Bai	oouting / trou	oldery older	0,12,10111,1100	older y 7 taute	aona ooaang	Oldony 21	OIK / II OU	052 54001	none otorago	02211000	, p. 1. 7 1. 5 C.	Elevator enait	Glooda Hoolii	WOLLDANING	o o an tyan a	Orianaior ou	rtoontop	
1,1,1-Trichloroethane*	20.6	NV	ND *	ND *	ND	ND *	ND	ND *	ND	ND *	ND	ND *	ND	ND *	ND	ND *	ND	ND *	2.6						
1,1,2,2-Tetrachloroethane	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
1,1,2-Trichloroethane	<1.5	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<1.6
1,1-Dichloroethane	<0.7	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.6
1,1-Dichloroethene*	<1.4	NV	ND *	ND *	ND	ND *	ND	ND *	ND	ND *	ND	ND *	ND	ND *	ND	ND *	ND	ND *	<1.4						
1,2,4-Trichlorobenzene	<6.8	NV NN/	ND	ND	ND	ND	ND	ND	ND 27.0	ND	ND	ND 40.0	ND *	ND *	ND	ND	ND	<6.4							
1,2,4-Trimethylbenzene 1,2-Dibromoethane	9.5 <1.5	NV NV	1.07 ND	ND ND	25.8 ND	ND ND	27.9 ND	ND ND	27.3 ND	ND ND	38.4 ND	ND ND	25.5 ND	ND ND	47.8 ND	ND ND	49.2 J ND	ND ND	48.9 ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.8 <1.6
1,2-Dishorhoethane	<1.2	NV	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	<1.2
1,2-Dichloroethane	<0.9	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	<0.8
1,2-Dichloropropane	<1.6	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<1.6
1,3,5-Trimethylbenzene	3.7	NV	ND	ND	6.34	ND	6.49	ND	6.93	ND	9.88	ND	6.78	ND	ND	ND	12.9 J	ND	13	6.44	ND	ND	ND	ND	2.7
1,3-Butadiene	<3.0	NV	ND	ND	ND	ND	ND	ND	111	ND	20.8	ND	1.87	ND	31.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	<3.4
1,3-Dichlorobenzene	<2.4	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<2.2
1,4-Dichlorobenzene	5.5	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2
1,4-Dioxane 2,2,4-Trimethylpentane	NV NV	NV NV	ND 1.44	ND 1.47	ND ND	ND ND	ND 1.59	ND ND	ND ND	ND ND	ND ND	ND ND	ND 6.73	ND ND	ND ND	ND ND	ND ND	ND ND	ND 8.69	ND 10.6	ND ND	ND ND	ND ND	ND ND	NV NV
2,2,4-1 rimethylpentane 2-Butanone	12	NV	1.44 ND	1.47 ND	3.27	2.01	14.2	ND ND	23.2	ND ND	18.6	ND ND	11.1	ND ND	ND ND	1.97	6.28 J	1.82	2.85	6.9	3.04	ND ND	ND ND	ND ND	11.3
2-Hexanone	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
3-Chloropropene	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
4-Ethyltoluene	3.6	NV	ND	ND	6.19	ND	7.57	ND	9.68	ND	9.59	ND	7.42	ND	ND	ND	12.5 J	ND	13.8	5.65	ND	ND	ND	ND	3.0
4-Methyl-2-pentanone	6.0	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.23	ND	ND	ND	ND	ND	4.34	9.02	ND	ND	ND	ND	1.9
Acetone	98.9	NV NV	152	123	4.37 J	65.6 J	13.7 J	41.6 J	92.6 J	88.8 J	347	13.8	77.4	14.5	ND	30.4	107 J	1750 R1	112	37.3	26.6	3.52 J	7.98	6.51	43.7
Benzene Benzyl chloride	9.4 <6.8	NV NV	1.34 ND	1.41 ND	8.31 ND	ND ND	5.43 ND	0.639 ND	133 ND	0.684 ND	47.6 ND	ND ND	16.9 ND	ND ND	78.3 ND	ND ND	20.5 J ND	ND ND	16.8 ND	20.7 ND	ND ND	ND ND	ND ND	ND ND	6.6 <6.4
Bromodichloromethane	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	NV
Bromoform	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	NV
Bromomethane	<1.7	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<1.6
Carbon disulfide	4.2	NV	ND	ND	ND	ND	3.18	ND	135	ND	21.5	ND	2.03	ND	195	ND	28.8 J	ND	0.9	2.29	ND	ND	ND	ND	3.7
Carbon tetrachloride*	<1.3	NV	1.01 *	0.9 *	3.12	3.96 *	8.87	8.05 *	4.3	5.13 *	5.64	0.453 *		0.371 *	45700 R1	0.459 *	ND	0.447 *	0.428 *	0.566 *	0.421 *	0.566 *	0.447 *	0.390 *	0.7
Chlorosthone	<0.9 <1.1	NV NV	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.8 <1.2
Chloroethane Chloroform	1.1	NV	ND	ND	ND ND	1.41	3.28	2.94	2.36	1.82	ND	ND ND	10.5	ND ND	ND 7620	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	0.6
Chloromethane	3.7	NV	1.32	1.24	ND	1.24	ND	1.21	4.44	1.23	1.21	1.19	0.543	1.14	ND	1.16	ND	1.14	1.11	1.05	1.29	1.11	1.08	1.1	3.7
cis-1,2-Dichloroethene*	<1.9	NV	0.412 *	0.369 *	ND	0.369 *	ND	0.389 *	ND	0.48 *	ND	ND *	1.33	ND *	ND	ND *	ND	ND *	<1.8						
cis-1,3-Dichloropropene	<2.3	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<2.2
Cyclohexane	NV	NV	1.48	1.57	8.67	ND	5.68	ND	235	ND	276	ND	90.9	ND	121	ND	399 J	ND	10.4	11.6	ND	ND	ND	ND	NV
Dibromochloromethane	NV 10.5	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Dichlorodifluoromethane	16.5 210	NV NV	2.64 874	2.71 820	2.57 ND	2.69	2.73 14.8	2.69	2.6 33.9	2.7 144	4.65 77.6	2.54 53.9	2.36 38.8	2.52 56	ND ND	2.94 72.9	2.45 J 124 J	2.41 186	2.43 70.5	2.61 89.1	2.4 152	2.55 ND	2.47 24.7	2.57	8.1 57
Ethanol Ethyl Acetate	5.4	NV	3.03	2.63	2.24	ND	ND	ND	ND	1.99	12.5	1.87	ND	2.46	ND ND	4.61	ND	3.31	1.82	2.18	2.27	ND ND	ND	ND	1.5
Ethylbenzene	5.7	NV	1.26	1.15	16.5	ND	16.5	ND	42.6	ND	33.4	ND	26.5	ND	32	ND	52.6 J	ND	39.3	15.7	ND	ND	ND	ND	3.5
Freon-113	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Freon-114	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Heptane	NV	NV	5	2.73	14.3	ND	13.1	1.13	447	ND	286	ND	59	ND	161	0.963	264 J	1.8	31.3	29.6	ND	ND	ND	ND	NV
Hexachlorobutadiene	<6.8	NV NV	ND 000 D4	ND 700 D4	ND	ND	ND	ND	ND 40.0	ND 542	ND 40.4	ND 40.5	ND 0.07	ND 42.4	ND	ND CC C	ND	ND	ND	ND 40.0	ND 446	ND 2.70	ND C CC	ND 4.00	<6.4
Isopropanol Methyl tert butyl ether	250 11.5	NV NV	902 R1 ND	733 R1 ND	3.74 ND	371 ND	8.06 ND	237 ND	16.8 ND	543 ND	10.1 ND	18.5 ND	9.07 ND	13.4 ND	ND ND	66.6 ND	39.3 J ND	1490 R1 ND	127 ND	16.2 ND	116 ND	3.79 ND	6.69 ND	4.82 ND	16.5 6.2
Methyl tert butyl ether Methylene chloride	11.5	60	3.72	ND ND	ND ND	ND ND	1.99	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.34	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3.39	ND ND	6.1
n-Hexane	10.2	NV	5.64	5.85	32.6	ND	26.6	ND	465	ND	441	2.18	147	1.86	285	2.71	356 J	1.43	116	148	1.03	ND	2.03	1.28	6.4
o-Xylene	7.9	NV	1.73	1.6	25.4	ND	26.1	1.02	44.3	ND	46	ND	36	ND	45.6	ND	69.9 J	1.37	55.6	23.9	ND	ND	ND	ND	4.6
p/m-Xylene	22.2	NV	5.04	4.6	79.9	ND	79.5	1.98	175	ND	143	ND	112	ND	145	ND	214 J	3.54	170	63	ND	ND	ND	ND	12.8
Styrene	1.9	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.14	ND	ND	1.14	ND	ND	ND	ND	ND	1.3
Tertiary butyl Alcohol	NV 45.0	NV	ND *	ND *	ND	ND	ND	ND	ND	ND	19.5	ND	2.32	ND	ND	ND	ND	ND	1.64	ND	ND	ND *	ND *	ND	NV 0.5
Tetrachloroethene*	15.9 NV	30 NV	ND * ND	ND *	ND ND	0.373 * ND	1.45 8.49	0.61 * ND	ND ND	0.305 * ND	355	55.9 * 1.53	ND ND	147 *	ND ND	34.6 * 5.93	ND 3.19 J	0.149 * 1.83	0.712 * 1.55	0.339 * 3.95	0.244 * 1.76	ND *	ND *	0.136 * 1.62	6.5 NV
Tetrahydrofuran Toluene	43	NV NV	10.8	ND 7.5	86.3	1.56	78	1.38	324	1.09	10.4 234	2.51	170	2.93 3.05	291	7.91	3.19 J 206 J	1.83	1.55 225	132	1.76	ND ND	6.44	1.62	33.7
trans-1,2-Dichloroethene	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	23.5	ND	ND ND	ND	ND	ND	ND	0.952	ND	ND	ND	ND	ND	ND	NV
trans-1,3-Dichloropropene	<1.3	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	<1.4
Trichloroethene*	4.2	2	17.5 *	18 *	8.92	24.1 *	7.09	25.5 *	23.4	39.2 *	ND	ND *	485	ND *	5800	0.989 *		0.247 *	0.140 *	2.09 *	0.145 *	ND *	ND *	0.15 *	1.3
Trichlorofluoromethane	18.1	NV	1.44	1.37	1.52	1.31	1.57	1.38	ND	1.3	5.6	1.15	ND	ND	ND	1.28	ND	ND	ND	ND	ND	1.18	ND	ND	4.3
Vinyl bromide	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Vinyl chloride*	<1.9	NV	ND *	ND *	ND	ND *	ND	ND *	ND	ND *	ND	ND *	ND	ND *	ND	ND *	ND	ND *	<1.8						
Notes:																									

- 1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.
- 2. Analytical testing for VOCs via TO-15 completed by Alpha Analytical.
- 3. Results present in ug/m³ or microgram per cubic meter.
- 4. Samples were collected during an 8-hour sample duration.
- 5. 90th percentile values as presented in Table C2. EPA 2001: Building assessment and survey evaluation (BASE) database, SUMMS canister method (Appendix C, in the NYSDOH Guidance Manual).
- 6. Air Guidance Values from Table 3.1 Air guideline values derived by the NYSDOH included in the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health and updated in September 2013 and August 2015.
- 7. Green shaded values represent exceedance of Table C2 commercial background levels; yellow shaded values represent exceedance of NYSDOH Air Guideline Values as updated.
- 8. ND = Non Detect; NV = No Background/Guideline Value; R1 = Analytical results are from sample re-analysis due to original concentration is below the quantitation (RL), but the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analysis. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- 9. * Volatile Organics in Air by SIM
- 10. No appropriate guidance values apply to sub-slab air, therefore background guidance values from Table C2 and NYSDOH Air Guideline values from Table 3.1 are compared to indoor and outdoor air only.
- 11. RED = Updated as a result of Data Validation.

Table 4 2022 Soil Vapor Intrusion Investigation Decision Matrices 155 Chandler Street, Buffalo, NY

		Sub-slab Vapor	Indoor Air	
Sample ID	Parameter	Concentrations	Concentration	Recommended Action
·		(ug/m³)	(ug/m³)	
	(705)	Matrix		(4.4.205) 0.1 7 11. 11
Trichloroet	hene (TCE); cis-1,2-dichlo	eroethene (cis-DCE); 8.92	1,1-dichloroethene	e (1,1-DCE); Carbon Tetrachloride
SS-7/IA-7	cis-DCE	8.92 ND	0.369	Mitigate No further action
(032922)	1,1-DCE	ND	ND	No further action
, ,	Carbon Tetrachloride	3.12	3.96	Identify Source(s) and Resample or Mitigate
	TCE	7.09	25.5	Mitigate
SS-9/IA-9	cis-DCE	ND	0.389	No further action
(032922)	1,1-DCE	ND	ND	No further action
	Carbon Tetrachloride TCE	8.87 23.4	8.05 39.2	Mitigate Mitigate
SS-10/IA-10	cis-DCE	ND	0.48	No further action
(032922)	1,1-DCE	ND	ND	No further action
	Carbon Tetrachloride	4.3	5.13	Identify Source(s) and Resample or Mitigate
	TCE	ND	ND	No further action
SS-8/IA-8	cis-DCE	ND	ND	No further action
(061422)	1,1-DCE	ND 5.04	ND 0.450	No further action
	Carbon Tetrachloride TCE	5.64 485	0.453 ND	No further action Possible action needed**
SS-11/IA-11	cis-DCE	1.33	ND	No further action
(061422)	1,1-DCE	ND	ND ND	No further action
·	Carbon Tetrachloride	2.47	0.371	No further action
	TCE	5800	0.989	Mitigate
SS-12/IA-12	cis-DCE	ND	ND	No further action
(061422)	1,1-DCE	ND	ND	No further action
	Carbon Tetrachloride TCE	45700 16.2 J	0.459 0.247	Mitigate Monitor
SS-13/IA-13	cis-DCE	ND	ND	No further action
(061422)	1,1-DCE	ND	ND	No further action
	Carbon Tetrachloride	ND	0.447	No further action
		Matrix		
Λ	Methylene Chloride (MC);	, ,	. , , , , , , , , , , , , , , , , , , ,	
SS-7/IA-7	MC 1,1,1-TCA	ND ND	ND ND	No further action No further action
(032922)	PCE	ND ND	0.373	No further action
00.0/14.0	MC	1.99	ND	No further action
SS-9/IA-9 (032922)	1,1,1-TCA	ND	ND	No further action
(002022)	PCE	1.45	0.610	No further action
SS-10/IA-10	MC	ND	ND	No further action
(032922)	1,1,1-TCA PCE	ND ND	ND 0.305	No further action No further action
	MC	ND	ND	No further action
SS-8/IA-8	1,1,1-TCA	ND	ND	No further action
(061422)	PCE	355	55.9	Mitigate
SS-11/IA-11	MC	ND	ND	No further action
(061422)	1,1,1-TCA	ND	ND	No further action
. ,	PCE MC	ND ND	147	Possible action needed***
SS-12/IA-12	1,1,1-TCA	ND ND	2.34 ND	No further action No further action
(061422)	PCE	ND	34.6	Possible action needed***
CC 40//A 40	MC	ND	ND	No further action
SS-13/IA-13 (061422)	1,1,1-TCA	ND	ND	No further action
(001122)	PCE	ND	0.149	No further action
		Matrix		
SS-7/IA-7		Vinyl Chlorid		
(032922)	VC	ND	ND	No further action
SS-9/IA-9	V/O	ND	ND	Nie frontle zu zetiene
(032922)	VC	ND	ND	No further action
SS-10/IA-10	VC	ND	ND	No further action
(032922)		140	110	
SS-8/IA-8	VC	ND	ND	No further action
(061422)				
SS-11/IA-11 (061422)	VC	ND	ND	No further action
SS-12/IA-12				
(061422)	VC	ND	ND	No further action
SS-13/IA-13	VC	ND	ND	No further action
(061422)	VC	ND	ND	No further action

- 1. Table used by Schenne & Associates Engineers & Geologists with permission from Environmental Advantage, Inc.
- 2. Compounds included on NYSDOH Air Matricies included in this table. For a list of all compounds, refer to analytical reports.
- 3. Analytical testing for VOCs via TO-15 completed by Alpha Analytical.
- 4. Results present in ug/m³ or microgram per cubic meter.
- 5. Samples were collected during an 8-hour sample duration.
- 6. Air Guidance Values from Table 3.1 Air guideline values derived by the NYSDOH included in the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health and updated in May 2017.
- 7. Yellow shaed values represent continued Monitoring recommended; green shaded values represent Resampling to identify source Mitigation recommended; orange shaded values represent Mitigation recommended; blue shaded values represent possible action needed.
- 8. ND = Non Detect
- 9. ** = Due to elevated sub-slab concentrations for TCE in SS-11(061422), mitigation may be needed if a detectable indoor concentration is recorded in the future.
- 10. *** = Although sub-slab concentrations for PCE are non-detect in SS-11(061422) and SS-12(061422), identification of source(s) and resample or mitigate may be needed if a detectable sub-slab concentration is recorded in the future. Indoor air concentrations exceed the NYSDOH AGV for PCE.

APPENDIX D LABORATORY ANALYTICAL RESULTS

ANALYTICAL REPORT

Lab Number: L2271489

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna
Phone: (716) 667-3130

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101
Report Date: 01/04/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101 Lab Number: L2271489

Report Date: 01/04/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2271489-01	IA-1 (121922)	AIR	155 CHANDLER ST. BUFFALO, NY	12/19/22 16:10	12/20/22
L2271489-02	IA-2 (121922)	AIR	155 CHANDLER ST. BUFFALO, NY	12/19/22 16:20	12/20/22
L2271489-03	IA-3 (121922)	AIR	155 CHANDLER ST. BUFFALO, NY	12/19/22 16:30	12/20/22
L2271489-04	IA-3 (121922) DUPLICATE	AIR	155 CHANDLER ST. BUFFALO, NY	12/19/22 16:30	12/20/22
L2271489-05	IA-4 (121922)	AIR	155 CHANDLER ST. BUFFALO, NY	12/19/22 16:45	12/20/22
L2271489-06	IA-5 (121922)	AIR	155 CHANDLER ST. BUFFALO, NY	12/19/22 16:17	12/20/22
L2271489-07	IA-6 (121922)	AIR	155 CHANDLER ST. BUFFALO, NY	12/19/22 16:06	12/20/22
L2271489-08	OA-1 (121922)	AIR	155 CHANDLER ST. BUFFALO, NY	12/19/22 16:15	12/20/22

Project Name:CY2022 SMP INDOOR AIR SAMPLINGLab Number:L2271489Project Number:01101Report Date:01/04/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:01042316:51

Project Name:CY2022 SMP INDOOR AIR SAMPLINGLab Number:L2271489Project Number:01101Report Date:01/04/23

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on December 6, 2022. The canister certification results are provided as an addendum.

L2271489-06: The sample was re-analyzed on dilution in order to quantitate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

L2271489-06D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/04/23

Christopher J. Anderson

ALPHA

AIR

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2271489

Report Date:

01/04/23

SAMPLE RESULTS

Lab ID: L2271489-01

Client ID: IA-1 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/19/22 16:10 Date Received: 12/20/22

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 01/03/23 17:50

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.503	0.200		2.49	0.989			1
Chloromethane	0.461	0.200		0.952	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	17.2	5.00		32.4	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.10	1.00		9.74	2.38			1
Trichlorofluoromethane	0.241	0.200		1.35	1.12			1
Isopropanol	2.03	0.500		4.99	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2271489

Report Date:

01/04/23

SAMPLE RESULTS

Lab ID: L2271489-01

Client ID: IA-1 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected:

12/19/22 16:10

Date Received: Field Prep:

12/20/22 Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
leptane	ND	0.200		ND	0.820			1
is-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
ans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	ND	0.200		ND	0.754			1
-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
thylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
-Xylene	ND	0.200		ND	0.869			1
-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-01

Client ID: IA-1 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/19/22 16:10

Date Received: 12/20/22

Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	96		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: Date Collected: 12/19/22 16:10

Client ID: IA-1 (121922) Date Received: 12/20/22

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 01/03/23 17:50

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.106	0.020		0.667	0.126			1
Trichloroethene	0.145	0.020		0.779	0.107			1
Tetrachloroethene	0.057	0.020		0.387	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	97		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2271489

Report Date:

01/04/23

SAMPLE RESULTS

Lab ID: L2271489-02

Client ID: IA-2 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/19/22 16:20 Date Received: 12/20/22

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 01/03/23 18:31

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.515	0.200		2.55	0.989			1
Chloromethane	0.513	0.200		1.06	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	15.5	5.00		29.2	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	8.52	1.00		20.2	2.38			1
Trichlorofluoromethane	0.221	0.200		1.24	1.12			1
Isopropanol	1.56	0.500		3.83	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	1.90	0.200		5.92	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	1.37	0.500		4.04	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	5.32	0.500		15.7	1.47			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101 Lab Number:

L2271489

Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-02 Client ID:

IA-2 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY Date Collected: 12/19/22 16:20

Date Received: 12/20/22 Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	0.217	0.200		0.782	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-02

Client ID: IA-2 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/19/22 16:20

Date Received: 12/20/22

Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	93		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: Date Collected: 12/19/22 16:20

Client ID: IA-2 (121922) Date Received: 12/20/22

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 01/03/23 18:31

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.097	0.020		0.610	0.126			1
Trichloroethene	0.111	0.020		0.597	0.107			1
Tetrachloroethene	0.049	0.020		0.332	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	93		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	94		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2271489

Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-03

Client ID: IA-3 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/19/22 16:30 Date Received: 12/20/22

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 01/03/23 19:12

		Vdqq			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.499	0.200		2.47	0.989			1
Chloromethane	0.487	0.200		1.01	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	323	5.00		609	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	74.0	1.00		176	2.38			1
Trichlorofluoromethane	0.213	0.200		1.20	1.12			1
sopropanol	54.6	0.500		134	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.577	0.200		1.80	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	13.8	0.500		49.7	1.80			1
Chloroform	0.785	0.200		3.83	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2271489

Report Date:

01/04/23

SAMPLE RESULTS

Lab ID: L2271489-03

Client ID: IA-3 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected:

12/19/22 16:30

Date Received: Field Prep:

12/20/22 Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-03

Client ID: IA-3 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/19/22 16:30

Date Received: 12/20/22

Field Prep: Not Specified

Campio Dopuii.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	99		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	96		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number: L2271489

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: Date Collected: 12/19/22 16:30

Client ID: IA-3 (121922) Date Received: 12/20/22

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 01/03/23 19:12

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.094	0.020		0.591	0.126			1
Trichloroethene	0.039	0.020		0.210	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	98		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	98		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2271489

Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-04

Client ID: IA-3 (121922) DUPLICATE

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12

12/19/22 16:30

Date Received: Field Prep:

12/20/22 Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 01/03/23 20:34

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.491	0.200		2.43	0.989			1
Chloromethane	0.494	0.200		1.02	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	262	5.00		494	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	68.4	1.00		162	2.38			1
Trichlorofluoromethane	0.210	0.200		1.18	1.12			1
Isopropanol	48.2	0.500		118	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	0.936	0.500		3.25	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.490	0.200		1.53	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	11.2	0.500		40.4	1.80			1
Chloroform	0.713	0.200		3.48	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2271489

Report Date:

01/04/23

SAMPLE RESULTS

Lab ID: L2271489-04

Client ID: IA-3 (121922) DUPLICATE

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected:

12/19/22 16:30

Date Received: Field Prep:

12/20/22 Not Specified

Затріе Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-04

Client ID: IA-3 (121922) DUPLICATE

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/19/22 16:30

Date Received: 12/20/22

Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	97		60-140

Lab Number: Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-04 Date Collected: 12/19/22 16:30

Client ID: IA-3 (121922) DUPLICATE Date Received: 12/20/22 Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 01/03/23 20:34

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.091	0.020		0.572	0.126			1
Trichloroethene	0.034	0.020		0.183	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	98		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101 Lab Number:

L2271489

Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-05 Client ID:

IA-4 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY Date Collected: Date Received:

12/19/22 16:45 12/20/22

Field Prep:

Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: Analytical Date:

48,TO-15 01/03/23 21:15

	ppbV		ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
ld Lab							
0.490	0.200		2.42	0.989			1
0.483	0.200		0.997	0.413			1
ND	0.200		ND	1.40			1
ND	0.200		ND	0.442			1
ND	0.200		ND	0.777			1
ND	0.200		ND	0.528			1
66.3	5.00		125	9.42			1
ND	0.200		ND	0.874			1
369	1.00		877	2.38			1
0.211	0.200		1.19	1.12			1
245	0.500		602	1.23			1
ND	0.500		ND	1.52			1
ND	0.500		ND	1.74			1
ND	0.200		ND	0.626			1
ND	0.200		ND	0.623			1
ND	0.200		ND	1.53			1
ND	0.200		ND	0.793			1
ND	0.200		ND	0.809			1
ND	0.200		ND	0.721			1
ND	0.500		ND	1.47			1
ND	0.500		ND	1.80			1
ND	0.200		ND	0.977			1
0.548	0.500		1.62	1.47			1
	0.490 0.483 ND ND ND ND 66.3 ND 369 0.211 245 ND	Results RL Id Lab 0.490 0.200 0.483 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 66.3 5.00 ND 0.200 369 1.00 0.211 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500	Results RL MDL Id Lab 0.490 0.200 0.483 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 369 1.00 245 0.500 ND 0.500 ND 0.500 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0	Results RL MDL Results Id Lab 0.490 0.200 2.42 0.483 0.200 0.997 ND 0.200 ND ND 0.200 ND ND 0.200 ND ND 0.200 ND 66.3 5.00 ND 369 1.00 877 0.211 0.200 ND ND 0.500 ND ND 0.500 ND ND 0.500 ND ND 0.200 ND ND 0.200	Results RL MDL Results RL Id Lab 0.490 0.200 2.42 0.989 0.483 0.200 0.997 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 66.3 5.00 ND 0.874 369 1.00 ND 0.874 369 1.00 877 2.38 0.211 0.200 1.19 1.12 245 0.500 602 1.23 ND 0.500 ND 1.52 ND 0.500 ND 0.626 ND 0.200 ND 0.623 ND 0.200 ND 0.793	Results RL MDL Results RL MDL Id Lab 0.490 0.200 2.42 0.989 0.483 0.200 0.997 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 ND 0.200 ND 0.528 ND 0.200 ND 0.874 ND 0.200 ND 0.874 369 1.00 877 2.38 0.211 0.200 ND 1.52 ND 0.500 ND 1.52 ND 0.500 ND 0.626	Results RL MDL Results RL MDL Qualifier Id Lab 0.490 0.200 2.42 0.989

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101 Lab Number:

L2271489

Report Date:

01/04/23

SAMPLE RESULTS

Lab ID: L2271489-05 Client ID: IA-4 (121922)

Date Collected: Date Received: 12/19/22 16:45

Sample Location:

12/20/22 Not Specified

155 CHANDLER ST. BUFFALO, NY

Field Prep:

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Foluene	0.421	0.200		1.59	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number:

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-05

Client ID: IA-4 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/19/22 16:45

Date Received: 12/20/22

Field Prep: Not Specified

Parameter		ppbV			ug/m3			Dilution
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	96		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number: L2271489

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: Date Collected: 12/19/22 16:45

Client ID: IA-4 (121922) Date Received: 12/20/22

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 01/03/23 21:15

Parameter		ppbV			ug/m3			Dilution
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.084	0.020		0.528	0.126			1
Trichloroethene	0.082	0.020		0.441	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	97		60-140

Date Collected:

L2271489

12/19/22 16:17

Project Name: Lab Number: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-06

Client ID: IA-5 (121922) Date Received: 12/20/22

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 01/03/23 21:56

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Dichlorodifluoromethane	0.560	0.200		2.77	0.989			1
Chloromethane	0.511	0.200		1.06	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	164	5.00		309	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	799	1.00		1900	2.38		Е	1
Trichlorofluoromethane	0.216	0.200		1.21	1.12			1
Isopropanol	968	0.500		2380	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.793	0.500		2.34	1.47			1
Ethyl Acetate	0.634	0.500		2.28	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	1.64	0.500		4.84	1.47			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2271489

Report Date:

01/04/23

SAMPLE RESULTS

Lab ID: L2271489-06 Client ID: IA-5 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected:

12/19/22 16:17

Dilution

Date Received: Field Prep:

12/20/22 Not Specified

Sample Depth:

ppbV ug/m3

					_	Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.233	0.200		0.821	0.705			1
Benzene	0.247	0.200		0.789	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	0.274	0.200		1.12	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.898	0.200		3.38	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

L2271489

Project Name: Lab Number: CY2022 SMP INDOOR AIR SAMPLING

Project Number: Report Date: 01101

01/04/23

SAMPLE RESULTS

Lab ID: L2271489-06 Date Collected: 12/19/22 16:17 Client ID:

IA-5 (121922) Date Received: 12/20/22 Sample Location: 155 CHANDLER ST. BUFFALO, NY

Field Prep: Not Specified

Parameter		ppbV			ug/m3			Dilution
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	97		60-140

L2271489

Lab Number:

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101 Report Date: 01/04/23

CAMPLE DECLUT

SAMPLE RESULTS

Lab ID: Date Collected: 12/19/22 16:17

Client ID: IA-5 (121922) Date Received: 12/20/22

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 01/03/23 21:56

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SII	M - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.089	0.020		0.560	0.126			1
Trichloroethene	0.177	0.020		0.951	0.107			1
Tetrachloroethene	0.025	0.020		0.170	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	97		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number: L2271489

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-06 D Date Collected: 12/19/22 16:17

Client ID: IA-5 (121922) Date Received: 12/20/22 Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 01/04/23 06:45

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ab							
Acetone	1090	10.0		2590	23.8			10
Isopropanol	1190	5.00		2930	12.3			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	92		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2271489

Report Date:

01/04/23

SAMPLE RESULTS

Lab ID: L2271489-07

Client ID: IA-6 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/19/22 16:06 Date Received: 12/20/22

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 01/03/23 22:37

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.498	0.200		2.46	0.989			1
Chloromethane	0.716	0.200		1.48	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	64.8	5.00		122	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	23.0	1.00		54.6	2.38			1
Trichlorofluoromethane	0.213	0.200		1.20	1.12			1
Isopropanol	23.2	0.500		57.0	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101 Lab Number:

L2271489

Report Date:

01/04/23

SAMPLE RESULTS

Lab ID: L2271489-07 Client ID:

IA-6 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY Date Collected:

12/19/22 16:06

Date Received: Field Prep:

12/20/22 Not Specified

Sample Depth:		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air - Mans	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	1.25	0.200		4.41	0.705			1
Benzene	0.540	0.200		1.73	0.639			1
Cyclohexane	0.456	0.200		1.57	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.529	0.200		2.47	0.934			1
Heptane	0.692	0.200		2.84	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	2.22	0.200		8.37	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.338	0.200		1.47	0.869			1
o/m-Xylene	1.17	0.400		5.08	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.404	0.200		1.75	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: Lab Number: CY2022 SMP INDOOR AIR SAMPLING L2271489

Project Number: Report Date: 01101 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-07 Date Collected: 12/19/22 16:06

Client ID: IA-6 (121922) Date Received: 12/20/22

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Parameter		ppbV			ug/m3			Dilution
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	0.230	0.200		1.13	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	94		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number: L2271489

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: Date Collected: 12/19/22 16:06

Client ID: IA-6 (121922) Date Received: 12/20/22

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 01/03/23 22:37

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.042	0.020		0.167	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.121	0.020		0.761	0.126			1
Trichloroethene	0.764	0.020		4.11	0.107			1
Tetrachloroethene	0.033	0.020		0.224	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	96		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2271489

Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: L2271489-08

Client ID: OA-1 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected: 12/19/22 16:15 Date Received: 12/20/22

Date Received: 12/20/22 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 01/03/23 23:18

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.487	0.200		2.41	0.989			1
Chloromethane	0.454	0.200		0.938	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2.63	1.00		6.25	2.38			1
Trichlorofluoromethane	0.207	0.200		1.16	1.12			1
Isopropanol	1.22	0.500		3.00	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2271489

Report Date:

01/04/23

SAMPLE RESULTS

Lab ID: L2271489-08

Client ID: OA-1 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected:

12/19/22 16:15

Date Received: Field Prep:

12/20/22 Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
I-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101 Lab Number:

L2271489

Report Date:

01/04/23

SAMPLE RESULTS

Lab ID: L2271489-08 Client ID:

OA-1 (121922)

Sample Location: 155 CHANDLER ST. BUFFALO, NY Date Collected:

12/19/22 16:15

Date Received:

12/20/22

Field Prep:

Not Specified

ppbV				ug/m3		Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
₋ab							
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	ND	ND 0.200 ND 0.200	Results RL MDL Lab ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200	Results RL MDL Results Lab ND 0.200 ND ND 0.200 ND	Results RL MDL Results RL Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48 ND 0.200 ND 1.48

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	94		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number: L2271489

Project Number: 01101 Report Date: 01/04/23

SAMPLE RESULTS

Lab ID: Date Collected: 12/19/22 16:15

Client ID: OA-1 (121922) Date Received: 12/20/22

Sample Location: 155 CHANDLER ST. BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 01/03/23 23:18

		ppbV			ug/m3	•	Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.078	0.020		0.491	0.126			1
Trichloroethene	0.034	0.020		0.183	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	96		60-140

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number: L2271489

Project Number: 01101 Report Date: 01/04/23

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 01/03/23 16:34

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab f	or sample	e(s): 01-0	8 Batch: W	G172958	31-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number: L2271489

Project Number: 01101 Report Date: 01/04/23

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/03/23 15:54

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01	-08 Batch	n: WG17295	583-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number: L2271489

Project Number: 01101 Report Date: 01/04/23

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/03/23 15:54

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab for samp	ole(s): 01-	-08 Batch	n: WG17295	83-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number: L2271489

Project Number: 01101 Report Date: 01/04/23

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/03/23 15:54

		ppbV	ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	le(s): 01-	-08 Batch	: WG17295	83-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number: L2271489

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	ab Associated s	ample(s):	01-08 Batch: WG	31729581-3	3				
Vinyl chloride	83		-		70-130	-		25	
1,1-Dichloroethene	93		-		70-130	-		25	
cis-1,2-Dichloroethene	92		-		70-130	-		25	
1,1,1-Trichloroethane	106		-		70-130	-		25	
Carbon tetrachloride	106		-		70-130	-		25	
Trichloroethene	90		-		70-130	-		25	
Tetrachloroethene	82		-		70-130	-		25	

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number: L2271489

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-08	Batch: WG172958	33-3				
Dichlorodifluoromethane	99		-		70-130	-		
Chloromethane	89		-		70-130	-		
Freon-114	90		-		70-130	-		
Vinyl chloride	87		-		70-130	-		
1,3-Butadiene	88		-		70-130	-		
Bromomethane	93		-		70-130	-		
Chloroethane	87		-		70-130	-		
Ethanol	80		-		40-160	-		
Vinyl bromide	84		-		70-130	-		
Acetone	99		-		40-160	-		
Trichlorofluoromethane	99		-		70-130	-		
Isopropanol	98		-		40-160	-		
1,1-Dichloroethene	96		-		70-130	-		
Tertiary butyl Alcohol	96		-		70-130	-		
Methylene chloride	94		-		70-130	-		
3-Chloropropene	99		-		70-130	-		
Carbon disulfide	89		-		70-130	-		
Freon-113	98		-		70-130	-		
trans-1,2-Dichloroethene	91		-		70-130	-		
1,1-Dichloroethane	94		-		70-130	-		
Methyl tert butyl ether	96		-		70-130	-		
2-Butanone	101		-		70-130	-		
cis-1,2-Dichloroethene	95		-		70-130	-		

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number: L2271489

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-08	Batch: WG172958	3-3				
Ethyl Acetate	106		-		70-130	-		
Chloroform	100		-		70-130	-		
Tetrahydrofuran	98		-		70-130	-		
1,2-Dichloroethane	101		-		70-130	-		
n-Hexane	94		-		70-130	-		
1,1,1-Trichloroethane	110		-		70-130	-		
Benzene	90		-		70-130	-		
Carbon tetrachloride	111		-		70-130	-		
Cyclohexane	92		-		70-130	-		
1,2-Dichloropropane	99		-		70-130	-		
Bromodichloromethane	109		-		70-130	-		
1,4-Dioxane	112		-		70-130	-		
Trichloroethene	94		-		70-130	-		
2,2,4-Trimethylpentane	96		-		70-130	-		
Heptane	107		-		70-130	-		
cis-1,3-Dichloropropene	104		-		70-130	-		
4-Methyl-2-pentanone	113		-		70-130	-		
trans-1,3-Dichloropropene	94		-		70-130	-		
1,1,2-Trichloroethane	102		-		70-130	-		
Toluene	85		-		70-130	-		
2-Hexanone	101		-		70-130	-		
Dibromochloromethane	97		-		70-130	-		
1,2-Dibromoethane	92		-		70-130	-		

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number: L2271489

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab A	Associated sample(s):	01-08	Batch: WG172958	33-3				
Tetrachloroethene	86		-		70-130	-		
Chlorobenzene	88		-		70-130	-		
Ethylbenzene	92		-		70-130	-		
p/m-Xylene	93		-		70-130	-		
Bromoform	99		-		70-130	-		
Styrene	86		-		70-130	-		
1,1,2,2-Tetrachloroethane	97		-		70-130	-		
o-Xylene	95		-		70-130	-		
4-Ethyltoluene	89		-		70-130	-		
1,3,5-Trimethylbenzene	88		-		70-130	-		
1,2,4-Trimethylbenzene	92		-		70-130	-		
Benzyl chloride	102		-		70-130	•		
1,3-Dichlorobenzene	88		-		70-130	-		
1,4-Dichlorobenzene	86		-		70-130	-		
1,2-Dichlorobenzene	90		-		70-130	-		
1,2,4-Trichlorobenzene	96		-		70-130	-		
Hexachlorobutadiene	92		-		70-130	-		

Lab Duplicate Analysis
Batch Quality Control

Project Name: CY2022 SMP INDOOR AIR SAMPLING

L2271489

Project Number: 01101

Report Date: 01/04/23

Lab Number:

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
olatile Organics in Air by SIM - Mansfield Lab 121922)	Associated sample(s): 01-08	QC Batch ID: WG17	729581-5	QC Sample: L22	271489-03 C	lient ID: IA-3
Vinyl chloride	ND	ND	ppbV	NC		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1,1-Trichloroethane	ND	ND	ppbV	NC		25
Carbon tetrachloride	0.094	0.095	ppbV	1		25
Trichloroethene	0.039	0.036	ppbV	8		25
Tetrachloroethene	ND	ND	ppbV	NC		25

L2271489

Lab Duplicate Analysis Batch Quality Control

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Quality Control Lab Number:

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-08	QC Batch ID: WG1729583-5	QC Sample:	L2271489-03	3 Client ID:	IA-3 (121922)
Dichlorodifluoromethane	0.499	0.497	ppbV	0		25
Chloromethane	0.487	0.490	ppbV	1		25
Freon-114	ND	ND	ppbV	NC		25
1,3-Butadiene	ND	ND	ppbV	NC		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	ND	ND	ppbV	NC		25
Ethanol	323	348	ppbV	7		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	74.0	74.9	ppbV	1		25
Trichlorofluoromethane	0.213	0.207	ppbV	3		25
Isopropanol	54.6	54.9	ppbV	1		25
Tertiary butyl Alcohol	ND	ND	ppbV	NC		25
Methylene chloride	ND	ND	ppbV	NC		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	0.577	0.582	ppbV	1		25
Freon-113	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1-Dichloroethane	ND	ND	ppbV	NC		25
Methyl tert butyl ether	ND	ND	ppbV	NC		25
2-Butanone	ND	ND	ppbV	NC		25
Ethyl Acetate	13.8	13.8	ppbV	0		25

Lab Duplicate Analysis Batch Quality Control

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2271489

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-08	QC Batch ID: WG1729583-5	QC Sample:	L2271489-0	3 Client ID:	IA-3 (121922)
Chloroform	0.785	0.797	ppbV	2		25
Tetrahydrofuran	ND	ND	ppbV	NC		25
1,2-Dichloroethane	ND	ND	ppbV	NC		25
n-Hexane	ND	ND	ppbV	NC		25
Benzene	ND	ND	ppbV	NC		25
Cyclohexane	ND	ND	ppbV	NC		25
1,2-Dichloropropane	ND	ND	ppbV	NC		25
Bromodichloromethane	ND	ND	ppbV	NC		25
1,4-Dioxane	ND	ND	ppbV	NC		25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC		25
Heptane	ND	ND	ppbV	NC		25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC		25
4-Methyl-2-pentanone	ND	ND	ppbV	NC		25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC		25
1,1,2-Trichloroethane	ND	ND	ppbV	NC		25
Toluene	ND	ND	ppbV	NC		25
2-Hexanone	ND	ND	ppbV	NC		25
Dibromochloromethane	ND	ND	ppbV	NC		25
1,2-Dibromoethane	ND	ND	ppbV	NC		25
Chlorobenzene	ND	ND	ppbV	NC		25
Ethylbenzene	ND	ND	ppbV	NC		25

Lab Duplicate Analysis Batch Quality Control

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101

Lab Number:

L2271489

Report Date:

01/04/23

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
platile Organics in Air - Mansfield Lab	Associated sample(s): 01-08	QC Batch ID: WG1729583-5	QC Sample:	L2271489-	03 Client ID:	IA-3 (121922)
p/m-Xylene	ND	ND	ppbV	NC		25
Bromoform	ND	ND	ppbV	NC		25
Styrene	ND	ND	ppbV	NC		25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC		25
o-Xylene	ND	ND	ppbV	NC		25
4-Ethyltoluene	ND	ND	ppbV	NC		25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC		25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC		25
Benzyl chloride	ND	ND	ppbV	NC		25
1,3-Dichlorobenzene	ND	ND	ppbV	NC		25
1,4-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC		25
Hexachlorobutadiene	ND	ND	ppbV	NC		25

Lab Number: L2271489

Report Date: 01/04/23

Report Date. 01/04/2

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check				Flow Out mL/min	Flow In mL/min	% RPD
L2271489-01	IA-1 (121922)	0813	Flow 5	12/06/22	407489		-	-	-	Pass	4.5	4.2	7
L2271489-01	IA-1 (121922)	384	2.7L Can	12/06/22	407489	L2267201-06	Pass	-30.4	-7.6	-	-	-	-
L2271489-02	IA-2 (121922)	01418	Flow 5	12/06/22	407489		-	-	-	Pass	4.5	4.7	4
L2271489-02	IA-2 (121922)	3422	2.7L can	12/06/22	407489	L2267201-06	Pass	-30.4	-7.7	-	-	-	-
L2271489-03	IA-3 (121922)	0388	Flow 2	12/19/22	408935		-	-	-	Pass	144	5.8	185
L2271489-03	IA-3 (121922)	3101	2.7L Can	12/06/22	407489	L2267201-06	Pass	-30.4	-2.0	-	-	-	-
L2271489-04	IA-3 (121922) DUPLICATE	01504	Flow 5	12/06/22	407489		-	-	-	Pass	4.5	4.1	9
L2271489-04	IA-3 (121922) DUPLICATE	2304	2.7L Can	12/06/22	407489	L2267201-07	Pass	-30.4	-7.2	-	-	-	-
L2271489-05	IA-4 (121922)	01687	Flow 5	12/06/22	407489		-	-	-	Pass	4.5	4.5	0
L2271489-05	IA-4 (121922)	3406	2.7L Can	12/06/22	407489	L2267201-06	Pass	-30.4	-4.6	-	-	-	-
L2271489-06	IA-5 (121922)	02275	Flow 5	12/06/22	407489		-	-	-	Pass	4.5	4.6	2
L2271489-06	IA-5 (121922)	550	2.7L Can	12/06/22	407489	L2267201-06	Pass	-30.3	-3.9	-	-	-	-
L2271489-07	IA-6 (121922)	02232	Flow 5	12/06/22	407489		-	-	-	Pass	4.5	4.5	0
L2271489-07	IA-6 (121922)	180	2.7L Can	12/06/22	407489	L2267201-06	Pass	-30.4	-6.9	-	-	-	-
L2271489-08	OA-1 (121922)	0964	Flow 5	12/06/22	407489		-	-	-	Pass	4.5	4.1	9

Project Name:

Project Number: 01101

CY2022 SMP INDOOR AIR SAMPLING

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number: L2271489

Project Number: 01101 Report Date: 01/04/23

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk		Flow In mL/min	
L2271489-08	OA-1 (121922)	2023	2.7L Can	12/06/22	407489	L2267201-07	Pass	-30.4	-4.9	-	-	-	-

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

L2267201 **Project Number:** CANISTER QC BAT Report Date: 01/04/23

Air Canister Certification Results

Lab ID: L2267201-06

Date Collected: 12/01/22 10:00 Client ID: **CAN 3232 SHELF 8** Date Received: 12/01/22

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 12/02/22 00:31

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2267201

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/04/23

Air Canister Certification Results

Lab ID: L2267201-06

Date Collected: 12/01/22 10:00 Client ID: **CAN 3232 SHELF 8** Date Received: 12/01/22

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lat)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2267201

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/04/23

Air Canister Certification Results

Lab ID: L2267201-06

Date Collected: 12/01/22 10:00 Client ID: **CAN 3232 SHELF 8** Date Received: 12/01/22

Sample Location:

Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2267201

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/04/23

Air Canister Certification Results

Lab ID: L2267201-06

Date Collected: 12/01/22 10:00 Client ID: **CAN 3232 SHELF 8** Date Received: 12/01/22

Sample Location:

Field Prep: Not Specified

Затріе Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2267201

Project Number: CANISTER QC BAT Report Date: 01/04/23

Air Canister Certification Results

Lab ID: L2267201-06

Client ID: CAN 3232 SHELF 8

Date Received: 12

Date Collected:

12/01/22

12/01/22 10:00

Sample Location:

Field Prep: Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution
Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	97		60-140

L2267201

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/04/23

Air Canister Certification Results

Lab ID: L2267201-06

Date Collected: 12/01/22 10:00 Client ID: **CAN 3232 SHELF 8** Date Received: 12/01/22

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 12/02/22 00:31

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2267201

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/04/23

Air Canister Certification Results

Lab ID: L2267201-06

Date Collected: 12/01/22 10:00 Client ID: **CAN 3232 SHELF 8** Date Received: 12/01/22

Sample Location: Field Prep: Not Specified

		ppbV	pbV		ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2267201

Project Number: CANISTER QC BAT Report Date: 01/04/23

Air Canister Certification Results

Lab ID: L2267201-06

Client ID: CAN 3232 SHELF 8

Sample Location:

Date Collected: 12
Date Received: 12

12/01/22 10:00

Field Prep:

12/01/22 Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	97		60-140

L2267201

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/04/23

Air Canister Certification Results

Lab ID: L2267201-07 Date Collected: 12/01/22 10:00

Client ID: CAN 526 SHELF 9 Date Received: 12/01/22 Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 12/02/22 01:09

	ppbV		ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
b							
ND	0.200		ND	0.707			1
ND	0.500		ND	0.861			1
ND	0.500		ND	0.902			1
ND	0.200		ND	0.989			1
ND	0.200		ND	0.413			1
ND	0.200		ND	1.40			1
ND	5.00		ND	6.55			1
ND	0.200		ND	0.511			1
ND	0.200		ND	0.442			1
ND	0.200		ND	0.475			1
ND	0.200		ND	0.777			1
ND	0.200		ND	0.528			1
ND	5.00		ND	9.42			1
ND	0.200		ND	0.842			1
ND	0.200		ND	0.874			1
ND	0.500		ND	1.15			1
ND	1.00		ND	2.38			1
ND	0.200		ND	0.336			1
ND	0.200		ND	1.12			1
ND	0.500		ND	1.23			1
ND	0.500		ND	1.09			1
ND	0.200		ND	0.590			1
ND	0.200		ND	0.606			1
ND	0.200		ND	0.793			1
	ND N	Results RL b ND 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.500 ND 0.200 ND 0.200 ND 0.200 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200	Results RL MDL b ND 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.500 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.200 ND 0.200	Results RL MDL Results b ND 0.200 ND ND 0.500 ND ND ND 0.500 ND ND ND 0.200 ND ND ND 0.200 ND ND ND 5.00 ND ND ND 0.200 ND ND ND 0.500 ND ND ND 0.200 ND ND ND 0.500 ND ND	Results RL MDL Results RL b ND 0.200 ND 0.707 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.441 ND 0.200 ND 0.555 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528 ND 0.200 ND 0.528 ND 0.200 ND 0.842 ND 0.200 ND 0.842 ND 0.500 ND 0.336 <td< td=""><td>Results RL MDL Results RL MDL ND 0.200 ND 0.707 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528 </td><td>Results RL MDL Results RL MDL Qualifier b ND 0.200 ND 0.7077 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528 ND 0.200 ND 0.842 ND</td></td<>	Results RL MDL Results RL MDL ND 0.200 ND 0.707 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528	Results RL MDL Results RL MDL Qualifier b ND 0.200 ND 0.7077 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528 ND 0.200 ND 0.842 ND

L2267201

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/04/23

Air Canister Certification Results

 Lab ID:
 L2267201-07
 Date Collected:
 12/01/22 10:00

 Client ID:
 CAN 526 SHELF 9
 Date Received:
 12/01/22

Client ID: CAN 526 SHELF 9 Date Received: 12/01/22 Sample Location: Field Prep: Not Specified

Затріє Беріт.	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2267201

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/04/23

Air Canister Certification Results

Lab ID: L2267201-07 Client ID: CAN 526 SHELF 9

Sample Location:

Date Collected: 12/01/22 10:00 Date Received: 12/01/22

Field Prep: Not Specified

Sample Depth:

Запіріе Беріп.		ppbV			ug/m3		D	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfield Lab								
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2267201

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/04/23

Air Canister Certification Results

Lab ID: L2267201-07

Client ID: CAN 526 SHELF 9

Sample Location:

Date Collected: 12/01/22 10:00 Date Received: 12/01/22

Field Prep: Not Specified

Sample Depth:

		Vdqq			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2267201

Project Number: CANISTER QC BAT Report Date: 01/04/23

Air Canister Certification Results

Lab ID: L2267201-07 Date Collected: 12/01/22 10:00

Client ID: CAN 526 SHELF 9 Date Received: 12/01/22

Sample Location: Field Prep: Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	97		60-140

L2267201

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/04/23

Air Canister Certification Results

Lab ID: L2267201-07 Date Collected: 12/01/22 10:00

Client ID: CAN 526 SHELF 9 Date Received: 12/01/22 Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/02/22 01:09

Analyst: TJS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2267201

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/04/23

Air Canister Certification Results

Lab ID: L2267201-07
Client ID: CAN 526 SHELF 9

Sample Location:

Date Collected: 12/01/22 10:00 Date Received: 12/01/22

Field Prep: Not Specified

Sample Depth:

Sample Deptil.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2267201

Project Number: CANISTER QC BAT Report Date: 01/04/23

Air Canister Certification Results

 Lab ID:
 L2267201-07
 Date Collected:
 12/01/22 10:00

 Client ID:
 CAN 526 SHELF 9
 Date Received:
 12/01/22

Client ID: CAN 526 SHELF 9 Date Received: 12/01/22 Sample Location: Field Prep: Not Specified

Sample Depth:

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	97		60-140

Serial_No:01042316:51 *Lab Number:* L2271489

Project Name: CY2022 SMP INDOOR AIR SAMPLING

Project Number: 01101 Report Date: 01/04/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

N/A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2271489-01A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2271489-02A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2271489-03A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2271489-04A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2271489-05A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2271489-06A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2271489-07A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2271489-08A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number: L2271489

Project Number: 01101 Report Date: 01/04/23

GLOSSARY

Acronyms

EDL

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number: L2271489

Project Number: 01101 Report Date: 01/04/23

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name: CY2022 SMP INDOOR AIR SAMPLING Lab Number: L2271489

Project Number: 01101 Report Date: 01/04/23

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:CY2022 SMP INDOOR AIR SAMPLINGLab Number:L2271489Project Number:01101Report Date:01/04/23

Report Date: 01/04/2

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:01042316:51

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ΔLPHA	AIR AN	IALY:	SIS	PA	GE	of <u></u>	Date R	ec'd in Lal	o: 1	2/21,	/22		ALPH	A Job	#: L2Z	
320 Forbes Blvd, Ma			Informati					t Informa	ition -	Data D	eliveral	oles		g Inforn		CERT
	FAX: 508-822-3288	Project Na	me:C72	ozz sm	P INDOO	RAIRSA	metras	(S Same	e as Clier	nt info PO#:	01101
Client Informatio	n	Project Lo	cation: 153	CHAND	LER ST	BUFFALL	ACADI NY C	ex Criteria Che	cker.							
Client: ENV. AD	ANTAGE INC.	Project #:	01101	101				(Default base Other Form	0.00	ilatory Criter	ria Indicate	1)				
Address: 3636	N. BUFFARO Rd	Project Ma	inager: M	NNA + S	MAKEY SZUSTA	1	M EM	AIL (standa	ard pdf	0.00			250		A CONTRACTOR OF THE PARTY OF TH	Report Limits
	TRK NT 14127	ALPHA Q	uote #:				57555	litional Del					State/F	ed	Program	Res / Comm
Phone: (716) 66		Turn-Ar	ound Tim	ne			MSZU	stake	enva	dvan	tage.	oom				
Fax: (716) 66	7-3156	⊠ Standar	d 🗅	RUSH (only o	contirmed if pre-ap	oproved?	JKA	rszak6	enva	dvant	age co	m				
Email: Mhanna	Cenvadrantage, com													ANALY	SIS	
	ve been previously analyzed by Alpha pecific Requirements/Comn	Date Due nents:	:		Time:		1						///	0 E	5///	
ALDMAN ALIBAN CHALLAND CONTRACT	Target Compound List:											/		Mans by	///	
	AI	I Col	umn	s Bel	ow N	Must	Be I	Filled	10	ut	a same	•/.	75 SIM PH Submarked	A Mencay	//	
ALPHA Lab ID (Lab Use Only)	Sample ID	End Date	COL Start Time	LECTIO End Time	N Initial Vacuum	Final Vacuum	Sample Matrix*	Sampler's Initials	Can Size	1	I D - Flow Controller	25 5	APH Summer Name	Sumples	Sample Con	nments (i.e. PID)
71489-01	IA-1(121922)	12/19/22	0810	1610	29.47	7.34	AA	X	2.71	384	0813	X			AMBIAM	TAIR W/
-02	IA-2(121922)		0820	1620	29.68	7.74		SK		3422	01418	X			PID OIG	oppm FOR
	IA-3(121922)		0830	1630	29.63	7.03		JK		3101	0388	X			ALL SA	AMPLES
- 04	IA-3(121922) DUPLICATE		0830	1630	29.69	7.25		JK		2304	01687	X				
- 05	TA-4(121922)		0845	1645	29.74	5.38		5h		3406	01504	X				
- 06			0817	1617	28.33	100 mm		SIL		550	02275	X				
- 07	IN-6(121922)		0800	1606	29.64			JK		180	02232	X				
- 67	ONDERT OA - 1 (121922)	4	0815	1615	29,96	6.79	\	SK	4	2023	0464	X				
*SAMPL	E MATRIX CODES SY	A = Ambien V = Soil Vap	or/Landfill ([c	ontaine	r Type		ŋ			completely. Sa	early, legibly and imples can not be
Page 75° of 275° (21	for 1	Relinquis		mi	Dat 12/20/ 12/2	1/2 935 1/500 1/12 0	5	Recei	ved By:		13	12/2	Date/Time	935	logged in and to clock will not sto guities are rescussive and consider and consider seems and consider reverse side.	urnaround time art until any ambi- olved. All samples subject to Alpha's aditions.

APPENDIX E WELL DECOMMISSIONING DOCUMENTS

FIGURE 3 WELL DECOMMISSIONING RECORD

Site Name: Pierce Ar	row Business Center - BCP Site C915312	Well I.D.: SB 126 / MW-3
Site Location: 155 C	handler Street	Driller:Steven L. Marchetti
Drilling Co.:	Matrix Environmental Technologies	Inspector: Jason Kryszak
		Date: 10/13/2022

DECOMMISSIONING	WELL SCHEMA	WELL SCHEMATIC*					
(Fill in all that appl	y)	Depth					
		(feet)					
<u>OVERDRILLING</u>							
Interval Drilled	N/A	_					
Drilling Method(s)	N/A	_					
Borehole Dia. (in.)	N/A	_					
Temporary Casing Installed? (y/n)	N/A	_					
Depth temporary casing installed	N/A						
Casing type/dia. (in.)	N/A	_					
Method of installing	N/A	<u> </u>					
CASING PULLING		-					
Method employed	N/A	_					
Casing retrieved (feet)	N/A						
Casing type/dia. (in)	N/A						
<u>CASING PERFORATING</u>		_					
Equipment used	N/A						
Number of perforations/foot	N/A	<u> </u>					
Size of perforations	N/A	<u> </u>					
Interval perforated	N/A	_					
GROUTING		\vdash					
Interval grouted (FBLS)	20.0 - 0.5						
# of batches prepared	1						
For each batch record:							
Quantity of water used (gal.)	2.0						
Quantity of cement used (lbs.)	23.5						
Cement type	Portland I	<u></u>					
Quantity of bentonite used (lbs.)	1.0	<u> </u>					
Quantity of calcium chloride used (lbs.)	0						
Volume of grout prepared (gal.)	4.0	_					
Volume of grout used (gal.)	4.0						
COMMENTS:	1	* Sketch in all relevant decommissioning	data includina				
Well riser broken off approximately 2.0 feet below grad-	e, tremie grouted in accordance	interval overdrilled, interval grouted, ca					
to CP-43 to 0.5 feet below grade. Surface repaired with	well stickup, etc.	Sing for in note,					
See the attached well diagram log for well so							
Atom is Maretin							

Drilling Contractor

Department Representative

						Holo No :	SB 126/MW-3		Date started	l. 7/19/17					
Hazar	d E	/aluations	s, Inc.			Sheet 1 of			Date Started Date Finishe		7				
Client:	R& N	// Leasing		Method of	Investigation		<u> </u>								
					-		ch well at total								
Locatio Project			andler Street		Drilling Co	.: Trec Env	ronmental			Weather:					
		ager: Eric	Betzold		Driller: Jim and Eric										
			Cample		Drill Rig: G	Seoprobe		Groundwater							
Depth			Sample			Sam			Field Analytical	Well	and Other				
(ft.)	No.	Depth (ft.)	Blow	s/6''		Descri	ption		Readings	Details	Observations				
	1	0-4													
					(Cement/Bento	nite mix (0-2')								
										` ₩					
<u> 4 </u>	2	4-8								` ₩					

										₩ ₩					
					2	2" sch. 40 PVC	riser (0'-10')			₩ ₩					
_ 8 _	3	8-12								***					
						Bentonite pe	ellets (2-8')								
— 12 —	3	12-16													
					2" s	sch. 40 PVC ((1.10 slot screen)								
			N/A: Well Cor Geoprobe												
 16 	4	16-20	,	Ü		#0 sand	(8-20')			l					
						Bottom of sc		\rightarrow							
<u> </u>						Bottom of bor	ehole 20' bg								
— 24 —															
00															
— 30 — Sample	- eayT :	:S:			•			F	Backfill Well I	<ey< td=""><td></td></ey<>					
	S=	Split Spoon:		_ T= S	Shelby Tube:				nt/Bentonite		Native Fill				
N = AS				O =				Sand		*********	Bentonite				
,.5	D														

3636 N. Buffalo Road SB126-AZARD EVALUATIONS Orchard Park, NY 14127 Boring No: MW-3 716-667-3130 Remedial Investigation; 155-157 Chandler Street, Buffalo HEI Representative E. Betzold Project Name & Location Project Number: e1601 End Date 7/13/2017 Start Date 7/13/2017 Type of Drill Rig Track Mount GW Depth While Drilling 12' Drilling Contractor TREC Env. GW Depth at Completion Sampler Type: MC OVM Sample Sample Sample Interval Recovery SAMPLE DESCRIPTION Reading Depth (ft) No. (feet) (inches) (ppm) 1 0-4 40 Dk. Brown f/c Sand, little Gravel, little Slag, moist (FILL) Grades to ... some Slag 0 Grades to ... little Slag 2 Grades to ... tr. Slag, tr. Gravel, odor, stained 25 3 100 2 4-8 48 Red/Brown CLAY & SILT, tr. f/c Sand, tr. Gravel, moist 500 5 200 6 3 8-12 48 8 0 9 0 10 n 11 0.5 4 12-16 48 12 0.5 Grades to ... wet 13 0.2

14 0.2 15 0.2 16-20 48 5 Grades to ... moist 16 0.2 18 0.1 20 0.1 22 0.1 Refusal encountered at 22.5' bg 24

MW installed to 20' bg - 7/13/17 Notes:

Notes:

General

Notes:

1 - Boundary between soil types represented with stratification line. Transitions may be gradual. Depths are approximate.

2 - Groundwater (GW) depths approximate at time of sampling. Fluctuations in groundwater may occur.

3 - f=fine; m=medium; c=coarse

4 - and (36-50%); some (21-35%); little (11-20%); trace (1-10%)

MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube BC - Bedrock Core

			_			Hole No :	SB 126/MW-3		Date started	l· 7/12/17	
Hazar	d Ev	/aluations	s, Inc.			Sheet 1 of			Date Started Date Finishe		7
Client:	R&I	M Leasing		Method of	Investigation		e 3.25" hollow-				
	41	-				Set 2-in	ch well at total	depth	of boring.		
Project			andler Street		Drillina Co	.: Trec Env	ironmental			Weather:	
		ager: Eric	Betzold		Driller: Jin	n and Eric					
	Sample					Seoprobe		1	Field		Groundwater
Depth			Sample			Sam			Analytical	Well	and Other
(ft.)	No.	Depth (ft.)	Blows	s/6''		Descri	ption		Readings	Details	Observations
	1	0-4									
						Cement/Bento	nite mix (0-2')				

<u> 4 </u>	2	4-8								` ₩	
										░ ∷	
										░ ∷	
						2" sch. 40 PVC	Criser (0'-10')			` ₩	
_ 8 _	3	8-12								**	
						Bentonite pe	ellets (2-8')				
— 12 —	3	12-16									
					2" s	sch. 40 PVC (().10 slot screen)			Ι	
			N/A: Well Cor Geoprobe								
 16 	4	16-20	,	Ü		#0 sand	(8-20')			l	
						Bottom of sc					
<u> </u>						Bottom of bor	ehole 20' bg				
— 24 —											
00											
— 30 — Sample	Tyn∈	es:			•			1	Backfill Well I	<ev< td=""><td>•</td></ev<>	•
	S=	Split Spoon:		_ T= S	Shelby Tube:				nt/Bentonite		Native Fill
N = AS				<u> </u>				Sand			Bentonite
/\	v. D	. 500					<u> </u>				

UATIO	ONS		Well Da	ta Sneet		
Date:	7/20/201	7	_	Job #:	e1601	
Crew:	Eric Betzo	old				
Well Dep	oth:	23.07' TC	C			
Initial Ph	ase Level:					
Initial Wa	ater Level:	21.97' TC	C			
Volume	Calculation:	1.1 X .16	3 X 3 = 0	54 gal		
DTB-DT	W*0.163=1-v	well vol				
		Ī	Purge	Record		Ī
	Time	Volume	рН	Cond.	Temp.	Turbidity
	3:25pm	0.5 gal				Low
			SAMPI	_E RECORD		
Date:	7/28/201	7		Volume:		
Time:				Analysis:		
Crew: Er	ric Betzold/G	reg Bittner		Chain of C	ustody #:	
Method:	Low Flow	Pump	<u> </u>	Sample Ty	pe:	
Sample	ID: SB126/M	W-3				_
Water Q	uality:			Diameter	Multiply by	
рН:				1"	0.041	
Conduct	ivity:			2"	0.163	
Tempera	ature:			3"	0.367	
Turbidity	<i>r</i> :			4"	0.653	
				6"	1.468	
				8"	2.61	_
Comme	nts:	OVM hea	dspace -	6.6 ppm		
		Well casi	ng sticks	up 3' above gra	ade level	
				6:	1 Bet A	

TOC - Top of casing

Signature:

APPENDIX F

DATA USABILIY SUMMARY REPORTS EQUIS DATA SUBMITAL CONFIRMATIONS

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

155 Chandler St. SDG#L2271489 January 25, 2023 Sampling date: 12/19/2022

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Environmental Advantage, project located at 155 Chandler St., Alpha Analytical, SDG#L2271489 submitted to Vali-Data of WNY, LLC on January 12, 2023. This DUSR has been prepared in general compliance with NYSDEC Analytical Services Protocols and USEPA National Functional Guidelines (SOP NO. HW-31, revision 6). The laboratory performed the analysis using Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

ID	Sample ID	Laboratory ID
1	IA-1 (121922)	L2271489-01
2	IA-2 (121922)	L2271489-02
3	IA-3 (121922)	L2271489-03
4	IA-3 (121922) DUPLICATE	L2271489-04
5	IA-4 (121922)	L2271489-05
6	IA-5 (121922)	L2271489-06
7	IA-6 (121922)	L2271489-07
8	OA-1 (121922)	L2271489-08

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD/Duplicate
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check
- -Canister Certification Blanks

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

155 Chandler St. SDG# L2271489

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Initial Calibration.

Sample: DUSR ID#6 was diluted due to high target analyte concentrations.

All results were recorded to the reporting limits.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

INTERNAL STANDARD (IS)

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met except Methylene Chloride was detected in DUSR ID#4 but not #3.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD/DUPLICATE

No MS/MSD/Duplicate was acquired.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met except the %Rec of a target analyte was outside QC limits in the Initial Calibration and the Initial Calibration Verification and should be qualified as estimated in the associated samples, blanks and spikes.

ICal/ICV Instrument	Target Analyte	%RSD/%D	Qualifier	Associated Sample
ICal Airlab19	Benzyl chloride	30.88	UJ/J	WG1729583, 1-8, 3DUP
ICV Airlab19	Benzyl chloride	-31.1	UJ/J	WG1729583, 1-8, 3DUP

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

CANISTER CERTIFICATION BLANKS

All criteria were met.

Project Name:CY2022 SMP INDOOR AIR SAMPLINGLab Number:L2271489Project Number:01101Report Date:01/04/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:CY2022 SMP INDOOR AIR SAMPLINGLab Number:L2271489Project Number:01101Report Date:01/04/23

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on December 6, 2022. The canister certification results are provided as an addendum.

L2271489-06: The sample was re-analyzed on dilution in order to quantitate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

L2271489-06D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Report Date: 01/04/23

Title: Technical Director/Representative

Christoph J Oulevon

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING Project Nur

Lab ID : L2271489-01 Client ID : IA-1 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919240
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:10

Date Received : 12/20/22 Date Analyzed : 01/03/23 17:50

Dilution Factor : 1

Analyst : TJS Instrument ID : AIRLAB19 GC Column : RTX-1

			ppbV		ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.503	0.200		2.49	0.989			
74-87-3	Chloromethane	0.461	0.200		0.952	0.413			
76-14-2	Freon-114	ND	0.200		ND	1.40		U	
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
75-00-3	Chloroethane	ND	0.200		ND	0.528		U	
64-17-5	Ethanol	17.2	5.00		32.4	9.42			
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U	
67-64-1	Acetone	4.10	1.00		9.74	2.38			
75-69-4	Trichlorofluoromethane	0.241	0.200		1.35	1.12			
67-63-0	Isopropanol	2.03	0.500		4.99	1.23			
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U	
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U	
76-13-1	Freon-113	ND	0.200		ND	1.53		U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U	
78-93-3	2-Butanone	ND	0.500		ND	1.47		U	
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U	
67-66-3	Chloroform	ND	0.200		ND	0.977		U	
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	ND	0.200		ND	0.705		U	
71-43-2	Benzene	ND	0.200		ND	0.639		U	

ppbV

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-01 Client ID : IA-1 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919240
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:10

Date Received : 12/20/22 Date Analyzed : 01/03/23 17:50

Dilution Factor : 1
Analyst : TJS
Instrument ID : AIRL

ug/m3

Instrument ID : AIRLAB19 GC Column : RTX-1

			ppsv			ug/iiio		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U
142-82-5	Heptane	ND	0.200		ND	0.820		U
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U
108-88-3	Toluene	ND	0.200		ND	0.754		U
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U
75-25-2	Bromoform	ND	0.200		ND	2.07		U
100-42-5	Styrene	ND	0.200		ND	0.852		U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U
95-47-6	o-Xylene	ND	0.200		ND	0.869		U
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-01 Client ID : IA-1 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919240
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:10

Date Received : 12/20/22 Date Analyzed : 01/03/23 17:50

Dilution Factor : 1
Analyst : TJS

Instrument ID : AIRLAB19 GC Column : RTX-1

	ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
Hexachlorobutadiene	ND	0.200		ND	2.13		U	
	1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene	1,4-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2,4-Trichlorobenzene ND	1,4-Dichlorobenzene ND 0.200 1,2-Dichlorobenzene ND 0.200 1,2,4-Trichlorobenzene ND 0.200	Parameter Results RL MDL 1,4-Dichlorobenzene ND 0.200 1,2-Dichlorobenzene ND 0.200 1,2,4-Trichlorobenzene ND 0.200	Parameter Results RL MDL Results 1,4-Dichlorobenzene ND 0.200 ND 1,2-Dichlorobenzene ND 0.200 ND 1,2,4-Trichlorobenzene ND 0.200 ND	Parameter Results RL MDL Results RL 1,4-Dichlorobenzene ND 0.200 ND 1.20 1,2-Dichlorobenzene ND 0.200 ND 1.20 1,2,4-Trichlorobenzene ND 0.200 ND 1.48	Parameter Results RL MDL Results RL MDL 1,4-Dichlorobenzene ND 0.200 ND 1.20 1,2-Dichlorobenzene ND 0.200 ND 1.20 1,2,4-Trichlorobenzene ND 0.200 ND 1.48	Parameter Results RL MDL Results RL MDL Qualifier 1,4-Dichlorobenzene ND 0.200 ND 1.20 U 1,2-Dichlorobenzene ND 0.200 ND 1.20 U 1,2,4-Trichlorobenzene ND 0.200 ND 1.48 U

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING Project !

Lab ID : L2271489-02 Client ID : IA-2 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919241
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:20

: 1

Date Received : 12/20/22
Date Analyzed : 01/03/23 18:31

Analyst : TJS Instrument ID : AIRLAB19 GC Column : RTX-1

Dilution Factor

ppbV ug/m3 MDL MDL Results Results RL RL Qualifier CAS NO. **Parameter** Dichlorodifluoromethane 75-71-8 0.515 0.200 2.55 0.989 74-87-3 Chloromethane 0.513 0.200 1.06 0.413 76-14-2 Freon-114 ND 0.200 ND 1.40 U 106-99-0 1,3-Butadiene ND 0.200 ND 0.442 U 74-83-9 Bromomethane ND 0.200 ND 0.777 п 75-00-3 Chloroethane ND 0.200 ND 0.528 U 64-17-5 Ethanol 15.5 5.00 29.2 9.42 593-60-2 Vinyl bromide ND 0.200 ND 0.874 U 67-64-1 8.52 1.00 20.2 Acetone 2.38 --75-69-4 Trichlorofluoromethane 0.221 0.200 1.24 1.12 67-63-0 Isopropanol 1.56 0.500 3.83 1.23 75-65-0 **Tertiary butyl Alcohol** ND 0.500 ND 1.52 U 75-09-2 Methylene chloride ND 0.500 ND 1.74 U 107-05-1 3-Chloropropene ND 0.200 --ND 0.626 --U 75-15-0 Carbon disulfide 1.90 0.200 5.92 0.623 ND U 76-13-1 Freon-113 0.200 ND 1.53 156-60-5 trans-1,2-Dichloroethene ND 0.200 ND 0.793 U 75-34-3 1,1-Dichloroethane ND 0.200 ND 0.809 U 1634-04-4 ND 0.200 U Methyl tert butyl ether ND 0.721 78-93-3 2-Butanone 1.37 0.500 4.04 1.47 141-78-6 **Ethyl Acetate** ND 0.500 ND U 1.80 67-66-3 Chloroform ND 0.200 U --ND 0.977 --109-99-9 Tetrahydrofuran 5.32 0.500 15.7 1.47 107-06-2 1,2-Dichloroethane ND 0.200 ND 0.809 U 110-54-3 n-Hexane ND 0.200 ND 0.705 U U ND 0.200 ΝD 71-43-2 Renzene 0.639

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-02 Client ID : IA-2 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919241
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:20 Date Received : 12/20/22

: 1

Date Analyzed : 01/03/23 18:31

Analyst : TJS Instrument ID : AIRLAB19 GC Column : RTX-1

Dilution Factor

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	0.217	0.200		0.782	0.721			
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	ND	0.200		ND	0.820		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	ND	0.200		ND	0.754		U	
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-02 Client ID : IA-2 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919241
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:20

Date Received : 12/20/22
Date Analyzed : 01/03/23 18:31

Dilution Factor : 1 Analyst : TJS

Instrument ID : AIRLAB19 GC Column : RTX-1

		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING P

Lab ID : L2271489-03 Client ID : IA-3 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919242
Sample Amount : 250 ml

Lab Number : L2271489
Project Number : 01101

Date Collected : 12/19/22 16:30 Date Received : 12/20/22

Date Analyzed : 01/03/23 19:12

Dilution Factor : 1
Analyst : TJS
Instrument ID : AIRLAB19

GC Column : RTX-1

Janin	DIE AINOUIL . 230 IIII				90.00	Julilii	. 13.17	N-1
			ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-71-8	Dichlorodifluoromethane	0.499	0.200		2.47	0.989		
74-87-3	Chloromethane	0.487	0.200		1.01	0.413		
76-14-2	Freon-114	ND	0.200		ND	1.40		U
06-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528		U
64-17-5	Ethanol	323	5.00		609	9.42		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U
67-64-1	Acetone	74.0	1.00		176	2.38		
75-69-4	Trichlorofluoromethane	0.213	0.200		1.20	1.12		
67-63-0	Isopropanol	54.6	0.500		134	1.23		
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U
07-05-1	3-Chloropropene	ND	0.200		ND	0.626		U
75-15-0	Carbon disulfide	0.577	0.200		1.80	0.623		
76-13-1	Freon-113	ND	0.200		ND	1.53		U
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U
78-93-3	2-Butanone	ND	0.500		ND	1.47		U
141-78-6	Ethyl Acetate	13.8	0.500		49.7	1.80		
67-66-3	Chloroform	0.785	0.200		3.83	0.977		
09-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U
110-54-3	n-Hexane	ND	0.200		ND	0.705		U
71-43-2	Benzene	ND	0.200		ND	0.639	-	U

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-03 Client ID : IA-3 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919242
Sample Amount : 250 ml

Date Collected : 12/19/22 16:30 Date Received : 12/20/22

Project Number : 01101

Lab Number

Date Analyzed : 01/03/23 19:12 Dilution Factor : 1

: L2271489

Analyst : TJS Instrument ID : AIRLAB19 GC Column : RTX-1

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	ND	0.200		ND	0.820		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	ND	0.200		ND	0.754		U	
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-03 Client ID : IA-3 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919242
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:30 Date Received : 12/20/22

Date Analyzed : 01/03/23 19:12

Dilution Factor : 1
Analyst : TJS
Instrument ID : AIRLAB19

GC Column : RTX-1

CAS NO. Parameter	ppbV			ug/m3				
	Results	RL	MDL	Results	RL	MDL	Qualifier	
1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
Hexachlorobutadiene	ND	0.200		ND	2.13		U	
	1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene	1,4-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2,4-Trichlorobenzene ND	Parameter Results RL 1,4-Dichlorobenzene ND 0.200 1,2-Dichlorobenzene ND 0.200 1,2,4-Trichlorobenzene ND 0.200	Parameter Results RL MDL 1,4-Dichlorobenzene ND 0.200 1,2-Dichlorobenzene ND 0.200 1,2,4-Trichlorobenzene ND 0.200	Parameter Results RL MDL Results 1,4-Dichlorobenzene ND 0.200 ND 1,2-Dichlorobenzene ND 0.200 ND 1,2,4-Trichlorobenzene ND 0.200 ND	Parameter Results RL MDL Results RL 1,4-Dichlorobenzene ND 0.200 ND 1.20 1,2-Dichlorobenzene ND 0.200 ND 1.20 1,2,4-Trichlorobenzene ND 0.200 ND 1.48	Parameter Results RL MDL Results RL MDL 1,4-Dichlorobenzene ND 0.200 ND 1.20 1,2-Dichlorobenzene ND 0.200 ND 1.20 1,2,4-Trichlorobenzene ND 0.200 ND 1.48	Parameter Results RL MDL Results RL MDL Qualifier 1,4-Dichlorobenzene ND 0.200 ND 1.20 U 1,2-Dichlorobenzene ND 0.200 ND 1.20 U 1,2,4-Trichlorobenzene ND 0.200 ND 1.48 U

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING Project Number

Lab ID : L2271489-04

Client ID : IA-3 (121922) DUPLICATE

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919244
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:30

Date Received : 12/20/22

Date Analyzed : 01/03/23 20:34 Dilution Factor : 1

Analyst : TJS Instrument ID : AIRLAB19

Jaiii	pie Allioulit . 230 illi				90.00	Julilii	. 13.12	N- I		
	_		ppbV		ug/m3			_		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71-8	Dichlorodifluoromethane	0.491	0.200		2.43	0.989				
74-87-3	Chloromethane	0.494	0.200		1.02	0.413				
76-14-2	Freon-114	ND	0.200		ND	1.40		U		
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	ND	0.200		ND	0.528		U		
64-17-5	Ethanol	262	5.00		494	9.42				
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U		
67-64-1	Acetone	68.4	1.00		162	2.38				
75-69-4	Trichlorofluoromethane	0.210	0.200		1.18	1.12				
67-63-0	Isopropanol	48.2	0.500		118	1.23				
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U		
75-09-2	Methylene chloride	0.936	0.500		3.25	1.74				
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U		
75-15-0	Carbon disulfide	0.490	0.200		1.53	0.623				
76-13-1	Freon-113	ND	0.200		ND	1.53		U		
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U		
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U		
78-93-3	2-Butanone	ND	0.500		ND	1.47		U		
141-78-6	Ethyl Acetate	11.2	0.500		40.4	1.80				
67-66-3	Chloroform	0.713	0.200		3.48	0.977				
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U		
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U		
110-54-3	n-Hexane	ND	0.200		ND	0.705		U		
71-43-2	Benzene	ND	0.200		ND	0.639		U		

ppbV

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-04

Client ID : IA-3 (121922) DUPLICATE

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919244
Sample Amount : 250 ml

Dilution Factor : 1 Analyst : TJS

ug/m3

Lab Number

Project Number

Date Collected

Date Received

Date Analyzed

Instrument ID : AIRLAB19 GC Column : RTX-1

: L2271489

: 12/20/22

: 12/19/22 16:30

: 01/03/23 20:34

: 01101

MDL MDL Results RL Results RL CAS NO. **Parameter** Qualifier Cyclohexane ND 0.200 ND 0.688 U 110-82-7 78-87-5 1,2-Dichloropropane ND 0.200 ND 0.924 U 75-27-4 ND ND U Bromodichloromethane 0.200 1.34 123-91-1 ND 0.200 ND 0.721 U 1,4-Dioxane 540-84-1 2,2,4-Trimethylpentane ND 0.200 ND 0.934 п 142-82-5 Heptane ND 0.200 ND 0.820 U 10061-01-5 ND u cis-1,3-Dichloropropene 0.200 ND 0.908 108-10-1 4-Methyl-2-pentanone ND 0.500 ND 2.05 U 10061-02-6 0.200 trans-1,3-Dichloropropene ND ND 0.908 U --79-00-5 1,1,2-Trichloroethane ND 0.200 ND 1.09 U 108-88-3 Toluene ND 0.200 ND 0.754 U 591-78-6 2-Hexanone ND 0.200 ND 0.820 U 124-48-1 Dibromochloromethane ND 0.200 ND 1.70 U 106-93-4 1,2-Dibromoethane ND 0.200 ND 1.54 --U 108-90-7 Chlorobenzene ND 0.200 ND 0.921 U 100-41-4 Ethylbenzene ND 0.200 ND 0.869 U 179601-23-1 p/m-Xylene ND 0.400 ND 1.74 U 75-25-2 **Bromoform** ND 0.200 ND 2.07 U ND U 100-42-5 Styrene 0.200 ND 0.852 79-34-5 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 U 95-47-6 0.200 U o-Xylene ND ND 0.869 0.200 622-96-8 4-Ethyltoluene ND --ND 0.983 --U 108-67-8 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 U 95-63-6 1,2,4-Trimethylbenzene ND 0.200 ND 0.983 ш 100-44-7 ND 0.200 1.04 U Benzyl chloride ND 541-73-1 U ND 0.200 ΝD 1,3-Dichlorobenzene 1.20

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-04

Client ID : IA-3 (121922) DUPLICATE

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15

Lab File ID : R1919244 Sample Amount : 250 ml Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:30

Date Received : 12/20/22

Date Analyzed : 01/03/23 20:34 Dilution Factor : 1

Analyst : TJS

Instrument ID : AIRLAB19 GC Column : RTX-1

CAS NO. Pa		ppbV				ug/m3			
	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-05 Client ID : IA-4 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919245
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:45 Date Received : 12/20/22

Date Analyzed : 01/03/23 21:15

Dilution Factor : 1
Analyst : TJS
Instrument ID : AIRLAB19
GC Column : RTX-1

Jann	DIE AITIOUITE . 230 IIII				90.00	numm	. 13.17	N-1	
			ppbV		ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.490	0.200		2.42	0.989			
74-87-3	Chloromethane	0.483	0.200		0.997	0.413			
76-14-2	Freon-114	ND	0.200		ND	1.40		U	
06-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
75-00-3	Chloroethane	ND	0.200		ND	0.528		U	
64-17-5	Ethanol	66.3	5.00		125	9.42			
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U	
67-64-1	Acetone	369	1.00		877	2.38			
75-69-4	Trichlorofluoromethane	0.211	0.200		1.19	1.12			
67-63-0	Isopropanol	245	0.500		602	1.23			
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U	
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U	
76-13-1	Freon-113	ND	0.200		ND	1.53		U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U	
78-93-3	2-Butanone	ND	0.500		ND	1.47		U	
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U	
67-66-3	Chloroform	ND	0.200		ND	0.977		U	
09-99-9	Tetrahydrofuran	0.548	0.500		1.62	1.47			
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	ND	0.200		ND	0.705		U	
71-43-2	Benzene	ND	0.200		ND	0.639		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-05 Client ID : IA-4 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919245
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:45

Date Received : 12/20/22

Date Analyzed : 01/03/23 21:15 Dilution Factor : 1

Analyst : TJS Instrument ID : AIRLAB19 GC Column : RTX-1

Samp	Sample Amount . 230 mi					GC Column . KTX-1			
			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	ND	0.200		ND	0.820		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	0.421	0.200		1.59	0.754			
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-05 Client ID : IA-4 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919245
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:45

Date Received : 12/20/22 Date Analyzed : 01/03/23 21:15

Dilution Factor : 1
Analyst : TJS

Instrument ID : AIRLAB19 GC Column : RTX-1

CAS NO.	Parameter	ppbV				ug/m3			
		Results	RL	MDL	Results	RL	MDL	Qualifier	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-06 Client ID : IA-5 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919246
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:17 Date Received : 12/20/22

Date Analyzed : 01/03/23 21:56

Dilution Factor : 1
Analyst : TJS
Instrument ID : AIRLAB19
GC Column : RTX-1

Oam	oumpie Amount . 200 mi					. KTX I				
			ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71-8	Dichlorodifluoromethane	0.560	0.200		2.77	0.989				
74-87-3	Chloromethane	0.511	0.200		1.06	0.413				
76-14-2	Freon-114	ND	0.200		ND	1.40		U		
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	ND	0.200		ND	0.528		U		
64-17-5	Ethanol	164	5.00		309	9.42				
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U		
67-64-1	Acetone	799	1.00		1900	2.38		E		
75-69-4	Trichlorofluoromethane	0.216	0.200		1.21	1.12				
67-63-0	Isopropanol	968	0.500		2380	1.23		E		
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U		
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U		
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U		
76-13-1	Freon-113	ND	0.200		ND	1.53		U		
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U		
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U		
78-93-3	2-Butanone	0.793	0.500		2.34	1.47				
141-78-6	Ethyl Acetate	0.634	0.500		2.28	1.80				
67-66-3	Chloroform	ND	0.200		ND	0.977		U		
109-99-9	Tetrahydrofuran	1.64	0.500		4.84	1.47				
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U		
110-54-3	n-Hexane	0.233	0.200		0.821	0.705				
71-43-2	Benzene	0.247	0.200		0.789	0.639				

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-06 Client ID : IA-5 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919246
Sample Amount : 250 ml

Lab Number : L2271489
Project Number : 01101

Date Collected : 12/19/22 16:17

Date Received : 12/20/22 Date Analyzed : 01/03/23 21:56

Dilution Factor : 1 Analyst : TJS

Instrument ID : AIRLAB19 GC Column : RTX-1

			ppbV			ug/m3		_	
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	0.274	0.200		1.12	0.820			
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	0.898	0.200		3.38	0.754			
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-06 Client ID : IA-5 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919246
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:17

Date Received : 12/20/22 Date Analyzed : 01/03/23 21:56

Dilution Factor : 1 Analyst : TJS

Instrument ID : AIRLAB19
GC Column : RTX-1

CAS NO.	Parameter	ppbV				ug/m3			
		Results	RL	MDL	Results	RL	MDL	Qualifier	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc. Lab Number : L2271489
Project Name : CY2022 SMP INDOOR AIR SAMPLING Project Number : 01101

Sample Location : 155 CHANDLER ST. BUFFALO, NY Date Analyzed : 01/04/23 06:45

Sample Matrix: AIRDilution Factor: 10Analytical Method: 48,TO-15Analyst: TJSLab File ID: R1919258Instrument ID: AIRLAB19Sample Amount: 25.0 mlGC Column: RTX-1

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
67-64-1	Acetone	1090	10.0		2590	23.8			
67-63-0	Isopropanol	1190	5.00		2930	12.3			

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-07 Client ID : IA-6 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919247
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:06

Date Received : 12/20/22 Date Analyzed : 01/03/23 22:37

Dilution Factor : 1
Analyst : TJS
Instrument ID : AIRLAB19

Oam	oic Amount . 200 mi				00 00	Jiaiiiii		` '		
			ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71-8	Dichlorodifluoromethane	0.498	0.200		2.46	0.989				
74-87-3	Chloromethane	0.716	0.200		1.48	0.413				
76-14-2	Freon-114	ND	0.200		ND	1.40		U		
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	ND	0.200		ND	0.528		U		
64-17-5	Ethanol	64.8	5.00		122	9.42				
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U		
67-64-1	Acetone	23.0	1.00		54.6	2.38				
75-69-4	Trichlorofluoromethane	0.213	0.200		1.20	1.12				
67-63-0	Isopropanol	23.2	0.500		57.0	1.23				
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U		
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U		
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U		
76-13-1	Freon-113	ND	0.200		ND	1.53		U		
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809	-	U		
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721	-	U		
78-93-3	2-Butanone	ND	0.500		ND	1.47		U		
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U		
67-66-3	Chloroform	ND	0.200		ND	0.977		U		
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U		
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U		
110-54-3	n-Hexane	1.25	0.200		4.41	0.705				
71-43-2	Benzene	0.540	0.200		1.73	0.639				

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-07 Client ID : IA-6 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919247
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:06

: 1

Date Received : 12/20/22 Date Analyzed : 01/03/23 22:37

Analyst : TJS Instrument ID : AIRLAB19 GC Column : RTX-1

Dilution Factor

ppbV ug/m3 MDL MDL Results Results RL RL Qualifier CAS NO. **Parameter** Cyclohexane 0.456 0.200 0.688 110-82-7 1.57 78-87-5 1,2-Dichloropropane ND 0.200 ND 0.924 U 75-27-4 ND ND U Bromodichloromethane 0.200 1.34 123-91-1 ND 0.200 ND 0.721 U 1,4-Dioxane 540-84-1 2,2,4-Trimethylpentane 0.529 0.200 0.934 2.47 142-82-5 Heptane 0.692 0.200 2.84 0.820 10061-01-5 ND ND U cis-1,3-Dichloropropene 0.200 0.908 108-10-1 4-Methyl-2-pentanone ND 0.500 ND 2.05 U 10061-02-6 0.200 U trans-1,3-Dichloropropene ND ND 0.908 --79-00-5 1,1,2-Trichloroethane ND 0.200 ND 1.09 U 108-88-3 Toluene 2.22 0.200 8.37 0.754 591-78-6 2-Hexanone ND 0.200 ND 0.820 U 124-48-1 Dibromochloromethane ND 0.200 ND 1.70 U 106-93-4 1,2-Dibromoethane ND 0.200 ND 1.54 --U 108-90-7 Chlorobenzene ND 0.200 ND 0.921 U 100-41-4 Ethylbenzene 0.338 0.200 1.47 0.869 179601-23-1 p/m-Xylene 1.17 0.400 5.08 1.74 75-25-2 **Bromoform** ND 0.200 ND 2.07 U ND U 100-42-5 Styrene 0.200 ND 0.852 ND 79-34-5 1,1,2,2-Tetrachloroethane 0.200 ND 1.37 U 95-47-6 0.200 o-Xylene 0.404 1.75 0.869 ND 0.200 U 622-96-8 4-Ethyltoluene --ND 0.983 --108-67-8 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 U 95-63-6 1,2,4-Trimethylbenzene 0.230 0.200 1.13 0.983 100-44-7 ND 0.200 1.04 Benzyl chloride ND 541-73-1 U ND 0.200 ΝD 1,3-Dichlorobenzene 1.20

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-07 Client ID : IA-6 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15

Lab File ID : R1919247

Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:06

Date Received : 12/20/22 Date Analyzed : 01/03/23 22:37

Dilution Factor : 1
Analyst : TJS
Instrument ID : AIRLAB19
GC Column : RTX-1

ppbV ug/m3 MDL Results MDL Results RL RL Qualifier CAS NO. **Parameter** U 106-46-7 ND 0.200 ND 1,4-Dichlorobenzene 1.20 95-50-1 1,2-Dichlorobenzene ND 0.200 ND 1.20 U 120-82-1 ND 0.200 ND 1.48 U 1,2,4-Trichlorobenzene 87-68-3 Hexachlorobutadiene ND 0.200 ND 2.13 U

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-08 Client ID : OA-1 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919248
Sample Amount : 250 ml

Lab Number : L2271489
Project Number : 01101

Date Collected : 12/19/22 16:15 Date Received : 12/20/22

Date Analyzed : 01/03/23 23:18

: 1

Analyst : TJS Instrument ID : AIRLAB19 GC Column : RTX-1

Dilution Factor

ppbV ug/m3 MDL MDL Results Results RL RL Qualifier CAS NO. **Parameter** Dichlorodifluoromethane 75-71-8 0.487 0.200 2.41 0.989 74-87-3 Chloromethane 0.454 0.200 0.938 0.413 Freon-114 76-14-2 ND 0.200 ND 1.40 U 106-99-0 1,3-Butadiene ND 0.200 ND 0.442 U 74-83-9 Bromomethane ND 0.200 ND 0.777 п 75-00-3 Chloroethane ND 0.200 ND 0.528 U 64-17-5 Ethanol ND ND 9.42 u 5.00 593-60-2 Vinyl bromide ND 0.200 ND 0.874 U 67-64-1 2.63 1.00 Acetone 6.25 2.38 75-69-4 Trichlorofluoromethane 0.207 0.200 1.16 1.12 67-63-0 Isopropanol 1.22 0.500 3.00 1.23 75-65-0 **Tertiary butyl Alcohol** ND 0.500 ND 1.52 U 75-09-2 Methylene chloride ND 0.500 ND 1.74 U 107-05-1 3-Chloropropene ND 0.200 ND 0.626 --U 75-15-0 Carbon disulfide ND 0.200 ND 0.623 U ND U 76-13-1 Freon-113 0.200 ND 1.53 156-60-5 trans-1,2-Dichloroethene ND 0.200 ND 0.793 U 75-34-3 1,1-Dichloroethane ND 0.200 ND 0.809 U 1634-04-4 ND 0.200 U Methyl tert butyl ether ND 0.721 78-93-3 2-Butanone ND 0.500 ND 1.47 U 141-78-6 **Ethyl Acetate** ND 0.500 U ND 1.80 67-66-3 Chloroform ND 0.200 --ND 0.977 --U 109-99-9 Tetrahydrofuran ND 0.500 ND 1.47 U 107-06-2 1,2-Dichloroethane ND 0.200 ND 0.809 ш 110-54-3 n-Hexane ND 0.200 ND 0.705 U U Renzene ND 0.200 ΝD 0.639 71-43-2

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-08 Client ID : OA-1 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919248
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:15

Date Received : 12/20/22

Date Analyzed : 01/03/23 23:18 Dilution Factor : 1

Analyst : TJS Instrument ID : AIRLAB19 GC Column : RTX-1

Janip	e Amount . 230 mi				90.00	Julilii	. 13.17	N- I	
			ppbV		ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	ND	0.200		ND	0.820		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	ND	0.200		ND	0.754		U	
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-08 Client ID : OA-1 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919248
Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Project Number : 01101

Date Collected : 12/19/22 16:15

Date Received : 12/20/22
Date Analyzed : 01/03/23 23:18

Dilution Factor : 1 Analyst : TJS

Instrument ID : AIRLAB19 GC Column : RTX-1

		ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : WG1729583-4

Client ID : WG1729583-4BLANK

Sample Location :
Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919238
Sample Amount : 250 ml

Project Number : 01101
Date Collected : NA
Date Received : NA

Lab Number

Date Analyzed : 01/03/23 15:54

: L2271489

Dilution Factor : 1
Analyst : TJS
Instrument ID : AIRLA

Instrument ID : AIRLAB19 GC Column : RTX-1

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	ND	0.200		ND	0.989		U	
74-87-3	Chloromethane	ND	0.200		ND	0.413		U	
76-14-2	Freon-114	ND	0.200		ND	1.40		U	
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		U	
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
75-00-3	Chloroethane	ND	0.200		ND	0.528		U	
64-17-5	Ethanol	ND	5.00		ND	9.42		U	
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U	
67-64-1	Acetone	ND	1.00		ND	2.38		U	
75-69-4	Trichlorofluoromethane	ND	0.200		ND	1.12		U	
67-63-0	Isopropanol	ND	0.500		ND	1.23		U	
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		U	
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U	
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U	
76-13-1	Freon-113	ND	0.200		ND	1.53		U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U	
78-93-3	2-Butanone	ND	0.500		ND	1.47		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U	
67-66-3	Chloroform	ND	0.200		ND	0.977		U	
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : WG1729583-4

Client ID : WG1729583-4BLANK

Sample Location : Sample Matrix : AIR Analytical Method : 48,TO-15 Lab File ID : R1919238 Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101 **Date Collected** : NA **Date Received** : NA

Dilution Factor

Date Analyzed : 01/03/23 15:54 : 1

: TJS Analyst : AIRLAB19 Instrument ID : RTX-1 GC Column

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	ND	0.200		ND	0.705		U	
71-55-6	1,1,1-Trichloroethane	ND	0.200		ND	1.09		U	
71-43-2	Benzene	ND	0.200		ND	0.639		U	
56-23-5	Carbon tetrachloride	ND	0.200		ND	1.26		U	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
79-01-6	Trichloroethene	ND	0.200		ND	1.07		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	ND	0.200		ND	0.820		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	ND	0.200		ND	0.754		U	
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	

Client : Environmental Advantage, Inc.

: CY2022 SMP INDOOR AIR SAMPLING **Project Name**

Lab ID : WG1729583-4

Client ID : WG1729583-4BLANK

Sample Location :

Sample Matrix : AIR

Analytical Method : 48,TO-15 Lab File ID : R1919238

Sample Amount : 250 ml

Lab Number

: L2271489

Project Number : 01101

Date Collected : NA

Date Received : NA

Date Analyzed : 01/03/23 15:54

Dilution Factor

Analyst : TJS

Instrument ID : AIRLAB19 GC Column : RTX-1

		<u> </u>	ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING Project Number

Lab ID : WG1729583-5 Client ID : IA-3 (121922)DUP

Sample Location :
Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919243
Sample Amount : 250 ml

Date Collected : 12/19/22 16:30
Date Received : 12/20/22
Date Analyzed : 01/03/23 19:53
Dilution Factor : 1

: L2271489

: 01101

Lab Number

Analyst : TJS Instrument ID : AIRLAB19 GC Column : RTX-1

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.497	0.200		2.46	0.989			
74-87-3	Chloromethane	0.490	0.200		1.01	0.413			
76-14-2	Freon-114	ND	0.200		ND	1.40		U	
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
75-00-3	Chloroethane	ND	0.200		ND	0.528		U	
64-17-5	Ethanol	348	5.00		656	9.42			
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U	
67-64-1	Acetone	74.9	1.00		178	2.38			
75-69-4	Trichlorofluoromethane	0.207	0.200		1.16	1.12			
67-63-0	Isopropanol	54.9	0.500		135	1.23			
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U	
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
75-15-0	Carbon disulfide	0.582	0.200		1.81	0.623			
76-13-1	Freon-113	ND	0.200		ND	1.53		U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U	
78-93-3	2-Butanone	ND	0.500		ND	1.47		U	
141-78-6	Ethyl Acetate	13.8	0.500		49.7	1.80			
67-66-3	Chloroform	0.797	0.200		3.89	0.977			
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	ND	0.200		ND	0.705		U	
71-43-2	Benzene	ND	0.200		ND	0.639		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : WG1729583-5 Client ID : IA-3 (121922)DUP

Sample Location :
Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1919243
Sample Amount : 250 ml

Dilution Factor : 1 Analyst : TJS

Lab Number

Project Number

Date Collected

Date Received

Date Analyzed

Instrument ID : AIRLAB19 GC Column : RTX-1

: L2271489

: 12/20/22

: 12/19/22 16:30

: 01/03/23 19:53

: 01101

Camp	C Amount . 200 mm				00 00	Jiaiiiii		V 1
			ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U
142-82-5	Heptane	ND	0.200		ND	0.820		U
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U
108-88-3	Toluene	ND	0.200		ND	0.754		U
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U
75-25-2	Bromoform	ND	0.200		ND	2.07		U
100-42-5	Styrene	ND	0.200		ND	0.852		U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U
95-47-6	o-Xylene	ND	0.200		ND	0.869		U
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : WG1729583-5 Client ID : IA-3 (121922)DUP

Sample Location :

Sample Matrix : AIR Analytical Method : 48,TO-15

Lab File ID : R1919243 Sample Amount : 250 ml Lab Number : L2271489 Project Number : 01101

Date Collected : 12/19/22 16:30

Date Received : 12/20/22 Date Analyzed : 01/03/23 19:53

Dilution Factor : 1

Analyst : TJS Instrument ID : AIRLAB19 GC Column : RTX-1

			ppbV		ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

Initial Calibration Summary Form 6 **Air Volatiles**

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING Instrument ID : AIRLAB19

Lab Number : L2271489 Project Number : 01101 Ical Ref : ICAL19537

Calibration dates : 11/30/22 20:39 12/01/22 01:55

Calibration Files

0.2 =r1918548.D 0.5 =r1918549.D 1.0 =r1918550.D 5.0 =r1918551.D 10 =r1918552.D 20 =r1918553.D 50 =r1918554.D 100 =r1918555.D

	Compound	0.2	0.5	1.0	5.0	10	20	50	100	Avg	%RSD
73)	3-methylthiophene	3 140	3 019	2 974	2 991	2 985	3 071	2 758	2 606	2 9431	5.94
74)	dibromochloromethane										6.00
75) C	1,2-dibromoethane									1.6675	8.05
76)	butyl acetate	1.005								0.5103	8.68
77)	octane	1.761								1.5618	7.33
78) C	tetrachloroethene									1.2334	8.89
79)	1,1,1,2-tetrachloroethane									1.0932	9.36
80) C	chlorobenzene									2.7229	11.91
81) C	ethylbenzene	5.121	4.688	4.726	4.652	4.568	4.795	4.221	3.722	4.5616	9.22
82)	2-ethylthiophene	3.699	3.529	3.504	3.526	3.498	3.526	3.064	2.737	3.3855	9.40
83) C	m+p-xylene	4.054	3.930	3.901	3.809	3.757	3.851	3.312	2.806	3.6774	11.27
84) C	bromoform	1.138	1.117	1.141	1.183	1.188	1.316	1.150	1.015	1.1560	7.25
85) C	styrene	2.890	2.974	3.003	2.983	2.924	3.082	2.651	2.377	2.8606	8.14
86) C	1,1,2,2-tetrachloroethane	2.749	2.602	2.656	2.651	2.576	2.679	2.218	1.832	2.4955	12.51
87) C	o-xylene	4.017	4.032	3.936	3.805	3.691	3.781	3.109	2.542	3.6142	14.47
88)	1,2,3-trichloropropane	2.243	2.142	2.212	2.131	2.113	2.295	2.023	1.835	2.1242	6.79
89)	nonane	3.764	3.725	3.702	3.470	3.424	3.666	3.179	2.793	3.4655	9.69
90) s	bromofluorobenzene	2.954	3.004	3.044	3.023	3.005	3.036	3.054	3.130	3.0313	1.67
91) C	isopropylbenzene	5.464	5.210	5.249	4.924	4.835	5.090	4.208	3.625	4.8258	12.72
92)	bromobenzene	3.136	3.021	2.998	2.838	2.789	3.011	2.597	2.281	2.8338	9.88
93)	2-chlorotoluene	1.371	1.235	1.288	1.227	1.241	1.331	1.178	1.068	1.2423	7.53
94)	n-propylbenzene	1.569	1.474	1.585	1.517	1.522	1.623	1.426	1.236	1.4940	8.14
95)	4-chlorotoluene	1.067	1.218	1.246	1.181	1.189	1.308	1.168	1.047	1.1779	7.37
96)	4-ethyl toluene	5.041	4.870	5.153	5.039	4.964	5.177	4.384	3.702	4.7914	10.56
97)	1,3,5-trimethylbenzene	4.755	4.412	4.420	4.307	4.200	4.337	3.617	2.956	4.1254	13.81
98)	tert-butylbenzene	5.098	4.782	4.763	4.421	4.302	4.342	3.454	2.625	4.2234	19.14
99)	1,2,4-trimethylbenzene	4.534	4.284	4.282	4.186	4.027	4.007	3.152	2.398	3.8589	18.60
100)	decane	4.11	1 3.84	5 3.99	7 3.86	7 3.86	1 4.21	5 3.70	8 2.99	8 3.8255	9.70
101) C	Benzyl Chloride	1.33	3 1.50	0 1.870	2.66	7 2.93	4 3.32	1 2.91	0 2.27	7 2.3516	30.88#
102)	1,3-dichlorobenzene	1.75	4 1.99	2 2.118	3 2.11	5 2.07	5 2.14	3 1.90	6 1.53	4 1.9547	11.00
103) C	1,4-dichlorobenzene	1.493	3 1.87	7 2.02	5 2.00	9 2.07	7 2.17	0 1.87	2 1.51	1 1.8793	13.44
104)	sec-butylbenzene		1 6.52	5 6.559	9 6.14	3 5.91	3 6.22	8 5.09	9 3.99	1 5.9422	16.41
105)	1,2,3-trimethylbenzene	4.27	3 3.98	9 3.949	3.74	2 3.58	3.60	7 2.78	6 2.11	0 3.5052	20.34
106)	p-isopropyltoluene									0 5.0178	19.80
107)	1,2-dichlorobenzene									2 1.7553	10.38
108)	n-butylbenzene	3.949	9 3.96	3 3.99	7 4.08	0 4.05	9 4.32	5 3.18	5 2.73	3 3.7863	14.20

Evaluate Continuing Calibration Report

Data Path : 0:\Forensics\Data\Airlab19\2022\11\1130T_I\

Data File : r1918558.D

: 1 Dec 2022 10:53 AM Acq On

Operator : AIRLAB19:RAY Sample : CTO15-LLSTD10.0 Misc : WG1718142

ALS Vial : 0 Sample Multiplier: 1

Quant Time: Dec 01 11:08:07 2022

Quant Method: 0:\Forensics\Data\Airlab19\2022\11\1130T_I\TFS19_221130.M

Quant Title : TO-14A/TO-15 SIM/Full Scan Analysis

QLast Update : Thu Dec 01 10:06:16 2022

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 60% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 140%

		Compound	AvgRF	CCRF	%Dev Are	ea% D	ev(min)
81	 С	ethylbenzene	4.562	4.943	-8.4	99	-0.03
83	C	m+p-xylene	3.677	3.994	-8.6	97	-0.02
84	C	bromoform	1.156	1.355	-17.2	104	-0.02
85	C	styrene	2.861	3.080	-7.7	96	-0.02
86	C	1,1,2,2-tetrachloroethane	2.496	2.812	-12.7	100	-0.02
87	C	o-xylene	3.614	3.979	-10.1	99	-0.02
88		1,2,3-trichloropropane	2.124	2.002	5.7	87	-0.02
89		nonane	3.466	3.252	6.2	87	-0.02
90	s	bromofluorobenzene	3.031	2.991	1.3	91	0.00
91	C	isopropylbenzene	4.826	4.738	1.8	90	-0.02
92		bromobenzene	2.834	2.674	5.6	88	-0.02
93		2-chlorotoluene	1.242	1.200	3.4	88	-0.02
94		n-propylbenzene	1.494	1.483	0.7	89	-0.02
95		4-chlorotoluene	1.178	1.146	2.7	88	0.00
96		4-ethyl toluene	4.791	5.164	-7.8	95	-0.02
97		1,3,5-trimethylbenzene	4.125	4.434	-7.5	97	-0.02
98		tert-butylbenzene	4.223	4.196	0.6	89	-0.02
99		1,2,4-trimethylbenzene	3.859	4.375	-13.4	99	0.00
100		decane	3.826	3.847	-0.5	91	-0.02
	C	Benzyl Chloride	2.352	3.083	-31.1#	96	-0.02
102		1,3-dichlorobenzene	1.955	2.204	-12.7	97	-0.02
103	C	1,4-dichlorobenzene	1.879	2.141	-13.9	94	-0.02
104		sec-butylbenzene	5.942	5.675	4.5	88	-0.02
106		p-isopropyltoluene	5.018	4.825	3.8	85	0.00
107		1,2-dichlorobenzene	1.755	1.913	-9.0	93	-0.02
108		n-butylbenzene	3.786	3.947	-4.3	89	-0.02
111	C	1,2-dibromo-3-chloropropane	1.008	0.930	7.7	81	-0.02
112		undecane	4.051	4.308	-6.3	92	-0.02
114		dodecane	3.588	3.731	-4.0	86	-0.02
_	C	1,2,4-trichlorobenzene	1.054	1.307	-24.0	91	-0.02
116		naphthalene	3.457	3.620	-4.7	85	-0.02
117		1,2,3-trichlorobenzene	1.065	1.119	-5.1	88	-0.02
119	С	hexachlorobutadiene	1.420	1.698	-19.6	103	-0.02

^{*} Evaluation of CC level amount vs concentration.

^{(#) =} Out of Range SPCC's out = 0 CCC's out = 1

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-01 Client ID : IA-1 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1919240_EV2

Sample Amount : 250 ml

Lab Number : L2271489
Project Number : 01101

Date Collected : 12/19/22 16:10

Date Received : 12/20/22 Date Analyzed : 01/03/23 17:50

Dilution Factor : 1 Analyst : TJS

Instrument ID : AIRLAB19 GC Column : RTX-1

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.106	0.020		0.667	0.126			
79-01-6	Trichloroethene	0.145	0.020		0.779	0.107			
127-18-4	Tetrachloroethene	0.057	0.020		0.387	0.136			

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-02 Client ID : IA-2 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1919241_EV2

Sample Amount : 250 ml

Lab Number : L2271489
Project Number : 01101

Date Collected : 12/19/22 16:20

Date Received : 12/20/22
Date Analyzed : 01/03/23 18:31

Dilution Factor : 1

Analyst : TJS Instrument ID : AIRLAB19

		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.097	0.020		0.610	0.126			
79-01-6	Trichloroethene	0.111	0.020		0.597	0.107			
127-18-4	Tetrachloroethene	0.049	0.020		0.332	0.136			

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-03 Client ID : IA-3 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1919242_EV2

Sample Amount : 250 ml

Lab Number : L2271489
Project Number : 01101

Date Collected : 12/19/22 16:30

Date Received : 12/20/22 Date Analyzed : 01/03/23 19:12

Dilution Factor : 1 Analyst : TJS

Instrument ID : AIRLAB19
GC Column : RTX-1

		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1.1-Dichloroethene	ND	0.020		ND ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.094	0.020		0.591	0.126			
79-01-6	Trichloroethene	0.039	0.020		0.210	0.107			
127-18-4	Tetrachloroethene	ND	0.020		ND	0.136		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-04

Client ID : IA-3 (121922) DUPLICATE

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1919244_EV2

Sample Amount : 250 ml

Lab Number : L2271489
Project Number : 01101

Date Collected : 12/19/22 16:30

Date Received : 12/20/22

Date Analyzed : 01/03/23 20:34

Dilution Factor : 1 Analyst : TJS

Instrument ID : AIRLAB19 GC Column : RTX-1

• • • • • • • • • • • • • • • • • • • •	p.c /							• •	
			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.091	0.020		0.572	0.126			
79-01-6	Trichloroethene	0.034	0.020		0.183	0.107			
127-18-4	Tetrachloroethene	ND	0.020		ND	0.136		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-05 Client ID : IA-4 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1919245_EV2

Sample Amount : 250 ml

Lab Number : L2271489
Project Number : 01101

Date Collected : 12/19/22 16:45

Date Received : 12/20/22

Date Analyzed : 01/03/23 21:15 Dilution Factor : 1

Analyst : TJS Instrument ID : AIRLAB19

			ppbV		ug/m3					
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U		
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U		
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U		
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U		
56-23-5	Carbon tetrachloride	0.084	0.020		0.528	0.126				
79-01-6	Trichloroethene	0.082	0.020		0.441	0.107				
127-18-4	Tetrachloroethene	ND	0.020		ND	0.136		U		

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-06 Client ID : IA-5 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1919246_EV2

Sample Amount : 250 ml

Lab Number : L2271489
Project Number : 01101

Date Collected : 12/19/22 16:17

Date Received : 12/20/22 Date Analyzed : 01/03/23 21:56

Dilution Factor : 1

Analyst : TJS Instrument ID : AIRLAB19

	Parameter	ppbV		ug/m3					
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.089	0.020		0.560	0.126			
79-01-6	Trichloroethene	0.177	0.020		0.951	0.107			
127-18-4	Tetrachloroethene	0.025	0.020		0.170	0.136			

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-07 Client ID : IA-6 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1919247_EV2

Sample Amount : 250 ml

Lab Number : L2271489
Project Number : 01101

Date Collected : 12/19/22 16:06

Date Received : 12/20/22 Date Analyzed : 01/03/23 22:37

Dilution Factor : 1

Analyst : TJS Instrument ID : AIRLAB19

	Parameter	ppbV		ug/m3					
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	ier
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	0.042	0.020		0.167	0.079			
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.121	0.020		0.761	0.126			
79-01-6	Trichloroethene	0.764	0.020		4.11	0.107			
127-18-4	Tetrachloroethene	0.033	0.020		0.224	0.136			

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : L2271489-08 Client ID : OA-1 (121922)

Sample Location : 155 CHANDLER ST. BUFFALO, NY

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1919248_EV2

Sample Amount : 250 ml

Lab Number : L2271489
Project Number : 01101

Date Collected : 12/19/22 16:15

Date Received : 12/20/22 Date Analyzed : 01/03/23 23:18

Dilution Factor : 1 Analyst : TJS

Instrument ID : AIRLAB19

		ppbV		ug/m3					
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.078	0.020		0.491	0.126			
79-01-6	Trichloroethene	0.034	0.020		0.183	0.107			
127-18-4	Tetrachloroethene	ND	0.020		ND	0.136		U	

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : WG1729581-4

Client ID: WG1729581-4BLANK

Sample Location :

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1919239_EV2

Sample Amount : 250 ml

Lab Number : L2271489 Project Number : 01101

Date Collected : NA
Date Received : NA

Date Analyzed : 01/03/23 16:34

Dilution Factor : 1 Analyst : TJS

Instrument ID : AIRLAB19 GC Column : RTX-1

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	ND	0.020		ND	0.126		U	
79-01-6	Trichloroethene	ND	0.020		ND	0.107		U	
127-18-4	Tetrachloroethene	ND	0.020		ND	0.136		U	
56-23-5 79-01-6	Carbon tetrachloride Trichloroethene	ND ND	0.020 0.020		ND ND	0.126 0.107			U

Client : Environmental Advantage, Inc.

Project Name : CY2022 SMP INDOOR AIR SAMPLING

Lab ID : WG1729581-5 Client ID : IA-3 (121922)DUP

Sample Location :

Sample Matrix : AIR

Analytical Method : 48,TO-15-SIM Lab File ID : R1919243_EV2

Sample Amount : 250 ml

Lab Number : L2271489
Project Number : 01101

Date Collected : 12/19/22 16:30

Date Received : 12/20/22 Date Analyzed : 01/03/23 19:53

Dilution Factor : 1 Analyst : TJS

Instrument ID : AIRLAB19 GC Column : RTX-1

		ppbV		ug/m3					
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U	
56-23-5	Carbon tetrachloride	0.095	0.020		0.598	0.126			
79-01-6	Trichloroethene	0.036	0.020		0.193	0.107			
127-18-4	Tetrachloroethene	ND	0.020		ND	0.136		U	

 From:
 dec.sm.NYENVDATA

 To:
 Jason Kryszak

Cc: mszustak@envadvantage.com; "C. Mark Hanna"; Kuczka, Megan E (DEC)

Subject: RE: Pierce Arrow Business Center Site BCP #C915312 - Electronic Data Deliverable

Date: Tuesday, March 21, 2023 1:07:46 PM

Attachments: <u>image001.png</u>

Jason,

Thank you for your EDD submission. NYSDEC has successfully uploaded the data from the EDD "20230306 0932.C915312.NYSDEC_MERGE" to Pierce Arrow Business Center in the NYSDEC EQuIS database and the data is available for use within the system.

NYSDEC EIMS Team		
	?	

From: Jason Kryszak < jkryszak@envadvantage.com>

Sent: Tuesday, March 14, 2023 2:36 PM

To: dec.sm.NYENVDATA < NYENVDATA@dec.ny.gov>

Cc: mszustak@envadvantage.com; 'C. Mark Hanna' <mhanna@envadvantage.com>; Kuczka, Megan E (DEC) <Megan.Kuczka@dec.ny.gov>

Subject: Pierce Arrow Business Center Site BCP #C915312 - Electronic Data Deliverable

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails

Good Afternoon,

Please find the attached zip file containing the following data set for BCP Site C915312 – Pierce Arrow Business Center

L2271489

Thank you, Jason

Jason Kryszak, Project Scientist Environmental Advantage, Inc. 3636 N. Buffalo Road Orchard Park, NY 14127 Phone (716) 667-3130 ext.109 Fax (716) 667-3156 jkryszak@envadvantage.com www.envadvantage.com

CONFIDENTIALITY NOTICE

This electronic transmission, including any attachments, may contain confidential information belonging to the sender and is intended only for receipt by the individual or entity named. If you believe you have received this transmission in error, please notify the sender immediately by return e-mail and delete and erase this transmission from your system. Further, you are hereby notified that any disclosure, copying, distribution, use or dissemination of the transmission or its contents, or the taking of any action in reliance on the contents of this transmission, is strictly prohibited. WARNING: Electronic transmissions are not guaranteed to be timely, error-free, secure, or free of malicious code, and the sender accepts no liability for any damage caused by viruses, malicious code, or errors or omissions contained in or resulting from this transmission.

APPENDIX G

INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details te No. C915312	Box 1	
Sit	te Name Pierce Arrow Business Center		
Cit Co	e Address: 155-157 Chandler Street Zip Code: 14207 y/Town: Buffalo unty: Erie e Acreage: 2.350		
Re	eporting Period: April 27, 2022 to April 27, 2023		
		YES	NO
1.	Is the information above correct?	×	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergor tax map amendment during this Reporting Period?	ne a	×
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		×
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been iss for or at the property during this Reporting Period?	ued	×
	If you answered YES to questions 2 thru 4, include documentation or evidenthat documentation has been previously submitted with this certification f		
5.	Is the site currently undergoing development?		×
		Box 2	
		YES	NO
6.	Is the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial	×	
7.	Are all ICs in place and functioning as designed?	×	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date be DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continu		
A	Corrective Measures Work Plan must be submitted along with this form to addre	ess these is	sues.
Sic	gnature of Owner, Remedial Party or Designated Representative Da		

		Box 2	Α
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		×
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
	E N/O (CQ15212	Day	(3
SITE	E NO. C915312	БО	
	Description of Institutional Controls	B 02	. •
	Description of Institutional Controls Owner Institutional Control		. •

Soil Management Plan Landuse Restriction Site Management Plan

Monitoring Plan

- . Prohibition of use of groundwater.
- . Restricted Residential Use.
- . Soil Vapor Intrusion Evaluation for any existing or future structures.
- . Soil Management or Excavation Work Plan for any future intrusive work.

R&M Leasing, LLC 77.84-1-5

Ground Water Use Restriction

Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

Soil Management Plan

- . Prohibition of use of groundwater.
- . Restricted Residential Use.
- . Soil Vapor Intrusion Evaluation for any future structures.
- . Soil Management or Excavation Work Plan for any future intrusive work.
- . Groundwater Monitoring Plan

Box 4

Description of Engineering Controls

Engineering Control <u>Parcel</u>

77.84-1-4

Vapor Mitigation

. Monitoring of the Sub-slab Depressurization System.

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted
	engineering practices; and the information presented is accurate and compete. YES NO
	lacktriangledown
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	f X
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C915312

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

_I C. Mark Hanna	at 3636 N. Buffalo Road, Orchard Park, NY 14127				
print name	print business add	dress			
am certifying as Designated Repre	esentative of the Owner	(Owner or Remedial Party)			
for the Site named in the Site Details					
Marketanne		5/24/2023			
Signature of Owner, Remedial Party Rendering Certification		Date			

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

_I C. Mark Hanna	at 3636 N. Buffalo Road, Orchard Park NY 14127		
print name	print busin	print business address	
am certifying as a Qualified Environmental Professional for the Owner			
	(Owner or Remedial Party)		
E Market Sanne	→ 0696	5/24/2023	
Signature of Qualified Environmental the Owner or Remedial Party, Render		M Date ication #	