Periodic Review Report 2021-2022

MAIN AND EAST BALCOM STREET SITE BCP SITE NO. C915306 BUFFALO, NEW YORK

May 2022

0239-022-001

Prepared For: SCRE Mid-City, LLC

Prepared By:

2558 Hamburg Turnpike, Suite 300, Buffalo, New York | phone: (716) 856-0635 | fax: (716) 856-0583

PERIODIC REVIEW REPORT

MAIN AND EAST BALCOM STREET SITE BCP SITE NO. C915306

BUFFALO, NEW YORK

May 2022

0239-021-001

Prepared for:

SCRE Mid-City, LLC

Prepared By:

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218

PERIODIC REVIEW REPORT Main and East Balcom Street Site BCP Site No. C915306 Table of Contents

1.0	Intr	ODUCTION	1
	1.1	Site Background	1
	1.2	Remedial History	
	1.3	Compliance	
	1.4	Recommendations	
2.0	SITE	OVERVIEW	3
3.0	REM	EDY PERFORMANCE	4
4.0	Site	MANAGEMENT PLAN	5
		Monitoring and Sampling Plan	
		4.1.1 Long-Term Groundwater Monitoring and Sampling Plan	
		4.1.2 Annual Inspection and Certification Program	5
	4.2	Excavation Work Plan	6
	4.3	Engineering and Institutional Control Requirements and Compliance	6
		4.3.1 Institutional Controls	
		4.3.2 Engineering Controls	7
5.0	Con	CLUSIONS AND RECOMMENDATIONS	8
6.0	DEC	LARATION/LIMITATION	9

PERIODIC REVIEW REPORT Main and East Balcom Street Site BCP Site No. C915306

TABLES

Table 1Summary of Groundwater Analytical Results

FIGURES

- Figure 1 Site Location and Vicinity Map
- Figure 2 Site Plan
- Figure 3 Cover System Layout
- Figure 4A Groundwater Network and Isopotential Map (May 2021)
- Figure 4B Groundwater Network and Isopotential Map (October 2021)
- Figure 4C Groundwater Network and Isopotential Map (March 2022)

APPENDICES

- Appendix A NYSDEC Certification Form
- Appendix B Site Photolog
- Appendix C Groundwater Sampling Logs
- Appendix D Laboratory Analytical Data Reports

1.0 INTRODUCTION

TurnKey Environmental Restoration, LLC (TurnKey) has prepared this Periodic Review Report (PRR), on behalf of SCRE Mid-City, LLC to summarize the post-remedial status of New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site No. C915306, located in the City of Buffalo, Erie County, New York (Site; see Figures 1 and 2).

This PRR has been prepared for the Main and East Balcom Street Site in accordance with NYSDEC DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). The NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form has been completed for the Site (see Appendix A).

This PRR and the associated inspection forms have been completed for the March 23, 2021 to March 23, 2022 reporting period.

1.1 Site Background

The Site consists of one parcel, identified as 1661 Main Street, totaling 0.993-acres, located in the City of Buffalo, Erie County, New York. The Site is currently improved with a six-story building and concrete patio; asphalt parking lots along Main Street and East Balcom Street; concrete sidewalks; and associated landscaped areas (see Figures 1 and 2).

Prior to remediation and redevelopment, the Site was used for warehouse-storage and trucking, filling station(s), commercial-retail (bakery), and residential.

1.2 Remedial History

After acceptance into the NYS BCP on October 21, 2016, a Remedial Investigation/Interim Remedial Measures (RI/IRM) Work Plan and supplemental work plans were prepared and submitted to the NYSDEC for review and approval. Interim Remedial Measures (IRM) activities were completed to address the removal of one (1) exterior Underground Storage Tank (UST), one (1) interior Aboveground Storage Tank (AST) and appurtenant piping; excavation of petroleum, PAH, and metals impacted soils; groundwater management; and excavation backfilling. A Remedial Action Work Plan (RAWP) was prepared and approved by the NYSDEC detailing the excavation and off-site disposal of impacted soil/fill with post-excavation confirmatory sampling; supplemental

indoor air and subslab Soil Vapor Intrusion (SVI) and groundwater assessments; and construction of a Site-wide cover system.

The cleanup was successful in achieving the remedial objectives for the Site. The Site Management Plan (SMP) and Final Engineering Report (FER) were approved by the Department in December 2019. The NYSDEC issued a Certificate of Completion (COC) for the Site on December 24, 2019.

1.3 Compliance

An annual site inspection of the exterior cover system was completed during the reporting period, and the Site is in compliance with the SMP. The completed IC/EC form is included in Appendix A and a Site photo log is included in Appendix B.

1.4 Recommendations

No modifications of the SMP are recommended at this time.

2.0 SITE OVERVIEW

Previous investigations identified environmental contamination on-Site that required remediation. BCP investigations and remediation were completed between 2017 and 2019.

The remedial activities included:

- Excavation, cleaning, and removal of one (1) exterior UST and appurtenant piping with confirmatory sampling and analysis;
- Cleaning and removal of one (1) interior AST and appurtenant piping with confirmatory sampling and analysis;
- Excavation and off-site disposal of non-hazardous soil/fill exceeding the NYSDEC Part 375 Restricted Residential Use Soil Cleanup Objectives (SCOs) with confirmatory sampling and analysis.
- Construction and maintenance of a cover system consisting of the existing building, concrete, and asphalt pavement; and minimum 24-inches soil cover of approved clean material placed on top of a demarcation layer, to prevent human exposure to remaining soil/fill exceeding RRSCOs.
- Placement of an environmental easement to (1) implement, maintain, and monitor Engineering Controls; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and (3) limit the use and development of the Site to Restricted Residential, Commercial, or Industrial uses only.

Remedial activities were completed in September 2019. The FER and SMP for the Site were approved by the Department in December 2019. The COC was issued for the Site on December 24, 2019.

3.0 **Remedy performance**

Post-remedial inspections and groundwater monitoring have been completed at the Site during the reporting period.

Groundwater sample analytical results are summarized on Table 1, with representative groundwater network and isopotential shown on Figures 4A and 4B for the associated sampling events. Groundwater monitoring and sampling logs are provided in Appendix C. Laboratory analytical data reports are provided electronically in Appendix E.

Annual site inspection was completed on March 22, 2022, and the cover system is being maintained in accordance with the approved SMP.

The completed IC/EC Certification form and site photographs are included in Appendix A and Appendix B, respectively.

4.0 SITE MANAGEMENT PLAN

The SMP for the Site was approved by the Department in December 2019. The SMP includes an Institutional and Engineering Control (IC/EC) Plan, a Monitoring and Sampling Plan, an Excavation Work Plan (EWP), and a copy of the Environmental Easements. A brief description of the components of the SMP is presented below.

4.1 Monitoring and Sampling Plan

The Monitoring and Sampling Plan consists of two major components, including the Post-Remediation Monitoring and Sampling Plan and the Annual Inspection & Certification Program.

4.1.1 Long-Term Groundwater Monitoring and Sampling Plan

Groundwater monitoring and sampling is to be performed semi-annually as outlined in the Department-approved SMP. A total of six (6) monitoring wells are to be sampled and analyzed for volatile organic compounds (VOCs) during each sampling event. Three (3) groundwater sampling events were completed occurred during the reporting period, in May 2021, October 2021, and March 2022. Groundwater sampling logs are provided in Appendix C.

Groundwater analytical results are summarized on Table 1 and laboratory analytical data reports are provided electronically in Appendix D.

4.1.2 Annual Inspection and Certification Program

The Annual Inspection and Certification Program outlines the requirements for the Site, to certify and attest that the institutional controls and/or engineering controls employed at the Site are unchanged from the previous certification. The Annual Certification will primarily consist of an annual Site Inspection to complete the NYSDEC's IC/EC Certification Form. The Site inspection will verify that the IC/ECs:

- Are in place and effective.
- Are performing as designed.

- That nothing has occurred that would impair the ability of the controls to protect the public health and environment.
- That nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls.
- Access is available to the Site to evaluate continued maintenance of such controls.

Site inspection was completed on March 22, 2022, during the reporting period. Minor surface cracks were noted in the basement concrete floor, no exposure concerns related to cover. An exterior perimeter fence and gate was installed along E. Balcom Street boundary in July 2021. Traditional fence post installation with no soil being removed or brought to the Site. Electrical conduit previously installed during remedial activities.

The property is being used in accordance with the Restricted Residential Use (mixed use commercial and residential), with surface parking, concrete walkways, and landscaped areas. No observable indication of intrusive activities was noted during the Site inspection. No observable use of groundwater was noted during the site inspection.

The completed Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certification Form is included in Appendix A. A photolog of the most recent Site inspections is included in Appendix B.

4.2 Excavation Work Plan

An EWP was included in the Department-approved SMP for the Site. The EWP provides guidelines for the management of soil and fill material during any future intrusive activities.

No intrusive activities requiring management of on-Site soil or fill material; or the placement of backfill materials occurred during the monitoring period.

4.3 Engineering and Institutional Control Requirements and Compliance

As detailed in the Environmental Easements, several IC/ECs need to be maintained as a requirement of the BCAs for the Site.

4.3.1 Institutional Controls

- Groundwater-Use Restriction the use of groundwater for potable and nonpotable purposes is prohibited without water quality treatment as determined by the NYSDOH;
- Land-Use Restriction: The controlled property may be used for restricted residential, commercial and/or industrial use; and
- Implementation of the SMP.

4.3.2 Engineering Controls

- All engineering controls must be operated, maintained, and inspected as specified in the SMP;
- Cover System The cover system, including buildings, concrete sidewalks, asphalt, and landscaped vegetated areas are being maintained in compliance with the SMP.

At the time of the site inspection, the Site was compliant with the engineering and institutional control requirements.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions:

The Site was in general compliance with the SMP.

Recommendations:

No changes are recommended at this time.

6.0 DECLARATION/LIMITATION

TurnKey personnel conducted the annual site inspections for the Main and East Balcom Street Site (BCP Site No. C915306), located in Buffalo, New York, according to generally accepted practices. This report complied with the scope of work provided to SCRE.

This report has been prepared for the exclusive use of SCRE. The contents of this report are limited to information available at the time of the site inspections. The findings herein may be relied upon only at the discretion of SCRE. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of TurnKey.

TABLES

TABLE 1 SUMMARY OF SUPPLEMENTAL GROUNDWATER SAMPLE ANALYTICAL RESULTS

PERIODIC REVIEW REPORT MAIN & EAST BALCOM STREET SITE BCP SITE NO. C915306 **BUFFALO, NEW YORK**

										Sample Location	ı								
Parameters ¹	Class GA GWQS ²			MW-1					MW-2				MW-3			MW-3R			
		10/23/17	6/27/19	5/6/21	10/13/21	3/22/22	10/23/17	8/29/19	5/6/21	10/13/21	3/22/22	11/16/17	2/11/18	6/27/19	9/3/19	5/6/21	10/13/21	3/22/22	
Volatile Organic Compounds (VOCs) - ug/L																			
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	360 NJ	ND	ND	ND	ND	ND	ND	
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	0.14 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Acetone	50	5.2	ND	ND	1.8 J	ND	2 J	ND	ND	3.5 J	ND	51	4.5 J	ND	7.1	ND	1.9 J	ND	
Benzene	1	ND	ND	ND	ND	ND	0.53	0.16 J	ND	ND	ND	ND	ND	ND	0.47 J	ND	ND	ND	
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Methylcyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5 J	ND	ND	ND	ND	ND	ND	
Xylene (total)	5	ND	ND	ND	ND	ND	0.88 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
p-Isopropyltoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.83 J	ND	ND	ND	
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	30	10	6.1	7.5	0.86	0.8	0.41 J	
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	

Notes:

Only parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.

3. Sample results were reported by the laboratory in mg/L and converted to ug/L for comparisons to GWQSs

Qualifiers:

ND = Parameter not detected above laboratory detection limit. "--" = Sample not analyzed for parameter or no GWQS available for the parameter.

J = Estimated Value. The target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for Solid-Phase Microextraction (SPME)-related analyses.

BOLD

= Result exceeds GWQS.

TABLE 1 SUMMARY OF SUPPLEMENTAL GROUNDWATER SAMPLE ANALYTICAL RESULTS

PERIODIC REVIEW REPORT MAIN & EAST BALCOM STREET SITE BCP SITE NO. C915306 BUFFALO, NEW YORK

										Sample Locatio	า						
Parameters ¹	Class GA GWQS ²			MV	MW-4			MW-5						MW-6			
		11/16/17	2/12/18	6/27/19	5/6/21	10/13/21	3/22/22	2/12/18	6/27/19	9/3/19	5/6/21	10/13/21	3/22/22	6/27/19	5/6/21	10/13/21	3/22/22
Volatile Organic Compounds (VOCs) - ug/L																	
1,1-Dichloroethene	5	0.27 J	ND	0.17 J	0.17 J	0.26 J	0.20 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6	0.18 J	0.16 J	ND	0.13 J	0.45 J	0.72	ND	ND	ND	ND	ND	ND	0.27 J	2.5	3.4	2.7
Acetone	50	3.1 J	93	ND	ND	2.5 J	ND	9	1.5 J	7.2 J	ND	3.1 J	ND	8	ND	ND	ND
Benzene	1	3.4	1.9	1.3	1.4	1.3	0.81	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane		0.64 J	0.29 J	1.2 J	ND	0.34 J	0.29 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane		0.49 J	ND	0.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cis-1,2-Dichloroethene	5	39	21	4.2	9.6	11	5.6	5.2	ND	ND	1.6 J	2.0 J	3	ND	ND	ND	ND
Xylene (total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	2	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	100	58	13	24	25	15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	17	8	7.1	8.5	8	4.6	ND	ND	ND	ND	ND	ND	2.5	0.89	0.96	0.77
Vinyl Chloride	2	6.9	2.5	0.48 J	1.9	2.8	3	0.5 J	ND	0.13 J	0.16 J	0.25 J	0.25 J	0.31 J	0.83 J	0.75 J	0.63 J

Notes:

1. Only parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

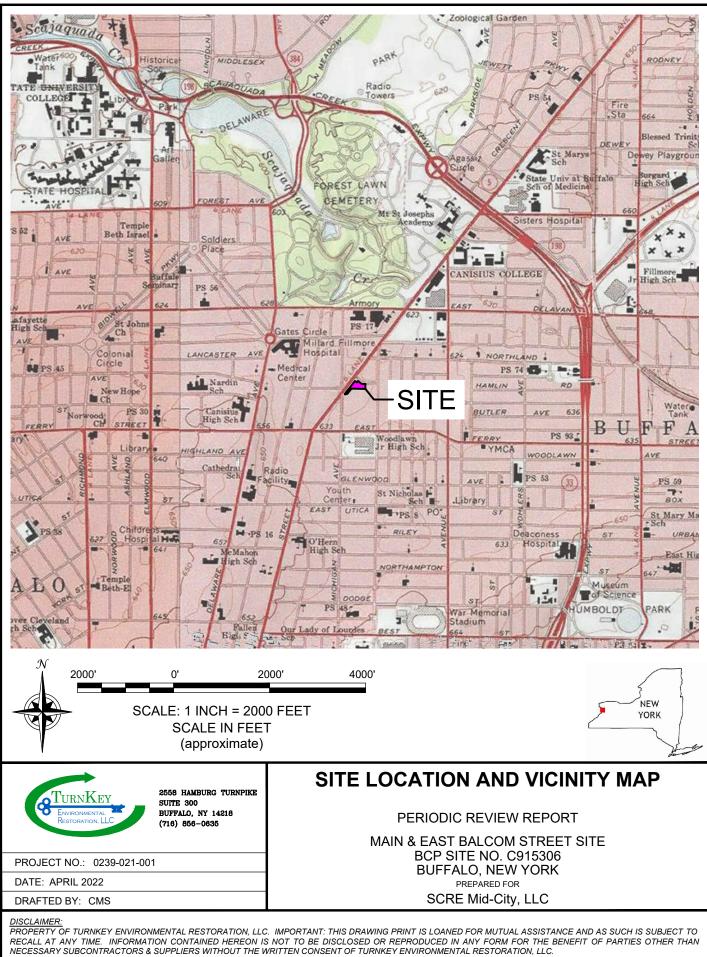
2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.

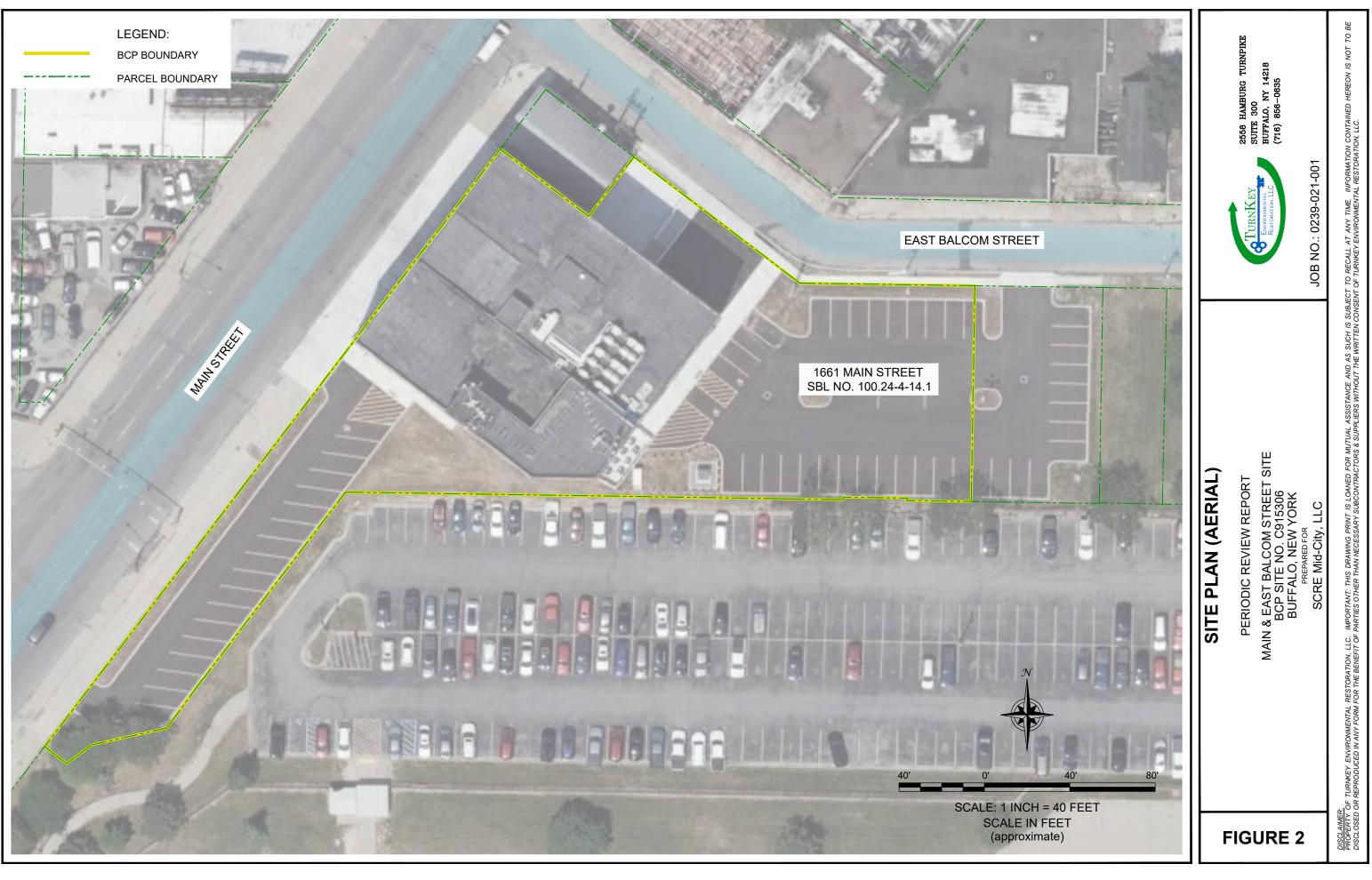
Qualifiers:

ND = Parameter not detected above laboratory detection limit.

"--" = Sample not analyzed for parameter or no GWQS available for the parameter.

J = Estimated Value. The target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for Solid-Phase Microextraction (SPME)-related analyses.


BOLD


= Result exceeds GWQS.

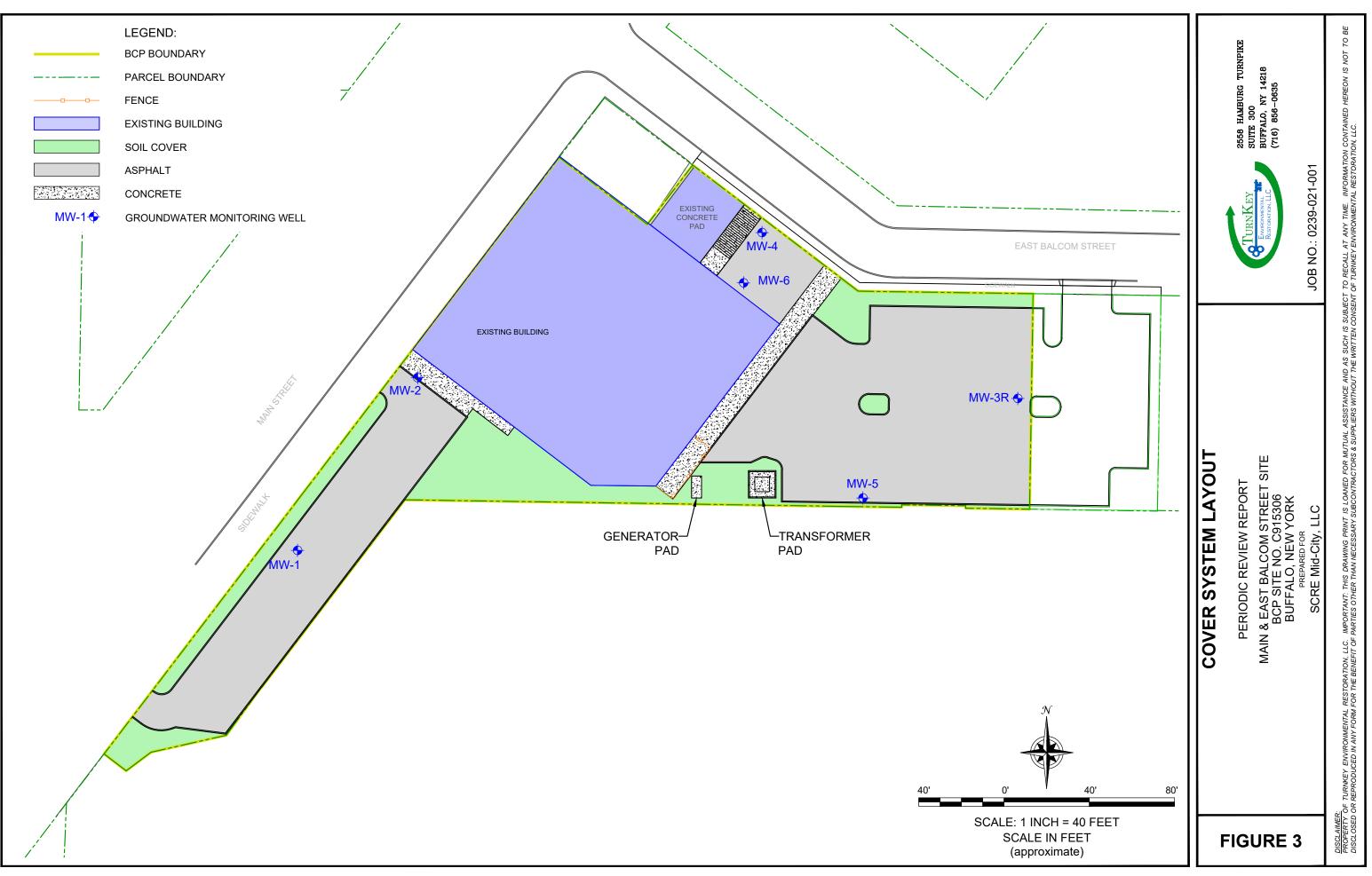
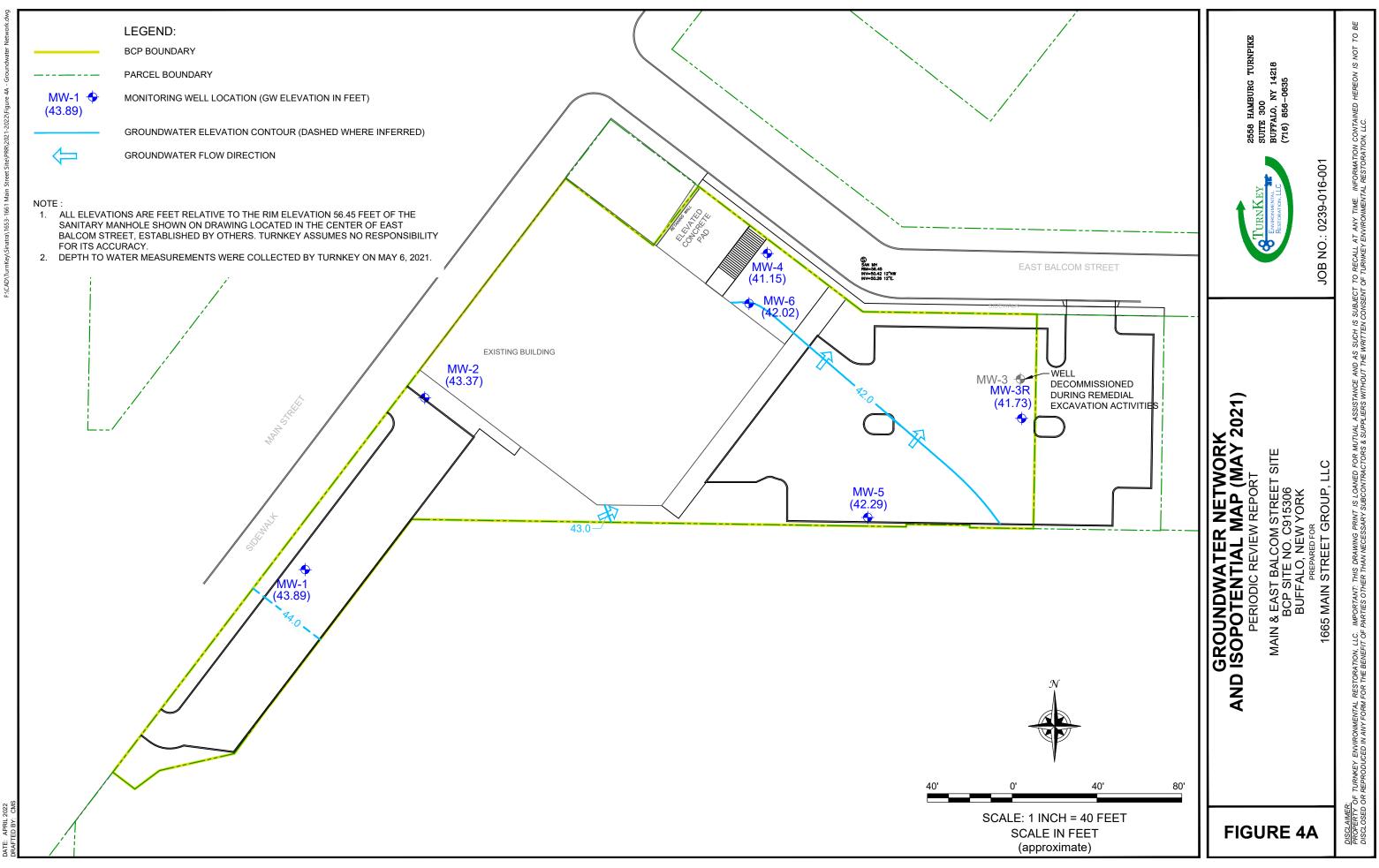
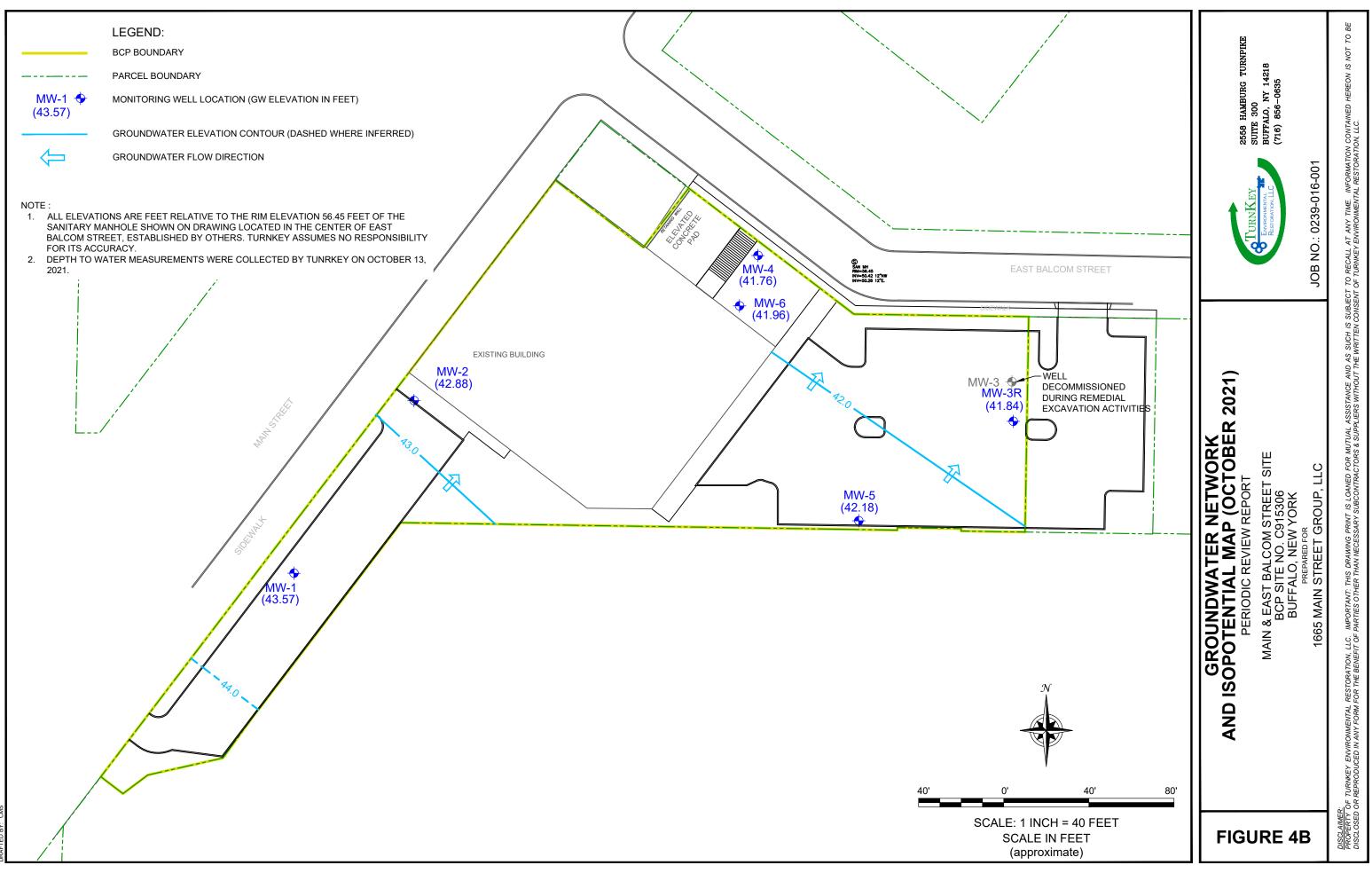
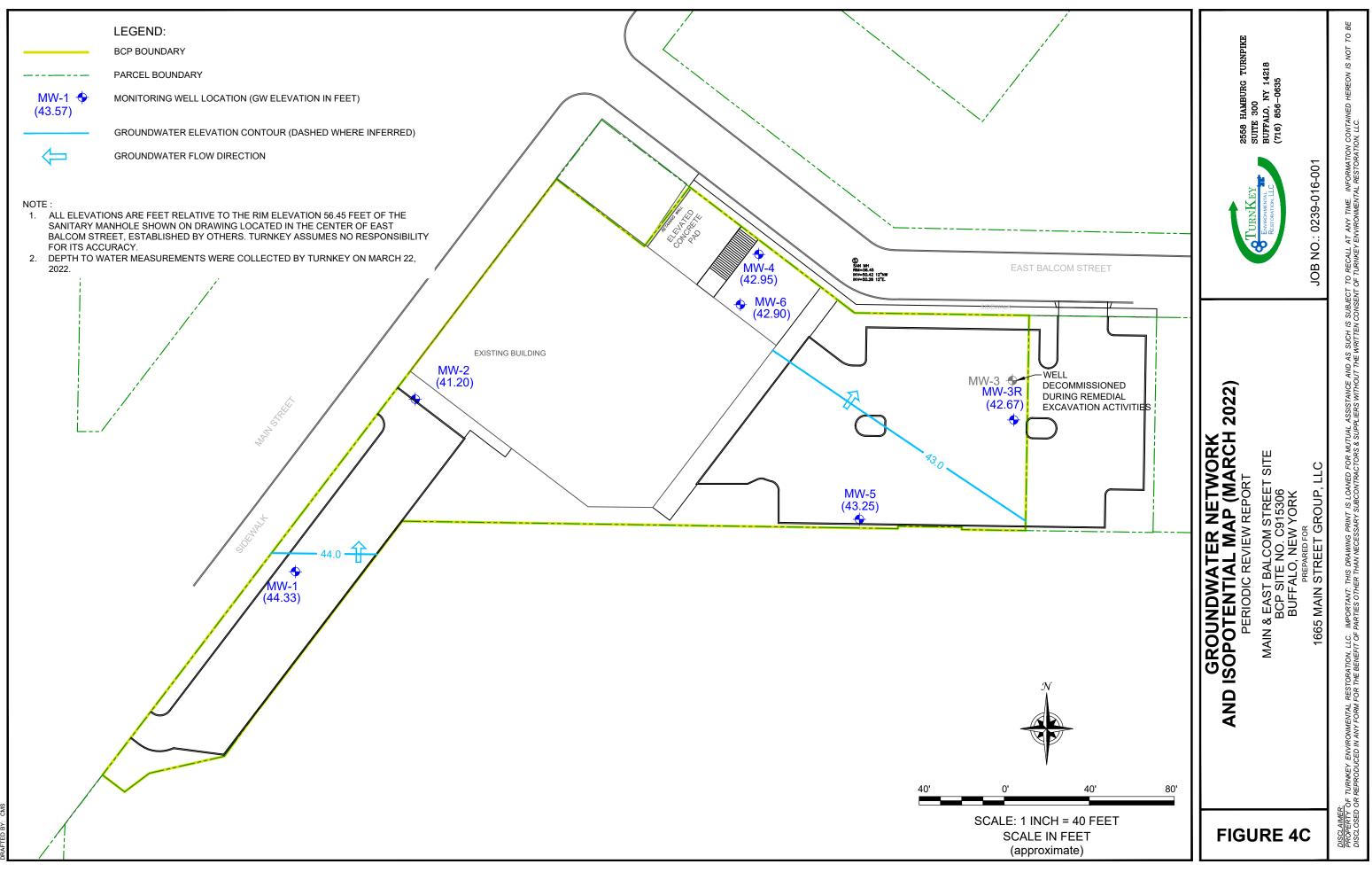

FIGURES

FIGURE 1






DATE: APRIL 3 DRAFTED BY:

CM:

Date: April 2022 Drafted by: CM

DATE: APRIL 20

APPENDIX A

INSTITUTIONAL & ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Details Site No. C915306	Box 1	
Site Name Main and East Balcom Street Site		
Site Address: 1661 Main Street Zip Code: 14209 City/Town: Buffalo County: Erie Site Acreage: 0.993		
Reporting Period: March 23, 2021 to March 23, 2022		
	YES	NO
1. Is the information above correct?		
If NO, include handwritten above or on a separate sheet.		
 Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 		
 Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 		
4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		
If you answered YES to questions 2 thru 4, include documentation or evidenc that documentation has been previously submitted with this certification form		
5. Is the site currently undergoing development?		
	Box 2	
	YES	NO
 Is the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial 		
7. Are all ICs in place and functioning as designed?		
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	ând	-
A Corrective Measures Work Plan must be submitted along with this form to address	these iss	sues.
Signature of Owner, Remedial Party or Designated Representative Date		

				Box 2	Α
				YES	NO
8. Has any new information revealed Assessment regarding offsite cont		ealed that assumptions made in the contamination are no longer valid?	Qualitative Exposure		
9.					
		stion 9, the Periodic Review Repor ure Assessment based on the new			
SITI	E NO. C915306			Bo	x 3
	Description of Institutional (Controls			
Parce			Institutional Contro	<u>ol</u>	
Portio	Portion of 100.24-4-14.1 SCRE-Mid City, LLC Ground Water Us Soil Management Landuse Restricti Monitoring Plan Site Management IC/EC Plan				tion
Prov Sem	bition against use of groundwa ision for SVI evaluation of occu i-Annual monitoring of groundw pliance with excavation plan	upied buildings on site			
				Bo	x 4
	Description of Engineering	Controls			
Parce		Engineering Control Cover System			
Site o	over system	over oystem			

			Box 5		
	Periodic Review Report (PRR) Certification Statements				
1.	I certify by checking "YES" below that:				
	a) the Periodic Review report and all attachments were prepared under the directio reviewed by, the party making the Engineering Control certification;	on of,	and		
b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.					
		ES	NO		
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of t following statements are true:	he			
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Depart	tmen	t;		
	(b) nothing has occurred that would impair the ability of such Control, to protect put the environment;	blic h	ealth and		
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	е			
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	he			
	(e) if a financial assurance mechanism is required by the oversight document for th mechanism remains valid and sufficient for its intended purpose established in the c				
	Y	ES	NO		
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	-			
	A Corrective Measures Work Plan must be submitted along with this form to address thes	e iss	ues.		
	Signature of Owner, Remedial Party or Designated Representative Date	_			

IC CERTIF	ICATIONS
SITE NO.	C915306

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I NICHOLAS A. SINATRA at GI7 MAIN STREET,	SU RE 200, BUTTHO, NY 14203
print name print business a	address
am certifying as SCRE MID-CITY, LLC	(Owner or Remedial Party)
for the Site named in the Site Details Section of this form.	5/9/2022
Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	Date

EC CERTIFICATIONS

Site No. C915306

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

1 <u>Nuthen Munley</u> at 2558 Hundry Tompile Buttalo NY print name print business andress 14218
am certifying as a Qualified Environmental Professional for the
(Owner or Remedial Party)
Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification Stamp (Required for PE)

INSPECTOR'S DAILY REPORT

Page of CONTRACTOR: JOB NO .: CLIENT: DATE: 202 U al LOCATION: DAY: Su M Tu W Th F Sa am WEATHER END: TEMP: START: °F WORK PERFORMED: 5 111 TEST PERFORMED; QA PERSONNEL: SIGNATURE:

APPENDIX B

SITE PHOTO LOG

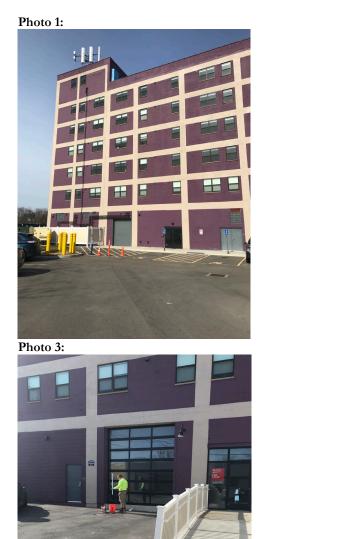


Photo 2:

Photo 4:

- Photo 1: Southeast side of building and exterior hardscape cover (looking west).
- Photo 2: Transformer located along the eastern side of the southern Site boundary (looking southwest).
- Photo 3: Completion of groundwater monitoring/sampling at MW-6 during the reporting period (looking south).
- Photo 4: Newly installed fence and gate system located along the eastern portion of the northern Site boundary (looking east).

Main and East Balcom Street Site BCP Site No. C915306 Photo Date: March 22, 2022

Photo 7:

Photo 6:

- Photo 5: Soil cover system and hardscape along the Main Street Site boundary (looking northeast).
- Soil cover along the southwest side of the building (looking east). Photo 6:
- Photo 7: Hardscape along the northwest side of the building adjacent to Main Street (looking north).
- Groundwater monitoring well MW-1 located within the southwest portion of the Site adjacent to Main Photo 8: Street (looking south).

Main and East Balcom Street Site BCP Site No. C915306 Photo Date: March 22, 2022

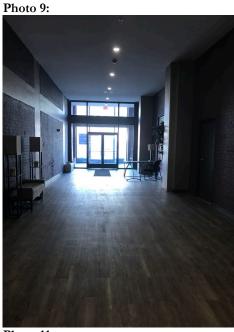


Photo 11:

Photo 10:

Photo 12:

Photo 9: First floor interior entrance to the existing building looking west towards Main Street.

Photo 10: First floor interior space of the existing building looking east away from Main Street.

- Photo 11: Unfinished commercial interior space of the existing building looking northeast towards East Balcom Street.
- Photo 12: Basement interior space of the existing building.

Main and East Balcom Street Site BCP Site No. C915306 Photo Date: March 22, 2022

Photo 13:

Photo 13: Newly constructed interior dog park located in the basement of the existing building.Photo 14: Newly constructed interior dog park located in the basement of the existing building.

APPENDIX C

GROUNDWATER SAMPLING LOGS

Date: 5/6/21 Field Team: <3

Project Name: Location: Project No.:

Well N	o. MW - 3	3 K.	Diameter (ir	nches): 2°		Sample Date / Time: 5/6/21 102-8				
Product De	epth (fbTOR):		Water Colu	тл (ft): 🤸.	8	DTW when	sampled:	19.21	1.7	
DTW (stat	ic) (fbTOR):	5:49	One Well V	olume (gal): $ artheta $		Purpose:	Development		e 🕺 Purge & Sample	
Total Dept	h (fbTOR): 22	5.29	Total Volume Purged (gal): 2.35			Purge Meth	Purge Method: BAILER			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	Appearance & Odor			
928	o Initial	0.25	6.42	13.2	1318	30.1	2.43	311	CLEAR, NO	
939	1 14.99	2.75	7.25	13.2	1151	599	2.58	55	2000	
946	2 1127	5119953	5 7.11	13.1	1139	311	2.77	2		
1015	3 201	HARKESS.	27.51	15.8	1146	2.25	3.99	- 30		
1022	19.44	7.5	7.47	15.3	1144	201	4,28	-36		
	5									
	6									
	7									
	8									
	9									
	10									
Sample	Sample Information:									
1028	S1 (9.21	8.00	7.39	14.2	1146	158	4.12	-40		
1035	52 18.68	3.25	7.31	14.3	1148	77.2	4.27	-47		

Well No	5. MW-5		Diameter (ir			Sample Da			1200	
Product De	pth (fbTOR):		Water Colu	mn (ft): 4, S	\$7	DTW when	sampled: 17	:56		
DTW (statio) (fbTOR): 15	. 11	One Well V	olume (gal): 💈).79	Purpose:	Development	: 🗌 Sample	e X Purge & Sample	
Total Depth	(fbTOR): 20.	28		ne Purged (gal):	2.38	Purge Method: BAILER				
Time	Water Level (fbTOR)	Acc. Vołume (gałlons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1125	o Initial	0.25	7.33	13.7	12.71	44.3	2.04	-86	CLEAR, NO	
1136	117.36	2.75	7.11	12.8	13.68	211	2.34	-72	JOK	
1136 1146	217:50	5.25	7.15	12.4	12.88	181	2.57	-69		
1156	317.40	7.5	7.14	12.2	13.76	184	2.71	-71		
	4									
	5									
	6									
	7									
	8									
	9									
	10									
	nformation:									
1200	1200 17.56 7.75 7.18 11.9 13.33 98.5 2.61 -60									
1209	5217.42	8.00	7.21	12.1	12-81	376	2.89	-48		
			4.0	0				Stat	bilization Criteria	
REMARK	S: MW	-3 2	O SPM AD				ume Calculation		Parameter Criteria	
		5	0			Diam. Vol. (g/ft) p			± 0,1 unit	

1"

2"

4"

6"

0.041

0.163

0.653

1.469

SC

Turbidity

DO

ORP

± 3%

± 10% ± 0.3 mg/L

± 10 mV

Note: All measurements are in feet, distance from top of riser.

	FURNKEY	
Co	ENVIRONMENTAL RESIDEATION LLC	ľ

Project Name:

Location:

		1 2
	Project No.:	Field Team:
ne:		Date:

Well N	o. MW-	Ç2	Diameter (ir	nches): 2 ⁴		Sample Date / Time: 1302 5/6/2(
Product De	epth (fbTOR):		Water Colu	mn (ft): 5.5	87	DTW when sampled: 15 72				
DTW (stati	c) (fbTOR):	.69	One Well V	olume (gal): 🕻	7.96	Purpose: [Development	: 🗌 Sampl	e 🔣 Purge & Sample	
Total Depti	n (fbTOR): 20	.56	Total Volume Purged (gal): 2.37			Purge Meth	od BAILEN	e		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1236	o Initial	0.25	7.86	13.3	3038	109	1.21	-105	LLEAR, FAINT	
1243	115.29	3,25	7.36	13.4	3738	875	1.87	-101	DOOR	
1250	2 15.41	6.25	7.28	13.3	4049	575	2.34	-97	GREY W/SLIC.	
1258	a 15.71	9.25	2.26	13.4	4086	605	3.16	-91	ORANCE TINT	
	4								FAINT SDOR	
	5									
	6									
	7									
	8									
	9									
	10									
Sample Information:										
1302	S1 15.72	9.50	7.25	13.2	4094	329	1.51	-90		
1308	52 15 73	9.75	7.23	13.3	4172	293	1.75	-87		

Well N	0. MW-4		Diameter (i	nches): 24		Sample Date / Time: 5/6/21							
Product De	epth (fbTOR):		Water Colu	mn (ft): 5.7	26	DTW whe	n sampl	ed: 13	12				
DTW (stat	ic) (fbTOR):	1.82	One Well V	olume (gal):	2.36	Purpose:	Dev	elopment	C	Sample		Purge & Sam	ple
Total Dept		0,08	Total Volun	ne Purged (gal)	:2.57	Purge Met	thod:						
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)		DO ng/L)		ORP (mV)	A	ppearance & Odor	
1322	o Initial	0.25	7.56	12.0	2036	293	1	10	- (59	DRI	NCE, H	0
1327	114.46	1.25	7.36	11.9	1958	71000	1.4	10	-	86 K	-	ur	
1334	2 14.52	2.25	7:30	11.8	1920	71000		52	أينتم	90		arry	
1338	3 1509	3.25	7.28	11.4	2004	71200		72		93		SHELLY	
	4											or	
	5										SHE	ZN APF	と
_	6											idenca	
	7					1							
5	8												
Ac.	9												
A.	10				/								
Sample	Information												
13-12	51 14.46	3.50	7.24	11.5	2124	71000	11.	43	w37 (88			_
1348	\$2 14.47	3.75	7.25	11.4	2032	71000	1.5		25	ř8			
			1 10.0	0	- and	2,				Stat	ilization	Criteria	
REMAR	(s: MW)	-6 16	.1 PPM	FID	1. S.	Vo		alculation	_[Parame	eter	Criteria	
	MW	-4 4	O PPM	MD		0		Vol. (g/ft)		pН		± 0.1 unit	
							1"	0.041		SC		± 3%	_
		10-1					2"	0.163		Turbid	ity	± 10%	
						4" 0.653			DO ± 0.3 mg/L				
Note: All m	easurements	are in feet,	distance from	n top of rise	ſ.	6" 1.469 ORP			± 10 mV				

Groundwater Field Form GWFF - TK

6	FURNKEY
6	Ennowing LLC

Project Na	me:		Date:										
Location:				Project	No.:		Field T	eam:					
	o. MW~2 epth (fbTOR):		-	ameter (inches): 2" ater Column (ft): 7, [1]			Sample Date / Time: 5/6/2/ 1493 DTW when sampled: 13, 23						
DTW (stati	ic) (fbTOR): 12			olume (gal):	.50	Purpose:	Developmer		le 🔥 Purge & Sample				
Total Dept	h (fbTOR): 21	. 50	Total Volun	ne Purged (gal):	Y.YY Purge Method: BALLEY								
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor				
1406	o Initial	0.25	7.41	11.9	47-21	449	3.17	-61	CLEAK SLICH				
1413	1 13.72	1.75	7.03	11.9	5215	679	2.05	-33	TLABID, NO				
1419	2 13.91	2,25	7.26	12.2	5027	302	2.23	-57	5702				
1426	3 14.31	4.75	7.22	11.9	5122	190	1.95	-69					
	4												
	5												
	6												
	7												
	8												
	9												
	10												
Sample	Information:												
1433	\$1 13.23	5.00	7.21	11.8	5233	115	1.13	-75					
1436	52 13.22	5.25	7.23	11.8	5555	81.3	1.96	-84					

Well N	10. NW		Diameter (i	nches): '2"		Samo	e Date /	Time: 5/6	21	102	Kb.	151	,
	epth (fbTOR)		Water Colu		6		when sar				10	100	
-	tic) (fbTOR):	00		/olume (gal):		Purpo		Development		Sampl	e D	Purge	& Sample
	th (fbTOR): 20		Total Volun	ne Purged (gal):	4.48			BAILE	2-			4	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbid (NTL	lity	DO (mg/L)		ORP (mV)		Appear Od	
1454	o Initial	0.25	7.23	12.7	5029	25.	5 1	,95	-	133	CU	EAR.	Some.
1501	13.81	1.75	6.99	12.7	5913	23.		.85		132			FLOAT
1508	2	3.25	7.04	12.7	5949	27		2.21		113		TIC	
1513	3 15.51	4.75	7.05	12.6	5941	35		1.04		108	-	OU	
	4			10-10			-		-	<u> </u>	1		
	5												
	6												
· · · · · · · · · · · · · · · · · · ·	7												
	8												
	9										<u> </u>		
	10						-						
Sampla	Information:				Į	I			<u> </u>				
1516	s1 14.35	5:00	7.07	12.6	5949	29.	2 11	.56		(1)	1		
1520	S2	5.25	1.06	12.7	5915	27.		49		14	-		
	_				1242	67.		· 1.			bilizatio	n Criter	ia
REMAR	KS: MW- MW-	2 :	2.6 PPM				Volume	e Calculation	1	Param			riteria
	Mw-	-1 2	J Y PON)			Diam.	Vol. (g/ft)		рH		± (D 1 unit
							1"	0.041		sc		:	± 3%
							2"	0.163		Turbio	dity	±	: 10%
						4" 0.653			DO		± 0	.3 mg/L	
Note: All n	neasurements	are in feet,	distance from	n top of riser	.	6" 1.469 ORP ± 1				10 mV			

and the second s

Groundwater Field Form GWFF - TK

EQUIPMENT CALIBRATION LOG

Project Name:					Date:			
Project No.: Client:					Instrumer	nt Source:	вм	Rental
METER TYPE		ТІМЕ	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
	units	855	Myron L Company Ultra Meter 6P	6213516 6243084 6212375	60	4.00	4.00	
pH meter	u u		Myron L Company Ultra Meter 6P 0213010 1					
Turbidity meter	NTU		2100Q	13120C030432 (Q)	C ²	<0.4 20 100	18.7	
Sp. Cond. meter	uS mS	857		6243084	CS	mS @ 25 °C		
PID	ppm		Soco MinRAE-2000	592-918528	ĊŚ	open air zero ppm Iso. Gas	<i>9</i> . 0	MIBK response factor = 1.0
Dissolved Oxygen	ppm	900	HACH Model HQ30d	080700023281 100500041867 140200100319	05	100% Satuartion	100'(; 96.4 Swite	
Particulate meter	mg/m ³					zero air		
Radiation Meter	uR/H					background area		
ADDITIONAL REMARK PREPARED BY:	S:		I	DATE:				

Project Name: MAIN & BALCOM Location: BUEFALO

Project No.: 0239 - 000-001

Date: 10/13/21 Field Team: 3

						2(
Well N	0. MW- 5		Diameter (ir	nches): 2'		Sample Dat	:e / Time: [0]	3/21 1	027	
Product De	epth (fbTOR):		Water Colu	mn (ft): 4.8	1	DTW when sampled: (2.3)				
DTW (stat	c) (fbTOR): 15	52		olume (gal): 0		Purpose: Development Sample Purge & Samp				
	h (fbTOR): 20		Total Volume Purged (gal): 2,35			Purge Method: BAILER				
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1009	o Initial	-	7.17	17.1	12.49	21.0	1.29	-34	CLEAN, NO	
1014	1 16.51	0.80	7.28	17.0	13.75	185	1.43	-53	DOOK	
1020	2 16.96	1.60	7.25	16.2	14.09	180	1.29	-66		
1024	3 17.25	2.40	7.27	16.2	14.29	133	1.70	-72		
	4				4 - 1972 - 24 -					
	5									
	6									
	7							·		
	8									
	9									
	10			· · · · · · · · · · · · · · · · · · ·						
Sample	Information:					·		ι		
1027	51 (7.31	2.50	7.27	16.1	12.94	72.9	1.81	-64		
1031	52 16.89	2.60	7.25	16.4	13.29	85.3	1.38	-64		

Well N	0. MN-36	2	Diameter (ir	nches): 2"		Sample Dat	e / Time: ()	113/21	1109
	pth (fbTOR):		Water Colu	mn (ft): 4.6	5	DTW when	sampled: [{	1.62	
DTW (stati	c) (fbTOR): 15	. 38	One Well V	olume (gal): D.	76	Purpose:] Development	t 🔲 Sample	e 🕺 Purge & Sample
Total Depth	n (fbTOR): 20).31		e Purged (gal):		Purge Meth	od: BAILEK	2	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity DO ORP (NTU) (mg/L) (mV)			Appearance & Odor
1051	 Initial 	-	7.27	17.4	6688	26.5	0.87	-25	CLEAR, NO ODDA
1055	117.09	2.80	7.22	16.9	3375	257	1.47	2	
(100	2 18.30	1.60	7.23	16.5	2541	83.2	1.55	12	
1104	3 18.52	2.40	7.22	16.5	1929	48.3	1:49	5	
	4								
	5								
	6								
	7								
	8								
	9								
	10								
Sample	Information:		×	·					
11.09	S1 18.62	2.50	7.23	16.9	1670	38.3	1.56	-8	
1115	S2 17,99	2.60	7.23	16.2	1312	55.5	1.87	-10	
	Information:	2.50					1,56 1,89	-10	

REMARKS:

Volume	Calculation	Parameter	
Diam.	Vol. (g/ft)	pН	
1"	0.041	SC	
2"	0.163	Turbidity	
4"	0.653	DO	
6"	1.469	ORP	

Criteria ± 0.1 unit ± 3% ± 10% ± 0.3 mg/L

± 10 mV

Note: All measurements are in feet, distance from top of riser.

Project Name: MAIN + BALCOM Location: BUFFAL 2

Project No.: 0239-02(-00)

Date: しのしょうしん

Well N	0. MW-6)	Diameter (ir	nches): 2"		Sample Date / Time: 10/13/2/ 1147				
Product De	oduct Depth (fbTOR):			mn (ft): 6.2	5	DTW when		5.30		
DTW (stat	TW (static) (fbTOR): 14.7-5			olume (gal):	.12	Purpose:	Developmen	t 🗌 Sampl	e Purge & Sample	
Total Dept	h (fbTOR): 21	. 66	Total Volum	e Purged (gal):	3.35	Purge Meth	od: BAILE	2		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	Appearance & Odor			
1132	o Initial	-	7.30	18.4	3015	23.3	1.38	-88	CLEAR, FAINT	
1136	114.86	1.15	7.26	18.1	3709	381	1.27	-103	JOSE	
1139	2 15.15	2.30	7.28	18.0	4156	373	1.35	-102		
141	\$ 15.25	3.45	2.28	17.9	4238	324	1.65	-100		
	4									
	5									
	6									
	7									
	8									
	9									
	10									
Sample	Information:									
1147	\$115.30	3.55	7.29	18.0	4295	147	(.33	-78	SLICHT TUB.	
1149	\$215.07	3.65	7.28	17.9	4336	161	1.03	-96	FAINT STOR	

. MW-4		Diameter (in	nches): 2"		Sample Date / Time: 10/13/21 1216			
th (fbTOR):		Water Colur			DTW when	sampled:	14.67	
(fbTOR): 14	.21	One Well Vo	One Well Volume (gal): 0.76			Development	: 🔄 Sample	e 🔀 Purge & Sample
(fbTOR): 20	.10	Total Volum	e Purged (gal):	2.88	Purge Meth	Od: BAILE	ĸ	
Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
o Initial	-	7.35	17.1	2503	67.2	1.26	-107	elear ho
1 14.69		7.31	16.6	2541	422	1.66	-107	DOR
2 14.75	2	7.36	16.5	2591	431	1,45	-106	SLICHT TUBS
14.66	3	7.37	16.6	2588	464	1.61	-106	NO JOOR
4)
5								
6								
7								
9								
9								
10								
formation:								
51 14.67	310	7.37	16.6	2610	147	1.52	-10%	bi
5214.29	3,20	7.32	16.4	2557	199	1.55	-105	
	th (fbTOR): (fbTOR): 14 fbTOR): 20 Water Level (fbTOR) 0 Initial 14.69 14.69 14.66 14.66 14.66	th (fbTOR): 14.21 (fbTOR): 20.10 Water Acc. Level Volume (fbTOR): 20.10 Water Acc. User Volume (fbTOR): (gallons) Initial	th (fbTOR): Water Colum (fbTOR): 14.21 One Well Volume fbTOR): 20.10 Total Volume Water Acc. pH Level Volume gallons) 0 Initial 14.69 1 7.35 14.69 1 7.35 14.69 2 7.36 (4.66 3 7.37 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1	h (bTOR): Water Column (ft): 5.8 (fbTOR): 14.21 One Well Volume (gal): 5.8 (fbTOR): 20.16 Total Volume Purged (gal): 7.85 Water Acc. pH Temp. Level Volume gallons) 17.11 Itial -7.35 17.1 14.69 14.69 1 7.35 17.1 14.69 1 7.35 16.5 14.69 1 7.35 16.5 14.66 3 7.37 16.5 14.66 3 7.37 16.5 14.66 3 7.37 16.5 14.66 3 7.37 16.5	Image: Section of the section of t	h (h (h TOR): Water Column (h): 5.89 DTW when (h (h TOR): i (4.21 One Well Volume (gal): 2.96 Purpose: f (h (h TOR): $20 \cdot 16$ Total Volume (gal): 2.96 Purpose: f (h (h TOR): $20 \cdot 16$ Total Volume (gal): 2.96 Purpose: f Water Acc. pH Temp. SC Turbidity (NTU) o Initial $$ 7.35 17.1 25.33 67.2 14.69 1 7.35 17.1 25.33 67.2 14.69 1 7.35 16.6 25411 4122 14.69 1 7.35 16.6 2588 464 14.66 3 7.37 16.6 2588 464 14.66 3 7.37 16.6 2610 147 $14.4.67$ 3.10 14.5 2610 147	And Construction Data product of the second sec	14 14 16 16 16 14 16

PREPARED BY:

REMARKS:

	Volume	Calculation	Paramete
1	Diam.	Vol. (g/ft)	pН
	1"	0.041	SC
	2"	0.163	Turbidity
	4"	0.653	DO
	6"	1.469	ORP
- 0.5			

r G

Stabilizatio	on ontena
Parameter	Criteria
рН	± 0.1 unit
SC	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

Note: All measurements are in feet, distance from top of riser.

Project Name: MAIN & BALCOM Location: BUFFAL 3

Date: (3/13/21 Project No.: 0239-021 , 00 Field Team: (5

Well No	0. MW-2		Diameter (ir	nches): 2 ⁶		Sample Dat	Sample Date / Time: 10/13/21 12 59			
	pth (fbTOR):		Water Column (ft): 8,7-9			DTW when	sampled:	4.23		
DTW (stati	c) (fbTOR): 12	.80	One Well V	olume (gal): (,	43	Purpose:	Development	t 🗌 Sample	e 🕺 Purge & Sample	
Total Depth	(fbTOR): 21	.58	Total Volum	ne Purged (gal):	4.29	Purge Meth	od: BALER	<u></u>		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity DO ORP Appearant (NTU) (mg/L) (mV) Odor				
1241	o Initial	~	7.42	17.6	3885	81.8	1.49	-15	CLEAR IND SDOK	
1246	1 13.85	1.50	7.32	17.5	4080	78.5	1.48	-44		
1251	2 14.20	3.00	7.35	17:2	4245	70.7	1.59	-48		
1255	\$ 14.22	4.50	7.35	12.4	4393	73.5	1.95	-52		
	4									
	5									
	6									
	7									
	8									
	9									
	10									
Sample	Information:									
1259	\$1 1423	4.60	7.35	17.4	4942	59.1	1.61	-50		
1301	S2 13.70	4.20	7.34	17.3	4780	46.6	1.82	~54		

Well No	5.MW-1		Diameter (ir	nches): "2"		Sample Date / Time: 1 9/ (3/ 2/ 1337				
Product De	pth (fbTOR):		Water Colu	mn (ft): 8.9	-8	DTW when	sampled:	6.35	N.	
DTW (statio	c) (fbTOR): []	.32	One Well Volume (gal): 1.485			Purpose:	Development	: 🗌 Sample	e 🕅 Purge & Sample	
Total Depth	(fbTOR): 🕼	20.20	Total Volum	e Purged (gal):	4. #34	Purge Metho	od: BALEI	ι.		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity DO ORP Appearanc (NTU) (mg/L) (mV) Odor				
1320	o Initial		7.08	18.2	5790	11.4	0.66	-171	CLEAR, EAINT	
1324	1 14.55	10015	7.07	18.0	5963	23,1	1.19	~205	Second SDOR	
1329	2 15.99	3/1473	7.18	17.7	6151	27.3	1.37	-185		
1333	316.30	H0004.	5 7.19	17.7	6153	26.0	1,55	-159		
	4									
	5									
	6									
	7									
	8	1								
	9									
	10									
Sample I	nformation:									
	6116.35	YELLO 4J	7.19	17.4	6087	20.2	1.52	-143		
1340	52 16.15	1440 4		17.3	6078	22.6	1.36	-141		

PREPARED BY:

REMARKS:

Calculation	Parameter	Criteria		
Vol. (g/ft)	рН	± 0.1 unit		
0.041	SC	± 3%		
0.163	Turbidity	± 10%		
0.653	DO	± 0.3 mg/L		
1.469	ORP	± 10 mV		
	Vol. (g/ft) 0.041 0.163 0.653	Vol. (g/ft) pH 0.041 SC 0.163 Turbidity 0.653 DO		

Stabilization Criteria

Note: All measurements are in feet, distance from top of riser.

PROJECT INFORMATION:

EQUIPMENT CALIBRATION LOG

Project Name: MAIN & BAL					Date: 10/	13/21		
Project No.: 0239-021-: Client: SINATER					Instrumer	it Source: 🕅	вм	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
₩ pH meter	units	945	Myron L Company Ultra Meter 6P	6213516 6243084 6212375	<i>c</i> S	4.00 7.00	3.99 7.01	
				6243003 🗆 6223973 🗆		10.01	10.02	
X Turbidity meter	NTU		Hach 2100P or 2100Q Turbidimeter	06120C020523 (P) □ 13120C030432 (Q) ⊠ 17110C062619 (Q) □	(S	10 NTU verification < 0.4 20 100 800	9.91	
Sp. Cond. meter	uS mS	746	Myron L Company Ultra Meter 6P	6213516 6243084 6212375 6243003 6223973	(3	<u>70ల</u> ు mS @ 25 °C	7002	
D PID	ppm		MinRAE 2000			open air zero ppm Iso. Gas		MIBK response factor = 1.0
Dissolved Oxygen	ppm	950	HACH Model HQ30d	080700023281 100500041867 140200100319	(5	100% Satuartion	100% 71.57. 51	ofe
Particulate meter	mg/m ³					zero air		
Radiation Meter	uR/H					background area		
ADDITIONAL REMARKS: PREPARED BY:				DATE: 10/13/21				

1

GROUNDWATER FIELD FORM

Project Name: Main + Balcom Location: Buffulo, N

Date: 3.22-22 Project No: 70239 - 02/-00/ Field Team: ES

Well No	D. MW	7-1	Diameter (in	iches): 2		Sample Date / Time: 3 22-2,2 /205				
Product De	pth (fbTOR):		Water Column (ft): 7.65			65 DTW when sampled:				
DTW (static	c) (fbTOR): //	1.56	One Well Volume (gal): 1.57			Purpose:	Development	: 🗌 Sample	Sample & Sample	
Total Depth	(INTOR): 20	1.20	Total Volume Purged (gal):			Purge Meth	od:			
Time	Water Level (fbTOR)	Acc, Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	PERCENT PERCENT			
1144	o Initial		7.26	11-7	4077	503	2014	-121	Clever, shalt of	
1148	13.81	1.5	7.15	12.7	3607	71.0	2.08	-107	11 11 5	
1152	2 15 21	.7	716	13-	4258	13.7	1 -98	-100	10 11	
1157	3,5.75	4.5	7.20	13-4	4771	64.0	2.03	- 95	H Charles	
	4				1					
	5									
	5									
	9									
	9									
	10									
Sample I	nformation:									
12.00	S1 15.85	4.5	7.17	13.3	4574	64.0	2.11	-101	1111	
1210	S2 15.83	4.5	7.12	12.0	4217	67.0	2.04	- 98	11 1 1	

Well No	. MW-	2	Diameter (ir	nches): 📿		Sample	Sample Date / Time: 3-22-22 1241				
Product Dep	oth (fbTOR): 14	1.48	Water Colu	mn (ft): 🛛 🔁 -	1	DTW wi	DTW when sampled:				
DTW (static) (fbTOR): 71	SE	One Well Volume (gal): 1 / 5			Purpose	Purpose: 🗌 Development 🔄 Sample 🛛 🔯 Purge & Sample				
Total Depth	(fbTOR):	N.C.	Total Volum	Purge M	lethod:				100 V		
Time	Water Level (fbTOR)	Acc. Volume (gailons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidit <u>;</u> (NTU)	y	DO (mg/L)	ORF (mV)		Appearance & Odor
1227	o Initial	-	7.57	12.8	1844	64		2.11	50	(lear in ailso
1232	1 3.74	1	7.38	12.6	1978	81,2	2	2.13	21	_	de la
12.36	2 13.73	2.5	7.341	12.9	2581	68.3	8	2.65	-8		11 31
1728	3 13.75	3.5	7.36	12.7	2646	77.		2.08	- 9		
<u> </u>	4										
	5										
	6										
	7										
	8										
	9										
	10							ž.			
Sample I	nformation:			-							- A.
1240	S1 13.75	3.5	7.41	12.6	2659	70.1		2.00	-8		4.61
1250	52 13.75	3.5	7.36	12.7	2710	71.6	1	2.17	~ 7		11.40
				1 1	1				-	Stabiliza	ation Criteria
REMARK	S: No	AZA	Sque	tire fi	ome the	<u> </u>		Calculation	Pa	rameter	Criteria
	ine /1		0	AND ALE OF ST	64		Diam.	Vol. (g/ft)		pН	± 0.1 unit
	,	/	1	1			1"	0,041		SC	± 3%
	New	baler,	us per a	reach	115		2"	0,163	T	urbidity	± 10%
Noto: All mo	MW-	mand T	distance from	Lit lie		4" 6"	0.653		DO ORP	± 0.3 mg/L	
NOLE. AN ME	asurements	are in reet, c	Jistance ITON	r top or riser		L	6	1.469	L	UKP	± 10 mV
Groundwaler Field GWFF - TK	Form			PREPAR	ED BY:	F	S				944

Project Name: Main and Balcom St. S. te. Date: 3-22-22. Location: Min and Balcom, B. Stele, M. Project No.: 70239-021-001 Field Team: ES

Well No	. MW-	3R	Diameter (inches): 2"			Sample Date / Time: 3 27 - 22 0838				
Product Dep	oth (fbTOR):		Water Colu	mm (ft): 5.	76	DTW when				
DTW (static	W (static) (fbTOR): 14.55			One Well Volume (gal): 0.94			Development	: 🚺 Sample	e - Purge & Sample	
Total Depth	(fbTOR): 2	0.31	Total Volum	e Purged (gal):		Purge Metho	od:			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	рН (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
OFTO	o Initial		7.21	7.7	1206	26.7	1:24	297	Clean no mbc	
12824	1 16 79	1	7.27	10.7	166	50.6	1.41	222	11 11	
OBTR	2,7.83	2	7.27	10.8	1115	92.4	1.37	124	11 11	
0332	3 18.19	3	7.27	10 7	1113	69.8	2.23	122	and the second	
· · · · · · · · · · · · · · · · · · ·	4							20		
	5									
	6									
	7									
	8									
	9									
	10									
Sample I	nformation:									
OBS7	S1 18 23	3.3	7.28	10.0	1119	63.4	1.23	123	P 11	
CBUS	s2 18 41	3.5	7.27	10.3	114	61.2	1.34	12.4	1111	

Well N	Well No. MW-4			nches): 2		Sample Date / Time: 3-22-22 10			IDDR		
Product De	pth (fbTOR):	-'	Water Column (ft): 7.08 DTW			V when sampled:					
DTW (stati	c) (fbTOR): 13	. 62	One Well Ve		1.15	Purpos	se: 🗌 D	evelopment		Sample	e 🔣 Purge & Sample
Total Depth	n (fbTOR): 7_(0.10	Total Volum	e Purged (gal):	and the second sec	Purge	Method:				
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbid (NTU		DO (mg/L)		ORP (mV)	Appearance & Odor
0246	o Initial		7.45	83	3728	86.	5 î	.37	7	30	Charles as and a
0952	1 14.71	1.2	7.36	9.3	3244	216		46		. 9	Clour norder
0757	2 13. 97	2.5	7.36	10.6	2578	298		63	-	19	Check wants-
1000	3 15.14	3.5	7.35	10.7	2614	256		7(-	2.4	Cloudy no orb-
6.12	4										
_	5					L					
	6								_		
	7										
	В										
	9		[*]								
	10					1					
Sample	Information:										
1003	S1 13.47	3.5	7.36	10.8	2593	94.9	1	71		32	cleet " "
1010	S213.97	3.6	7.41	10.7	2610	91.3	1.	80	-	30	et m
		70	Dea	0.0					Ğ		ilization Criteria
REMARK	(S: 191)	-3K	· 14	- Oat)			Calculation		Parame	
	REMARKS: MW - 3R - PIA - 0.0 MW - 4 FIA 00 MW - 7 - MSHATS NO NOT SUB				-	-	Diam.	1000		pH	± 0.1 unit
	tow-	T-MS/	MSS	NO NO	TSUB	AT	1" 2"	1" 0.041		SC Turbidi	± 3%
							4"	0.163		DO	ty ± 10% ± 0.3 mg/L
Note: All m	easurements	are in feet. o	distance from	top of riser			6"	1.469		ORP	± 10 mV

Project Na	me:	Main	and	Bala	m
Project Na Location:	Be	Afalo,	NY	20	

Date: 3-22-22 Project No.: 70239 -021-001 Field Team: ES

Well No. MW-5			Diameter (inches): 2"					3-22-22	0920
Product De	oth (fbTOR):	-	Water Colu	mn (ft): 🥠	t 016	DTW when			
DTW (static	TW (static) (fbTOR): 14.45			One Well Volume (gal):			Development	Sample	Purge & Sample
Total Depth	(fbTOR): 2	232	Total Volum	e Purged (gal):		Purge Metho	: bc		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
0001	 Initial 		7.25	2.8	2722	36.9	1,28	168	Clargarbo
0.006	115.73	1	7.24	10.1	3763	500	1.38	149	Cloudy mark
0910	2 16 20	2	722	10.6	5056	740	1.76	96	Clouly pabr
0715	3 16.25	3	7.22	11.2	7390	318	1.73	52.	A 14
	4	_					1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		
	5								
	6								
	7								
	8								
	9								
	10								
Sample I	nformation:								
0917	S1 16.36	3.5	7.27	11.5	7745	208	1.76	46	te of
DIZG	S215.88	any - 0	7.24	11.3	7610	200	1.67	59	11.18

Well No. MW-6			Diameter (ir	Sample Date / Time: 3-22-22 1100							
Product De	oth (fbTOR):		Water Colu	mn (ft): 6	.29		vhen sam				_
DTW (static	;) (fbTOR): /	3.81	One Well V	olume (gal): 🥖	.03	Purpos	se: 🗌 De	evelopment	: [Sample	Purge & Sample
Total Depth	(fbTOR): 20	0.10	Total Volum	e Purged (gal):		Purge	Method:				
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidi (NTU	· 1	DO (mg/L)		ORP (mV)	Appearance & Odor
1041	o Initial	-	7.29	12.2	1751	53	1	64	×	46	Clear Julitants
10.15	113.12	13-11	7.30	11.9	2570	215		.67		66	110
1049	2 14.42	2.5	7.33	11.7	3011	464		73	S		Cloudy, slightord
1053		3.5	7.35	11-9	3288	503		51	-	78	
	5										
	6 7										
	8										
	9			-							
	10										
Sample I	nformation:										
1057	S1 14.20	3.5	7-32	11.7	3007	500		57	-	74	11 11
	52 14.21	3.5	7.31	11.3	3,06	504		61	-	78	15 667
	44.		P	10 1						Stabi	lization Criteria
REMARK	S: MU	V-6	1SI	ind 1	SUA	·	Volume (Calculation		Paramet	ter Criteria
						Diam.	Vol. (g/ft)		pH	± 0.1 unit	
							1"	0.041		SC	± 3%
							2"	0.163		Turbidi	
							4"	0.653		DO	± 0.3 mg/L
Note: All me	easurements	are in feet, o	distance from	n top of riser			6"	1.469		ORP	± 10 mV

PREPARED BY:

ES

	210		
6	Γ_1	ζey	
6	Evolution	MENTAL SE D	
	RESTORA	TION LLC	

EQUIPMENT CALIBRATION LOG

PROJECT INFORMATION	N:									
Project Name: Main	+ Ba	lcom			Date: 3-22-22					
Project No.: 70239-0	721	- 00	フ/			~~~		б. Го		
Client: Booth Si	natra				Instrument Source: 🔣 BM 🗌 Ren					
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS		
- Arr	units	0803	Myron L Company Ultra Meter 6P	6213516	45	4.00 7.00	4.01			
Image: PH meter Image: PH meter <tdi< td=""><td>10.01</td><td>10.02</td><td></td></tdi<>	10.01	10.02								
						10 NTU verification	1			
A		10.7		001200020323 (F)		<0.4				
Turbidity meter	dity meter NTU	CEIC			ENS	20	11.1			
			Turbiaimeter	17110C062619 (Q)		100				
Sp. Cond. meter		උෂිංසි			EDS	800 <u>7000</u> mS @ 25 °C	6999			
PID	ppm		MinRAE 2000			open air zero		MIBK response		
	<u> </u>					ppm Iso. Gas		factor = 1.0		
Dissolved Oxygen	ppm	0814	HACH Model HQ30d	080700023281		100% Satuartion	100 % 92.6			
Particulate meter	mg/m ³					zero air				
Radiation Meter	uR/H					background area				
ADDITIONAL REMARKS										

PREPARED BY:

DATE:

APPENDIX E

LABORATORY ANALYTICAL DATA REPORTS

ANALYTICAL REPORT

Lab Number:	L2123648
Client:	Turnkey Environmental Restoration, LLC
	2558 Hamburg Turnpike
	Suite 300
	Buffalo, NY 14218
ATTN:	Nate Munley
Phone:	(716) 856-0599
Project Name:	MAIN & E. BALCOM ST SITE
Project Number:	T0239-021-001
Report Date:	05/12/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:MAIN & E. BALCOM ST SITEProject Number:T0239-021-001

 Lab Number:
 L2123648

 Report Date:
 05/12/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2123648-01	MW-1	WATER	MAIN & E. BALCOM	05/06/21 15:16	05/06/21
L2123648-02	MW-2	WATER	MAIN & E. BALCOM	05/06/21 14:33	05/06/21
L2123648-03	MW-3R	WATER	MAIN & E. BALCOM	05/06/21 10:28	05/06/21
L2123648-04	MW-4	WATER	MAIN & E. BALCOM	05/06/21 13:42	05/06/21
L2123648-05	MW-5	WATER	MAIN & E. BALCOM	05/06/21 12:00	05/06/21
L2123648-06	MW-6	WATER	MAIN & E. BALCOM	05/06/21 13:02	05/06/21

Project Name:MAIN & E. BALCOM ST SITEProject Number:T0239-021-001

Lab Number: L2123648 Report Date: 05/12/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:MAIN & E. BALCOM ST SITEProject Number:T0239-021-001

 Lab Number:
 L2123648

 Report Date:
 05/12/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

the Sebastian Corbin

Authorized Signature:

Title: Technical Director/Representative

Date: 05/12/21

ORGANICS

VOLATILES

	Serial_No:05122117:58						
Project Name:	MAIN & E. BALCOM ST SITE	Lab Number:	L2123648				
Project Number:	T0239-021-001	Report Date:	05/12/21				
	SAMPLE RESULTS						
Lab ID: Client ID: Sample Location:	L2123648-01 MW-1 MAIN & E. BALCOM	Date Collected: Date Received: Field Prep:	05/06/21 15:16 05/06/21 Not Specified				
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 05/11/21 10:46 LAC						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Serial_No:051221							
Project Name:	MAIN & E. BALCOM ST	COM ST SITE			Lab Number:		L2123648
Project Number:	T0239-021-001			Report Date:		Date:	05/12/21
•		SAMPI		6		-	00,12,21
Lab ID: Client ID: Sample Location:	L2123648-01 MW-1 MAIN & E. BALCOM				Date Collected: Date Received: Field Prep:		05/06/21 15:16 05/06/21 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough I	Lab					
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropa	ane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
p-lsopropyltoluene		ND		ug/l	2.5	0.70	1
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	61.	1
Freon-113		ND		ug/l	2.5	0.70	1
Fleon-113		NB		ugn			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	123		70-130	

		Serial_No	0:05122117:58
Project Name:	MAIN & E. BALCOM ST SITE	Lab Number:	L2123648
Project Number:	T0239-021-001	Report Date:	05/12/21
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2123648-02 MW-2 MAIN & E. BALCOM	Date Collected: Date Received: Field Prep:	05/06/21 14:33 05/06/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 05/11/21 11:11 LAC		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

		Serial_No:05122117:58					0:05122117:58
Project Name:	MAIN & E. BALCOM ST	SITE			Lab Nu	mber:	L2123648
Project Number:	T0239-021-001				Report	Date:	05/12/21
•		SAMP		6	•		
Lab ID: Client ID: Sample Location:	L2123648-02 MW-2 MAIN & E. BALCOM				Date Col Date Rec Field Pre	ceived:	05/06/21 14:33 05/06/21 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough I	_ab					
1,3-Dichlorobenzene		ND			2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5 2.5	0.70	1
Methyl tert butyl ether		ND		ug/l ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1.2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	61.	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	122	70-130	

		Serial_N	0:05122117:58
Project Name:	MAIN & E. BALCOM ST SITE	Lab Number:	L2123648
Project Number:	T0239-021-001	Report Date:	05/12/21
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2123648-03 MW-3R MAIN & E. BALCOM	Date Collected: Date Received: Field Prep:	05/06/21 10:28 05/06/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 05/11/21 11:36 LAC		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.86		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					ç	Serial_No	:05122117:58	
Project Name:	MAIN & E. BALCOM ST	SITE			Lab Nu	mber:	L2123648	
Project Number:	T0239-021-001				Report	Date:	05/12/21	
· · · , · · · · · · · · · · · · · · · · · · ·		SAMP	LE RESULTS	5			00/12/21	
Lab ID:	L2123648-03				Date Col	lected:	05/06/21 10:28	
Client ID:	MW-3R				Date Red	ceived:	05/06/21	
Sample Location:	MAIN & E. BALCOM				Field Pre	p:	Not Specified	
Sample Donth:								
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
	Westborough		Quanter	Units		mbe	Diation racio	
volatile Organics L	oy GC/MS - Westborough I	_ao						
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
n-Propylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
Methyl Acetate		ND		ug/l	2.0	0.23	1	
Cyclohexane		ND		ug/l	10	0.27	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
Freon-113		ND		ug/l	2.5	0.70	1	
Methyl cyclohexane		ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	109	70-130	

		Serial_No:05122117:58
Project Name:	MAIN & E. BALCOM ST SITE	Lab Number: L2123648
Project Number:	T0239-021-001	Report Date: 05/12/21
	SAMPLE RESULTS	
Lab ID: Client ID: Sample Location:	L2123648-04 MW-4 MAIN & E. BALCOM	Date Collected:05/06/21 13:42Date Received:05/06/21Field Prep:Not Specified
Sample Depth:		
Matrix:	Water	
Analytical Method: Analytical Date:	1,8260C 05/11/21 12:00	
Analyst:	LAC	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	0.13	J	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	1.4		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	1.9		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.17	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	24		ug/l	2.5	0.70	1
Trichloroethene	8.5		ug/l	0.50	0.18	1

					Serial_No:05122117:58			
Project Name:	MAIN & E. BALCOM ST	SITE			Lab Nu	mber:	L2123648	
Project Number:	T0239-021-001				Report	Date:	05/12/21	
-		SAMP		6	•			
Lab ID: Client ID: Sample Location:	L2123648-04 MW-4 MAIN & E. BALCOM				Date Col Date Re Field Pre	ceived:	05/06/21 13:42 05/06/21 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
	y GC/MS - Westborough I	ab						
volatilo organico o		-0.0						
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		9.6		ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
n-Propylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
Methyl Acetate		ND		ug/l	2.0	0.23	1	
Cyclohexane		ND		ug/l	10	0.27	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
Freon-113		ND		ug/l	2.5	0.70	1	
		ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	108	70-130	

		Serial_No:0	5122117:58
Project Name:	MAIN & E. BALCOM ST SITE	Lab Number:	L2123648
Project Number:	T0239-021-001	Report Date:	05/12/21
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2123648-05 MW-5 MAIN & E. BALCOM	Date Received:	05/06/21 12:00 05/06/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 05/11/21 12:25 LAC		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.16	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					c.	Serial_No	:05122117:58	
Project Name:	MAIN & E. BALCOM ST	SITE			Lab Nu	mber:	L2123648	
Project Number:	T0239-021-001				Report	Date:	05/12/21	
•		SAMP	LE RESULTS	6	•		00,12,21	
Lab ID: Client ID: Sample Location:	L2123648-05 MW-5 MAIN & E. BALCOM				Date Col Date Rec Field Pre	eived:	05/06/21 12:00 05/06/21 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough I	_ab						
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		1.6	J	ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
n-Propylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
Methyl Acetate		ND		ug/l	2.0	0.23	1	
Cyclohexane		ND		ug/l	10	0.27	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
Freon-113		ND		ug/l	2.5	0.70	1	
Methyl cyclohexane		ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	110	70-130	

		Serial_No:05122117:58
Project Name:	MAIN & E. BALCOM ST SITE	Lab Number: L2123648
Project Number:	T0239-021-001	Report Date: 05/12/21
	SAMPLE RESULTS	
Lab ID: Client ID: Sample Location:	L2123648-06 MW-6 MAIN & E. BALCOM	Date Collected:05/06/21 13:02Date Received:05/06/21Field Prep:Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 05/11/21 12:50 LAC	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	2.5		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.83	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.89		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					,	Serial_No	:05122117:58	
Project Name:	MAIN & E. BALCOM ST	SITE			Lab Nu	mber:	L2123648	
Project Number:	T0239-021-001				Report	Date:	05/12/21	
		SAMP	LE RESULTS	6			00/12/21	
Lab ID: Client ID: Sample Location:	L2123648-06 MW-6 MAIN & E. BALCOM				Date Col Date Rec Field Pre	ceived:	05/06/21 13:02 05/06/21 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough L	ab						
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
n-Propylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
Methyl Acetate		ND		ug/l	2.0	0.23	1	
Cyclohexane		ND		ug/l	10	0.27	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
Freon-113		ND		ug/l	2.5	0.70	1	
Methyl cyclohexane		ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	111	70-130	

Project Name: MAIN & E. BALCOM ST SITE

Project Number: T0239-021-001

Lab Number: L2123648 **Report Date:** 05/12/21

Method Blank Analysis Batch Quality Control

1,8260C Analytical Method: Analytical Date: 05/11/21 09:57 Analyst: PD

Data lie Organics by GC/MS - Westborough Lab for sample(s): 01-06 Batch: WG1497898-5 Methylene chloride ND ug/l 2.5 0.70 1,1-Dichloroethane ND ug/l 2.5 0.70 Chloroform ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 0.50 0.13 1,2-Dichloroptopane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.16 Chlorobenzene ND ug/l 0.50 0.13 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.14 Bromotichloromethane ND ug/l 0.50 0.14 Bromotichloropropene ND <t< th=""><th>arameter</th><th>Result</th><th>Qualifier</th><th>Units</th><th>RL</th><th>MDL</th></t<>	arameter	Result	Qualifier	Units	RL	MDL
1.1-Dichloroethane ND ug/l 2.5 0.70 Chloroform ND ug/l 2.5 0.70 Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 0.50 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,12-Trichloroethane ND ug/l 0.50 0.18 Chlorofburzentene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichloroethane ND ug/l 2.5 0.70 Trichloroethane ND ug/l 0.50 0.13 1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromodichloromethane ND ug/l 0.50 0.17 Benzene ND ug/l <td>olatile Organics by GC/MS - V</td> <td>Vestborough Lat</td> <td>o for sample</td> <td>e(s): 01-06</td> <td>Batch:</td> <td>WG1497898-5</td>	olatile Organics by GC/MS - V	Vestborough Lat	o for sample	e(s): 01-06	Batch:	WG1497898-5
ND ug/l 2.5 0.70 Carbon tetrachloride ND ug/l 0.50 0.13 1.2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1.2-Trichloroethane ND ug/l 0.50 0.15 1,1.2-Trichloroethane ND ug/l 0.50 0.18 Chlorofluoromethane ND ug/l 0.50 0.18 Chlorofluoromethane ND ug/l 2.5 0.70 Trichloroethane ND ug/l 2.5 0.70 1,1-Trichloroethane ND ug/l 0.50 0.13 1,1-Trichloroethane ND ug/l 0.50 0.13 trans-1,3-Dichloropropene ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.17 Bromoform ND ug/l	Methylene chloride	ND		ug/l	2.5	0.70
Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichloroftuoromethane ND ug/l 0.50 0.13 1,1-Trichloroethane ND ug/l 0.50 0.13 1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.16 tois-1,3-Dichloropropene ND ug/l 0.50 0.17 Bromoferm ND	1,1-Dichloroethane	ND		ug/l	2.5	0.70
1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichloroftluoromethane ND ug/l 0.50 0.13 1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l	Chloroform	ND		ug/l	2.5	0.70
Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1-Trichloroethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.17 Bromoform ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5	Carbon tetrachloride	ND		ug/l	0.50	0.13
I,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1.1-Trichloroethane ND ug/l 0.50 0.13 1,1.1-Trichloroethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 <	1,2-Dichloropropane	ND		ug/l	1.0	0.14
Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.19 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Chloromethane ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07	Dibromochloromethane	ND		ug/l	0.50	0.15
Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.19 Bromodichloromethane ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50
Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70	Tetrachloroethene	ND		ug/l	0.50	0.18
1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromoethane ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 0.50 0.17	Chlorobenzene	ND		ug/l	2.5	0.70
ND ug/l 2.5 0.70 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Chloromethane ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane	Trichlorofluoromethane	ND		ug/l	2.5	0.70
Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Ethylbenzene ND ug/l 0.50 0.16 Chloromethane ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 0.50 0.18 <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.13</td>	1,2-Dichloroethane	ND		ug/l	0.50	0.13
trans-1,3-DichloropropeneNDug/l0.500.16cis-1,3-DichloropropeneNDug/l0.500.14BromoformNDug/l2.00.651,1,2,2-TetrachloroethaneNDug/l0.500.17BenzeneNDug/l0.500.16TolueneNDug/l2.50.70EthylbenzeneNDug/l2.50.70ChloromethaneNDug/l2.50.70BromofethaneNDug/l2.50.70ChloromethaneNDug/l2.50.70ChloromethaneNDug/l2.50.70IndicateNDug/l2.50.70TriplehloroetheneNDug/l2.50.70TriplehloroetheneNDug/l2.50.701,1-DichloroetheneNDug/l2.50.70TrichloroetheneNDug/l0.500.17TrichloroetheneNDug/l2.50.70TrichloroetheneNDug/l2.50.70TrichloroetheneNDug/l2.50.70TrichloroetheneNDug/l0.500.181,2-DichloroetheneNDug/l2.50.70	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70
ND ug/l 0.50 0.14 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Stromorethane ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 0.50 0.18 1,2-Dichlor	Bromodichloromethane	ND		ug/l	0.50	0.19
Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Thoroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 0.50 0.18	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16
International and server and ser	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14
Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 2.5 0.70 I,1-Dichloroethene ND ug/l 1.0 0.07 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Bromoform	ND		ug/l	2.0	0.65
Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 2.5 0.70 1,2-Dichlorobenzene ND ug/l 0.50 0.18	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17
Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Benzene	ND		ug/l	0.50	0.16
Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 2.5 0.70 1,2-Dichloroethene ND ug/l 2.5 0.70	Toluene	ND		ug/l	2.5	0.70
Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.17 1,2-Dichloroethene ND ug/l 2.5 0.70	Ethylbenzene	ND		ug/l	2.5	0.70
Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 2.5 0.70 1,2-Dichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Chloromethane	ND		ug/l	2.5	0.70
Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.17 1,2-Dichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Bromomethane	ND		ug/l	2.5	0.70
ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Vinyl chloride	ND		ug/l	1.0	0.07
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Chloroethane	ND		ug/l	2.5	0.70
Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	1,1-Dichloroethene	ND		ug/l	0.50	0.17
1,2-Dichlorobenzene ND ug/l 2.5 0.70	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70
-	Trichloroethene	ND		ug/l	0.50	0.18
1,3-Dichlorobenzene ND ug/l 2.5 0.70	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70
	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70

Project Name: MAIN & E. BALCOM ST SITE

Project Number: T0239-021-001

Lab Number: L2123648 **Report Date:** 05/12/21

Method Blank Analysis Batch Quality Control

1,8260C Analytical Method: Analytical Date: 05/11/21 09:57 Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	/estborough Lab	for sample(s):	01-06 Batch:	WG1497898-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

L2123648

05/12/21

Lab Number:

Report Date:

Project Name: MAIN & E. BALCOM ST SITE

Project Number: T0239-021-001

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:05/11/21 09:57Analyst:PD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS -	Westborough La	ab for sampl	e(s): 01-06	Batch:	WG1497898-5	

		Acceptance		
Surrogate	%Recovery (Qualifier	Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	117		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: MAIN & E. BALCOM ST SITE

Project Number: T0239-021-001

Parameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborou	gh Lab Associated samp	ole(s): 01-06 Batch: \	WG1497898-3 WG1497898-4			
Methylene chloride	100	100	70-130	0	20	
1,1-Dichloroethane	96	89	70-130	8	20	
Chloroform	100	98	70-130	2	20	
Carbon tetrachloride	100	95	63-132	5	20	
1,2-Dichloropropane	92	89	70-130	3	20	
Dibromochloromethane	100	100	63-130	0	20	
1,1,2-Trichloroethane	92	92	70-130	0	20	
Tetrachloroethene	100	100	70-130	0	20	
Chlorobenzene	100	100	75-130	0	20	
Trichlorofluoromethane	100	92	62-150	8	20	
1,2-Dichloroethane	91	89	70-130	2	20	
1,1,1-Trichloroethane	100	96	67-130	4	20	
Bromodichloromethane	99	95	67-130	4	20	
trans-1,3-Dichloropropene	83	82	70-130	1	20	
cis-1,3-Dichloropropene	97	94	70-130	3	20	
Bromoform	96	99	54-136	3	20	
1,1,2,2-Tetrachloroethane	87	88	67-130	1	20	
Benzene	100	95	70-130	5	20	
Toluene	96	94	70-130	2	20	
Ethylbenzene	100	95	70-130	5	20	
Chloromethane	92	84	64-130	9	20	
Bromomethane	85	85	39-139	0	20	
Vinyl chloride	81	74	55-140	9	20	

Lab Control Sample Analysis Batch Quality Control

Project Number: T0239-021-001 Report Date: 05/12/21

Parameter	LCS %Recovery	Qual	LCSD %Recover		%Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch:	WG1497898-3	WG1497898-4		
Chloroethane	82		74		55-138	10	20
1,1-Dichloroethene	100		95		61-145	5	20
trans-1,2-Dichloroethene	110		99		70-130	11	20
Trichloroethene	100		98		70-130	2	20
1,2-Dichlorobenzene	100		100		70-130	0	20
1,3-Dichlorobenzene	110		100		70-130	10	20
1,4-Dichlorobenzene	110		100		70-130	10	20
Methyl tert butyl ether	88		86		63-130	2	20
p/m-Xylene	105		100		70-130	5	20
o-Xylene	105		105		70-130	0	20
cis-1,2-Dichloroethene	110		100		70-130	10	20
Styrene	110		105		70-130	5	20
Dichlorodifluoromethane	80		74		36-147	8	20
Acetone	82		70		58-148	16	20
Carbon disulfide	100		92		51-130	8	20
2-Butanone	94		79		63-138	17	20
4-Methyl-2-pentanone	70		75		59-130	7	20
2-Hexanone	76		78		57-130	3	20
Bromochloromethane	120		120		70-130	0	20
1,2-Dibromoethane	98		100		70-130	2	20
n-Butylbenzene	95		94		53-136	1	20
sec-Butylbenzene	98		96		70-130	2	20
1,2-Dibromo-3-chloropropane	93		96		41-144	3	20

Report Date: 05/12/21

Parameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-06 Batch	WG1497898-3	WG1497898-4			
Isopropylbenzene	100		96		70-130	4		20
p-Isopropyltoluene	99		97		70-130	2		20
n-Propylbenzene	96		92		69-130	4		20
1,2,3-Trichlorobenzene	100		100		70-130	0		20
1,2,4-Trichlorobenzene	100		110		70-130	10		20
1,3,5-Trimethylbenzene	99		95		64-130	4		20
1,2,4-Trimethylbenzene	100		97		70-130	3		20
Methyl Acetate	84		83		70-130	1		20
Cyclohexane	86		81		70-130	6		20
1,4-Dioxane	76		78		56-162	3		20
Freon-113	96		90		70-130	6		20
Methyl cyclohexane	80		82		70-130	2		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Q	ual %Recovery Qual	Criteria
1,2-Dichloroethane-d4	89	88	70-130
Toluene-d8	94	98	70-130
4-Bromofluorobenzene	97	95	70-130
Dibromofluoromethane	103	102	70-130

Project Name: MAIN & E. BALCOM ST SITE *Project Number:* T0239-021-001

Serial_No:05122117:58 Lab Number: L2123648 Report Date: 05/12/21

NYTCL-8260-R2(14)

NYTCL-8260-R2(14)

Sample Receipt and Container Information

Were project specific reporting limits specified?

Vial HCI preserved

Vial HCI preserved

YES

Cooler Information

Cooler	Custody Seal
А	Absent

Container Information Final Temp Initial Frozen pН Date/Time deg C Pres Container ID Container Type Cooler pН Seal Analysis(*) Vial HCl preserved L2123648-01A А NA 3.1 Υ NYTCL-8260-R2(14) Absent L2123648-01B Vial HCI preserved А NA 3.1 Υ Absent NYTCL-8260-R2(14) L2123648-01C Vial HCI preserved А NA 3.1 Υ Absent NYTCL-8260-R2(14) L2123648-02A Vial HCI preserved А NA 3.1 Υ Absent NYTCL-8260-R2(14) А Υ L2123648-02B Vial HCI preserved NA NYTCL-8260-R2(14) 3.1 Absent Vial HCI preserved А L2123648-02C NA 3.1 Υ Absent NYTCL-8260-R2(14) L2123648-03A Vial HCI preserved А NA 3.1 Υ Absent NYTCL-8260-R2(14) Vial HCI preserved А Υ NYTCL-8260-R2(14) L2123648-03B NA 3.1 Absent L2123648-03C Vial HCI preserved А Υ NYTCL-8260-R2(14) NA 3.1 Absent L2123648-04A Vial HCI preserved А NA 3.1 Υ NYTCL-8260-R2(14) Absent Vial HCI preserved L2123648-04B А NA 3.1 Υ Absent NYTCL-8260-R2(14) L2123648-04C Vial HCI preserved А NA 3.1 Υ Absent NYTCL-8260-R2(14) L2123648-05A Vial HCI preserved А NA 3.1 Υ NYTCL-8260-R2(14) Absent Vial HCI preserved NYTCL-8260-R2(14) L2123648-05B А NA 3.1 Υ Absent Vial HCl preserved L2123648-05C А NA 3.1 Υ Absent NYTCL-8260-R2(14) Vial HCl preserved Υ L2123648-06A А NA 3.1 Absent NYTCL-8260-R2(14)

А

А

NA

NA

3.1

3.1

Υ

Υ

Absent

Absent

L2123648-06B

L2123648-06C

Serial_No:05122117:58

Project Name: MAIN & E. BALCOM ST SITE

Project Number: T0239-021-001

Lab Number: L2123648

Report Date: 05/12/21

GLOSSARY

Acronyms	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Name: MAIN & E. BALCOM ST SITE

Project Number: T0239-021-001 Lab Number: L2123648

Report Date: 05/12/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- М - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name: MAIN & E. BALCOM ST SITE

Project Number: T0239-021-001

Lab Number: L2123648 Report Date: 05/12/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Project Name:MAIN & E. BALCOM ST SITEProject Number:T0239-021-001

 Lab Number:
 L2123648

 Report Date:
 05/12/21

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Con	lay		05	Pag	je of			Date Red in Lab	o'd Z	517	1/2	١	ALPHA JOB # 2212364	8
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information				35. 8r		Mue t	Deliv	erables					Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: MAIN &	E.1	BALCO	M ST :	SITE				ASP-A			ASP-	3	Same as Client Info	
1996.000-000-0100	1 44. 300-022-3200	Project Location: MAIN	1 5	.BAL	e.om	_				EQuIS (1	File)		EQuis	S (4 File)	PO#	
Client Information		Project # T6239-	021	- 00	01					Other						
Client: TURNKEY E	NV. REST.	(Use Project name as Pr	oject	#) 🗌					Regu	latory Red	quireme	nt			Disposal Site Information	C.
Address: 2558 H	AMBURG. TRACK	Project Manager: NATE	ML	NLEY	/					NY TOGS			NY Pa	rt 375	Please identify below location	n of
BUFFALS, N	SY 14218	ALPHAQuote #:			X4 101					AWQ Stan	dards		NY CP	-51	applicable disposal facilities.	
Phone: 716-856		Turn-Around Time								NY Restric	ted Use		Other		Disposal Facility:	
Fax:		Standard	X		Due Date	ə:				NY Unrest	ricted Us	e				
Email:nmunley Di	om-tk.com	Rush (only if pre approved			# of Days	s:				NYC Sewe	r Discha	rge			Other:	
These samples have be		ed by Alpha							ANA	YSIS					Sample Filtration	Т
Other project specific	requirements/comm	ients:							0						Done	- 0 1
G	ATB	27							1 160	3					Lab to do	а 1
Please specify Metals	or TAI								251	3					Lab to do	в
									3+						(Please Specify below)	0
ALPHA Lab ID (Lab Use Only)	Sa	mple ID		Col Date	lection Time	Sample Matrix		ampler's Initials	12						Sample Specific Comment	t
23648 -01	MW-(-	21	1516	AQUA	17	5	×		+	-				3
	NW-Z		11	1	1433	1	1	1	x		1					3
-03	MW-3K		-		1029		+	1	x		1					3
	MW-4		1	1	1342		+	1	x		-			_	5	3
	MW-5		1	$\left(-\right)$	1200		+	1	x		-	-				3
	MW-6		1	*	1302		+	1	x		-		\vdash			3
									~		+				-	
B = HCI	Container Code P = Plastic A = Amber Glass	Westboro: Certification N Mansfield: Certification N				Co	ontair	ier Type	V						Please print clearly, le and completely. Samp	
C = HNO3 V = Vial D = H ₂ SO4 G = Glass E = NaOH B = Bacteria Cup		Pre		Pres	ervative	В						not be logged in and turnaround time clock will not start until any ambiguities are				
F = MeOH C = Cube G = NaHSO4 O = Other			e/Time		0		ved By:			Date	/Time	resolved. BY EXECUT				
$H = Na_2S_2O_3$	E = Encore D = BOD Bottle	Chad M Idnint	2		5/6/21 5/06/4	1614	1	ŊJ,	#	AL	/			01:10	THIS COC, THE CLIE HAS READ AND AGE TO BE BOUND BY AI TERMS & CONDITIO	REES _PHA'S
Form No: 01-25 HC (rev. 30 Page 31 of 31	0-Sept-2013)					/	1			V	/				(See reverse side.)	

ANALYTICAL REPORT

Lab Number:	L2156021
Client:	Turnkey Environmental Restoration, LLC
	2558 Hamburg Turnpike
	Suite 300
	Buffalo, NY 14218
ATTN:	Nate Munley
Phone:	(716) 856-0599
Project Name:	MAIN + BALCOM
Project Number:	T0239-021-001
Report Date:	10/19/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:10192119:48

Project Name:	MAIN + BALCOM
Project Number:	T0239-021-001

 Lab Number:
 L2156021

 Report Date:
 10/19/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2156021-01	MW-1	WATER	MAIN + BALCOM, BUFFALO, NY	10/13/21 13:37	10/13/21
L2156021-02	MW-2	WATER	MAIN + BALCOM, BUFFALO, NY	10/13/21 12:59	10/13/21
L2156021-03	MW-3R	WATER	MAIN + BALCOM, BUFFALO, NY	10/13/21 11:09	10/13/21
L2156021-04	MW-4	WATER	MAIN + BALCOM, BUFFALO, NY	10/13/21 12:16	10/13/21
L2156021-05	MW-5	WATER	MAIN + BALCOM, BUFFALO, NY	10/13/21 10:27	10/13/21
L2156021-06	MW-6	WATER	MAIN + BALCOM, BUFFALO, NY	10/13/21 11:47	10/13/21

Project Name: MAIN + BALCOM Project Number: T0239-021-001 Lab Number: L2156021 Report Date: 10/19/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: MAIN + BALCOM Project Number: T0239-021-001
 Lab Number:
 L2156021

 Report Date:
 10/19/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

L. Sebastian Corbin

Authorized Signature:

Title: Technical Director/Representative

Date: 10/19/21

ORGANICS

VOLATILES

		Serial_No	o:10192119:48
Project Name:	MAIN + BALCOM	Lab Number:	L2156021
Project Number:	T0239-021-001	Report Date:	10/19/21
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2156021-01 MW-1 MAIN + BALCOM, BUFFALO, NY	Date Collected: Date Received: Field Prep:	10/13/21 13:37 10/13/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 10/17/21 13:12 AJK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

		Serial_N	Serial_No:10192119:48		
Project Name:	MAIN + BALCOM	Lab Number:	L2156021		
Project Number:	T0239-021-001	Report Date:	10/19/21		
	S	AMPLE RESULTS			
Lab ID:	L2156021-01	Date Collected:	10/13/21 13:37		
Client ID:	MW-1	Date Received:	10/13/21		
Sample Location:	MAIN + BALCOM, BUFFAL	D, NY Field Prep:	Not Specified		

Sample Depth:

ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichloroethene ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 6.0 1.9 1 2-Hutanone ND ug/l 5.0 1.0 1 2-Hutanone ND ug/l 5.0 1.0 1 2-Hutanone ND ug/l 2.5 0.70 1 1,2-Dibromethane ND ug/l 2.5 0.70 1 1,2-Dibromethane ND ug/l 2.5 0.70 1 1,2-Dibromethane ND <	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
A-bichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Siyrene ND ug/l 2.5 0.70 1 Dichlorotethane ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1.2-Ditromethane ND ug/l 2.5 0.70 1 1.2-Ditromo-st-chloropropane ND ug/l 2.5 0.70 1 1.2-Di	Volatile Organics by GC/MS - Wes	tborough Lab					
ND ugit 2.5 0.70 1 Methyl tert butyl ether ND ugit 2.5 0.70 1 Methyl tert butyl ether ND ugit 2.5 0.70 1 p/m-Xylene ND ugit 2.5 0.70 1 o-Xylene ND ugit 2.5 0.70 1 o-Xylene ND ugit 2.5 0.70 1 o-Xylene ND ugit 2.5 0.70 1 Styrene ND ugit 5.0 1.0 1 Dichorodifluoromethane ND ugit 5.0 1.0 1 Carbon disultide ND ugit 5.0 1.0 1 2-Butanone ND ugit 5.0 1.0 1 2-Hexanone ND ugit 5.0 1.0 1 1.2-Dibromochane ND ugit 2.5 0.70 1 1.2-Dibromochane ND <t< td=""><td>1.3-Dichlorobenzene</td><td>ND</td><td></td><td>ua/l</td><td>2.5</td><td>0.70</td><td>1</td></t<>	1.3-Dichlorobenzene	ND		ua/l	2.5	0.70	1
Methyl terbulyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 ois-1,2-Dichloroethene ND ug/l 5.0 0.70 1 Styrene ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 1 2-Hexanone ND ug/l 5.0 1.0 1 1 12-Dibromethane ND ug/l 2.5 0.70 1				-			
p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-12-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.0 1 Dichlorodthuromethane ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.0 1 2-butanone ND ug/l 5.0 1.0 1 1 2-butanone ND ug/l 5.0 1.0 1 1 2-butanone ND ug/l 2.5 0.70 1 12-bitomosthane ND ug/l 2.5 0.70 1 12-bitomosthane ND ug/l 2.5 0.70 1 12-bitomosthane ND ug/l 2.5 0.70 1	Methyl tert butyl ether	ND				0.70	1
vykene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodfluoromethane ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromosthane ND ug/l 2.5 0.70 1 <	p/m-Xylene	ND		-	2.5	0.70	1
ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1/2-Dibromothane ND ug/l 2.5 0.70 1 1/2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1	o-Xylene	ND		-	2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 12-Dibromothane ND ug/l 5.0 1.0 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibrom-3-chloropropane ND ug/l 2.5 0.70<	cis-1,2-Dichloroethene	ND		-	2.5	0.70	1
Actone 1.8 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromo-s-chioropreane ND ug/l 2.5 0.70 1 1.2-Dibromo-s-chioroprepane ND ug/l 2.5 <td>Styrene</td> <td>ND</td> <td></td> <td></td> <td>2.5</td> <td>0.70</td> <td>1</td>	Styrene	ND			2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromo-1-chloropencene ND ug/l 2.5 0.70 1 1.2-Dibromo-1-chloropencene ND ug/l 2.5	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2 But ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromo-1-chloropenzene ND ug/l 2.5 0.70 1 1.2-J-Trichlorobenzene ND ug/l 2.5 0.7	Acetone	1.8	J		5.0	1.5	1
Add ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 I.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2-3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2-3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	2-Butanone	ND		ug/l	5.0	1.9	1
ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 <td>2-Hexanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.0</td> <td>1</td>	2-Hexanone	ND		ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-lsopropylbenzene ND ug/l 2.5 0.70 1 p-lsopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 10	Bromochloromethane	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 sec-Auylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 10 0.27 1 <tr< td=""><td>1,2-Dibromoethane</td><td>ND</td><td></td><td>ug/l</td><td>2.0</td><td>0.65</td><td>1</td></tr<>	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Frein-113 ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freen-113 ND ug/l 2.5 0.70	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
P-Isopropyltoluene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Feron-113 ND ug/l 2.5 0.70	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freor-113 ND ug/l 2.5 0.70 1	p-lsopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
Freon-113 ND ug/l 2.5 0.70 1	Cyclohexane	ND		ug/l	10	0.27	1
-7-	1,4-Dioxane	ND		ug/l	250	61.	1
Methyl cyclohexane ND ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	100	70-130
Dibromofluoromethane	107	70-130

		Serial_No	p:10192119:48
Project Name:	MAIN + BALCOM	Lab Number:	L2156021
Project Number:	T0239-021-001	Report Date:	10/19/21
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2156021-02 MW-2 MAIN + BALCOM, BUFFALO, NY	Date Collected: Date Received: Field Prep:	10/13/21 12:59 10/13/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 10/17/21 13:32 AJK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

		Serial_No	0:10192119:48
Project Name:	MAIN + BALCOM	Lab Number:	L2156021
Project Number:	T0239-021-001	Report Date:	10/19/21
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2156021-02 MW-2 MAIN + BALCOM, BUFFALO, NY	Date Collected: Date Received: Field Prep:	10/13/21 12:59 10/13/21 Not Specified

Sample Depth:

Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Jopropyltoluene ND ug/l 2.5 0.70	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 pfm-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Syrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.5 J ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.0 0.66 1 1.2-Ditromochtane ND ug/l 2.5 0.70 1 1.2-Ditromochtane ND ug/l 2.5 0.70 1 1.2-Ditromochtane	Volatile Organics by GC/MS - West	tborough Lab					
ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 pfm-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Syrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.5 J ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.0 0.66 1 1.2-Ditromochtane ND ug/l 2.5 0.70 1 1.2-Ditromochtane ND ug/l 2.5 0.70 1 1.2-Ditromochtane	1.3 Dichlorobonzono	ND			2.5	0.70	1
ND ug/l 2.5 0.70 1 pim-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.0 1 Actone S.5 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Buranne ND ug/l 2.0 0.65 1 1-Debrance ND ug/l 2.5							
ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.0 1 Dichloroethene 3.5 J ug/l 5.0 1.0 1 Acetone 3.5 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromoethane							
- Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.0 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.5 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1,2-Dibromethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 <							
ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.5 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1.2-Dibromethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1	·						
ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.5 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
ND ug/l 5.0 1.0 1 Acetone 3.5 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND							
Actone 3.5 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloroprepane ND ug/l <				•			
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Jorrichlorobenzene ND ug/l 2.5 0.70 </td <td>Dichlorodifluoromethane</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Dichlorodifluoromethane						
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromo-1-chloropenzene ND ug/l 2.5 0.70 1 1.2-J-Trichlorobenzene ND ug/l 2.5 <t< td=""><td>Acetone</td><td></td><td>J</td><td></td><td>5.0</td><td></td><td></td></t<>	Acetone		J		5.0		
ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 I.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1.2-Jirichlorobenzene ND ug/l 2.5 0.70 1 1.2.4-Trimethylbenzene ND ug/l 2.5 0.70 1 1.3.5-Trimethylbenzene ND ug/l 2.5 0.70 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
Participation ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Triichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Triichlorobenzene ND ug/l 2.5 0.70 1	2-Butanone	ND		ug/l	5.0	1.9	1
Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-A-Trichlorobenzene ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 sporpoylbenzene ND ug/l 2.5 0.70 1 sporpoylbenzene ND ug/l 2.5 0.70 1 p-lsopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0	2-Hexanone	ND		ug/l	5.0	1.0	1
n-ButylbenzeneNDug/l2.50.701sec-ButylbenzeneNDug/l2.50.7011,2-Dibromo-3-chloropropaneNDug/l2.50.701IsopropylbenzeneNDug/l2.50.701p-IsopropylbenzeneNDug/l2.50.701n-PropylbenzeneNDug/l2.50.7011,2,3-TrichlorobenzeneNDug/l2.50.7011,2,4-TrichlorobenzeneNDug/l2.50.7011,3,5-TrimethylbenzeneNDug/l2.50.7011,2,4-TrichlorobenzeneNDug/l2.50.7011,2,4-TrichlorobenzeneNDug/l2.50.7011,2,4-TrichlorobenzeneNDug/l2.50.7011,2,4-TrichlorobenzeneNDug/l2.50.7011,2,4-TrichlorobenzeneNDug/l2.50.7011,2,4-TrichlorobenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.00.231CyclohexaneNDug/l100.2711,4-DioxaneNDug/l25061.1Feor-113NDug/l2.50.701	Bromochloromethane	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 <	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Methyl Acetate ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freen-113 ND ug/l 2.5 0.70	n-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Feon-113 ND ug/l 2.5 0.70 <	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Terr ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Methyl Acetate ND ug/l 10 0.27 1 Cyclohexane ND ug/l 250 61. 1 1,4-Dioxane ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND			2.0	0.23	1
1,4-DioxaneNDug/l25061.1Freon-113NDug/l2.50.701	Cyclohexane	ND			10	0.27	1
Freon-113 ND ug/l 2.5 0.70 1	1,4-Dioxane	ND			250	61.	1
	Freon-113	ND			2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	106	70-130	

		Serial_No	o:10192119:48
Project Name:	MAIN + BALCOM	Lab Number:	L2156021
Project Number:	T0239-021-001	Report Date:	10/19/21
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2156021-03 MW-3R MAIN + BALCOM, BUFFALO, NY	Date Collected: Date Received: Field Prep:	10/13/21 11:09 10/13/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 10/17/21 13:52 AJK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	brough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.80		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

		Serial_No:10192119:48			
Project Name:	MAIN + BALCOM	Lab Number:	L2156021		
Project Number:	T0239-021-001	Report Date:	10/19/21		
	SAMPLE	RESULTS			
Lab ID:	L2156021-03	Date Collected:	10/13/21 11:09		
Client ID:	MW-3R	Date Received:	10/13/21		
Sample Location:	MAIN + BALCOM, BUFFALO, NY	Field Prep:	Not Specified		

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.9	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	108	70-130	

		Serial_No	o:10192119:48
Project Name:	MAIN + BALCOM	Lab Number:	L2156021
Project Number:	T0239-021-001	Report Date:	10/19/21
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2156021-04 MW-4 MAIN + BALCOM, BUFFALO, NY	Date Collected: Date Received: Field Prep:	10/13/21 12:16 10/13/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 10/17/21 14:13 AJK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	0.45	J	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	1.3		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	2.8		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.26	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	25		ug/l	2.5	0.70	1
Trichloroethene	8.0		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

		Serial_No:10192119:48
Project Name:	MAIN + BALCOM	Lab Number: L2156021
Project Number:	T0239-021-001	Report Date: 10/19/21
	SAMPLE RESULTS	
Lab ID:	L2156021-04	Date Collected: 10/13/21 12:16
Client ID:	MW-4	Date Received: 10/13/21
Sample Location:	MAIN + BALCOM, BUFFALO, NY	Field Prep: Not Specified

Sample Depth:

1,3-Dichlorobenzene ND ug1 2.5 0.70 1 Methyl tert butyl ether ND ug1 2.5 0.70 1 pim-Xylene ND ug1 2.5 0.70 1 o-Xylene ND ug1 2.5 0.70 1 o-Xylene ND ug1 2.5 0.70 1 o-Xylene ND ug1 2.5 0.70 1 Syrone ND ug1 2.5 0.70 1 Dichlorodifluoromethane ND ug1 5.0 1.0 1 Acatone 2.5 J ug1 5.0 1.0 1 2-Butanone ND ug1 5.0 1.0 1 2-Hexanone ND ug1 5.0 1.0 1 1.2-Dibromoethane ND ug1 2.5 0.70 1 1.2-Dibromoethane ND ug1 2.5 0.70 1 1.2-Dibromoethane ND ug1 2.5 0.70 1 1.2-Dibromoethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
A-Dohlorobenzene ND ug/l 2.5 0.70 1 Methyl teth butyl ether ND ug/l 2.5 0.70 1 Methyl teth butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Syrene ND ug/l 2.5 0.70 1 Dichorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 2.5 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Ditromochiaromethane ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Westborough Lab							
A-Dohlorobenzene ND ug/l 2.5 0.70 1 Methyl teth butyl ether ND ug/l 2.5 0.70 1 Methyl teth butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Syrene ND ug/l 2.5 0.70 1 Dichorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 2.5 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Ditromochiaromethane ND ug/l 2.5 0.70 1	1 3-Dichlorobenzene	ND		ug/l	25	0.70	1	
ND ug/l 2.5 0.70 1 pim-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Olchorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 2.5 J ug/l 5.0 1.0 1 2-Buranone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Partylbenzene ND ug/l 2.0 0.0 1 1.2-Dibromeshane ND ug/l 2.5 0.70 1 1.2-Dibromeshane ND ug/l 2.5 0.70 1 1.2-Dibromeshane ND ug/l								
ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis.12-Dichlorosthene 11 ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 2.5 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexame ND ug/l 5.0 1.0 1 2-Hexame ND ug/l 5.0 1.0 1 2-Hexame ND ug/l 2.5 0.70 1 1-2-Olbromoethane ND ug/l 2.5 0.70 1 1-2-Olbromechane ND ug/l 2.5 0.70 1 1-2-Olbrome-3-chloropropane								
- Sylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 11 ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodfluoromethane ND ug/l 5.0 1.0 1 Acetone 2.5 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromethane ND ug/l 2.5 0.70 1 1.2-Dibrome-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibrome-3-chloropropane ND ug/l 2.5 0.70 1 <								
is1,2-Dichloroethene 11 ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 2.5 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Trichlorobenzene ND ug/l 2.5 0.70				•				
ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 2.5 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1								
ND ug/l 5.0 1.0 1 Acetone 2.5 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chioroptane ND ug/l 2.5 0.70 1								
Actions 2.5 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromo-s-chloropropane ND ug/l								
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-1-chlorophenzene ND ug/l 2.5 0.70 1 1,2-J-Trichlorobenzene ND ug/l 2.5			.1					
Participation ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromo-1-chloropenzene ND ug/l 2.5 0.70 1 1.2-J-Trichlorobenzene ND ug/l 2.5			v	•				
ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 I.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2-Dirtrohorobenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1								
Part Part 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 l,2-Diromothanzene ND ug/l 2.5 0.70 1 l,2-Diropylbenzene ND ug/l 2.5 0.70 1 l,2-A-Trichlorobenzene ND ug/l 2.5 0.70 1 l,2-A-Trinmethylbenzene ND ug/l				•				
Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5								
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Cyclohexane 0.34 J ug/l 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-lsopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Cyclohexane 0.34 J ug/l 0								
ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trinethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Cyclohexane 0.34 J ug/l 10 0.27								
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 0.34 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l		ND		•		0.70	1	
Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 10 0.27 1 Cyclohexane 0.34 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 2.5	1,2-Dibromo-3-chloropropane	ND						
p-IsopropyltolueneNDug/l2.50.701n-PropylbenzeneNDug/l2.50.7011,2,3-TrichlorobenzeneNDug/l2.50.7011,2,4-TrichlorobenzeneNDug/l2.50.7011,3,5-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.00.2311,2,4-TrimethylbenzeneNDug/l100.2711,4-DioxaneNDug/l25061.1Freon-113NDug/l2.50.701	Isopropylbenzene	ND			2.5	0.70	1	
ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 0.34 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND			2.5	0.70	1	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 0.34 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND			2.5	0.70	1	
1,2,4-TrichlorobenzeneNDug/l2.50.7011,3,5-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.701Methyl AcetateNDug/l2.00.231Cyclohexane0.34Jug/l100.2711,4-DioxaneNDug/l25061.1Freon-113NDug/l2.50.701	1,2,3-Trichlorobenzene	ND			2.5	0.70	1	
ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 0.34 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND			2.5	0.70	1	
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 0.34 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND			2.5	0.70	1	
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 0.34 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Cyclohexane 0.34 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND			2.0	0.23	1	
ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	Cyclohexane	0.34	J		10	0.27	1	
Freon-113 ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		-	250	61.	1	
	Freon-113	ND		•	2.5	0.70	1	
	Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	110	70-130	

		Serial_No	o:10192119:48
Project Name:	MAIN + BALCOM	Lab Number:	L2156021
Project Number:	T0239-021-001	Report Date:	10/19/21
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2156021-05 MW-5 MAIN + BALCOM, BUFFALO, NY	Date Collected: Date Received: Field Prep:	10/13/21 10:27 10/13/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 10/17/21 14:33 AJK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.25	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

		Serial_No:10192119:48
Project Name:	MAIN + BALCOM	Lab Number: L2156021
Project Number:	T0239-021-001	Report Date: 10/19/21
	SAMPLE RESULTS	
Lab ID:	L2156021-05	Date Collected: 10/13/21 10:27
Client ID: Sample Location:	MW-5 MAIN + BALCOM, BUFFALO, NY	Date Received: 10/13/21 Field Prep: Not Specified

Sample Depth:

Volatile Organics by GC/MS - Westborough 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone	ND ND ND ND 2.0 ND ND 3.1 ND	J	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.0	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1 1 1 1 1 1 1 1 1 1 1
1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane	ND ND ND 2.0 ND ND 3.1 ND		ug/l ug/l ug/l ug/l ug/l ug/l ug/l	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.0	0.70 0.70 0.70 0.70 0.70 0.70 0.70	1 1 1 1 1 1 1 1
1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane	ND ND ND 2.0 ND ND 3.1 ND		ug/l ug/l ug/l ug/l ug/l ug/l ug/l	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.0	0.70 0.70 0.70 0.70 0.70 0.70 0.70	1 1 1 1 1 1 1 1
Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane	ND ND 2.0 ND ND 3.1 ND		ug/l ug/l ug/l ug/l ug/l ug/l	2.5 2.5 2.5 2.5 2.5 2.5 5.0	0.70 0.70 0.70 0.70 0.70	1 1 1 1 1 1
p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane	ND ND 2.0 ND 3.1 ND		ug/l ug/l ug/l ug/l ug/l	2.5 2.5 2.5 2.5 5.0	0.70 0.70 0.70 0.70	1 1 1 1
o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane	ND 2.0 ND ND 3.1 ND		ug/l ug/l ug/l ug/l	2.5 2.5 2.5 5.0	0.70 0.70 0.70	1 1 1
cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane	2.0 ND ND 3.1 ND		ug/l ug/l ug/l	2.5 2.5 5.0	0.70 0.70	1 1
Styrene Dichlorodifluoromethane	ND ND 3.1 ND		ug/l ug/l	2.5 5.0	0.70	1
Dichlorodifluoromethane	ND 3.1 ND	J	ug/l	5.0		
	3.1 ND	J	-		1.0	1
Acetone	ND	J	ug/l			
			_	5.0	1.5	1
Carbon disulfide			ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	107	70-130	

		Serial_No	o:10192119:48
Project Name:	MAIN + BALCOM	Lab Number:	L2156021
Project Number:	T0239-021-001	Report Date:	10/19/21
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2156021-06 MW-6 MAIN + BALCOM, BUFFALO, NY	Date Collected: Date Received: Field Prep:	10/13/21 11:47 10/13/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 10/17/21 14:53 AJK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westh	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	3.4		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.75	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.96		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

		Serial_No:10192119:48		
Project Name:	MAIN + BALCOM	Lab Number:	L2156021	
Project Number:	T0239-021-001	Report Date:	10/19/21	
	SAMPLE RES	BULTS		
Lab ID:	L2156021-06	Date Collected:	10/13/21 11:47	
Client ID:	MW-6	Date Received:	10/13/21	
Sample Location:	MAIN + BALCOM, BUFFALO, NY	Field Prep:	Not Specified	

Sample Depth:

Note ug1 2.5 0.70 1 1.4-Dichlorobenzene ND ug1 2.5 0.70 1 1.4-Dichlorobenzene ND ug1 2.5 0.70 1 Methyl tor buly lether ND ug1 2.5 0.70 1 p/m-Xylene ND ug1 2.5 0.70 1 cis-1,2-Dichloroethene ND ug1 2.5 0.70 1 Syrene ND ug1 2.5 0.70 1 Carbon disulfide ND ug1 5.0 1.0 1 Carbon disulfide ND ug1 5.0 1.0 1 Carbon disulfide ND ug1 5.0 1.0 1 2-Buanone ND ug1 5.0 1.0 1 2-Hosanone ND ug1 5.0 1.0 1 2-Hosanone ND ug1 2.5 0.70 1 1.2-Dibromoethane ND ug1 2.5 0.70 1 1.2-Dibromoethane ND <td< th=""><th>Parameter</th><th>Result</th><th>Qualifier</th><th>Units</th><th>RL</th><th>MDL</th><th>Dilution Factor</th></td<>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Siyrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochioromethane ND ug/l 2.5 0.70 1 1.2-Dibromochane ND ug/l 2.5 0.70 1 1.2-Dibromochachine ND ug/l <td colspan="7">Volatile Organics by GC/MS - Westborough Lab</td>	Volatile Organics by GC/MS - Westborough Lab						
ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Siyrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochioromethane ND ug/l 2.5 0.70 1 1.2-Dibromochane ND ug/l 2.5 0.70 1 1.2-Dibromochachine ND ug/l <td>1.3-Dichlorobonzono</td> <td>ND</td> <td></td> <td>ua/I</td> <td>2.5</td> <td>0.70</td> <td>1</td>	1.3-Dichlorobonzono	ND		ua/I	2.5	0.70	1
ND ugil 2.5 0.70 1 pim-Xylene ND ugil 2.5 0.70 1 o-Xylene ND ugil 2.5 0.70 1 o-Xylene ND ugil 2.5 0.70 1 cisi-1.2-Dichloroethene ND ugil 2.5 0.70 1 Styrene ND ugil 5.0 1.0 1 Acetone ND ugil 5.0 1.0 1 Carbon disulfide ND ugil 5.0 1.0 1 2-Butanone ND ugil 5.0 1.0 1 2-Hexanone ND ugil 5.0 1.0 1 Bromachloromethane ND ugil 2.0 0.65 1 1.2-Dibromed-thane ND ugil 2.5 0.70 1 1.2-Dibromed-thane ND ugil 2.5 0.70 1 1.2-Dibromed-thane ND ugil				-			
ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.0 1 Dichlorodflluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Ditomosthane ND				-			
o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromothane ND ug/l 2.5 0.70 1 1.2-Dibromothane ND ug/l 2.5 0.70 1 1.2-Dibromothane ND ug/l 2.5 0.70 1 1.2-Dibromothan							
ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromosthane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Trichlorobenzene <td>·</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	·			-			
Syrene ND ug/l 2.5 0.70 1 Dichlorodiffuoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochoromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromo-schloropropane ND ug/l 2.5 0.70 1 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>				-			
Dichlorodiffuoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromoethan							
Actone ND ug/ 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70							
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromo-1-chloropropane ND ug/l 2.5				-			
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromo-1-chlorobenzene ND ug/l 2.5 0.70 1 1.2-Ja-Trichlorobenzene ND ug/l 2.5 <				-			
Add ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70							
VD Ug/l 5.0 1.0 1 Bromochloromethane ND Ug/l 2.5 0.70 1 J.2-Dibromoethane ND Ug/l 2.0 0.65 1 n-Butylbenzene ND Ug/l 2.5 0.70 1 sec-Butylbenzene ND Ug/l 2.5 0.70 1 sec-Butylbenzene ND Ug/l 2.5 0.70 1 sec-Butylbenzene ND Ug/l 2.5 0.70 1 isopropylbenzene ND Ug/l 2.5 0.70 1 isopropylbenzene ND Ug/l 2.5 0.70 1 isopropylbenzene ND Ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND Ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND Ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND Ug/l 2.5 0.70 1 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>				-			
Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5							1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27	2-Hexanone	ND		ug/l	5.0	1.0	1
n-ButylbenzeneNDug/l2.50.701sec-ButylbenzeneNDug/l2.50.7011,2-Dibromo-3-chloropropaneNDug/l2.50.701IsopropylbenzeneNDug/l2.50.701p-IsopropylbenzeneNDug/l2.50.701n-PropylbenzeneNDug/l2.50.7011,2,3-TrichlorobenzeneNDug/l2.50.7011,2,4-TrichlorobenzeneNDug/l2.50.7011,3,5-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.50.7011,2,4-TrimethylbenzeneNDug/l2.00.231Methyl AcetateNDug/l100.2711,4-DioxaneNDug/l25061.1HenrichtanaNDug/l2.50.701	Bromochloromethane	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 sec-Buylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 <	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Methyl Acetate ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 <td>n-Butylbenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	n-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
P-Isopropyltoluene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND			2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
1,4-DioxaneNDug/l25061.1Freon-113NDug/l2.50.701	Cyclohexane	ND			10	0.27	1
Freon-113 ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		-	250	61.	1
	Freon-113	ND		-		0.70	
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	108	70-130	

Project Name:	MAIN + BALCOM	Lab Num
Project Number:	T0239-021-001	Report Da

b Number:	L2156021
eport Date:	10/19/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:10/17/21 08:48Analyst:PD

arameter	Result	Qualifier Units	s RL	MDL
platile Organics by GC/MS -	Westborough Lab	for sample(s):	01-06 Batch:	WG1559859-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name:	MAIN + BALCOM	Lab Numbe
Project Number:	T0239-021-001	Report Dat

ab Number:	L2156021
eport Date:	10/19/21

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	10/17/21 08:48
Analyst:	PD

arameter	Result 0	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab f	or sample(s): 01-06	Batch:	WG1559859-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name:	MAIN + BALCOM		Lab Number:	L2156021
Project Number:	T0239-021-001		Report Date:	10/19/21
		Mathed Blank Analysia		

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:10/17/21 08:48Analyst:PD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	tborough La	ab for sample	e(s): 01-	06 Batch:	WG1559859-5	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	91		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	99		70-130		
Dibromofluoromethane	99		70-130		

Lab Number: L2156021 Report Date: 10/19/21

arameter	LCS %Recovery G		CSD ecovery	Qual	%Recovery Limits	RPD	PD mits
/olatile Organics by GC/MS - Westborough	Lab Associated sam	ple(s): 01-06	Batch:	WG1559859-3	WG1559859-4		
Methylene chloride	99		99		70-130	0	20
1,1-Dichloroethane	100		100		70-130	0	20
Chloroform	100		100		70-130	0	20
Carbon tetrachloride	90		92		63-132	2	20
1,2-Dichloropropane	100		100		70-130	0	20
Dibromochloromethane	84		90		63-130	7	20
1,1,2-Trichloroethane	93		96		70-130	3	20
Tetrachloroethene	100		100		70-130	0	20
Chlorobenzene	100		100		75-130	0	20
Trichlorofluoromethane	96		96		62-150	0	20
1,2-Dichloroethane	92		95		70-130	3	20
1,1,1-Trichloroethane	100		110		67-130	10	20
Bromodichloromethane	92		93		67-130	1	20
trans-1,3-Dichloropropene	84		88		70-130	5	20
cis-1,3-Dichloropropene	88		91		70-130	3	20
Bromoform	82		88		54-136	7	20
1,1,2,2-Tetrachloroethane	96		99		67-130	3	20
Benzene	100		100		70-130	0	20
Toluene	99		100		70-130	1	20
Ethylbenzene	100		110		70-130	10	20
Chloromethane	98		96		64-130	2	20
Bromomethane	92		92		39-139	0	20
Vinyl chloride	88		90		55-140	2	 20

Lab Number: L2156021 Report Date: 10/19/21

arameter	LCS %Recovery	LCSD Qual %Recover		Recovery Limits RPD	RPD imits
olatile Organics by GC/MS - Westbo	rough Lab Associated san	nple(s): 01-06 Batch	WG1559859-3 W	G1559859-4	
Chloroethane	100	98		55-138 2	20
1,1-Dichloroethene	99	99		61-145 0	20
trans-1,2-Dichloroethene	98	100		70-130 2	20
Trichloroethene	97	98		70-130 1	20
1,2-Dichlorobenzene	100	100		70-130 0	20
1,3-Dichlorobenzene	100	100		70-130 0	20
1,4-Dichlorobenzene	100	100		70-130 0	20
Methyl tert butyl ether	90	92		63-130 2	20
p/m-Xylene	110	110		70-130 0	20
o-Xylene	105	110		70-130 5	20
cis-1,2-Dichloroethene	100	100		70-130 0	20
Styrene	110	115		70-130 4	20
Dichlorodifluoromethane	75	76		36-147 1	20
Acetone	88	88		58-148 0	20
Carbon disulfide	94	97		51-130 3	20
2-Butanone	87	88		63-138 1	20
4-Methyl-2-pentanone	84	90		59-130 7	20
2-Hexanone	86	90		57-130 5	20
Bromochloromethane	96	100		70-130 4	20
1,2-Dibromoethane	93	100		70-130 7	20
n-Butylbenzene	110	110		53-136 0	20
sec-Butylbenzene	110	110		70-130 0	20
1,2-Dibromo-3-chloropropane	85	90		41-144 6	20

Project Name: MAIN + BALCOM Project Number: T0239-021-001

Lab Number: L2156021 Report Date: 10/19/21

Parameter	LCS %Recovery	Qual		.CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-06	Batch:	WG1559859-3	WG1559859-4			
Isopropylbenzene	110			110		70-130	0		20
p-Isopropyltoluene	110			110		70-130	0		20
n-Propylbenzene	110			110		69-130	0		20
1,2,3-Trichlorobenzene	78			84		70-130	7		20
1,2,4-Trichlorobenzene	90			93		70-130	3		20
1,3,5-Trimethylbenzene	100			100		64-130	0		20
1,2,4-Trimethylbenzene	100			100		70-130	0		20
Methyl Acetate	78			76		70-130	3		20
Cyclohexane	100			99		70-130	1		20
1,4-Dioxane	132			138		56-162	4		20
Freon-113	100			100		70-130	0		20
Methyl cyclohexane	100			100		70-130	0		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	l %Recovery Qual	Criteria
1,2-Dichloroethane-d4	94	95	70-130
Toluene-d8	101	102	70-130
4-Bromofluorobenzene	102	102	70-130
Dibromofluoromethane	98	98	70-130

 Project Name:
 MAIN + BALCOM

 Project Number:
 T0239-021-001

Serial_No:10192119:48 *Lab Number:* L2156021 *Report Date:* 10/19/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal				
A	Absent				

Container Information		Initial	Final	Final Temp			Frozen		
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2156021-01A	Vial HCI preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-01B	Vial HCl preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-01C	Vial HCI preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-02A	Vial HCl preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-02B	Vial HCl preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-02C	Vial HCl preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-03A	Vial HCl preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-03B	Vial HCI preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-03C	Vial HCI preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-04A	Vial HCI preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-04B	Vial HCl preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-04C	Vial HCI preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-05A	Vial HCI preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-05B	Vial HCI preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-05C	Vial HCI preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-06A	Vial HCI preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-06B	Vial HCI preserved	A	NA		2.9	Y	Absent		NYTCL-8260-R2(14)
L2156021-06C	Vial HCI preserved	А	NA		2.9	Y	Absent		NYTCL-8260-R2(14)

Project Name: MAIN + BALCOM

Project Number: T0239-021-001

Lab Number: L2156021

Report Date: 10/19/21

GLOSSARY

Acronyms

Acronyins	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Name: MAIN + BALCOM

Project Number: T0239-021-001

Lab Number: L2156021

Report Date: 10/19/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name: MAIN + BALCOM

Project Number: T0239-021-001

Lab Number: L2156021 Report Date: 10/19/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: MAIN + BALCOM Project Number: T0239-021-001

 Lab Number:
 L2156021

 Report Date:
 10/19/21

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane. Toxaphene. Aldrin. alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin. DDD, DDE, DDT, Endosulfan I. Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:10192119:48

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tenawanda, NY 14150: 275 Cod	lay		05	Pag	e of i			ate Rec'd in Lab	10/	14	121	N.S.	ALPHA JOB # L2156021	
Westborough, MA 01581 B Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	5	T.S.	A CONTRACTOR	1 Min William		D	eliver	ables				T	Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: MAIN	45	ALCON	U					SP-A		ASP-E	3	T.	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: MAIN				ALO.NY	r		E	QuIS (1 File)		EQuis	5 (4 File	1)	PON	
Client Information	College Contraction	Project # D			1	1 - 1 - 1				Other						
Client: TUENKEY E	NV. ROST.	(Use Project name as Pro	oiect	#)				R	Regula	tory Requireme	int	120		- it	Disposal Site Information	
Address: 2558 HA		Project Manager: NATE	_					17		IY TOGS		NY Pa	rt 375	T	Please identify below location of	
BUPFALD, NY		ALPHAQuote #:								WQ Standards	Ē	NY CP	-51		applicable disposal facilities.	
Phone: "716 - 856 -		Turn-Around Time	-	Lile	SHEER WAR	No. 19				Y Restricted Use		Other		Ĩ	Disposal Facility:	********
Fax:		Standard	X		Due Date					Y Unrestricted U	5e			1	ги 🕅 ии	
Email: nmunley 26	m-tk.com	Rush (only if pre approved)	-		# of Days					YC Sewer Discha	arge			i	Other:	
These samples have be	A REAL PROPERTY AND A REAL	ed by Alpha		-	ii di didje			A	NAL			_		-	Sample Filtration	T
Other project specific								-						-f	-	- 0
Please specify Metals									SI VOC					-	Done Lab to do Preservation Lab to do	t a
Please specify metals	OF TAL.							_	£					- 1		0
			-					_	+					1	(Please Specify below)	t
ALPHA Lab ID	Sa	imple ID		100	ection	Sample	Sample	C. C. C. C. L. C.	口					- 1		- 1
(Lab Use Only)				Date	Time	Matrix	Initials	5	1-						Sample Specific Comments	
	MW-1		101	3/21	1337	AQUA.	CS	1	×					_		3
and the second se	MW-2		1	1	1259		1	_	×							3
	MW-3K				1109			1	×							3
	MW-4 *				1216				×							3
05	MW-5				1027				x							3
06	MW-L			V	1147	+	+	_	x							3
																+
1. Part Harris								-	-							+
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N	1.0				ntainer Ty Preservati		V B					_	Please print clearly, legibl and completely. Samples not be logged in and turnaround time clock will start until any ambiguities	can I not
F = MeOH	C = Cube	Relinquished	Bv:		Date	/Time	1	Re	eceive	d By:	1	Date	/Time		resolved. BY EXECUTING	
$H = Na_3S_2O_3$	O = Other E = Encore D = BOD Bottle	Charl M Schurt				1613	MA	1.	Þ		10/	13/21	0/15	3	THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPH TERMS & CONDITIONS.	ES HA'S
Form No: 01-25 HC (rev. 30)-Sept-2013)						/ "			$-\mathcal{O}^-$	-			-	(See reverse side.)	

ANALYTICAL REPORT

Lab Number:	L2214779
Client:	Turnkey Environmental Restoration, LLC
	2558 Hamburg Turnpike
	Suite 300
	Buffalo, NY 14218
ATTN:	Nate Munley
Phone:	(716) 856-0599
Project Name:	MAIN AND BALCOM ST. SITE
Project Number:	T0239-021-001
Report Date:	04/04/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04042215:06

Project Name:MAIN AND BALCOM ST. SITEProject Number:T0239-021-001

Lab Number:	L2214779
Report Date:	04/04/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2214779-01	MW-1	WATER	MAIN AND BALCOM, BUFFALO, NY	03/22/22 12:05	03/22/22
L2214779-02	MW-2	WATER	MAIN AND BALCOM, BUFFALO, NY	03/22/22 12:41	03/22/22
L2214779-03	MW-3R	WATER	MAIN AND BALCOM, BUFFALO, NY	03/22/22 08:38	03/22/22
L2214779-04	MW-4	WATER	MAIN AND BALCOM, BUFFALO, NY	03/22/22 10:08	03/22/22
L2214779-05	MW-5	WATER	MAIN AND BALCOM, BUFFALO, NY	03/22/22 09:20	03/22/22
L2214779-06	MW-6	WATER	MAIN AND BALCOM, BUFFALO, NY	03/22/22 11:00	03/22/22
L2214779-07	BLIND DUP	WATER	MAIN AND BALCOM, BUFFALO, NY	03/22/22 00:00	03/22/22

Project Name:MAIN AND BALCOM ST. SITEProject Number:T0239-021-001

 Lab Number:
 L2214779

 Report Date:
 04/04/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:MAIN AND BALCOM ST. SITEProject Number:T0239-021-001

 Lab Number:
 L2214779

 Report Date:
 04/04/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 04/04/22

ORGANICS

VOLATILES

		Serial_N	0:04042215:06
Project Name:	MAIN AND BALCOM ST. SITE	Lab Number:	L2214779
Project Number:	T0239-021-001	Report Date:	04/04/22
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2214779-01 MW-1 MAIN AND BALCOM, BUFFALO, NY	Date Collected: Date Received: Field Prep:	03/22/22 12:05 03/22/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 03/24/22 19:55 PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
rans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

		Serial_N	0:04042215:06
Project Name:	MAIN AND BALCOM ST. SITE	Lab Number:	L2214779
Project Number:	T0239-021-001	Report Date:	04/04/22
	SAMPLE RESULTS		
Lab ID:	L2214779-01	Date Collected:	03/22/22 12:05
Client ID:	MW-1	Date Received:	03/22/22
Sample Location:	MAIN AND BALCOM, BUFFALO, NY	Field Prep:	Not Specified

	- .	•						
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1		
p/m-Xylene	ND		ug/l	2.5	0.70	1		
o-Xylene	ND		ug/l	2.5	0.70	1		
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Styrene	ND		ug/l	2.5	0.70	1		
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1		
Acetone	ND		ug/l	5.0	1.5	1		
Carbon disulfide	ND		ug/l	5.0	1.0	1		
2-Butanone	ND		ug/l	5.0	1.9	1		
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1		
2-Hexanone	ND		ug/l	5.0	1.0	1		
Bromochloromethane	ND		ug/l	2.5	0.70	1		
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1		
n-Butylbenzene	ND		ug/l	2.5	0.70	1		
sec-Butylbenzene	ND		ug/l	2.5	0.70	1		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1		
Isopropylbenzene	ND		ug/l	2.5	0.70	1		
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1		
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
Methyl Acetate	ND		ug/l	2.0	0.23	1		
Cyclohexane	ND		ug/l	10	0.27	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
Freon-113	ND		ug/l	2.5	0.70	1		
Methyl cyclohexane	ND		ug/l	10	0.40	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	119	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	100	70-130
Dibromofluoromethane	113	70-130

		Serial_N	0:04042215:06
Project Name:	MAIN AND BALCOM ST. SITE	Lab Number:	L2214779
Project Number:	T0239-021-001	Report Date:	04/04/22
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2214779-02 MW-2 MAIN AND BALCOM, BUFFALO, NY	Date Collected: Date Received: Field Prep:	03/22/22 12:41 03/22/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 03/24/22 20:18 PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

		Serial_No:04042215:06		
Project Name:	MAIN AND BALCOM ST. SITE	Lab Number:	L2214779	
Project Number:	T0239-021-001	Report Date:	04/04/22	
	SAMPLE RESULTS			
Lab ID:	L2214779-02	Date Collected:	03/22/22 12:41	
Client ID:	MW-2	Date Received:	03/22/22	
Sample Location:	MAIN AND BALCOM, BUFFALO, NY	Field Prep:	Not Specified	

Sample Depth:

Volatile Organics by GC/MS - Westborough Lab 1.3-Dichlorobenzene ND ug/l 2.5 0.70 1 1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 1.2-Butonone ND ug/l 2.5	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND ug/l 2.5 0.70 1 Methyl terb utyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromo-thane ND ug/l <t< td=""><td>Volatile Organics by GC/MS - Westbor</td><td>ough Lab</td><td></td><td></td><td></td><td></td><td></td></t<>	Volatile Organics by GC/MS - Westbor	ough Lab					
1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.0 1 Dichlorodfiluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1_2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butybenzene ND	I,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Jum ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1_2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 I_2-Dibro	,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichloroethene ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane <td>Methyl tert butyl ether</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.0 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane <td< td=""><td>o/m-Xylene</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></td<>	o/m-Xylene	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1_2-Dibromo-s-chloropropane ND ug/l 2.5 0.70 1 1_2-Dibromo-s-chloropropane ND ug/l 2.5 0.70 1 1_2-Dibromo-s-chloropropane ND ug/l 2.5 0.70 1 1_2-Dibromo	o-Xylene	ND		ug/l	2.5	0.70	1
ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 1.2-Arrichlorobenzene ND <td>sis-1,2-Dichloroethene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	sis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromo-schloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2,3	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylboluene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-lsopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 <tr< td=""><td>Acetone</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.5</td><td>1</td></tr<>	Acetone	ND		ug/l	5.0	1.5	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylboluene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70	Carbon disulfide	ND		ug/l	5.0	1.0	1
ND ug/l 5.0 1.0 1 Bronochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 <t< td=""><td>2-Butanone</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.9</td><td>1</td></t<>	2-Butanone	ND		ug/l	5.0	1.9	1
Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-lsopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70<	I-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l <td< td=""><td>2-Hexanone</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.0</td><td>1</td></td<>	2-Hexanone	ND		ug/l	5.0	1.0	1
ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70	3romochloromethane	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70	,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-TrimethylAcetate ND ug/l 2.0 0.23 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-TrimethylAcetate ND ug/l 2.0 0.23 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-TrimethylAcetate ND ug/l 2.0 0.23 1	,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1	sopropylbenzene	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.0 0.23 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1	,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1	,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1	,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
	,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
	Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane ND ug/l 250 61. 1	,4-Dioxane	ND		ug/l	250	61.	1
Freon-113 ND ug/l 2.5 0.70 1	Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane ND ug/l 10 0.40 1	Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	112	70-130	

		Serial_No	0:04042215:06
Project Name:	MAIN AND BALCOM ST. SITE	Lab Number:	L2214779
Project Number:	T0239-021-001	Report Date:	04/04/22
	SAMPLE RESULTS		
Lab ID:	L2214779-03	Date Collected:	03/22/22 08:38
Client ID:	MW-3R	Date Received:	03/22/22
Sample Location:	MAIN AND BALCOM, BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	03/24/22 20:41		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	0.41	J	ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

					Serial_No:04042215:06			
Project Name:	MAIN AND BALCOM	ST. SITE			Lab Nu	umber:	L2214779	
Project Number:	T0239-021-001				Report	Date:	04/04/22	
		SAMP	LE RESULT	S				
Lab ID:	L2214779-03				Date Co	llected:	03/22/22 08:38	
Client ID:	MW-3R				Date Re	ceived:	03/22/22	
Sample Location:	MAIN AND BALCOM	DM, BUFFALO, NY Field Prep:		Not Specified				
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboroug	gh Lab						
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	

Methyl tert butyl ether	ND	ug/l	2.5	0.70	1
p/m-Xylene	ND	ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	ND	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
n-Butylbenzene	ND	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1
n-Propylbenzene	ND	ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1
Methyl Acetate	ND	ug/l	2.0	0.23	1
Cyclohexane	ND	ug/l	10	0.27	1
1,4-Dioxane	ND	ug/l	250	61.	1
Freon-113	ND	ug/l	2.5	0.70	1
Methyl cyclohexane	ND	ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	118	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	100	70-130
Dibromofluoromethane	113	70-130

		Serial_N	0:04042215:06
Project Name:	MAIN AND BALCOM ST. SITE	Lab Number:	L2214779
Project Number:	T0239-021-001	Report Date:	04/04/22
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2214779-04 MW-4 MAIN AND BALCOM, BUFFALO, NY	Date Collected: Date Received: Field Prep:	03/22/22 10:08 03/22/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 03/24/22 21:05 PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	0.72		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.81		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	3.0		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.20	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	15		ug/l	2.5	0.70	1
Trichloroethene	4.6		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

		Serial_N	o:04042215:06
Project Name:	MAIN AND BALCOM ST. SITE	Lab Number:	L2214779
Project Number:	T0239-021-001	Report Date:	04/04/22
	SAMPLE RESULTS		
Lab ID:	L2214779-04	Date Collected:	03/22/22 10:08
Client ID:	MW-4	Date Received:	03/22/22
Sample Location:	MAIN AND BALCOM, BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
-			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	5.6		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-lsopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	0.29	J	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	119	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	114	70-130	

	Serial_No:04042215:06			
Project Name:	MAIN AND BALCOM ST. SITE	Lab Number:	L2214779	
Project Number:	T0239-021-001	Report Date:	04/04/22	
	SAMPLE RESULTS			
Lab ID:	L2214779-05	Date Collected:	03/22/22 09:20	
Client ID:	MW-5	Date Received:	03/22/22	
Sample Location:	MAIN AND BALCOM, BUFFALO, NY	Field Prep:	Not Specified	
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	03/24/22 21:28			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	0.25	J	ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

		Serial_No:04042215:06					
Project Name:	MAIN AND BALCOM ST. SITE	Lab Number:	L2214779				
Project Number:	T0239-021-001	Report Date:	04/04/22				
SAMPLE RESULTS							
Lab ID:	L2214779-05	Date Collected:	03/22/22 09:20				
Client ID:	MW-5	Date Received:	03/22/22				
Sample Location:	MAIN AND BALCOM, BUFFALO, NY	Field Prep:	Not Specified				

Samp	le Depth	:
------	----------	---

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	3.0		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	117		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	115		70-130	

		Serial_No:04042215:06		
Project Name:	MAIN AND BALCOM ST. SITE	Lab Number:	L2214779	
Project Number:	T0239-021-001	Report Date:	04/04/22	
	SAMPLE RESULTS			
Lab ID: Client ID: Sample Location:	L2214779-06 MW-6 MAIN AND BALCOM, BUFFALO, NY	Date Collected: Date Received: Field Prep:	03/22/22 11:00 03/22/22 Not Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 03/24/22 21:51 PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	2.7		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	0.63	J	ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	0.77		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

		Serial_No:04042215:06					
Project Name:	MAIN AND BALCOM ST. SITE	Lab Number:	L2214779				
Project Number:	T0239-021-001	Report Date:	04/04/22				
SAMPLE RESULTS							
Lab ID:	L2214779-06	Date Collected:	03/22/22 11:00				
Client ID:	MW-6	Date Received:	03/22/22				
Sample Location:	MAIN AND BALCOM, BUFFALO, NY	Field Prep:	Not Specified				
Sample Depth:							

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1		
p/m-Xylene	ND		ug/l	2.5	0.70	1		
o-Xylene	ND		ug/l	2.5	0.70	1		
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Styrene	ND		ug/l	2.5	0.70	1		
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1		
Acetone	ND		ug/l	5.0	1.5	1		
Carbon disulfide	ND		ug/l	5.0	1.0	1		
2-Butanone	ND		ug/l	5.0	1.9	1		
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1		
2-Hexanone	ND		ug/l	5.0	1.0	1		
Bromochloromethane	ND		ug/l	2.5	0.70	1		
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1		
n-Butylbenzene	ND		ug/l	2.5	0.70	1		
sec-Butylbenzene	ND		ug/l	2.5	0.70	1		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1		
Isopropylbenzene	ND		ug/l	2.5	0.70	1		
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1		
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
Methyl Acetate	ND		ug/l	2.0	0.23	1		
Cyclohexane	ND		ug/l	10	0.27	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
Freon-113	ND		ug/l	2.5	0.70	1		
Methyl cyclohexane	ND		ug/l	10	0.40	1		

Surrogate	% Recovery		otance teria
1,2-Dichloroethane-d4	122	70	0-130
Toluene-d8	95	70)-130
4-Bromofluorobenzene	98	70)-130
Dibromofluoromethane	117	70	0-130

		Serial_No	0:04042215:06
Project Name:	MAIN AND BALCOM ST. SITE	Lab Number:	L2214779
Project Number:	T0239-021-001	Report Date:	04/04/22
	SAMPLE RESULTS		
Lab ID:	L2214779-07	Date Collected:	03/22/22 00:00
Client ID:	BLIND DUP	Date Received:	03/22/22
Sample Location:	MAIN AND BALCOM, BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	03/24/22 22:14		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	2.5		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.60	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.83		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					;	Serial_No	:04042215:06	
Project Name:	MAIN AND BALCOM S	ST. SITE			Lab Nu	mber:	L2214779	
Project Number:	T0239-021-001				Report	Date:	04/04/22	
		SAMPI		5				
Lab ID:	L2214779-07				Date Col	lected:	03/22/22 00:00	
Client ID:	BLIND DUP				Date Red	ceived:	03/22/22	
Sample Location:	MAIN AND BALCOM	, BUFFALO,	NY		Field Pre	ep:	Not Specified	
Sample Depth:								
		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Parameter			Quaimer	Units	RL	IVIDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westborough	i Lab						
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	

ND

ug/l

% Recovery

119

98

100

114

5.0

2.5

2.0

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.0

10

250

2.5

10

Qualifier

1.0

0.70

0.65

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.23

0.27

61.

0.70

0.40

Acceptance

Criteria

70-130

70-130

70-130

70-130

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2-Hexanone

Bromochloromethane

1,2-Dibromoethane

n-Butylbenzene

sec-Butylbenzene

Isopropylbenzene

p-Isopropyltoluene

n-Propylbenzene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Methyl Acetate

Cyclohexane

1,4-Dioxane

Freon-113

Methyl cyclohexane

Surrogate

Toluene-d8

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

1,2-Dibromo-3-chloropropane

Project Name: MAIN AND BALCOM ST. SITE

Project Number: T0239-021-001

Lab Number: L2214779 **Report Date:** 04/04/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: Analyst: KDU

03/24/22 19:31

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s):	01-07 Batch:	WG1620470-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: MAIN AND BALCOM ST. SITE

Project Number: T0239-021-001

Lab Number: L2214779 **Report Date:** 04/04/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: Analyst: KDU

03/24/22 19:31

irameter	Result	Qualifier Units	RL	MDL
latile Organics by GC/MS	- Westborough Lab	for sample(s): (01-07 Batch:	WG1620470-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

L2214779

04/04/22

Lab Number:

Report Date:

Project Name: MAIN AND BALCOM ST. SITE

Project Number: T0239-021-001

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:03/24/22 19:31Analyst:KDU

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough La	ab for sampl	e(s): 01-07	Batch:	WG1620470-5	

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	115		70-130
Toluene-d8	98		70-130
4-Bromofluorobenzene	100		70-130
Dibromofluoromethane	113		70-130

Lab Control Sample Analysis

Batch Quality Control

Project Name: MAIN AND BALCOM ST. SITE

Project Number: T0239-021-001

Lab Number: L2214779 Report Date: 04/04/22

LCSD LCS RPD %Recovery %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-07 Batch: WG1620470-3 WG1620470-4 Methylene chloride 100 70-130 2 98 20 1,1-Dichloroethane 99 110 70-130 11 20 Chloroform 110 120 70-130 9 20 Carbon tetrachloride 120 Q 63-132 20 140 15 92 98 70-130 20 1,2-Dichloropropane 6 Dibromochloromethane 110 110 63-130 0 20 1.1.2-Trichloroethane 97 100 70-130 3 20 Tetrachloroethene 100 120 70-130 18 20 Chlorobenzene 100 110 75-130 10 20 Trichlorofluoromethane 130 140 62-150 7 20 1.2-Dichloroethane 110 120 70-130 9 20 1,1,1-Trichloroethane 120 130 67-130 8 20 Bromodichloromethane 110 120 67-130 9 20 70-130 20 trans-1,3-Dichloropropene 100 110 10 cis-1,3-Dichloropropene 90 98 70-130 9 20 Bromoform 100 100 54-136 0 20 1,1,2,2-Tetrachloroethane 88 94 67-130 7 20 70-130 20 Benzene 94 100 6 70-130 20 Toluene 99 110 11 Ethylbenzene 100 110 70-130 10 20 Chloromethane 80 90 64-130 12 20 Bromomethane 20 89 100 39-139 12 20 Vinyl chloride 95 110 55-140 15

Lab Control Sample Analysis Batch Quality Control

MAIN AND BALCOM ST. SITE **Project Name:**

Project Number: T0239-021-001 Lab Number: L2214779 Report Date: 04/04/22

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-07	Batch:	WG1620470-3	WG1620470-4			
Chloroethane	100			110		55-138	10		20
1,1-Dichloroethene	100			120		61-145	18		20
trans-1,2-Dichloroethene	100			110		70-130	10		20
Trichloroethene	94			100		70-130	6		20
1,2-Dichlorobenzene	100			100		70-130	0		20
1,3-Dichlorobenzene	100			110		70-130	10		20
1,4-Dichlorobenzene	100			110		70-130	10		20
Methyl tert butyl ether	110			110		63-130	0		20
p/m-Xylene	100			110		70-130	10		20
o-Xylene	100			110		70-130	10		20
cis-1,2-Dichloroethene	100			110		70-130	10		20
Styrene	100			105		70-130	5		20
Dichlorodifluoromethane	110			120		36-147	9		20
Acetone	82			88		58-148	7		20
Carbon disulfide	88			97		51-130	10		20
2-Butanone	72			72		63-138	0		20
4-Methyl-2-pentanone	87			95		59-130	9		20
2-Hexanone	80			88		57-130	10		20
Bromochloromethane	110			110		70-130	0		20
1,2-Dibromoethane	96			100		70-130	4		20
n-Butylbenzene	100			110		53-136	10		20
sec-Butylbenzene	100			110		70-130	10		20
1,2-Dibromo-3-chloropropane	91			92		41-144	1		20

Lab Control Sample Analysis Batch Quality Control

Project Name: MAIN AND BALCOM ST. SITE

Project Number: T0239-021-001 Lab Number: L2214779

Report Date: 04/04/22

arameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-07	Batch:	WG1620470-3	WG1620470-4			
Isopropylbenzene	99			110		70-130	11		20
p-Isopropyltoluene	100			110		70-130	10		20
n-Propylbenzene	100			110		69-130	10		20
1,2,3-Trichlorobenzene	100			110		70-130	10		20
1,2,4-Trichlorobenzene	100			110		70-130	10		20
1,3,5-Trimethylbenzene	100			110		64-130	10		20
1,2,4-Trimethylbenzene	100			110		70-130	10		20
Methyl Acetate	82			91		70-130	10		20
Cyclohexane	96			110		70-130	14		20
1,4-Dioxane	94			96		56-162	2		20
Freon-113	110			120		70-130	9		20
Methyl cyclohexane	96			110		70-130	14		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	I %Recovery Qual	Criteria
1,2-Dichloroethane-d4	114	118	70-130
Toluene-d8	101	102	70-130
4-Bromofluorobenzene	99	98	70-130
Dibromofluoromethane	109	111	70-130

Project Name: MAIN AND BALCOM ST. SITE *Project Number:* T0239-021-001

Serial_No:04042215:06 *Lab Number:* L2214779 *Report Date:* 04/04/22

NYTCL-8260-R2(14)

NYTCL-8260-R2(14)

NYTCL-8260-R2(14)

NYTCL-8260-R2(14)

NYTCL-8260-R2(14)

NYTCL-8260-R2(14)

Sample Receipt and Container Information

Were project specific reporting limits specified?

Vial HCI preserved

Vial HCl preserved

Vial HCI preserved

Vial HCI preserved

Vial HCl preserved

Vial HCI preserved

YES

Cooler Information

Cooler	Custody Seal
Α	Absent

Container Information Final Temp Initial Frozen pН Date/Time deg C Pres Container ID Container Type Cooler pН Seal Analysis(*) L2214779-01A Vial HCI preserved А NA 3.0 Υ NYTCL-8260-R2(14) Absent L2214779-01B Vial HCI preserved А NA 3.0 Υ Absent NYTCL-8260-R2(14) L2214779-01C Vial HCI preserved А NA 3.0 Υ Absent NYTCL-8260-R2(14) L2214779-02A Vial HCI preserved А NA 3.0 Υ Absent NYTCL-8260-R2(14) А Υ L2214779-02B Vial HCI preserved NA NYTCL-8260-R2(14) 3.0 Absent Vial HCI preserved L2214779-02C А NA 3.0 Υ Absent NYTCL-8260-R2(14) L2214779-03A Vial HCI preserved А NA 3.0 Υ Absent NYTCL-8260-R2(14) Vial HCI preserved Υ NYTCL-8260-R2(14) L2214779-03B А NA 3.0 Absent L2214779-03C Vial HCI preserved А Υ NYTCL-8260-R2(14) NA 3.0 Absent L2214779-04A Vial HCI preserved А NA 3.0 Υ NYTCL-8260-R2(14) Absent L2214779-04B Vial HCI preserved А NA 3.0 Υ Absent NYTCL-8260-R2(14) L2214779-04C Vial HCI preserved А NA 3.0 Υ Absent NYTCL-8260-R2(14) L2214779-05A Vial HCI preserved А NA 3.0 Υ NYTCL-8260-R2(14) Absent L2214779-05B Vial HCI preserved А NA 3.0 Υ Absent NYTCL-8260-R2(14) Vial HCl preserved L2214779-05C А NA 3.0 Υ Absent NYTCL-8260-R2(14)

NA

NA

NA

NA

NA

NA

А

А

А

А

А

А

L2214779-06A

L2214779-06B

L2214779-06C

L2214779-07A

L2214779-07B

L2214779-07C

3.0

3.0

3.0

3.0

3.0

3.0

Υ

Υ

Υ

Υ

Υ

Υ

Absent

Absent

Absent

Absent

Absent

Absent

Serial_No:04042215:06

Project Name: MAIN AND BALCOM ST. SITE

Project Number: T0239-021-001

Lab Number: L2214779

Report Date: 04/04/22

GLOSSARY

Accorgyms DL • Description Limit: This value regresents the level to which sarget analyte concentrations are reported as estimated values, when the operating analyte concentrations are experience in the performance on theperformance on the performance on theperformance on theperforman	_	CLOUCAN
Insecting analyte concentrations on route quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations are repeared based. FID: - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reporting limit (QL). The EDL includes any adjustments from dilutions, concentrations are quantified below there applicable. The use of FDLs is specific to the analysis of PAHs using 5004 Phase Microcentration (SPME). FMPC - Estimated Maximum Possible Concentration The concentration that results from the signal present at the retention time of an analyte when the isons meet all of the distinfication criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration. EPA - Environmental Protection Agency. LCSD - Laboratory Control Sample: Assmple matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LODD - Laboratory Control Bample: Concentration the analytes or interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LODD - Laboratory Control Bample: Concentration are quantified below the interm analyte can reliably be detected for a specific analyte in a specific method. The LOD includes are adjustments from dilutions, concentrations or moisture content, where applicable. (DoD perpt formats only). LOD - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The value stwich an instr	Acronyms	
 values, when those target analyte concentrations are quantified below the reporting limit (RL). The EQL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EQLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME). EMPC Estimated Add mount mossible Concentration. The concentration that results from the signal present at the retention time of an analyse when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration. The concentration that concentration that concentration that and the analyses of interest, spiked with verified known amounts of analyses or a material containing known and verified amounts of interest, spiked with verified known amounts of analyses or a material containing known and verified amounts of analyses or a material containing known and verified amounts of analyses or a material containing known and verified amounts of analyses or a material containing known and verified amounts of analyses or a material containing known and verified amounts of analyses or a material containing known and verified amounts of analyses or a material containing known and verified amounts of analyses or a material containing known and verified amounts of analyses or a material containing known and verified amounts of analyses or a material containing known and verified amounts of analyses or a material containing known and verified amounts of analyses or a material containing known and verified amounts of analyses. LOD Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific analyte in a specific amount of analyses or a material containing known and verified known analyte at a specific amount of analytes or a waite known and y and y and y analyte. Molt Method Detection Limit: This value represents the level to which	DL	those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments
analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration. EPA Environmental Protection Agency. LCS Laboratory Control Sample Duplicate: Refer to LCS. LFB Laboratory Control Sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LOD - Laboratory Control This value represents the level to which a triggt multiply the detected for a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ - Method Detection Limit: This value represents the level to which target analyte a specific anount of matrix sample for which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL - Method Detection Limit: This value represents the level to which target analyte on a specific anount of matrix sample or which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL	EDL	values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis
 LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes. LCSD - Laboratory Control Sample LMS, a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes. LCD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only). LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only). LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDI Method Detection Limit: This value represents the level to which target analyte to a specifie damount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated values. Wheth an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated values. Which an independent estimate of target analyte concentration available. For Method 332.0, the spike recovery is calculated using the naive concentration. The Col Method 332.0, the spike recovery is calculated using the naive concentration	EMPC	analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case
 analytes of a material containing known and verified amounts of analytes. LCSD - Laboratory Control Sample Duplicate: Refer to LCS. LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL - Method Detection Limit: This value represents he level to which target analyte concentrations are reported as estimated values, when those target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration or more or the results utilized in the calculation are non-detect at the parameter's reporting unit. Not Applicable. N	EPA	- Environmental Protection Agency.
 LFB - Laboratory Fortified Black: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOO includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values. When those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments for my adjustments for adjute analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration. Including estimated values. MSD - Matrix Spike Sample Duplicate: Refer to MS. NA - Not Applicable. NDPA/DPA - Nort Ignitable. NP - Non-Plastic: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. Not Applicable. Not Applicable. Not Replicable. NP - Non-Plastic: Term is utilized	LCS	
 Industry or a material containing known and verified amounts of analyses. LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific mark by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations or moisture content, where applicable. MDL - Method Detection Limit: This value represents the level to which a independent estimated or farget analyte concentration is available. MSD - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate or farget analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration in isualiable. For Method 332.0, the spike recovery is calculated using the native concentration is available. NDPA/DPA - Not Applicable. NP - Nor-Aplastic: Term is	LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
 specific matrix by a specific method. The LOP includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values. When those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. MS Matrix Spike Sample: A sample prepared by adding a known mass of larget analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. NA Not Applicable. NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting limit. No Results: Term is utilized when No Target Compounds Requested' is reported for the analysis of Volatile Organic TIC only requests. RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments in a given matrix and or matrix apike duplicates are perintingly designed to assess then precisio		
 LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations or moisture content, where applicable. (DoD report formats adjustments from dilutions, concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 33.2.0, the spike recovery is calculated using the native concentration, including estimated values. MSD Matrix Spike Sample Duplicate: Refer to MS. NA Not Applicable. Not Applicable. Not Applicable. Not Applicable. Non-Phastic: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. Not Results: Term is utilized for the analysis of Atterberg Limits in soil. NR Ne Sustic: Term is utilized for the analysis of Atterberg Limits in soil. NR Ne Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RED Results: Term is utilized when 'No Target Compounds Requested' is reported dirfference (RPD). Values which are less than five times the reporting limit for any individual parameter are ev		specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
 LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentration sare quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. MSD Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. MSD Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate on one or one of the results utilized in the calculation are non-detect at the parameter's reporting unit. NDPA/DPA Not Algnitable. NG Non-Plastic: Term is utilized when No Target Compounds Requested is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moistrue content, where applicable. RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess	LOQ	LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats
 values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. MS Matrix Spike Sample Learner of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. MS Matrix Spike Sample Duplicate: Refer to MS. NA Not Applicable. NC Not Applicable. NC Not Applicable. NDPA/DPA N-Nitrosodiphenylamine/Diphenylamine. NI Not Ignitable. Not Ignitable. NP Non-Plastic: Term is utilized of the analysis of Atterberg Limits in soil. NR No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit in any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM Standard Reference Material: A reference sample of a known or certified value their toxicity relative to 2,3,7,8-TCDD. TEF Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding		LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats
 which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. MSD Matrix Spike Sample Duplicate: Refer to MS. NA Not Applicable. NC Not Applicable. NC Not Ignitable. NP Not Ignitable. NP Not Ignitable. NR No Results: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. NDPA/DPA Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD Relative Percent Difference: The results from matrix and ore expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ Toxic Equivalence A assumple's toxicity derived by multiplying each dioxin and furan by its corr	MDL	values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any
 NA - Not Applicable. NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine. NI - Not Ignitable. NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and report	MS	which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated
 NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine. NI - Not Ignitable. NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.<td>MSD</td><td>- Matrix Spike Sample Duplicate: Refer to MS.</td>	MSD	- Matrix Spike Sample Duplicate: Refer to MS.
 reporting unit. NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine. NI - Not Ignitable. NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalenct: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations. 	NA	- Not Applicable.
 NI - Not Ignitable. NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations. 		reporting unit.
 NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations. 		
 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations. 		-
 Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations. 		
 includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations. 		Organic TIC only requests.
 precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations. 		includes any adjustments from dilutions, concentrations or moisture content, where applicable.
 associated field samples. SERDE - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations. 	RPD	precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the
 TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations. 		associated field samples.
 TEQ Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations. 		
and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.		
list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.	-	and then summing the resulting values.
Report Format: DU Report with 'J' Qualifiers	TIC	
	Report Form	at: DU Report with 'J' Qualifiers

Project Name: MAIN AND BALCOM ST. SITE

Project Number: T0239-021-001 Lab Number: L2214779

Report Date: 04/04/22

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- М - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:04042215:06

Project Name: MAIN AND BALCOM ST. SITE

Project Number: T0239-021-001

Lab Number: L2214779

Report Date: 04/04/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:MAIN AND BALCOM ST. SITEProject Number:T0239-021-001

 Lab Number:
 L2214779

 Report Date:
 04/04/22

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane. Toxaphene. Aldrin. alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin. DDD, DDE, DDT, Endosulfan I. Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:04042215:06

Агрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	15	Page / of /		Date Rec'd in Lab 323/22				ALPHA JOB# L2214779	
Westborough, MA 01581 8 Walkup Dr.	Project Information				A COMPANY		ables		Billing Information			
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: Main and Balcom			St. Site		ASP-A ASP-B			Same as Client Info)	
TAX. 300 020-0100	1101.300 022 3200	Project Location: Ma	in and I	Salcom.	Buffe li	5 NV		QuIS (1 File)	E	QuIS (4 File)	PO#	9
Client Information Project # TO239-021-001								Other				
Client: Tumker En	roject #)				Regula	tory Requirement	ent		Disposal Site Information	n		
Address: 2558 4	Project Manager: No	ect Manager: Nate Munley				NY TOGS NY Part 375			Please identify below location of			
Suite 3001	Suffale, NV	ALPHAQuote #:					AWQ Standards NY CP-51				applicable disposal facilities	·
Phone: (716) 85	Turn-Around Time	le				NY Restricted Use Other				Disposal Facility:		
Fax:	Standard	rd 🕅 Due Date:				NY Unrestricted Use				ил Пил		
Email: nmunleve	Rush (only if pre approved	d) # of Days:				NYC Sewer Discharge				Other:	Other:	
These samples have been previously analyzed by Alpha							ANALYSIS				Sample Filtration	Т
Other project specific	requirements/comm	nents:					V				Done	0 t
		it T	2				8		1 1		Lab to do	а
		CAT	>				5				Preservation	
Please specify Metals or TAL.							- X				Lab to do	в
							A.				(Please Specify below)	
ALPHA Lab ID Collection					Sample	Sampler's	1.					t
(Lab Use Only)		ample ID		Date Time		Initials	72				Sample Specific Commen	nts e
14779-01	MILI	9		5,0,505	1.71	EDS	X		+			3
-02	MW-1		03-22-22		Water	ED			+ +		_	3
	MW-2	0	03-22-22						+			3
-03	MW-3	<u>K</u>	03-22-22	 A second sec second second sec					+++			3
-04	1711-4		03-27-22				-X-					
-05	MW-5		03-22-22	and the second second			1C		+ +			3
-06	MW-6		03-22-22	1106	1		X					3
-07-	Blind 1	Sup	03-22-22		₩.	V			+			3
The second second		1										
The same of the test												
Preservative Code: A = None	Container Code P = Plastic	Westboro: Certification I	No: MA935		Con	tainer Type	11				Please print clearly, le	egibly
B = HCI	A = Amber Glass Mansfield: Certification No: MA015						V				and completely. Sam	ples can
C = HNO ₃	V = Vial						R				not be logged in and turnaround time clock	k will not
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup					reservative	D				start until any ambigu	
F = MeOH	C = Cube Relinguished By: Date/Time						Received By: , Date/Time				resolved. BY EXECU	
G = NaHSO4	SO4 O=Other HI 11 2 22.22 122.					4	- MAL 3/22/22 135				THIS COC, THE CLI	
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH	10202 D DODD #					07	1 3/23/22 002					
O = Other		Sh H	4 9	10000		K	~		5/0.	fee tode	TERMS & CONDITIO	
Form No: 01-25 HC (rev. 3	0-Sept-2013)										(See reverse side.)	