<u>Environmental</u> Advantage

Environmental Advantage, Inc. 3636 N. Buffalo Road Orchard Park, New York 14127 Industrial Compliance, Hazardous Materials Management, Site Assessment/Remediation

July 16, 2021

Megan Kuczka, DER Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203

Via email: <u>megan.kuczka@dec.ny.gov;</u>

Re: Summary Letter – June 2021 Indoor Air Sampling Results Pierce Arrow Business Center 155-157 Chandler Street, Buffalo, New York 14207 EA Project No: 01101

Dear Ms. Kuczka:

This letter serves as a notification of the results of the June 2021 indoor air sampling event at the above-referenced site. This sampling event was completed following three consecutive air exceedances of trichloroethylene (TCE) collected at sample location IA-6 during the 2020-2021 monitoring period. This summary letter includes a figure and field notes in Attachment 1, a summary table in Attachment 2, and analytical report in Attachment 3.

In December 2020, EA originally collected summa air canister samples at six indoor locations and one outdoor location and submitted the air canister samples to Alpha Analytical to be analyzed for the presence of volatile organic compounds (VOCs) via USEPA method TO-15. TCE was detected at a concentration of 2.96 ug/m³ in IA-6 (121120) collected from sample location IA-6, which exceeds its respective NYSDOH Indoor Air guideline value of 2 ug/m³. As a result of this December 2020 exceedance, EA collected at a concentration of 2.96 ug/m³ in the IA-6 (021821) air sample. It should be noted that sampling location IA-6 is located in a pass-through hallway containing mailboxes and is not permanently occupied.

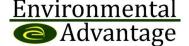
Due to these exceedances, EA contacted the Site Owner, Mr. Rocco Termini, and recommended that this hallway be better ventilated. On March 26, 2021, Mr. Termini had a ceiling exhaust fan installed within the hallway in an attempt to improve ventilation. Following the installation of the exhaust fan, EA collected a third indoor air sample from this location on March 31, 2021, identified as IA-6 (033121). TCE was detected at a concentration of 14 ug/m³ in IA-6 (033121), which exceeds both its respective NYSDOH Indoor Air and NYSDEC Commercial Indoor Air Background (90th percentile) guideline values of 2 ug/m³ and 4.2 ug/m³, respectively.

In consideration of these site conditions detected, EA has surmised that more elevated results observed may be related to the ceiling fan creating a negative pressure within the hallway, even though there is no historical record of any underlying concrete slab or subslab TCE contamination in this area of the facility. For strictly test protocol purposes, EA collected an air sample on June 17, 2021, identified at IA-6 (061721). During the sample collection, the two man-door entrances were propped open approximately one inch each to allow the infiltration of fresh outdoor air. TCE was detected at a concentration of 1.31 ug/m³ in IA-6 (061721), which is below its respective NYSDOH Indoor Air and NYSDEC Commercial Indoor Air Background (90th percentile) guideline values of 2 ug/m³ and 4.2 ug/m³, respectively. Based on these results, Mr. Termini proposes to install two approximate 8-inch by 8-inch passive vents within the man-door entrances to allow the infiltration of fresh outdoor air. Following the installation of these vents, after a period of two weeks, EA will collect another indoor air sample (with a duplicate) from this location for TO-15 analysis.

If the post-venting proves to yield acceptable VOCs levels within this hallway, EA will continue to collect indoor air on an annual basis as required by the Site Management Plan¹. At this point no further corrective actions will be recommended at this time.

If you have comments or questions regarding the contents of these documents, please contact me directly.

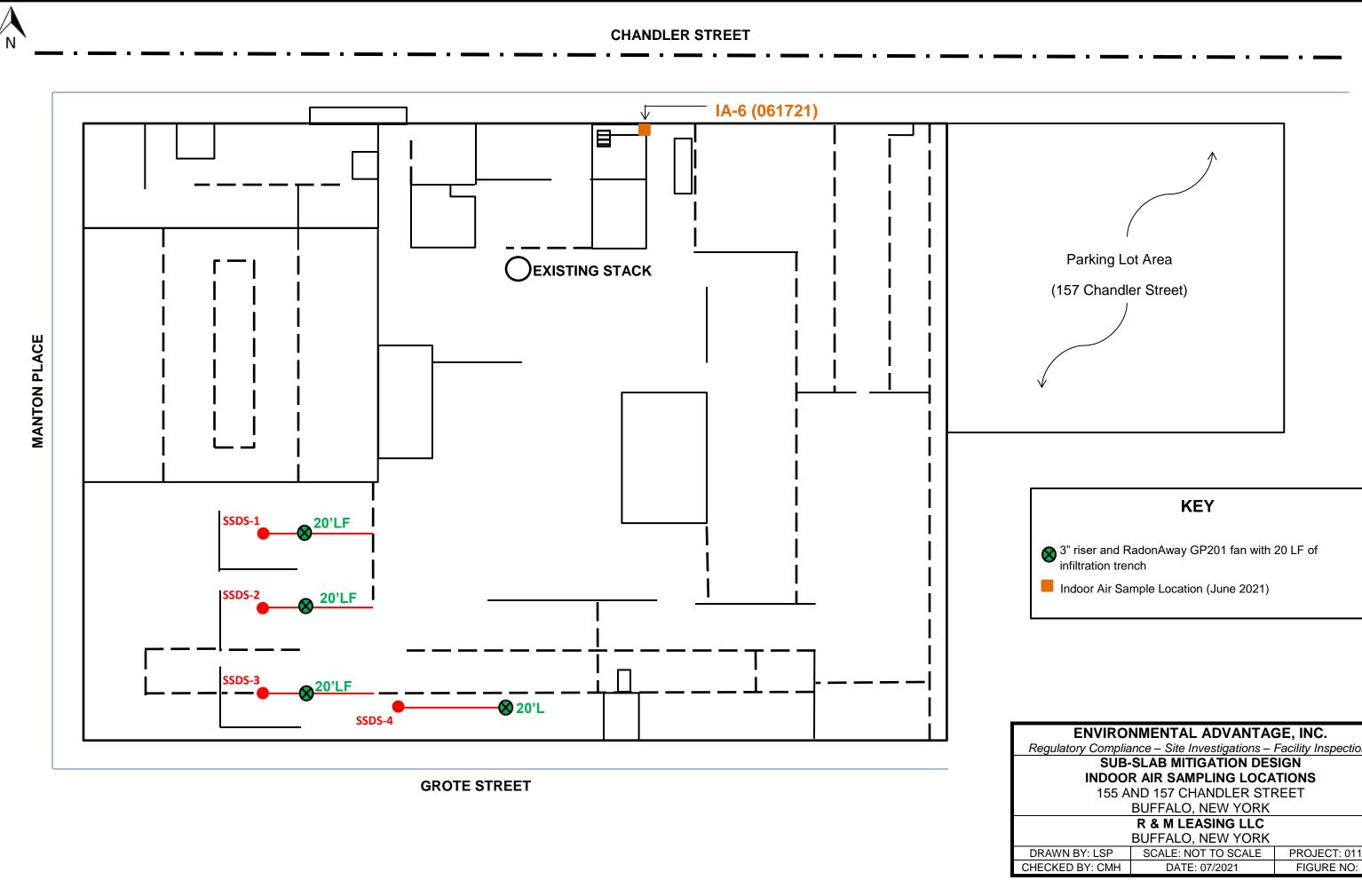
Very truly yours, ENVIRONMENTAL ADVANTAGE, INC.


Market anne

C. Mark Hanna, CHMM President

Attachments

cc: R. Termini S. Lawrence, NYSDOH


¹ "Site Management Plan for MOD-PAC Site, 1801 Elmwood Avenue, City of Buffalo, Erie County, New York, Site No. C915314" prepared by C&S Engineers, Inc., December 2019

ATTACHMENT 1

FIGURE & FIELD NOTES

ENVIRONMENTAL ADVANTAGE, INC.							
egulatory Compliance – Site Investigations – Facility Inspections							
SUB-SLAB MITIGATION DESIGN							
INDOOR AIR SAMPLING LOCATIONS							
155 AND 157 CHANDLER STREET							
	BUFFALO, NEW YORK						
	R & M LEASING LLC						
	BUFFALO, NEW YORK						
RAWN BY: LSP	SCALE: NOT TO SCALE	PROJECT: 01101					
ECKED BY: CMH	DATE: 07/2021	FIGURE NO: 1					

AIR/VAPOR SAMPLING FIELD DATA SHEET

Client: <u>R&M Leasing</u> Project No.: <u>01101</u>
Site Name & Address: 155 chandler st. Buffalo, NY
Person(s) Performing Sampling:
Sample Identification: <u>TA-6 (06</u> /72)
Sample Type: 💢Indoor Air (ambient) 🗌 Outdoor Air 🔲 Soil Vapor 🔲 Sub-slab Vapor
Date of Collection: 6/17/2021 Setup Time: 7:30 am Stop Time: 3:30 Pm
Sample Depth:
Sample Height:
Sampling Method(s) & Device(s): 2.7 L Summa Conister & Regulator
Purge Volume:
Sample Volume: 2.72
Sampling Canister Type & Size (if applicable): 2.7 L Summa
Canister #/57 Regulator #0/7.87
Vacuum Pressure of Canister Prior to Sampling: <u>-29.52 " 49</u>
Vacuum Pressure of Canister After Sampling:
Temperature in Sampling Zone: 65°F
Apparent Moisture Content of Sampling Zone: Low
Soil Type in Sampling Zone:
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Laboratory:
⊠Yes □No. If no, provide reason(s) why?
Laboratory Name: Alpha Analytical
Analysis:
Comments: Ambient Indoor Air D. D. Ppr
The two Man-door entrances were left ajor ~ 1"
to allow the infiltration of Fresh autobor air.
Sampler's Signature Im Margan Date: 6/17/2021

ATTACHMENT 2

TABLE

Table 1 Indoor Air Analytical Testing Results Comparison 155 & 157 Chandler Street, Buffalo, NY June 2021 Resample

	Guidance Valu	ues - Indoor Air						
LOCATION	Table C2 Commercial Indoor Air	NYSDOH Air Guideline	IA-6 (061121) Indoor Air					
SAMPLING DATE	Background	Value	6/11/2021					
LAB SAMPLE ID	(90%)		L2132969-01					
Volatile Organics in Air (ug/m³)								
Acetone	98.9	NV	11.3					
Carbon tetrachloride*	<1.3	NV	0.711					
Chloromethane	3.7	NV	1.20					
Dichlorodifluoromethane	16.5	NV	2.47					
Ethanol	210	NV	41.6					
Isopropanol	NV	NV	28.8					
Toluene	43	NV	1.01					
Trichloroethene*	4.2	2	1.31					
Trichlorofluoromethane	18.1	NV	1.31					

Notes:

1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.

2. Analytical testing for VOCs via TO-15 completed by Alpha Laboratories.

3. Results present in ug/m³ or microgram per cubic meter.

4. Samples were collected during a 8-hour sample duration.

5. 90th percentile values as presented in C2 (EPA 2001: Building assessment and survey evaluation (BASE) database Appendix C, in the NYSDOH Guidance Manual, as indicated for indoor and outdoor air only.

6. Air Guideline Values from "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health. Updated September 2013 and August 2015.

7. Grey shaded values represent exceedance of table C2 guidance values; yellow shaded values represents exceedance of NYSDOH Air Guideline Values.

8. NV = No Value

Table 2 Indoor Air Analytical Testing Results Comparison for IA-6 155 & 157 Chandler Street, Buffalo, NY December 2016 through June 2021

	Guidance Value	is - Indoor Air		IA-	4			IA-2			14	A-3			1	4-4					IA-5									A-6						OA-1		
LOCATION	Table C2 Commercial Indoor Air	NYSDOH Air Guideline	IA-1 Indoor Air	IA-1 (121219) Indoor Air	IA-1 (121219) Duplicate Indoor Air	IA-1 (121120) Indoor Air	IA-2 Indoor Air	IA-2 (121219) Indoor Air	IA-2 (121120) Indoor Air	IA-3 Indoor Air	IA-3 (121219) Indoor Air	IA-3 (121120 Indoor Air	IA-3 (121120) Duplicate Indoor Air	IA-4 Indoor Air	IA-4 Duplicate Indoor Air	IA-4 (121219) Indoor Air	IA-4 (121120) Indoor Air	IA-5 Indoor Air	IA-5 (0219) Indoor Air	IA-5 (0219) Duplicate Indoor Air	IA-5 (0619) Indoor Air	IA-5 (0619) Duplicate Indoor Air		IA-5 (121120) Indoor Air	IA-6 Indoor Air	IA-6 (121219) Indoor Air	IA-6 (022020)	IA-6 (022020) Duplicate Indoor Air	IA-6 (121120) Indoor Air	IA-6 (021821) Indoor Air	IA-6 (021821) Duplicate Indoor Air	IA-6 (033121) Indoor Air	IA-6 (033121) Duplicate Indoor Air	IA-6 (061121) Indoor Air	OA-1 Outdoor Air	OA-1 (121219) Outdoor Air	OA-1 (121120) Outdoor Air Guida	loor Air dance
SAMPLING DATE	Background	Value	12/18/2018	12/12/2019	12/12/2019	12/11/2020	12/18/2018	12/12/2019	12/11/2020	12/18/2018	12/12/2019	12/11/2020	12/11/2020	12/18/2018	12/18/2018	12/12/2019	12/11/2020	12/18/2018	2/13/2019	2/13/2019	6/21/2019	6/21/2019	12/12/2019	12/11/2020	12/18/2018	12/12/2019	2/20/2020	2/20/2020	12/11/2020	2/18/2021	2/18/2021	3/31/2021	3/31/2021	6/11/2021	12/18/2018	12/12/2019	12/11/2020 Valu	alues
LAB SAMPLE ID	(90%)		L1852191-06	L1959919-06	L1959919-07	L2055692-06	L1852191-07	L1959919-08	L2055692-07	L1852191-02	L1959919-04	L2055692-03	L2055692-04	L1852191-03	L1852191-04	L1959919-03	L2055692-02	L1852191-01	L1905849-01	L1905849-02	L1927357-01	L1927357-02	L1959919-02	L2055692-01	L1852191-05	L1959919-05	L2007739-01	L2007739-02	L2055692-05	L2108109-01	L2108109-02	L2108109-01	L2108109-01	L2132969-01	L1852191-08	L1959919-01	2055692-08	
Volatile Organics in Air (ug/m ³)																																						
1,2,4-Trichlorobenzene	<6.8	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.98	ND	ND <	6.4
1,2,4-Trimethylbenzene	9.5	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.09	1.24	ND	ND	1.20	ND	ND	ND	ND	ND	ND 5.	5.8
1,2-Dichloroethane	<0.9	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.163	0.127	0.139	ND	ND	ND	ND	0.103	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND <0	:0.8
2,2,4-trimethylpentane	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.943	1.36	1.29	ND	ND	ND	ND N	4V
Acetone	98.9	NV	14.4	11.9	11.8 J	8.46	14.6	12.4	7.98	21.1	13.3	8.29	11.7	24.7	24	8.20	9.93	46.3	33.5 J	36.3 J	38 J	40.4 J	9.45	6.29	5.3	8.69	165	187	7.63	3.99	2.85	21.3	20.3	11.3	4.39	3.44	4.16 43	3.7
Benzene	9.4	NV	ND	0.744	0.824 J	0.684	ND	0.764	0.687	ND	0.652	ND	0.642	ND	ND	0.684	ND	ND	ND	ND	ND	0.866	0.741	ND	ND	0.655	ND	ND	ND	1.12	1.13	1.30	1.25	ND	ND	ND	ND 6	6.د
Carbon disulfide	4.2	NV	ND	ND	ND	ND	ND	ND	ND	2.24	1.35	1.36	1.94	ND	ND	ND	ND	ND	ND	ND	0.673	0.704	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 3	3.7
Carbon tetrachloride*	<1.3	NV	0.591	0.579	0.572 J	0.522	0.566	0.598	0.516	0.541	0.491	0.428	0.453	0.711	0.723	0.516	0.384	2.31	1.09	1.05	0.591	0.598	0.547	0.415	0.598	2.26	0.434	0.453	0.528	0.434	0.465	0.528	0.535	0.711	0.459	0.484	0.403 0	J.7
Chloromethane	3.7	NV	1.25	1.19	1.16 J	1.07	1.14	1.22	1.07	2.24	1.18	1.02	1.06	2.95	1.13	1.11	1.04	1.13	0.96	1.01	1.43	1.40	1.23	1.01	1.06	1.09	0.956	0.921	1.01	0.898	0.944	1.08	1.08	1.20	1.13	1.11	0.952 3	3.7
cis-1,2-Dichloroethene*	<1.9	NV	ND	ND	ND	ND	ND	ND	0.186	ND	ND	ND	ND	ND	ND	ND	ND	0.163	0.127	0.139	ND	ND	ND	ND	0.103	0.270	0.095	0.119	0.079	ND	ND	0.095	0.091	ND	ND	ND	ND <	:1.8
Cyclohexane	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.03	ND	ND	ND	ND	ND	ND	ND	ND	0.688	1.16	1.13	ND	ND	ND	ND N	4V
Dichlorodifluoromethane	16.5	NV	1.63	2.59	2.59 J	2.20	1.68	2.70	2.12	2.4	2.58	2.02	2.06	1.78	1.66	2.57	2.04	1.61	2.44	2.49	2.69	2.53	2.63	1.93	2.49	2.66	1.86	1.93	2.08	1.99	2.02	2.12	2.16	2.47	1.39	2.55	1.89 8.	8.1
Ethanol	210	NV	155	298	352 J	230	207	224	215	307	931	590	803	148	144	392	1,330	910	298	315	675	667	63.3	3,050	40.1	194	111	129	228	105	104	194	220	41.6	ND	ND	ND 5	57
Ethyl acetate	5.4	NV	ND	6.85	7.03 J	6.45	ND	9.30	7.24	26.5	231	186	284	3.29	3.33	60.5	12.4	15.9	3.2	3.28	5.19	6.45	ND	12.8	ND	2.01	ND	ND	ND	2.79	2.56	ND	ND	ND	ND	ND	ND 1	
Ethylbenzene	5.7	NV	2.49	0.869	0.873 J	1.02	2.32	0.877	1.33	2.76	ND	ND	ND	2.79	2.82	ND	ND	4.73	2	2.03	8.38	8.69	0.986	ND	ND	ND	5.52	5.86	ND	1.62	1.73	1.15	1.09	ND	ND	ND	ND 3.	3.5
Heptane	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.906	1.22	ND	ND	ND	ND	ND	ND	ND	0.971	1.08	2.45	2.28	ND	ND	ND	ND N	NV
Hexane	NV	NV	ND	0.888	0.962 J	1.34	ND	1.01	1.32	0.811	ND	ND	ND	1.26	1.32	ND	0.839	6.87	2.55	2.81	2.49	4.79	0.807	ND	ND	ND	ND	ND	0.733	3.30	3.41	5.08	4.79	ND	ND	ND	0.705 6.	6.4
Isopropanol	NV	NV	11.9	3.52	3.39 J	6.02	11.3	3.17	5.60	32.4	2.65	6.83	9.88	99.6	97.8	2.48	7.18	873	215	228	1230	1170	4.77	4.42	ND	9.24	5.21	5.19	2.11	1.83	1.93	79.2	79.2	28.8	ND	ND	ND N	4V
m&p-Xylene	22.2	NV	9.56	3.36	3.33 J	4.34	9.38	3.32	4.18	10.6	1.74	2.30	2.82	10.6	10.3	ND	2.39	19	8.17	8.17	36.7	36.2	3.82	1.82	ND	ND	18.0	19.3	ND	6.91	7.60	4.39	4.26	ND	ND	ND	ND 12	2.8
Methyl Ethyl Ketone (2-Butanone)	12	NV	ND	ND	ND	ND	ND	ND	ND	ND	4.28	ND	1.58	ND	ND	1.64	ND	4.63	5.66	6.16	2.56	2.70	ND	ND	ND	1.62	ND	ND	ND	1.87	1.67	1.67	1.58	ND	ND	ND		1.3
Methyl Isobutyl Ketone Methylene chloride	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19.8	4.51	4.39	5.12	5.16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	1V
Methylene chloride	10	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 6.	6.1
o-Xylene	7.9	NV	3.12	1.22	1.29 J	1.83	3.09	1.22	1.47	2.86	ND	ND	0.947	3.14	3.24	ND	ND	5.56	2.4	2.44	12.2	12.2	1.20	ND	ND	ND	5.21	5.60	ND	2.08	2.30	1.49	1.45	ND	ND	ND		4.6
Styrene	1.9	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.932	ND	ND	2.18	2.76	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1.	1.3
Tetrachloroethene*	15.9	30	0.753	0.651	0.387 J	0.427	0.685	0.346	1.00	0.332	0.488	ND	ND	0.922	0.882	ND	0.156	1.3	0.353	0.319	0.203	0.292	0.271	0.183	0.529	0.448	0.305	0.292	0.285	0.170	0.210	0.353	0.319	ND	ND	ND	ND 6	6.5
Tetrahydrofuran	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.86	1.55	ND	ND	ND	ND N	٩V
Toluene	43	NV	4.07	1.53	1.76 J	1.49	1.21	1.57	1.43	1.16	1.38	1.41	1.58	4.26	5.8	1.30	1.15	7.65	5.35	5.39	5.39	8.63	2.58	1.01	ND	1.82	1.17	1.06	1.25	3.72	4.07	6.93	6.59	1.01	ND	0.855	0.806 33	3.7
trans-1,2-Dichloroethene	NV	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.932	1.44	2.36	2.5	6.15	5.95	1.10	1.67	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	٩V
Trichloroethene*	4.2	2	0.849	0.833	0.844 J	0.801	0.736	0.742	0.790	0.489	ND	ND	0.145	1.34	1.37	ND	0.478	9.46	4.54	4.58	0.903	0.833	0.688	0.715	0.924	12.0	1.34	1.43	2.96	2.96	2.93	14.0	13.6	1.31	ND	ND	ND 1	3
Trichlorofluoromethane	18.1	NV	1.33	1.25	1.29 J	1.19	1.3	1.29	1.15	1.12	1.27	1.15	ND	1.28	1.25	1.25	ND	1.25	ND	ND	1.41	1.49	1.32	ND	1.26	1.31	ND	ND	1.14	ND	ND	1.15	ND	1.31	1.16	1.24	ND 4.	4.3

 Notes:

 1. Compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.

 2. Analytical testing for VOCs via TO-15 completed by Alpha Laboratories. * = samples analyzed for volatile organics in air by SIM.

 3. Results orseand in ush⁺ or microram one cubic meter.

 4. Samples were collected during a 8-hors sample duration.

 5. Oth percentile values as presented in C2 (FPA 2001: Building assessment and survey evaluation (BASE) database) Appendix C, in the NYSDOH Guidance Manual, as indicated for Indoor and Outdoor air only.

 6. Ar Guidance Values from "Quidance for Evaluations for Statianting assessment and survey evaluation (BASE) database) Appendix C, in the NYSDOH Guidance Manual, as indicated for Indoor and Outdoor air only.

 7. Bus shading represents the samples not previous voltationing the 2020-2021 (December 2020, February 2021, March 2021, & June 2021).

 8. No shading represents the samples most previous voltated using the 2018-2020 FRR Reporting Prioto.

 9. Grey shaded values represent exceedance of table C2 guidance values; yellow shaded values represent exceedance of NYSDOH Air Guidance Values.

 10. ND = Non Detect; NV = No Value.

ATTACHMENT 3

ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number:	L2132969
Client:	Environmental Advantage, Inc. 3636 North Buffalo Road
	Orchard Park, NY 14127
ATTN:	Mark Hanna
Phone:	(716) 667-3130
Project Name:	JUNE 2021 IA-6 RESAMPLE
Project Number:	01101
Report Date:	06/24/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial No:06	242114:36
--------------	-----------

06/17/21

06/17/21 15:30

Project Name: Project Number:	JUNE 2021 IA-6 RESAMPLE 01101			Lab Number: Report Date:	L2132969 06/24/21
Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date

155 CHANDLER ST. BUFFALO, NY

AIR

L2132969-01

IA-6 (061721)

Project Name: JUNE 2021 IA-6 RESAMPLE Project Number: 01101

Lab Number: L2132969 Report Date: 06/24/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:JUNE 2021 IA-6 RESAMPLEProject Number:01101

 Lab Number:
 L2132969

 Report Date:
 06/24/21

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on June 16, 2021. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Curdence Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 06/24/21

AIR

Project Name:	JUNE 2021 IA-6 RESAMPLE	Lab Number:	L2132969
Project Number:	01101	Report Date:	06/24/21

Lab ID:	L2132969-01	Date Collected:	06/17/21 15:30
Client ID:	IA-6 (061721)	Date Received:	06/17/21
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	06/22/21 21:01
Analyst:	TS

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.500	0.200		2.47	0.989			1
Chloromethane	0.582	0.200		1.20	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	22.1	5.00		41.6	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.76	1.00		11.3	2.38			1
Trichlorofluoromethane	0.233	0.200		1.31	1.12			1
Isopropanol	11.7	0.500		28.8	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
Granyarolulari	ND	0.500		UN	1.47			1

Project Name:	JUNE 2021 IA-6 RESAMPLE	Lab Number:	L2132969
Project Number:	01101	Report Date:	06/24/21

Lab ID: L2132969-01 Client ID: IA-6 (061721) Sample Location: 155 CHANDLER ST. BUFFALO, NY

Date Collected:06/17/21 15:30Date Received:06/17/21Field Prep:Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.267	0.200		1.01	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name:	JUNE 2021 IA-6 RESAMPLE	Lab Number:	L2132969
Project Number:	01101	Report Date:	06/24/21

Lab ID:	L2132969-01	Date Collected:	06/17/21 15:30
Client ID:	IA-6 (061721)	Date Received:	06/17/21
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	89		60-140

Project Name:	JUNE 2021 IA-6 RESAMPLE	Lab Number:	L2132969
Project Number:	01101	Report Date:	06/24/21

Lab ID:	L2132969-01	Date Collected:	06/17/21 15:30
Client ID:	IA-6 (061721)	Date Received:	06/17/21
Sample Location:	155 CHANDLER ST. BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	06/22/21 21:01
Analyst:	TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	insfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.113	0.020		0.711	0.126			1
Trichloroethene	0.243	0.020		1.31	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	91		60-140

06/24/21

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 06/22/21 15:05

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield I	Lab for samp	ole(s): 01	Batch:	WG1515522-	4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

06/24/21

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 06/22/21 15:05

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	- Mansfield Lab for sam	ple(s): 01	Batch:	WG1515522-	4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

06/24/21

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 06/22/21 15:05

		ppbV			Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	ole(s): 01	Batch:	WG1515522-	4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

06/24/21

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 06/22/21 15:44

		ppbV					Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab for	or sample	(s): 01 E	Batch: WG1	515525-4			
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1
renachioroennene	ND	0.020		ND	0.136			

Lab Control Sample Analysis Batch Quality Control

Project Number: 01101

Lab Number: L2132969 06/24/21

Report Date:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	sociated sample(s):	01 Batc	h: WG1515522-3					
Dichlorodifluoromethane	85				70-130	-		
Chloromethane	90		-		70-130	-		
Freon-114	88		-		70-130	-		
Vinyl chloride	89		-		70-130	-		
1,3-Butadiene	99		-		70-130	-		
Bromomethane	94		-		70-130	-		
Chloroethane	91		-		70-130	-		
Ethanol	89		-		40-160	-		
Vinyl bromide	90		-		70-130	-		
Acetone	72		-		40-160	-		
Trichlorofluoromethane	107		-		70-130	-		
Isopropanol	75		-		40-160	-		
1,1-Dichloroethene	96		-		70-130	-		
Tertiary butyl Alcohol	86		-		70-130	-		
Methylene chloride	100		-		70-130	-		
3-Chloropropene	98		-		70-130	-		
Carbon disulfide	91		-		70-130	-		
Freon-113	92		-		70-130	-		
trans-1,2-Dichloroethene	86		-		70-130	-		
1,1-Dichloroethane	90		-		70-130	-		
Methyl tert butyl ether	90		-		70-130	-		
2-Butanone	95		-		70-130	-		
cis-1,2-Dichloroethene	97		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Number: 01101

Lab Number: L2132969 06/24/21

Report Date:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Ass	sociated sample(s)	: 01 Batc	h: WG1515522-3					
Ethyl Acetate	94		-		70-130	-		
Chloroform	99		-		70-130	-		
Tetrahydrofuran	92		-		70-130	-		
1,2-Dichloroethane	100		-		70-130	-		
n-Hexane	100		-		70-130	-		
1,1,1-Trichloroethane	111		-		70-130	-		
Benzene	99		-		70-130	-		
Carbon tetrachloride	117		-		70-130	-		
Cyclohexane	102		-		70-130	-		
1,2-Dichloropropane	101		-		70-130	-		
Bromodichloromethane	111		-		70-130	-		
1,4-Dioxane	103		-		70-130	-		
Trichloroethene	102		-		70-130	-		
2,2,4-Trimethylpentane	104		-		70-130	-		
Heptane	107		-		70-130	-		
cis-1,3-Dichloropropene	112		-		70-130	-		
4-Methyl-2-pentanone	107		-		70-130	-		
trans-1,3-Dichloropropene	99		-		70-130	-		
1,1,2-Trichloroethane	100		-		70-130	-		
Toluene	92		-		70-130	-		
2-Hexanone	97		-		70-130	-		
Dibromochloromethane	108		-		70-130	-		
1,2-Dibromoethane	92		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Number: 01101

Lab Number: L2132969 06/24/21

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01 Batcl	n: WG1515522-3					
Tetrachloroethene	90		-		70-130	-		
Chlorobenzene	91		-		70-130	-		
Ethylbenzene	98		-		70-130	-		
p/m-Xylene	99		-		70-130	-		
Bromoform	110		-		70-130	-		
Styrene	96		-		70-130	-		
1,1,2,2-Tetrachloroethane	100		-		70-130	-		
o-Xylene	104		-		70-130	-		
4-Ethyltoluene	100		-		70-130	-		
1,3,5-Trimethylbenzene	111		-		70-130	-		
1,2,4-Trimethylbenzene	108		-		70-130	-		
Benzyl chloride	115		-		70-130	-		
1,3-Dichlorobenzene	102		-		70-130	-		
1,4-Dichlorobenzene	99		-		70-130	-		
1,2-Dichlorobenzene	102		-		70-130	-		
1,2,4-Trichlorobenzene	115		-		70-130	-		
Hexachlorobutadiene	115		-		70-130	-		

Lab Control Sample Analysis

Batch Quality Control

Project Number: 01101

Lab Number: L2132969 Report Date: 06/24/21

LCS LCSD RPD %Recovery %Recovery Parameter %Recovery Qual Limits RPD Qual Limits Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01 Batch: WG1515525-3 Vinyl chloride 89 70-130 25 --25 1,1-Dichloroethene 94 70-130 -cis-1,2-Dichloroethene 94 70-130 25 --1,1,1-Trichloroethane 105 70-130 25 --Carbon tetrachloride 114 70-130 25 --25 Trichloroethene 100 70-130 --25 Tetrachloroethene 92 70-130 --

Lab Duplicate Analysis Batch Quality Control

Project Name: JUNE 2021 IA-6 RESAMPLE Project Number: 01101

Lab Number: L2132969 Report Date:

06/24/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG151552	25-5 QC Sar	nple: L2132	969-01 Client ID: IA-6 (0617
Vinyl chloride	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Carbon tetrachloride	0.113	0.119	ppbV	5	25
Trichloroethene	0.243	0.244	ppbV	0	25
Tetrachloroethene	ND	ND	ppbV	NC	25

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101

Serial_No:06242114:36
Lab Number: L2132969

Report Date: 06/24/21

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2132969-01	IA-6 (061721)	01787	Flow 4	06/16/21	355542		-	-	-	Pass	4.5	4.2	7
L2132969-01	IA-6 (061721)	157	2.7L Can	06/16/21	355542	L2131138-06	Pass	-29.6	-5.7	-	-	-	-

Project Number:	CANISTER QC E	BAT				R	Report D	Date: (06/24/21
		Air Can	ister Cer	tificati	on Results				
Lab ID: Client ID: Sample Location:	L2131138-06 CAN 171 SHEL	F 15				Date	Collecte Receive Prep:		06/10/21 08:00 06/10/21 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 06/11/21 01:12 AW								
			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in A	Air - Mansfield Lab								
Chlorodifluoromethane		ND	0.200		ND	0.707			1
Propylene		ND	0.500		ND	0.861			1
Propane		ND	0.500		ND	0.902			1
Dichlorodifluoromethane		ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.200		ND	1.40			1
Methanol		ND	5.00		ND	6.55			1
Vinyl chloride		ND	0.200		ND	0.511			1
1,3-Butadiene		ND	0.200		ND	0.442			1
Butane		ND	0.200		ND	0.475			1
Bromomethane		ND	0.200		ND	0.777			1
Chloroethane		ND	0.200		ND	0.528			1
Ethanol		ND	5.00		ND	9.42			1
Dichlorofluoromethane		ND	0.200		ND	0.842			1
Vinyl bromide		ND	0.200		ND	0.874			1
Acrolein		ND	0.500		ND	1.15			1
Acetone		ND	1.00		ND	2.38			1
Acetonitrile		ND	0.200		ND	0.336			1
Trichlorofluoromethane		ND	0.200		ND	1.12			1
Isopropanol		ND	0.500		ND	1.23			1
Acrylonitrile		ND	0.500		ND	1.09			1
Pentane		ND	0.200		ND	0.590			1
Ethyl ether		ND	0.200		ND	0.606			1
1,1-Dichloroethene		ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:06242114:36

L2131138

Lab Number:

Serial_No:06	6242114:36
Lab Number:	L2131138

Report Date:

06/24/21

Air Canister Certification Results

Lab ID:	L2131138-06	Date Collected:	06/10/21 08:00
Client ID:	CAN 171 SHELF 15	Date Received:	06/10/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Kylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

	Serial_No:00	6242114:36
N	Lab Number:	L2131138
	Report Date:	06/24/21

Air Canister Certification Results

Lab ID:	L2131138-06	Date Collected:	06/10/21 08:00
Client ID:	CAN 171 SHELF 15	Date Received:	06/10/21
Sample Location:		Field Prep:	Not Specified

Sample Deptn:		ppbV		ug/m3			1	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

Serial_No:00	6242114:36
Lab Number:	L2131138

Air Canister Certification Results

Lab ID:	L2131138-06	Date Collected:	06/10/21 08:00
Client ID:	CAN 171 SHELF 15	Date Received:	06/10/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

						Serial_No:06242114:36			42114:36
Project Name:	BATCH CANIST	ER CERTI	FICATION	N		La	b Num	ber:	L2131138
Project Number:	CANISTER QC	ВАТ				Re	eport D	ate: (06/24/21
		Air Can	ister Ce	ertification	Results				
Lab ID: Client ID: Sample Location:	L2131138-06 CAN 171 SHEL	F 15					Collecte Receive Prep:		06/10/21 08:00 06/10/21 Not Specified
Sample Depth:			ppbV			ug/m3			
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in	Air - Mansfield Lab								
		Re	sults	Qualifier	Units	RDL		Dilutio Facto	
Tentatively Identified Con	npounds								

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	90		60-140

Air Canister Certification Results Lab ID: L2131138-06 Date Collected: 06/10/21 08:00 Client ID: **CAN 171 SHELF 15** Date Received: 06/10/21 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15-SIM Anaytical Method: Analytical Date: 06/11/21 01:12 AW Analyst: ppbV ug/m3 Dilution Factor RL Qualifier RL Results MDL Parameter Results MDL Volatile Organics in Air by SIM - Mansfield Lab Dichlorodifluoromethane 0.200 ND ND ---0.989 ---1 Chloromethane 0.200 ND ND 0.413 1 ------Freon-114 ND 0.050 ND 0.349 1 -----Vinyl chloride ND 0.020 ---ND 0.051 ---1 1,3-Butadiene ND 0.020 ND 0.044 ---1 ---Bromomethane ND 1 ND 0.020 0.078 ------Chloroethane ND 0.100 ND 0.264 1 -----Acrolein ND 0.050 ---ND 0.115 ---1 Acetone ND 1.00 ND 2.38 1 -----Trichlorofluoromethane ND 0.050 ND 0.281 1 ------Acrylonitrile ND 0.500 ND 1.09 1 ------1,1-Dichloroethene ND 0.020 ND 0.079 1 ----Methylene chloride ND 0.500 ---ND 1.74 ---1 Freon-113 ND 0.050 ND 1 ---0.383 -trans-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------1,1-Dichloroethane ND 0.020 ND 0.081 1 ------Methyl tert butyl ether ND 0.200 ---ND 0.721 ---1 2-Butanone ND 0.500 1 ---ND 1.47 --cis-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------Chloroform ND 0.020 ND 0.098 --1 --1,2-Dichloroethane ND 0.020 ---ND 0.081 ---1 1,1,1-Trichloroethane ND 0.020 ND 1 --0.109 --Benzene ND 0.100 ND 1 0.319 ------Carbon tetrachloride ND 0.020 ND 0.126 ---1 ---

Serial_No:06242114:36

L2131138

06/24/21

Lab Number:

Report Date:

Project Name:

Project Number:

BATCH CANISTER CERTIFICATION

CANISTER QC BAT

Seri	al_No:06	242114:36
Lab Nu	imber:	L2131138
Report	Date:	06/24/21

Air Canister Certification Results

Lab ID:	L2131138-06	Date Collected:	06/10/21 08:00
Client ID:	CAN 171 SHELF 15	Date Received:	06/10/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

		Serial_No:06	242114:36
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L2131138
Project Number:	CANISTER QC BAT	Report Date:	06/24/21

Air Canister Certification Results

Lab ID:	L2131138-06	Date Collected:	06/10/21 08:00
Client ID:	CAN 171 SHELF 15	Date Received:	06/10/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:

		ppbV			ug/m3		Dilution		
Parameter	Results	RL MDL		Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM	I - Mansfield Lab								
sec-Butylbenzene	ND	0.200		ND	1.10			1	
p-Isopropyltoluene	ND	0.200		ND	1.10			1	
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1	
n-Butylbenzene	ND	0.200		ND	1.10			1	
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1	
Naphthalene	ND	0.050		ND	0.262			1	
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1	
Hexachlorobutadiene	ND	0.050		ND	0.533			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	91		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	90		60-140

Project Name:JUNE 2021 IA-6 RESAMPLEProject Number:01101

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
NA	Absent

Container Information			Initial		Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2132969-01A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-SIM(30),TO15-LL(30)

YES

Serial_No:06242114:36

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101

Lab Number: L2132969

Report Date: 06/24/21

GLOSSARY

Acronyms

,,,,	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
TEQ	 Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding and then summing the resulting values. Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound.

Report Format: Data Usability Report

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101

Lab Number: L2132969

Report Date: 06/24/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Serial_No:06242114:36

Project Name: JUNE 2021 IA-6 RESAMPLE

Project Number: 01101

Lab Number: L2132969

Report Date: 06/24/21

Data Qualifiers

the identification is based on a mass spectral library search.

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: JUNE 2021 IA-6 RESAMPLE Project Number: 01101
 Lab Number:
 L2132969

 Report Date:
 06/24/21

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial	No:0624211	4:36
--------	------------	------

320 Forbes Blvd, M	AIR A CHAIN OF CUSTODY	Project	Informati	on	Carlotter and	of _]	Repo	Rec'd in L ort Inform	No. of Concession, Name	Concession in the local division in the loca	-	-	No. of Concession, name	PHA . ling Ir	-	STATISTICS.	32969
TEL: 508-822-9300			2021]				X					XLS	ame as	s Clien	t info PO #	• 01101	
Client Informatio				5chard	lerst.	Buffall	NEAD	DEx Criteria Cl	necker:								
Cilent Env. Ad	Nantage FAC. N. BUFFald Rd	Project #	0/101	1			1	(Default bas Other Forr			eria Indica	ed)					
Address: 3636	N. BUFFalo Rol	Project M	anager:	lork Ha	na+/	larysz	LE HAR	AIL (stand	dard pdf r	eport)			and the second	Contraction of the	And a state of the local division of the loc		ts/Report Limi
Phone: 716-6	Park NY 14127	THE R. L.	The second states of	THE OWNER OF THE OWNER OF	The Local Division	No. Contra							Stat	e/Fed	F	Program	Res / Comn
Fax: 716-66		Turn-A	round Tin	10			Repor	't to: ut differe	nt than Project	Manager)							
		XStanda	rd 🗆	RUSH (only o	ordinied it pre-ap	((mmed!)			_			_					
These samples has	Denvadvartage.com ve been previously analyzed by Alpha pecific Requirements/Com	Date Due		ily email	Time:	s to m	Struct.	KOP	walu	. 1			/7	AN	ALYS	SIS	
	Target Compound List:									0	e.con	_/		es annument	reaptains by T		
ALPHA Lab ID (Lab Use Only)	Sample ID	I Col	And a local division of the local division o	LECTION End Time		CONTRACTOR OF STREET, STRE	Sample	Sampler's	s Can	ID	ID - Flow	T0.15	APH BAN	Summers Gases	a Me		
32969-01	IA-6(061721)			3:30A	and the second sec	A COLUMN TWO IS NOT THE OWNER.	AA	EB	Size 2.7L		oi187					0.0P	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	1																
*SAMPLE	MATRIX CODES SV	A = Ambient / = Soil Vap her = Please	or/Landfill G	Outdoor) as/SVE				C	ontainer	Туре	-	c 5				completely. S	early, legibly and amples can not be turnaround time
Page 34 of 34	Sep-15)	Relinquis	AL	-7	Date	121 153 11 174 11 174 11 11	5 TH	Recei	ved By:	Al	JL A	2180 2180	ate/Tim ($O(<)$ 04	e: 153 30	17	clock will not a guittes are rea	tart until any ambi- olved. All samples subject to Alpha's nditions.