31 TONAWANDA STREET SITE AND 150 TONAWANDA STREET/FORMER CSX VACANT RAIL PROPERTY ERIE COUNTY, NEW YORK

FINAL ENGINEERING REPORT

NYSDEC Site Number: C915299

Prepared for:

31Tonawanda Street, LLC 148 Middlesex Road Buffalo, NY 14216

Prepared by:

960 Busti Avenue Suite B-150 Buffalo, New York, 14213

December 2020

CERTIFICATIONS

I, Jason M. Brydges, is currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Remedial Action Work Plan was implemented and that all construction activities were completed in substantial conformance with the Department-approved Remedial Action Work Plan.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Remedial Action Work Plan and in all applicable statutes and regulations have been or will be achieved in accordance with the time frames, if any, established for the remedy.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the Site are contained in an environmental easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 7 1-3603, have been notified that such easement has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by Department.

I certify that all documents generated in support of this report have been submitted in accordance with the DER's electronic submission protocols and have been accepted by the Department.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Jason M. Brydges of, BE3 Corp, 960 Busti Avenue, Suite B-150, Buffalo, New York 14213 am certifying as Owner's Designated Site Representative for the site.

NYS Professional Engineer #

Signature

TABLE OF CONTENTS

CERTIFICATIONSii
TABLE OF CONTENTSiv
LIST OF ACRONYMS viii
FINAL ENGINEERING REPORT1
1.0 BACKGROUND AND SITE DESCRIPTION1
2.0 SUMMARY OF SITE REMEDY1
2.1 REMEDIAL ACTION OBJECTIVES1
2.2 DESCRIPTION OF SELECTED REMEDY2
3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS
3.1 GROUND WATER TREATMENT
3.1.1 Introduction
3.1.2 Injection Procedure6
4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED9
4.1 GOVERNING DOCUMENTS
4.1.1 Site Specific Health & Safety Plan (HASP)9
4.1.2 Quality Assurance Project Plan (QAPP)9
4.1.3 Storm-Water Pollution Prevention Plan (SWPPP)9
4.1.4 Community Air Monitoring Plan (CAMP)9
4.1.5 Contractors Site Operations Plans (SOPs)10
4.1.6 Community Participation Plan11

4.2 REMEDIAL PROGRAM ELEMENTS11
4.2.1 Contractors and Consultants11
4.2.2 Site Preparation11
4.2.3 General Site Controls11
4.2.4 Nuisance controls11
4.2.5 CAMP results12
4.2.6 Reporting 12
4.3 CONTAMINATED MATERIALS REMOVAL12
4.3.1 Contaminated Soil Removal13
4.4 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING13
4.5 IMPORTED BACKFILL14
4.6 CONTAMINATION REMAINING AT THE SITE
4.7 SOIL & HARDSCAPE COVER [OR CAP] SYSTEM
4.7.1 Soil & Hardscape Cover 150 & 31 Tonawanda properties15
4.7.2 Stream Bank Revitalization/Restoration – 31 Tonawanda Property 15
4.8 OTHER ENGINEERING CONTROLS16
4.9 INSTITUTIONAL CONTROLS17
4.10 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN

LIST OF TABLES

Remedial Investigation Tables

Table 1 – 150 Boring Soil Sample Analytical Results Summary
Table 2 – 31 Boring Soil Sample Analytical Results Summary
Table 3 – 31 Sub-Slab Vapor and Ambient Air Analytical Results Summary
Table 4 – 150 GW Sample Analytical Results Summary
Table 5 – 31 GW Sample Analytical Results Summary
Table 6 – 31 & 150 Boring/MW Location Coordinates
Table 7 – 150 PFAS and 1,4 Dioxane in GW Results Summary
Table 8 – 31 PFAS and 1,4 Dioxane in GW Results Summary
Table 9 – 31 & 150 Groundwater Elevations
Table 10 – 31 Crawl Space Soil Sample Analytical Results Summary

Phase 2 ESA Tables

- Table 1 150 Boring Soil Sample Analytical Results Summary- January 2016
- Table 1 31 Boring Soil Sample Analytical Results Summary- April 2014
- Table 2 31 Floor Boring Soil Sample Analytical Results Summary- March 2015

As-Built Confirmation Soil Sample Results

Table 1 – 31 Tonawanda Hot Spot Excavation Area Confirmation Soil Sample Results

IRM – Groundwater Injection Treatment Monitoring Well Sample Results

Table 1 – 31 Tonawanda – MW-3 GW Sample Analytical Results Summary

LIST OF FIGURES

<u>RI</u>

- Figure 1 Property Location Map
- Figure 2 150 Soil Analytical Results
- Figure 3 31 Soil Analytical Results Building Exterior
- Figure 3A 31 Crawl Space Soil Analytical Results Building Interior
- Figure 4 RI Building Sub-Slab Vapor Results
- Figure 5 150 RI GW Analytical Results & Contours
- Figure 6 31 RI GW Analytical Results & Contours
- Figure 7 150 Soil Remediation Plan
- Figure 8 31 Soil Remediation Plan

<u>As-Built</u>

- Figure 9 31 Hot Spot Impacted Soil Excavation Area
- Figure 10 150 Remaining Contamination-Results Exceeding Restricted Residential SCOs
- Figure 11 31 Remaining Contamination-Results Exceeding Restricted Residential SCOs

LIST OF APPENDICES

- A Environmental Easement & Survey Maps
- B FER (CD)
- C Imported Clean Fill Sources Certifications/Tables/Manifests
- D Daily Field Reports Photographs & Air Monitoring Data
- E Data Usability Summary Reports (DUSRs) & Analytical Lab Results
- F Confirmation Analytical Results Table/Coordinates/Lab Report
- G Waste Disposal Documentation/Manifests
- H- Groundwater Treatment IRM Work Plan and Final Data
- I-SSDS As-Builts
- J Stream Bank Revitalization Restoration Plan

LIST OF ACRONYMS

ВСР	Brownfield Cleanup Program
CAMP	Community Air Monitoring Plan
CFR	Code of Federal Regulation
CPP	Community Participation Plan
DER	Division of Environmental Remediation
DUSRs	Data Usability Summary Reports
EC	Engineering Control
EE	Environmental Easement
EPA	Environmental Protection Agency
FER	Final Engineering Report
GCM	Gross Contaminated Material
HASP	Health and Safety Plan
IC	Institutional Control
mg/m3	Milligrams per meter cubed
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
NYCRR	New York Codes, Rules and Regulations
OSHA	Occupational Safety and Health Administration
PID	Photoionization Detector
PPM	Part Per Million
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
RAO	Remedial Action Objective
RAWP	Remedial Action Work Plan
RI	Remedial Investigation
SCO	Soil Cleanup Objective
SMP	Site Management Plan
SSDS	Sub-slab Depressurization System
SVI	Soil Vapor Intrusion
SWPPP	Stormwater Pollution Prevention Plan
TWA	Time Weighted Average
UST	Underground Storage Tank
VOCs	Volatile Organic Compounds

FINAL ENGINEERING REPORT

1.0 BACKGROUND AND SITE DESCRIPTION

31 Tonawanda Street, LLC entered into a Brownfield Cleanup Program (BCP) with the New York State Department of Environmental Conservation (NYSDEC) in November 1, 2017 to investigate and remediate a 1.86-acre property (31 Tonawanda Street) and a 0.90-acre property (150 Tonawanda Street) located in Buffalo, New York.

The properties were remediated to Track 4 Restricted Residential use. The current plans consist of renovating the 31 Tonawanda property building for use as self-storage with a small portion of the building used for steel fabrication and one-two studio-type residential units are also planned. The 150 Tonawanda property will be redeveloped into self-storage units.

The site (31 and 150 Tonawanda) is located in the County of Erie, New York and 31 Tonawanda is identified as Parcel No.: 88.58-1-1 and 150 Tonawanda is identified as Parcel No: 88.42-2-4.21 on the Erie County Tax Map.

The parcel boundaries and topography are shown on the survey maps provided in Appendix A

An electronic copy of this FER with all supporting documentation is included as **Appendix B.**

2.0 SUMMARY OF SITE REMEDY

2.1 REMEDIAL ACTION OBJECTIVES

Based on the results of the Remedial Investigation, the following Remedial Action Objectives (RAOs) were identified for this site.

Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of volatiles, from contaminated groundwater.

RAOs for Environmental Protection

- Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Prevent the discharge of contaminants to surface water.
- Remove the source of ground or surface water contamination.

<u>Soil</u>

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of or exposure from contaminants volatilizing from contaminants in soil.

RAOs for Environmental Protection

- Prevent migration of contaminants that would result in groundwater or surface water contamination.
- Prevent impacts to biota from ingestion/direct contact with soil causing toxicity or impacts from bioaccumulation through the terrestrial food chain.

<u>Soil Vapor</u>

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

2.2 DESCRIPTION OF SELECTED REMEDY

The site was remediated in accordance with the remedy selected by the NYSDEC Decision Document dated May 2020.

The remedial action began in July 2020 and was completed in November 2020.

The factors considered during the selection of the remedy are those listed in 6 NYCRR 375-1.8. The elements of the selected remedy, as shown in the **Decision Document- Figure 7** (150 Tonawanda) and Figure 8 (31 Tonawanda), are as follows:

- 1. **Remedial Design** A remedial design program will be implemented to provide the details necessary for the construction, operation, optimization, maintenance, and monitoring of the remedial program. Green remediation principles and techniques will be implemented to the extent feasible in the design, implementation, and site management of the remedy as per DER-31. The major green remediation components are as follows:
 - Considering the environmental impacts of treatment technologies and remedy stewardship over the long term;
 - Reducing direct and indirect greenhouse gases and other emissions;
 - Increasing energy efficiency and minimizing use of non-renewable energy;
 - Conserving and efficiently managing resources and materials;
 - Reducing waste, increasing recycling and increasing reuse of materials which would otherwise be considered a waste;
 - Maximizing habitat value and creating habitat when possible;
 - Fostering green and healthy communities and working landscapes which balance ecological, economic and social goals; and
 - Integrating the remedy with the end use where possible and encouraging green and sustainable re-development.

Additionally, to incorporate green remediation principles and techniques to the extent feasible in the future development at this site, any future on-site buildings will include, at a minimum, a 20-mil vapor barrier/waterproofing membrane on the foundation to improve efficiency as an element of construction.

31 Tonawanda Street Property:

2. Excavation: Excavation and off-site disposal of all soils that exceed the restricted residential SCOs to 1-foot depth in areas where asphalt paving and concrete will be installed, and 2-foot depth in areas where a clean soil cover will be installed. In addition, petroleum impacted soils (hot spot) in an area approximately 20 feet long by 20 feet wide by 9 feet deep will be excavated and transported off-site for disposal. All sediment found in building trenches and drains will also be removed and properly disposed off-site.

3. Backfill: Clean fill meeting the requirements of 6 NYCRR Part 375-6.7(d) will be brought in to complete the backfilling of the excavation and establish the design grades at the site. Any excavated material from the installation of buried utilities will be disposed of off-site at an

approved facility and backfilled with clean stone and/or other approved material as set forth in 6 NYCRR Part 375-6.7(d).

4. In-Situ Groundwater Treatment: In-situ enhanced bioremediation will be employed to treat chlorinated VOCs in overburden groundwater at the southeast corner of the property including beneath the crawl space of the on-site building. The biological breakdown of contaminants through anaerobic reductive dichlorination will be enhanced by the injection of a soluble organic carbon substrate containing zero valent iron or other similar product. The method and depth of injection will be determined during the remedial design.

5. Vapor Mitigation: Any on-site buildings will be required to have a sub-slab depressurization system, or other acceptable measures, to mitigate the migration of vapors into the on-site building from soil and/or groundwater. The layout and specific components of these systems will be determined during the remedial design.

Remedial Elements Common to Both the 31 and 150 Tonawanda Street Properties:

6. Cover System: A site cover will be required to allow for restricted residential use of the site in areas where the upper two feet of exposed surface soil exceeds the applicable soil cleanup objectives (SCOs). Where a soil cover is to be used it will be a minimum of two feet of soil placed over a demarcation layer, with the upper six inches of soil of sufficient quality to maintain a vegetative layer. Soil cover material, including any fill material brought to the site, will meet the SCOs for cover material for the use of the site as set forth in 6 NYCRR Part 375-6.7(d). Substitution of other materials and components may be allowed where such components already exist or are a component of the tangible property to be placed as part of site redevelopment. Such components will include, but are not necessarily limited to: pavement, concrete, paved surface parking areas, sidewalks, building foundations and building slabs.

7. Institutional Controls: Imposition of an institutional control in the form of an Environmental Easement for the controlled property that:

- (a) Requires the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3);
- (b) Allows the use and development of the controlled property for restricted residential, commercial or industrial use as defined by Part 375-1.8(g), although land use is subject to local zoning laws;

- (c) Restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County DOH; and
- (d) Requires compliance with the Department approved Site Management Plan.
- 8. Site Management Plan: A Site Management plan is required, which includes the following:
 - (a) An Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to ensure the following institutional and engineering controls remain in place and effective:
 - Institutional Controls: The Environmental Easement discussed in Paragraph 7 above; and
 - Engineering Controls: The site cover system discussed in Paragraph 6 above, and the sub- slab depressurization systems discussed in Paragraph 5 above.

This plan includes, but may not be limited to:

- An Excavation Plan that details the provisions for management of future excavations in areas of remaining contamination;
- Descriptions of the provisions of the Environmental Easement including any land use and groundwater use restrictions;
- A provision for evaluating the potential for soil vapor intrusion prior to occupancy of any future buildings constructed on the site, including the provision for implementing actions recommended to address exposures related to soil vapor intrusion;
- Provisions for the management and inspection of the identified engineering controls;
- Maintaining site access controls and Department notification; and
- The steps necessary for periodic reviews and certification of the institutional and engineering controls.
- (b) A Monitoring Plan to assess the performance and effectiveness of the remedy. The plan includes, but may not be limited to:
- Monitoring of soil vapor, indoor air and/or sub-slab pressure testing to assess the performance and effectiveness of the sub-slab depressurization systems, and groundwater monitoring to assess the effectiveness of in-situ groundwater treatment.

Enhancements to the sub-slab depressurization systems and additional groundwater injections will be completed as necessary;

- A schedule of monitoring and frequency of submittals to the Department;
- Monitoring for vapor intrusion for any future buildings constructed on the site, as may be required by the Institutional and Engineering Control Plan discussed above.

3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS

3.1 GROUNDWATER TREATMENT

3.1.1 Introduction

An IRM was conducted to support the implementation of a groundwater treatment remedial action at the 31 Tonawanda Street building. The IRM included in-situ groundwater treatment through installation of injection points exterior to and along the 31 Tonawanda Street southeast building wall as well as within the building crawl space area. The remedial investigation indicated that the overburden groundwater in these areas were highly impacted with chlorinated solvents. Anaerobic Bio-Chem and zero valent iron (ABC+) by REDOX Tech, LLC, an effective method for the mineralization (degradation) of chlorinated solvents, was introduced to the groundwater through the injection points. **Figure 1 in Appendix H** shows the as-built location plan of the injection points and applicable monitoring well.

The installation of the injection points and injection of the treatment product occurred during February and March 2020.

3.1.2 INJECTION PROCEDURE

The following represents the procedural steps that were used to complete the in-situ treatment of elevated chlorinated solvents in the subsurface at 31 Tonawanda Street, Buffalo, New York. The process used an anaerobic BioChem and Zero Valent Iron (ABC+) solution to remediate chlorinated alkene compounds in the soil/groundwater interface and in groundwater.

<u>Planning-Mobilization</u>

BE3 (engineer and client rep), REDOX (Bio-Chem firm) and Nature's Way (drillerinstaller) mobilized to the property and identified/marked locations where injections would occur. The selected locations will be based on the attached figure of injection points and actual

field conditions. If additional pre-injection groundwater analysis for specific baseline parameters is necessary, it will be completed at this time.

<u>Complete Injection Point Installation and Bio-Chem Injections to Complete the</u> <u>Reactive Barrier</u>

Exterior Injection Points: the injection of the ABC+ was performed through 1.5-inch injection rods that were advanced into the subsurface using a Geoprobe® direct push unit. A total of twenty-nine (29) injection points, spaced approximately 5 feet apart in a hexagonal or zigzag grid pattern, were used for the treatment area along the exterior southeast wall (crawl space section) of the building at 31 Tonawanda Street. The subsurface receive approximately 11,000 pounds of ABC+ (50% zero valent iron) to treat the contamination along the bank separating the building from the Creek.

Mixed at approximately 16 wt% solution, this resulted in 6,960 gallons of solution. Each injection point received approximately 240 gallons divided up between depth intervals 8, 10, 12, 14, 16, 18, 20, and 22 feet below the ground surface. As the points were installed downward, 30 gallons was applied to each of these 8 depth intervals.

Interior Injection Points: Injection of ABC+ was performed through 1.5-inch injection rods that were penetrated into the subsurface with a Geoprobe®. A total of 21 injection points (spaced 15 to 20 feet apart) were needed for the treatment area. At four (4) locations drilling hit refusal at shallow locations and no injections occurred. The subsurface receive approximately 27,000 pounds of ABC+ (50 percent zero valent iron) to treat the contamination in the source area. Mixed at approximately 20 wt% solution, this resulted in 12,920 gallons of solution. Each injection point received approximately 680 gallons, divided up between depth intervals 8, 11, 14, 17, and 20 feet below the ground surface below the floor. As the points were installed downward, 136 gallons was applied to each of these 5 depth intervals. A PVC future inject well was placed in the boring after the initial injection to allow for the option of future follow-up injections, as necessary. The PCV injection port will therefore be large enough to accommodate the future injections.

Post Injection Monitoring

The ultimate measure of success is destruction of the target contaminants. Groundwater samples were collected from monitoring well MW-3 in a little over 2 months after completion

of injections on May 22, 2020 and again in September 15, 2020 and analyzed for the following parameters:

- VOCs
- pH,
- ORP,
- DO,
- dissolved iron (field filtered and measure total iron),
- total organic carbon (TOC) and;
- sulfate.

The following will measure effectiveness:

- DO and ORP should drop as a measure of influence.
- The pH should increase because the corrosion of iron produces hydroxide.
- The iron will dissolve into groundwater because of an increase in solid phase iron and as a result of zero valent iron going to soluble ferrous iron.
- The TOC will increase because of the carbon substrate component of ABC+.
- The sulfate drops below about 20 to 25 ppm in order to get complete destruction of the chlorinated solvents. Above that, the sulfate reducing bacteria will outcompete the dehalogenating bacteria.

The results of the two rounds of post injection GW sampling of MW-3 are provided in **IRM – Groundwater Injection Treatment Monitoring Well Sample Results - Table 1** along with the initial sampling round prior to injection. It appears that after first round of post injection sampling (5/22/20) attenuation of chlorinated solvents was occurring. The second round of sampling (9/15/20) continued to observe the breakdown of solvents after the bio-remedial injections (refer to **Table 1** as noted above). The data appear to be typical of a site with DNAPL after treatment with anaerobic bio-chem and zero valent iron (ABC+) by Redox Tech, LLC. There has been a large initial drop from the zero valent iron and the level of the parent product (TCA) has stabilized. However, there is continued bioremediation as evidenced by the continued increase in chloroethane. Chloroethane is being formed from the biodegradation of dichloroethane. There is still a significant amount of Total Organic Carbon (TOC) which will continue to feed the bioremediation (dichlorination) processes.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved Remedial Action Work Plan (RAWP) for the 31 Tonawanda Street (October 2019). All deviations from the RAWP are noted below.

4.1 GOVERNING DOCUMENTS

4.1.1 Site Specific Health & Safety Plan (HASP)

All remedial work performed under this Remedial Action was in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA.

The Health and Safety Plan (HASP) was complied with for all remedial and invasive work performed at the Site.

4.1.2 Quality Assurance Project Plan (QAPP)

The QAPP was included as Appendix C of the Remedial Action Work Plan (RAWP) approved by the NYSDEC. The QAPP describes the specific policies, objectives, organization, functional activities and quality assurance/ quality control activities designed to achieve the project data quality objective.

4.1.3 Storm-Water Pollution Prevention Plan (SWPPP)

The erosion and sediment controls for all remedial construction were performed in conformance with requirements presented in the New York State Guidelines for Urban Erosion and Sediment Control and the requirements of the RAWP. No site-specific Storm Water Pollution Prevention Plan was required for this project.

4.1.4 Community Air Monitoring Plan (CAMP)

The purpose of air monitoring for potential airborne contaminants is to verify that protection levels are suitable. Monitoring were performed for dust/particulates and volatile organic compounds during excavation activities. Daily background and calibration readings were recorded prior to the start of field activities. All monitoring equipment used during this remediation was maintained and calibrated and records of calibration and maintenance will be kept in accordance with 29 CFR 1910.120(b)4(11)E.

Particulate Monitoring

Real-time air monitoring readings were obtained from upwind and downwind locations in accordance with DER-10 for community air-monitoring. Daily field reports were completed that document activities performed, equipment and manpower onsite, screening and monitoring results, general Site conditions, and weather conditions.

Air Monitoring for Worker Protection

Real time air monitoring was conducted whenever site soils were disturbed during sampling, excavation, grading, etc. A real time personal aerosol monitor (i.e., TSI Side-Pak AM5 10 Personal Aerosol monitor or equivalent) was used. This monitor is a laser photometer that measures data as both real-time aerosol mass-concentration and 8-hour time weighted average (TWA). The monitor was used to measure real-time concentrations in milligrams per meter cubed (mg/m³). Action levels were based on potential exposure to calcium carbonate and were as follows:

- 15 mg/m^3 total dust
- 5 mg/m³ respirable fraction for nuisance dusts

Dust suppression techniques were not required since action levels were not exceeded.

Total VOC Monitoring

Monitoring of VOCs was conducted using a photo-ionization detector (PID). If a sustained reading of 5 ppm above background occurs, then work would be halted, and personnel will evacuate the work area. Sustained action levels did not occur on this project that required work to be halted.

4.1.5 Contractors Site Operations Plans (SOPs)

The Remediation Engineer reviewed all plans and submittals for this remedial project (i.e., those listed above plus contractor and subcontractor submittals) and confirmed that they were in compliance with the RAWP. All remedial documents were submitted to NYSDEC and NYSDOH in a timely manner and prior to the start of work.

4.1.6 Community Participation Plan

All aspects of the Community Participation Plan presented as Appendix B in the RAWP were adhered to for this project.

4.2 REMEDIAL PROGRAM ELEMENTS

4.2.1 Contractors and Consultant

Remedial Contractor – Gauthier Black Top, Inc. SSDS - Envirosafe Inspections & Consulting Groundwater Treatment System - BE3/ReDox Certifying Engineer – Jason Brydges (BE3)

4.2.2 Site Preparation

- Mobilization July 2020
- Erosion, sedimentation controls and perimeter fencing July 2020
- Utility marker layout layout conducted during the RI and no active utilities extend into the site.

4.2.3 General Site Controls

- Site security The entire site was enclosed with security fencing.
- Job site record keeping As per the RAWP, BE3 site inspector completed daily inspection reports and monitored and collected air monitoring data.
- Erosion and sedimentation controls Compost filter sox rolls were installed around site perimeter and work areas
- Stockpile methods Imported clean fill and stone periodically stockpiled on site by dump truck unloading on cleared area. Soils excavated from the site in most cases where stockpiled on plastic prior to transporting to the landfill.

4.2.4 Nuisance controls

- Truck wash not required. Very little tracking of soil onto off-site roadways. No extensive dry period during the remediation to generate extensive dust.
- Odor control no odor concerns
- Truck routing No truck routing problems
- Responding to complaints No public complaints received.

4.2.5 CAMP results

VOC (PID) and particulate monitoring equipment were utilized as called for in the RAWP CAMP. Fugitive dust migration was visually assessed by BE3's field inspector during all work activities. On only a few occasions was the downwind PM-10 particulate level of the downwind units slightly greater than 100 micrograms per cubic meter (mcg/m³) than background (upwind perimeter) for a 15-minute period. Minimum airborne dust was observed leaving the work area during these times.

VOC (PID) monitoring was undertaken through the remediation utilizing a handheld PID at the remediation work face and a downwind tripod mounted PID. Minor exceedances of VOC requirements occurred at the working face on a few occasions but quickly dissipated upon further excavation.

Copies of all field data sheets relating to the CAMP are provided with the Daily Reports in **Appendix D**.

4.2.6 Reporting

All daily field reports are included in **Appendix D** Progress photos taken during remediation are provided with the Daily Reports.

4.3 CONTAMINATED MATERIALS REMOVAL

Section 2.2 Item 2 above describes the areas excavated under the remedial design and the RAWP. It should be noted that excavation for new development (buried utilities to the building, roadways/parking, etc.) took place concurrently with remediation activities. In many cases the removal of impacted material areas coincided with removal requirements for new development. All material excavated was either stockpiled per the RAWP and DEC requirements prior to transport or transported directly to the approved landfill.

A Track 4 cleanup was implemented based on the site-specific intended land use as indicated in Figure 7 (150) and Figure 8 (31). A minimum of 1 foot of impacted soil was removed from all designed paved areas (roadways/parking/new buildings) and 2 feet removed from all designated greenspace areas and replaced with clean fill/topsoil.

4.3.1 Contaminated Soil Removed

150 Tonawanda

No impacted soil was removed and disposed of offsite. Existing concrete slabs were broken up and hauled off site for recycling at Swift River Associates and Triad Recycling. Disposal manifests are provided in **Appendix G.** Approximately 570 tons of material was sent for recycling (290 tons from 150 & 280 tons from 31).

31 Tonawanda

The petroleum impacted soil hot spot area at the RI boring BH-05 was excavated and petroleum related impacted soils were encountered at an approximate depth of 2 to 4 feet below grade. The non-petroleum impacted soils were removed and stockpiled separately and used for backfill once the impacted soils were removed. The petroleum impacted soil layer varied in depth and covered a much larger area than anticipated (see **Figure 9**). Approximately 267 tons of petroleum impacted soil were removed and disposed off-site at the Republic Niagara Falls Landfill. Waste disposal manifests are provided in **Appendix G.** Excavation stopped at the clay confining layer which separated the excavation bottom from the groundwater level (2+/-feet). the RI MW-5 well was intercepted by the excavation and, with NYSDEC approval, was decommissioned in accordance with NYSDEC protocols. There were no overt petroleum odors coming from the well during decommissioning. Laterally, excavation stopped to the west when a large concrete footer was intercepted that ran the length of the excavation. A trench excavated on the other side of this footer did not visually look impacted nor have elevated PID readings. To the east the excavation stopped within two feet of the creek bank. Excavation further south than shown on the figure was limited by the creek bank and western concrete wall that extended at an angle towards the creek.

Confirmation samples were collected from side walls and the bottom and are discussed in Section 4.4.

4.4 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING

Impacted material exceeding Restricted Residential SCOs was removed from the area at 31 Tonawanda discussed in Section 4.3. Confirmation samples were collected from bottom and sidewalls of the hotspot excavation area behind the 31 Tonawanda building to assess what impacted material may remain that does not meet Restricted Residential SCOs. Restrictions on Excavation limits are discussed in Section 4.3. With the approval of the NYSDEC only VOCs and SVOCs were analyzed for in the confirmation samples.

Confirmation sample analytical results are provided on **Table 1 – As-Built Confirmation Soil Sample Results.** All data was validated and Data Usability Summary Reports (DUSRs) prepared by Environmental Data Usability (EDU) of Dansville, New York. All DUSRs and analytical data are provided in **Appendix E.**

Impacted soils exceeding Restricted Residential SCOs remain in some areas below the 2 feet of excavation and cover in green space areas and the 1 foot of excavation and hardscape cover areas. Any impacted material remaining will be managed under the Site Management Plan (SMP).

4.5 IMPORTED BACKFILL

Imported backfill with quantities from each source are shown below.

Berner Farms – Bio-soil Fill – 156 cy (150 Tonawanda)

Gauthier's Yard - Topsoil – 36 tons (150 Tonawanda) <u>120</u> tons (31 Tonawanda) Total 156 tons

Marrano – Clean Soil Fill – 20 tons (150 Tonawanda) <u>300</u> tons (31 Tonawanda) Total 320 tons

New Enterprise Stone- Stone fill -3,062 tons (150 Tonawanda) 1,096 tons (31 Tonawanda) Total 4,158 Tons

Chemical analytical results tables for backfill (soils), in comparison to allowable levels, are provided in **Appendix C**. Site locations where backfill was used at the site are shown **Figure 10** (150 Tonawanda) and **Figure 11** (31 Tonawanda).

NYSDEC Request to Import or Reuse Fill/Soil Forms were provided and approved by NYSDEC per DER-10 Section 5.4(e) for each of the backfill providers listed above and are provided in **Appendix C**.

4.6 CONTAMINATION REMAINING AT THE SITE

The remaining contamination at the 150 site is primarily metals and PAHs and at the 31 site metals, PAHs and VOCs. Any contamination remaining at the site is located beneath the demarcation layer placed below the 2 feet of clean fill in all greenspace areas and 1 foot at new hardscape areas. **Table 1** shows the remaining analyte concentrations that exceed NYSDEC SCOs.

Figure 10 summarizes the results of all soil samples remaining at the 150 Tonawanda site after completion of Remedial Action that exceed Restricted Residential SCOs.

Figure 11 summarizes the results of all soil samples remaining at the 31 Tonawanda site after completion of the remedial action that exceed Restricted Residential SCOs.

Since contaminated soil [and groundwater/soil vapor 31 Tonawanda only] remains beneath the 150/31 Tonawanda sites after completion of the Remedial Action, Institutional and Engineering Controls are required to protect human health and the environment. These Engineering and Institutional Controls (ECs/ICs) are described in the following sections. Long-term management of these EC/ICs and residual contamination will be performed under the Site Management Plan (SMP) approved by the NYSDEC.

4.7 SOIL & HARDSCAPE COVER [or CAP] SYSTEM

4.7.1 Soil & Hardscape Cover 150 & 31 Tonawanda properties

Exposure to remaining contamination in soil/fill at the site is prevented by a soil and/or hardscape cover system placed over the site. This cover system is comprised of either a minimum of 24 inches of clean soil or minimum of 12 inches of asphalt pavement, concrete-covered sidewalks, and concrete building slabs. Figure 10 (150 Tonawanda) and Figure 11 (31 Tonawanda) show the location of each cover type built at the Site. An Excavation Work Plan, which outlines the procedures required in the event the cover system and/or underlying residual contamination are disturbed, is provided in Appendix B of the SMP.

4.7.2 Stream Bank Revitalization and Restoration – 31 Tonawanda Property

Appendix J provides a detailed description of the revitalization/restoration of the stream bank along the western edge of Scajaquada Creek at the 31 Tonawanda Street property. The area affected is roughly 1,300 sf and is located from West Street south along the creek bank about 65

feet. Figure 9 shows the location of the restoration area with more detail figures are provided in Appendix J.

4.8 OTHER ENGINEERING CONTROLS

Besides the cover system discussed in section 4.7 the only other engineering control is the SSDS installed during the re-developed of the site building at 31 Tonawanda. A SSDS was installed during the re-development of the existing site building in accordance with the NYSDOH Soil Vapor Intrusion Guidance and included the following installation:

Basement: Due to the water table and silty clay soils, a raised floor depressurization system was installed by installed Radon Guard ventilation panels over the existing concrete floor. A 15-mil poly membrane was placed over the panels and sealed airtight. Approximately 4 inches of new concrete was poured over the membrane and finished. After the concrete floor cured, it was determined that adequate negative pressure was obtained from a single point extraction system drawing air from under the Radon Guard ventilation panels.

High Bay Area: On the north side of the high bay area a three-point SSDS was installed using the existing concrete floor drainage troughs. The concrete in the troughs was jack hammered out, filled with perforated PVC piping, and encased in washed stone. A total of two Festa Force fans were connected to the sub-slab piping.

Crawlspace Area: A 15-mil poly membrane was installed of the existing wood floor and was sealed airtight. Approximately 6 inches of new concrete was poured over the membrane and finished. The entire crawlspace beneath the wood floor was placed under negative pressure with a single point 6-inch SSDS powered with a Feta Furry fan.

On October 28th, 2020, post mitigation vacuum results were measured and documented (See **Appendix I** Figure – SSDS Post Mitigation Vacuum Readings). Based on those results, the systems as described will provide acceptable removal of any sub-slab contaminants and will result in acceptable future test results for indoor air. As-built construction drawings of the system are provided in **Appendix I**.

Procedures for operating and maintaining the SSDS are documented in the Operation and Maintenance Plan.

A soil vapor intrusion evaluation will be required for any new future buildings constructed on the 31 Tonawanda Street site.

4.9 INSTITUTIONAL CONTROLS

The site remedy requires that an environmental easement [or deed restriction] be placed on the property to (1) implement, maintain and monitor the Engineering Controls; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to Restricted Residential, Commercial or Industrial uses only.

The environmental easement for the site was executed by the Department on August 18, 2020 and filed with the Erie County Clerk on September 8, 2020. The County Recording Identifier number for this filing is TT2020002670. A copy of the easement and proof of filing is provided in **Appendix A.**

4.10 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN

There were no deviations from the Remedial Action Work Plan

REMEDIAL INVESTIGATION TABLES

TABLE 1
150 TONAWANDA STREET - RI SOIL BORING SAMPLE ANALYTICAL RESULTS SUMMARY

				Sam	ple Identificati	on	Date Sampled: 8/15/18			PART 375 Soil Cleanup Objectives		
Contaminants	BH-1 (6-7')	BH-2 (0 -1') Surface	BH-2 (8 -10') Native	BH-3 (4 - 6')	BH-4 (0 -1') Surface	BH-4 (2.8 -4') Native	BH-5 (2 - 4')	BH-6 (0-1') Surface	BH-6 (5.5 -8') Native	Unrestricted Use	Residential	Restricted Residential
		•				METALS		•	•			
Arsenic	8.17	4.23	5.18	6.92	15.10	3.38	3.96 J	6.37	3.51	13	16	16
Barium	116	96.8	119.0	107.0	82.3	129.0	64.2	68.9	94.6	350	350	400
Beryllium	0.877	0.703	0.840	0.990	0.670	1.090	0.580	0.580	0.960	7.2	14	72
Cadmium	0.361	0.541	0.401	0.960	1.11	0.380	0.54 J	0.670	0.380	2.5	2.5	4.3
Chromium	20.6	15.8	20.9	33.9	14.5	25.9	24.7 J	11.2	23.9	30	36	180
Copper	28.3	22.9	21.0	96.5	141.0	18.7	54.2 J	30.3	19.1	50	270	270
ead	36.6	27.7	12.0	119.0	271.0	12.5	23.1 J	134.0	8.2	63	400	400
Manganese	325	197	395	479	477	329	1560 J	680	366	1600	2,000	2,000
otal Mercury	0.042	0.36	0.03	0.13	0.24	0.04	0.05	0.32	0.02	0.18	0.81	0.81
vickel	21.4	17.3	22.3	27.3	21.7	27.3	20 J	9.42	23.4	30	140	310
elenium	ND	ND	ND	ND	1.1	ND	ND	ND	ND	3.9	36	180
ilver	0.487	0.84	1.26	1.79	2.98	1.69	1.98	1.09	1.37	2	36	180
ot Cyanide	ND	ND	ND	ND	ND	ND	ND	ND	ND	27	27	27
linc	115	78.7	61.3	144	199	73.1 J	71.3	128	60.1	109	2200	10,000
	113	,	01.5	177	100	PCBs	/1.5	110	00.1	105	2200	10,000
PCB-1254	ND	ND	ND	ND	ND	ND	ND	0.14 J	ND	0.1	1	1
PCB-1260	0.021 J	0.04 J	ND	0.04 J	ND	ND	ND	ND	ND	0.1	1	1
0 1200	0.0213	0.043	ND	0.043	ND	PESTICIDES		ND	ND	0.1	-	±
I,4-DDT	0.005	ND	ND	ND	ND	ND	, ND	0.032	ND	0.0033	1.7	7.9
1,4-DDT 1,4-DDE	ND	0.005 J	ND	ND	ND	ND	ND	0.009 J	ND	0.0033	1.7	8.9
	ND	ND	ND	ND	ND	ND	ND	0.009 J	ND			13
I,4-DDD	ND	ND ND	ND	ND	ND ND	ND ND	ND	0.01 J	ND ND	0.0033	2.6 0.072	0.36
eta-BHC												
Delta-BHC	ND	ND	ND	ND	0.004	ND	ND	0.004	ND	0.04	100	100
Endosulfan Sulfate	0.002 J	0.003 J	ND	0.005 J	ND	ND	ND	0.007 J	ND	2.4	4.8	24
Indrin	0.004 J	ND	ND	0.004 J	ND	ND	ND	0.01 J	ND	0.014	2.2	11
Endrin Ketone	0.004	ND	ND	ND	0.008 J	ND	ND	0.014	ND	NA	NA	NA
Dieldrin	ND	0.002 J	ND	ND	ND	ND	ND	0.009 J	ND	0.005	0.039	0.2
Aldin	ND	ND	ND	ND	ND	ND	ND	0.01 J	ND	0.005	0.019	0.097
Heptachlor	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.042	0.42	2.1
						ATILE ORGANIC						
Acenaphthene	0.311 J	0.4	ND	0.177 J	0.93	ND	ND	0.36	ND	20	100	100
Acenapthylene	ND	ND	ND	ND	ND	ND	ND	0.32	ND	100	100	100
Anthracene	0.389	1.22	ND	0.566	0.67	ND	ND	0.97	ND	100	100	100
Benz(a)anthracene	1.140	4.02	0.185 J	1.16	1.3	ND	0.393	2.56	ND	1	1	1
Benzo(a)pyrene	0.981	3.89	ND	0.89	1.03	ND	0.355	2.08	ND	1	1	1
Benzo(b)fluoranthene	1.170	4.36	ND	0.865	1.38	ND	1.08	2.26	ND	1	1	1
Benzo(g,h,i)perylene	0.732	2.93	ND	0.589	0.708	ND	0.73	1.34	ND	100	100	100
Benzo(k)fluoranthene	0.735	2.28	ND	0.779	1.01	ND	0.321	1.4	ND	0.8	1	3.9
Chrysene	1.240	4.32	0.216 J	1.19	1.45	ND	0.773	2.56	ND	1	1	3.9
Dibenz(a,h)anthracene	0.209 J	0.61	ND	0.202 J	0.266 J	ND	0.255 J	0.36	ND	0.33	0.33	0.33
luoranthene	2.34	9.02	0.303	2.48	1.76	ND	0.642	5.85	ND	100	100	100
luorene	ND	0.38	ND	0.25 J	ND	ND	ND	0.326	ND	30	100	100
Vaphthalene	0.281 J	0.18	ND	0.182 J	1.19	ND	ND	0.34	ND	12	100	100
ndeno(1,2,3-cd)pyrene	0.705	2.73	ND	0.601	0.736	ND	0.715	1.35	ND	0.5	0.5	0.5
henanthrene	1.440	4.79	0.42	1.94	1.23	ND	0.247 J	3.92	ND	100	100	100
yrene	1.890	7.61	0.33 J	1.97	1.52	ND	0.499	5.02	ND	100	100	100
TICs	21 J	20.2 J	ND	5.0 J	28.9 J	4.1 J	4.7 J	19.7 J	ND	NA	NA	NA
						atile Organic Co	-					
Acetone	ND	NA	ND	0.013 J	NA	0.04	ND	NA	ND	0.05	100	100
is-1,2-Dichloroethene	0.004 J	NA	ND	0.013 J	NA	0.04 ND	ND	NA	ND	0.25	59	100
n,p-Xylene	0.004 J	NA	ND	ND	NA	ND	ND	NA	ND	0.25	100	100
n,p-Xylene "oluene	0.005 J	NA	ND	ND	NA	ND	ND	NA	ND	0.26	100	100
	,						ND					
TICs .	ND	NA	ND	ND	NA	ND		NA	ND	NA on of the analyte in t	NA	NA

>/= to Residential/Restricted-Residential SCO and Unrestricted Use SCO >Unrestricted Use SCO but <Residential/Restricted-Residential SCO

All values in ppm

>Unrestricted Use & Residential SCO but <Restricted-Residential SCO

	TABLE 2
31 TONAWANDA STREET - RI SOIL	BORING SAMPLE ANALYTICAL RESULTS SUMMARY

Contaminants	BH-1	BH-1	BH-2		BH-4		BH-5		BD-6				
Arsonic	(0-3')	(13.5 -15')	(19- 20') Native	BH-3S (12 -13.5')	(0 -1') Surface	BH-4 (11.5 - 12')	(0-2') Surface	BH-5 (4 - 6')	(0 - 2') Surface	BH-6 (4 - 6')	Unrestricted Use	Residential	Restricted Residential
	1					META	-				10	10	1.0
	3.9 20.8	4.21 74.2	1.33 26.4	6.61 102	7.18	11.5 93.9	7.45	4.16 61.8	6.01 88.6	8.96 269	13 350	16 350	16 400
Barium Beryllium	0.058	0.52	0.138	0.544	0.556	0.59	0.499	0.134	0.476	0.394	7.2	14	72
Cadmium	0.509	0.68	0.361	0.997	1.18	0.72	1.23	1.61	0.805	2.55	2.5	2.5	4.3
Chromium	9.9	16	6.5	21.6	17.9	13.9	18.2	7.14	18.4	28.1	30	36	180
Copper	121	28.2	14	150	66.8	29.8	102	141	34.4	1480	50	270	270
_ead	59.5	68.3	7.19	120	249	46.3	309	190	134	346	63	400	400
Vlanganese	198	221	306	238	624	213	516	246	438	175	1600	2,000	2,000
Fotal Mercury	0.08	0.46	0.01	0.56	0.69	0.38	0.43	0.21	0.13 J	1.34	0.18	0.81	0.81
Nickel	6.94	20.3	8.08	19.2	15.7	40.9	16.3	9.83	14.1	16.3	30	140	310
Selenium	0.337	0.731	0.411 ND	1.22 0.628	1.12 0.395	0.746 ND	0.888	0.697	0.576 J 0.21 J	1.16 0.58	3.9	36 36	180 180
Silver Zinc	119	0.266 85.9	ND 83.5	219	0.395 248	950	0.546	1180	0.21 J	1350	109	2200	10,000
Cyanide	0.0004 J	ND	ND	ND	ND	0.71 J	ND	0.001 J	ND	ND	27	2200	27
						PCE							
PCB-1254	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	1	1
PCB-1260	0.035 J	ND	ND	ND	ND	ND	ND	0.068 J	ND	ND	0.1	1	1
						PESTIC							
I,4-DDT	0.033 J	ND	ND	ND	ND	ND	ND	0.006	0.005	0.003 J	0.0033	1.7	7.9
4,4-DDE	ND	ND	ND	ND	ND	ND	ND	ND	0.004 J	ND	0.0033	1.8	8.9
1,4-DDD	ND	ND	ND	0.005 J	ND	ND	ND	0.005 J	0.004 J	ND	0.0033	2.6	13
alpha-BHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002 J	0.02	0.097	0.48
Deta-BHC	0.24	ND	ND	ND	ND ND	ND	ND	ND 0.004 I	ND	ND ND	0.036	0.072	0.36
ndosulfan 11	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.002 J	0.004 J ND	ND ND	ND 0.007 J	2.4	4.8	24 24
Endosulfan Sulfate Endrin	0.076 J 0.019 J	ND	ND	ND	ND	ND	0.002 J	ND	ND	0.007 J	0.014	2.2	11
Endrin Ketone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA NA	NA	NA
Dieldrin	0.112 J	ND	ND	ND	ND	ND	0.005 J	0.002 J	ND	ND	0.005	0.039	0.2
Jeidini	U.L.L.	110	110	110		OLATILE ORGA	ANIC COMPOL		110	110	0.000	0.000	0.2
Acenaphthene	1.2 J	ND	0.438	1.46 J	1.23	ND	ND	ND	ND	ND	20	100	100
Acenapthylene	ND	ND	0.31	0.595 J	0.398 J	ND	ND	ND	ND	ND	100	100	100
Anthracene	2.25	0.73 J	ND	1.76 J	2.8	ND	0.303 J	0.229 J	ND	ND	100	100	100
Benz(a)anthracene	7.17	1.45 J	ND	2.58 J	5.7	ND	1.08	0.756 J	0.588	0.28 J	1	1	1
Benzo(a)pyrene	6.37	0.908 J	ND	1.68 J	4.87	ND	0.997	0.669 J	0.541	0.24 J	1	1	1
Benzo(b)fluoranthene	6.76	0.663 J	ND	1.14 J	5.02	ND	1.04	0.656 J	0.627	0.35 J	1	1	1
Benzo(g,h,i)perylene Benzo(k)fluoranthene	4.25	0.354 J 0.762 J	ND ND	0.908 J 1.02 J	2.98	ND ND	0.682	0.536 J 0.482 J	0.384	0.22 J 0.22 J	100	100	100
Chrysene	8.83	1.3 J	ND	2.88 J	5.05	0.27 J	1.18	0.482 J	0.689	0.22 J 0.409 J	0.8	1	3.9
Dibenz(a,h)anthracene	1.56 J	ND	ND	2.00 J ND	1.06	0.27 J ND	0.246 J	0.841 J ND	0.889 ND	0.409 J ND	0.33	0.33	0.33
Fluoranthene	18.8	2.29 J	ND	4.36 J	13.5	0.478	2.32	1.45 J	1.2	0.498 J	100	100	100
Fluorene	1.06 J	0.283 J	0.23 J	1.14 J	1.18	ND	ND	0.35 J	ND	ND	30	100	100
ndeno(1,2,3-cd)pyrene	4.89	0.458 J	ND	0.829 J	3.51	ND	0.765	0.507 J	0.423	0.21 J	0.5	0.5	0.5
Naphthalene	0.88 J	ND	2.7	0.701 J	0.44 J	0.38 J	ND	46 J	ND	0.212 J	12	100	100
Phenanthrene	15.1	1.4 J	0.58	5.11 J	10.6	0.587	1.19	1.4 J	0.56	0.58	100	100	100
Pyrene	16	2 J	ND	7.75 J	11.4	0.427 J	1.99	1.3 J	1.0	0.49	100	100	100
FICs	33.4 J	18.5 J	4 J	47.1 J	26.4 J	24.6 J	3 J	178 J	8.8 J	48 J	NA	NA	NA
	1					ATILE ORGAN						100	1.05
Acetone	ND ND	ND	ND ND	0.25 J 0.015	NA	0.062	NA	ND	NA	0.38 J 0.219 J	0.05	100	100
oluene 1,1,1-Trichloroethane	0.007	ND ND	ND ND	0.015 ND	NA	ND ND	NA NA	8.06 ND	NA	0.219 J 0.101 J	0.68	100	100 100
L,1,1-Trichloroethane	0.007 ND	ND	ND	ND	NA	ND	NA	ND	NA	0.101 J 0.192 J	0.68	100	26
L,1-Dichloroethene	ND	ND	ND	ND	NA	ND	NA	ND	NA	0.192 J	0.33	100	100
1,2-Dichloroethane	ND	ND	ND	ND	NA	ND	NA	ND	NA	0.014	0.02	2.3	3.1
Benzene	ND	ND	0.082 J	ND	NA	ND	NA	ND	NA	0.007 J	0.06	2.9	4.8
is-1,2-Dichloroethene	0.004 J	152.0	0.36	0.004 J	NA	ND	NA	ND	NA	0.417 J	0.25	59	100
thylbenzene	ND	ND	0.18	0.005 J	NA	ND	NA	168	NA	0.051 J	1	30	41
n,p-Xylene	ND	ND	ND	0.017 J	NA	0.005 J	NA	595	NA	0.172 J	0.26	100	100
Aethylene chloride	ND	ND	ND	0.018 J	NA	ND	NA	ND	NA	0.02 J	0.05	51	100
n-Propylbenzene	ND	ND	ND	ND	NA	ND	NA	11.5	NA	0.01 J	3.9	100	100
ec-Butylbenzene	ND	ND	ND	ND	NA	ND	NA	8.5	NA	0.007 J	11	100	100
etrachloroethene	ND 0.206	ND ND	ND	ND	NA	ND ND	NA	ND ND	NA	0.019 J	1.3	5.5 10	19 21
Frichloroethene	0.206 ND	ND 2.3 J	ND ND	ND ND	NA NA	ND ND	NA NA	ND ND	NA NA	0.16 J ND	0.47	10	100
rans-1,2-Dichloroethene /inyl chloride	ND ND	30.7	0.2	ND ND	NA	ND ND	NA	ND ND	NA	0.086 J	0.19	0.21	0.9
L,2,4-Trimethylbenzene	ND	ND	ND	0.008 J	NA	ND	NA	91.4	NA	0.080 J	3.6	47	52
L,2,4-Trimethylbenzene	ND	ND	ND	0.008 J	NA	ND	NA	44.3	NA	0.097 J 0.041 J	8.4	47	52
	0.09 J	ND	0.35 J	1.16 J	NA	6.91 J	NA	1790 J	NA	18.1 J	NA	NA	NA

All values in ppm

Icable All Data is validated J - The analyte was positively identi >/= to Residential/Restricted-Residential SCO and Unrestricted Use SCO >Unrestricted Use SCO but <Residential/Restricted-Residential SCO >Unrestricted Use & Residential SCO but <Restricted-Residential SCO</p>

Table 3 31 Tonawanda Street Building Sub Slab Vapor Ambient Air Analytical Results EPA Air Method Toxic Organics -15 (TO-15)

					S	ample Ide	ntification						NYSDOH Minimu	m Action Levels ^a
Sample Date	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18	8/21/18		
TO-15 Contaminants	IA-01 Indoor	SS-01 Sub Slab	IA-02 Indoor	SS-02 Sub Slab	SS-03 Sub Slab	IA-03 Indoor	SS-06 Sub Slab	IA-04 Indoor	SS-04 Sub Slab	SS-05 Sub Slab	IA-05 (1) Indoor	OA-01 Outdoor	Sub Slab Vapor Concentration	Indoor Air Concentration
					,	VOLATILI	ORGANIC	COMPOU	NDS⁵					
1,1,1-Trichloroethane	2.8	78 J	9.2	350 J	290 J	5	68 J	34	59	16	1700	ND	100	3
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	8.2	ND	2.9	ND	6	0.2
1,2,4-Trimethylbenzene	1.4	9.9 J	2.4	9.3 J	8.6 J	1.4	2.5 J	1.4	5.5 J	4.7 J	7.3 J	0.69		
1,3,5-Trimethylbenzene	ND	3.4	0.88	3.3 J	3 J	0.59	0.79 J	ND	2.7 J	2.1 J	3.4 J	ND		
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2,2,4-Trimethylpentane	0.61	0.79	1.4	1.8	3.5 J	1.7	1.4	0.89	0.51	1.7	0.51	ND		
4-Ethyltoluene	ND	2.5 J	ND	2.4 J	2.2 J	ND	ND	ND	1.4 J	1.1 J	1.8 J	ND		
Acetone	19	910	17	1200 J	140 J	12	140	17	170	49	77	20		
Benzene	1.6	4.8 J	2.3	4.6 J	ND	1.7	2 J	0.93	4.6	1.6	0.99	0.54		
Carbon disulfide	ND	17	ND	18 J	31 J	ND	2.7	ND	27	1.3	ND	ND		
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6	0.2
Chloroethane	ND	ND	ND	ND	ND	0.68	0.34	0.7	7.7	ND	0.63	ND		
Chloroform	ND	1.3	ND	1.8 J	1.9 J	ND	ND	ND	2.4	ND	1.4	ND		
Chloromethane	0.89	0.35	0.81	0.54 J	0.62 J	ND	0.6	ND	1.7	ND	2.1	0.66		
cis-1,2-Dichloroethene	ND	ND	ND	0.79 J	ND	ND	0.71	ND	0.75	ND	5.5	ND	6	0.2
Cyclohexane	0.62	280	0.79	390 J	560 J	0.45	65	ND	68	9.6	1.4	ND		
Ethyl acetate	0.43	7.4	ND	5.3 J	11 J	ND	2.5	ND	3.9	1.5	5	ND		
Ethylbenzene	0.91	11 J	2.3	7.9 J	8.2 J	1.7	2.3 J	0.78	1.1 J	1.3 J	0.82 J	ND		
Freon 11	9.6	4.5	4.3	3.5 J	2.4 J	2.3	1.6	1.8	2	2.2	1.7	1.1		
Freon 113	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND		
Freon 12	1.9	2	2.1	2.4 J	J	2.3	2	2	ND	1.8	1.9	1.9		
Heptane	1.3	72 J	2	39 J	J	1.8	7.4 J	1.3	23	4.7 J	3.6 J	0.57		
Hexane	5	89	6.6	150 J	510	3.7	19	2.2	41	16	2.5	0.7		
sopropyl alcohol	19	51 J	6.1	650 J	J	2.7	16 J	3.1	19	13 J	25 J	6.6		
m&p-Xylene	3	22 J	8.4	17 J	J	6.5	5.3 J	2.7	2.7 J	4 J	1.9 J	0.61		
Methyl Ethyl Ketone	2.4	69	2.9	110 J	J	1.9	14	1.4	10	3.1	6.4	1.1		
Methylene chloride	ND	3.5	0.63	2.6 J	J	ND	1.3	0.69	3.4	1.6	4.7	ND	100	3
o-Xylene	1.3	7.6 J	2.6	5.8 J	J	2	1.9 J	1.1	1.1 J	1.4 J	0.91 J	ND		
Tetrachloroethylene	ND	2500 J	ND	2900 J	2100 J	ND	390 J	ND	3.9 J	2.1 J	1 J	ND	100	3
Foluene	57	430 J	38	640 J	790 J	15	63 J	7.9	59 J	24 J	21 J	3.2		
Trichloroethene	49	150 J	9	620 J	650 J	4.4	40 J	20	81	83	230	1.3	6	0.2
/invl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6	0.2

Results and Action levels are presented in micrograms per meters cubed (ug/m³). All data has been validated

N/A - Not Applicable ND - Non-detect (1) - Sample from Sub Floor Crawlspace

J - Analyte positively identified; the associated numerical value is approximate concentration of the analyte in the sample.

^aNew York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 and subsequent updates (select matrix coumpounds).

^bCompounds with detected concentrations

NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, May 2017 Decision Matrices Notes:

NO FURTHER ACTION:

Given that the compound was not detected in the indoor air sample and that the concentration detected in the sub -slab vapor sample is not expected to significantly affect indoor air quality, no additional actions are needed to address human exposures IDENTIFY SOURCE(S) AND RESAMPLE OR MITIGATE:

The concentration detected in the indoor air sample is likely due to indoor and/or outdoor sources rather than soil vapor int rusion given the concentration detected in the sub-slab vapor sample.

Therefore, steps should be taken to identify potential source(s) and to reduce exposures accordingly (e.g., by keeping containers capped or by storing VOC-containing products in places where people do not spend much time, such as a garage or shed). Resampling may be recommended to demonstrate the effectiveness of actions taken to reduce exposures.

MONITOR

Monitoring, including sub-slab vapor, basement air, lowest occupied living space air, and outdoor air sampling, is needed to determine whether concen trations in the indoor air or sub-slab vapor have changed.

Monitoring may also be needed to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined on a site-specific and building-specific basis, taking into account applicable environmental data and building operating conditions.

Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

MITIGATE:

Mitigation is needed to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system, and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions.

		Sam	ple Identification	Date Sampled: 9/21/18	NYSDEC
Contaminants	MW-1	MW-2	MW-3	MW-4	TOGS 1.1.1. GA
	141 4 4 - 1			10100-4	(1)
	-	META	LS		-
Arsenic	ND	ND	ND	ND	25
Barium	ND	ND	ND	ND	1000
Beryllium	ND	ND	ND	ND	3
Chromium	ND	ND	ND	ND	50
Copper	15 J	14.4 J	18 J	20 J	200
Cyanide	ND	ND	ND	ND	200
Manganese	196	405	258	1400	300
Nickel	ND	ND	ND	60	100
Total Mercury	ND	ND	ND	ND	0.7
Zinc	ND	ND	72	100	2000
Selenium	ND	ND	ND	ND	10
	-	PCB	s		
PCB 1254	ND	ND	0.065 J	ND	0.09
PCB-1260	ND	ND	0.134 J	ND	0.09
		PESTIC	DES		
Aldrin	ND	ND	ND	0.127 J	ND
alpha-BHC	ND	ND	ND	0.111	NA
beta-BHC	ND	ND	ND	ND	NA
Endrin	0.11 J	ND	ND	0.172	ND
Heptachlor	ND	0.065	ND	0.141 J	0.04
Heptachlor Epoxide	0.178 J	ND	ND	0.11 J	0.03
trans-Chlordane	0.056 J	ND	ND	ND	NA
		SEMIVOLATILE ORGA	NIC COMPOUNDS		
SVOCs	ND	ND	ND	ND	NA
		Volatile Organic	Compounds		
Acetone	ND	ND	ND	0.006	50
Carbon disulfide	ND	1.44 J	ND	0.003	NA
TICs	ND	ND	ND	ND	NA
		Field Para	meters		8
Turbidity (NTU)	1.0	6.4	18	19	NA
рН	6.97	6.71	6.84	6.2	NA
Dissolved Oxygen	1.98	0	1.32	0	NA
Temp (degrees C)	19.79	17.08	17.93	15.8	NA
Conductivity	2.11	2.23	3.03	4.15	NA

 TABLE 4

 150 TONAWANDA STREET - RI GW SAMPLE ANALYTICAL RESULTS SUMMARY

All values in ppb

N/A - Not Applicable ND - Non-detect All Data is Validated

(1) - TOGs 1.1.1 GA - Technical and Operational Guidance Series (1.1.1) Source of Drinking Water (Groundwater)

Exceeds TOGs Guidance Value

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

	Sample Identification Date Sampled: 9/24/18									
Contaminants	MW-1	MW-2	MW-3	MW-4	MW-5	TOGS 1.1.1. GA (1)				
			METALS							
Arsenic	ND	ND	ND	ND	0.02	25				
Barium	0.05 J	ND	0.26	0.11	0.06 J	1000				
Beryllium	ND	ND	ND	ND	ND	3				
Chromium	ND	5.0 J	ND	ND	ND	50				
Copper	ND	20.2	ND	0.01	0.01 J	200				
Cyanide	ND	ND	ND	ND	ND	200				
Lead	ND	6.2 J	ND	ND	ND	25				
Vanganese	7.23	547	0.62	0.65 J	1.15	300				
Nickel	ND	ND	ND	ND	ND	100				
Fotal Mercury	ND	ND	ND	ND	ND	0.7				
Zinc	0.05 J	38.9 J	ND	0.97	ND	2000				
Selenium	ND	ND	ND	ND	ND	10				
			PCBs							
PCB 1254	ND	ND	ND	ND	ND	0.09				
PCB-1260	1.81 J	1.22 J	ND	ND	ND	0.09				
			PESTICIDES							
Aldrin	0.057 J	ND	ND	ND	0.12	ND				
alpha-BHC	ND	ND	ND	ND	0.08 J	NA				
beta-BHC	ND	ND	ND	ND	ND	NA				
Dieldrin	ND	ND	ND	ND	0.07 J	0.004				
Endrin	ND	ND	ND	ND	0.13 J	ND				
Heptachlor	ND	ND	0.104 J	ND	0.1 J	0.04				
Heptachlor Epoxide	ND	ND	ND	ND	0.16 J	0.03				
rans-Chlordane	ND	ND	ND	ND	0.06 J	NA				
		SEMIVOLATI	LE ORGANIC COMPOL	INDS						
Bis (2-ethylhexyl) phthalate	ND	ND	49.2	ND	ND	5				
			Organic Compounds							
Acetone	12.9 J	5.13 J	ND	5.94 J	17.5	50				
1.1.1-Trichloroethane	ND	1.21 J	188000 J	ND	ND	5				
1.1-Dichloroethane	ND	ND	75700	1.63 J	3.52	5				
1.1-Dichloroethene	ND	ND	2510 J	ND	ND	5				
cis-1,2-Dichloroethene	ND	2.1 J	37500	5.26	ND	5				
1,2,4-Trimethylbenzene	ND	ND	ND	ND	3.03	5				
,3,5-Trimethylbenzene	ND	ND	ND	ND	1.15 J	5				
.4-Dioxane	ND	ND	ND	ND	49.4	0.35				
Frichloroethene	ND	ND	ND	4.32	1.69 J	5				
/invl chloride	ND	ND	5080	1.69 J	ND	2				
Carbon disulfide	ND	3.45	ND	ND	ND	NA				
FICs	ND	ND	ND	ND	518 J	NA				
			ield Parameters		0100					
Furbidity (NTU)	69.4	10.2	2.3	13.2	17.3	NA				
oH	6.81	6.95	6.28	6.98	6.64	NA				
Dissolved Oxygen	0.01	0.95	0.28	0.98	0.04	NA				
Temp (degrees C)	15.82	14.74	15.93	17.87	16.71	NA				
Conductivity	3.65	8.44	1.47	1.12	2.75	NA				

 TABLE 5

 31 TONAWANDA STREET - RI GW SAMPLE ANALYTICAL RESULTS SUMMARY

All values in ppb

N/A - Not Applicable ND - Non-detect

(1) - TOGS 1.1.1 GA - Technical and Operational Guidance Series (1.1.1) Source of Drinking Water (Groundwater)

Exceeds TOGs Guidance Value

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

All Data is Validated

TABLE 6

31 & 150 TONAWANDA STREET RI LOCATION COORDINATES

Sample Identification	Coordinates-North A	merican Datum 1983
Sample identification	Latitude	Longitude
3	1 Tonawanda Street	
Boreholes		
BH-1	42.929383	-78.896700
BH-2	42.929648	-78.896400
BH-3S	42.929923	-78.896318
BH-4	42.929965	-78.896430
BH-5	42.930092	-78.896391
BH-6	42.90263	-78.896511
Monitoring Wells		
31-MW-1	42.92959	-78.897213
31-MW-2	42.930289	-78.897175
31-MW-3	42.929547	-78.896614
31-MW-4	42.929864	-78.896386
31-MW-5	42.930298	-78.896305
1:	50 Tonawanda Street	
Boreholes		
BH-1	42.933921	-78.897152
BH-2	42.934071	-78.897179
BH-3	42.934444	-78.897249
BH-4	42.934609	-78.897098
BH-5	42.934881	-78.897130
BH-6	42.934936	-78.896852
Monitoring Wells		
MW-1	42.933637	-78.897264
MW-2	42.934554	-78.896965
MW-3	42.934764	-78.897198
MW-4	42.933755	-78.897162

TABLE 7 150 TONAWANDA - PFAS AND 1,4 DIOXANE IN GROUNDWATER ANALYTICAL RESULTS SUMMARY

Sample Number	MW-1	MW-3	MW-4	NYSDEC
Sample Date	9/21/2018	9/21/2018	9/21/2018	Guideline
1,4 Dioxane by 8270D				
1,4 Dioxane	ND	ND	ND	0.35
Perfluorinated Alkyl Acids by Isotope Dilution EPA 537				
Perfluorobutanoic Acid (PFBA)	0.0079	ND	ND	
Perfluoropentanoic Acid (PFPeA)	ND	ND	ND	
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ND	
Perfluorohexanoic Acid (PFHxA)	ND	ND	ND	
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ND	
Perfluorohexanesulfonic Acid (PFHxS)	0.00	ND	ND	
Perfluorooctanoic Acid (PFOA)	0.0010	0.0007	0.0020	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	0.003	0.0015	0.0020	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ND	
Perfluorononanoic Acid (PFNA)	0.0009	0.0002	0.0009	
Perfluorooctanesulfonic Acid (PFOS)	0.0004	ND	ND	
Perfluorodecanoic Acid (PFDA)	ND	ND	ND	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ND	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ND	
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ND	
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ND	
Perfluorooctanesulfonamide (FOSA)	ND	ND	ND	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ND	
Perfluorododecanoic Acid (PFDoA)	ND	ND	ND	
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ND	
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ND	
Totals	0.0140	0.0024	0.0049	0.07

All Values in ppb All data are validated

Exceeds NYSDEC Guidance Value

N/A - Not Applicable ND - Non-detect

TABLE 8

31 TONAWANDA - PFAS AND 1,4 DIOXANE IN GROUNDWATER ANALYTICAL RESULTS SUMMARY

Sample Number	MW-2	MW-3	MW-4	NYSDEC					
Sample Date	9/24/2018	9/24/2018	9/24/2018	Guideline					
1,4 Dioxane by 8270D									
1,4 Dioxane	ND	5020	9.78	0.35					
Perfluorinated Alkyl Acids by Isotope Dilution EPA 537									
Perfluorobutanoic Acid (PFBA)	ND	0.013	0.0152						
Perfluoropentanoic Acid (PFPeA)	ND	0.030	0.0326						
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	0.003						
Perfluorohexanoic Acid (PFHxA)	ND	0.015	0.0212						
Perfluoroheptanoic Acid (PFHpA)	ND	0.008	0.0143						
Perfluorohexanesulfonic Acid (PFHxS)	ND	0.005	0.009						
Perfluorooctanoic Acid (PFOA)	0.0014	0.0148	0.0192						
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	0.007	0.0070	0.0062						
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	0.00135						
Perfluorononanoic Acid (PFNA)	0.0007	0.0017	0.0050						
Perfluorooctanesulfonic Acid (PFOS)	0.0003	0.010	0.0313						
Perfluorodecanoic Acid (PFDA)	ND	ND	0.00135						
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ND						
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ND						
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ND						
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ND						
Perfluorooctanesulfonamide (FOSA)	ND	ND	ND						
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ND						
Perfluorododecanoic Acid (PFDoA)	ND	ND	ND						
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ND						
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ND						
Totals	0.0093	0.1037	0.1597	0.07					
All Values in ppb All data are validated									

Exceeds NYSDEC Guidance Value

N/A - Not Applicable ND - Non-detect

TABLE 931 & 150 TONAWANDA STREET SITE -GROUNDWATER ELEVATIONS

Well Number	T of C Elevation (ft) (1)	Water Level	Groundwater Elevation		
31 Tonawanda		9/24/2018			
MW - 1	580.66	7.8	572.86		
MW - 2	MW - 2 581.89 MW - 3 578.96		576.69		
MW - 3			572.66		
MW - 4	580.6	8.1	572.5		
MW - 5	583.14	13.3	569.84		
150 Tonawanda		9/21/2018			
MW - 1	594.62	6.7	587.92		
MW - 2	594.65	7.4	587.25		
MW - 3	596.57	9.3	587.27		
		11/6/2018			
MW - 4	595.65	5.5	590.15		

(1) - Elevations are referenced to Datum NAVD 88

TABLE 10 31 TONAWANDA STREET - CRAWL SPACE SOIL BORING SAMPLE ANALYTICAL RESULTS SUMMARY

SBH-1 (8') ND 0.075 ND ND ND	SBH-1 (16') ND ND ND	SBH-3 (10 -11') ND 0.29	SBH-4 (8') VOL ND ND	SBH-4 (10') ATILE ORGANI ND	SBH-4 (12') IC COMPOUNI	-	SBH-5 (8')	SBH-5 (12')	Unrestricted Use	Residential	Restricted Residential
ND 0.075 ND ND	ND ND ND	ND 0.29	ND	ND		-					·
ND 0.075 ND ND	ND ND ND	ND 0.29			ND						
0.075 ND ND	ND ND	0.29	ND		ND	ND	ND	ND	0.05	100	100
ND ND	ND			ND	ND	ND	ND	ND	0.7	100	100
ND			37 J	ND	ND	0.18	4.23	667	0.68	100	100
		ND	ND	ND	ND	ND			0.27	19	26
ND	ND	ND	ND	ND	ND	ND	0.079 J	17.9	0.33	100	100
	ND	0.075	ND	ND	ND	0.035 J	1.79	246	0.02	2.3	3.1
ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06	2.9	4.8
ND	0.012	0.46	35.4 J	1970	1.29	ND	1.47	221	0.25	59	100
ND	ND	ND	ND	ND	ND	ND	ND	ND	1	30	41
ND	ND	ND	ND	ND	ND	ND	ND	ND	0.26	100	100
ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	51	100
ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	100	100
ND	ND	ND	ND	ND	ND	ND	ND	ND	11	100	100
ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	5.5	19
2.56	0.009	3.89	1660	7340	0.72	3.65	11.5	474	0.47	10	21
ND	ND	ND	ND	ND	0.03	ND	0.19	7.12	0.19	100	100
ND	0.039	ND	ND	ND	0.034	ND	ND	4.02 J	0.02	0.21	0.9
ND	ND	ND	ND	ND	ND	ND	ND	ND	3.6	47	52
ND	ND	ND	ND	ND	ND	ND	ND	ND	8.4	47	52
	ND ND 2.56 ND ND ND ND ND	ND ND ND ND 2.56 0.009 ND ND ND 0.039 ND ND ND ND ND ND ND ND	ND ND ND ND ND ND 2.56 0.009 3.89 ND ND ND ND ND ND	ND ND ND ND ND ND ND ND 2.56 0.009 3.89 1660 ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND 2.56 0.009 3.89 1660 7340 ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND 2.56 0.009 3.89 1660 7340 0.72 ND ND ND ND ND 0.03 ND 0.039 ND ND ND 0.034 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND ND 2.56 0.009 3.89 1660 7340 0.72 3.65 ND ND ND ND ND 0.03 ND ND ND ND ND ND 0.034 ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 2.56 0.009 3.89 1660 7340 0.72 3.65 11.5 ND ND ND ND ND 0.03 ND 0.19 ND 0.039 ND ND ND 0.034 ND ND ND ND ND ND ND ND ND ND	ND ND<	ND ND ND ND ND ND ND ND ND 11 ND ND ND ND ND ND ND ND ND 11 ND ND ND ND ND ND ND ND 13 2.56 0.009 3.89 1660 7340 0.72 3.65 11.5 474 0.47 ND ND ND ND ND 0.03 ND 0.19 7.12 0.19 ND 0.039 ND ND ND ND 0.02 0.02 ND ND ND ND ND ND ND 3.6 ND ND ND ND ND ND ND 3.6 ND ND ND ND ND ND ND 8.4	ND ND ND ND ND ND ND ND ND 11 100 ND ND ND ND ND ND ND ND ND 1.3 5.5 2.56 0.009 3.89 1660 7340 0.72 3.65 11.5 474 0.47 10 ND ND ND ND 0.03 ND 0.19 7.12 0.19 100 ND ND ND ND 0.034 ND ND 4.02 J 0.02 0.21 ND ND ND ND ND ND ND A7 10 ND ND ND ND 0.034 ND 0.19 7.12 0.19 100 ND ND ND ND ND ND A02 J 0.02 0.21 ND ND ND ND ND ND ND 3.6 47

All values in ppm

>/= to Residential/Restricted-Residential SCO and Unrestricted Use SCO >Unrestricted Use SCO but <Residential/Restricted-Residential SCO

>Unrestricted Use & Residential SCO but <Restricted-Residential SCO

PHASE II ESA TABLES

TABLE 1 -	120 (150) TONA	WANDA STREE	T (CSX) - PHAS	E 2 ESA SOIL	SAMPLE ANAL	TICAL RESULT	S SUMMARY			
Sampling Program	Sampling Program PEI - Phase 2 ESA SOIL TEST PIT SAMPLING PROGRAM									
Sample Number	TP1 SS1	TP2 S1	TP4 SS2	TP5 S2	TP7 S3	TP7 SS3	NYSDEC	NYSDEC		
Sample Date	1/4/2016	1/4/2016	1/4/2016	1/4/2016	1/4/2016	1/4/2016	PART 375	PART 375		
Sample depth (bgs)	2-3 Ft	2"	5-6 Ft	2"	2"	5-6 Ft	Restrict Res	Commercial		
Compounds	ppm	ppm	ppm	ppm	ppm	ppm	(a)	(b)		
Metals										
Mercury	0.47	0.48	0.083	0.238	0.553	0.109	1	2.8		
Aluminum	7570	9010	7100	6530	9080	5510	NA	NA		
Arsenic	69 (a)(b)	18.1 (a)(b)	24.9 (a)(b)	4.7	5.9	21.1 (a)(b)	16	16		
Barium	132.0	137	76.6	86.7	190	141	400	400		
Beryllium	0.60	0.43	0.41	ND	ND	0.51	72	590		
Cadmium	2.23	0.99	0.89	0.93	1.16	1.29	4.3	9.3		
Chromium	27.7	42.9	15.4	16.2	74.8	27	180	1500		
Cyanide	0.4	0.17	0.33	0.38	0.23	0.3	27	27		
Calcium	23600	27200	52100	54500	36000	19500	NA	NA		
Copper	181	51.3	55.2	47.2	339 (a)(b)	94.5	270	270		
Lead	347	500 (a)	157	210	639 (a)	205	400	1000		
Manganese	676	367	362	282	501	747	2000	10000		
Nickel	42.4	38.4	15.4	20.4	43	22.7	310	310		
Selenium	3.6	ND	ND	ND	ND	2.1	180	1500		
Silver	ND	ND	ND	ND	ND	ND	180	1500		
Zinc	595	307	227	184	450	575	10000	10000		
PCBS										
Aroclor 1260	0.18	ND	0.43	0.59	0.84	ND	1	1		
Pesticides										
4,4-DDT	0.027	0.062	0.033	0.058	ND	ND	7.9	47.0		
4,4-DDE	ND	0.074	ND	0.034	ND	ND	8.9	62.0		
Dieldrin	ND	ND	ND	0.059	ND	ND	0.2	1.40		
VOCs										
1,2,4-Trimethylbenzene	0.015	NA	ND	NA	NA	ND	52	190		
1,3,5-Trimethylbenzene	0.009	NA	ND	NA	NA	ND	52	190		
Acetone	0.093	NA	0.012	NA	NA	ND	100	500		
SVOCs										
Acenaphthene	4.8	ND	ND	ND	ND	ND	100	500		
Acenaphthylene	2.1	ND	3.5	ND	ND	ND	100	500		
Anthracene	4.5	Nd	3.3	ND	0.82	1.8	100	500		
Benzo(a)anthracene	5.9 (a)(b)	0.44	10 (a)(b)	4.1 (a)	1.8 (a)	2.5 (a)	1	5.6		
Benzo (a) pyrene	5.1 (a)(b)	0.59	9.7 (a)(b)	4.1 (a)(b)	1.5 (a)(b)	2.0 (a)(b)	1	1		
Benzo(b)fluoranthene	8.1 (a)(b)	0.73	15 (a)(b)	5.8 (a)(b)	2.4 (a)	3 (a)	1	5.6		
Benzo (g,h,i) perylene	3.8	ND	4.1	2.4	0.7	0.79	100	500		
Benzo (k) fluoranthene	2.9	ND	5.5 (a)	2	0.78	1.1	3.9	56		
Chrysene	6.5 (a)	0.45	11 (a)	3.9 (a)	1.8	2.4	3.9	56		
Fluoranthene	13	0.66	20	8.6	3.6	5	100	500		
Fluorene	5.7	ND	ND	ND	ND	0.8	100	500		
Indeno (1,2,3-cd) pyrene	4.6 (a)	0.44	5.4 (a)	2.5 (a)	0.77 (a)	0.96 (a)	0.5	5.6		
Naphthalene	14	ND	4.4	ND	ND	0.53	100	500		
Phenanthrene	14	ND	8.6	3.5	3	5.2	100	500		
Pyrene	11	0.6	16	7.5	3.1	4.1	100	500		

ND - Non-Detect NA - Not Available or Not analyzed for

Shaded Value - Exceeds Part 375 SCOs

	WANDA STREET - PHASE 2 ESA SOIL SAMPLE ANALTICAL RESULTS SUMMARY									
Sampling Program	PEI - Phase 2 ESA SOIL BORING SAMPLING PROGRAM									
Sample Number	BH 5	BH 5-3N	BH 7	BH 8	NYSDEC	NYSDEC	NYSDEC			
Sample Date	4/11/2014	9/9/2014	4/11/2014	4/11/2014	PART 375	PART 375	PART 375			
Sample depth (bgs)	9' - 12'	11' - 12'	9' - 12'	5' - 8'	Residential	Restrict Res	Commercial			
Compounds Metals	ppm	ppm	ppm	ppm	(a)	(b)	(c)			
Mercury	1.2	NA	0.51	0.04	0.81	1	2.8			
Arsenic	12.10	NA	11.5	8.5	16	16	16			
Barium	340.0	NA	137	34.4	350	400	400			
Beryllium	ND	NA	0.84	ND	14	72	590			
Cadmium	2.40	NA	ND	0.94	2.5	4.3	9.3			
Chromium	28.5	NA	28.8	202 (a)(b)	36	180	1500			
Copper	911 (a)(b)(c)	NA	747 (a)(b)(c)	9550 (a)(b)(c)	270	270	270			
Lead	876 (a)(b)	NA	263	130	400	400	1000			
Manganese	200	NA	502	7780 (a)(b)	2000	2000	10000			
Nickel	20.9	NA	36.3	14.3	140	310	310			
Selenium	ND	NA	ND	5.8	36	180	1500			
Silver	ND	NA	ND	ND	36	180	1500			
	1410	NA	202	518	2200	10000	10000			
PCBS PCBS	ND	NA	ND	ND	1	1	1			
PCBS Pesticides		IN/A	ND		1	1	I			
4,4-DDT	0,009	NA	ND	ND	1.7	N	47.0			
4,4 DDD	0.005	NA	ND	ND	2.6	13	92.0			
4,4-DDE	0.005	NA	ND	ND	1.8	8.9	62.0			
Endrin Aldehyde	0.021	NA	ND	ND	N/A	N/A	N/A			
alpha-BHC	0.009	NA	ND	ND	0.097	0.48	3.4			
beta BHC	0.009	NA	ND	ND	0.072	0.36	3			
delta BHC	0.021	NA	ND	ND	100	100	500			
Endosulfan I	0.005	NA	ND	ND	4.8	24	200			
Endosulfan li	0.009	NA	ND	ND	4.8	24	200			
Endosulfan Sulfate	0.01	NA	ND	ND	4.8	24	200			
Endrin	0.007	NA	ND	ND	2.2	11	89.00			
Endrin Ketone	0.011	NA	ND	ND	N/A	N/A	N/A			
cis-Chlordane	0.014	NA	ND	ND	N/A	N/A	N/A			
Dieldrin	0.011	NA	ND	ND	0.039	0.2	1.40			
gamma-BHC	0.013	NA	ND	ND	0.28	1.3	9.20			
Heptachlor	0.026	NA	ND	ND	0.42	2.1	15.00			
Heptachlor-Chlordane	0.009	NA	ND	ND	N/A	N/A	N/A			
VOCs	000 (-(h)(-)	0.000	ND	0.000	50	100	500			
cis-1,2-Dichloroethene	880 (a(b)(c)	0.026	ND	0.023	59	100	500			
1,1,2,2-Tetrachloroethane	ND ND	0.041 0.037	ND ND	ND ND	NA NA	NA NA	NA NA			
1.2.4-Trimethylbenzene	ND	0.037	ND	ND	47	52	190			
1,3,5-Trimethylbenzene	ND	0.048	ND	ND	47	52	190			
1,4-dioxane	ND	1.08	ND	ND	9.8	13	130			
2-Butanone	ND	0.1	ND	ND	NA	NA	NA			
Acetone	ND	0.4	ND	ND	100	100	500			
Isopropylbenzene	ND	0.014	ND	ND	NA	NA	NA			
m,p-Xylene	ND	0.026	ND	ND	100	100	500			
Methylcyclohexane	ND	0.022	ND	ND	NA	NA	NA			
Naphthalene	ND	0.098	ND	ND	100	100	500			
n-Butylbenzene	ND	0.035	ND	ND	NA	NA	NA			
o-Xylene	ND	0.03	ND	ND	100	100	500			
Trichloroethene SVOCs	6960 (a)(b)(c)	0.17	ND	0.17	10	21	200			
Acenaphthene	6.2	39.2	ND	ND	100	100	500			
Acenaphthylene	ND	12.8	ND	ND	100	100	500			
Anthracene	ND	60.7	ND	ND	100	100	500			
Benzo(a)anthracene	6.02 (a)(b)(c)	48.9 (a)(b)(c)	ND	ND	1	1	5.6			
Benzo (a) pyrene	ND	47.4 (a)(b)(c)	ND	ND	1	1	1			
Benzo(b)fluoranthene	5.7 (a)(b)(c)	24.2 (a)(b)(c)	ND	ND	1	1	5.6			
Benzo (g,h,i) perylene	ND	19.5	ND	ND	100	100	500			
Benzo (k) fluoranthene	ND	25.3 (a)(b)	ND	ND	1	3.9	56			
Chrysene	7.74 (a)(b)	53.2 (a)(b)	ND	ND	1	3.9	56			
Fluoranthene	11	83.1	ND	0.45	100	100	500			
Fluorene	ND	36	ND	ND	100	100	500			
Indeno (1,2,3-cd) pyrene	ND	16.6 (a)(b)(c)	ND	ND	0.5	0.5	5.6			
Phenanthrene	17.1	142 (a)(b)	ND	0.34	100	100	500			
Pyrene	15	137 (a)(b)	ND	0.36	100	100	500			

ND - Non-Detect NA - Not Available or Not analyzed for Shaded Value - Exceeds Part 375 SCOs

TABLE 2 - 31 TONAWANDA STREET - FLOOR BORING SAMPLES - ANALTICAL RESULTS SUMMARY REV 3-19-15											
Sampling Program		PEI - PHASE 2 ESA SOIL BORING SAMPLING PROGRAM									
Sample/Boring Number	C-1	C-3	C-4	NYSDEC	NYSDEC	NYSDEC					
Sample Date	3/5/2015	3/5/2015	3/5/2015	PART 375	PART 375	PART 375					
Sample depth (bgs)	8' - 12'	6' - 8'	6' - 8'	Residential	Restrict Res	Commercial					
Compounds	ppm	ррт	ppm	(a)	(b)	(c)					
VOCs											
cis-1,2-Dichloroethene	72.8 (a)	1.5	0.6	59	100	500					
1,1-Dichloroethane	31.5 (a)(b)	0.3	0.9	19	26	240					
1,1-Dichloroethene	17.7	ND	ND	100	100	500					
1,1,1 -Trichloroethane	670 (a)(b)(c)	4.3	8	100	100	500					
Tetrachloroethene	ND	0.3	ND	5.5	19	150					
Trichloroethene	15.1 (a)	1630 (a)(b)(c)	244 (a)(b)(c)	10	21	200					

ND - Non-Detect NA - Not Available or Not analyzed for

Shaded Value - Exceeds Part 375 SCOs

AS-BUILT CONFIRMATION SOIL SAMPLE RESULTS

						Samp	le Identifi	cation & D	epth		Date S	ampled: 8	/26/20		
Contaminants	NES (3.5')	NWS (3')	NS (3')	NB 7')	NMB (10')	EMS (5')	WMS (5')	SB (6')	SEW (3')	SWW (3')	SMB (8')	SMWW (4')	SW (3')	SMEW (4')	PART 375 Restricted Residential
					SEMIVOLA	TILE ORG	ANIC CON	IPOUNDS							
Acenaphthene	ND	ND	ND	ND	ND	ND	0.66	ND	ND	ND	0.39	ND	ND	ND	100
Acenapthylene	ND	ND	ND	ND	ND	ND	ND	ND	0.3	0.17	ND	ND	ND	1.19	100
Anthracene	0.2	ND	ND	0.64	0.4	ND	1.35	ND	0.6	ND	0.87	ND	0.34	1.59	100
Benz(a)anthracene	0.62	0.52	0.23	2.12	0.76	ND	2.65	0.28	1.41	0.63	1.45	0.21	0.94	2.5	1
Benzo(a)pyrene	0.61	0.53	0.29	2.05	0.71	ND	2.32	0.23	1.82	0.56	1.26	0.22	1.07	6.2	1
Benzo(b)fluoranthene	0.54	0.49	0.36	2.45	0.77	0.23	2.29	0.37	2.35	0.79	1.05	0.24	1.32	7.7	1
Benzo(g,h,i)perylene	0.41	0.36	0.28	1.24	0.72	ND	1.29	ND	1.6	0.5	0.7	ND	0.89	6.14	100
Benzo(k)fluoranthene	0.53	0.44	0.31	1.07	0.62	ND	1.61	ND	1.37	0.58	1.03	ND	0.81	4.5	3.9
Chrysene	0.63	0.54	0.33	2.15	0.84	ND	2.48	0.33	1.58	0.72	1.39	0.24	1.06	3.57	3.9
Dibenz(a,h)anthracene	ND	ND	ND	0.45	ND	ND	0.52	ND	0.52	ND	0.26	ND	0.28	1.81	0.33
Fluoranthene	1.32	1.07	0.63	4.28	1.54	0.19	6.27	0.67	2.78	1.29	3.37	0.42	1.88	3.91	100
Fluorene	ND	ND	ND	0.35	ND	ND	0.62	ND	0.19	ND	0.47	ND	ND	ND	100
Indeno(1,2,3-cd)pyrene	ND	ND	ND	1.21	0.58	ND	1.32	ND	1.59	0.46	0.67	ND	0.83	5.59	0.5
m-Cresol	ND	ND	ND	ND	ND	ND	ND	ND	0.6	ND	ND	ND	ND	ND	100
Naphthalene	ND	ND	ND	ND	0.63	ND	0.45	0.19	0.57	0.25	0.4	0.17	0.26	3.36	100
Phenanthrene	0.92	0.62	0.46	2.43	1.08	0.24	5,2	0.39	1.59	0.66	2.81	0.36	1.08	1.64	100
Pyrene	1.12	0.93	0.53	3.53	1.27	0.27	4.82	0.54	2.28	1.07	2.76	0.38	1.64	4.12	100
					VOLATI	LE ORGAN	IC COMP	DUNDS				-			
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	0.004	ND	ND	ND	ND	ND	ND	ND	ND	100
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.003	ND	ND	ND	ND	ND	ND	ND	ND	26
cis-1,2-Dichloroethene	ND	ND	0.004	0.008	0.013	0.039	ND	2.04	ND	4.28	ND	ND	14.2	164	100
Ethylbenzene	ND	ND	ND	0.01	0.008	0.006	ND	0.26	4.17	8.55	ND	3.81	1.57	366	41
m,p-Xylene	0.007	0.009	0.003	0.048	0.011	0.005	0.31	4.11	154	65.7	0.47	17.7	11.8	2340	100
Methylene chloride	ND	ND	0.007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100
n-Propylbenzene	ND	ND	ND	ND	0.004	0.003	0.74	ND	ND	1.03	0.31	1.35	ND	20.4	100
n-Butylbenzene	ND	ND	ND	ND	0.023	0.013	1.9	ND	ND	0.89	1.08	2.6	0.32	ND	100
sec-Butylbenzene	ND	ND	ND	ND	0.007	0.005	1.14	ND	ND	ND	0.42	1.26	ND	ND	100
Tetrachloroethene	0.008	ND	ND	ND	0.005	0.013	ND	ND	ND	ND	ND	ND	ND	ND	19
Trichloroethene	0.003	ND	0.082	0.029	0.035	0.17	ND	1.35	0.47	4.58	0.29	ND	14.9	ND	21
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.43	ND	0.9
1,2,4-Trimethylbenzene	ND	ND	ND	0.004	0.01	ND	1.98	ND	2.04	2.51	3.58	18.1	0.66	299	52
1,3,5- Trimethylbenzene	ND	ND	ND	0.008	0.16	0.006	0.22	0.32	2.04	2.05	1.34	3.61	0.54	131	52
ND - Non-Detect NA - Not Applicable		All values	in ppm												

 TABLE 1

 31 TONAWANDA SITE - HOT SPOT EXCAVATION AREA - CONFIRMATION SAMPLE RESULTS

n-Detect NA - Not Applicable All values in ppm

>/= to Restricted-Residential SCO

See As-Built Figure 9 for sample loactions

NES: North East Side NWS: North West Side NS: North Side NB: North Bottom NMB: North Middle Bottom EMS: East Middle Side WMS: West Middle Side SB: South Bottom SEW: South East Wall SWW: South West Wall SMB: South Middle West Wall SW: South Middle West Wall SW: South Middle East Wall SMEW: South Middle East Wall

IRM – GROUNDWATER INJECTION TREATMENT MONITORING WELL SAMPLING RESULTS

31 TONAWA	NDA STREET - MW	-3 GW SAMPLE ANA	LYTICAL RESULTS	SUMMARY
Contaminants		Sample Identification		NYSDEC TOGS 1.1.1. GA
	MW-3	MW-3 (2)	MW-3 (3)	(1)
Sample Date	9/24/2018	5/22/2020	9/15/2020	(-)
		METALS		
Dissolved Iron (mg/L)	NA	254	887	NA
	Vol	atile Organic Compour	ds	
1,1,1-Trichloroethane	188000 J	20500	26500	5
1,1-Dichloroethane	75700	30500	26100	5
1,1-Dichloroethene	2510 J	495	630	5
Chloroethane	ND	2090	21900	5
cis-1,2-Dichloroethene	37500	24300	28200	5
trans-1,2-Dichloroethene	ND	ND	284 J	5
Trichloroethene	ND	594	1290	5
Vinyl chloride	5980	5080	3770	2
		FIELD PARAMETERS		
Turbidity (NTU)	2.3	190	137	NA
рН	6.28	6.67	6.92	NA
Dissolved Oxygen (mg/L)	0	5.24	2.73	NA
Temp (degrees C)	15.93	22.1	16.1	NA
Conductivity (mS/cm)	1.47	1.12	4.28	NA
TOC (mg/L)	NA	2400	1700	NA
ORP (mV)	NA	-58	-48	NA
Sulfate (mg/L)	NA	1.9	11	NA

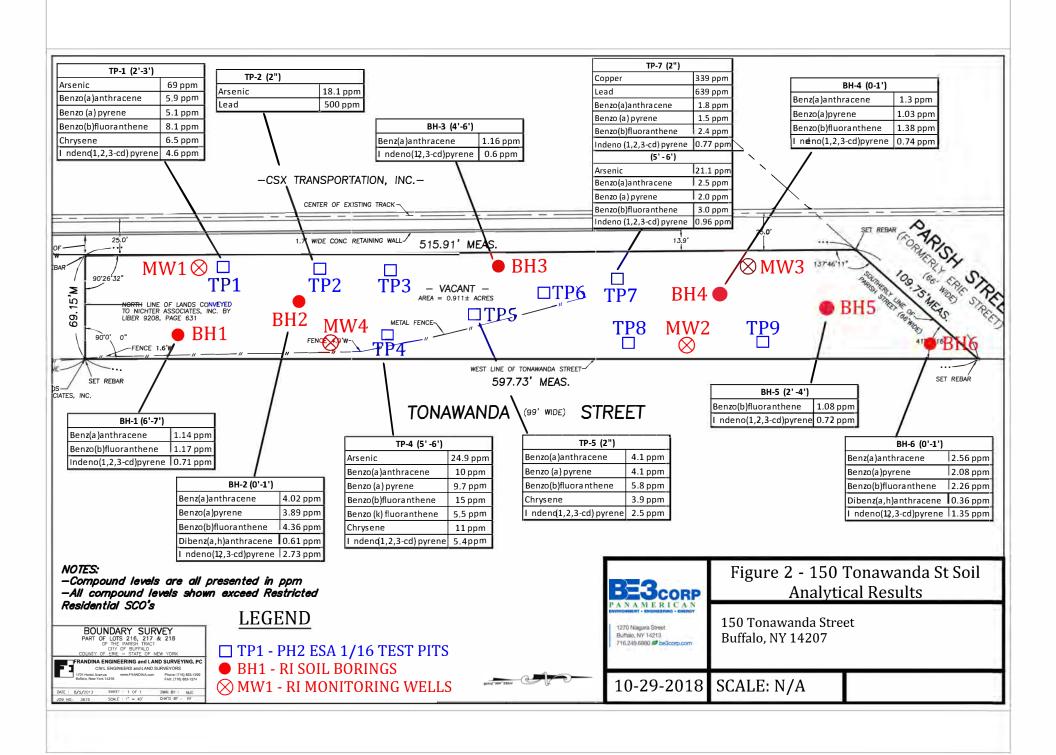
TABLE 1

All values in ppb except where noted

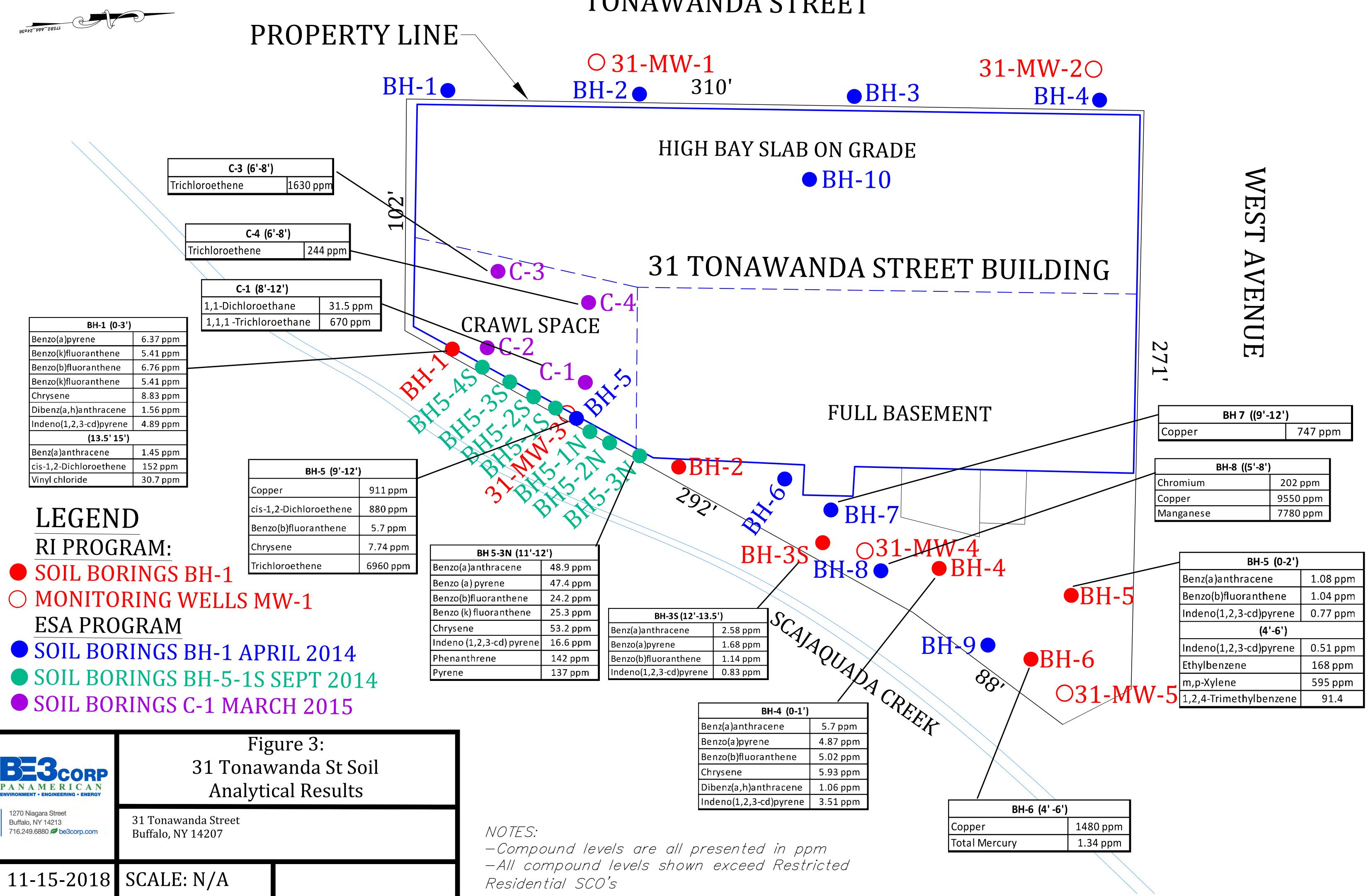
N/A - Not Applicable ND - Non-detect

(1) - TOGs 1.1.1 GA - Technical and Operational Guidance Series (1.1.1) Source of Drinking Water (Groundwater)

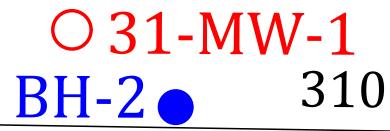
(2) - MW-3 sampled 5/22/2020 post injection treatment

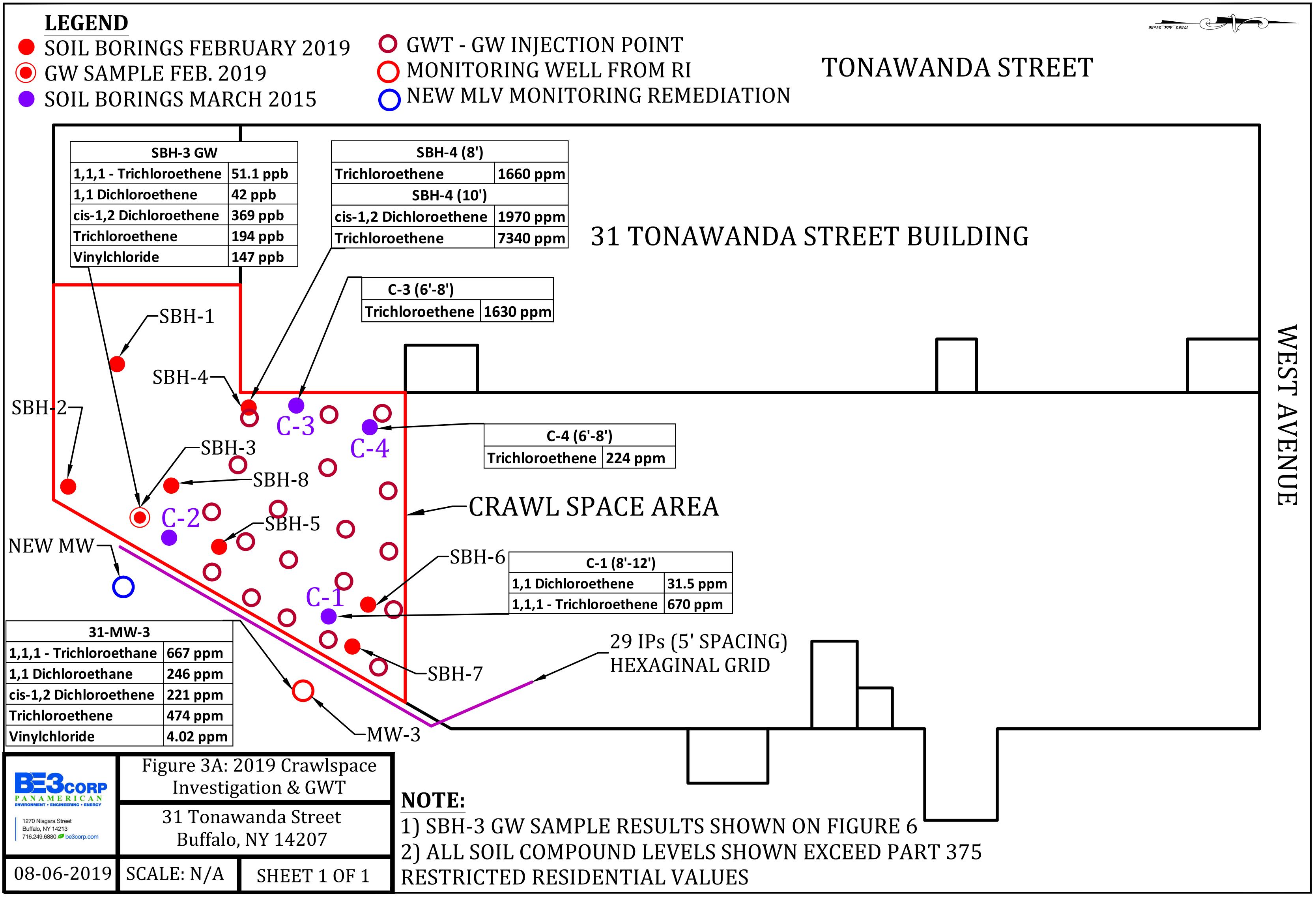

(3) - MW-3 sampled 9/15/2020 post injection treatment

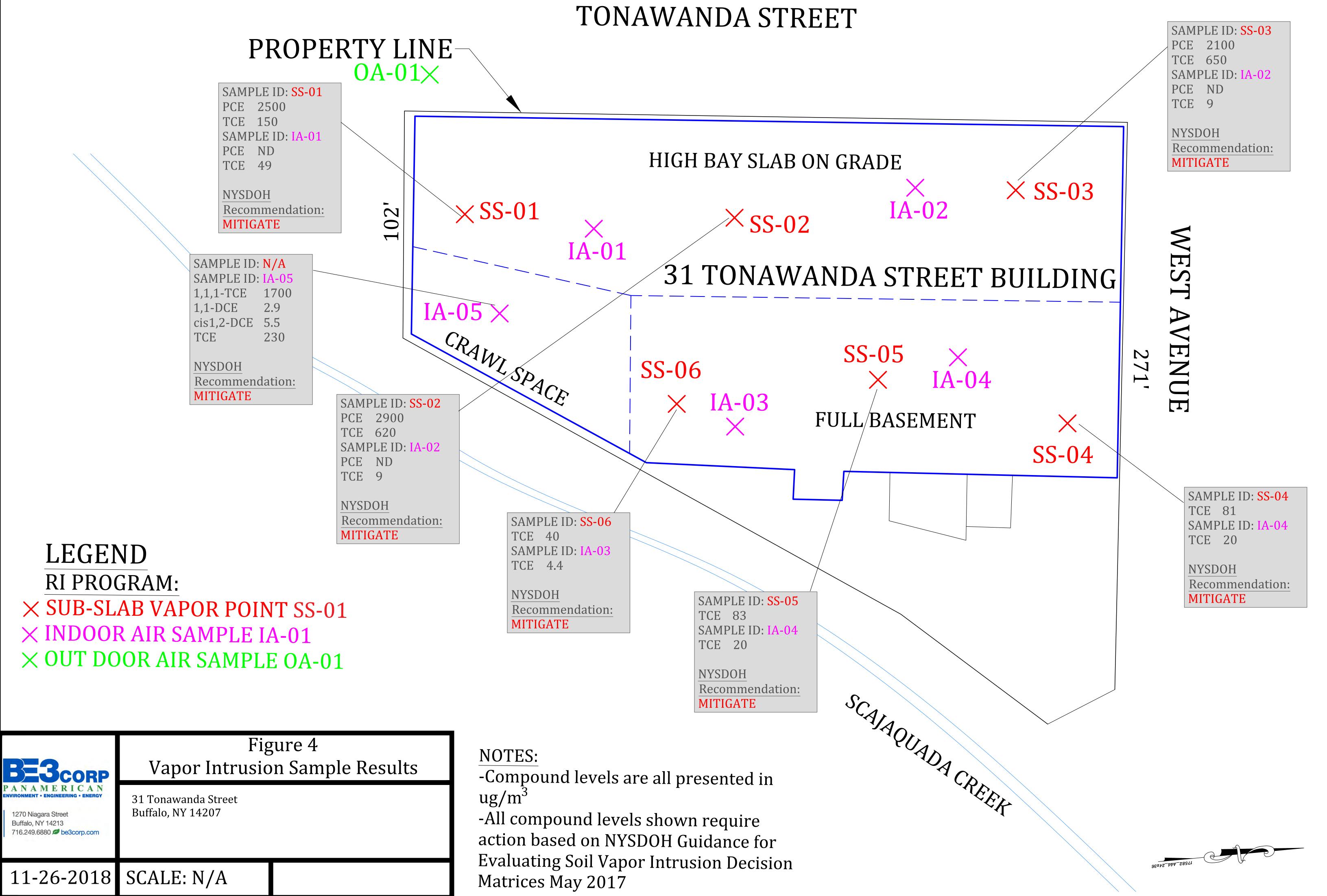
Exceeds TOGs Guidance Value

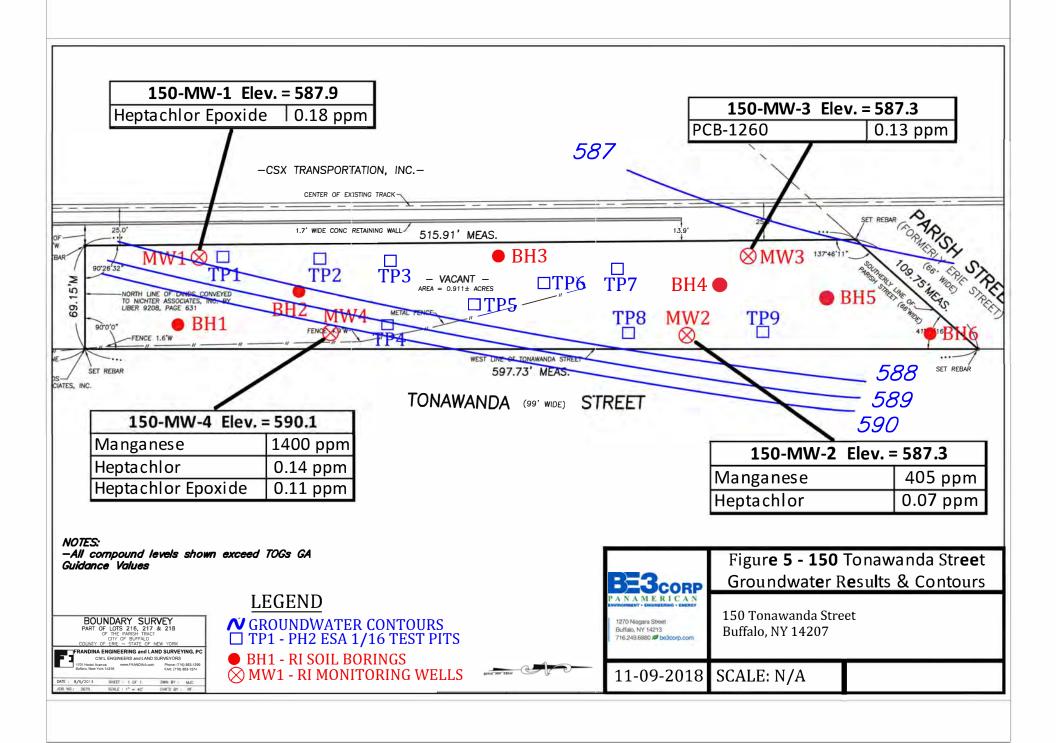

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

REMEDIAL INVESTIGATION FIGURES

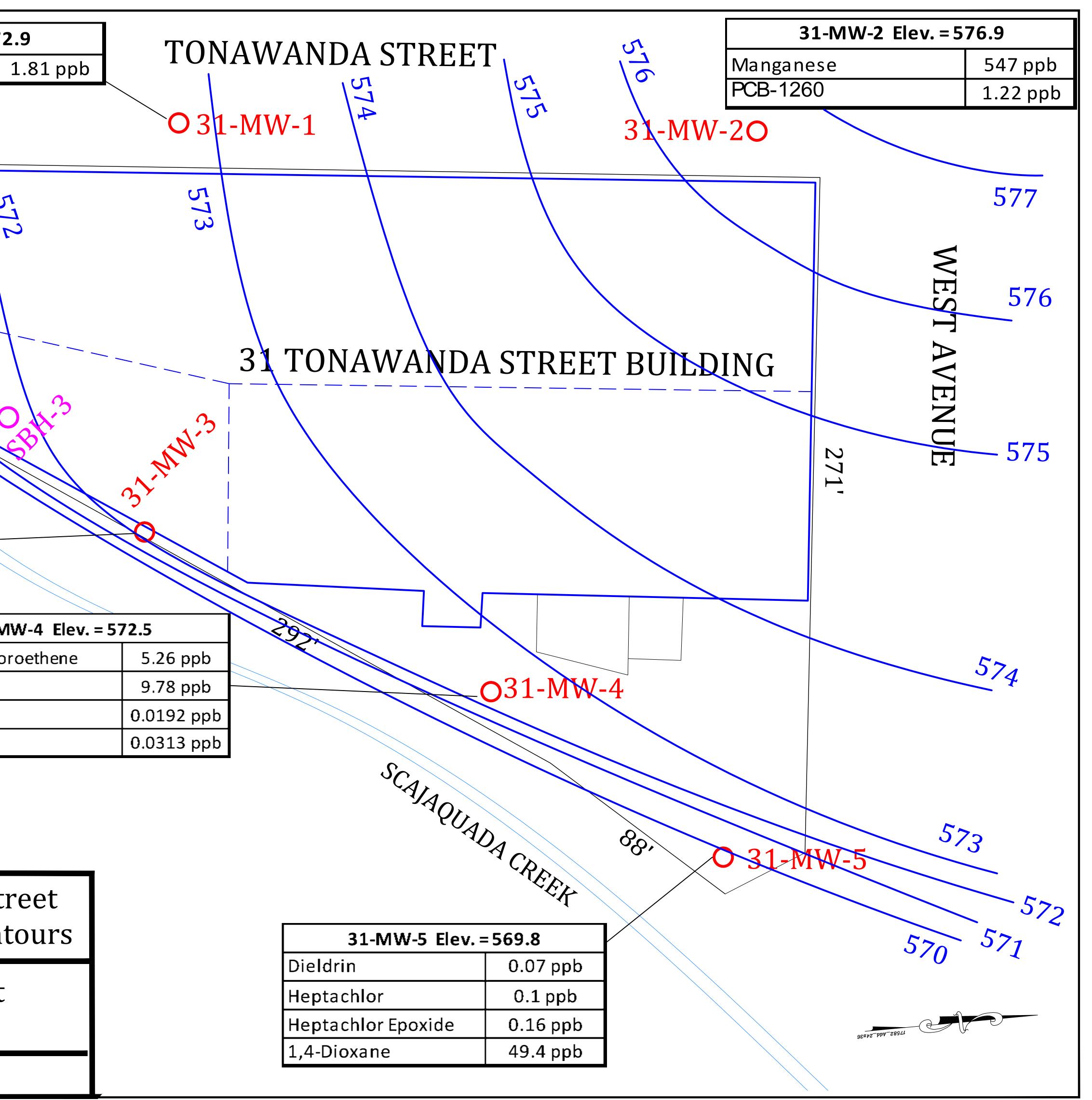


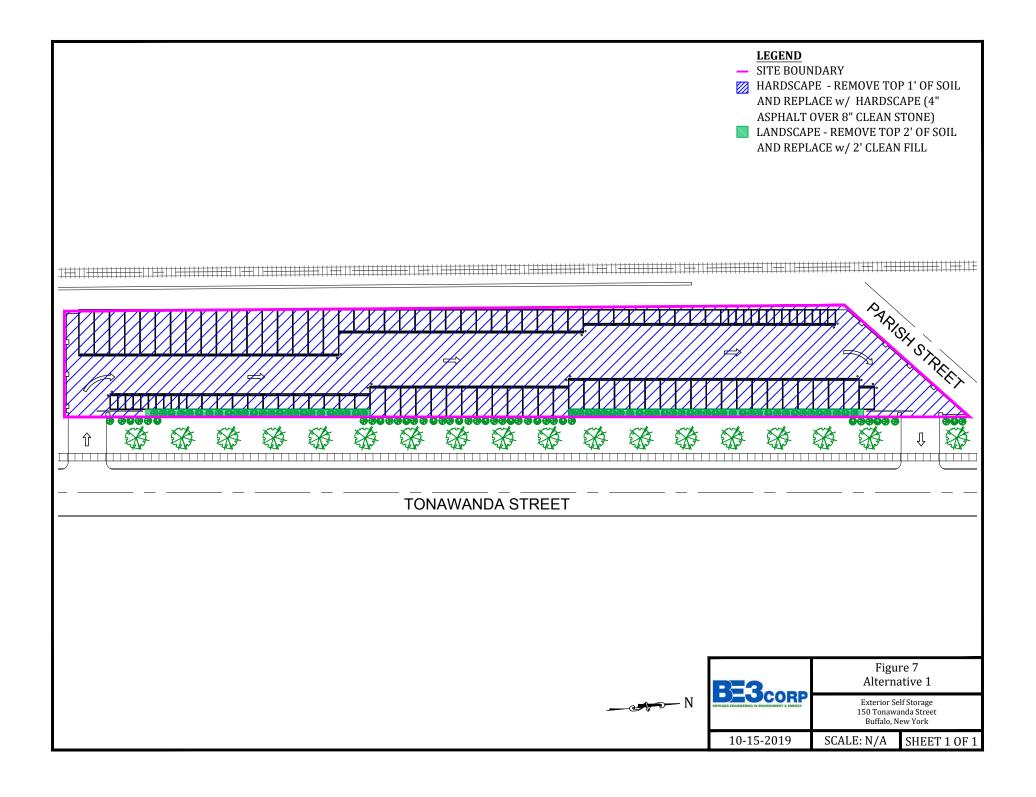


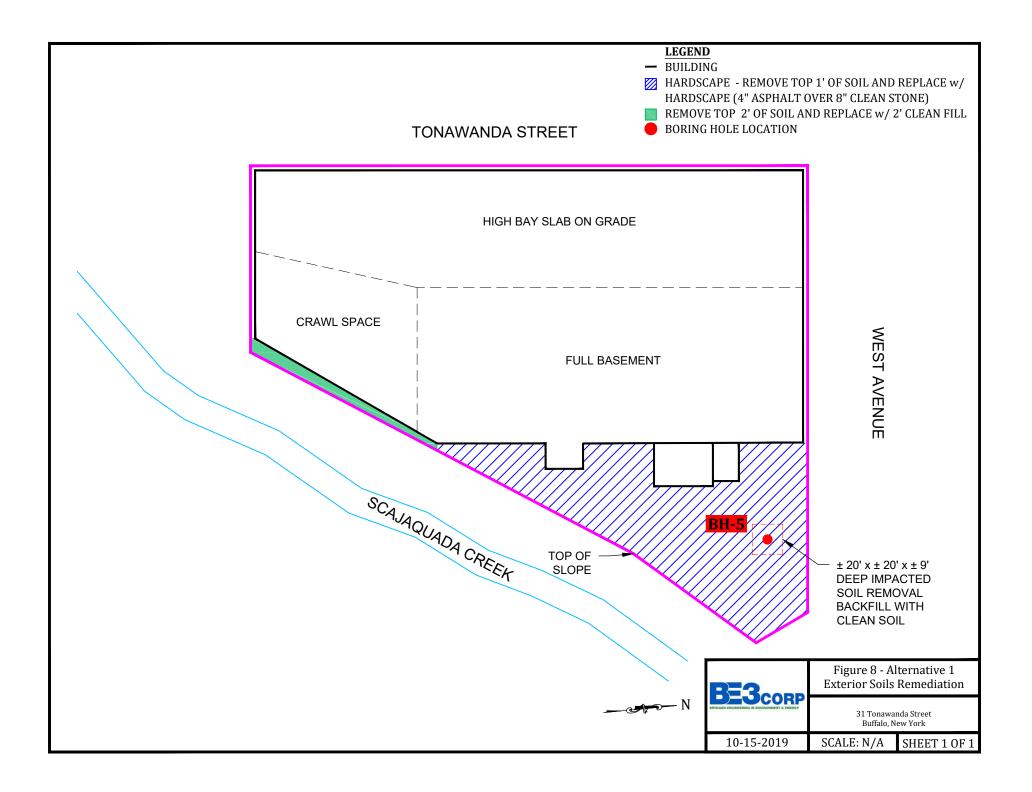

TONAWANDA STREET



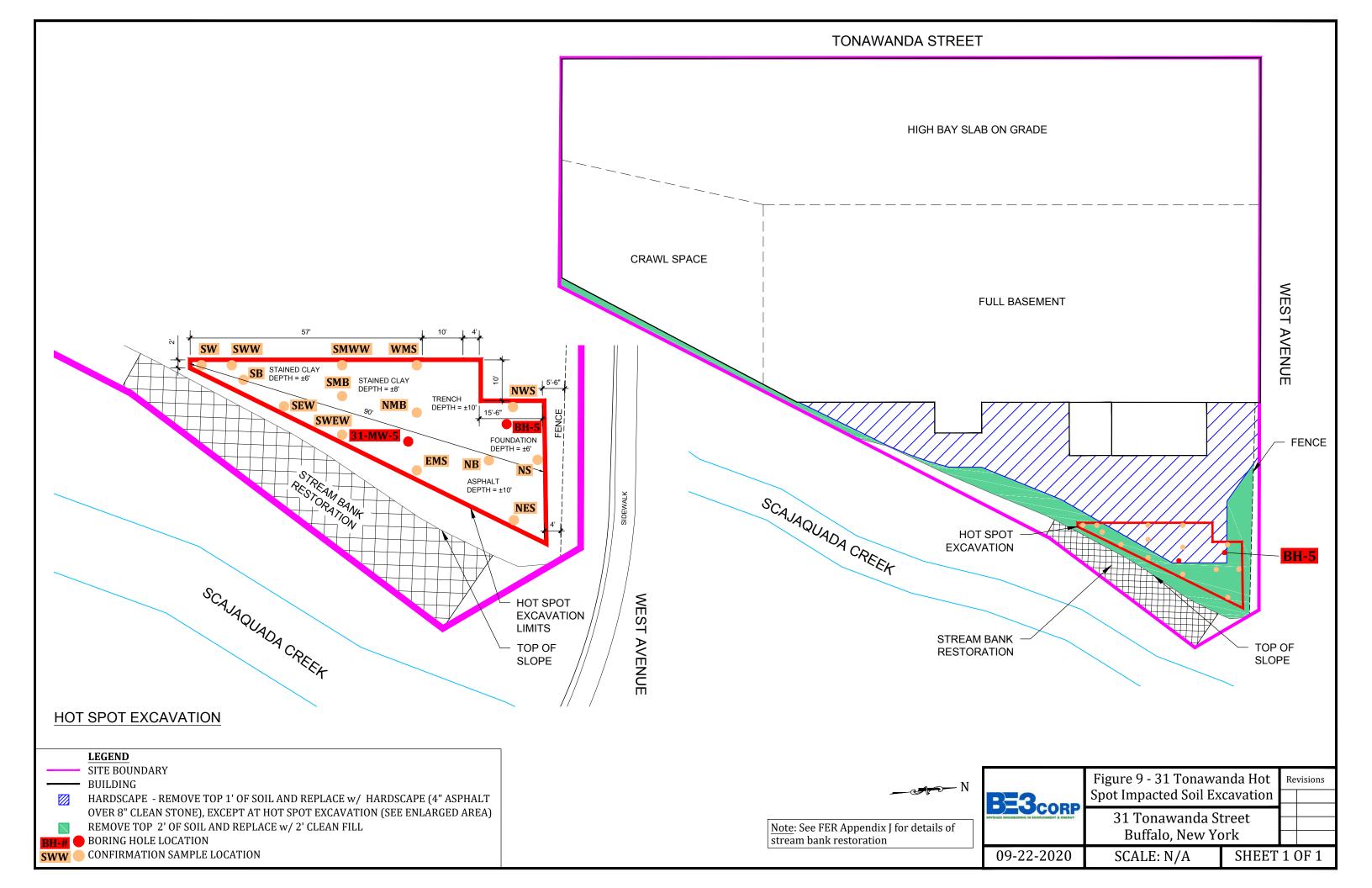
SBH-6	C-1 (8'-12')	
	1,1 Dichloroethene	31.5 ppm
	1,1,1 - Trichloroethene	670 ppm



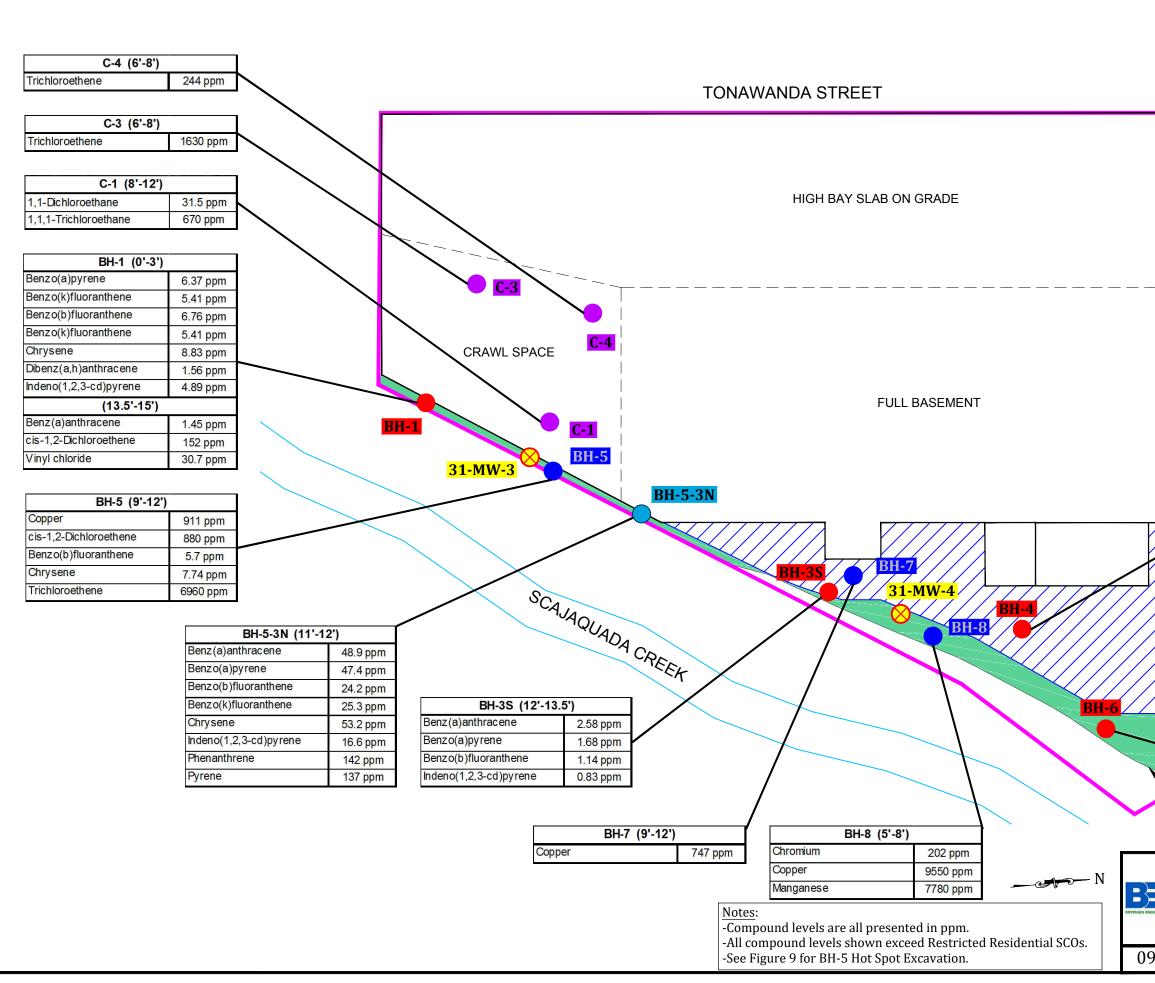

Notes: -All compund levels shown exceed TOGS GA Guidance Values or NYSDEC emergent chemical guidance values

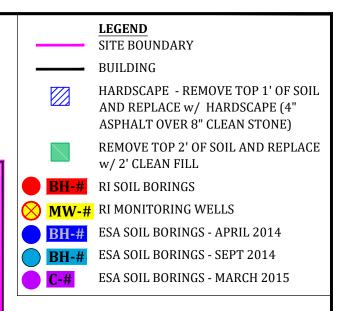

31-MW-1 Elev. = 572.9

PCB-1260


	SBH-3 GW	1				51
1,1,1-Trichlo		51.1 p	h			
1,1-Dichloro		42 pp			5	
cis-1,2-Dich					102'	
Trichloroeth		194 pp				
Vinyl chloric		147 pp			571	
				57		
31-M\	N-3 Elev. =	572.1				
1,1,1-Trichlor	oethane	188800 p	opb			
1,1-Dichloroe	thane	75700 p	pb			
1,1-Dichloroe	thene	2510 pp	b			
cis-1,2-Dichlo	roethene	37500 p	pb			
Vinyl chloride		5080 pp	b			
1,4-Dioxane		5020pp	b			
PFOA		0.0148p	pb			31-MW-4
PFOS		0.01 pp	b		cis-1,2-0	Dichloroet
					1,4-Diox	ane
LEGEN	D				PFOA	
RI PROG					PFOS	
$O \overline{GW} SAM$		M SRH.	2	FER	2010	
O MONITO					2019	
V GROUNE						
• unooni		CONIC				
	Figur	e 6: 31	T	onav	wanda	a Stree
BEBCORP	U	dwate				
A N A M E R I C A N RONMENT • ENGINEERING • ENERGY	aroan			cour		
270 Niagara Street Buffalo, NY 14213 716.249.6880 <i>Ø</i> be3corp.com		31 Toi	nav	van	da Str	eet
					1420	
				,		, ,
08-06-2019	SCALE:	N/A	SH	IEET	1 OF 1	




AS-BUILT FIGURES



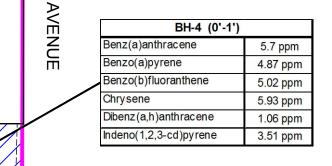


	Figure 10-Remaining Contamination Results Exceeding RR SCOs			isions
	150 Tonawanda S			
	Buffalo, New York			
9-22-2020	SCALE: N/A	SHEET 1 OF 1)F 1

BH-6 (4'-6')	
Copper	1480 ppm
Total Mercury	1.34 ppm

TOP OF SLOPE

WEST

	Figure 11-Remaining Contamination Results Exceeding RR SCOs			visions
-3copp				
IGINEERING IN ENVIRONMENT & ENERGY	31 Tonawanda S			
	Buffalo, New York			
9-22-2020	SCALE: N/A	SHEET 1 OF 1		DF 1