Supplemental Phase II Environmental Investigation

Orchard Park Plaza Site Orchard Park, New York

June 2014 0304-014-001

Prepared for:

3021-3041 Orchard Park Road, LLC

Prepared by:

TurnKey Environmental Restoration, LLC

2558 Hamburg Turnpike, Buffalo, New York | phone: (716) 856-0635 | fax: (716) 856-0583

SUPPLEMENTAL PHASE II ENVIRONMENTAL INVESTIGATION REPORT

Orchard Park Plaza Site 3021-3041 Orchard Park Road Orchard Park, New York

June 2014 0304-014-001

Prepared for:

3021-3041 Orchard Park Road, LLC

SUPPLEMENTAL PHASE II ENVIRONMENTAL INVESTIGATION REPORT

Orchard Park Plaza Site 3021-3041 Orchard Park Road Orchard Park, New York

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	Background and Site Description	
2.0	SIT	E INVESTIGATION	2
	2.1	Interior Subsurface Soil Investigation	2
	2.2	Subslab Vapor Sampling	2
	2.3	Groundwater Sampling	2
3.0	Inv	ESTIGATION FINDINGS	
	3.1	Field Observations	
	0.1	3.1.1 Qualitative Soil Screening	4
		3.1.2 Hydrogeology	4
	3.2	Soil Analytical Results	
	3.2	Vapor Monitoring Analytical Results	
	3.3	Groundwater Analytical Results	
4.0	Coi	NCLUSIONS AND RECOMMENDATIONS	7
5.0	Lim	IITATIONS	8

SUPPLEMENTAL PHASE II ENVIRONMENTAL INVESTIGATION REPORT

Orchard Park Plaza Site 3021-3041 Orchard Park Road Orchard Park, New York

LIST OF TABLES

Table 1	Summary of Soil Analytical Results						
Table 2	Comparison of Indoor Air Monitoring Results to NYSDOH Matrices						
Table 3	Soil Vapor/Indoor Air Matrix 1						
Table 4	Soil Vapor/Indoor Air Matrix 2						
Table 5	Summary of Groundwater Analytical Results						
LIST OF FIGURES							
Figure 1	Site Location and Vicinity Map						
Figure 2	Air Monitoring & Soil Boring Locations						
	APPENDICES						
Appendix A	Previous Investigation						
Appendix B	Water Quality Field Collection Logs						
Appendix C	Laboratory Analytical Data Summary Package						

1.0 Introduction

1.1 Background and Site Description

TurnKey Environmental Restoration, LLC (TurnKey) performed a Supplemental Phase II Environmental Investigation on behalf of 3021-3041 Orchard Park Road, LLC at the property addressed as 3021-3041 Orchard Park Road, Town of Orchard Park, Erie County, New York (i.e., the "Site"; see Figure 1). This investigation was performed based on the findings of the "Limited and Focused Subsurface Soil and Groundwater Investigation Report" prepared by LCS, Inc. on May 14, 2014 (see Appendix A).

The subject property is located in a moderately developed commercial and residential area of Orchard Park, New York. The Site, totaling approximately 5.44-acres and encompassing Tax ID Nos. 152.12-2-1, is bordered by Michael Road to the north, convenience store/pharmacy facilities to the south and east, and Orchard Park Road to the west. The Site is improved with a single story multiple unit commercial building.

According to the LCS report, the commercial plaza housed a dry cleaning tenant in the 3035 and 3039 Orchard Park Road tenant units between 1979 and 2008. The LCS investigation included the completion of a subsurface soil and groundwater investigation in accessible exterior areas of the Site to assess potential environmental impact related to the past operation of a dry cleaning facility. The investigation indicated that no analytes were detected in soil at concentrations in exceedance of NYSDEC Part 375 Soil Cleanup Objectives. However, chlorinated volatile organic compounds (cVOCs), commonly associated with dry cleaning facilities, were detected in two temporary monitoring wells in exceedance of NYSDEC Groundwater Criteria (Class GA).

Based on the findings of the LCS report, further investigation was recommended to delineate the extent of cVOCs found at the site. The additional investigation included interior soil borings, a vapor intrusion study and exterior borings and temporary monitoring wells.

2.0 SITE INVESTIGATION

2.1 Interior Subsurface Soil Investigation

On May 20, 2012, TurnKey mobilized a concrete core drill to the site and penetrated the concrete slab at six locations within the commercial building to facilitate collection of underlying soil samples via hand auger. The soil borings included one in tenant address #3037 (a current paint shop) identified as SB-1, one in tenant address #3035 (a hair salon) identified as SB-2, and four within tenant space #3039 (current vacant former dry cleaning facility) identified as SB-3 through SB-6. Soil boring locations are shown on Figure 2. Soil descriptions were completed in the field via visual characterization of excavated soils and test pit excavation faces using the Unified Soil Classification System (USCS), and scanned for total volatile organic vapors with a calibrated MiniRae 3000 PID equipped with a 10.6 eV lamp.

The soil/fill samples were placed in pre-cleaned, laboratory provided sample bottles using dedicated stainless steel sampling tools, and cooled to 4° C in the field. The samples were transported under chain-of-custody command to Alpha Analytical for analysis of Target Compound List (TCL) volatile organic compounds (VOCs), via EPA Method 8260.

2.2 Subslab Vapor Sampling

On May 20, 2014 TurnKey personnel collected three air samples in accordance with NY State Department of Health (NYSDOH) protocols for subslab vapor intrusion investigation: a subslab vapor sample and a corresponding indoor ambient air sample (collected from the former dry cleaning unit), and an outdoor ambient air sample. The samples were collected using Summa® canisters with 12 hour regulators. The canisters were transported under chain-of-custody command to Alpha Analytical for VOC analysis via USEPA Method TO-15. The air sample locations are shown on Figure 2.

2.3 Groundwater Sampling

Boreholes BH-10/TPMW-7 through BH-14/TPMW-11 were completed on May 21, 2014, in accessible locations of the subject property (see Figure 2). Soil samples were

SUPPLEMENTAL PHASE II ENVIRONMENTAL INVESTIGATION REPORT 3021-3041 ORCHARD PARK ROAD, ORCHARD PARK, NEW YORK

collected with a truck-mounted percussion and hydraulically driven drive system equipped with a 1.5-inch diameter, 48 inch long macro-core sampler.

Following borehole advancement described above, five new temporary monitoring wells were installed at the site (see Figure 2). The wells were constructed using one-inch diameter Schedule 40 PVC well screen. The temporary wells were allowed to stabilize a minimum of one hour prior to groundwater sample collection. Groundwater grab samples were collected from each temporary well utilizing dedicated 0.5" polyethylene bailers. Field measurements of pH, temperature, specific conductance, and turbidity were determined following collection of the analytical samples. Field measured parameters were recorded on Water Quality Field Collection Logs presented in Appendix B. All temporary wells were manually decommissioned (pulled) following reference elevation determinations. The resulting open annulus was backfilled with site soils and/or bentonite and supplemented at the surface with asphalt patch or soil to match the existing grade.

Groundwater samples were placed in pre-cleaned laboratory provided sample bottles, cooled to 4 °C in the field, and transported under chain-of-custody to Alpha Analytical for analysis of VOCs (EPA Method 8260)

3.0 INVESTIGATION FINDINGS

3.1 Field Observations

3.1.1 Qualitative Soil Screening

Soil samples were observed and screened via headspace for VOCs using a PID with measurements ranged from 2.8 ppm (SB-1) to approximately 100 ppm (SB-5) above background (0.0 ppm). A brief description of the field observations is presented below:

	Sample Interval		PID Reading
Sample ID	(Depth Below Slab)	Soil Description	(ppm)
SB-1	1.5' – 2'	sandy lean clay	0 - 2.8
SB-2	1' - 2.5'	sandy lean clay	0 - 7.5
SB-3	2.5' – 3'	sandy lean clay	0 - 4.5
SB-4	2.5' – 3'	weathered shale	0 - 4.5
SB-5	2.5' – 3'	sandy lean clay	0 - 100
SB-6	2.5' – 3'	weathered shale	0 – 1.9

3.1.2 Hydrogeology

Field observations and groundwater elevation measurements are summarized below:

Sample ID	Field Description	PID	Groundwater Elevation ¹
BH10/ TPMW-7	0-0.25': asphalt 0.25'-0.5': gravel 0.5' - 1': brown, moist mostly fine sand 1'-2': shale fragments 2' - 8': silty clay, brown, moist, low plasticity	0-4':0 ppm 4 -8': 0 ppm 8-10': 0 ppm	498.88
Dilida	8' – 10': silty clay w/ shale fragments, moist to wet at 8.5' 10': refusal		400.05
BH11/ TPMW-8	0-0.25': asphalt 0.25'-0.5': gravel 0.5' – 4': grey silty clay with gravel, moist 4' – 8': brown silty clay, moist 8' – 15': grey silty clay w/ gravel, stiff, moist 15': refusal	0-4':0 ppm 4 -8': 0 ppm 8-12': 0 ppm 12-15': 0 ppm	498.85

Sample			Groundwater
ID	Field Description	PID	Elevation ¹
BH12/ TPMW-9	0-0.25': asphalt 0.25'-0.5': gravel 0.5' - 1': shale fragments 1' - 4': grey, moist silty clay w/ shale fragments 4' - 9': brown silty clay; moist to wet at 5' 9'- 14': grey, moist silty clay w/ gravel 14': refusal	0-4': 3.5 ppm 4 -8': 0 ppm 8-12': 0 ppm 12-15': 0 ppm	498.71
BH13/ TPMW- 10	0-0.25': asphalt 0.25'-0.5': gravel 0.5' – 1': shale fragments 1' – 4': grey, moist silty clay w/ shale fragments 4' – 9': brown silty clay; moist to wet at 5' 9'- 15': grey, moist silty clay w/ gravel 15': refusal	0-4':0 ppm 4 -8': 0 ppm 8-12': 0 ppm 12-15': 0 ppm	498.44
BH14/ TPMW- 11	0-0.25': asphalt 0.25'-0.5': gravel 0.5' – 1': shale fragments 1' – 4': grey, moist silty clay w/ shale fragments 4' – 9': brown silty clay; moist to wet at 5' 9'- 15': grey, moist silty clay w/ gravel 15': refusal	0-4':0 ppm 4 -8': 0 ppm 8-12': 0 ppm 12-15': 0 ppm	498.74

³ Survey measurement relative to arbitrary vertical datum

3.2 Soil Analytical Results

Table 1 presents a summary of the detected VOCs and associated concentrations for each of the six sub-slab sample locations. For comparative purposes Table 1 includes Soil Cleanup Objectives (SCOs) for commercial use as well as Protection of Groundwater SCOs per 6 NYCRR Part 375-6. Appendix C contains a copy of the laboratory analytical data package.

As indicated on Table 1, the analytical data results indicate one cVOC, tetrachloroethene (PCE), was detected above its protection of groundwater SCO in soil borings SB-5 and SB-6.

3.2 Vapor Monitoring Analytical Results

Table 2 presents results of the indoor, subslab and outdoor air sampling relative to the seven VOCs currently addressed under NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006). The data are screened against decision matrices contained in the NYSDOH guidance (Tables 3 and 4), with the resultant recommended action presented on Table 2. As indicated, all detections were characterized as requiring no further action (NFA) with the exception of carbon tetrachloride (recommended additional monitoring per NYSDOH matrices) and PCE, which slightly exceeded the NFA criteria and is categorized as "IR" (identify sources and reduce exposures). It is important to note that carbon tetrachloride was detected in the outdoor air sample at a similar concentration as the indoor air, suggesting some potential bias from background conditions.

3.3 Groundwater Analytical Results

Groundwater sample results are summarized on Table 5 with comparison to Class GA Groundwater Quality Standards and Guidance Values (GWQSGVs) per NYSDEC T.O.G.S 1.1.1. A copy of the complete laboratory analytical data package is included in Appendix C.

As indicated on Table 5, no VOCs were detected above their respective GWQSGVs in temporary wells TPMW-8 through TPMW-10. At TPMW-7 cis-1,2-dichloroethene and, to a lesser extent, vinyl chloride were detected at concentrations above the standards. Contaminant concentrations were highest at TPMW-11, where benzene, cis-1,2-dichloroethene, tetrachloroethene, trichloroethene and vinyl chloride were detected above the GWQSGVs.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the supplemental Phase II investigation at the Site, TurnKey offers the following recommendations:

- The impacted soils identified within the building should be remediated to mitigate contributions to sub-slab vapor intrusion and/or further degradation of groundwater quality and minimize health and environmental risk if exposed during building renovation work or demolition.
- In-situ groundwater treatment should be performed in the area east of the former drycleaner to break down the remaining contaminants in the saturated zone.
- A subslab depressurization system should be designed, installed and operated within the building to protect current and future occupants from potential subslab vapor intrusion.

5.0 LIMITATIONS

This report has been prepared for the exclusive use of 3021-3041 Orchard Park Road, LLC. The contents of this report are limited to information available at the time of the site investigation activities and to data referenced herein, and assume all referenced historic information sources to be true and accurate. The findings herein may be relied upon only at the discretion of 3021-3041 Orchard Park Road, LLC. Use of or reliance on this report or its findings by any other person or entity is prohibited without written permission of TurnKey Environmental Restoration, LLC.

TABLES

TABLE 1
SUMMARY OF SOIL ANALYTICAL RESULTS

3021 - 3041 Orchard Park Road Orchard Park, New York

			Commercial Soil	Soil Cleanup Objectives for					
Parameter	SB-1 (5/20/2014)	SB-2 (5/20/2014)	SB-3 (5/20/2014)	SB-4 (5/20/2014)	SB-5 (5/20/2014)	SB-6 (5/20/2014)	Cleanup Objectives ⁽¹⁾	the Protection of Groundwater (1)	
TCL Volatile Organic Compounds	TCL Volatile Organic Compounds (VOCs) - ug/kg ²								
Cyclohexane	ND	ND	ND	13 J	ND	4.8 J			
cis-1,2-Dichloroethene	0.55 J	0.93 J	ND	4.6	0.92 J	28	500,000	330	
trans-1,2-Dichloroethene	ND	0.56 J	ND	ND	ND	2.6 J	500,000	330	
Isopropylbenzene	ND	ND	ND	0.64 J	ND	ND			
Methylene Chloride	ND	2.5 J	3 J	2.4 J	5.7 J	7.3 J	500,000	50	
Methylcyclohexane	ND	ND	ND	53	ND	29			
Trichloroethene	14	8.2	0.91 J	6.5	16	140	200,000	470	
Tetrachloroethene	700	150	13	59	2000	9900	150,000	1,300	
m/p- Xylene	ND	ND	ND	0.72 J	ND	ND	500,000	1,600	
o-Xylene	ND	ND	ND	0.33 J	ND	ND	500,000	1,600	
1,2,3-Trichlorobenzene	0.4 J	ND	ND	ND	ND	ND			
Toluene	0.32 J	0.35 J	0.36 J	ND	0.64 J	0.8 J	500,000	700	

Notes:

- 1. Restricted-commercial soil cleanup objectives (SCOs) per 6 NYCRR Part 375.
- 2. Only those compounds detected above the laboratory reporting limit are presented in this table.
- 3. -- = indicates no SCO available
- 4. J = indicates an estimated value.
- 5. ND= not detected above laboratory detection limits.
- 6. Shaded yellow indicates exceedance of Protection of Groundwater SCOs

TABLE 2

COMPARISON OF INDOOR AIR MONITORING RESULTS TO NYSDOH MATRICES

3021 - 3041 Orchard Park Road Orchard Park, New York

Sample Location	Trichloroethene (TCE)		Carbon Tetrachloride		Vinyl Chloride Tetrac		Tetrachloroe	Tetrachloroethene (PCE)		1,1-Dichloroethene		cis-1,2-Dichloroethene		1,1,1 -Trichloroethane	
	Lab Reported Concentration (ug/m³)	Soil Vapor / Indoor Air Matrix 1	Lab Reported Concentration (ug/m³)	Soil Vapor / Indoor Air Matrix 1	Lab Reported Concentration (ug/m³)		Lab Reported Concentration (ug/m³)	Soil Vapor / Indoor Air Matrix 2	Lab Reported Concentration (ug/m³)	Soil Vapor / Indoor Air Matrix 2	Lab Reported Concentration (ug/m³)	Soil Vapor / Indoor Air Matrix 2	Lab Reported Concentration (ug/m³)	Soil Vapor / Indoor Air Matrix 2	
Subslab	ND		16.6		ND		3.93		ND		ND		ND		
Indoor	ND	NFA	0.340	Monitor	ND	NFA	3.19	I,R	ND	NFA	ND	NFA	ND	NFA	
Outdoor	ND		0.327		ND		0.258		ND		ND		ND		

Notes:

"ND" = Not Detected

"NFA" = No further action.

"I, R" = Take reasonable and practical actions to identify source(s) and reduce exposures.

"Monitor" = Monitor soil vapor / indoor air

"Mitigate" = Mitigate source of identified parameter.

TABLE 3

Soil Vapor/Indoor Air Matrix 1 Carbon Tetrachloride, Trichloroethene (TCE) & Vinyl Chloride

(October 2006/June 2007)

3021 - 3041 Orchard Park Road Orchard Park, New York

SUB-SLAB VAPOR CONCENTRATION	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m³)						
of COMPOUND (mcg/m³)	< 0.25	0.25 to < 1	1 to < 5.0	5.0 and above			
< 5	1 No further action	practical actions to	practical actions to	4. Take reasonable and practical actions to identify source(s) and reduce exposures			
5 to < 50	5. No further action	6. MONITOR	7. MONITOR	8. MITIGATE			
50 to < 250	9. MONITOR	10. MONITOR/MITIGATE	11. MITIGATE	12. MITIGATE			
250 and above	13. MITIGATE	14. MITIGATE	15. MITIGATE	16. MITIGATE			

TABLE 4

Soil Vapor/Indoor Air Matrix 2 Tetrachloroethene (PCE), 1,1,1,-Trichloroethane (1,1,1-TCA) cis-1,2-dichloroethene (cis-1,2, DCE), 1,1-Dichloroethene (1,1, DCE) (October 2006/June 2007)

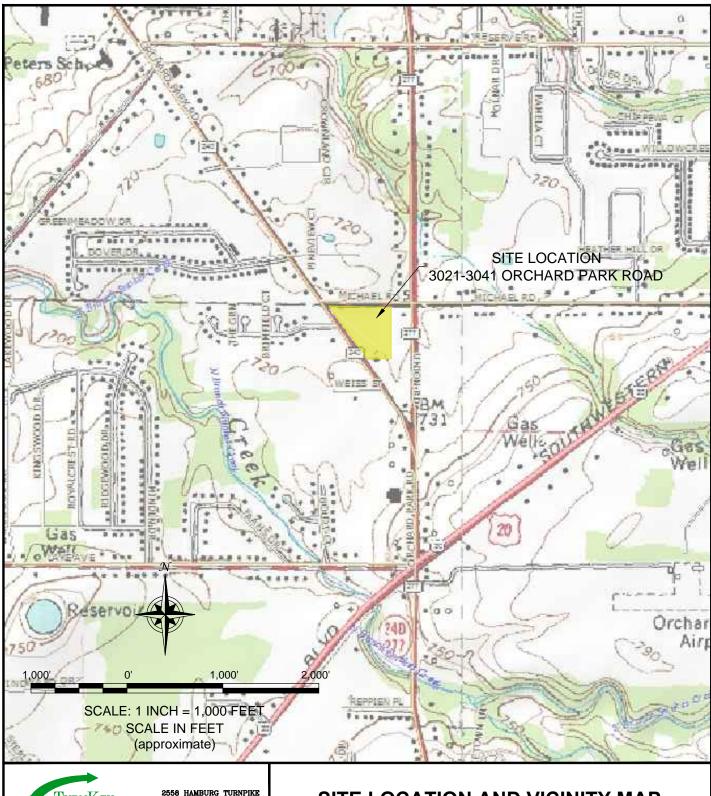
3021 - 3041 Orchard Park Road Orchard Park, New York

SUB-SLAB VAPOR CONCENTRATION	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m³)						
of COMPOUND (mcg/m ³)	< 3	3 to < 30	30 to < 100	100 and above			
< 100	1. No further action	practical actions to identify source(s) and	practical actions to	4. Take reasonable and practical actions to identify source(s) and reduce exposures			
100 to < 1,000	5. MONITOR	6. MONITOR/MITIGATE	7. MITIGATE	8. MITIGATE			
1,000 and above	9. MITIGATE	10. MITIGATE	11. MITIGATE	12. MITIGATE			

TABLE 5

SUMMARY GROUNDWATER ANALYTICAL DATA

3021-3041 Orchard Park Road Orchard Park, New York


PARAMETER ¹	GWQS ²	TPMW-7	TPMW-8	TPMW-9	TPMW-10	TPMW-11
		05/22/14	05/22/14	05/22/14	05/22/14	05/22/14
Volatile Organic Compounds (VOCs) - (I	ug/L)					
1,1-Dichloroethene	5	ND	ND	ND	ND	0.24 J
Acetone	50	3 J	4.2 J	7.6	13	7
Benzene	1	ND	0.16 J	ND	ND	1.2
Cyclohexane		0.35 J	0.54 J	4.3 J	1.3 J	3.8 J
cis-1,2-Dichloroethene	5	30	ND	ND	ND	87
Methyl Cyclohexane		0.65 J	0.74 J	10	1.3 J	8.2 J
Methyl tert butyl ether (MTBE)		ND	ND	ND	1.9 J	ND
Tetrachloroethene	5	2	ND	ND	ND	15
trans-1,2-Dichloroethene	5	1.8 J	ND	ND	ND	1.2 J
Trichloroethene	5	2	ND	ND	ND	11
Vinyl chloride	2	2.7	ND	ND	ND	11
m/p Xylene	5	ND	ND	1 J	ND	ND

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per NYSDEC Division of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA (TOGS 1.1.1)
- 3. J = Estimated value.

FIGURES

FIGURE 1

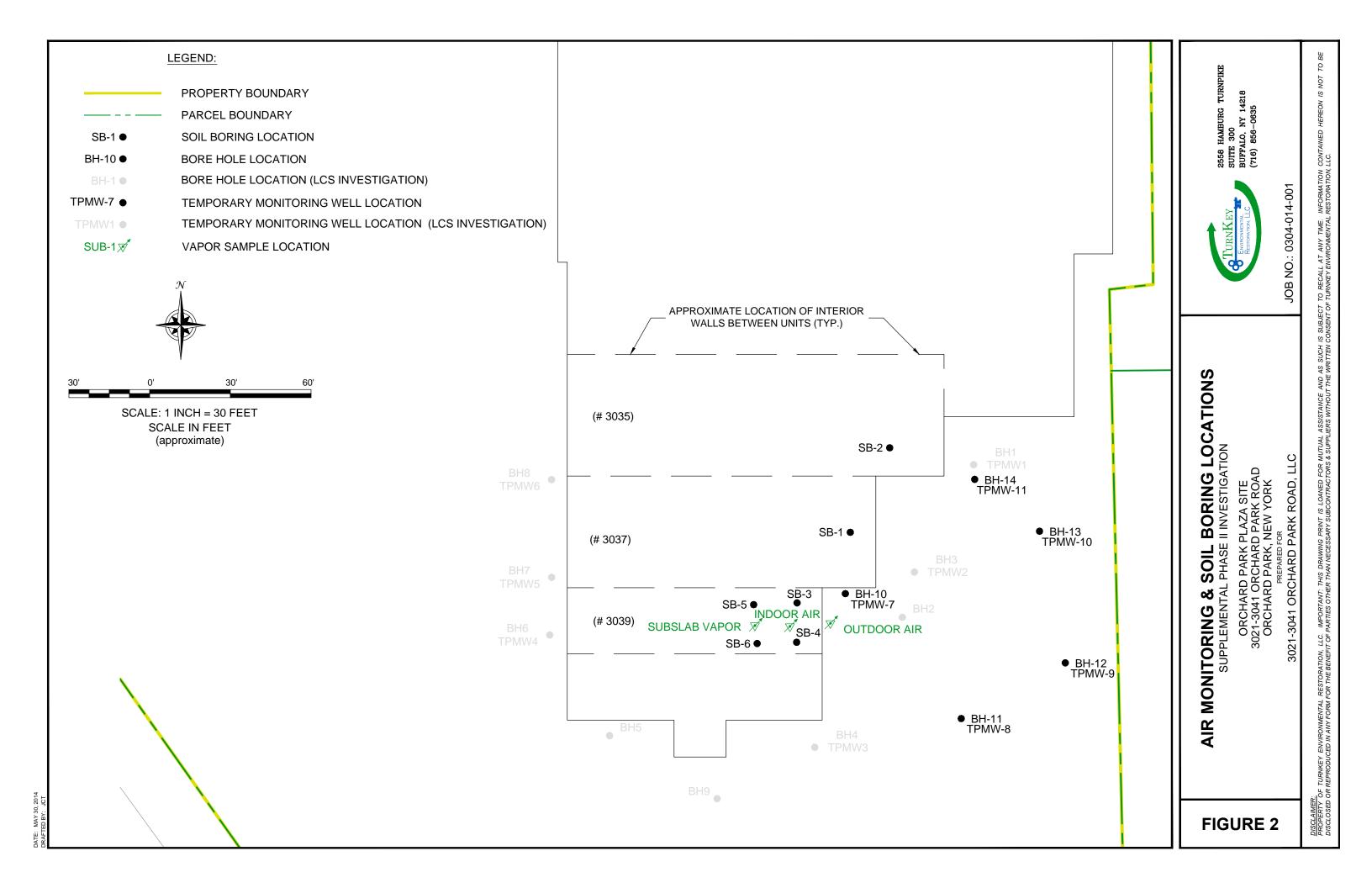
2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

PROJECT NO.: 0304-014-001

DATE: MAY 30, 2014

DRAFTED BY: JCT

SITE LOCATION AND VICINITY MAP


SUPPLEMENTAL PHASE II INVESTIGATION

ORCHARD PARK PLAZA SITE 3021-3041 ORCHARD PARK ROAD ORCHARD PARK, NEW YORK

PREPARED FOR

3021-3041 ORCHARD PARK RD, LLC

PROPERTY OF TURNKEY ENVIRONMENTAL RESTORATION, LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENVIRONMENTAL RESTORATION, LLC.

APPENDIX A

PREVIOUS INVESTIGATION REPORT (PROVIDED ELECTRONICALLY)

Limited and Focused Subsurface Soil and Groundwater Investigation Report for the Property Identified as:

Commercial Plaza 3021-3041 Orchard Park Road Orchard Park, New York

LCS PROJECT # 13B4431.22

May 14, 2014

Lender Consulting Services, Inc. Corporate Headquarters Waterfront Village 40 La Riviere Drive Suite 120 Buffalo, New York 14202

> Tel: 800.474.6802 716.845.6145 Fax: 716.845.6164 www.lenderconsulting.com

May 14, 2014

Mr. Michael Thomas Northwest Savings Bank 3150 Sheridan Drive Amherst, New York 14226

Re: Limited and Focused Subsurface Soil and Groundwater Investigation

Commercial Plaza 3021-3041 Orchard Park Road Orchard Park, New York LCS Project No. 13B4431.22

Dear Mr. Thomas:

Background

At your request, Lender Consulting Services, Inc. (LCS) performed a limited and focused subsurface soil and groundwater investigation at the property identified as multi-unit retail store, located at 3021-3041 Orchard Park Road, Orchard Park, New York (See Figure 1). The subject property measures approximately 5.44 acres and is occupied by several commercial tenants. The subject property is located in a moderately developed commercial and residential area. The topography of the site is generally level at grade.

This investigation was recommended based on the information gathered by LCS during an All Appropriate Inquiries Phase I Environmental Site Assessment Report for the above-referenced property, dated October 10, 2013. Through that report, the following recognized environmental condition was identified warranting intrusive study at that time.

 According to historic city directories and regulatory listings, the subject property was utilized for dry cleaning from at least 1979 through 2008. The historic dry cleaning tenants were addressed at 3035 and 3039 Orchard Park Road.

Introduction

The purpose of this study was to better assess the environmental quality of on-site soils and groundwater in accessible locations of the subject property due to the environmental concern identified above. Soil samples were collected for stratigraphic characterization and field monitoring. Temporary groundwater monitoring wells (TPMWs) were installed within select test borings where groundwater was encountered. Select soil and groundwater samples were submitted for laboratory analysis to supplement field observations. The temporary wells were removed following sampling.

The following is a summary of the methods and results of the investigation.

Methods of Investigation

Soil

Soil samples were collected on May 7, 2014, with a truck-mounted percussion and hydraulically driven drive system equipped with an approximate 2-inch diameter, approximate 60-inch long macro-core sampler. Soil samples were collected within each borehole continuously from the ground surface to a depth of between approximately 16 and 18.5 feet below the ground surface (ft. bgs). Any downhole equipment was decontaminated with an Alconox and tap water wash and tap water rinse between boreholes. The cutting shoes were decontaminated in a similar manner between collection of each sample.

The physical characteristics of all soil samples were classified using the Unified Soil Classification System (USCS) (Visual-Manual Method). Upon collection, the liner containing the sample was opened slightly at several locations and total volatile organic compound (VOC) concentrations in air within the sample were recorded using a photoionization detector (PID) calibrated in accordance with manufacturer's specifications. (The PID is designed to detect VOCs, such as those associated with petroleum and some solvents.) The results of this screening are included in the attached boring logs. Based on the field observations and/or PID measurements, soils were selected for analysis (see below).

Groundwater

Temporary groundwater monitoring wells TPMW1 through TPMW6 were installed within boreholes BH1, BH3, BH4, BH6 through BH8. Generally, the bottoms of the wells were set to approximately 16 to 18 ft. bgs. Each of the wells was constructed with one-inch diameter PVC screen and riser with a silica filter pack placed around the well screen. A bentonite seal was placed above the sand and the wells were covered with plastic caps, to prevent surface water from entering the wells. Refer to the attached subsurface logs/well construction details for well specific well construction details.

The groundwater samples from the temporary groundwater monitoring wells were collected on May 7, 2014 and May 8, 2014. Prior to sample collection, each well was developed by removing three to five well volumes from the well. New disposable dedicated PVC bailers were used for well development and sample collection activities.

Sample Analysis

Following labeling of the laboratory-supplied sample containers, selected samples were placed on ice. The samples were then submitted, under standard chain-of-custody, to a National Environmental Laboratory Accreditation Council (NELAC) approved laboratory for analysis in accordance with the United States Environmental Protection Agency (USEPA) SW-846 Methods as summarized below. The analytical methods were chosen based on LCS' experience with sites of similar use.

The following table summarizes the specific analytical testing performed and their respective sample locations.

Sample Location	Analytical Testing Performed	Recognized Environmental Condition			
Soil					
BH1 (~0.8-4 ft. bgs)					
BH3 (~6-8 ft. bgs)					
BH4 (~12-14 ft. bgs)	TCL VOCs	Historic on-site dry cleaning operations			
BH6 (~2-4 ft. bgs)	TCL VOCS	Historic ori-site dry cleaning operations			
BH7 (~0.5-2 ft. bgs)					
BH8 (0.5-2 ft. bgs)					
Groundwater					
TPMW1					
TPMW2					
TPMW3	TCL VOCs	Listoria en eita dru elegning enerationa			
TPMW4	TCL VOCS	Historic on-site dry cleaning operations			
TPMW5					
TPMW6					

BH = Borehole

TPMW = Temporary groundwater monitoring well ft. bgs = feet below ground surface

TCL VOCs = Target Compound List volatile organic compounds via USEPA Test Method 8260

Results of Field Investigation

Subsurface Investigation

Nine boreholes (BH1 through BH9) were completed in accessible areas of the subject property proximate to the environmental concerns. (See Figure 2.) A total of 63 soil samples were collected for geologic description. Fill material consisting of asphalt was encountered within all test borings to a depth of approximately 0.5 ft. bgs. Generally, the fill materials were underlain by native soils consisting of varying mixtures of silt, clay, sand, and gravel to the bottom of the test borings. Apparent groundwater was encountered within BH1, and BH3 through BH8 between approximately 5 and 13 ft. bgs. No apparent groundwater was encountered in BH2 and BH9.

PID measurements were above total ambient air background VOC measurements (i.e., 0.0 parts per million, ppm) in 53 of the 63 soil samples collected. These elevated concentrations ranged from 0.1 parts per million (ppm) to 70 ppm (BH8, ~0-2 ft. bgs). Suspect solvent-type odors were detected in the soil samples collected from BH1 (~0-4 ft bgs), BH6 (~0-4 ft bgs), and BH7 (~0-2 ft bgs). No solvent-type staining was observed in the soil samples collected.

Refer to the attached subsurface logs for soil classification for each sample interval, field observations and PID measurements.

Investigation Analytical Results

The soil and groundwater samples collected and analyzed detected the following analytes. The respective concentrations as well as commonly applied regulatory guidance values are also listed for comparison. Analytes not detected are not shown.

SOIL TESTING RESULTS VOCs by USEPA SW-846 Method 8260

Sample ID	BH1	ВН3	BH4	BH6	BH7	BH8	Part 375	Part 375
Date Sampled	5/07/14	5/07/14	5/07/14	5/07/14	5/07/2014	5/07/14	(Unrestricted) Soil	(Commercial) Soil
Sample Depth	0.8-4 ft. bgs	6-8 ft. bgs	12-14 ft. bgs	2-4 ft. bgs	0.5-2 ft. bgs	0.5-2 ft. bgs	Cleanup Objectives	Cleanup Objectives
Units	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg
Acetone	<290	<240	<2.7	53.5	<300	<2.0	50	500,000
Carbon Disulfide	<13	<11	<0.13	0.59 J	<14	0.98 J	NL	NL
Cis-1,2- Dichloroethene	215	183	<0.44	<0.44	<49	<0.32	250	500,000
Benzene	<35	<29	1.8	< 0.33	<37	1.0	60	44,000
Trichloroethene	<25	169 J	<0.24	<0.24	<27	<0.17	470	200,000
Toluene	<21	<18	4.5 J	<0.20	<22	2.4 J	700	500,000
Tetrachloroethene	589	450	< 0.30	< 0.30	<34	<0.22	1,300	150,000
Xylene (total)	<23	<19	4.5	<0.21	<24	3.0	260*	500,000*

μg/kg = micrograms per kilogram
ft. bgs = feet below ground surface
ft. bgs = feet below ground surface
NL = Not Listed
J = Indicates an estimated value
Part 375 Soil Cleanup Objectives = New York State Department of Environmental Conservation 6 NYCRR Part 375 Environmental Remediation Programs, December 14, 2006 (375-6.8, Soil Cleanup Objective Tables)
*= Based on the sum of the Total Xylenes.

GROUNDWATER TESTING RESULTS

VOCs by USEPA SW-846 Method 8260

Sample ID	TPMW1	TPMW2	TPMW3	TPMW4	TPMW5	TPMW6	NYSDEC Groundwater
Date Sampled	5/07/14	5/07/14	5/08/14	5/08/14	5/08/14	5/08/14	Criteria (Class GA)
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Vinyl chloride	<0.58	2.4 ^a	<0.58	<0.58	<0.58	<0.58	2
Trans-1,2- Dichloroethene	0.77 J	4.3 ^a	<0.51	<0.51	<0.51	<0.51	5
1,1- Dichloroethene	<0.61	0.66 ^a J	<0.61	<0.61	<0.61	<0.61	5
Cis-1,2- Dichloroethene	67.3	165 ^a	<0.84	<0.84	<0.84	<0.84	5
Chloroform	1.7	<0.41	<0.41	<0.41	<0.41	<0.41	7
Trichloroethene	26.9	22.4 ^a	<.0.47	<.0.47	<.0.47	<.0.47	5
Tetrachloroethene	71.6	15.0 ^a	<0.59	<0.59	<0.59	<0.59	5
Xylene (total)	0.54 J	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	5

μg/L = micrograms per liter NL = Not Listed

a = The pH of the sample aliquot for the VOA analysis was >2 at the time of analysis.

J = Indicates an estimated value.

NYSDEC Groundwater Criteria (Class GA) = 6 NYCRR Part 703 (June 1998 and April 2000 Addendum)

= Analyte detected above the NYSDEC Groundwater Criteria (Class GA)

Conclusions

The purpose of this study was to assess the recognized environmental condition identified in the October 10, 2013 All Appropriate Inquiries Phase I Environmental Site Assessment Report (specifically, historic on-site dry cleaning operations). Select soil and groundwater samples were collected from the areas of the recognized environmental conditions.

Subsurface Investigation

Field Observations

Based on the field observations, PID measurements were above total ambient air background VOC measurements (i.e., 0.0 parts per million, ppm) in 53 of the 63 soil samples collected. These elevated concentrations ranged from 0.1 parts per million (ppm) to 70 ppm (BH8, ~0-2 ft. bgs). Suspect solvent-type odors were detected in the soil samples collected from BH1 (~0-4 ft bgs), BH6 (~0-4 ft bgs), and BH7 (~0-2 ft bgs). No solvent-type staining was observed in the soil samples collected. In LCS' experience, the PID measurements and field observations suggest the presence of some VOC impact proximate the areas investigated.

Laboratory Test Results

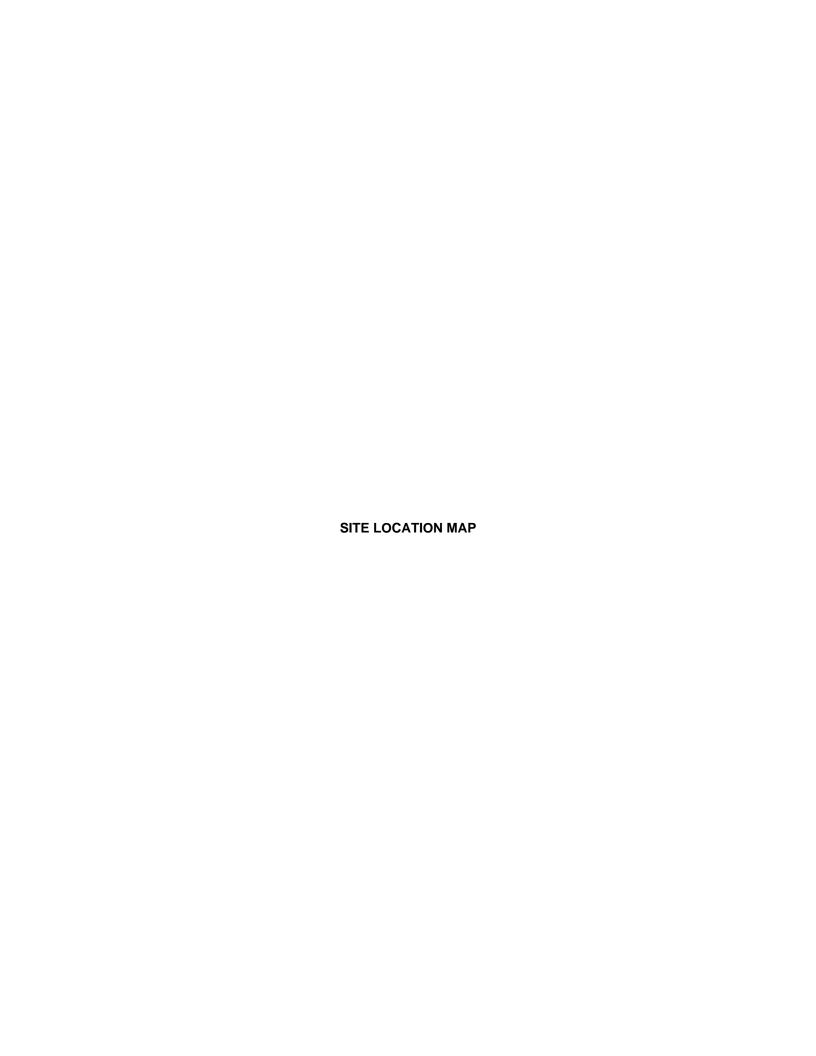
Based on the laboratory results, no analytes were detected at concentrations exceeding commonly applied regulatory criteria in the soil samples collected and submitted for laboratory analysis. However, VOC analytes [trichloroethene (TCE), tetrachloroethene (PCE), and cis-1,2-dichloroethene (1,2-DCE) in TPMW1; and TCE, PCE, 1,2-DCE, and vinyl chloride in TPMW2] were detected at concentrations above the NYSDEC Groundwater Criteria in the groundwater samples collected and submitted for laboratory analysis. No analytes were detected above the appropriate regulatory criteria in TPMW3 through TPMW4.

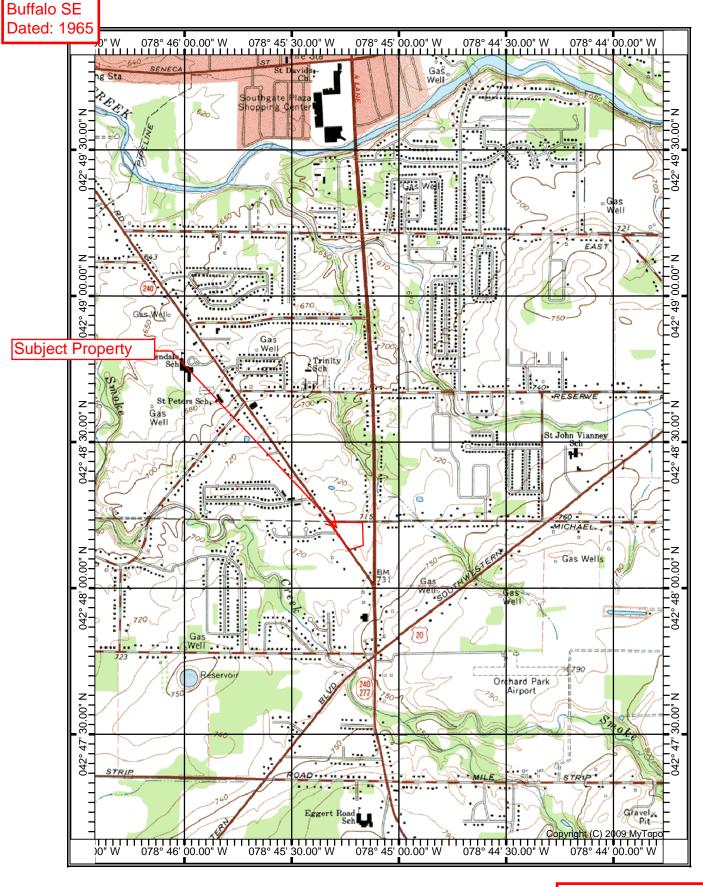
Recommendations

Further investigation is recommended to delineate the vertical and horizontal extent of the chemical impact, including the area beneath the subject structure. In addition, a vapor intrusion study is recommended to better determine the potential for impacts to indoor air quality. Depending upon the results of the further investigation, remediation and/or installation of a subslab depressurization system may be warranted.

The property owner should consult environmental legal counsel relative to reporting obligations to the New York State Department of Environmental Conservation.

Thank you for allowing LCS to service your environmental needs. If you have any questions or require additional information, please do not hesitate to call our office.


Sincerely,


Reviewed by:

Jeffrey M. Rowley Senior Project Manager

Douglas B. Reid

Sr. VP, Environmental Services General Manager - WNY

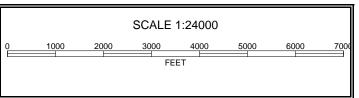
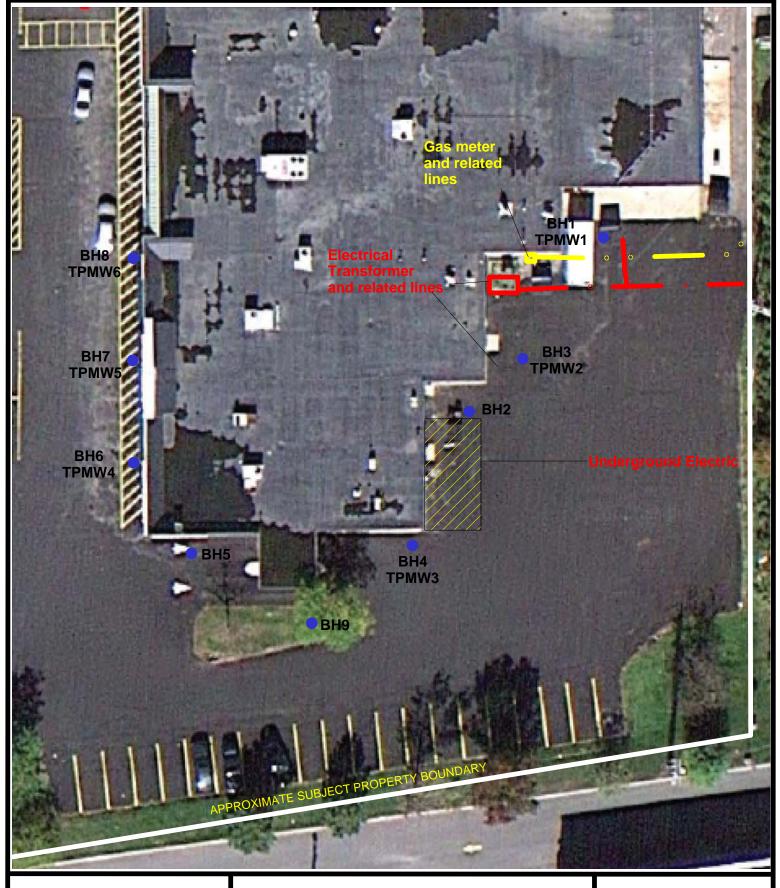



Figure 1: Site Location Map

FIGURE 2 - SITE INVESTIGATION PLAN

3021-3041 ORCHARD PARK ROAD, ORCHARD PARK, NEW YORK Drawn by: DEC

Checked by: JMR

LCS Project # 13B4431.22

_	\sim	-		
	4 16.	•		_
			n	C
		, .		

SUBSURFACE LOG

PROJECT/ LOCATION: 3021-3041 Orchard Pa									
CLIENT:				nwest Savings				·	BH1/ TPMW1
DATE ST	TARTED:	5/7/	2014	_ DATE COM	1PLETE	D: <u>5/7/20</u>	14	RECORDED BY:	DEC
GROUNI	DWATER D	EPTH WH	IILE DR	ILLING:	~5	ft. bgs.	AFTER COM	PLETION:	~2.8 ft bgs
WEATHE	ER:	Cloudy 57	7°	DRILL RIG:	G	eoprobe	DRILLER:	Trec Enviro	nmental Inc.
DRILL SI	ZE/TYPE:		Macro	o-core	SAME	PLE HAMMEI	R: WEIGHT	NAFALL	NA
			1						
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified S	Material Classification and Soil Classification System-V	•
1	51.7	0-4	U	-	-	5	0-0.5 ft: Aspha	ılt	
2	5.3	4-6	U	-	-	24	0.5-0.8 ft: Grey	y sandy gravel (coarse, loos	e, dense)
3	2.9	6-8	U	-	-	24	0.8-4 ft: Grey s	sandy clay (stiff, Low plastic	city, moist)
4	3.1	8-10	U	-	-	10	4-12 ft: Brown	gravelly clay (very stiff, low	plasticity, moist to wet)
5	4.2	10-12	U	=	-	10	12 -16 ft: Brov	vn clay with shale fragments	s (very stiff, low plasticity,
							wet)		
6	1.2	12-16	U	-	-	8	-		
							-		
							-		
							-		
							•		
							•		
NOTES	NA = Not A	pplicable					Fill to ~0.8 ft. bgs	<u></u> s	
	ft. bgs = fee	t below gro	ound surfa	ace			Suspect solvent	odors detected at ~ 0-4 ft.	bgs
*SS - SPLIT-SPOON SAMPLE U - UNDISTURBED TUBE P - PISTON TUBE C - CORE									

_	 \sim	_		
	1			_
				•
	 1		_	

SUBSURFACE LOG

PROJEC	ECT/ LOCATION: 3021-3041 Orchard Park Road, Orchard Park, NY			ark, NY	PROJECT No. 13B4431.22					
CLIENT:			North	west Savings	Bank			BORING/WE	ELL No.	BH2
DATE ST	ARTED:	5/7/2	2014	DATE CON	IPLETE	D: <u>5/7/201</u>	4	RECORDED) BY:	DEC
GROUNE	DWATER DEPTH WHILE DRILLING: NA		NA	AFTER COM	PLETION:		NA			
WEATHE	:R:	Cloudy 57	7 °	DRILL RIG:	G	eoprobe	DRILLER:	7	Trec Environ	mental Inc.
DRILL SI	ZE/TYPE:		Macro	o-core	_ SAMF	PLE HAMMER	R: WEIGHT	NA	FALL _	NA
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)		Material Class		escription ual Manual Method)
1	3.7	0-4	U	-	-	12	0-0.5 ft: Asphal	lt		
2	0.6	4-6	U	-	-	24	0.5-1 ft: Brown	sand (medium,	, fine, dense, n	noist)
3	0.4	6-8	U	-	-	24	1-1.25 ft: Shale	e fragments		
4	0.5	8-8.4	U	-	-	10	1.25-8 ft: Brown	n silty clay (low	v plasticity, sof	t, moist)
							8-8.4 ft: Brown	silty clay with	shale fragmen	ts (low plasticity, soft,
							moist)			
							Equipment refu	usal at 8.4 ft. bg	ıs	
NOTES	NA = Not A	nnlicable					Fill to ~1 ft. bgs			
NOTES	ft. bgs = fee		ound surfa	ace			-III to ~1 It. bgs No suspect odors	s detected		
*SS - SPLIT-SPOON SAMPLE U - UNDISTURBED TUBE P - PISTON TUBE C - CORE										

_	\sim	_	
	4 161		_
		ın	•
			L

SUBSURFACE LOG

PROJEC	JECT/ LOCATION: 3021-3041 Orchard Park Road, Orchard Park, NY			Park, NY	PROJECT No.	13B4431.22			
CLIENT:			North	nwest Savings	Bank			BORING/WELL No.	BH3/TPMW2
DATE ST	ARTED:	5/7/2	2014	DATE COM	1PLETE	D: <u>5/7/20</u>	14	RECORDED BY:	DEC
GROUNE	OWATER D	ATER DEPTH WHILE DRILLING: ~5 ft. bgs AFTER C		AFTER COM	IPLETION:	~5.02 ft bgs			
WEATHE	R:	Cloudy 57	7 °	DRILL RIG:	G	eoprobe	DRILLER:	Trec Enviro	onmental Inc.
DRILL SI	ZE/TYPE:		Macro	o-core	_ SAMF	PLE HAMMEI	R: WEIGHT	NAFALL	NA
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified	Material Classification and Soil Classification System-V	•
1	0.7	0-4	U	-	-	5	0-0.5 ft: Aspha	alt	
							-		
2	0.9	4-6	U	-	-	20	0.5-1 ft: Brown	n sand (medium, fine, dense	, moist)
							<u> </u>		
3	3.0	6-8	U	-	-	20	1-2 ft: Shale fr	agments	
4	0.5	8-10	U	_	_	20	2-12 ft: Brown	silty clay (low plasticity, so	ft maist)
-	0.0	0 10	J			20	2 12 II. BIOWII	Sitty diay (low plasticity, sol	t, molot y
5	0.2	10-12	U	-	-	20	12-18.5 ft: Bro	own silty clay with shale frag	ments (low plasticity, soft,
							moist to wet)		
6	0.2	12-14	U	-	-	16	-		
							Equipment refu	usal at 18.5	
7	0.4	14-16	U	-	-	16	 -		
8	0.0	16-18.5	U	-	-	10	-		
0	0.0	10-10.5	U	-	-	10	-		
							-		
							-		
							-		
							-		
							-		
							-		
							-		
NOTES	NA = Not A	pplicable					Fill to ~0.5 ft. bg	gs	
	ft. bgs = feet below ground surface No suspect odors detected								
	*SS - SPLIT-SPOON SAMPLE U - UNDISTURBED TUBE P - PISTON TUBE C - CORE								

T	α	_	
	'	In	

PROJECT/ LOCATION: 3021-3041 Orchard Park Road, Orchard Park, CLIENT: Northwest Savings Bank								BORING/WEL	L No.	BH4/TPMW3
DATE ST	TARTED:	5/7/2	2014	_ DATE COM	1PLETE	D: <u>5/7/201</u>	14		-	
GROUNI	DWATER D	EPTH WH	IILE DRI	LLING:	~13	3 ft bgs	AFTER COM	PLETION:		~4.5 ft bgs
WEATHE	ER:	Cloudy 57	70	DRILL RIG:	G	eoprobe	DRILLER:	Tre	ec Environ	mental Inc.
DRILL SI	ZE/TYPE:		Macro	o-core	_ SAMI	PLE HAMMEI	R: WEIGHT	NA	FALL _	NA
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified S	Material Classific		Description ual Manual Method)
1	-	0-4	U	-	-	0	0-4 Asphalt (no	soil recovered)		
0	0.0	4.6				0	4.0 ft. D	:::::::::::::::::::::::::::::::::::::::		
2	0.0	4-6	U	-	-	0	4-6 II. DIOWII SI	ilty clay (low plas	licity, sort, n	noist)
3	0.3	6-8	U	-	-	12	8-18.4 ft: Brow	vn silty clay with s	hale fragme	ents (low plasticity, soft,
							moist to wet)	, ,	9	, ,
4	0.0	8-10	U	-	-	12				
							Equipment Ref	usal at ~18.4 ft. b	gs	
5	0.1	10-12	U	-	-	12				
6	0.8	12-14	U	-	-	12				
7	0.3	14-16	U	-	-	10				
,	0.0	14 10	J			10	•			
8	0.0	16-18.4	U	-		10				
							-			
							-			
NOTES	NA = Not A	pplicable					Fill to ~0.5 ft. bgs	3		
	ft. bgs = fee	et below gro	und surfa	ace			No suspect odors	s detected		
		*SS - S	SPLIT-SP	OON SAMPLE	U - UI	NDISTURBED	TUBE P - PIS	STON TUBE (C - CORE	

_	-	
	111	

PROJECT/ LOCATION: 3021-3041 Orchard Park Road, Orchard Park, NY Pr						PROJECT No.	13B4431.22		
CLIENT:			North	west Savings	Bank			BORING/WELL No.	BH5
DATE ST	ARTED:	5/7/2014	4	DATE COM	1PLETE	D: <u>5/7/20</u>	14	RECORDED BY:	DEC
GROUNE	DWATER D	EPTH WH	IILE DR	ILLING:	~6	ft. bgs.	AFTER COM	PLETION:	NA
WEATHE	R:	Cloudy 57	7°	DRILL RIG:	G	eoprobe	DRILLER:	Trec Enviro	nmental Inc.
DRILL SI	ZE/TYPE:		Macro	o-core	SAME	PLE HAMME	R: WEIGHT	NAFALL	NA
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified §	Material Classification and Soil Classification System-V	
1	0.3	0-2	U	-	-	9	0-0.5 ft: Aspha	ılt	
2	0.4	2-4	U	-	-	8	0.5-1 ft: Brown	sand (medium, fine, dense	, moist)
							- -		
3	0.4	4-6	U	-	-	12	1-1.25 ft: Shale	e fragments	
							 -		
4	0.7	6-8	U	-	-	12	1.25-6 ft: Brow	n silty clay (low plasticity, s	oft, moist)
E	0.0	0.10	- 11	-		12	C 16 th Drawn	Cilturale vuith abole from	unto (lour planticity, anft
5	0.0	8-10	U	=	-	12	moist to wet)	Silty clay with shale fragme	ents (low plasticity, soit,
6	0.0	10-12	U	-	_	12	moist to wet)		
	0.0					.=	-		
7	0.6	12-14	U	-	-	10			
8	1.8	14-16	U	-	-	10	-		
							-		
							-		
							- -		
							-		
							<u> </u> -		
							-		
							-		
							-		
							1		
NOTES	NA = Not A	pplicable					Fill to ~ 0.5 ft. bo	gs	
	ft. bgs = feet below ground surface No suspect odors detected								
		*SS - S	SPLIT-SF	POON SAMPLE	1U - U	NDISTURBED	TUBE P - PIS	STON TUBE C - CORE	

_	-	
	111	

PROJEC				3041 Orchard				· · · · · · · · · · · · · · · · · · ·	
	·			DATE COM					
					~6 ft. bgs. AFTER COM				~3.0 ft bgs
				_			-	Trec Envir	<u>-</u>
							-	NA FALL	
1		-	1		_		1		
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified S	Material Classification an Soil Classification System-	
1	59	0-2	U	-	-	9	0-0.5 ft: Aspha	lt	
							-		
2	40	2-4	U	-	-	9	0.5-1 ft: Brown	sand (medium, fine, dens	e, moist)
_									
3	3.0	4-6	U	-	-	12	1-1.25 ft: Shale	e fragments	
4	1.4	6-8	U	-	-	12	1.25-6 ft: Brow	n silty clay (low plasticity,	soft, moist)
								- ,	,,
5	0.4	8-10	U	-	-	11	6-18.5 ft: Brow	vn Silty clay with shale fraç	gments (low plasticity, soft,
							wet)		
6	0.1	10-12	U	-	-	11	<u> </u> -		
_						_	<u> </u>		
7	1.0	12-16	U	-	-	9	_		
							-		
							-		
							_		
							-		
							-		
							<u> </u>		
							-		
							-		
							1		
NOTES	NA = Not A	pplicable					Fill to ~0.5 ft. bgs	5	
	ft. bgs = fee	et below gro	ound surfa	ace			Suspect solvent	type odors detected at ~0-	4 ft bgs
		*SS - S	SPLIT-SF	POON SAMPLE	U - U	NDISTURBED	TUBE P - PIS	STON TUBE C - CORI	

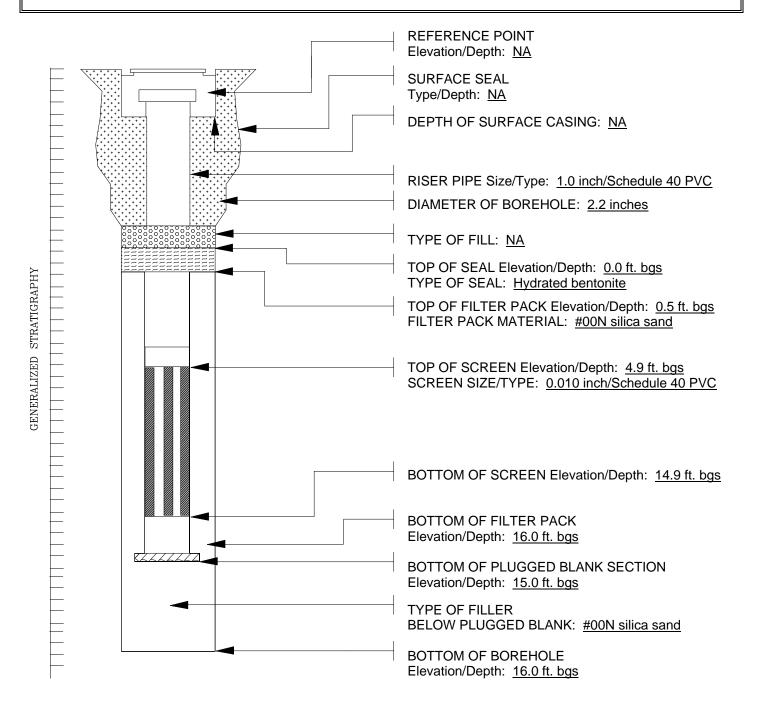
 _	\sim	_		
•			-	•
_ /				(' .

PROJEC	T/ LOCATION	ON:	3021-	3041 Orchard	Park Ro	ad, Orchard	Park, NY	PROJECT No.	13B4431.22
CLIENT:			North	west Savings	Bank			BORING/WELL No.	BH7/TPMW5
DATE ST	ARTED:	5/7/	2014	DATE COM	MPLETED: 5/7/2014			RECORDED BY:	DEC
GROUNI	OWATER D	EPTH WH	HILE DR	ILLING:	~5 ft. bgs. AFTER COMF			IPLETION:	~3.0 ft bgs
WEATHE	R:	Cloudy 57	7°	DRILL RIG:	G	eoprobe	DRILLER:	Trec Enviro	onmental Inc.
DRILL SI	ZE/TYPE:		Macro	o-core	SAMI	PLE HAMME	R: WEIGHT	NAFALL	NA
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified S	Material Classification and Soil Classification System-V	
1	1.6	0-2	U	-	-	6	0-0.6 ft. Aspha	ılt	
2	11	2-4	U	-	-	6	0.6-4 ft. Grey	clay with shale fragments (s	stiff, low plasticity, moist)
3	4.1	4-6	U	-	-	10	4-6 ft. Grey bro	own sandy clay (stiff, low pla	asticity, wet)
4	0.7	0.0				40	C 40 # Drawn	alassas ailė (lassanlautinites sus	-4)
4	0.7	6-8	U	-	-	10	_ 6-16 π. Brown	clayey silt (low plasticity, w	et)
5	0.0	8-10	U	-	_	12			
	0.0	0.10	J			12			
6	1.2	10-12	U	-	-	12	_		
7	2.5	12-16	U	-	-	12			
							_		
NOTES	NA = Not A	pplicable					Fill to ~0.6 ft. bg	gs	
	ft. bgs = fee	et below gro	ound surfa	ace			Suspect solvent	type odor detected at ~0-2	ft. bgs.
		*SS - S	SPLIT-SF	OON SAMPLE	U - UI	NDISTURBED	TUBE P - PI	STON TUBE C - CORE	

 		•	-	
	'		1	
		•		٠. ـ

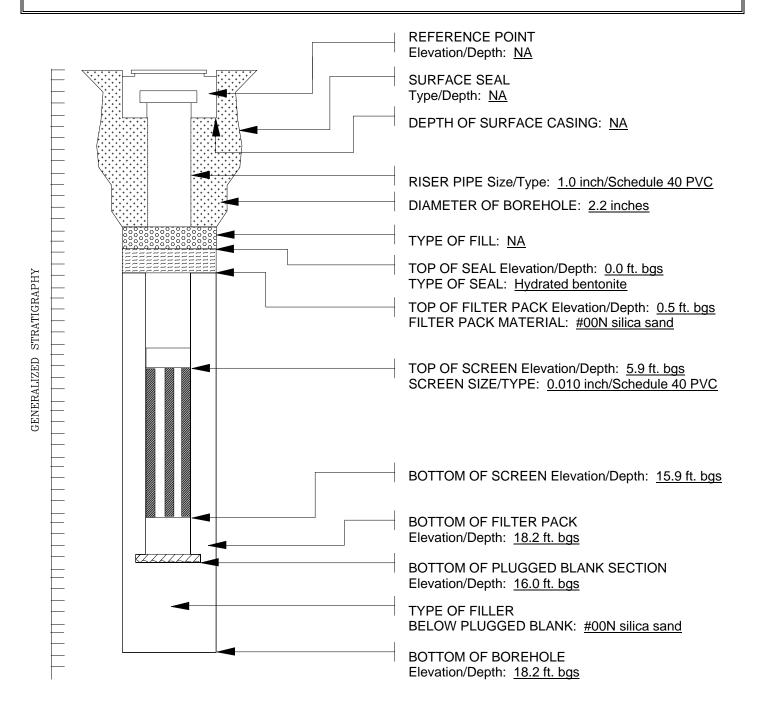
PROJEC	T/ LOCATIO	ON:	3021-	3041 Orchard	Park Ro	ad, Orchard F	Park, NY	PROJECT No.	13B4431.22
CLIENT:			North	nwest Savings	Bank			BORING/WELL No.	BH8/TPMW6
DATE ST	ARTED:	5/7/2	2014	DATE COM	/IPLETE	D: <u>5/7/201</u>	4	RECORDED BY:	DEC
GROUNI	DWATER D	EPTH WH	IILE DR	ILLING:	~5	ft. bgs.	AFTER COM	IPLETION:	~3.0 ft bgs
WEATHE	R:	Cloudy 57	7°	DRILL RIG:	G	eoprobe	DRILLER:	Trec Enviro	nmental Inc.
DRILL SI	ZE/TYPE:		Macro	o-core	SAME	PLE HAMMEI	R: WEIGHT	NA FALL	NA
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified S	Material Classification and Soil Classification System-V	·
1	70	0-2	U	-	-	12	0-0.6 ft. Aspha	alt	
2	60	2-4	U	-	-	12	0.6-4 ft. Grey	clay with shale fragments (s	tiff, low plasticity, moist)
3	6.0	4-6	U	-	-	12	4-6 ft. Grey bro	own sandy clay (stiff, low pla	sticity, wet)
,			<u> </u>						
4	3.8	6-8	U	-	-	12	6-16 ft. Brown	clayey silt (low plasticity, we	et)
5	4.2	8-10	U	-	_	10			
3	4.2	0-10	0	_	_	10			
6	4.0	10-12	U	-	-	10			
7	2.0	12-16	U	-	-	8			
NOTES	NA = Not A	pplicable					Fill to ~0.6 ft. bgs	s	
	ft. bgs = fee	t below gro	ound surf	ace			No suspect odor	rs detected	
		*SS - S	SPLIT-SF	POON SAMPLE	U - U	NDISTURBED	TUBE P - PI	STON TUBE C - CORE	

 •	-		
•		11	
		ш	L.


PROJECT/ LOCATION: 3021-3041 Orchard					Park Ro	ad, Orchard I	Park, NY	PROJECT No.	13B4431.22
CLIENT:			North	nwest Savings	Bank			BORING/WELL No.	ВН9
DATE ST	TARTED:	5/7/	2014	DATE COM	1PLETE	D: <u>5/7/20</u>	14	RECORDED BY:	DEC
GROUNI	DWATER D	EPTH WH	HILE DR	ILLING:		NA	AFTER COM	IPLETION:	NA
WEATHE	ER:	Cloudy 57	7°	DRILL RIG:	G	eoprobe	DRILLER:	Trec Envi	ironmental Inc.
DRILL SI	ZE/TYPE:		Macro	o-core	SAMI	PLE HAMME	R: WEIGHT	NAFALL	NA
							1		
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified S	Material Classification and Soil Classification System	
1	2.0	0-2	U	-	-	24	0-4 ft. Brown g	gravelly silty clay (still, low	plasticity, dry)
							-		
2	5.8	2-4	U	-	-	24	4-6 ft. Brown s	ilty clay (very stiff, low pla	sticity, moist
							 -		
3	2.3	4-6	U	-	-	24	6-14 ft. Grey s	ilty clay (stiff, moderate p	lasticity, moist)
4	0.7	6-8	U	-	-	24	14 16 ft Grov	gravelly silty clay (stiff, mo	adarata placticity, maist)
	0.7	0.0	0			24	14 TO It. GICY	gravelly sitty clay (still, like	sucrate plasticity, moisty
5	0.0	8-10	U	-	-	10	-		
6	0.9	10-12	U	-	-	12	<u> </u>		
							 -		
7	1.4	12-14	U	-	-	12	<u> </u>		
	4.0	44.40				40	_		
8	1.0	14-16	U	-	-	12	_		
							-		
							-		
							_		
							-		
							-		
							-		
							-		
NOTES	NA = Not A	nnlicable	<u> </u>		<u> </u>		Fill to ~0 ft. bgs		
NOTES	ft. bgs = fee		ound surfa	ace			No suspect odor	's detected	
				POON SAMPLE	11 10	NDISTURBED	•	STON TUBE C - COR	
		JJ - 1	0F LII-0F	JOIN SAMPLE	0 - 0	MOISIOKDED	TODE P-PI	SION TODE C-COR	L

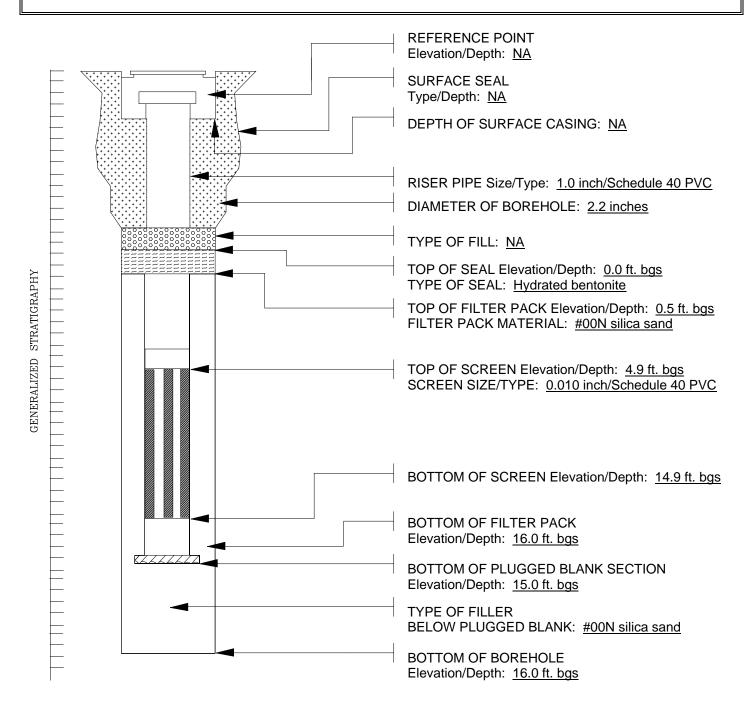
PROJECT/LOCATION: 3021-3041 Orchard Park Rd, Orchard Park, NY PROJECT No. 14B4431.22

CLIENT: Northwest Savings Bank WELL No. TPMW1


DATE COMPLETED: 5/7/14 SUPERVISED BY: DEC

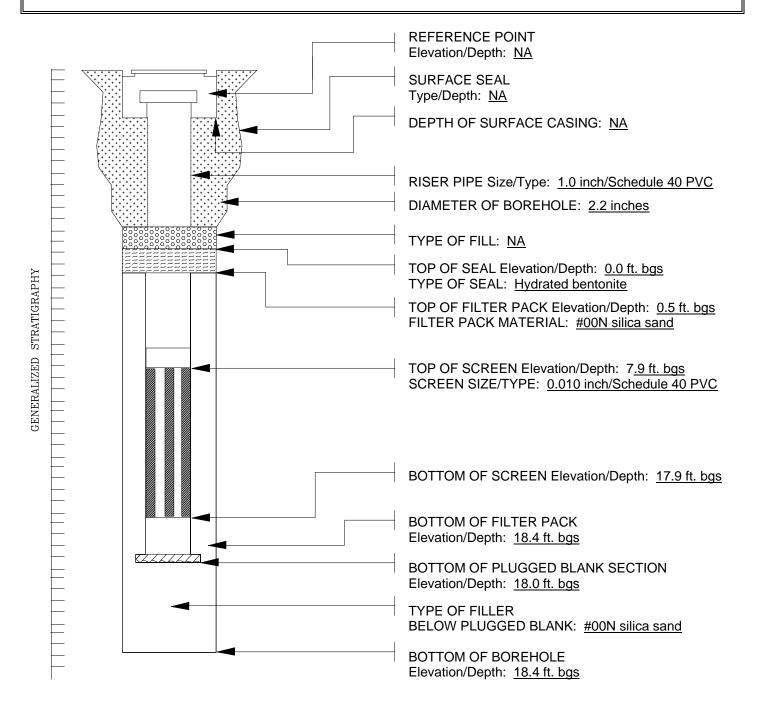
PROJECT/LOCATION: 3021-3041 Orchard Park Rd, Orchard Park, NY PROJECT No. 14B4431.22

CLIENT: Northwest Savings Bank WELL No. TPMW1


DATE COMPLETED: 5/7/14 SUPERVISED BY: DEC

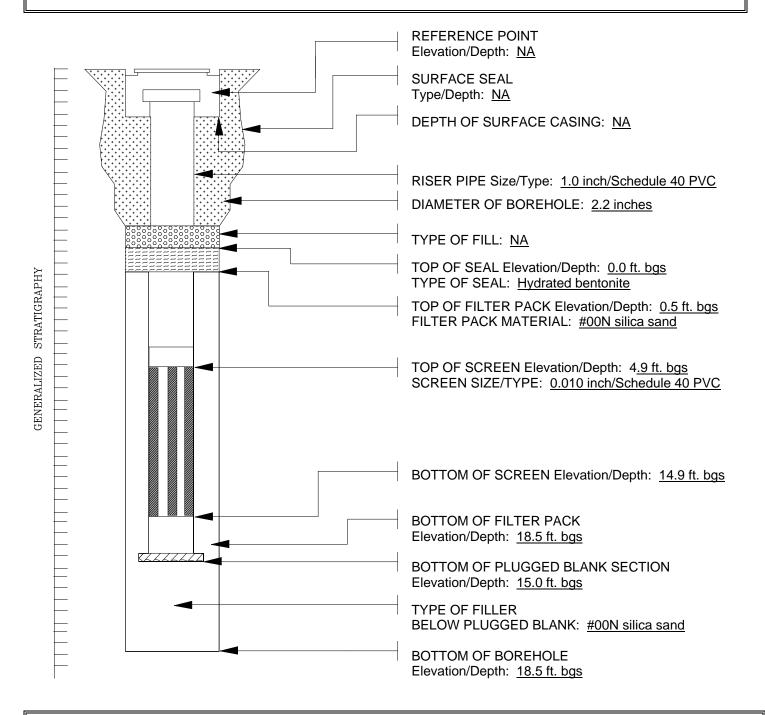
PROJECT/LOCATION: 3021-3041 Orchard Park Rd, Orchard Park, NY PROJECT No. 14B4431.22

CLIENT: Northwest Savings Bank WELL No. TPMW2


DATE COMPLETED: 5/7/14 SUPERVISED BY: DEC

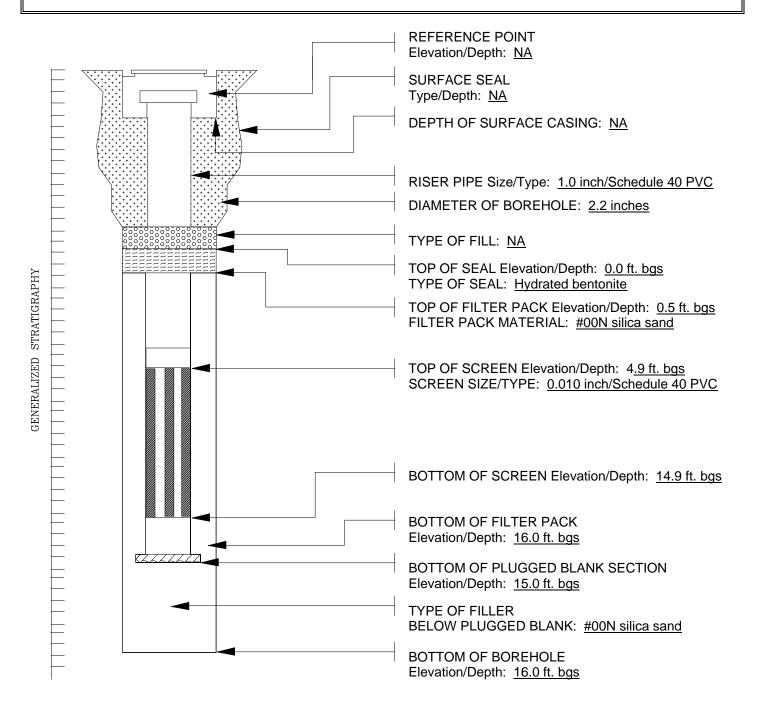
PROJECT/LOCATION: 3021-3041 Orchard Park Rd, Orchard Park, NY PROJECT No. 14B4431.22

CLIENT: Northwest Savings Bank WELL No. TPMW3


DATE COMPLETED: 5/7/14 SUPERVISED BY: DEC

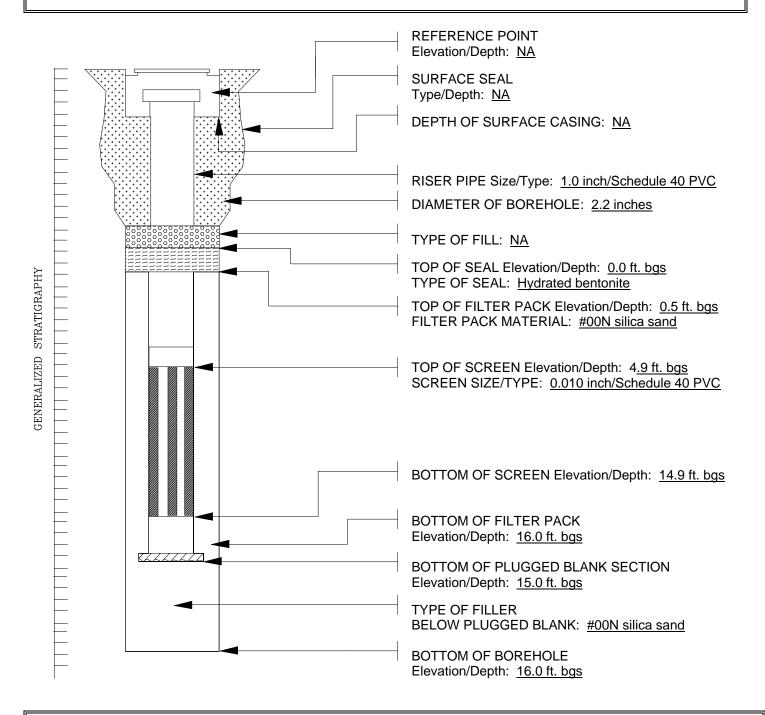
PROJECT/LOCATION: 3021-3041 Orchard Park Rd, Orchard Park, NY PROJECT No. 14B4431.22

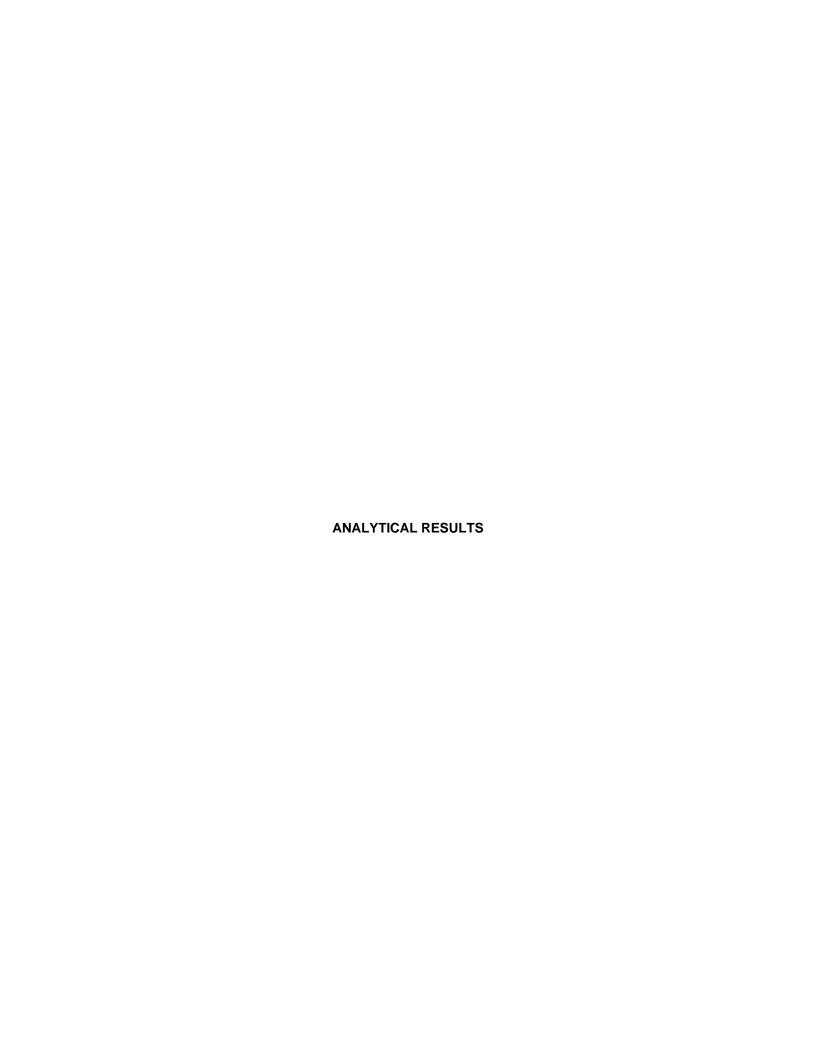
CLIENT: Northwest Savings Bank WELL No. TPMW4


DATE COMPLETED: 5/7/14 SUPERVISED BY: DEC

PROJECT/LOCATION: 3021-3041 Orchard Park Rd, Orchard Park, NY PROJECT No. 14B4431.22

CLIENT: Northwest Savings Bank WELL No. TPMW5


DATE COMPLETED: 5/7/14 SUPERVISED BY: DEC



PROJECT/LOCATION: 3021-3041 Orchard Park Rd, Orchard Park, NY PROJECT No. 14B4431.22

CLIENT: Northwest Savings Bank WELL No. TPMW6

DATE COMPLETED: 5/7/14 SUPERVISED BY: DEC

05/13/14

Technical Report for

Lender Consulting Services, Inc.

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

13B4431.22

Accutest Job Number: MC30395

Sampling Date: 05/07/14

Report to:

Lender Consulting Services, Inc.

mpopek@lenderconsulting.com

ATTN: Maggie Popek

Total number of pages in report: 26

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Frank DAgostino 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) WI (399080220) DoD ELAP (L-A-B L2235)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

_

4.5

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	6
3.1: MC30395-1: BH01 0.8-4	7
3.2: MC30395-2: BH03 6-8	9
3.3: MC30395-3: BH04 12-14	11
3.4: MC30395-4: BH06 2-4	13
3.5: MC30395-5: BH07 0.5-2	15
3.6: MC30395-6: BH08 0.5-2	17
3.7: MC30395-7: TPMW01	19
3.8: MC30395-8: TPMW02	21
Section 4: Misc. Forms	23
4.1: Chain of Custody	24

Sample Summary

Lender Consulting Services, Inc.

Job No: MC30395

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY Project No: 13B4431.22

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
MC30395-1	05/07/14	09:30 JMR	05/08/14	SO	Soil	BH01 0.8-4
MC30395-2	05/07/14	12:00 JMR	05/08/14	SO	Soil	BH03 6-8
MC30395-3	05/07/14	13:00 JMR	05/08/14	SO	Soil	BH04 12-14
MC30395-4	05/07/14	14:00 JMR	05/08/14	SO	Soil	BH06 2-4
MC30395-5	05/07/14	14:30 JMR	05/08/14	SO	Soil	BH07 0.5-2
MC30395-6	05/07/14	15:00 JMR	05/08/14	SO	Soil	BH08 0.5-2
MC30395-7	05/07/14	10:55 JMR	05/08/14	AQ	Ground Water	TPMW01
MC30395-8	05/07/14	12:40 JMR	05/08/14	AQ	Ground Water	TPMW02

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Summary of Hits Job Number: MC30395

Account: Lender Consulting Services, Inc.

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

05/07/14 Collected:

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
MC30395-1	BH01 0.8-4					
cis-1,2-Dichloroe Tetrachloroethen		215 589	210 210	47 32	ug/kg ug/kg	SW846 8260C SW846 8260C
MC30395-2	ВН03 6-8					
cis-1,2-Dichloroe Tetrachloroethen Trichloroethene		183 450 169 J	170 170 170	39 27 21	ug/kg ug/kg ug/kg	SW846 8260C SW846 8260C SW846 8260C
MC30395-3	BH04 12-14					
Benzene Toluene Xylene (total)		1.8 4.5 J 4.5	0.48 4.8 1.9	0.33 0.20 0.21	ug/kg ug/kg ug/kg	SW846 8260C SW846 8260C SW846 8260C
MC30395-4	ВН06 2-4					
Acetone Carbon disulfide		53.5 0.59 J	9.7 4.9	2.7 0.13	ug/kg ug/kg	SW846 8260C SW846 8260C
MC30395-5	ВН07 0.5-2					
No hits reported	in this sample.					
MC30395-6	ВН08 0.5-2					
Benzene Carbon disulfide Toluene Xylene (total)		1.0 0.98 J 2.4 J 3.0	0.35 3.5 3.5 1.4	0.24 0.092 0.14 0.15	ug/kg ug/kg ug/kg ug/kg	SW846 8260C SW846 8260C SW846 8260C SW846 8260C
MC30395-7	TPMW01					
Chloroform cis-1,2-Dichloroe trans-1,2-Dichlor Tetrachloroethen Trichloroethene Xylene (total)	roethene	1.7 67.3 0.77 J 71.6 26.9 0.54 J	1.0 1.0 1.0 1.0 1.0 1.0	0.41 0.84 0.51 0.59 0.47 0.36	ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C
MC30395-8	TPMW02					
1,1-Dichloroethe	ne ^a	0.66 J	1.0	0.61	ug/l	SW846 8260C

Summary of Hits Job Number: MC30395

Account: Lender Consulting Services, Inc.

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

Collected: 05/07/14

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
cis-1,2-Dichloroethene ^a	165	1.0	0.84	ug/l	SW846 8260C
trans-1,2-Dichloroethene ^a	4.3	1.0	0.51	ug/l	SW846 8260C
Tetrachloroethene ^a	15.0	1.0	0.59	ug/l	SW846 8260C
Trichloroethene ^a	22.4	1.0	0.47	ug/l	SW846 8260C
Vinyl chloride ^a	2.4	1.0	0.58	ug/l	SW846 8260C

⁽a) The pH of the sample aliquot for VOA analysis was > 2 at time of analysis.

Sample Results	
Report of Analysis	

Client Sample ID: BH01 0.8-4

 Lab Sample ID:
 MC30395-1
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 73.8

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 G137448.D 1 05/09/14 GK n/a n/a MSG5257

Run #2

Run #1 7.95 g 10.0 ml Methanol Aliquot

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units (2
67-64-1	Acetone	ND	1000	290	ug/kg	
71-43-2	Benzene	ND	51	35	ug/kg	
75-27-4	Bromodichloromethane	ND	210	22	ug/kg	
75-25-2	Bromoform	ND	210	37	ug/kg	
74-83-9	Bromomethane	ND	210	62	ug/kg	
78-93-3	2-Butanone (MEK)	ND	1000	320	ug/kg	
75-15-0	Carbon disulfide	ND	510	13	ug/kg	
56-23-5	Carbon tetrachloride	ND	210	23	ug/kg	
108-90-7	Chlorobenzene	ND	210	16	ug/kg	
75-00-3	Chloroethane	ND	510	78	ug/kg	
67-66-3	Chloroform	ND	210	17	ug/kg	
74-87-3	Chloromethane	ND	510	58	ug/kg	
124-48-1	Dibromochloromethane	ND	210	33	ug/kg	
75-34-3	1,1-Dichloroethane	ND	210	27	ug/kg	
107-06-2	1,2-Dichloroethane	ND	210	33	ug/kg	
75-35-4	1,1-Dichloroethene	ND	210	43	ug/kg	
156-59-2	cis-1,2-Dichloroethene	215	210	47	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	210	43	ug/kg	
78-87-5	1,2-Dichloropropane	ND	210	43	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	210	23	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	210	27	ug/kg	
100-41-4	Ethylbenzene	ND	210	71	ug/kg	
591-78-6	2-Hexanone	ND	1000	78	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	510	56	ug/kg	
75-09-2	Methylene chloride	ND	210	55	ug/kg	
100-42-5	Styrene	ND	510	18	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	210	40	ug/kg	
127-18-4	Tetrachloroethene	589	210	32	ug/kg	
108-88-3	Toluene	ND	510	21	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	210	22	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	210	59	ug/kg	
79-01-6	Trichloroethene	ND	210	25	ug/kg	

 $ND = Not detected \qquad MDL = Not MDL$

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 2 of 2

Report of Analysis

 Client Sample ID:
 BH01 0.8-4

 Lab Sample ID:
 MC30395-1
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 73.8

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	210 210	94 23	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5	Dibromofluoromethane Toluene-D8	116% 121%		70-13 70-13		

ND = Not detected MDL = Method Detection Limit J = I

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

3.2

Report of Analysis

Client Sample ID: BH03 6-8

MC30395-2 Lab Sample ID: **Date Sampled:** 05/07/14 Matrix: SO - Soil **Date Received:** 05/08/14 Method: **Percent Solids:** SW846 8260C 81.7

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 G137439.D 1 05/09/14 GKMSG5257 n/an/a

Run #2

Final Volume Methanol Aliquot Initial Weight Run #1 10.0 ml 100 ul 8.25 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	850	240	ug/kg	
71-43-2	Benzene	ND	43	29	ug/kg	
75-27-4	Bromodichloromethane	ND	170	18	ug/kg	
75-25-2	Bromoform	ND	170	30	ug/kg	
74-83-9	Bromomethane	ND	170	51	ug/kg	
78-93-3	2-Butanone (MEK)	ND	850	260	ug/kg	
75-15-0	Carbon disulfide	ND	430	11	ug/kg	
56-23-5	Carbon tetrachloride	ND	170	19	ug/kg	
108-90-7	Chlorobenzene	ND	170	13	ug/kg	
75-00-3	Chloroethane	ND	430	65	ug/kg	
67-66-3	Chloroform	ND	170	14	ug/kg	
74-87-3	Chloromethane	ND	430	48	ug/kg	
124-48-1	Dibromochloromethane	ND	170	28	ug/kg	
75-34-3	1,1-Dichloroethane	ND	170	23	ug/kg	
107-06-2	1,2-Dichloroethane	ND	170	27	ug/kg	
75-35-4	1,1-Dichloroethene	ND	170	35	ug/kg	
156-59-2	cis-1,2-Dichloroethene	183	170	39	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	170	36	ug/kg	
78-87-5	1,2-Dichloropropane	ND	170	36	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	170	19	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	170	22	ug/kg	
100-41-4	Ethylbenzene	ND	170	59	ug/kg	
591-78-6	2-Hexanone	ND	850	65	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	430	46	ug/kg	
75-09-2	Methylene chloride	ND	170	45	ug/kg	
100-42-5	Styrene	ND	430	15	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	170	34	ug/kg	
127-18-4	Tetrachloroethene	450	170	27	ug/kg	
108-88-3	Toluene	ND	430	18	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	170	19	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	170	49	ug/kg	
79-01-6	Trichloroethene	169	170	21	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 2 of 2

Report of Analysis

Client Sample ID: BH03 6-8 Lab Sample ID: MC30395-2 **Date Sampled:** 05/07/14 Matrix: **Date Received:** 05/08/14 SO - Soil Method: SW846 8260C **Percent Solids:** 81.7

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	170 170	78 19	ug/kg ug/kg	
CAS No.	Cuma acta Dacamanica	D #1	D // 0			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	115%	Run# 2	Lim i 70-13		
	8		Run# 2		30%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: BH04 12-14

Lab Sample ID: MC30395-3 Date Sampled: 05/07/14 Matrix: SO - Soil **Date Received:** 05/08/14 Method: **Percent Solids:** SW846 8260C 90.8

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 M65203.D 1 05/09/14 KD MSM2295 n/an/a

Run #2

Final Volume Initial Weight

Run #1 5.0 ml 5.69 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	9.7	2.7	ug/kg	
71-43-2	Benzene	1.8	0.48	0.33	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.20	ug/kg	
75-25-2	Bromoform	ND	1.9	0.34	ug/kg	
74-83-9	Bromomethane	ND	1.9	0.58	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.7	3.0	ug/kg	
75-15-0	Carbon disulfide	ND	4.8	0.13	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.21	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.15	ug/kg	
75-00-3	Chloroethane	ND	4.8	0.73	ug/kg	
67-66-3	Chloroform	ND	1.9	0.16	ug/kg	
74-87-3	Chloromethane	ND	4.8	0.55	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.31	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.9	0.26	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.9	0.31	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.9	0.40	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.9	0.44	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.9	0.40	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.41	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.22	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.25	ug/kg	
100-41-4	Ethylbenzene	ND	1.9	0.67	ug/kg	
591-78-6	2-Hexanone	ND	9.7	0.73	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	4.8	0.52	ug/kg	
75-09-2	Methylene chloride	ND	1.9	0.51	ug/kg	
100-42-5	Styrene	ND	4.8	0.16	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.38	ug/kg	
127-18-4	Tetrachloroethene	ND	1.9	0.30	ug/kg	
108-88-3	Toluene	4.5	4.8	0.20	ug/kg	J
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.21	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.55	ug/kg	
79-01-6	Trichloroethene	ND	1.9	0.24	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Report of Analysis

Client Sample ID: BH04 12-14 Lab Sample ID: MC30395-3

 Lab Sample ID:
 MC30395-3
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 90.8

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND 4.5	1.9 1.9	0.88 0.21	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	103%		70-1	30%	
2037-26-5	Toluene-D8	90%		70-1	30%	
460-00-4	4-Bromofluorobenzene	88%		70-1	30%	

ND = Not detected MDL = Method Detection Limit J = Indic

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: BH06 2-4

 Lab Sample ID:
 MC30395-4
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 85.4

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 M65204.D 1 05/09/14 KD MSM2295 n/an/a Run #2

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	53.5	9.7	2.7	ug/kg	
71-43-2	Benzene	ND	0.49	0.33	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.20	ug/kg	
75-25-2	Bromoform	ND	1.9	0.35	ug/kg	
74-83-9	Bromomethane	ND	1.9	0.59	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.7	3.0	ug/kg	
75-15-0	Carbon disulfide	0.59	4.9	0.13	ug/kg	J
56-23-5	Carbon tetrachloride	ND	1.9	0.21	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.15	ug/kg	
75-00-3	Chloroethane	ND	4.9	0.74	ug/kg	
67-66-3	Chloroform	ND	1.9	0.16	ug/kg	
74-87-3	Chloromethane	ND	4.9	0.55	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.31	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.9	0.26	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.9	0.31	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.9	0.40	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.9	0.44	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.9	0.41	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.41	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.22	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.26	ug/kg	
100-41-4	Ethylbenzene	ND	1.9	0.67	ug/kg	
591-78-6	2-Hexanone	ND	9.7	0.74	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	4.9	0.52	ug/kg	
75-09-2	Methylene chloride	ND	1.9	0.52	ug/kg	
100-42-5	Styrene	ND	4.9	0.17	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.38	ug/kg	
127-18-4	Tetrachloroethene	ND	1.9	0.30	ug/kg	
108-88-3	Toluene	ND	4.9	0.20	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.21	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.56	ug/kg	
79-01-6	Trichloroethene	ND	1.9	0.24	ug/kg	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

C

Report of Analysis

 Client Sample ID:
 BH06 2-4

 Lab Sample ID:
 MC30395-4
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 85.4

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.9 1.9	0.89 0.21	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ita	
0120 1100	Surrogate Recoveries	Kuli# 1	Kuli# 2	LIIII	its	

ND = Not detected MDL = Method Detection Limit J = Indicates the substitution of the substitution of

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: BH07 0.5-2

 Lab Sample ID:
 MC30395-5
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 93.3

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 a G137440.D 1 05/09/14 GK n/a n/a MSG5257

Run #2

Initial Weight Final Volume Methanol Aliquot

Run #1 5.11 g 10.0 ml 100 ul

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	1100	300	ug/kg
71-43-2	Benzene	ND	54	37	ug/kg
75-27-4	Bromodichloromethane	ND	220	23	ug/kg
75-25-2	Bromoform	ND	220	38	ug/kg
74-83-9	Bromomethane	ND	220	65	ug/kg
78-93-3	2-Butanone (MEK)	ND	1100	330	ug/kg
75-15-0	Carbon disulfide	ND	540	14	ug/kg
56-23-5	Carbon tetrachloride	ND	220	24	ug/kg
108-90-7	Chlorobenzene	ND	220	17	ug/kg
75-00-3	Chloroethane	ND	540	82	ug/kg
67-66-3	Chloroform	ND	220	18	ug/kg
74-87-3	Chloromethane	ND	540	61	ug/kg
124-48-1	Dibromochloromethane	ND	220	35	ug/kg
75-34-3	1,1-Dichloroethane	ND	220	29	ug/kg
107-06-2	1,2-Dichloroethane	ND	220	35	ug/kg
75-35-4	1,1-Dichloroethene	ND	220	45	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	220	49	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	220	45	ug/kg
78-87-5	1,2-Dichloropropane	ND	220	46	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	220	25	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	220	29	ug/kg
100-41-4	Ethylbenzene	ND	220	75	ug/kg
591-78-6	2-Hexanone	ND	1100	82	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	540	59	ug/kg
75-09-2	Methylene chloride	ND	220	58	ug/kg
100-42-5	Styrene	ND	540	18	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	220	43	ug/kg
127-18-4	Tetrachloroethene	ND	220	34	ug/kg
108-88-3	Toluene	ND	540	22	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	220	24	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	220	62	ug/kg
79-01-6	Trichloroethene	ND	220	27	ug/kg

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: BH07 0.5-2

 Lab Sample ID:
 MC30395-5
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 93.3

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	220 220	99 24	ug/kg ug/kg	
CAS No.	Cuma acta Decembra	D // 1	5 "4			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	114%	Run# 2	Limi 70-13		
	8		Run# 2		30%	

⁽a) Dilution required due to high concentration of non-target compound.

ND = Not detected MDL = Method Detection Limit J = Indicates and MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: BH08 0.5-2

Lab Sample ID: MC30395-6 **Date Sampled:** 05/07/14 Matrix: SO - Soil **Date Received:** 05/08/14 Method: **Percent Solids:** SW846 8260C 95.0

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 M65217.D 1 05/10/14 KD MSM2295 n/an/a Run #2

Final Volume Initial Weight Run #1 5.0 ml

7.51 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	7.0	2.0	ug/kg	
71-43-2	Benzene	1.0	0.35	0.24	ug/kg	
75-27-4	Bromodichloromethane	ND	1.4	0.15	ug/kg	
75-25-2	Bromoform	ND	1.4	0.25	ug/kg	
74-83-9	Bromomethane	ND	1.4	0.42	ug/kg	
78-93-3	2-Butanone (MEK)	ND	7.0	2.2	ug/kg	
75-15-0	Carbon disulfide	0.98	3.5	0.092	ug/kg	J
56-23-5	Carbon tetrachloride	ND	1.4	0.15	ug/kg	
108-90-7	Chlorobenzene	ND	1.4	0.11	ug/kg	
75-00-3	Chloroethane	ND	3.5	0.53	ug/kg	
67-66-3	Chloroform	ND	1.4	0.12	ug/kg	
74-87-3	Chloromethane	ND	3.5	0.40	ug/kg	
124-48-1	Dibromochloromethane	ND	1.4	0.23	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.4	0.19	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.4	0.23	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.4	0.29	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.4	0.32	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.4	0.29	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.4	0.29	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.4	0.16	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.4	0.18	ug/kg	
100-41-4	Ethylbenzene	ND	1.4	0.48	ug/kg	
591-78-6	2-Hexanone	ND	7.0	0.53	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	3.5	0.38	ug/kg	
75-09-2	Methylene chloride	ND	1.4	0.37	ug/kg	
100-42-5	Styrene	ND	3.5	0.12	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.4	0.28	ug/kg	
127-18-4	Tetrachloroethene	ND	1.4	0.22	ug/kg	
108-88-3	Toluene	2.4	3.5	0.14	ug/kg	J
71-55-6	1,1,1-Trichloroethane	ND	1.4	0.15	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	1.4	0.40	ug/kg	
79-01-6	Trichloroethene	ND	1.4	0.17	ug/kg	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: BH08 0.5-2 Lab Sample ID: MC30395-6

 Lab Sample ID:
 MC30395-6
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 95.0

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND 3.0	1.4 1.4	0.64 0.15	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
CAS No. 1868-53-7	Surrogate Recoveries Dibromofluoromethane	Run# 1 100%	Run# 2		its 30%	
	C		Run# 2	70-1		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: TPMW01

 Lab Sample ID:
 MC30395-7
 Date Sampled:
 05/07/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 N86958.D 1 05/09/14 KD n/aMSN3237 n/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	2.5	ug/l	
71-43-2	Benzene	ND	0.50	0.32	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.34	ug/l	
75-25-2	Bromoform	ND	1.0	0.61	ug/l	
74-83-9	Bromomethane	ND	2.0	1.8	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.3	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.43	ug/l	
75-00-3	Chloroethane	ND	2.0	0.53	ug/l	
67-66-3	Chloroform	1.7	1.0	0.41	ug/l	
74-87-3	Chloromethane	ND	2.0	1.1	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.38	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.36	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.61	ug/l	
156-59-2	cis-1,2-Dichloroethene	67.3	1.0	0.84	ug/l	
156-60-5	trans-1,2-Dichloroethene	0.77	1.0	0.51	ug/l	J
78-87-5	1,2-Dichloropropane	ND	2.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.42	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.38	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.6	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	0.99	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.28	ug/l	
100-42-5	Styrene	ND	5.0	0.85	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.40	ug/l	
127-18-4	Tetrachloroethene	71.6	1.0	0.59	ug/l	
108-88-3	Toluene	ND	1.0	0.33	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.45	ug/l	
79-01-6	Trichloroethene	26.9	1.0	0.47	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis Page 2 of 2

Client Sample ID: TPMW01

Lab Sample ID: **Date Sampled:** 05/07/14 MC30395-7 Matrix: **Date Received:** 05/08/14 AQ - Ground Water Method: SW846 8260C **Percent Solids:** n/a

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND 0.54	1.0 1.0	0.58 0.36	ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
CAS No. 1868-53-7	Surrogate Recoveries Dibromofluoromethane	Run# 1 101%	Run# 2		its 30%	
	8		Run# 2	70-1		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: TPMW02

 Lab Sample ID:
 MC30395-8
 Date Sampled:
 05/07/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 a N86959.D 1 05/09/14 KD n/aMSN3237 n/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

Compound	Result	RL	MDL	Units	Q
Acetone	ND	10	2.5	ug/l	
Benzene	ND	0.50	0.32	ug/l	
Bromodichloromethane	ND	1.0	0.34	ug/l	
Bromoform	ND	1.0	0.61	ug/l	
Bromomethane	ND	2.0	1.8	ug/l	
2-Butanone (MEK)	ND	5.0	2.3	ug/l	
Carbon disulfide	ND	5.0	0.46	ug/l	
Carbon tetrachloride	ND	1.0	0.53	ug/l	
Chlorobenzene	ND	1.0	0.43	ug/l	
Chloroethane	ND	2.0	0.53	ug/l	
Chloroform	ND	1.0	0.41	ug/l	
Chloromethane	ND	2.0	1.1	ug/l	
Dibromochloromethane	ND	1.0	0.38	ug/l	
1,1-Dichloroethane	ND	1.0	0.36	ug/l	
1,2-Dichloroethane	ND	1.0	0.50	ug/l	
1,1-Dichloroethene	0.66	1.0	0.61	ug/l	J
cis-1,2-Dichloroethene	165	1.0	0.84	ug/l	
trans-1,2-Dichloroethene	4.3	1.0	0.51	ug/l	
1,2-Dichloropropane	ND	2.0	0.50	ug/l	
cis-1,3-Dichloropropene	ND	0.50	0.42	ug/l	
trans-1,3-Dichloropropene	ND	0.50	0.50	ug/l	
Ethylbenzene	ND	1.0	0.38	ug/l	
2-Hexanone	ND	5.0	1.6	ug/l	
4-Methyl-2-pentanone (MIBK)	ND	5.0	0.99	ug/l	
Methylene chloride	ND	2.0	0.28	ug/l	
Styrene	ND	5.0	0.85	ug/l	
1,1,2,2-Tetrachloroethane	ND	0.50	0.40	ug/l	
Tetrachloroethene	15.0	1.0	0.59	ug/l	
Toluene	ND	1.0	0.33	ug/l	
1,1,1-Trichloroethane	ND	1.0	0.46	ug/l	
1,1,2-Trichloroethane	ND	1.0	0.45	ug/l	
Trichloroethene	22.4	1.0	0.47	ug/l	
	Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone 4-Methyl-2-pentanone (MIBK) Methylene chloride Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane	Acetone Benzene ND Bromodichloromethane ND Bromoform ND Bromomethane ND 2-Butanone (MEK) Carbon disulfide ND Carbon tetrachloride ND Chlorobenzene ND Chloroethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene ND 1,1-Dichloropropene ND Cis-1,2-Dichloropropene ND Cis-1,3-Dichloropropene ND	Acetone Benzene Bromodichloromethane Bromoform Bromoform Bromomethane ND 1.0 Bromomethane ND 2.0 2-Butanone (MEK) ND 5.0 Carbon disulfide ND Carbon tetrachloride ND Chlorobenzene ND Chloroethane ND 2.0 Chloroform ND 1.0 Chloromethane ND 2.0 Chloroform ND 1.0 Chloromethane ND 1.0 Chloromethane ND 1.0 Chloromethane ND 1.0 I,1-Dichloroethane ND 1,2-Dichloroethane ND 1,1-Dichloroethene 165 1.0 trans-1,2-Dichloroethene 165 1.0 trans-1,3-Dichloropropene ND 1.0 L2-Dichloropropene ND Cis-1,3-Dichloropropene ND	Acetone ND 10 2.5 Benzene ND 0.50 0.32 Bromodichloromethane ND 1.0 0.34 Bromoform ND 1.0 0.61 Bromomethane ND 1.0 0.61 Bromomethane ND 2.0 1.8 2-Butanone (MEK) ND 5.0 2.3 Carbon disulfide ND 5.0 0.46 Carbon disulfide ND 5.0 0.46 Carbon tetrachloride ND 1.0 0.53 Chlorobenzene ND 1.0 0.43 Chlorobenzene ND 1.0 0.43 Chlorobenzene ND 1.0 0.43 Chlorobenzene ND 1.0 0.43 Chlorobenzene ND 1.0 0.41 Chlorobenzene ND 1.0 0.38 1,1-Dichloromethane ND 1.0 0.36 1,2-Dichloroethane ND 1.0 0.50 <td>Acetone ND 10 2.5 ug/l Benzene ND 0.50 0.32 ug/l Bromodichloromethane ND 1.0 0.34 ug/l Bromoform ND 1.0 0.61 ug/l Bromomethane ND 1.0 0.61 ug/l Bromomethane ND 2.0 1.8 ug/l 2-Butanone (MEK) ND 5.0 2.3 ug/l Carbon disulfide ND 5.0 0.46 ug/l Carbon disulfide ND 5.0 0.46 ug/l Carbon disulfide ND 1.0 0.43 ug/l Chlorobenzene ND 1.0 0.43 ug/l Chlorobenzene ND 1.0 0.43 ug/l Chloroethane ND 1.0 0.41 ug/l Chloroethane ND 1.0 0.38 ug/l 1,1-Dichloroethane ND 1.0 0.50 ug/l <</td>	Acetone ND 10 2.5 ug/l Benzene ND 0.50 0.32 ug/l Bromodichloromethane ND 1.0 0.34 ug/l Bromoform ND 1.0 0.61 ug/l Bromomethane ND 1.0 0.61 ug/l Bromomethane ND 2.0 1.8 ug/l 2-Butanone (MEK) ND 5.0 2.3 ug/l Carbon disulfide ND 5.0 0.46 ug/l Carbon disulfide ND 5.0 0.46 ug/l Carbon disulfide ND 1.0 0.43 ug/l Chlorobenzene ND 1.0 0.43 ug/l Chlorobenzene ND 1.0 0.43 ug/l Chloroethane ND 1.0 0.41 ug/l Chloroethane ND 1.0 0.38 ug/l 1,1-Dichloroethane ND 1.0 0.50 ug/l <

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Client Sample ID: TPMW02

 Lab Sample ID:
 MC30395-8
 Date Sampled:
 05/07/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	2.4 ND	1.0 1.0	0.58 0.36	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
CAS No. 1868-53-7 2037-26-5	Surrogate Recoveries Dibromofluoromethane Toluene-D8	Run# 1 100% 106%	Run# 2	Limi 70-13 70-13	30%	

(a) The pH of the sample aliquot for VOA analysis was > 2 at time of analysis.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

N 17'	
Misc.	Forms
111100.	1 011110

Custody Documents and Other Forms

Includes the following where applicable:

· Chain of Custody

CHAIN OF CUSTODY

Accutest Laboratories of New England 495 Technology Center West, Building One TEL. 508-481-6200 FAX: 508-481-7753

PAGE		OF	1
------	--	----	---

Clear Respecting Information				TE	L. 508-48ء س	1-6200 vww.ac			81-7	753				Ā	Accutest	Quote #			Acc	cutest Job #	me	2m21	as .
Common Name Common Name C		Client / Reporting Information			and the same of the same of the same									-		4000							
Share Shar	Com		Project Name		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Jeurna	/Urman	Ole				<u> Anno de</u>		24		Reques	ted Ana	Ilysis (s	see TES	IT CODE	sheet)	1	Matrix Codes
Hard	L	_(\$	Lum	mariel	Proper	4.								- [DW - Drinking Wat
Section Commental Part Commental P	Stree		Street:		10	'							<u> </u>	E 1	1								GW - Ground Wate
Section Commental Part Commental P	4	O Lakieure Dr	3021-	3o4LOcc	hard Pe	11	Billing Ir	nformatic	on (If	differ	ent fr	rom R	teport to	(0.		-							WW - Water SW - Surface Wate
Commercial Com	City	State Zip	City:	10								-	<u></u>	7		-							SO - Soil
Commercial Com	Dr	4440 h1 1490	19 propi	ivd In	1-K, NY											ĺ					'		SED-Sediment
Proof Page	Proje	Start Rowk				Stree	al Address	j.															LIQ - Other Liquid
Property	Phor	ne# Fax#	Client PO#	J., W.		City		***************************************		State			Zip	\neg	X	-							SOL - Other Solid
Service Poor Self-Runder	7	16-845-6145													Z			1 1					
Connected Prince of preserved Business Prince Pri	Sam	pler(s) Name(s) Phone #	Project Manager	Δ ,		Atter	ition:	-			PO#			\neg									EB- Equipment Blan
Connected Prince of preserved Business Prince Pri		sett Kovier	Jelt	Roslej										1.									
Received by Schools Samples Sa	Г			7	Collection		T	T	T	Numbr	er of pr	eserred	d Bottles	7.	7				İ			1	10-17-p Bionin
SHO1 018 - 4						T	1				1.1	ě	T Test	12/2								1	
SHO1 018 - 4	Accute Sample	Field ID / Point of Collection	MEOH/DI Vial #	Date	Time		Matrix	# of bottle	± ₽	NaOH HNO3	H230	NON-	MEOH	Bisulta	23				-			1	LAB USE ONLY
2 Sh 0 1 1 1 1 1 1 1 1 1	-1	RHAL DI8-4		5/7/14	9:30	Some	Su	74	\prod	1	H	\Box			又		+	\vdash	\dashv	_	+		
3 BH O 4 3-14 5/7/4 3', CC SYM SC 4 1 1 1 3 X X X X X X X X X		BH02 6-8		5/7/14	12:10	- "	-		H	7	1	Ш		1. 1					\top	_	1		
STIPLY 1410 310 SO 4 I I I I A X SHOT O.5-2 STIPLY 1413 SOR SO 4 I I I I A X BHOR O.5-2 STIPLY 1413 SOR SO 4 I I I I A X STIPLY 1510 311 SOR SO 4 I I I I A X STIPLY 1510 311 SOR SO 4 I I I I A X STIPLY 1510 311 SOR SO 4 I I I I A X STIPLY 1510 311 SOR SO 4 I I I I A X STIPLY 1510 311 SOR SO 3 3 I I I I A X STIPLY 1510 31 SOR SO 3 3 I I I I A X STIPLY 1510 31 SOR SO 3 3 I I I I A X STIPLY 1510 31 SOR			***************************************	5/7/14		-	+	4	H	+	H	Ш		ر کا	X	1	1		\top	+	1		
SPILE OLST SPILE HYSLAMR SO 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-4	BHOG 2-4		5/7/14	14:00		1	4	11	+	li	Ш	1.1-1		abla	_	+		+		1 1	_	
BHUS 0.5-2 STIP IS O THE SO 4 I I I WAY STIP IN OI STIP IS STAN SU 3 3 I I WAY STIP IN OI STIP IS STAN SU 3 3 I I WAY STIP IS STAN SU 3 3 I I WAY STIP IS STAN SU 3 3 I I WAY STIP IS STAN SU 3 3 I I WAY STIP IS STAN SU 3 3 I I WAY STIP IS STAN SU 3 3 I I WAY STIP IS STAN SU 3 3 I I WAY STAN SU 3 I I I WAY STAN SU 3 I I I WAY STAN SU 3 I I I WAY STAN SU 3 I I I I WAY STAN SU 3 I I I I I I I I I I I I I I I I I I	-5	RHO7 0,5-2		5/1/14	1413/	SMR	+	Ц	H	+	巾	П	+++	 '	-	-			_	+	1		
### PM V02 S 1 1 1 1 1 1 1 1 1	-6	** ** * * * * * * * * * * * * * * * *		5/7/14	15:30	SWE	50	 	\Box	\top	\sqcap	巾				\top			_	+	\vdash	_	
STATURE (Business days) Std. 10 Business Days Std. 5 Business Days (By Contract only) Std. 5 Business Days (By Contract only) Std. 5 Business Days (By Contract only) Std. 6 Business Days	-7	- Committee A.A.		5/2/4	10:50	Sma	Su		२	+	十	+	ĤΤ	1 - 1 -		_		\sqcap	+	+	+-+		
Turnaround Time (Business days) Std. 10 Business Days Approved By (Accutest PM): / Date:	-8			5/2/14	12:40	ENR	50			+	十	Ħ	1	LL		\top	+		+	+	+++		ļ
Turnaround Time (Business days) Std. 10 Business Days Std. 5 Business Days Std. 5 Business Days (By Contract only) 1 3 Day EMERGENCY 1 1 Day EMERGENCY 1 1 Day EMERGENCY 2 Day EMERGENCY 1 Day EMERGENCY 2 Day EMERGENCY 3 Date Time: 5 Received By: 7 Received By: 8 Received By: 9 Received By: 1 A 4	-			111	100	78 '71		-	1	++	十	++	\sqcap	+	+	\dashv	+		+	+	\vdash		my
Turnaround Time (Business days) Std. 10 Business Days Std. 10 Business Days Std. 5 Business Days Std. 5 Business Days Std. 5 Business Days (By Contract only) S Day RUSH S Day RUSH S Day SERGENCY S SERGING S	<u> </u>					 	\vdash	 	+	++	\leftarrow	++	$\dashv \dashv$		+	+	+	-	+		+-+		
Turnaround Time (Business days) Approved By (Accutest PM): / Date: Std. 10 Business Days Sy Contract only) Std. 5 Business Days Std. 10 Business Std. 10 Bus				 		↓	<u> </u>	 '	\vdash	+	+	44	H	+	-		4	\dashv			1		IZC,
Turnaround Time (Business days) Approved By (Accutest PM): / Date: Std. 10 Business Days Sy Contract only) Std. 5 Business Days Std. 10 Business Std. 10 Bus				<u> </u>		'	<u></u> '	<u> </u>		Ш	Ш.	Ш	Ш					L					1
Turnaround Time (Business days) Approved By (Accutest PM): / Date: Std. 10 Business Days Sy Contract only) Std. 5 Business Days Std. 10 Business Std. 10 Bus					<u> </u>				П	\Box	Т	\top	T		T	\top				7			
Turnaround Time (Business days) Approved By (Acculest PM): / Date: Std. 10 Business Days Std. 5 Business Days (By Contract only) Std. 5 Business Days (By Cactered By: Busin								Data	Deliv	verable	e Info	rmati	ion					Con	nments	/ Speci	al Instru	uctions	-
Std. 5 Business Days (By Contract only) 5 Day RUER 3 Day EMERGENCY 2 Day EMERGENCY 1 Day EMERGENCY 1 Day EMERGENCY 2 Day EMERGENCY 2 Day EMERGENCY 3 Day EMERGENCY 4 State Forms 5 Day FORM 5 Day EMERGENCY 5 Day EMERGENCY 6 Day Format 6 Day Emergency & Results + QC Summary 6 Day Format 7 Passults Only 7 Commercial "A" = Results + QC Summary 8 Emergency & Results + QC Summary 8 Emergency & Results + QC Summary 8 Emergency & Results + QC Summary 9 Day Firms: 5 Day Firms: 7 Day Firms:			Approved By (Actr	rtest PM): / Date:			Commerc	al "A" (L	evel 1	4		NY/	ASP Cat	tegory	A								
Std. 5 Business Days (By Contract only) 5 Iday RUSH State Forms					. ARREST					.)					B	<u> </u>							
3 Day EMERGENCY								, Level 3+4	4)														
2 Day EMERGENCY 1 Day EMERGENCY Commercial "A" = Results Only Commercial "B" = Results + QC Summary Emergency & Results + QC Summary Sample Custody must be documented below each time samples change possession, including courier delivery. Received By: PEDX Sampler Date Time: Received By: PEDX PROBLEM PEDX PED				317!							드	No.		at		-							
1 Day EMERGENCY Commercial "B" = Results + QC Summary				9 4 o c		١٣.		Commare		~ Dan			161	—									
Emergency & Rush T/A data available VIA Lablink Sample Custody must be documented below each time samples change possession, Including courier delivery. Received By:					l								mman.			-							
Reinforder by Sampler: Date Time: Date Time: Date Time: Date Time: Date Time: Received By: Re	Em															\perp							
Received By: Date Time: Received By: Pate Time: Received By:	A	Visit seed but			st be docum	ented be	slow eac					osses	ssion, Ir	ncludi	ing co	urier deli							
Received By: Date Time: Received By: Received By: Date Time: Received By:	1 "	nousined by Sampier:		Death	M					3 bedaiu	ду:	F	FED	X			Date Tim	e: 93 2-14) Recei	May	· M	w	<u>~</u>
	Reli	inquite had by Salinpter: Date Tim	ie:	Received By:	-				Reling	uished!	By:												
Relinquished by: Custody Seal # Indiact Preserved where applicable On Ice Cooley Temp.	3	2		3					4										4				
	Relii 5	nquished by: Date Time	1						Custod	ty Seal #	4			n '		Presen		applicable			On Ice	2 Cooley	Temp.

SYRACUSE SC

MC30395: Chain of Custody
Page 1 of 3

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: MC3	0395	Client:	LCS			Immediate Client Serv	vices Action	Required	i: Yes
Date / Time Received: 5/8/2	2014		Delive	ery Meth	od:				
Project: COMMERCIAL PRO)P		No. Co	oolers:		Airbill #'s:			
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact:	_	3. COC Pr 4. Smpl Date		Y or ✓	N	Sample Integrity - Documentation 1. Sample labels present on bottles:	<u>Y</u>	or N	
Cooler Temperature	Y or	N_				Container labeling complete: Sample container label / COC agree:		✓	
Temp criteria achieved: Cooler temp verification: Cooler media:		d gun bag)				Sample Integrity - Condition 1. Sample rec'd within HT: 2. All containers accounted for:	<u>Y</u> <u>V</u>	or N	
Quality Control Preservation	<u> Y</u>	<u>N N</u>	<u>/A</u>			3. Condition of sample:	lı	ntact	
Trip Blank present / cooler: Trip Blank listed on COC: Samples preserved properly: VOCs headspace free:]			Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume rec'd for analysis: 4. Compositing instructions clear:	<u>Y</u>	<u>N</u> □ □ □ □	N/A ✓
Comments						Filtering instructions clear:			✓
-6 all sample bottles have time of 15:	00, but the c	oc says 15:30							
Accutest Laboratories V:508.481.6200					ology Cente F: 508.481	er West, Bldg One 7.7753			orough, MA

MC30395: Chain of Custody Page 2 of 3

Sample Receipt Summary - Problem Resolution

Accutest Job Number: MC30395

CSR: Frank D'Agostino Response Date: 4/9/2014

Response: The correct sample time is 15:00

__

 Accutest Laboratories
 495 Technology Center West, Bldg One
 Mariborough, MA

 V:508.481.6200
 F: 508.481.7753
 www/accutest.com

MC30395: Chain of Custody Page 3 of 3

05/13/14

Technical Report for

Lender Consulting Services, Inc.

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

13B4431.22

Accutest Job Number: MC30471

Sampling Date: 05/08/14

Report to:

Lender Consulting Services, Inc.

mpopek@lenderconsulting.com

ATTN: Maggie Popek

Total number of pages in report: 16

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Frank DAgostino 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) WI (399080220) DoD ELAP (L-A-B L2235)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: MC30471-1: TPMW-06	6
3.2: MC30471-2: TPMW-05	8
3.3: MC30471-3: TPMW-04	10
3.4: MC30471-4: TPMW-03	12
Section 4: Misc. Forms	14
4.1: Chain of Custody	15

Sample Summary

Lender Consulting Services, Inc.

Job No: MC30471

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY Project No: 13B4431.22

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
MC30471-1	05/08/14	11:40 DC	05/09/14	AQ	Ground Water	TPMW-06
MC30471-2	05/08/14	13:45 DC	05/09/14	AQ	Ground Water	TPMW-05
MC30471-3	05/08/14	14:45 DC	05/09/14	AQ	Ground Water	TPMW-04
MC30471-4	05/08/14	17:50 DC	05/09/14	AQ	Ground Water	TPMW-03

Summary of Hits

Page 1 of 1

Job Number: MC30471

Account: Lender Consulting Services, Inc.

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

Collected: 05/08/14

Lab Sample ID Client Sample ID Result/ Analyte Qual RL MDL Units Method

MC30471-1 TPMW-06

No hits reported in this sample.

MC30471-2 TPMW-05

No hits reported in this sample.

MC30471-3 TPMW-04

No hits reported in this sample.

MC30471-4 TPMW-03

No hits reported in this sample.

Sample Results	
Report of Analysis	

Client Sample ID: TPMW-06 Lab Sample ID: MC30471-1

 Lab Sample ID:
 MC30471-1
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** MSU898 Run #1 U19757.D 1 05/12/14 GKn/a n/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

Compound	Result	RL	MDL	Units	Q
Acetone	ND	10	2.5	ug/l	
Benzene	ND	0.50	0.32	ug/l	
Bromodichloromethane	ND	1.0	0.34	ug/l	
Bromoform	ND	1.0	0.61	ug/l	
Bromomethane	ND	2.0	1.8	ug/l	
2-Butanone (MEK)	ND	5.0	2.3	ug/l	
Carbon disulfide	ND	5.0	0.46	ug/l	
Carbon tetrachloride	ND	1.0	0.53	ug/l	
Chlorobenzene	ND	1.0	0.43	ug/l	
Chloroethane	ND	2.0	0.53	ug/l	
Chloroform	ND	1.0	0.41	ug/l	
Chloromethane	ND	2.0	1.1	ug/l	
Dibromochloromethane	ND	1.0	0.38	ug/l	
1,1-Dichloroethane	ND	1.0	0.36	ug/l	
1,2-Dichloroethane	ND	1.0	0.50	ug/l	
1,1-Dichloroethene	ND	1.0	0.61	ug/l	
cis-1,2-Dichloroethene	ND	1.0	0.84	ug/l	
trans-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
1,2-Dichloropropane	ND	2.0	0.50	ug/l	
cis-1,3-Dichloropropene	ND	0.50	0.42	ug/l	
trans-1,3-Dichloropropene	ND	0.50	0.50	ug/l	
Ethylbenzene	ND	1.0	0.38	ug/l	
2-Hexanone	ND	5.0	1.6	ug/l	
4-Methyl-2-pentanone (MIBK)	ND	5.0	0.99	ug/l	
Methylene chloride	ND	2.0	0.28	ug/l	
Styrene	ND	5.0	0.85	ug/l	
1,1,2,2-Tetrachloroethane	ND	0.50	0.40	ug/l	
Tetrachloroethene	ND	1.0	0.59	ug/l	
Toluene	ND	1.0	0.33	ug/l	
1,1,1-Trichloroethane	ND	1.0	0.46	ug/l	
1,1,2-Trichloroethane	ND	1.0	0.45	ug/l	
Trichloroethene	ND	1.0	0.47	ug/l	
	Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone 4-Methyl-2-pentanone (MIBK) Methylene chloride Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane	Acetone Benzene Bromodichloromethane Bromoform ND Bromomethane ND Bromomethane ND Bromomethane ND 2-Butanone (MEK) Carbon disulfide ND Carbon tetrachloride ND Chlorobenzene ND Chloroethane ND Chloromethane ND Chloromethane ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND trans-1,2-Dichloroethene ND 1,2-Dichloropropene ND trans-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND Ethylbenzene ND 2-Hexanone ND 4-Methyl-2-pentanone (MIBK) ND Methylene chloride ND Styrene ND 1,1,2,2-Tetrachloroethane ND 1,1,1-Trichloroethane ND 1,1,1-Trichloroethane ND 1,1,1-Trichloroethane ND 1,1,2-Trichloroethane ND 1,1,2-Trichloroethane ND	Acetone Benzene Bromodichloromethane ND Bromoform ND Bromomethane ND 1.0 Bromomethane ND 2.0 2-Butanone (MEK) ND Carbon disulfide ND Carbon tetrachloride ND Chlorobenzene ND Chloroethane ND 1.0 Chloromethane ND 1.0 Chloromethane ND 1.0 Chloromethane ND 1.0	Acetone ND 10 2.5 Benzene ND 0.50 0.32 Bromodichloromethane ND 1.0 0.34 Bromoform ND 1.0 0.61 Bromomethane ND 1.0 0.61 Bromomethane ND 2.0 1.8 2-Butanone (MEK) ND 5.0 2.3 Carbon disulfide ND 5.0 0.46 Carbon disulfide ND 5.0 0.46 Carbon tetrachloride ND 1.0 0.53 Chlorobenzene ND 1.0 0.43 Chlorobenzene ND 1.0 0.43 Chlorotehane ND 1.0 0.41 Chlorotehane ND 1.0 0.41 Chloromethane ND 1.0 0.38 1,1-Dichloroethane ND 1.0 0.36 1,2-Dichloroethane ND 1.0 0.61 cis-1,2-Dichloroethene ND 1.0 0.50	Acetone ND 10 2.5 ug/l Benzene ND 0.50 0.32 ug/l Bromodichloromethane ND 1.0 0.34 ug/l Bromoform ND 1.0 0.61 ug/l Bromomethane ND 2.0 1.8 ug/l 2-Butanone (MEK) ND 5.0 2.3 ug/l Carbon disulfide ND 5.0 0.46 ug/l Carbon tetrachloride ND 1.0 0.53 ug/l Chloroethane ND 2.0 0.53 ug/l Chloroethane ND 2.0 0.53 ug/l Chloroethane ND 1.0 0.53 ug/l Chloroethane ND 2.0 0.53 ug/l Chloroethane ND 2.0 1.1 ug/l Dibromochloromethane ND 1.0 0.41 ug/l Chloroethane ND 2.0 1.1 ug/l Dibromochloromethane ND 1.0 0.38 ug/l 1,1-Dichloroethane ND 1.0 0.36 ug/l 1,2-Dichloroethane ND 1.0 0.50 ug/l 1,2-Dichloroethane ND 1.0 0.50 ug/l 1,1-Dichloroethene ND 1.0 0.61 ug/l cis-1,2-Dichloroethene ND 1.0 0.51 ug/l trans-1,2-Dichloroethene ND 1.0 0.51 ug/l 1,2-Dichloropropane ND 1.0 0.50 ug/l trans-1,3-Dichloropropene ND 1.0 0.50 ug/l trans-1,3-Dichloropropene ND 1.0 0.50 ug/l trans-1,3-Dichloropropene ND 0.50 0.42 ug/l trans-1,3-Dichloropropene ND 0.50 0.50 ug/l trans-1

ND = Not detected MDL = Method

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

 Client Sample ID:
 TPMW-06

 Lab Sample ID:
 MC30471-1
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 1.0	0.58 0.36	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

ND = Not detected MDL = Method Detection Limit J = Indicates the substitution of
RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: TPMW-05

 Lab Sample ID:
 MC30471-2
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** MSU898 Run #1 U19758.D 1 05/12/14 GKn/an/aRun #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	2.5	ug/l	
71-43-2	Benzene	ND	0.50	0.32	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.34	ug/l	
75-25-2	Bromoform	ND	1.0	0.61	ug/l	
74-83-9	Bromomethane	ND	2.0	1.8	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.3	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.43	ug/l	
75-00-3	Chloroethane	ND	2.0	0.53	ug/l	
67-66-3	Chloroform	ND	1.0	0.41	ug/l	
74-87-3	Chloromethane	ND	2.0	1.1	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.38	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.36	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.61	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.84	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.42	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.38	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.6	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	0.99	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.28	ug/l	
100-42-5	Styrene	ND	5.0	0.85	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.40	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.59	ug/l	
108-88-3	Toluene	ND	1.0	0.33	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.45	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.47	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Page 2 of 2

Report of Analysis

 Client Sample ID:
 TPMW-05

 Lab Sample ID:
 MC30471-2
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 1.0	0.58 0.36	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
CAS No. 1868-53-7	Surrogate Recoveries Dibromofluoromethane	Run# 1 111%	Run# 2		its 30%	
	C		Run# 2		30%	

ND = Not detected MDL = Method Detection Limit J = Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: TPMW-04

 Lab Sample ID:
 MC30471-3
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** MSU898 Run #1 a U19759.D 1 05/12/14 GKn/an/aRun #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

Compound	Result	RL	MDL	Units	Q
Acetone	ND	10	2.5	ug/l	
Benzene	ND	0.50	0.32	ug/l	
Bromodichloromethane	ND	1.0	0.34	ug/l	
Bromoform	ND	1.0	0.61	ug/l	
Bromomethane	ND	2.0	1.8	ug/l	
2-Butanone (MEK)	ND	5.0	2.3	ug/l	
Carbon disulfide	ND	5.0	0.46	ug/l	
Carbon tetrachloride	ND	1.0	0.53	ug/l	
Chlorobenzene	ND	1.0	0.43	ug/l	
Chloroethane	ND	2.0	0.53	ug/l	
Chloroform	ND	1.0	0.41	ug/l	
Chloromethane	ND	2.0	1.1	ug/l	
Dibromochloromethane	ND	1.0	0.38	ug/l	
1,1-Dichloroethane	ND	1.0	0.36	ug/l	
1,2-Dichloroethane	ND	1.0	0.50	ug/l	
1,1-Dichloroethene	ND	1.0	0.61	ug/l	
cis-1,2-Dichloroethene	ND	1.0	0.84	ug/l	
trans-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
1,2-Dichloropropane	ND	2.0	0.50	ug/l	
cis-1,3-Dichloropropene	ND	0.50	0.42	ug/l	
trans-1,3-Dichloropropene	ND	0.50	0.50	ug/l	
Ethylbenzene	ND	1.0	0.38	ug/l	
2-Hexanone	ND	5.0	1.6	ug/l	
4-Methyl-2-pentanone (MIBK)	ND	5.0	0.99	ug/l	
Methylene chloride	ND	2.0	0.28	ug/l	
Styrene	ND	5.0	0.85	ug/l	
1,1,2,2-Tetrachloroethane	ND	0.50	0.40	ug/l	
Tetrachloroethene	ND	1.0	0.59	ug/l	
Toluene	ND	1.0	0.33	ug/l	
1,1,1-Trichloroethane	ND	1.0	0.46	ug/l	
1,1,2-Trichloroethane	ND	1.0	0.45	ug/l	
Trichloroethene	ND	1.0	0.47	ug/l	
	Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone 4-Methyl-2-pentanone (MIBK) Methylene chloride Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane	Acetone Benzene Bromodichloromethane Bromoform ND Bromomethane ND Bromomethane ND Bromomethane ND 2-Butanone (MEK) Carbon disulfide ND Carbon tetrachloride ND Chlorobenzene ND Chloroethane ND Chloromethane ND Chloromethane ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND trans-1,2-Dichloroethene ND 1,2-Dichloropropene ND trans-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND Ethylbenzene ND 2-Hexanone ND 4-Methyl-2-pentanone (MIBK) ND Methylene chloride ND Styrene ND 1,1,2,2-Tetrachloroethane ND 1,1,1-Trichloroethane ND 1,1,1-Trichloroethane ND 1,1,1-Trichloroethane ND 1,1,2-Trichloroethane ND 1,1,2-Trichloroethane ND	Acetone Benzene Bromodichloromethane ND Bromoform ND Bromomethane ND 1.0 Bromomethane ND 2.0 2-Butanone (MEK) ND Carbon disulfide ND Carbon tetrachloride ND Chlorobenzene ND Chloroethane ND 1.0 Chloromethane ND 1.0 Chloromethane ND 1.0 Chloromethane ND 1.0	Acetone ND 10 2.5 Benzene ND 0.50 0.32 Bromodichloromethane ND 1.0 0.34 Bromoform ND 1.0 0.61 Bromomethane ND 1.0 0.61 Bromomethane ND 2.0 1.8 2-Butanone (MEK) ND 5.0 2.3 Carbon disulfide ND 5.0 0.46 Carbon disulfide ND 5.0 0.46 Carbon tetrachloride ND 1.0 0.53 Chlorobenzene ND 1.0 0.43 Chlorobenzene ND 1.0 0.43 Chlorotehane ND 1.0 0.41 Chlorotehane ND 1.0 0.41 Chloromethane ND 1.0 0.38 1,1-Dichloroethane ND 1.0 0.36 1,2-Dichloroethane ND 1.0 0.61 cis-1,2-Dichloroethene ND 1.0 0.50	Acetone ND 10 2.5 ug/l Benzene ND 0.50 0.32 ug/l Bromodichloromethane ND 1.0 0.34 ug/l Bromoform ND 1.0 0.61 ug/l Bromomethane ND 2.0 1.8 ug/l 2-Butanone (MEK) ND 5.0 2.3 ug/l Carbon disulfide ND 5.0 0.46 ug/l Carbon tetrachloride ND 1.0 0.53 ug/l Chloroethane ND 2.0 0.53 ug/l Chloroethane ND 2.0 0.53 ug/l Chloroethane ND 1.0 0.53 ug/l Chloroethane ND 2.0 0.53 ug/l Chloroethane ND 2.0 1.1 ug/l Dibromochloromethane ND 1.0 0.41 ug/l Chloroethane ND 2.0 1.1 ug/l Dibromochloromethane ND 1.0 0.38 ug/l 1,1-Dichloroethane ND 1.0 0.36 ug/l 1,2-Dichloroethane ND 1.0 0.50 ug/l 1,2-Dichloroethane ND 1.0 0.50 ug/l 1,1-Dichloroethene ND 1.0 0.61 ug/l cis-1,2-Dichloroethene ND 1.0 0.51 ug/l trans-1,2-Dichloroethene ND 1.0 0.51 ug/l 1,2-Dichloropropane ND 1.0 0.50 ug/l trans-1,3-Dichloropropene ND 1.0 0.50 ug/l trans-1,3-Dichloropropene ND 1.0 0.50 ug/l trans-1,3-Dichloropropene ND 0.50 0.42 ug/l trans-1,3-Dichloropropene ND 0.50 0.50 ug/l trans-1

ND = Not detected MDL =

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sample ID: TPMW-04 Lab Sample ID: MC30471-3 **Date Sampled:** 05/08/14 Matrix: AQ - Ground Water Date Received: 05/09/14 Method: **Percent Solids:** SW846 8260C n/a

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 1.0	0.58 0.36	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
CAS No. 1868-53-7	Surrogate Recoveries Dibromofluoromethane	Run# 1 114%	Run# 2	Lim i 70-1		
	8		Run# 2		30%	

⁽a) The pH of the sample aliquot for VOA analysis was > 2 at time of analysis.

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: TPMW-03

 Lab Sample ID:
 MC30471-4
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** MSU898 Run #1 a U19760.D 1 05/12/14 GKn/an/aRun #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	2.5	ug/l	
71-43-2	Benzene	ND	0.50	0.32	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.34	ug/l	
75-25-2	Bromoform	ND	1.0	0.61	ug/l	
74-83-9	Bromomethane	ND	2.0	1.8	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.3	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.43	ug/l	
75-00-3	Chloroethane	ND	2.0	0.53	ug/l	
67-66-3	Chloroform	ND	1.0	0.41	ug/l	
74-87-3	Chloromethane	ND	2.0	1.1	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.38	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.36	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.61	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.84	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.42	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.38	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.6	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	0.99	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.28	ug/l	
100-42-5	Styrene	ND	5.0	0.85	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.40	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.59	ug/l	
108-88-3	Toluene	ND	1.0	0.33	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.45	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.47	ug/l	

ND = Not detected MDL =

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

C

Report of Analysis

 Client Sample ID:
 TPMW-03

 Lab Sample ID:
 MC30471-4
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 1.0	0.58 0.36	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
CAS No. 1868-53-7	Surrogate Recoveries Dibromofluoromethane	Run# 1 112%	Run# 2	Lim i 70-1:		
	8		Run# 2		30%	

(a) The pH of the sample aliquot for VOA analysis was > 2 at time of analysis.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

•	<i>a</i> •		
N.	100	Forms	
IV	Iisc.	TOURS	

Custody Documents and Other Forms

Includes the following where applicable:

· Chain of Custody

Client / Reporting Information

"Larivideding

Field ID / Point of Collection

Turnaround Time (Business days)

Std. 5 Business Days (By Contract only)

ergency & Rush T/A data available VIA Lablin

Std. 10 Business Days

2 Day EMERGENCY

1 Day EMERGENCY

5 Day RUSH
3 Day EMERGENCY

TPMW-06

2 TPMW-05 3 TPMW-04 4 TPMW-03 14303

CHAIN OF CUSTODY

Attention

Signet 304 - 3044 of Walki Full Billing Information (If different fr

NY

9-9-14 1140 DC G-W 6-8-14 1345 DC G-W 5-8-14 1945 DC G-W 5-5-14 1750 DC G-W

Olchardralk

MEOH/DI Vial #

roper | 13BU431-22 TeffRow jey Toget Manager Row ley

Accutest Laboratories of New England
495 Technology Center West, Building One
TEL. 508-481-6200 FAX: 508-481-7753
www.accutest.com
Project Information

Project Name
Project N

333

Commercial "A" (Level 1)

Commercial "B" (Level 2)

Commercial "A" = Results Only

Commercial "B" = Results + QC Summary

Custody Seal #

none

☐ Intact

Not intac

Sample Custody must be documented below each time samples change possession, including courier delivery

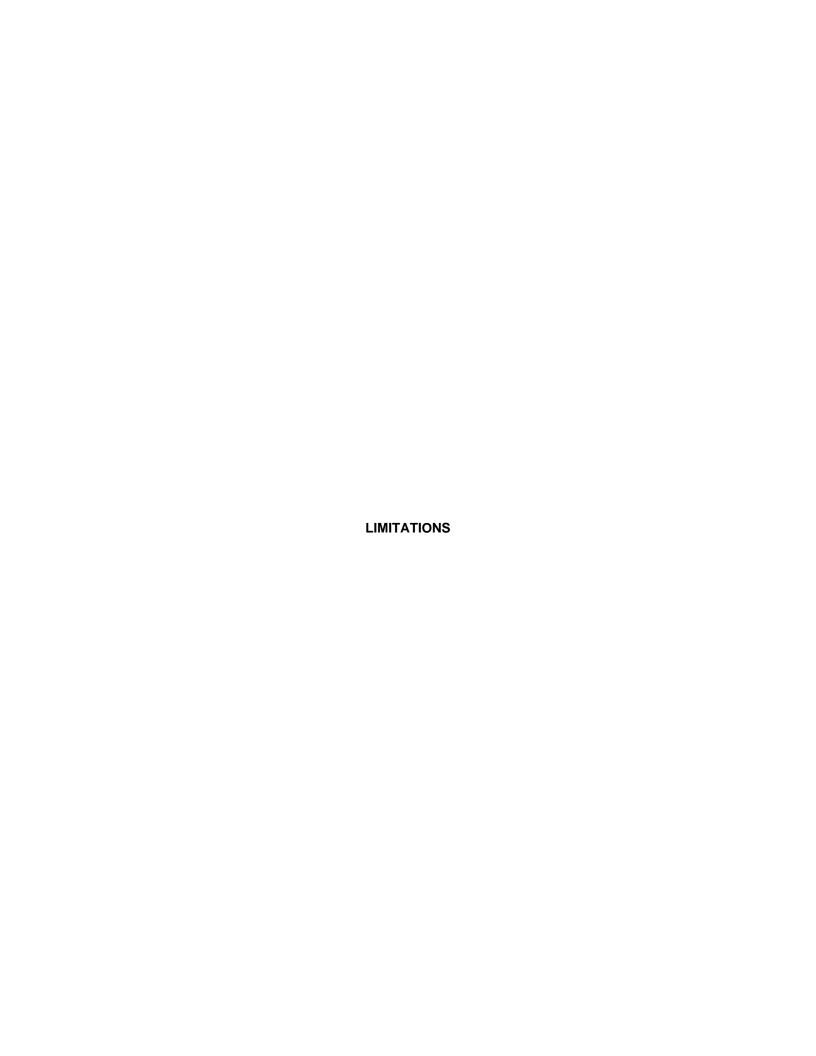
FULLT1 (Level 3+4)

₩А МСР

				PAGE	OF
	FED-EX Tracking	i #	Bortle C	irder Control #	
	A cutest Quote #		Accules	"mc30	>471
	Requ	uested Analysi	s (see TEST C		Matrix Codes
at from Report to)	2				DVV - Drinking Water GW - Ground Water WW - Water SW - Surface Water SO - Soil SL- Sludge SED-Sediment OI - Oil LIQ - Other Liquid
Zip O# of preserved Bottles	१७७५				AIR - Air AIR - Air SOL - Olther Solid WP - Wipe FB-Field Blank EB- Equipment Blank RB- Rinse Blank TB-Trip Blank
NONE DI Water MEOH ENCORE Bisulfate	7				LAB USE ONLY
					304
Information NYASP Catego NYASP Catego State Forms	ory B		Comments / S	pecial Instructio	ns
EDD Format					

MC30471: Chain	of	Cu	stody
	Pa	ige :	1 of 2

SVRACUSE SC



Accutest Laboratories Sample Receipt Summary

Project: COMMERCIAL PROPERTY No. Coolers: 1	No. Coolers: 1 Airbill #'s:	Project: COMMERCIAL PROPERTY No. Coolers: 1	Accutest Job Number: MC304	471 Client: LCS	S	Immediate Client Serv	ices Action Required	: No
Cooler Security Y or N 3. COC Present: Y or N 1. Sample Integrity - Documentation Y or N 1. Sample Integrity - Documentation Y or N	Cooler Security Y or N 3. COC Present: 3. COC Present: 4. Smpl Dates/Time OK 2. Container labeling complete: 2. Container labeling complete: 3. Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 2. Container labeling complete: 3. Sample container labeling complete: 3. Sample container labeling complete:	Sample Integrity - Documentation Y or N Sample Integrity - Condition Sample Integrity - Condition Sample Integrity - Condition Sample Integrity - Instructions Y or N N/Sample Integrity - Instructions Y or N N/Sam	Date / Time Received: 5/9/20	114	Delivery Method:	Client Service Act	ion Required at Login	: No
1. Custody Seals Present:	1. Custody Seals Present:	1. Custody Seals Present:	roject: COMMERCIAL PROP	PERTY	No. Coolers:	1 Airbill #'s:		
Auality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: 4. VOCs headspace free: 5. Filtering instructions sample: Intact	Auality Control Preservation Y or N N/A 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: 4. VOCs headspace free: 5. Filtering instructions clear: 5. Samples Integrity - Instructions 7 or N N/A 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear: 7 or N N/A 1. Analysis requested is clear: 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Auality Control Preservation Y or N N/A 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. VOCs headspace free: 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification:		ent: 🔽 🗆	Sample labels present on bottles: Container labeling complete: Sample container label / COC agree: Sample Integrity - Condition Sample recvd within HT:	✓ □ ✓ □ ✓ □ ✓ □ ✓ □ ✓ □ ✓ □	
2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: 4. Compositing instructions clear: 5. Filtering instructions clear: 7. In No.	2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: 4. Compositing instructions clear: 5. Filtering instructions clear: 7. N. N/A 1. Analysis requested is clear: 9. Solution in the property of the pr	2. Trip Blank listed on COC: I	uality Control Preservation	Y or N N/A		3. Condition of sample:		
		·	2. Trip Blank listed on COC: 3. Samples preserved properly:			Analysis requested is clear: Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear:		V
			Comments			5. Filtering instructions clear:		

MC30471: Chain of Custody Page 2 of 2

This environmental study is limited by the scope of services contained within this report and time frames specified within the contracts for services dated May 1, 2014.

This environmental study makes no warranties nor implies any liability regarding:

- 1. Any impacted media located beneath the on-site structure(s).
- 2. Any chemical analytes not included within the analytical test methods employed during this study.
- 3. Any impacted media present from off-site sources not assessed.
- 4. Any impact at locations and depths not assessed in this study.
- 5. Any impact at locations where access was limited (i.e., beneath structures, etc.).
- 6. Vapor Intrusion.

Conclusions and/or recommendations made within the study are based on the interpretation of data collected at individual sample locations and may change if additional data is collected during future study. Conditions between sampling locations are estimated based on available data. Intrusive studies serve to reduce, but not eliminate, the potential environmental risk associated with a property. No study is considered all-inclusive or representative of the entire subject property. Such would be cost prohibitive.

APPENDIX B

WATER QUALITY FIELD COLLECTION LOGS

GROUNDWATER FIELD FORM

Project Na	me: 3 <i>021</i>	1-3041 () 41 Orchon	rehad P	ark Red	Supplem	entol Phose	Date:		2-14	_
Location,	3021-30	41 Dickon	1 toth K	el Projec	ENOTA DE	<u>s-014-00 (</u>	Field 1	ream:	puri	
Well N	o. TPM	W - T	Diameter (inches):		Sample D	ate / Time:	5-22-14	12:29	7
11	pth (fbTOR):		Water Col	umn (ft):	5.20		n sampled:	5.4	16	-
DTW (stati	c) (fbTOR):	3.64		Volume (gal):	× 25	Purpose:	_			
Total Depti	n (fbTOR):	9.84		me Purged (gal)		Purge Met		flow	ne 47 ruige & Sample	-
	Water	Acc.	15.07.15.01	ilo r diged (gai)	,, o (-)	- Forge Wet	100. 200	7.00		-
Time	Level (fbTOR)	Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
12:10	o Initial	1.25	6.84	18,5	4175	7/000	164	-221	Turbed brown /	odec
ļ	2									
	4	-	 -			-				
	5		 -							4
	6									-
	7					-				1
	9]
	10					 	ļ			
Sample I	nformation		<u> </u>	<u> </u>						-
12:29	s1 5, 45	. 75	6.85	17.5	4108	368	1.51	1/2		4
	S2	, 1 m			(100	760	7.5	1	<u> </u>	1
								<u> </u>		11:
Well No	. TPMU	j- €	Diameter (ii	nches):	1/1	Sample Da	te / Time:	C 23 1	// /~~	7
Product Dep	•		Water Colu	mn (ft):	11.62	DTW when		3-12-1	4 13.25	
DTW (static) (fbTOR):	2.66	One Well V	olume (gal):	# 4 7	Purpose:	Developmen			1
Total Depth		(4.28	Total Volum	ne Purged (gal):	1.5	Purge Meth	iod: /se	flow 1	Bailer	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1310	o initial	6.10	7.05	18.5	7250	7/000	7.0	-10	Turbed brown /1	le oder
	2									
	3									
· -	4									
	5									
	6									
	7									
	9									
	10				<u></u>					
Sample Ir	nformation:				<u> </u>		<u>. </u>			
	s1 6.4/	1.5	7.0	17 U	7247	7/000	201		T	
cours (S2	, menter	- Commence			P/W/Chand	7.51	-6	4	
DEMARK	market and a				, ,		<u> </u>	Stat	pilization Criteria	1
REMARKS Burles	5: 1 t/M	1W-8 Pu	MP 1351/6	s - cho	nged to		me Calculation	Parame		
							m. Vol. (g/ft) " 0.041	pH SC	± 0.1 unit ± 3%	
							0.163	Turbid		
Note: All ma	aguromont-	ara in fact	liotor 5				0.653	DO	± 0.3 mg/L	
Note: All mea	asurements	are iri teet, d	ustance from	ι τορ of riser.			1.469	ORF	± 10 mV	
Groundwater Field Fo	orm .		-	PREPARE	ED BY:	· To-f	What			

GROUNDWATER FIELD FORM

	SA LLC									-
Project Na	me: 2021-	2041 Dr	charl Park	ad S	under to	1 Dhor	∬ Date:	5-27-1	4	
Location:	3021-304	l Bedhoed	Terk ad	Proiec	t No.: OZA	e (jeoc	ଯ Date: ଜା Field Te	eam: Du	- VW	_
		Presson Ca		A.M.	(2.70	2. O. L. 0	170,010	Julii Pot	<i>>\(\sigma\)</i>	_
Well N	O. TPML)- 9	Diameter (i	nches):	11	Sample D	ate / Time:	5-22-1	4	7
	epth (fbTOR):	Colair	Water Colu		8.33 12.10		n sampled:	and to the		1
DTW (stat	ic) (fbTOR):	1.05	One Well V	/olume (gal):	6 E	1	Development	Sample	Purge & Sample	1
Total Dept	h (fbTOR):	13.33	Total Volun	ne Purged (gal)	4	Purge Met		100Hox	> Bailer	1
	Water	Acc.	рН	Temp.	sc	Turbidity	ро	ORP		1
Time	Level (fbTOR)	Volume (gallons)	(units)	(deg. C)	(uS)	(NTU)	(mg/L)	(mV)	Appearance & Odor	
1331	o Initial	4.1	7.46	18.2	3049	2/000	3.0	/6	Turbed brownship	estivo oko
	1	<u> </u>							/	" """""""""""""""""""""""""""""""""""
	2									
	3	-								
	4								**************************************	
	5									
	6		<u> </u>							
	18		<u> </u>	 						
	9			· ·						_
	10									1
	1		<u> </u>				1			
	Information		1 - 410	T /			·]
13:40	S1 7.02	1.5	7.49	16.7	303/	ll	3.17	17		
Constitution of the Consti	52		Jan Marian	J-0450F-4460	- manual	N/MMPAD-L				
										_
Well No	O. TPMI	N-10	Diameter (ir	nches):	111	Sample Da	ite / Time: 🧠	-22-14		1
Product De	pth (fbTOR):	(1988)	Water Colu	mn (ft): /	0.21	DTW wher				
DTW (statio		1.67	One Well Vo	olume (gal):	141	Purpose:	Development	Sample	Purge & Sample	
Total Depth	(fbTOR): /	4.88	Total Volum	e Purged (gal):	1.25	Purge Meti	10d: /2	with the second	Buler]
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1336	o Initial	4.1	7.26	j4.8	1878	7 1000	3.40	12	Turbed brownsh gr	4/No ada
	1		:	1.0						//
	2					,				
	3									
	4	\$0.								
	6			· · · · · · · · · · · · · · · · · · ·						
	7									
	9						<u> </u>			
	10									
	L	:		,			<u> </u>			
	nformation:	f pon		1775	1					
13:47	s1 8.25	1,25	7.16	13.9	1854	11	3.78	6	1)	
	\$2 ************************************	Company of the Compan	gapan Oktober		-	emergeone.	, and the same of	*Annual Offic	and the same of th	
REMARK	s·					\/a1	uma Calaviatia-		zation Criteria	1
	<u> </u>						am. Vol. (g/ft)	Paramete pH	er Criteria ± 0,1 unit	
					1.00		1" 0.041	sc	± 3%	
							2" 0.163	Turbidity		
							4" 0.653	DO	± 0.3 mg/L	
iote: All me	asurements	are in feet, o	distance from	top of riser	•	[6" 1.469	ORP	± 10 mV	
	•			PREPARI	ED BV:		11.11-	1		

Groundwater Field Form GWFF - TK

GROUNDWATER FIELD FORM

10/011 **	A 15 15 1 1 1	N 11			- •	1			
	O. TPMU	V= ((Diameter (ir	,	<u> </u>	Sample Da	te / Time:	5-22-1	
	epth (fbTOR):	- 3 E	Water Colu		2.24	DTW when	sampled:	····	,
		2.98	One Well Volume (gal): 5			Purpose:	Developmen		
Total Dept	h (fbTOR):	15.22	Total Volume Purged (gal): (5			Purge Meth	iod:	foulla	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
13:48	o Initial	4.1	7.59	18.8	1957	71000	2.78	-41	Turbibbrown / A
	1	<u> </u>							/ /
	2	<u>.</u>						1	
	3								
	4								
	5								
	6								
	7								
	8								
	9								,
	10								
Sample	Information				l	!	I		1
13:59	si 7, 5	1815	7 (1)	18.0	يو ديمور (6) د	1 ./	70.	<i></i>	
12,20	S2 ,,	79 (-)	7.50	0.0	1750	11	2.94	-54	1/
	1. 2.				-	*y	£+CM	Lone	
Well No	D		Diameter (in	ches):		Sample Dat	e / Time:		
Product De	pth (fbTOR):		Water Colun	nn (ft):		DTW when	sampled:		
	TW (static) (fbTOR):			One Well Volume (gal):			Development	Sample	Purge & Sample
Total Depth	(fbTOR):	· ·	Total Volume	Purged (gal):		Purge Metho	od:		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial								
	1								
	2								
	3					,			
	4								
	5								
	!								
	6					. 1			
	6								
	7								
	7 8								
	7 8 9								
	7 8 9 10								
	7 8 9						·		
Sample l	7 8 9 10								
Sample li	7 8 9 10								
Sample I	7 8 9 10 nformation: \$1 82							Stahi	lization Criteria
Sample l	7 8 9 10 nformation: \$1 82					Volui	me Calculation	Stabi Parame	lization Criteria er Criteria
Sample l	7 8 9 10 nformation: \$1 82					Votui Dia			
Sample li	7 8 9 10 nformation: \$1 82						m. Vol. (g/ft)	Paramet	er Criteria
Sample l	7 8 9 10 nformation: \$1 82					Dia	m. Vol. (g/ft) " 0.041	Paramet pH	er Criteria

Groundwater Field Form GWFF - TK

PREPARED BY: Part Mark

APPENDIX C

LABORATORY ANALYTICAL DATA SUMMARY PACKAGE

ANALYTICAL REPORT

Lab Number: L1410959

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Mike Lesakowski Phone: (716) 856-0599

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified Report Date: 05/22/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

L1410959

05/22/14

05/20/14 21:15

Lab Number:

Project Name: 3021 ORCHARD PARK RD

SB-6

Project Number: Not Specified Report Date:

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1410959-01	SB-1	3021 ORCHARD PARK RD	05/20/14 16:15
L1410959-02	SB-2	3021 ORCHARD PARK RD	05/20/14 19:30
L1410959-03	SB-3	3021 ORCHARD PARK RD	05/20/14 18:30
L1410959-04	SB-4	3021 ORCHARD PARK RD	05/20/14 18:45
L1410959-05	SB-5	3021 ORCHARD PARK RD	05/20/14 20:30

3021 ORCHARD PARK RD

L1410959-06

L1410959

Lab Number:

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified Report Date: 05/22/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated QC table. This information is also incorporated in the Data Usability format for our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

۲	lease	contact	Client	Services	at 80	0-624-9220) with	any q	uestions.	

Serial_No:05221414:27

Project Name:3021 ORCHARD PARK RDLab Number:L1410959Project Number:Not SpecifiedReport Date:05/22/14

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

L1410959-01, -05, and -06: A discrepancy was observed between the results of the original analysis and the re-analysis on dilution. This was attributed to the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

King L. Wisters Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

Date: 05/22/14

ORGANICS

VOLATILES

Serial_No:05221414:27

L1410959

05/22/14

Project Name: 3021 ORCHARD PARK RD Lab Number:

Project Number: Not Specified

L1410959-01

SAMPLE RESULTS

Date Collected: 05/20/14 16:15

Report Date:

Client ID: SB-1 Date Received: 05/21/14

3021 ORCHARD PARK RD Field Prep: Sample Location: Not Specified

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 05/22/14 09:24

Analyst: ΒN 91% Percent Solids:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/kg	11	2.2	1
1,1-Dichloroethane	ND		ug/kg	1.6	0.19	1
Chloroform	ND		ug/kg	1.6	0.40	1
Carbon tetrachloride	ND		ug/kg	1.1	0.23	1
1,2-Dichloropropane	ND		ug/kg	3.8	0.25	1
Dibromochloromethane	ND		ug/kg	1.1	0.34	1
1,1,2-Trichloroethane	ND		ug/kg	1.6	0.33	1
Tetrachloroethene	430	E	ug/kg	1.1	0.15	1
Chlorobenzene	ND		ug/kg	1.1	0.38	1
Trichlorofluoromethane	ND		ug/kg	5.5	0.13	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.16	1
1,1,1-Trichloroethane	ND		ug/kg	1.1	0.12	1
Bromodichloromethane	ND		ug/kg	1.1	0.25	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.13	1
cis-1,3-Dichloropropene	ND		ug/kg	1.1	0.14	1
Bromoform	ND		ug/kg	4.4	0.45	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.1	0.19	1
Benzene	ND		ug/kg	1.1	0.13	1
Toluene	0.32	J	ug/kg	1.6	0.12	1
Ethylbenzene	ND		ug/kg	1.1	0.16	1
Chloromethane	ND		ug/kg	5.5	0.86	1
Bromomethane	ND		ug/kg	2.2	0.37	1
Vinyl chloride	ND		ug/kg	2.2	0.15	1
Chloroethane	ND		ug/kg	2.2	0.35	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.22	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.23	1
Trichloroethene	14		ug/kg	1.1	0.17	1
1,2-Dichlorobenzene	ND		ug/kg	5.5	0.20	1
1,3-Dichlorobenzene	ND		ug/kg	5.5	0.20	1
1,4-Dichlorobenzene	ND		ug/kg	5.5	0.26	1
Methyl tert butyl ether	ND		ug/kg	2.2	0.11	1

Serial_No:05221414:27

Project Name: 3021 ORCHARD PARK RD Lab Number: L1410959

Project Number: Not Specified Report Date: 05/22/14

SAMPLE RESULTS

Lab ID: Date Collected: 05/20/14 16:15

Client ID: SB-1 Date Received: 05/21/14

Sample Location: 3021 ORCHARD PARK RD Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Parameter	Kesuit	Qualifier	Ullita	KL.	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
p/m-Xylene	ND		ug/kg	2.2	0.35	1	
o-Xylene	ND		ug/kg	2.2	0.30	1	
cis-1,2-Dichloroethene	0.55	J	ug/kg	1.1	0.16	1	
Styrene	ND		ug/kg	2.2	0.34	1	
Dichlorodifluoromethane	ND		ug/kg	11	0.24	1	
Acetone	ND		ug/kg	11	3.4	1	
Carbon disulfide	ND		ug/kg	11	2.2	1	
2-Butanone	ND		ug/kg	11	0.39	1	
4-Methyl-2-pentanone	ND		ug/kg	11	0.27	1	
2-Hexanone	ND		ug/kg	11	0.21	1	
Bromochloromethane	ND		ug/kg	5.5	0.22	1	
1,2-Dibromoethane	ND		ug/kg	4.4	0.19	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.5	0.86	1	
Isopropylbenzene	ND		ug/kg	1.1	0.18	1	
1,2,3-Trichlorobenzene	0.40	J	ug/kg	5.5	0.18	1	
1,2,4-Trichlorobenzene	ND		ug/kg	5.5	0.86	1	
Methyl Acetate	ND		ug/kg	22	0.84	1	
Cyclohexane	ND		ug/kg	22	1.2	1	
1,4-Dioxane	ND		ug/kg	110	19.	1	
Freon-113	ND		ug/kg	22	0.30	1	
Methyl cyclohexane	ND		ug/kg	4.4	1.4	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	99		70-130	

Project Name: 3021 ORCHARD PARK RD Lab Number: L1410959

Project Number: Report Date: Not Specified 05/22/14

SAMPLE RESULTS

Lab ID: L1410959-01 D Date Collected: 05/20/14 16:15

Client ID: SB-1

Date Received: 05/21/14 Field Prep: Sample Location: 3021 ORCHARD PARK RD Not Specified

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 05/22/14 10:56

Analyst: ΒN 91% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Tetrachloroethene	700		ug/kg	5.5	0.77	5

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	97		70-130	

L1410959

Project Name: 3021 ORCHARD PARK RD

Lab Number:

Project Number: Report Date: Not Specified 05/22/14

SAMPLE RESULTS

Lab ID: L1410959-02 Date Collected: 05/20/14 19:30

Client ID: SB-2

Date Received: 05/21/14 3021 ORCHARD PARK RD Field Prep: Sample Location: Not Specified

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 05/22/14 09:50

Analyst: ΒN 87% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	2.5	J	ug/kg	12	2.3	1
1,1-Dichloroethane	ND		ug/kg	1.7	0.20	1
Chloroform	ND		ug/kg	1.7	0.43	1
Carbon tetrachloride	ND		ug/kg	1.2	0.24	1
1,2-Dichloropropane	ND		ug/kg	4.0	0.26	1
Dibromochloromethane	ND		ug/kg	1.2	0.36	1
1,1,2-Trichloroethane	ND		ug/kg	1.7	0.35	1
Tetrachloroethene	150		ug/kg	1.2	0.16	1
Chlorobenzene	ND		ug/kg	1.2	0.40	1
Trichlorofluoromethane	ND		ug/kg	5.8	0.14	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.17	1
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.13	1
Bromodichloromethane	ND		ug/kg	1.2	0.26	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.15	1
Bromoform	ND		ug/kg	4.6	0.48	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.20	1
Benzene	ND		ug/kg	1.2	0.14	1
Toluene	0.35	J	ug/kg	1.7	0.13	1
Ethylbenzene	ND		ug/kg	1.2	0.17	1
Chloromethane	ND		ug/kg	5.8	0.90	1
Bromomethane	ND		ug/kg	2.3	0.39	1
Vinyl chloride	ND		ug/kg	2.3	0.16	1
Chloroethane	ND		ug/kg	2.3	0.36	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.24	1
trans-1,2-Dichloroethene	0.56	J	ug/kg	1.7	0.24	1
Trichloroethene	8.2		ug/kg	1.2	0.18	1
1,2-Dichlorobenzene	ND		ug/kg	5.8	0.21	1
1,3-Dichlorobenzene	ND		ug/kg	5.8	0.21	1
1,4-Dichlorobenzene	ND		ug/kg	5.8	0.28	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.12	1

Project Name: Lab Number: 3021 ORCHARD PARK RD L1410959

Project Number: Report Date: Not Specified 05/22/14

SAMPLE RESULTS

Lab ID: L1410959-02 Date Collected: 05/20/14 19:30

Client ID: SB-2 Date Received: 05/21/14

Sample Location: 3021 ORCHARD PARK RD Field Prep: Not Specified RL **Dilution Factor** Parameter Result Qualifier Units MDL

i didilictoi	rtoouit	Qualifici	O.m.o	11=		Diracion i aotoi	
Volatile Organics by GC/MS - West	borough Lab						
p/m-Xylene	ND		ug/kg	2.3	0.37	1	
o-Xylene	ND		ug/kg	2.3	0.31	1	
cis-1,2-Dichloroethene	0.93	J	ug/kg	1.2	0.17	1	
Styrene	ND		ug/kg	2.3	0.36	1	
Dichlorodifluoromethane	ND		ug/kg	12	0.25	1	
Acetone	ND		ug/kg	12	3.6	1	
Carbon disulfide	ND		ug/kg	12	2.3	1	
2-Butanone	ND		ug/kg	12	0.41	1	
4-Methyl-2-pentanone	ND		ug/kg	12	0.28	1	
2-Hexanone	ND		ug/kg	12	0.22	1	
Bromochloromethane	ND		ug/kg	5.8	0.23	1	
1,2-Dibromoethane	ND		ug/kg	4.6	0.20	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.8	0.91	1	
Isopropylbenzene	ND		ug/kg	1.2	0.19	1	
1,2,3-Trichlorobenzene	ND		ug/kg	5.8	0.19	1	
1,2,4-Trichlorobenzene	ND		ug/kg	5.8	0.91	1	
Methyl Acetate	ND		ug/kg	23	0.88	1	
Cyclohexane	ND		ug/kg	23	1.2	1	
1,4-Dioxane	ND		ug/kg	120	20.	1	
Freon-113	ND		ug/kg	23	0.32	1	
Methyl cyclohexane	ND		ug/kg	4.6	1.4	1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	99		70-130	

L1410959

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified

SAMPLE RESULTS

Report Date: 05/22/14

Lab Number:

Lab ID: L1410959-03

Client ID: SB-3

Sample Location: 3021 ORCHARD PARK RD

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 05/22/14 10:16

Analyst: ΒN 82% Percent Solids:

Date Collected:	05/20/14 18:30
Date Received:	05/21/14
Field Prep	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	3.0	J	ug/kg	12	2.4	1
1,1-Dichloroethane	ND		ug/kg	1.8	0.22	1
Chloroform	ND		ug/kg	1.8	0.45	1
Carbon tetrachloride	ND		ug/kg	1.2	0.26	1
1,2-Dichloropropane	ND		ug/kg	4.3	0.28	1
Dibromochloromethane	ND		ug/kg	1.2	0.38	1
1,1,2-Trichloroethane	ND		ug/kg	1.8	0.37	1
Tetrachloroethene	13		ug/kg	1.2	0.17	1
Chlorobenzene	ND		ug/kg	1.2	0.42	1
Trichlorofluoromethane	ND		ug/kg	6.1	0.15	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.18	1
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.14	1
Bromodichloromethane	ND		ug/kg	1.2	0.28	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.15	1
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.16	1
Bromoform	ND		ug/kg	4.9	0.51	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.21	1
Benzene	ND		ug/kg	1.2	0.14	1
Toluene	0.36	J	ug/kg	1.8	0.14	1
Ethylbenzene	ND		ug/kg	1.2	0.18	1
Chloromethane	ND		ug/kg	6.1	0.96	1
Bromomethane	ND		ug/kg	2.4	0.41	1
Vinyl chloride	ND		ug/kg	2.4	0.17	1
Chloroethane	ND		ug/kg	2.4	0.39	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.25	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.26	1
Trichloroethene	0.91	J	ug/kg	1.2	0.19	1
1,2-Dichlorobenzene	ND		ug/kg	6.1	0.22	1
1,3-Dichlorobenzene	ND		ug/kg	6.1	0.22	1
1,4-Dichlorobenzene	ND		ug/kg	6.1	0.30	1
Methyl tert butyl ether	ND		ug/kg	2.4	0.13	1

Project Name: 3021 ORCHARD PARK RD Lab Number: L1410959

Project Number: Not Specified Report Date: 05/22/14

SAMPLE RESULTS

Lab ID: L1410959-03 Date Collected: 05/20/14 18:30

Client ID: SB-3 Date Received: 05/21/14

Sample Location: 3021 ORCHARD PARK RD Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Parameter	Result	Qualifier 0	iiilə Ki	L WIDE	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab					
p/m-Xylene	ND	uç	g/kg 2	.4 0.39	1	
o-Xylene	ND	uç	g/kg 2	.4 0.33	1	
cis-1,2-Dichloroethene	ND	uç	g/kg 1	2 0.18	1	
Styrene	ND	uç	g/kg 2	.4 0.38	1	
Dichlorodifluoromethane	ND	uç	g/kg 1	2 0.27	1	
Acetone	ND	uç	g/kg 1	2 3.8	1	
Carbon disulfide	ND	uç	g/kg 1	2 2.4	1	
2-Butanone	ND	uç	g/kg 1	2 0.43	1	
4-Methyl-2-pentanone	ND	uç	g/kg 1	2 0.30	1	
2-Hexanone	ND	uç	g/kg 1	2 0.23	1	
Bromochloromethane	ND	uç	g/kg 6	.1 0.24	1	
1,2-Dibromoethane	ND	uç	g/kg 4	9 0.22	1	
1,2-Dibromo-3-chloropropane	ND	uç	g/kg 6	.1 0.97	1	
Isopropylbenzene	ND	uç	g/kg 1.	2 0.20	1	
1,2,3-Trichlorobenzene	ND	uç	g/kg 6	.1 0.20	1	
1,2,4-Trichlorobenzene	ND	uç	g/kg 6	.1 0.97	1	
Methyl Acetate	ND	uç	g/kg 2	4 0.93	1	
Cyclohexane	ND	uç	g/kg 2	4 1.3	1	
1,4-Dioxane	ND	uç	g/kg 12	20 21.	1	
Freon-113	ND	uç	g/kg 2	4 0.33	1	
Methyl cyclohexane	ND	uç	g/kg 4	.9 1.5	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	100		70-130	

L1410959

05/21/14

Project Name: 3021 ORCHARD PARK RD

Lab Number:

Project Number: Report Date: Not Specified 05/22/14

SAMPLE RESULTS

Lab ID: L1410959-04 Date Collected: 05/20/14 18:45

Client ID: SB-4 Date Received:

3021 ORCHARD PARK RD Field Prep: Sample Location: Not Specified

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 05/22/14 10:42

Analyst: ΒN 85% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	2.4	J	ug/kg	12	2.3	1
1,1-Dichloroethane	ND		ug/kg	1.8	0.21	1
Chloroform	ND		ug/kg	1.8	0.43	1
Carbon tetrachloride	ND		ug/kg	1.2	0.25	1
1,2-Dichloropropane	ND		ug/kg	4.1	0.27	1
Dibromochloromethane	ND		ug/kg	1.2	0.36	1
1,1,2-Trichloroethane	ND		ug/kg	1.8	0.36	1
Tetrachloroethene	59		ug/kg	1.2	0.16	1
Chlorobenzene	ND		ug/kg	1.2	0.41	1
Trichlorofluoromethane	ND		ug/kg	5.9	0.14	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.17	1
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.13	1
Bromodichloromethane	ND		ug/kg	1.2	0.27	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.15	1
Bromoform	ND		ug/kg	4.7	0.49	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.20	1
Benzene	ND		ug/kg	1.2	0.14	1
Toluene	ND		ug/kg	1.8	0.13	1
Ethylbenzene	ND		ug/kg	1.2	0.17	1
Chloromethane	ND		ug/kg	5.9	0.92	1
Bromomethane	ND		ug/kg	2.3	0.40	1
Vinyl chloride	ND		ug/kg	2.3	0.16	1
Chloroethane	ND		ug/kg	2.3	0.37	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.25	1
Trichloroethene	6.5		ug/kg	1.2	0.18	1
1,2-Dichlorobenzene	ND		ug/kg	5.9	0.21	1
1,3-Dichlorobenzene	ND		ug/kg	5.9	0.21	1
1,4-Dichlorobenzene	ND		ug/kg	5.9	0.28	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.12	1

Project Name: 3021 ORCHARD PARK RD Lab Number: L1410959

Project Number: Report Date: Not Specified 05/22/14

SAMPLE RESULTS

Lab ID: Date Collected: L1410959-04 05/20/14 18:45

Client ID: SB-4 Date Received: 05/21/14 Sample Location: 3021 ORCHARD PARK RD Field Prep: Not Specified

Parameter Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab p/m-Xylene 0.72 J ug/kg 2.3 0.38 1 J o-Xylene 0.33 ug/kg 2.3 0.32 1 cis-1,2-Dichloroethene 4.6 1.2 0.18 1 ug/kg ND Styrene ug/kg 2.3 0.36 1 Dichlorodifluoromethane ND ug/kg 12 0.26 1 ND 1 Acetone ug/kg 12 3.6 Carbon disulfide ND ug/kg 12 2.3 1 2-Butanone ND 12 0.42 1 ug/kg ND 4-Methyl-2-pentanone ug/kg 12 0.29 1 ND 12 0.22 2-Hexanone ug/kg 1 ND 0.23 Bromochloromethane ug/kg 5.9 1 1,2-Dibromoethane ND ug/kg 4.7 0.21 1 1,2-Dibromo-3-chloropropane ND 5.9 0.92 1 ug/kg J 0.64 1.2 0.20 1 Isopropylbenzene ug/kg 1,2,3-Trichlorobenzene ND ug/kg 5.9 0.20 1 1,2,4-Trichlorobenzene ND ug/kg 5.9 0.92 1 ND Methyl Acetate 23 0.89 1 ug/kg Cyclohexane 13 J 23 1.2 1 ug/kg 1,4-Dioxane ND ug/kg 120 20. 1 Freon-113 ND 23 0.32 1 ug/kg 53 4.7

ug/kg

1.5

1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	100		70-130	

Methyl cyclohexane

Project Name: Lab Number: 3021 ORCHARD PARK RD L1410959

Project Number: Report Date: Not Specified 05/22/14

SAMPLE RESULTS

Lab ID: L1410959-05 D2 Date Collected: 05/20/14 20:30

Client ID: SB-5

Date Received: 05/21/14 Field Prep: Sample Location: 3021 ORCHARD PARK RD Not Specified

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 05/22/14 12:08

Analyst: ΒN 89% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	₋ab					
Tetrachloroethene	2000		ug/kg	56	7.9	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	95		70-130	

Date Received:

L1410959

05/21/14

Project Name: Lab Number: 3021 ORCHARD PARK RD

Project Number: Report Date: Not Specified 05/22/14

SAMPLE RESULTS

Lab ID: L1410959-05 D Date Collected: 05/20/14 20:30

Client ID: SB-5

Field Prep: Sample Location: 3021 ORCHARD PARK RD Not Specified

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 05/22/14 11:08

Analyst: ΒN 89% Percent Solids:

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Wes	stborough Lab					
Chloroform ND ug/kg 3.4 0.84 2 Carbon tetrachloride ND ug/kg 2.2 0.47 2 1.2-Dichloropropane ND ug/kg 7.9 0.52 2 Dibromochloromethane ND ug/kg 3.4 0.69 2 1.1,2-Trichloroethane ND ug/kg 2.2 0.69 2 Tetrachloroethane ND ug/kg 2.2 0.32 2 Chlorobenzene ND ug/kg 2.2 0.78 2 Chlorobenzene ND ug/kg 2.2 0.78 2 1,2-Dichloroethane ND ug/kg 2.2 0.33 2 1,2-Dichloroethane ND ug/kg 2.2 0.52 2 Bromodichloromethane ND ug/kg 2.2 0.52 2 Bromodichloropropene ND ug/kg 2.2 0.29 2 Bromoform ND ug/kg 2.2 0.27 <	Methylene chloride	5.7	J	ug/kg	22	4.5	2
Carbon tetrachloride ND ug/kg 2.2 0.47 2 1.2-Dichloropropane ND ug/kg 7.9 0.52 2 Dibromochloromethane ND ug/kg 2.2 0.69 2 1.1,2-Trichloroethane ND ug/kg 2.2 0.69 2 1.1,2-Trichloroethane ND ug/kg 2.2 0.32 2 1.1,2-Trichloroethane ND ug/kg 2.2 0.78 2 1.1,1-Trichloroethane ND ug/kg 2.2 0.78 2 1.2-Dichloroethane ND ug/kg 2.2 0.33 2 1.1,1-Trichloroethane ND ug/kg 2.2 0.25 2 Bromodichloromethane ND ug/kg 2.2 0.27 2 Bromodichloromethane ND ug/kg 2.2 0.27 2 Bromoform ND ug/kg 2.2 0.27 2 Bromoform ND ug/kg 3.4 <	1,1-Dichloroethane	ND		ug/kg	3.4	0.40	2
1.2-Dichloropropane ND ug/kg 7.9 0.52 2 2 2 2 2 2 2 2 2	Chloroform	ND		ug/kg	3.4	0.84	2
ND	Carbon tetrachloride	ND		ug/kg	2.2	0.47	2
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/kg	7.9	0.52	2
Tetrachloroethene 500 E ug/kg 2.2 0.32 2 Chlorobenzene ND ug/kg 2.2 0.78 2 Trichlorofluoromethane ND ug/kg 11 0.27 2 1,2-Dichloroethane ND ug/kg 2.2 0.33 2 1,1,1-Trichloroethane ND ug/kg 2.2 0.25 2 Bromodichloromethane ND ug/kg 2.2 0.52 2 Bromodichloropropene ND ug/kg 2.2 0.27 2 cis-1,3-Dichloropropene ND ug/kg 2.2 0.29 2 cis-1,3-Dichloropropene ND ug/kg 9.0 0.94 2 Bromoform ND ug/kg 9.0 0.94 2 1,1,2-2-Tetrachloroethane ND ug/kg 2.2 0.38 2 Benzene ND ug/kg 1.1 1.8 2 Ethylbenzene ND ug/kg 1.5	Dibromochloromethane	ND		ug/kg	2.2	0.69	2
Chlorobenzene ND ug/kg 2.2 0.78 2 Trichloroftuoromethane ND ug/kg 11 0.27 2 1,2-Dichloroethane ND ug/kg 2.2 0.33 2 1,1,1-Trichloroethane ND ug/kg 2.2 0.25 2 Bromodichloromethane ND ug/kg 2.2 0.52 2 Bromodichloropropene ND ug/kg 2.2 0.27 2 cis-1,3-Dichloropropene ND ug/kg 2.2 0.29 2 Bromoform ND ug/kg 9.0 0.94 2 1,1,2-2-Tetrachloroethane ND ug/kg 2.2 0.38 2 Benzene ND ug/kg 2.2 0.38 2 Tolluene 0.64 J ug/kg 2.2 0.33 2 Elbrybenzene ND ug/kg 4.5 0.76 2 Chloroethane ND ug/kg 4.5 0.76 <td>1,1,2-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>3.4</td> <td>0.69</td> <td>2</td>	1,1,2-Trichloroethane	ND		ug/kg	3.4	0.69	2
Trichlorofluoromethane ND ug/kg 11 0.27 2 1,2-Dichloroethane ND ug/kg 2.2 0.33 2 1,1,1-Trichloroethane ND ug/kg 2.2 0.52 2 Bromodichloromethane ND ug/kg 2.2 0.52 2 trans-1,3-Dichloropropene ND ug/kg 2.2 0.27 2 eis-1,3-Dichloropropene ND ug/kg 2.2 0.29 2 Bromoform ND ug/kg 9.0 0.94 2 L1,1,2,2-Tetrachloroethane ND ug/kg 2.2 0.38 2 Benzene ND ug/kg 2.2 0.38 2 Toluene 0.64 J ug/kg 3.4 0.25 2 Ethylbenzene ND ug/kg 3.2 0.33 2 Chloroethane ND ug/kg 4.5 0.76 2 Erromomethane ND ug/kg 4.5 0.	Tetrachloroethene	500	Е	ug/kg	2.2	0.32	2
1,2-Dichloroethane	Chlorobenzene	ND		ug/kg	2.2	0.78	2
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/kg	11	0.27	2
ND	1,2-Dichloroethane	ND		ug/kg	2.2	0.33	2
Itrans-1,3-Dichloropropene ND ug/kg 2.2 0.27 2 cis-1,3-Dichloropropene ND ug/kg 2.2 0.29 2 Bromoform ND ug/kg 9.0 0.94 2 1,1,2,2-Tetrachloroethane ND ug/kg 2.2 0.38 2 Benzene ND ug/kg 2.2 0.27 2 Toluene 0.64 J ug/kg 2.2 0.27 2 Ethylbenzene ND ug/kg 3.4 0.25 2 Ethylbenzene ND ug/kg 1.1 1.8 2 Chloromethane ND ug/kg 4.5 0.76 2 Vinyl chloride ND ug/kg 4.5 0.76 2 Vinyl chloride ND ug/kg 4.5 0.71 2 Chloroethane ND ug/kg 2.2 0.46 2 1,1-Dichloroethene ND ug/kg 3.4 0.48 2 </td <td>1,1,1-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>2.2</td> <td>0.25</td> <td>2</td>	1,1,1-Trichloroethane	ND		ug/kg	2.2	0.25	2
ND	Bromodichloromethane	ND		ug/kg	2.2	0.52	2
ND	trans-1,3-Dichloropropene	ND		ug/kg	2.2	0.27	2
1,1,2,2-Tetrachloroethane	cis-1,3-Dichloropropene	ND		ug/kg	2.2	0.29	2
Benzene ND ug/kg 2.2 0.27 2 Toluene 0.64 J ug/kg 3.4 0.25 2 Ethylbenzene ND ug/kg 2.2 0.33 2 Chloromethane ND ug/kg 11 1.8 2 Bromomethane ND ug/kg 4.5 0.76 2 Vinyl chloride ND ug/kg 4.5 0.76 2 Chloroethane ND ug/kg 4.5 0.71 2 Chloroethane ND ug/kg 2.2 0.46 2 1,1-Dichloroethene ND ug/kg 3.4 0.48 2 Trichloroethene 16 ug/kg 2.2 0.34 2 1,2-Dichlorobenzene ND ug/kg 11 0.41 2 1,3-Dichlorobenzene ND ug/kg 11 0.41 2 1,4-Dichlorobenzene ND ug/kg 11 0.41 2 <td>Bromoform</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>9.0</td> <td>0.94</td> <td>2</td>	Bromoform	ND		ug/kg	9.0	0.94	2
Toluene 0.64 J ug/kg 3.4 0.25 2 Ethylbenzene ND ug/kg 2.2 0.33 2 Chloromethane ND ug/kg 11 1.8 2 Bromomethane ND ug/kg 4.5 0.76 2 Vinyl chloride ND ug/kg 4.5 0.32 2 Chloroethane ND ug/kg 4.5 0.71 2 1,1-Dichloroethene ND ug/kg 2.2 0.46 2 trans-1,2-Dichloroethene ND ug/kg 3.4 0.48 2 Trichloroethene 16 ug/kg 2.2 0.34 2 1,2-Dichlorobenzene ND ug/kg 11 0.41 2 1,3-Dichlorobenzene ND ug/kg 11 0.41 2 1,4-Dichlorobenzene ND ug/kg 11 0.41 2	1,1,2,2-Tetrachloroethane	ND		ug/kg	2.2	0.38	2
Ethylbenzene ND ug/kg 2.2 0.33 2 Chloromethane ND ug/kg 11 1.8 2 Bromomethane ND ug/kg 4.5 0.76 2 Vinyl chloride ND ug/kg 4.5 0.32 2 Chloroethane ND ug/kg 4.5 0.71 2 1,1-Dichloroethene ND ug/kg 2.2 0.46 2 trans-1,2-Dichloroethene ND ug/kg 3.4 0.48 2 Trichloroethene 16 ug/kg 2.2 0.34 2 1,2-Dichlorobenzene ND ug/kg 11 0.41 2 1,3-Dichlorobenzene ND ug/kg 11 0.41 2 1,4-Dichlorobenzene ND ug/kg 11 0.41 2	Benzene	ND		ug/kg	2.2	0.27	2
Chloromethane ND ug/kg 11 1.8 2 Bromomethane ND ug/kg 4.5 0.76 2 Vinyl chloride ND ug/kg 4.5 0.32 2 Chloroethane ND ug/kg 4.5 0.71 2 1,1-Dichloroethene ND ug/kg 2.2 0.46 2 trans-1,2-Dichloroethene ND ug/kg 3.4 0.48 2 Trichloroethene 16 ug/kg 2.2 0.34 2 1,2-Dichlorobenzene ND ug/kg 11 0.41 2 1,3-Dichlorobenzene ND ug/kg 11 0.41 2 1,4-Dichlorobenzene ND ug/kg 11 0.54 2	Toluene	0.64	J	ug/kg	3.4	0.25	2
ND	Ethylbenzene	ND		ug/kg	2.2	0.33	2
Vinyl chloride ND ug/kg 4.5 0.32 2 Chloroethane ND ug/kg 4.5 0.71 2 1,1-Dichloroethene ND ug/kg 2.2 0.46 2 trans-1,2-Dichloroethene ND ug/kg 3.4 0.48 2 Trichloroethene 16 ug/kg 2.2 0.34 2 1,2-Dichlorobenzene ND ug/kg 11 0.41 2 1,3-Dichlorobenzene ND ug/kg 11 0.41 2 1,4-Dichlorobenzene ND ug/kg 11 0.54 2	Chloromethane	ND		ug/kg	11	1.8	2
Chloroethane ND ug/kg 4.5 0.71 2 1,1-Dichloroethene ND ug/kg 2.2 0.46 2 trans-1,2-Dichloroethene ND ug/kg 3.4 0.48 2 Trichloroethene 16 ug/kg 2.2 0.34 2 1,2-Dichlorobenzene ND ug/kg 11 0.41 2 1,3-Dichlorobenzene ND ug/kg 11 0.41 2 1,4-Dichlorobenzene ND ug/kg 11 0.54 2	Bromomethane	ND		ug/kg	4.5	0.76	2
1,1-Dichloroethene ND ug/kg 2.2 0.46 2 trans-1,2-Dichloroethene ND ug/kg 3.4 0.48 2 Trichloroethene 16 ug/kg 2.2 0.34 2 1,2-Dichlorobenzene ND ug/kg 11 0.41 2 1,3-Dichlorobenzene ND ug/kg 11 0.41 2 1,4-Dichlorobenzene ND ug/kg 11 0.54 2	Vinyl chloride	ND		ug/kg	4.5	0.32	2
trans-1,2-Dichloroethene ND ug/kg 3.4 0.48 2 Trichloroethene 16 ug/kg 2.2 0.34 2 1,2-Dichlorobenzene ND ug/kg 11 0.41 2 1,3-Dichlorobenzene ND ug/kg 11 0.41 2 1,4-Dichlorobenzene ND ug/kg 11 0.54 2	Chloroethane	ND		ug/kg	4.5	0.71	2
Trichloroethene 16 ug/kg 2.2 0.34 2 1,2-Dichlorobenzene ND ug/kg 11 0.41 2 1,3-Dichlorobenzene ND ug/kg 11 0.41 2 1,4-Dichlorobenzene ND ug/kg 11 0.54 2	1,1-Dichloroethene	ND		ug/kg	2.2	0.46	2
1,2-Dichlorobenzene ND ug/kg 11 0.41 2 1,3-Dichlorobenzene ND ug/kg 11 0.41 2 1,4-Dichlorobenzene ND ug/kg 11 0.54 2	trans-1,2-Dichloroethene	ND		ug/kg	3.4	0.48	2
1,3-Dichlorobenzene ND ug/kg 11 0.41 2 1,4-Dichlorobenzene ND ug/kg 11 0.54 2	Trichloroethene	16		ug/kg	2.2	0.34	2
1,4-Dichlorobenzene ND ug/kg 11 0.54 2	1,2-Dichlorobenzene	ND		ug/kg	11	0.41	2
	1,3-Dichlorobenzene	ND		ug/kg	11	0.41	2
Methyl tert butyl ether ND ug/kg 4.5 0.24 2	1,4-Dichlorobenzene	ND		ug/kg	11	0.54	2
	Methyl tert butyl ether	ND		ug/kg	4.5	0.24	2

Project Name: 3021 ORCHARD PARK RD Lab Number: L1410959

Project Number: Not Specified Report Date: 05/22/14

SAMPLE RESULTS

Lab ID: L1410959-05 D Date Collected: 05/20/14 20:30

Client ID: SB-5 Date Received: 05/21/14

Sample Location: 3021 ORCHARD PARK RD Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
p/m-Xylene	ND		ug/kg	4.5	0.73	2	
o-Xylene	ND		ug/kg	4.5	0.61	2	
cis-1,2-Dichloroethene	0.92	J	ug/kg	2.2	0.34	2	
Styrene	ND		ug/kg	4.5	0.70	2	
Dichlorodifluoromethane	ND		ug/kg	22	0.49	2	
Acetone	ND		ug/kg	22	7.0	2	
Carbon disulfide	ND		ug/kg	22	4.5	2	
2-Butanone	ND		ug/kg	22	0.80	2	
4-Methyl-2-pentanone	ND		ug/kg	22	0.55	2	
2-Hexanone	ND		ug/kg	22	0.42	2	
Bromochloromethane	ND		ug/kg	11	0.44	2	
1,2-Dibromoethane	ND		ug/kg	9.0	0.40	2	
1,2-Dibromo-3-chloropropane	ND		ug/kg	11	1.8	2	
Isopropylbenzene	ND		ug/kg	2.2	0.38	2	
1,2,3-Trichlorobenzene	ND		ug/kg	11	0.38	2	
1,2,4-Trichlorobenzene	ND		ug/kg	11	1.8	2	
Methyl Acetate	ND		ug/kg	45	1.7	2	
Cyclohexane	ND		ug/kg	45	2.4	2	
1,4-Dioxane	ND		ug/kg	220	39.	2	
Freon-113	ND		ug/kg	45	0.62	2	
Methyl cyclohexane	ND		ug/kg	9.0	2.8	2	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	96		70-130	

Project Name: Lab Number: 3021 ORCHARD PARK RD L1410959

Project Number: Report Date: Not Specified 05/22/14

SAMPLE RESULTS

Lab ID: L1410959-06 D2 Date Collected: 05/20/14 21:15

Client ID: SB-6

Date Received: 05/21/14 Field Prep: Sample Location: 3021 ORCHARD PARK RD Not Specified

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 05/22/14 12:35

Analyst: ΒN 90% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough I	_ab					
Tetrachloroethene	9900		ug/kg	56	7.8	50

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	95		70-130	

L1410959

05/22/14

Project Name: 3021 ORCHARD PARK RD

D

L1410959-06

SB-6

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 05/20/14 21:15

Lab Number:

Report Date:

Date Received: 05/21/14

Field Prep: Sample Location: 3021 ORCHARD PARK RD Not Specified

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 05/22/14 11:34

Analyst: ΒN 90% Percent Solids:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	7.3	J	ug/kg	22	4.5	2
1,1-Dichloroethane	ND		ug/kg	3.3	0.40	2
Chloroform	ND		ug/kg	3.3	0.83	2
Carbon tetrachloride	ND		ug/kg	2.2	0.47	2
1,2-Dichloropropane	ND		ug/kg	7.8	0.51	2
Dibromochloromethane	ND		ug/kg	2.2	0.69	2
1,1,2-Trichloroethane	ND		ug/kg	3.3	0.68	2
Tetrachloroethene	1300	Е	ug/kg	2.2	0.31	2
Chlorobenzene	ND		ug/kg	2.2	0.78	2
Trichlorofluoromethane	ND		ug/kg	11	0.27	2
1,2-Dichloroethane	ND		ug/kg	2.2	0.33	2
1,1,1-Trichloroethane	ND		ug/kg	2.2	0.25	2
Bromodichloromethane	ND		ug/kg	2.2	0.51	2
trans-1,3-Dichloropropene	ND		ug/kg	2.2	0.27	2
cis-1,3-Dichloropropene	ND		ug/kg	2.2	0.28	2
Bromoform	ND		ug/kg	8.9	0.92	2
1,1,2,2-Tetrachloroethane	ND		ug/kg	2.2	0.38	2
Benzene	ND		ug/kg	2.2	0.26	2
Toluene	0.80	J	ug/kg	3.3	0.25	2
Ethylbenzene	ND		ug/kg	2.2	0.33	2
Chloromethane	ND		ug/kg	11	1.7	2
Bromomethane	ND		ug/kg	4.5	0.75	2
Vinyl chloride	ND		ug/kg	4.5	0.32	2
Chloroethane	ND		ug/kg	4.5	0.70	2
1,1-Dichloroethene	ND		ug/kg	2.2	0.46	2
trans-1,2-Dichloroethene	2.6	J	ug/kg	3.3	0.47	2
Trichloroethene	140		ug/kg	2.2	0.34	2
1,2-Dichlorobenzene	ND		ug/kg	11	0.41	2
1,3-Dichlorobenzene	ND		ug/kg	11	0.41	2
1,4-Dichlorobenzene	ND		ug/kg	11	0.54	2
Methyl tert butyl ether	ND		ug/kg	4.5	0.23	2

Not Specified

Project Name: 3021 ORCHARD PARK RD Lab Number: L1410959

Project Number: Report Date: Not Specified 05/22/14

SAMPLE RESULTS

Lab ID: D Date Collected: L1410959-06 05/20/14 21:15

Client ID: SB-6 Date Received: 05/21/14 Sample Location: 3021 ORCHARD PARK RD Field Prep:

Parameter Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab 2 p/m-Xylene ND ug/kg 4.5 0.72 o-Xylene ND ug/kg 4.5 0.60 2 2 cis-1,2-Dichloroethene 28 2.2 0.33 ug/kg ND 4.5 Styrene ug/kg 0.69 2 Dichlorodifluoromethane ND ug/kg 22 0.49 2 2 ND 22 Acetone ug/kg 6.9 22 Carbon disulfide ND 2 ug/kg 4.5 2 ND 22 2-Butanone ug/kg 0.79 ND 2 4-Methyl-2-pentanone ug/kg 22 0.54 ND 22 2 2-Hexanone ug/kg 0.42 ND 2 Bromochloromethane ug/kg 11 0.44 1,2-Dibromoethane ND 8.9 0.40 2 ug/kg 1,2-Dibromo-3-chloropropane ND 11 1.8 2 ug/kg 2 ND 2.2 0.37 Isopropylbenzene ug/kg 1,2,3-Trichlorobenzene ND 11 0.38 2 ug/kg 1,2,4-Trichlorobenzene ND ug/kg 11 1.8 2 ND Methyl Acetate 45 1.7 2 ug/kg Cyclohexane 4.8 J 45 2.4 2 ug/kg 1,4-Dioxane ND ug/kg 220 39. 2 Freon-113 ND 45 0.61 2 ug/kg 29 2

ug/kg

8.9

2.8

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	98		70-130	

Methyl cyclohexane

L1410959

Project Name: 3021 ORCHARD PARK RD Lab Number:

Project Number: Not Specified Report Date: 05/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/22/14 08:33

arameter	Result	Qualifier	Units	•	RL	MDL
olatile Organics by GC/MS	- Westborough I	_ab for sampl	e(s):	01-06	Batch:	WG691660-3
Methylene chloride	ND		ug/kg	J	10	2.0
1,1-Dichloroethane	ND		ug/kg	1	1.5	0.18
Chloroform	ND		ug/kg	1	1.5	0.37
Carbon tetrachloride	ND		ug/kg	1	1.0	0.21
1,2-Dichloropropane	ND		ug/kg	1	3.5	0.23
Dibromochloromethane	ND		ug/kg	1	1.0	0.31
1,1,2-Trichloroethane	ND		ug/kg	1	1.5	0.30
Tetrachloroethene	ND		ug/kg	1	1.0	0.14
Chlorobenzene	ND		ug/kg	1	1.0	0.35
Trichlorofluoromethane	ND		ug/kg	1	5.0	0.12
1,2-Dichloroethane	ND		ug/kg	1	1.0	0.15
1,1,1-Trichloroethane	ND		ug/kg	1	1.0	0.11
Bromodichloromethane	ND		ug/kg	1	1.0	0.23
trans-1,3-Dichloropropene	ND		ug/kg	1	1.0	0.12
cis-1,3-Dichloropropene	ND		ug/kg	1	1.0	0.13
Bromoform	ND		ug/kg	1	4.0	0.41
1,1,2,2-Tetrachloroethane	ND		ug/kg	1	1.0	0.17
Benzene	ND		ug/kg	1	1.0	0.12
Toluene	0.29	J	ug/kg	1	1.5	0.11
Ethylbenzene	ND		ug/kg	1	1.0	0.15
Chloromethane	ND		ug/kg	1	5.0	0.78
Bromomethane	ND		ug/kg	1	2.0	0.34
Vinyl chloride	ND		ug/kg	1	2.0	0.14
Chloroethane	ND		ug/kg	1	2.0	0.32
1,1-Dichloroethene	ND		ug/kg	J	1.0	0.20
trans-1,2-Dichloroethene	ND		ug/kg	1	1.5	0.21
Trichloroethene	ND		ug/kg	l	1.0	0.15
1,2-Dichlorobenzene	ND		ug/kg	1	5.0	0.18
1,3-Dichlorobenzene	ND		ug/kg	1	5.0	0.18
1,4-Dichlorobenzene	ND		ug/kg	1	5.0	0.24
Methyl tert butyl ether	ND		ug/kg	1	2.0	0.10

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified

Lab Number: L1410959

Report Date: 05/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/22/14 08:33

Parameter	Result	Qualifier Unit	s RL	MDL
Volatile Organics by GC/MS - W	estborough Lab	o for sample(s):	01-06 Batch:	WG691660-3
p/m-Xylene	ND	ug/k	g 2.0	0.32
o-Xylene	ND	ug/k	g 2.0	0.27
cis-1,2-Dichloroethene	ND	ug/k	g 1.0	0.15
Styrene	ND	ug/k	g 2.0	0.31
Dichlorodifluoromethane	ND	ug/k	g 10	0.22
Acetone	ND	ug/k	g 10	3.1
Carbon disulfide	ND	ug/k	g 10	2.0
2-Butanone	ND	ug/k	g 10	0.36
4-Methyl-2-pentanone	ND	ug/k	g 10	0.24
2-Hexanone	ND	ug/k	g 10	0.19
Bromochloromethane	ND	ug/k	g 5.0	0.20
1,2-Dibromoethane	ND	ug/k	g 4.0	0.18
1,2-Dibromo-3-chloropropane	ND	ug/k	g 5.0	0.79
Isopropylbenzene	ND	ug/k	g 1.0	0.17
1,2,3-Trichlorobenzene	ND	ug/k	g 5.0	0.17
1,2,4-Trichlorobenzene	ND	ug/k	g 5.0	0.79
Methyl Acetate	ND	ug/k	g 20	0.76
Cyclohexane	ND	ug/k	g 20	1.1
1,4-Dioxane	ND	ug/k	g 100	17.
Freon-113	ND	ug/k	g 20	0.27
Methyl cyclohexane	ND	ug/k	g 4.0	1.3

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	90		70-130	

L1410959

Lab Number:

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified Report Date: 05/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/22/14 08:40

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough La	ab for samp	le(s): 01,	05-06 Batch:	WG691660-6	
Methylene chloride	3.9	J	ug/kg	10	2.0	
1,1-Dichloroethane	ND		ug/kg	1.5	0.18	
Chloroform	ND		ug/kg	1.5	0.37	
Carbon tetrachloride	ND		ug/kg	1.0	0.21	
1,2-Dichloropropane	ND		ug/kg	3.5	0.23	
Dibromochloromethane	ND		ug/kg	1.0	0.31	
1,1,2-Trichloroethane	ND		ug/kg	1.5	0.30	
Tetrachloroethene	ND		ug/kg	1.0	0.14	
Chlorobenzene	ND		ug/kg	1.0	0.35	
Trichlorofluoromethane	ND		ug/kg	5.0	0.12	
1,2-Dichloroethane	ND		ug/kg	1.0	0.15	
1,1,1-Trichloroethane	ND		ug/kg	1.0	0.11	
Bromodichloromethane	ND		ug/kg	1.0	0.23	
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.12	
cis-1,3-Dichloropropene	ND		ug/kg	1.0	0.13	
Bromoform	ND		ug/kg	4.0	0.41	
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0	0.17	
Benzene	ND		ug/kg	1.0	0.12	
Toluene	ND		ug/kg	1.5	0.11	
Ethylbenzene	ND		ug/kg	1.0	0.15	
Chloromethane	ND		ug/kg	5.0	0.78	
Bromomethane	ND		ug/kg	2.0	0.34	
Vinyl chloride	ND		ug/kg	2.0	0.14	
Chloroethane	ND		ug/kg	2.0	0.32	
1,1-Dichloroethene	ND		ug/kg	1.0	0.20	
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.21	
Trichloroethene	ND		ug/kg	1.0	0.15	
1,2-Dichlorobenzene	ND		ug/kg	5.0	0.18	
1,3-Dichlorobenzene	ND		ug/kg	5.0	0.18	
1,4-Dichlorobenzene	ND		ug/kg	5.0	0.24	
Methyl tert butyl ether	ND		ug/kg	2.0	0.10	

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified

Lab Number: L1410959

Report Date: 05/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/22/14 08:40

Parameter	Result	Qualifier	Units	RL	M	DL
Volatile Organics by GC/MS - Westl	borough Lab	for sample	e(s):	01,05-06 B	atch: WG	6691660-6
p/m-Xylene	ND		ug/kg	2.0	C	0.32
o-Xylene	ND		ug/kg	2.0	C).27
cis-1,2-Dichloroethene	ND		ug/kg	1.0	C).15
Styrene	ND		ug/kg	2.0	C	0.31
Dichlorodifluoromethane	ND		ug/kg	10	C).22
Acetone	ND		ug/kg	10	;	3.1
Carbon disulfide	ND		ug/kg	10		2.0
2-Butanone	ND		ug/kg	10	C	0.36
4-Methyl-2-pentanone	ND		ug/kg	10	C).24
2-Hexanone	ND		ug/kg	10	C).19
Bromochloromethane	ND		ug/kg	5.0	C	0.20
1,2-Dibromoethane	ND		ug/kg	4.0	C).18
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0	C).79
Isopropylbenzene	ND		ug/kg	1.0	C).17
1,2,3-Trichlorobenzene	ND		ug/kg	5.0	C).17
1,2,4-Trichlorobenzene	ND		ug/kg	5.0	C).79
Methyl Acetate	ND		ug/kg	20	C).76
Cyclohexane	ND		ug/kg	20		1.1
1,4-Dioxane	ND		ug/kg	100		17.
Freon-113	ND		ug/kg	20	C).27
Methyl cyclohexane	ND		ug/kg	4.0		1.3

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	97		70-130	

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified

Lab Number: L1410959

_....

Report Date: 05/22/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-06 Batch: 1	WG691660-1	WG691660-2			
Methylene chloride	93		91		70-130	2		30
1,1-Dichloroethane	98		96		70-130	2		30
Chloroform	98		96		70-130	2		30
Carbon tetrachloride	98		99		70-130	1		30
1,2-Dichloropropane	96		96		70-130	0		30
Dibromochloromethane	92		92		70-130	0		30
2-Chloroethylvinyl ether	79		79		70-130	0		30
1,1,2-Trichloroethane	96		96		70-130	0		30
Tetrachloroethene	100		98		70-130	2		30
Chlorobenzene	99		98		70-130	1		30
Trichlorofluoromethane	100		99		70-139	1		30
1,2-Dichloroethane	96		95		70-130	1		30
1,1,1-Trichloroethane	99		98		70-130	1		30
Bromodichloromethane	94		95		70-130	1		30
trans-1,3-Dichloropropene	90		91		70-130	1		30
cis-1,3-Dichloropropene	99		99		70-130	0		30
1,1-Dichloropropene	102		101		70-130	1		30
Bromoform	92		92		70-130	0		30
1,1,2,2-Tetrachloroethane	94		93		70-130	1		30
Benzene	99		97		70-130	2		30
Toluene	97		95		70-130	2		30

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified

Lab Number: L1

L1410959

Report Date:

05/22/14

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch: 1	WG691660-1	WG691660-2			
Ethylbenzene	103		102		70-130	1	30	
Chloromethane	94		91		52-130	3	30	
Bromomethane	96		96		57-147	0	30	
Vinyl chloride	94		94		67-130	0	30	
Chloroethane	107		101		50-151	6	30	
1,1-Dichloroethene	98		95		65-135	3	30	
trans-1,2-Dichloroethene	99		96		70-130	3	30	
Trichloroethene	99		99		70-130	0	30	
1,2-Dichlorobenzene	99		97		70-130	2	30	
1,3-Dichlorobenzene	102		99		70-130	3	30	
1,4-Dichlorobenzene	99		98		70-130	1	30	
Methyl tert butyl ether	96		94		66-130	2	30	
p/m-Xylene	107		106		70-130	1	30	
o-Xylene	108		106		70-130	2	30	
cis-1,2-Dichloroethene	101		98		70-130	3	30	
Dibromomethane	93		93		70-130	0	30	
Styrene	108		108		70-130	0	30	
Dichlorodifluoromethane	95		94		30-146	1	30	
Acetone	82		81		54-140	1	30	
Carbon disulfide	89		89		59-130	0	30	
2-Butanone	96		96		70-130	0	30	

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified

Lab Number: L1410959

Report Date: 05/22/14

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch:	WG691660-1	WG691660-2			
Vinyl acetate	97		98		70-130	1		30
4-Methyl-2-pentanone	83		83		70-130	0		30
1,2,3-Trichloropropane	96		94		68-130	2		30
2-Hexanone	80		82		70-130	2		30
Bromochloromethane	100		98		70-130	2		30
2,2-Dichloropropane	100		100		70-130	0		30
1,2-Dibromoethane	96		96		70-130	0		30
1,3-Dichloropropane	97		96		69-130	1		30
1,1,1,2-Tetrachloroethane	97		98		70-130	1		30
Bromobenzene	100		97		70-130	3		30
n-Butylbenzene	107		105		70-130	2		30
sec-Butylbenzene	106		105		70-130	1		30
tert-Butylbenzene	105		103		70-130	2		30
o-Chlorotoluene	104		101		70-130	3		30
p-Chlorotoluene	105		102		70-130	3		30
1,2-Dibromo-3-chloropropane	71		72		68-130	1		30
Hexachlorobutadiene	101		99		67-130	2		30
Isopropylbenzene	107		107		70-130	0		30
p-Isopropyltoluene	108		106		70-130	2		30
Naphthalene	94		92		70-130	2		30
Acrylonitrile	92		92		70-130	0		30

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified

Lab Number: L1410959

Report Date: 05/22/14

rameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westborou	ugh Lab Associated sai	mple(s): 01-06 Ba	atch: WG691660-1	WG691660-2			
Isopropyl Ether	99	9.	7	66-130	2		30
tert-Butyl Alcohol	83	84	1	70-130	1		30
n-Propylbenzene	106	10	3	70-130	3		30
1,2,3-Trichlorobenzene	101	99)	70-130	2		30
1,2,4-Trichlorobenzene	104	10	1	70-130	3		30
1,3,5-Trimethylbenzene	107	10	4	70-130	3		30
1,2,4-Trimethylbenzene	107	10	5	70-130	2		30
Methyl Acetate	87	87	7	51-146	0		30
Ethyl Acetate	90	90)	70-130	0		30
Acrolein	100	9.		70-130	9		30
Cyclohexane	108	10	8	59-142	0		30
1,4-Dioxane	86	8	7	65-136	1		30
Freon-113	102	10	1	50-139	1		30
1,4-Diethylbenzene	106	10	7	70-130	1		30
4-Ethyltoluene	106	10	7	70-130	1		30
1,2,4,5-Tetramethylbenzene	98	98	3	70-130	0		30
Tetrahydrofuran	90	89)	66-130	1		30
Ethyl ether	96	9	1	67-130	5		30
trans-1,4-Dichloro-2-butene	95	92	2	70-130	3		30
Methyl cyclohexane	106	10	6	70-130	0		30
Ethyl-Tert-Butyl-Ether	100	98	3	70-130	2		30

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified

Lab Number:

L1410959

05/22/14

Report Date:

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-06	Batch:	WG691660-1	WG691660-2				
Tertiary-Amyl Methyl Ether	97			97		70-130	0		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
_						
1,2-Dichloroethane-d4	98		98		70-130	
Toluene-d8	100		100		70-130	
4-Bromofluorobenzene	100		100		70-130	
Dibromofluoromethane	98		99		70-130	

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified

Lab Number: L1410959

Report Date: 05/22/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01,05-06 Batch:	WG691660-4	4 WG691660-5			
Methylene chloride	95		90		70-130	5		30
1,1-Dichloroethane	94		87		70-130	8		30
Chloroform	96		90		70-130	6		30
Carbon tetrachloride	91		79		70-130	14		30
1,2-Dichloropropane	94		89		70-130	5		30
Dibromochloromethane	82		80		70-130	2		30
2-Chloroethylvinyl ether	96		92		70-130	4		30
1,1,2-Trichloroethane	90		88		70-130	2		30
Tetrachloroethene	87		78		70-130	11		30
Chlorobenzene	88		85		70-130	3		30
Trichlorofluoromethane	120		100		70-139	18		30
1,2-Dichloroethane	107		104		70-130	3		30
1,1,1-Trichloroethane	95		85		70-130	11		30
Bromodichloromethane	94		90		70-130	4		30
trans-1,3-Dichloropropene	86		84		70-130	2		30
cis-1,3-Dichloropropene	90		87		70-130	3		30
1,1-Dichloropropene	92		83		70-130	10		30
Bromoform	74		75		70-130	1		30
1,1,2,2-Tetrachloroethane	85		84		70-130	1		30
Benzene	92		85		70-130	8		30
Toluene	84		78		70-130	7		30

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified

Lab Number: L1410959

Report Date: 05/22/14

ameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits	
atile Organics by GC/MS - Wes	stborough Lab Associated	sample(s):	01,05-06 Ba	atch: WG691660	-4 WG691660-5				
Ethylbenzene	90		84		70-130	7		30	
Chloromethane	80		71		52-130	12		30	
Bromomethane	113		105		57-147	7		30	
Vinyl chloride	106		92		67-130	14		30	
Chloroethane	117		103		50-151	13		30	
1,1-Dichloroethene	88		78		65-135	12		30	
trans-1,2-Dichloroethene	92		81		70-130	13		30	
Trichloroethene	96		88		70-130	9		30	
1,2-Dichlorobenzene	87		84		70-130	4		30	
1,3-Dichlorobenzene	88		84		70-130	5		30	
1,4-Dichlorobenzene	89		85		70-130	5		30	
Methyl tert butyl ether	94		91		66-130	3		30	
p/m-Xylene	90		83		70-130	8		30	
o-Xylene	91		86		70-130	6		30	
cis-1,2-Dichloroethene	94		88		70-130	7		30	
Dibromomethane	97		94		70-130	3		30	
Styrene	93		90		70-130	3		30	
Dichlorodifluoromethane	71		60		30-146	17		30	
Acetone	97		99		54-140	2		30	
Carbon disulfide	86		76		59-130	12		30	
2-Butanone	90		89		70-130	1		30	

3021 ORCHARD PARK RD **Project Name:**

Project Number: Not Specified Lab Number:

L1410959

Report Date: 05/22/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01,05-06 Batch	n: WG691660-	4 WG691660-5			
Vinyl acetate	93		90		70-130	3		30
4-Methyl-2-pentanone	93		92		70-130	1		30
1,2,3-Trichloropropane	89		87		68-130	2		30
2-Hexanone	78		77		70-130	1		30
Bromochloromethane	94		92		70-130	2		30
2,2-Dichloropropane	94		83		70-130	12		30
1,2-Dibromoethane	88		85		70-130	3		30
1,3-Dichloropropane	89		86		69-130	3		30
1,1,1,2-Tetrachloroethane	84		80		70-130	5		30
Bromobenzene	85		82		70-130	4		30
n-Butylbenzene	91		82		70-130	10		30
sec-Butylbenzene	88		78		70-130	12		30
tert-Butylbenzene	86		79		70-130	8		30
o-Chlorotoluene	84		80		70-130	5		30
p-Chlorotoluene	91		85		70-130	7		30
1,2-Dibromo-3-chloropropane	73		74		68-130	1		30
Hexachlorobutadiene	87		79		67-130	10		30
Isopropylbenzene	85		77		70-130	10		30
p-Isopropyltoluene	88		80		70-130	10		30
Naphthalene	84		83		70-130	1		30
Acrylonitrile	95		92		70-130	3		30

Project Name: 3021 ORCHARD PARK RD

Project Number: Not Specified

Lab Number: L1410959

Report Date: 05/22/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01,05-06 Batch:	WG691660-	4 WG691660-5		
Isopropyl Ether	91		87		66-130	4	30
tert-Butyl Alcohol	90		90		70-130	0	30
n-Propylbenzene	87		81		70-130	7	30
1,2,3-Trichlorobenzene	87		85		70-130	2	30
1,2,4-Trichlorobenzene	88		86		70-130	2	30
1,3,5-Trimethylbenzene	89		82		70-130	8	30
1,2,4-Trimethylbenzene	89		83		70-130	7	30
Methyl Acetate	91		90		51-146	1	30
Ethyl Acetate	91		88		70-130	3	30
Acrolein	64	Q	67	Q	70-130	5	30
Cyclohexane	92		79		59-142	15	30
1,4-Dioxane	103		95		65-136	8	30
Freon-113	92		77		50-139	18	30
1,4-Diethylbenzene	88		80		70-130	10	30
4-Ethyltoluene	86		79		70-130	8	30
1,2,4,5-Tetramethylbenzene	88		84		70-130	5	30
Tetrahydrofuran	88		92		66-130	4	30
Ethyl ether	92		89		67-130	3	30
trans-1,4-Dichloro-2-butene	83		85		70-130	2	30
Methyl cyclohexane	91		78		70-130	15	30
Ethyl-Tert-Butyl-Ether	96		93		70-130	3	30

Project Name: 3021 ORCHARD PARK RD

Project Number:

Not Specified

Lab Number:

L1410959

Report Date:

05/22/14

Parameter	LCS %Recovery	Qual	LCS %Reco		9/ Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01,05-06	Batch:	WG691660-4	WG691660-5				
Tertiary-Amyl Methyl Ether	92		89	9		70-130	3		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	108		109		70-130	
Toluene-d8	96		96		70-130	
4-Bromofluorobenzene	101		100		70-130	
Dibromofluoromethane	99		100		70-130	

INORGANICS & MISCELLANEOUS

Project Name: 3021 ORCHARD PARK RD Lab Number: L1410959

Project Number: Not Specified Report Date: 05/22/14

SAMPLE RESULTS

Lab ID: L1410959-01

Client ID: SB-1

Sample Location: 3021 ORCHARD PARK RD

Matrix: Soil

Date Collected: 05/20/14 16:15

Date Received: 05/21/14
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	91.3		%	0.100	NA	1	-	05/22/14 02:15	30,2540G	RT

L1410959

Project Name: 3021 ORCHARD PARK RD Lab Number:

Project Number: Report Date: 05/22/14

Not Specified

SAMPLE RESULTS

Lab ID: L1410959-02

SB-2 Client ID:

Sample Location: 3021 ORCHARD PARK RD

Matrix: Soil Date Collected: 05/20/14 19:30

Date Received: 05/21/14 Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	86.6		%	0.100	NA	1	-	05/22/14 02:15	30,2540G	RT

Project Name: 3021 ORCHARD PARK RD Lab Number: L1410959

Project Number: Not Specified Report Date: 05/22/14

SAMPLE RESULTS

Lab ID: L1410959-03

Client ID: SB-3

Sample Location: 3021 ORCHARD PARK RD

Matrix: Soil

Date Collected: 05/20/14 18:30

Date Received: 05/21/14

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	81.7		%	0.100	NA	1	-	05/22/14 02:15	30,2540G	RT

Lab Number:

Project Name: 3021 ORCHARD PARK RD

L1410959

Project Number: Report Date: 05/22/14 Not Specified

SAMPLE RESULTS

Lab ID: L1410959-04

SB-4 Client ID:

3021 ORCHARD PARK RD Sample Location:

Matrix: Soil Date Collected: 05/20/14 18:45

Date Received: 05/21/14

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Solids, Total	85.3		%	0.100	NA	1	-	05/22/14 02:15	30,2540G	RT

Project Name: 3021 ORCHARD PARK RD Lab Number: L1410959

Project Number: Report Date: 05/22/14 Not Specified

SAMPLE RESULTS

Lab ID: L1410959-05

SB-5 Client ID:

Sample Location: 3021 ORCHARD PARK RD

Matrix: Soil Date Collected: 05/20/14 20:30

Date Received: 05/21/14

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	88.6		%	0.100	NA	1	-	05/22/14 02:15	30,2540G	RT

Project Name: 3021 ORCHARD PARK RD Lab Number: L1410959

Project Number: Not Specified Report Date: 05/22/14

SAMPLE RESULTS

Lab ID: L1410959-06

Client ID: SB-6

Sample Location: 3021 ORCHARD PARK RD

Matrix: Soil

Date Collected: 05/20/14 21:15

Date Received: 05/21/14
Field Prep: Not Specified

·

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	89.6		%	0.100	NA	1	-	05/22/14 02:15	30,2540G	RT

Lab Duplicate Analysis
Batch Quality Control

Project Name: 3021 ORCHARD PARK RD Batch Qual

Project Number: Not Specified

Lab Number:

L1410959

Report Date: 05/22/14

Parameter	Native Sam	ple Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01-06	QC Batch ID: WG691536-1	QC Sample:	L1410885-01	Client ID:	DUP Sample
Solids, Total	89.2	88.8	%	0		20

Project Name: 3021 ORCHARD PARK RD

Lab Number: L1410959 Project Number: Not Specified **Report Date:** 05/22/14

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

Absent Α

Container Info	rmation			Temp			
Container ID	ner ID Container Type		рН	deg C	Pres	Seal	Analysis(*)
L1410959-01A	Amber 120ml unpreserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)
L1410959-01X	Plastic 2oz unpreserved for TS s	Α	N/A	2.8	Υ	Absent	TS(7)
L1410959-02A	Amber 120ml unpreserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)
L1410959-02X	Plastic 2oz unpreserved for TS s	Α	N/A	2.8	Υ	Absent	TS(7)
L1410959-03A	Amber 120ml unpreserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)
L1410959-03X	Plastic 2oz unpreserved for TS s	Α	N/A	2.8	Υ	Absent	TS(7)
L1410959-04A	Amber 120ml unpreserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)
L1410959-04X	Plastic 2oz unpreserved for TS s	Α	N/A	2.8	Υ	Absent	TS(7)
L1410959-05A	Amber 120ml unpreserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)
L1410959-05X	Plastic 2oz unpreserved for TS s	Α	N/A	2.8	Υ	Absent	TS(7)
L1410959-06A	Amber 120ml unpreserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)
L1410959-06X	Plastic 2oz unpreserved for TS s	Α	N/A	2.8	Υ	Absent	TS(7)

Project Name:3021 ORCHARD PARK RDLab Number:L1410959Project Number:Not SpecifiedReport Date:05/22/14

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

SRM

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.

Report Format: DU Report with 'J' Qualifiers

Project Name:3021 ORCHARD PARK RDLab Number:L1410959Project Number:Not SpecifiedReport Date:05/22/14

Data Qualifiers

- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:3021 ORCHARD PARK RDLab Number:L1410959Project Number:Not SpecifiedReport Date:05/22/14

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised April 15, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene.

EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mq,Mn,Mo,Ni,K,Se,Aq,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	<u></u>	·																Serial Nb:05221414:27
Дерна	CHAIN O	- CU	STO	DY F	AGE	OF	Dat	e Rec	'd in i	Lab:	5/2	21,	/\५	erije Silent		AL	РНА	Job#: L1410959
WESTBORO, MA	MANSFIELD, MA	Project	Informat	ion			Re	port	Infor	matic	n - Da	ta D	eliver	able	S	Bil	ling	Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project N	lame: 30	3) Octor	40 PARK	An.		FAX	<u> </u>	2	C EMAII	_				□ S	ame a	as Client info PO#:
Client Information		_	ocation: ു					ADEx		, 🗅	Add'l [Delive	erables					
Client: Turn Kê		Project #			nto Ince		Reg	ulato	ry R	equir	ement	s/Re	port L	.imit	s			
Addrone:	-	Project M	lanager: n	n I	· · · · · · · · · · · · · · · · · · ·		Stat	e /Fed	Prog	ıram.				0	riteri	а		
	AMANGE TURNSHILE		Quote #:		الفا لانس		MA	MCP	PRE	SUMF	TIVE	CER	TAIN	Y	- CT	RE/	4SO!	NABLE CONFIDENCE PROTO
	NY 14218 856-0599	-	Around Ti		44 1914	11.5		Yes			re MCP							
Fax:	836-0399	14111-7	around in	iie					□ No □ No									OG? (If yes see note in Comments) otocols) Required?
		☐ Standa	ard 🎉	RUSH (only	confirmed if pre-ap	provedi)		/	<u> </u>	. /	- /	7	7	/	/	/	/ /	/ / / 1
	NKI @ BENCHMARK TURNKEY	Lom Date Du	ie: 5-/2	12/14	Time:			છુ/	. /		/ /	/	-	' /	' /	/. /	/ /	SAMPLE HANDLING
	ve been previously analyzed by Alpha Decific Requirements/Comm	ents/Dete		· 1			- 3	<u>;</u>			/ /			:/				/ Filtration
If MS is required, inc	licate in Sample Specific Comments v	vhich sample	es and what t		e performed.		ANA	[/ /	/	/ /	/ /				/ .		Ι,	│ │ □ Done # □ Not needed
(Note: All CAM meti	nods for inorganic analyses require MS	every.20 so	oil samples)				`/	ACC.				/	/ /	/ · ·	/ /	/ /		Lab to do Preservation
			-				. /	- /			//		/ /					Lab to do
ALPHA Lab ID (Lab Use Only)	Sample ID		Coll Date	ection Time	Sample Matrix	Sampler's	5 / X	!		/- /	/ /			/.			/	(Please specify below) E Sample Specific Comments S
1,00-01	SQ-1		5120/M	16:15	S	jet	1					+						3
40000011			3/20/17	<u> </u>		<u> </u>	!					-		.72				
, , <u>, , , , , , , , , , , , , , , , , </u>	Z-D2		-	19:30	S	JCT	1	-	_					<u> </u>				. 1
(၂	\$8-3			1830	3	JCT	1	_										1
	58-4			1245	\$	JOT	1											
.5	\$6-5		V	3030	ک	Jer	ì											1.
3,	SB - C		5/20/14	21 15	\{	JLT	1											
	en e		,															
		<u>. </u>				-	1										-	
											-							
PLEASE ANSWEI	R QUESTIONS ABOVE!				Cont	ainer Type	A	- 1						·				Please print clearly, legibly and com-
IS YOUR P	ROJECT -				Pr	eservative	A											pletely. Samples can not be logged in and turnground time clock will not
MA MCP o	_	Relinqu	ished By:	•		te/Time	<u> </u>	<u> </u>	Re	ceived	Ву:		1 05	[Date/	Time		start until any ambiguities are resolve All samples submitted are subject to
IVIA IVIOE O	Mariati	A)	File	<u> </u>		14 11 35 14 20 ~~	\ W	MO	ntu	L F	M	3/	f (4 Con	SIZ	H	77	· . 5	Alpha's Terms and Conditions. See reverse side.
ORM NO: 01-01 (rev. 18-Ja	an-2010)	the	<u>. 11</u> W	-	5121	14 191			المريما	0	7_		1	3/2	1/14	1 1	715	See (everse slue.
Page 49 of 49	This C	in 9s			5/21/1	1231	A	'À	NJ	de	& D	20	X	ŗ	5/0	W	14	23125

ANALYTICAL REPORT

Lab Number: L1410982

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Mike Lesakowski Phone: (716) 856-0599

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PARK RD Report Date: 05/22/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), PA (68-02089), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), DOD (L2217.01), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1410982-01	INDOOR AMBIENT AIR	3021 ORCHARD PARK RD	05/21/14 11:22
L1410982-02	OUTDOOR AMBIENT AIR	3021 ORCHARD PARK RD	05/21/14 12:50

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated QC table. This information is also incorporated in the Data Usability format for our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on May 20, 2014. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/22/14

Christopher J. Anderson

ANALYTICAL

AIR

05/21/14 11:22

Not Specified

05/21/14

Date Collected:

Date Received:

Field Prep:

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

SAMPLE RESULTS

Lab ID: L1410982-01

Client ID: INDOOR AMBIENT AIR
Sample Location: 3021 ORCHARD PARK RD

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 05/22/14 10:45

Analyst: RY

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	1 dotoi
Volatile Organics in Air - Mar	nstield Lab							
Dichlorodifluoromethane	0.421	0.200		2.08	0.989			1
Chloromethane	0.600	0.200		1.24	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	13.4	2.50		25.2	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	11.2	1.00		26.6	2.38			1
Trichlorofluoromethane	0.291	0.200		1.64	1.12			1
Isopropanol	1.17	0.500		2.88	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	7.92	1.00		27.5	3.47			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.704	0.200		2.08	0.590			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.200		ND	0.590			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

SAMPLE RESULTS

Lab ID: L1410982-01

Client ID: INDOOR AMBIENT AIR
Sample Location: 3021 ORCHARD PARK RD

Date Collected: 05/21/14 11:22
Date Received: 05/21/14
Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
n-Hexane	0.211	0.200		0.744	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.200		ND	0.820			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	1.10	0.200		4.15	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.236	0.200		1.03	0.869			1
p/m-Xylene	0.836	0.400		3.63	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.319	0.200		1.39	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	0.338	0.200		1.66	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

SAMPLE RESULTS

Lab ID: L1410982-01

Client ID: INDOOR AMBIENT AIR
Sample Location: 3021 ORCHARD PARK RD

Date Collected: 05/21/14 11:22

Date Received: 05/21/14
Field Prep: Not Specified

			ug/m3		Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	92		60-140

05/21/14 11:22

Not Specified

05/21/14

Date Collected:

Date Received:

Field Prep:

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

SAMPLE RESULTS

Lab ID: L1410982-01

Client ID: INDOOR AMBIENT AIR
Sample Location: 3021 ORCHARD PARK RD

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 05/22/14 10:45

Analyst: RY

		ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by S	IM - Mansfield Lab								
Vinyl chloride	ND	0.020		ND	0.051			1	
1,1-Dichloroethene	ND	0.020		ND	0.079			1	
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1	
Carbon tetrachloride	0.054	0.020		0.340	0.126			1	
Trichloroethene	ND	0.020		ND	0.107			1	
Tetrachloroethene	0.471	0.020		3.19	0.136			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	86		60-140
chlorobenzene-d5	93		60-140

05/21/14 12:50

Not Specified

05/21/14

Date Collected:

Date Received:

Field Prep:

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

SAMPLE RESULTS

Lab ID: L1410982-02

Client ID: OUTDOOR AMBIENT AIR
Sample Location: 3021 ORCHARD PARK RD

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 05/22/14 10:13

Analyst: RY

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.290	0.200		1.43	0.989			1
Chloromethane	0.561	0.200		1.16	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	3.72	1.00		8.84	2.38			1
Trichlorofluoromethane	0.241	0.200		1.35	1.12			1
sopropanol	ND	0.500		ND	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	1.47	1.00		5.11	3.47			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.249	0.200		0.734	0.590			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.200		ND	0.590			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

SAMPLE RESULTS

Lab ID: L1410982-02

Client ID: OUTDOOR AMBIENT AIR
Sample Location: 3021 ORCHARD PARK RD

Date Received: 05/21/14
Field Prep: Not Specified

05/21/14 12:50

Date Collected:

Sample Location. GGZ 1 G110		ppbV			ug/m3	. тор.		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansf								
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.297	0.200		0.949	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.200		ND	0.820			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.583	0.200		2.20	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

SAMPLE RESULTS

Lab ID: L1410982-02

Client ID: OUTDOOR AMBIENT AIR
Sample Location: 3021 ORCHARD PARK RD

Date Collected: 05/21

05/21/14 12:50

Date Received: 05/21/14
Field Prep: Not Specified

	ppbV				ug/m3		Dilution	
Parameter	Results RL		MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	106		60-140
Bromochloromethane	100		60-140
chlorobenzene-d5	95		60-140

05/21/14 12:50

Not Specified

05/21/14

Date Collected:

Date Received:

Field Prep:

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

SAMPLE RESULTS

Lab ID: L1410982-02

Client ID: OUTDOOR AMBIENT AIR
Sample Location: 3021 ORCHARD PARK RD

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 05/22/14 10:13

Analyst: RY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by S	IM - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.052	0.020		0.327	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.038	0.020		0.258	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	100		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	96		60-140

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/21/14 17:02

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	le(s): 01	-02 Batch	: WG69146	60-4			
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	1.00		ND	3.47			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	0.200		ND	0.704			1
2-Butanone	ND	0.200		ND	0.590			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/21/14 17:02

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for samp	ole(s): 01	-02 Batch	: WG69146	60-4			
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.200		ND	0.590			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.200		ND	0.820			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/21/14 17:02

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	ole(s): 01-	-02 Batcl	h: WG69146	60-4			
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 05/21/14 17:53

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab for	or sample	e(s): 01-02	Batch: W	G691461	-4		
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500		ND	1.03			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	2.00		ND	4.75			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	1.00		ND	3.47			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 05/21/14 17:53

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab for	or sample	e(s): 01-02	2 Batch: W	G691461	-4		
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.500		ND	2.46			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 05/21/14 17:53

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab fo	or sample	(s): 01-0	2 Batch: W	G691461	-4		
sec-Butylbenzene	ND	0.500		ND	2.74			1
p-Isopropyltoluene	ND	0.500		ND	2.74			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.500		ND	2.74			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PARK RD

Lab Number: L1410982

arameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG691	460-3				
Chlorodifluoromethane	100		-		70-130	-		
Propylene	112		-		70-130	-		
Propane	92		-		70-130	-		
Dichlorodifluoromethane	130		-		70-130	-		
Chloromethane	105		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	120		-		70-130	-		
Methanol	82		-		70-130	-		
Vinyl chloride	109		-		70-130	-		
1,3-Butadiene	107		-		70-130	-		
Butane	95		-		70-130	-		
Bromomethane	108		-		70-130	-		
Chloroethane	109		-		70-130	-		
Ethyl Alcohol	94		-		70-130	-		
Dichlorofluoromethane	103		-		70-130	-		
Vinyl bromide	112		-		70-130	-		
Acrolein	86		-		70-130	-		
Acetone	108		-		70-130	-		
Acetonitrile	93		-		70-130	-		
Trichlorofluoromethane	119		-		70-130	-		
iso-Propyl Alcohol	100		-		70-130	-		
Acrylonitrile	95		-		70-130	-		

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PARK RD

Lab Number: L1410982

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab A	ssociated sample(s):	01-02	Batch: WG6914	160-3				
Pentane	97		-		70-130	-		
Ethyl ether	92		-		70-130	-		
1,1-Dichloroethene	109		-		70-130	-		
tert-Butyl Alcohol	98		-		70-130	-		
Methylene chloride	108		-		70-130	-		
3-Chloropropene	104		-		70-130	-		
Carbon disulfide	102		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	122		-		70-130	-		
trans-1,2-Dichloroethene	97		-		70-130	-		
1,1-Dichloroethane	106		-		70-130	-		
Methyl tert butyl ether	100		-		70-130	-		
Vinyl acetate	111		-		70-130	-		
2-Butanone	104		-		70-130	-		
cis-1,2-Dichloroethene	120		-		70-130	-		
Ethyl Acetate	105		-		70-130	-		
Chloroform	117		-		70-130	-		
Tetrahydrofuran	95		-		70-130	-		
2,2-Dichloropropane	96		-		70-130	-		
1,2-Dichloroethane	114		-		70-130	-		
n-Hexane	80		-		70-130	-		
Isopropyl Ether	83		-		70-130	-		

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PARK RD

Lab Number: L1410982

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01-02	Batch: WG691460-	-3				
Ethyl-Tert-Butyl-Ether	76		-		70-130	-		
1,1,1-Trichloroethane	90		-		70-130	-		
1,1-Dichloropropene	82		-		70-130	-		
Benzene	87		-		70-130	-		
Carbon tetrachloride	88		-		70-130	-		
Cyclohexane	81		-		70-130	-		
Tertiary-Amyl Methyl Ether	75		-		70-130	-		
Dibromomethane	84		-		70-130	-		
1,2-Dichloropropane	89		-		70-130	-		
Bromodichloromethane	83		-		70-130	-		
1,4-Dioxane	81		-		70-130	-		
Trichloroethene	95		-		70-130	-		
2,2,4-Trimethylpentane	81		-		70-130	-		
Methyl methacrylate	74		-		70-130	-		
Heptane	76		-		70-130	-		
cis-1,3-Dichloropropene	91		-		70-130	-		
4-Methyl-2-pentanone	76		-		70-130	-		
trans-1,3-Dichloropropene	76		-		70-130	-		
1,1,2-Trichloroethane	95		-		70-130	-		
Toluene	98		-		70-130	-		
1,3-Dichloropropane	90		-		70-130	-		

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PARK RD

Lab Number:

L1410982

Report Date:

05/22/14

arameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch:	WG691460)-3				
2-Hexanone	88			-		70-130	-		
Dibromochloromethane	90			-		70-130	-		
1,2-Dibromoethane	104			-		70-130	-		
Butyl Acetate	90			-		70-130	-		
Octane	89			-		70-130	-		
Tetrachloroethene	105			-		70-130	-		
1,1,1,2-Tetrachloroethane	93			-		70-130	-		
Chlorobenzene	105			-		70-130	-		
Ethylbenzene	102			-		70-130	-		
p/m-Xylene	102			-		70-130	-		
Bromoform	83			-		70-130	-		
Styrene	104			-		70-130	-		
1,1,2,2-Tetrachloroethane	106			-		70-130	-		
o-Xylene	104			-		70-130	-		
1,2,3-Trichloropropane	93			-		70-130	-		
Nonane (C9)	86			-		70-130	-		
Isopropylbenzene	98			-		70-130	-		
Bromobenzene	93			-		70-130	-		
o-Chlorotoluene	97			-		70-130	-		
n-Propylbenzene	98			-		70-130	-		
p-Chlorotoluene	93			-		70-130	-		

Project Name: 3021 ORCHARD PARK RD **Project Number:**

3021 ORCHARD PARK RD

Lab Number: L1410982

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ciated sample(s):	01-02	Batch: WG691460	-3				
4-Ethyltoluene	90		-		70-130	-		
1,3,5-Trimethylbenzene	103		-		70-130	-		
tert-Butylbenzene	99		-		70-130	-		
1,2,4-Trimethylbenzene	107		-		70-130	-		
Decane (C10)	91		-		70-130	-		
Benzyl chloride	72		-		70-130	-		
1,3-Dichlorobenzene	109		-		70-130	-		
1,4-Dichlorobenzene	108		-		70-130	-		
sec-Butylbenzene	98		-		70-130	-		
p-Isopropyltoluene	92		-		70-130	-		
1,2-Dichlorobenzene	107		-		70-130	-		
n-Butylbenzene	101		-		70-130	-		
1,2-Dibromo-3-chloropropane	91		-		70-130	-		
Undecane	99		-		70-130	-		
Dodecane (C12)	108		-		70-130	-		
1,2,4-Trichlorobenzene	114		-		70-130	-		
Naphthalene	102		-		70-130	-		
1,2,3-Trichlorobenzene	99		-		70-130	-		
Hexachlorobutadiene	109		-		70-130	-		

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PARK RD

Lab Number: L1410982

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air by SIM - Mansfield	Lab Associated sa	mple(s): 0	1-02 Batch: WC	9691461-3				
Dichlorodifluoromethane	118		-		70-130	-		25
Chloromethane	89		-		70-130	-		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	101		-		70-130	-		25
Vinyl chloride	95		-		70-130	-		25
1,3-Butadiene	92		-		70-130	-		25
Bromomethane	101		-		70-130	-		25
Chloroethane	94		-		70-130	-		25
Acetone	91		-		70-130	-		25
Trichlorofluoromethane	102		-		70-130	-		25
Acrylonitrile	86		-		70-130	-		25
1,1-Dichloroethene	95		-		70-130	-		25
Methylene chloride	98		-		70-130	-		25
1,1,2-Trichloro-1,2,2-Trifluoroethane	104		-		70-130	-		25
Halothane	101		-		70-130	-		25
trans-1,2-Dichloroethene	82		-		70-130	-		25
1,1-Dichloroethane	92		-		70-130	-		25
Methyl tert butyl ether	84		-		70-130	-		25
2-Butanone	83		-		70-130	-		25
cis-1,2-Dichloroethene	105		-		70-130	-		25
Chloroform	102		-		70-130	-		25
1,2-Dichloroethane	97		-		70-130	-		25

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PARK RD

Lab Number: L1410982

Parameter	LCS %Recovery		SD overy Qual	%Recovery Limits	RPD	RPD Limits
olatile Organics in Air by SIM - Mansfield La	ab Associated sam	nple(s): 01-02 Ba	tch: WG691461	-3		
1,1,1-Trichloroethane	85		-	70-130	-	25
Benzene	82		-	70-130	-	25
Carbon tetrachloride	83		-	70-130	-	25
1,2-Dichloropropane	84		-	70-130	-	25
Bromodichloromethane	78		-	70-130	-	25
1,4-Dioxane	71		-	70-130	-	25
Trichloroethene	89		-	70-130	-	25
cis-1,3-Dichloropropene	88		-	70-130	-	25
4-Methyl-2-pentanone	80		-	70-130	-	25
trans-1,3-Dichloropropene	76		-	70-130	-	25
1,1,2-Trichloroethane	91		-	70-130	-	25
Toluene	101		-	70-130	-	25
Dibromochloromethane	88		-	70-130	-	25
1,2-Dibromoethane	106		-	70-130	-	25
Tetrachloroethene	105		-	70-130	-	25
1,1,1,2-Tetrachloroethane	94		-	70-130	-	25
Chlorobenzene	105		-	70-130	-	25
Ethylbenzene	103		-	70-130	-	25
p/m-Xylene	104		-	70-130	-	25
Bromoform	80		-	70-130	-	25
Styrene	108		-	70-130	-	25

Project Name: 3021 ORCHARD PARK RD **Project Number:**

3021 ORCHARD PARK RD

Lab Number: L1410982

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics in Air by SIM - Mansfield La	b Associated sa	mple(s): 01	-02 Batch: WO	9691461-3					
1,1,2,2-Tetrachloroethane	109		-		70-130	-		25	
o-Xylene	105		-		70-130	-		25	
Isopropylbenzene	101		-		70-130	-		25	
4-Ethyltoluene	93		-		70-130	-		25	
1,3,5-Trimethylbenzene	105		-		70-130	-		25	
1,2,4-Trimethylbenzene	110		-		70-130	-		25	
1,3-Dichlorobenzene	115		-		70-130	-		25	
1,4-Dichlorobenzene	110		-		70-130	-		25	
sec-Butylbenzene	102		-		70-130	-		25	
p-IsopropyItoluene	97		-		70-130	-		25	
1,2-Dichlorobenzene	114		-		70-130	-		25	
n-Butylbenzene	106		-		70-130	-		25	
1,2,4-Trichlorobenzene	124		-		70-130	-		25	
Naphthalene	110		-		70-130	-		25	
1,2,3-Trichlorobenzene	111		-		70-130	-		25	
Hexachlorobutadiene	114		-		70-130	-		25	

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PA

Lab Number: L1410982

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID: WG691460-5	QC Sample:	L1410651-01	Client ID:	DUP Sample
Propylene	ND	ND	ppbV	NC		25
Dichlorodifluoromethane	0.319	0.484	ppbV	41	Q	25
Chloromethane	0.535	0.645	ppbV	19		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC		25
Vinyl chloride	ND	ND	ppbV	NC		25
1,3-Butadiene	ND	ND	ppbV	NC		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	ND	ND	ppbV	NC		25
Ethyl Alcohol	112	115	ppbV	3		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	11.5	11.5	ppbV	0		25
Trichlorofluoromethane	4.37	4.49	ppbV	3		25
iso-Propyl Alcohol	8.84	9.19	ppbV	4		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
Methylene chloride	ND	ND	ppbV	NC		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	ND	ND	ppbV	NC		25
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PA

Lab Number: L1410982

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID: WG691460-5	QC Sample:	L1410651-01	Client ID: DUP Sample
1,1-Dichloroethane	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
Vinyl acetate	ND	ND	ppbV	NC	25
2-Butanone	1.02	0.994	ppbV	3	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
Ethyl Acetate	0.525	0.555	ppbV	6	25
Chloroform	ND	ND	ppbV	NC	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Benzene	ND	ND	ppbV	NC	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Cyclohexane	0.227	0.266	ppbV	16	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
Trichloroethene	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PA

Lab Number: L1410982

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID: WG691460-5	QC Sample:	L1410651-01	Client ID: DUP Sample
Heptane	0.401	0.455	ppbV	13	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	1.96	1.92	ppbV	2	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Tetrachloroethene	2.04	1.96	ppbV	4	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	0.263	0.267	ppbV	2	25
p/m-Xylene	0.514	0.514	ppbV	0	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	0.251	0.262	ppbV	4	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	0.226	0.223	ppbV	1	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC	25

Project Name: 3021 ORCHARD PARK RD

Project Number:

3021 ORCHARD PA

Lab Number: L1410982

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
/olatile Organics in Air - Mansfield Lab As	ssociated sample(s): 01-02	QC Batch ID: WG691460-5	QC Sample:	L1410651-01	Client ID: DUP Sample
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25
Benzyl chloride	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PA

Lab Number: L14

L1410982

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
platile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01-02	. QC Batch ID: WG69	91461-5 QC	C Sample: L1410	0462-01 Client ID: DUP
Dichlorodifluoromethane	0.544	0.412	ppbV	28	Q 25
Chloromethane	ND	ND	ppbV	NC	25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC	25
Vinyl chloride	ND	ND	ppbV	NC	25
1,3-Butadiene	0.270	0.267	ppbV	1	25
Bromomethane	ND	ND	ppbV	NC	25
Chloroethane	ND	ND	ppbV	NC	25
Trichlorofluoromethane	1.15	1.17	ppbV	2	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
Methylene chloride	ND	ND	ppbV	NC	25
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.080	0.081	ppbV	1	25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	0.037	0.036	ppbV	3	25
Chloroform	4.67	4.69	ppbV	0	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	0.022	0.022	ppbV	0	25
Benzene	0.197	0.194	ppbV	2	25

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PA

Lab Number:

L1410982

Report Date:

05/22/14

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics in Air by SIM - Mansfield La Sample	ab Associated sample(s): 01-02	QC Batch ID: WG6	91461-5 QC Sa	mple: L14	10462-01 Client ID: DUP
Carbon tetrachloride	0.041	0.040	ppbV	2	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	0.056	0.056	ppbV	0	25
Trichloroethene	0.098	0.097	ppbV	1	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	0.518	0.534	ppbV	3	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Tetrachloroethene	17.9	18.6	ppbV	4	25
1,1,1,2-Tetrachloroethane	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	0.046	0.048	ppbV	4	25
p/m-Xylene	0.139	0.143	ppbV	3	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	0.066	0.066	ppbV	0	25

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PA

Lab Number: լ

L1410982

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air by SIM - Mansfield Lab ample	Associated sample(s): 01-02	QC Batch ID: WG69	1461-5 QC	Sample: L141	0462-01 Client ID: DUP
4-Ethyltoluene	ND	ND	ppbV	NC	25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	0.066	0.068	ppbV	3	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	0.020	0.021	ppbV	5	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Naphthalene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25

3021 ORCHARD PARK RD Lab Number: L1410982

Project Number: 3021 ORCHARD PARK RD Report Date: 05/22/14

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk		Flow In mL/min	
L1410982-01	INDOOR AMBIENT AIR	0379	#16 AMB	05/20/14	102993		-	-	-	Pass	6.7	6.7	0
L1410982-01	INDOOR AMBIENT AIR	1628	6.0L Can	05/20/14	102993	L1410129-03	Pass	-28.2	-5.1	-	-	-	-
L1410982-02	OUTDOOR AMBIENT AIR	0240	#16 AMB	05/20/14	102993		-	-	-	Pass	6.7	6.8	1
L1410982-02	OUTDOOR AMBIENT AIR	1778	6.0L Can	05/20/14	102993	L1410129-03	Pass	-29.5	-9.4	-	-	-	-

Project Name:

L1410129

05/12/14 20:56

Not Specified

05/13/14

Lab Number:

Date Collected:

Date Received:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03

Client ID: CAN 985 SHELF 44

Sample Location:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 05/13/14 12:38

Analyst: MB

Analyst: MB								
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1

ND

ND

ND

ND

ND

0.200

0.200

0.200

0.200

0.500

--

--

--

ND

ND

ND

ND

ND

0.434

0.590

0.606

0.793

1.52

--

--

--

1

1

1

1

1

Acrylonitrile

Pentane

Ethyl ether

1,1-Dichloroethene

Tertiary butyl Alcohol

L1410129

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03 Date Collected: 05/12/14 20:56

Client ID: CAN 985 SHELF 44 Date Received: 05/13/14

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ab							
Methylene chloride	ND	1.00		ND	3.47			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	0.200		ND	0.704			1
2-Butanone	ND	0.200		ND	0.590			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.200		ND	0.590			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

L1410129

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03 Date Collected: 05/12/14 20:56

Client ID: CAN 985 SHELF 44 Date Received: 05/13/14

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.200		ND	0.820			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Lab Number:

L1410129

Report Date: 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03

Client ID: **CAN 985 SHELF 44**

Sample Location:

Date Collected:

05/12/14 20:56

Date Received:

05/13/14

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1410129

Project Number: CANISTER QC BAT Report Date: 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03 Date Collected: 05/12/14 20:56

Client ID: CAN 985 SHELF 44 Date Received: 05/13/14

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	110		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	99		60-140

L1410129

05/12/14 20:56

Not Specified

05/13/14

Lab Number:

Date Collected:

Date Received:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03

Client ID: CAN 985 SHELF 44

Sample Location:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 05/13/14 12:38

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500		ND	1.03			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	2.00		ND	4.75			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	1.00		ND	3.47			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
rans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1410129

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03 Date Collected: 05/12/14 20:56

Client ID: CAN 985 SHELF 44 Date Received: 05/13/14

Sample Location: Field Prep: Not Specified

•						•		•
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	· Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.500		ND	2.46			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.500		ND	2.74			1
p-Isopropyltoluene	ND	0.500		ND	2.74			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION

CAN 985 SHELF 44

Lab Number: **Report Date:**

L1410129

Project Number: CANISTER QC BAT

05/22/14

Air Canister Certification Results

Lab ID: L1410129-03 Date Collected:

05/12/14 20:56

Client ID:

Date Received:

05/13/14

Field Prep: Sample Location:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Man	sfield Lab							
n-Butylbenzene	ND	0.500		ND	2.74			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	112		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	103		60-140

Project Name:3021 ORCHARD PARK RDLab Number: L1410982Project Number:3021 ORCHARD PARK RDReport Date: 05/22/14

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

N/A Absent

Container Info		Temp				
Container ID	Container Type	Cooler	рН	deg C Pres	Seal	Analysis(*)
L1410982-01A	Canister - 6 Liter	N/A	N/A	Υ	Absent	TO15-LL(30),TO15-SIM(30)
L1410982-02A	Canister - 6 Liter	N/A	N/A	Υ	Absent	TO15-LL(30),TO15-SIM(30)

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

SRM

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.

Report Format: Data Usability Report

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Data Qualifiers

- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:3021 ORCHARD PARK RDLab Number:L1410982Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised April 15, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene.

EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene,

Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mq,Mn,Mo,Ni,K,Se,Aq,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NALYSIS ,	AGEOF	Date Rec'd in Lab:		ALPHA Jol	#: L14/0982
CHAIN OF CUSTODY	Project Information		Report Information - Data	Deliverables	Billing Info	rmation
320 Forbes Blvd, Mansfield, MA 02048 TEL: 508-822-9300 FAX: 508-822-3288	Project Name: كوري Oecan	O Praje Co	□ FAX		☐ Same as Cli	ent info PO#:
Client Information	Project Location: 3031 Oach	en Park Rn	☐ ADEx Criteria Checker:			
Client: TURN KEY	Project #:		(Default based on Regulatory C	riteria Indicated)		
Address: 2558 HAMBURU TURNPIKE	Project Manager: MILE LE	AKONAKÌ	Other Formats: EMAIL (standard pdf report) Additional Deliverables:		Regulatory	Requirements/Report Limit
	ALPHA Quote #:				State/Fed	Program Criteria
Phone: 716 856-0599	Turn-Around Time		Report to: (if different than Project Manage)	-	
Fax:	Chandard M DUCU					
Email: MLESAKUL/SICI Q BENCHMAR KTUW KEY, CUN		confirmed if pre-approved!)			ANAL	YSIS
These samples have been previously analyzed by Alpha		Time:			/////	/ / / /
Other Project Specific Requirements/Com	ments:			/	/ / / /	
				0.4		
All G	Columns Belov	v Must Be l	Filled Out	Tra	SASE	/ \(\frac{1}{2}\)
ALPHA Lab ID	Collect	ion	ample Sampler's Can I D	ID-Flow Controller CO	TO-15 SIM APH FIXED GASES	Sample Comments (i.e. PIE
(Lab Use Only) Sample ID	Date Start Time End Time	Vacuum Vacuum M	Matrix* Initials Size Can	Controller &		Sample Comments (i.e. PID
SUBSLAB VAPUR	5/20/14 23:15 11:21	<u> </u>				
TO DE INDOOR AMBIENT AIR	5/20/19 23:15 11:22	-28,2 -4.40 94	1-X JCT CL 1628	0379		
102 02 OUTDUOR AMBIENT AID	5720/14 23:20 12:50	-29.5 -8.70 AF	4-0 JCT GL 1778	0240		
*SAMPLE MATRIX CODES	AA = Ambient Air (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Please Specify		Container Type			Please print clearly, legibly and completely. Samples can not be logged in and turnaround time
. 114.1 56.1.	Relinquished By:	Date/Time	Received By:	Di Di	ate/Time:	clock will not start until any ambi-
NU SAN 5/22/14 00:00	1 10		4	- 1/W		≠ → Cuides are resulved. Directioning
manfreid 605/22/14 06:00 (1)	John Film	5/21/12:55(lypadre En	5/2/1	4 12:5	THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY

ANALYTICAL REPORT

Lab Number: L1410983

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Mike Lesakowski Phone: (716) 856-0599

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PARK RD

Report Date: 05/22/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), PA (68-02089), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), DOD (L2217.01), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: Lab Number: 3021 ORCHARD PARK RD L1410983

Project Number: 3021 ORCHARD PARK RD Report Date: 05/22/14

Sample Location Alpha Sample ID Collection Date/Time **Client ID** 3021 ORCHARD PARK RD 05/21/14 11:21 L1410983-01 SUBSLAB VAPOR

Project Name:3021 ORCHARD PARK RDLab Number:L1410983Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated QC table. This information is also incorporated in the Data Usability format for our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:3021 ORCHARD PARK RDLab Number:L1410983Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on May 20, 2014. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/22/14

Christopher J. Anderson

AIR

05/21/14 11:21

Not Specified

05/21/14

Date Collected:

Date Received:

Field Prep:

Project Name:3021 ORCHARD PARK RDLab Number:L1410983Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

SAMPLE RESULTS

Lab ID: L1410983-01
Client ID: SUBSLAB VAPOR

Sample Location: 3021 ORCHARD PARK RD

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 05/22/14 11:37

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.326	0.200		1.61	0.989			1
Chloromethane	0.528	0.200		1.09	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	11.7	2.50		22.0	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	10.6	1.00		25.2	2.38			1
Trichlorofluoromethane	0.268	0.200		1.51	1.12			1
sopropanol	1.00	0.500		2.46	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	4.79	1.00		16.6	3.47			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.705	0.200		2.08	0.590			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Project Name:3021 ORCHARD PARK RDLab Number:L1410983Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

SAMPLE RESULTS

Lab ID: L1410983-01
Client ID: SUBSLAB VAPOR

Sample Location: 3021 ORCHARD PARK RD

Date Collected: 05/21/14 11:21
Date Received: 05/21/14

Field Prep: Not Specified

Campio Eccation. Co21 Ci	(OII) (ICD I / (ICIC)	nnhV			ualma			rtot opcom	
Parameter	Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor	
Volatile Organics in Air - Mans		RL .	MIDE	Nesuits	INE.	WIDE	Qualifier		
Chloroform	ND	0.200		ND	0.977			1	
Tetrahydrofuran	ND	0.200		ND	0.590			1	
1,2-Dichloroethane	ND	0.200		ND	0.809			1	
n-Hexane	ND	0.200		ND	0.705			1	
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1	
Benzene	ND	0.200		ND	0.639			1	
Carbon tetrachloride	ND	0.200		ND	1.26			1	
Cyclohexane	ND	0.200		ND	0.688			1	
1,2-Dichloropropane	ND	0.200		ND	0.924			1	
Bromodichloromethane	ND	0.200		ND	1.34			1	
1,4-Dioxane	ND	0.200		ND	0.721			1	
Trichloroethene	ND	0.200		ND	1.07			1	
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1	
Heptane	ND	0.200		ND	0.820			1	
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
4-Methyl-2-pentanone	ND	0.200		ND	0.820			1	
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1,1,2-Trichloroethane	ND	0.200	<u></u>	ND	1.09			1	
Toluene	1.13	0.200	<u></u>	4.26	0.754			1	
2-Hexanone	ND	0.200		ND	0.820			1	
Dibromochloromethane	ND	0.200		ND	1.70			 1	
1,2-Dibromoethane	ND	0.200		ND	1.54			<u>'</u> 1	
Tetrachloroethene	0.580								
Chlorobenzene		0.200		3.93	1.36			1	
Ethylbenzene	ND	0.200		ND	0.921			1	
•	0.226	0.200		0.982	0.869			1	
p/m-Xylene	0.862	0.400		3.74	1.74			1	
Bromoform	ND	0.200		ND	2.07			1	
Styrene	ND	0.200		ND	0.852			1	

Project Name: Lab Number: 3021 ORCHARD PARK RD L1410983 Project Number: Report Date: 3021 ORCHARD PARK RD 05/22/14

SAMPLE RESULTS

Lab ID: L1410983-01 Date Collected: 05/21/14 11:21 Client ID: SUBSLAB VAPOR Date Received:

05/21/14 Sample Location: 3021 ORCHARD PARK RD Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.337	0.200		1.46	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	0.460	0.200		2.26	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	109		60-140
Bromochloromethane	103		60-140
chlorobenzene-d5	100		60-140

Project Name:3021 ORCHARD PARK RDLab Number:L1410983Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/21/14 17:02

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 01	Batch:	WG691460-4				
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	1.00		ND	3.47			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	0.200		ND	0.704			1
2-Butanone	ND	0.200		ND	0.590			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Name:3021 ORCHARD PARK RDLab Number:L1410983Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/21/14 17:02

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	Batch:	WG691460-4				
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.200		ND	0.590			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.200		ND	0.820			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1

Project Name:3021 ORCHARD PARK RDLab Number:L1410983Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/21/14 17:02

	ppbV					Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 01	Batch:	WG691460-4				
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: 3021 ORCHARD PARK RD **Project Number:**

3021 ORCHARD PARK RD

Lab Number: L1410983

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s)	: 01 Batch	: WG691460-3					
Chlorodifluoromethane	100		-		70-130	-		
Propylene	112		-		70-130	-		
Propane	92		-		70-130	-		
Dichlorodifluoromethane	130		-		70-130	-		
Chloromethane	105		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	120		-		70-130	-		
Methanol	82		-		70-130	-		
Vinyl chloride	109		-		70-130	-		
1,3-Butadiene	107		-		70-130	-		
Butane	95		-		70-130	-		
Bromomethane	108		-		70-130	-		
Chloroethane	109		-		70-130	-		
Ethyl Alcohol	94		-		70-130	-		
Dichlorofluoromethane	103		-		70-130	-		
Vinyl bromide	112		-		70-130	-		
Acrolein	86		-		70-130	-		
Acetone	108		-		70-130	-		
Acetonitrile	93		-		70-130	-		
Trichlorofluoromethane	119		-		70-130	-		
iso-Propyl Alcohol	100		-		70-130	-		
Acrylonitrile	95		-		70-130	-		

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PARK RD

Lab Number:

L1410983

Report Date:

05/22/14

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics in Air - Mansfield Lab As	ssociated sample(s)	: 01 Batcl	h: WG691460-3					
Pentane	97		-		70-130	-		
Ethyl ether	92		-		70-130	-		
1,1-Dichloroethene	109		-		70-130	-		
tert-Butyl Alcohol	98		-		70-130	-		
Methylene chloride	108		-		70-130	-		
3-Chloropropene	104		-		70-130	-		
Carbon disulfide	102		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	122		-		70-130	-		
trans-1,2-Dichloroethene	97		-		70-130	-		
1,1-Dichloroethane	106		-		70-130	-		
Methyl tert butyl ether	100		-		70-130	-		
Vinyl acetate	111		-		70-130	-		
2-Butanone	104		-		70-130	-		
cis-1,2-Dichloroethene	120		-		70-130	-		
Ethyl Acetate	105		-		70-130	-		
Chloroform	117		-		70-130	-		
Tetrahydrofuran	95		-		70-130	-		
2,2-Dichloropropane	96		-		70-130	-		
1,2-Dichloroethane	114		-		70-130	-		
n-Hexane	80		-		70-130	-		
Isopropyl Ether	83		-		70-130	-		

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PARK RD

Lab Number: L1410983

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ciated sample(s)	: 01 Batch	: WG691460-3					
Ethyl-Tert-Butyl-Ether	76		-		70-130	-		
1,1,1-Trichloroethane	90		-		70-130	-		
1,1-Dichloropropene	82		-		70-130	-		
Benzene	87		-		70-130	-		
Carbon tetrachloride	88		-		70-130	-		
Cyclohexane	81		-		70-130	-		
Tertiary-Amyl Methyl Ether	75		-		70-130	-		
Dibromomethane	84		-		70-130	-		
1,2-Dichloropropane	89		-		70-130	-		
Bromodichloromethane	83		-		70-130	-		
1,4-Dioxane	81		-		70-130	-		
Trichloroethene	95		-		70-130	-		
2,2,4-Trimethylpentane	81		-		70-130	-		
Methyl methacrylate	74		-		70-130	-		
Heptane	76		-		70-130	-		
cis-1,3-Dichloropropene	91		-		70-130	-		
4-Methyl-2-pentanone	76		-		70-130	-		
trans-1,3-Dichloropropene	76		-		70-130	-		
1,1,2-Trichloroethane	95		-		70-130	-		
Toluene	98		-		70-130	-		
1,3-Dichloropropane	90		-		70-130	-		

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PARK RD

Lab Number: L1410983

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Asso	ciated sample(s):	01 Batch	: WG691460-3					
2-Hexanone	88		-		70-130	-		
Dibromochloromethane	90		-		70-130	-		
1,2-Dibromoethane	104		-		70-130	-		
Butyl Acetate	90		-		70-130	-		
Octane	89		-		70-130	-		
Tetrachloroethene	105		-		70-130	-		
1,1,1,2-Tetrachloroethane	93		-		70-130	-		
Chlorobenzene	105		-		70-130	-		
Ethylbenzene	102		-		70-130	-		
p/m-Xylene	102		-		70-130	-		
Bromoform	83		-		70-130	-		
Styrene	104		-		70-130	-		
1,1,2,2-Tetrachloroethane	106		-		70-130	-		
o-Xylene	104		-		70-130	-		
1,2,3-Trichloropropane	93		-		70-130	-		
Nonane (C9)	86		-		70-130	-		
Isopropylbenzene	98		-		70-130	-		
Bromobenzene	93		-		70-130	-		
o-Chlorotoluene	97		-		70-130	-		
n-Propylbenzene	98		-		70-130	-		
p-Chlorotoluene	93		-		70-130	-		

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PARK RD

Lab Number: L1410983

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ciated sample(s)	: 01 Batch	: WG691460-3					
4-Ethyltoluene	90		-		70-130	-		
1,3,5-Trimethylbenzene	103		-		70-130	-		
tert-Butylbenzene	99		-		70-130	-		
1,2,4-Trimethylbenzene	107		-		70-130	-		
Decane (C10)	91		-		70-130	-		
Benzyl chloride	72		-		70-130	-		
1,3-Dichlorobenzene	109		-		70-130	-		
1,4-Dichlorobenzene	108		-		70-130	-		
sec-Butylbenzene	98		-		70-130	-		
p-Isopropyltoluene	92		-		70-130	-		
1,2-Dichlorobenzene	107		-		70-130	-		
n-Butylbenzene	101		-		70-130	-		
1,2-Dibromo-3-chloropropane	91		-		70-130	-		
Undecane	99		-		70-130	-		
Dodecane (C12)	108		-		70-130	-		
1,2,4-Trichlorobenzene	114		-		70-130	-		
Naphthalene	102		-		70-130	-		
1,2,3-Trichlorobenzene	99		-		70-130	-		
Hexachlorobutadiene	109		-		70-130	-		

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PA

Lab Number: L1410983

arameter	Native Sample	e Duplicate Sample	Units	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG691460-5	QC Sample:	L1410651-01	Client ID:	DUP Sample
Propylene	ND	ND	ppbV	NC		25
Dichlorodifluoromethane	0.319	0.484	ppbV	41	Q	25
Chloromethane	0.535	0.645	ppbV	19		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC		25
Vinyl chloride	ND	ND	ppbV	NC		25
1,3-Butadiene	ND	ND	ppbV	NC		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	ND	ND	ppbV	NC		25
Ethyl Alcohol	112	115	ppbV	3		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	11.5	11.5	ppbV	0		25
Trichlorofluoromethane	4.37	4.49	ppbV	3		25
iso-Propyl Alcohol	8.84	9.19	ppbV	4		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
Methylene chloride	ND	ND	ppbV	NC		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	ND	ND	ppbV	NC		25
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PA

Lab Number: L1410983

arameter	Native Samp	le Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG691460-5	QC Sample:	L1410651-01	Client ID: DUP Sample
1,1-Dichloroethane	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
Vinyl acetate	ND	ND	ppbV	NC	25
2-Butanone	1.02	0.994	ppbV	3	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
Ethyl Acetate	0.525	0.555	ppbV	6	25
Chloroform	ND	ND	ppbV	NC	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Benzene	ND	ND	ppbV	NC	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Cyclohexane	0.227	0.266	ppbV	16	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
Trichloroethene	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25

Lab Duplicate Analysis Batch Quality Control

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PA

Lab Number: L1410983

arameter	Native Sampl	e Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG691460-5	QC Sample:	L1410651-01	Client ID: DUP Sample
Heptane	0.401	0.455	ppbV	13	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	1.96	1.92	ppbV	2	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Tetrachloroethene	2.04	1.96	ppbV	4	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	0.263	0.267	ppbV	2	25
p/m-Xylene	0.514	0.514	ppbV	0	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	0.251	0.262	ppbV	4	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	0.226	0.223	ppbV	1	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC	25

Lab Duplicate Analysis Batch Quality Control

Project Name: 3021 ORCHARD PARK RD

Project Number: 3021 ORCHARD PA

Lab Number: L1410983

Native Samp	ole Duplicate Sample	Units	RPD	RPD Limits
Associated sample(s): 01	QC Batch ID: WG691460-5	QC Sample:	L1410651-01	Client ID: DUP Sample
ND	ND	ppbV	NC	25
ND	ND	ppbV	NC	25
ND	ND	ppbV	NC	25
ND	ND	ppbV	NC	25
ND	ND	ppbV	NC	25
ND	ND	ppbV	NC	25
ND	ND	ppbV	NC	25
	ND N	Associated sample(s): 01 QC Batch ID: WG691460-5 ND ND ND ND ND ND ND ND ND ND	Associated sample(s): 01 QC Batch ID: WG691460-5 QC Sample: ND ND PpbV Associated sample(s): 01 QC Batch ID: WG691460-5 QC Sample: L1410651-01 ND ND ND ppbV NC ND ND ND ppbV NC ND ND ND ppbV NC ND ND ppbV NC ND ND ppbV NC ND ND ppbV NC ND ND ppbV NC	

3021 ORCHARD PARK RD Lab Number: L1410983

Project Number: 3021 ORCHARD PARK RD Report Date: 05/22/14

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1410983-01	SUBSLAB VAPOR	0390	#16 AMB	05/20/14	102993		-	-	-	Pass	6.7	7.0	4
L1410983-01	SUBSLAB VAPOR	1823	6.0L Can	05/20/14	102993	L1410129-03	Pass	-29.6	-4.8	-	-	-	-

Project Name:

L1410129

05/12/14 20:56

Not Specified

Lab Number:

Date Collected:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03

Client ID: CAN 985 SHELF 44 Date Received: 05/13/14

Sample Location:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 05/13/14 12:38

Analyst: MB

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

L1410129

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03 Date Collected: 05/12/14 20:56

Client ID: CAN 985 SHELF 44 Date Received: 05/13/14

Sample Location: Field Prep: Not Specified

		ppbV		ug/m3			-	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Methylene chloride	ND	1.00		ND	3.47			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
/inyl acetate	ND	0.200		ND	0.704			1
2-Butanone	ND	0.200		ND	0.590			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.200		ND	0.590			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

L1410129

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03 Date Collected: 05/12/14 20:56

Client ID: CAN 985 SHELF 44 Date Received: 05/13/14

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.200		ND	0.820			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Lab Number: L1410129

Report Date: 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03

Client ID: CAN 985 SHELF 44

Sample Location:

Date Collected: 05/12/14 20:56

Date Received:

05/13/14

Field Prep:

Not Specified

		Vdqq			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1410129

Project Number: CANISTER QC BAT Report Date: 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03 Date Collected: 05/12/14 20:56

Client ID: CAN 985 SHELF 44 Date Received: 05/13/14

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	110		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	99		60-140

L1410129

05/12/14 20:56

Not Specified

05/13/14

Lab Number:

Date Collected:

Date Received:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03

Client ID: **CAN 985 SHELF 44**

Sample Location:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 05/13/14 12:38

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500		ND	1.03			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	2.00		ND	4.75			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	1.00		ND	3.47			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1410129

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/22/14

Air Canister Certification Results

Lab ID: L1410129-03 Date Collected: 05/12/14 20:56

Client ID: CAN 985 SHELF 44 Date Received: 05/13/14

Sample Location: Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.500		ND	2.46			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.500		ND	2.74			1
p-Isopropyltoluene	ND	0.500		ND	2.74			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Lab Number:

L1410129

Report Date:

05/22/14

Air Canister Certification Results

Lab ID: L1410129-03

CAN 985 SHELF 44

Sample Location:

Client ID:

Date Collected:

05/12/14 20:56

Date Received:

05/13/14

Field Prep:

Not Specified

		ppbV			ug/m3	ug/m3		Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
n-Butylbenzene	ND	0.500		ND	2.74			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	112		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	103		60-140

Project Name:3021 ORCHARD PARK RDLab Number: L1410983Project Number:3021 ORCHARD PARK RDReport Date: 05/22/14

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

N/A Absent

Container Information Temp

Container ID Container Type Cooler pH deg C Pres Seal Analysis(*)

L1410983-01A Canister - 6 Liter N/A N/A Y Absent TO15-LL(30)

Project Name:3021 ORCHARD PARK RDLab Number:L1410983Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.

Report Format: Data Usability Report

Project Name:3021 ORCHARD PARK RDLab Number:L1410983Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

Data Qualifiers

- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:3021 ORCHARD PARK RDLab Number:L1410983Project Number:3021 ORCHARD PARK RDReport Date:05/22/14

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised April 15, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene.

EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mq,Mn,Mo,Ni,K,Se,Aq,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

L1410983

AIR AN		SIS Informati		AGE	OF		ec'd in La		Data D	elivera	bles	نستسر			b#: ormat	14(tion	198Z
20 Forbes Blvd, Mansfield, MA 02048 EL: 508-822-9300 FAX: 508-822-3288	Project Na	ame: אנש	ORCHAD	O PARIO	l o	☐ FAX	(0.9	Same	as C	lient ir	nfo PO#:	:
lient Information	Project Lo	ocation: 30	di Oacha	ED PMK	ln.	□ ADI	Ex Criteria Che	acker:									
	Project #:			<u> </u>	- v		(Default base	d on Regu	latory Crit	eria Indicate	d)		-	-			
dress: 2558 HAMBURU TURNPIKE	Project Ma	anager: 🎮	nce Les	AKOLAS 1	 LÌ		Other Form AIL (stand:		report)			R	egula	atory	/ Rec	uirement	s/Report Lim
	ALPHA Q	luote #:		- 47 01-		☐ Add	litional Del	iverable	s:			Ste	te/Fe	ed	Pro	ogram	Criteria
none: 716 856 -0599	Turn-A	round Tin	ne			Report	to: (if different	than Projec	t Manager)								-
ix:	□ Standar	rd Mo	RUSH (only	confirmed if con-a	namvedi)												
nail: MLESAKONSICI & BENCHMAR KTUNG KEY, CUM	Date Due	a: 5/22/	•	Time:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								A / /	NA	LYSI	S	
All Co	olum				st Be	e Fill	ed O	ut		ID-Flow Controller	A by To	10.15 611		GASES	704/703	01.5	
ALPHA Lab ID Lab Use Only) Sample ID	Date	Start Time	End Time	Initial	Final Vacuum	Sample Matrix*	Sampler's Initials	Can Size	I D Can	i D - Flow Controller	0 2		HOW I	TO TE	3/2/	Sample Co	omments (i.e. P
SUBSIAB VAPUR .		33:15	1112]	-29.6	-4,79	SV	JCT	6 L	K23	0390	Ì						
1 NOOR AMBIENT AIR S	7/20/14	23:15	11:22	-38.2	-4.90	44 -I	JLT	6 L	1628	0379							
	5720/14	23:20	12:50	-29.5	- 8.70	AA-0	JCT	6 L	1778	0240							
Sub-region (·	-												
						 											
*SAMPLE MATRIX CODES SY	= Soil Van	Air (Indoo oor/Landfill (Specify	Gas/SVE		Market	E E	C	ontaine	Туре						, ĝ	completely. Sai logged in and ti	arly, legibly and imples can not be
nansheid 65 5/2/14 avor	Relinquis		Vy	Da 10 21	te/Time	Say	Recei	ved By:	wi	JAL.	5/21	Date/1	ime:	2: <	55	guities are reso THIS COC; THI	art until any ambi- lived. BY EXECUTII E CLIENT HAS REA TO BE BOUND BY

ANALYTICAL REPORT

Lab Number: L1411100

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Mike Lesakowski Phone: (716) 856-0599

Project Name: 3021-3041 ORCHARD PARK RD SITE

Project Number: 0304-014-001

Report Date: 05/23/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

L1411100

Lab Number:

Project Name: 3021-3041 ORCHARD PARK RD SITE

Project Number: 0304-014-001 **Report Date:** 05/23/14

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1411100-01	TPMW-7	3021-3041 ORCHARD PARK RD	05/22/14 12:29
L1411100-02	TPMW-8	3021-3041 ORCHARD PARK RD	05/22/14 13:25
L1411100-03	TPMW-9	3021-3041 ORCHARD PARK RD	05/22/14 13:40
L1411100-04	TPMW-10	3021-3041 ORCHARD PARK RD	05/22/14 13:47
L1411100-05	TPMW-11	3021-3041 ORCHARD PARK RD	05/22/14 13:59

 Project Name:
 3021-3041 ORCHARD PARK RD SITE
 Lab Number:
 L1411100

 Project Number:
 0304-014-001
 Report Date:
 05/23/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated QC table. This information is also incorporated in the Data Usability format for our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name: 3021-3041 ORCHARD PARK RD SITE Lab Number: L1411100

Project Number: 0304-014-001 **Report Date:** 05/23/14

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Kwil. Wisters Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

ΔLPHA

Date: 05/23/14

ORGANICS

VOLATILES

L1411100

05/23/14

Project Name: 3021-3041 ORCHARD PARK RD SITE

Project Number: 0304-014-001

SAMPLE RESULTS

Date Collected: 05/22/14 12:29

Lab Number:

Report Date:

Lab ID: L1411100-01 Client ID: TPMW-7

Sample Location: 3021-3041 ORCHARD PARK RD

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/23/14 11:25

Analyst: PD

Date Collected: 05/22/14 12:29
Date Received: 05/22/14
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	2.0		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	2.7		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	1.8	J	ug/l	2.5	0.70	1
Trichloroethene	2.0		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1

05/23/14

Report Date:

Project Name: 3021-3041 ORCHARD PARK RD SITE Lab Number: L1411100

Project Number: 0304-014-001

SAMPLE RESULTS

Lab ID: Date Collected: 05/22/14 12:29

Client ID: TPMW-7 Date Received: 05/22/14 Sample Location: 3021-3041 ORCHARD PARK RD Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab p/m-Xylene ND 2.5 0.70 1 ug/l o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 30 ug/l 2.5 0.70 1 ND 2.5 0.70 Styrene ug/l 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 J 3.0 5.0 1.0 1 Acetone ug/l Carbon disulfide ND ug/l 5.0 1.0 1 ND 5.0 1.0 1 2-Butanone ug/l ND 4-Methyl-2-pentanone ug/l 5.0 1.0 1 ND 5.0 1.0 2-Hexanone ug/l 1 ND 2.5 0.70 Bromochloromethane ug/l 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 ND 2.5 0.70 1 Isopropylbenzene ug/l 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 ND Methyl Acetate ug/l 2.0 0.23 1 Cyclohexane 0.35 J 10 0.24 1 ug/l 1,4-Dioxane ND ug/l 250 41. 1 Freon-113 ND 2.5 0.70 1 ug/l Methyl cyclohexane 0.65 J ug/l 10 0.29 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	82		70-130	
Dibromofluoromethane	100		70-130	

L1411100

05/23/14

Not Specified

Project Name: 3021-3041 ORCHARD PARK RD SITE

Project Number: 0304-014-001

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1411100-02 Date Collected: 05/22/14 13:25 Date Received: 05/22/14

Client ID: TPMW-8

3021-3041 ORCHARD PARK RD Field Prep: Sample Location:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/23/14 11:53

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	0.16	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1

05/23/14

Project Name: 3021-3041 ORCHARD PARK RD SITE Lab Number: L1411100

Project Number: 0304-014-001

SAMPLE RESULTS

Date Collected: 05/22/14 13:25

Report Date:

Lab ID: L1411100-02
Client ID: TPMW-8

Client ID: TPMW-8 Date Received: 05/22/14 Sample Location: 3021-3041 ORCHARD PARK RD Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.2	J	ug/l	5.0	1.0	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	0.54	J	ug/l	10	0.24	1
1,4-Dioxane	ND		ug/l	250	41.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.74	J	ug/l	10	0.29	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	83		70-130	
Dibromofluoromethane	99		70-130	

L1411100

05/23/14

Project Name: 3021-3041 ORCHARD PARK RD SITE

Project Number: 0304-014-001

SAMPLE RESULTS

Date Collected: 05/22/14 13:40

Lab Number:

Report Date:

Date Received: 05/22/14

Field Prep: Not Specified

Lab ID: L1411100-03
Client ID: TPMW-9

Sample Location: 3021-3041 ORCHARD PARK RD

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/23/14 12:20

Analyst: PD

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.13 1 Dibromochloromethane ND ug/l 0.50 0.13 1 1,1,2-Tichloroethane ND ug/l 0.50 0.15 1 1,1,2-Tichloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 trans-1,3-Dichloropropene	tor
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.13 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Trichlorofluoromethane ND ug/l 0.50 0.18 1 1,2-Dichloropthuromethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.16 1 Bromoform ND ug/l 0.50 0.14 </td <td></td>	
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.13 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloropropene ND ug/l 0.50 0.16 1 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.16 1 1 cis-1,3-Dichloropropene ND ug/l 0.50	
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.13 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50	
1,2-Dichloropropane ND ug/l 1.0 0.13 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Toluene ND ug/l 0.50 0.14 </td <td></td>	
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloropropene ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 eis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50<	
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 dcis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.14 1 Toluene ND ug/l 2.5 <t< td=""><td></td></t<>	
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.14 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 <td></td>	
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.16 1 Bromoform ND ug/l 0.50 0.14 1 Bromoformethane ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1<	
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1	
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1	
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1	
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 <td></td>	
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.33 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.14 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.33 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.14 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.33 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.14 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.33 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.14 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.33 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.14 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.33 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.14 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.33 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.14 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.33 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.14 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.33 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.14 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
Vinyl chloride ND ug/l 1.0 0.33 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.14 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.14 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
1,1-Dichloroethene ND ug/l 0.50 0.14 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
Trichloroethene ND ug/l 0.50 0.17 1	
1,2-Dichlorobenzene ND ug/l 2.5 0.70 1	
1,3-Dichlorobenzene ND ug/l 2.5 0.70 1	
1,4-Dichlorobenzene ND ug/l 2.5 0.70 1	
Methyl tert butyl ether ND ug/l 2.5 0.70 1	

Project Name: 3021-3041 ORCHARD PARK RD SITE Lab Number: L1411100

Project Number: 0304-014-001 **Report Date:** 05/23/14

SAMPLE RESULTS

Lab ID: Date Collected: L1411100-03 05/22/14 13:40

Client ID: TPMW-9 Date Received: 05/22/14 Sample Location: 3021-3041 ORCHARD PARK RD Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab J p/m-Xylene 1.0 ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 ND 2.5 0.70 Styrene ug/l 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 7.6 5.0 1.0 1 Acetone ug/l Carbon disulfide ND ug/l 5.0 1.0 1 ND 5.0 1.0 1 2-Butanone ug/l ND 4-Methyl-2-pentanone ug/l 5.0 1.0 1 ND 5.0 1.0 2-Hexanone ug/l 1 ND 2.5 0.70 Bromochloromethane ug/l 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 ND 2.5 0.70 1 Isopropylbenzene ug/l 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 ND Methyl Acetate ug/l 2.0 0.23 1 Cyclohexane 4.3 J 10 0.24 1 ug/l 1,4-Dioxane ND ug/l 250 41. 1 Freon-113 ND 2.5 0.70 1 ug/l Methyl cyclohexane 10 ug/l 10 0.29 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	82		70-130	
Dibromofluoromethane	99		70-130	

L1411100

05/23/14

Dilution Factor

Project Name: Lab Number: 3021-3041 ORCHARD PARK RD SITE

Result

Project Number: 0304-014-001

SAMPLE RESULTS

Qualifier

Units

Report Date:

Lab ID: L1411100-04 Client ID: TPMW-10

Sample Location: 3021-3041 ORCHARD PARK RD

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/23/14 12:48

Analyst: PD

Parameter

Date Collected: 05/22/14 13:47 Date Received: 05/22/14 Field Prep: Not Specified

MDL

RL

Farameter	Nesuit	Qualifier	Units	IXL.	MIDL	Dilution i actor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	1.9	J	ug/l	2.5	0.70	1

Project Name: 3021-3041 ORCHARD PARK RD SITE Lab Number: L1411100

Project Number: 0304-014-001 **Report Date:** 05/23/14

SAMPLE RESULTS

Lab ID: Date Collected: 05/22/14 13:47

Client ID: TPMW-10 Date Received: 05/22/14 Sample Location: 3021-3041 ORCHARD PARK RD Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	13		ug/l	5.0	1.0	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	1.3	J	ug/l	10	0.24	1	
1,4-Dioxane	ND		ug/l	250	41.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	1.3	J	ug/l	10	0.29	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	83		70-130	
Dibromofluoromethane	101		70-130	

L1411100

05/23/14

Project Name: 3021-3041 ORCHARD PARK RD SITE Lab Number:

Project Number: 0304-014-001

SAMPLE RESULTS

Date Collected: 05/22/14 13:59

Report Date:

L1411100-05 Client ID: Date Received: 05/22/14 TPMW-11 Field Prep: Not Specified

Sample Location: 3021-3041 ORCHARD PARK RD

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/23/14 13:16

Analyst: PD

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	15		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	1.2		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	11		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.24	J	ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	1.2	J	ug/l	2.5	0.70	1
Trichloroethene	11		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1

05/23/14

Project Name: 3021-3041 ORCHARD PARK RD SITE Lab Number: L1411100

Project Number: 0304-014-001

SAMPLE RESULTS

Date Collected: 05/22/14 13:59

Report Date:

Lab ID: L1411100-05
Client ID: TPMW-11

Client ID: TPMW-11 Date Received: 05/22/14 Sample Location: 3021-3041 ORCHARD PARK RD Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	87		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	7.0		ug/l	5.0	1.0	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	3.8	J	ug/l	10	0.24	1	
1,4-Dioxane	ND		ug/l	250	41.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	8.2	J	ug/l	10	0.29	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	83		70-130	
Dibromofluoromethane	103		70-130	

L1411100

Project Name: 3021-3041 ORCHARD PARK RD SITE **Lab Number**:

Project Number: 0304-014-001 **Report Date:** 05/23/14

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/23/14 09:34

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough	Lab for sample(s):	01-05 Batch:	WG692042-3	
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.13	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.14	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.33	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.14	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.17	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	

Project Name: 3021-3041 ORCHARD PARK RD SITE **Lab Number:** L1411100

Project Number: 0304-014-001 **Report Date:** 05/23/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/23/14 09:34

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - West	borough Lab	for sample(s): 01-	05 Batch:	WG692042-3	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.0	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.24	
1,4-Dioxane	ND	ug/l	250	41.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.29	

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	85		70-130	
Dibromofluoromethane	99		70-130	

Project Name: 3021-3041 ORCHARD PARK RD SITE

Project Number: 0304-014-001

Lab Number: L1411100

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-05 Batch:	WG692042-1	WG692042-2			
Methylene chloride	104		92		70-130	12		20
1,1-Dichloroethane	112		97		70-130	14		20
Chloroform	118		102		70-130	15		20
2-Chloroethylvinyl ether	78		66	Q	70-130	17		20
Carbon tetrachloride	116		101		63-132	14		20
1,2-Dichloropropane	109		94		70-130	15		20
Dibromochloromethane	107		92		63-130	15		20
1,1,2-Trichloroethane	111		95		70-130	16		20
Tetrachloroethene	119		104		70-130	13		20
Chlorobenzene	114		98		75-130	15		20
Trichlorofluoromethane	120		109		62-150	10		20
1,2-Dichloroethane	110		95		70-130	15		20
1,1,1-Trichloroethane	116		101		67-130	14		20
Bromodichloromethane	110		94		67-130	16		20
trans-1,3-Dichloropropene	114		98		70-130	15		20
cis-1,3-Dichloropropene	107		92		70-130	15		20
1,1-Dichloropropene	114		99		70-130	14		20
Bromoform	97		82		54-136	17		20
1,1,2,2-Tetrachloroethane	86		73		67-130	16		20
Benzene	112		97		70-130	14		20
Toluene	112		97		70-130	14		20

Project Name: 3021-3041 ORCHARD PARK RD SITE

Project Number: 0304-014-001

Lab Number: L1411100

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-05 Batch:	WG692042-1	WG692042-2			
Ethylbenzene	117		101		70-130	15	20	
Chloromethane	112		100		64-130	11	20	
Bromomethane	88		84		39-139	5	20	
Vinyl chloride	99		94		55-140	5	20	
Chloroethane	128		115		55-138	11	20	
1,1-Dichloroethene	112		99		61-145	12	20	
trans-1,2-Dichloroethene	113		99		70-130	13	20	
Trichloroethene	115		99		70-130	15	20	
1,2-Dichlorobenzene	112		96		70-130	15	20	
1,3-Dichlorobenzene	119		102		70-130	15	20	
1,4-Dichlorobenzene	118		101		70-130	16	20	
Methyl tert butyl ether	106		92		63-130	14	20	
p/m-Xylene	129		112		70-130	14	20	
o-Xylene	126		108		70-130	15	20	
cis-1,2-Dichloroethene	114		97		70-130	16	20	
Dibromomethane	104		90		70-130	14	20	
1,2,3-Trichloropropane	95		86		64-130	10	20	
Acrylonitrile	100		84		70-130	17	20	
Isopropyl Ether	112		97		70-130	14	20	
tert-Butyl Alcohol	94		81		70-130	15	20	
Styrene	128		111		70-130	14	20	

Project Name: 3021-3041 ORCHARD PARK RD SITE

Project Number: 0304-014-001

Lab Number: L1411100

arameter	LCS %Recovery Q	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westbord	ough Lab Associated sam	ple(s): 01-05 Batch:	WG692042-1 WG692042-2		
Dichlorodifluoromethane	112	99	36-147	12	20
Acetone	93	81	58-148	14	20
Carbon disulfide	108	96	51-130	12	20
2-Butanone	97	84	63-138	14	20
Vinyl acetate	109	92	70-130	17	20
4-Methyl-2-pentanone	89	76	59-130	16	20
2-Hexanone	86	73	57-130	16	20
Bromochloromethane	114	98	70-130	15	20
2,2-Dichloropropane	124	107	63-133	15	20
1,2-Dibromoethane	102	88	70-130	15	20
1,3-Dichloropropane	106	91	70-130	15	20
1,1,1,2-Tetrachloroethane	122	104	64-130	16	20
Bromobenzene	95	82	70-130	15	20
n-Butylbenzene	126	106	53-136	17	20
sec-Butylbenzene	118	100	70-130	17	20
tert-Butylbenzene	112	95	70-130	16	20
o-Chlorotoluene	113	96	70-130	16	20
p-Chlorotoluene	109	94	70-130	15	20
1,2-Dibromo-3-chloropropane	95	81	41-144	16	20
Hexachlorobutadiene	91	80	63-130	13	20
Isopropylbenzene	99	85	70-130	15	20

Project Name: 3021-3041 ORCHARD PARK RD SITE

Project Number: 0304-014-001

Lab Number: L1411100

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-05 Batch:	WG692042-1	WG692042-2				
p-Isopropyltoluene	122		103		70-130	17		20	
Naphthalene	77		66	Q	70-130	15		20	
n-Propylbenzene	109		93		69-130	16		20	
1,2,3-Trichlorobenzene	78		68	Q	70-130	14		20	
1,2,4-Trichlorobenzene	103		88		70-130	16		20	
1,3,5-Trimethylbenzene	123		105		64-130	16		20	
1,2,4-Trimethylbenzene	117		100		70-130	16		20	
Methyl Acetate	96		81		70-130	17		20	
Ethyl Acetate	94		80		70-130	16		20	
Cyclohexane	119		104		70-130	13		20	
Ethyl-Tert-Butyl-Ether	112		97		70-130	14		20	
Tertiary-Amyl Methyl Ether	106		92		66-130	14		20	
1,4-Dioxane	110		76		56-162	37	Q	20	
Freon-113	120		108		70-130	11		20	
1,4-Diethylbenzene	120		103		70-130	15		20	
4-Ethyltoluene	116		99		70-130	16		20	
1,2,4,5-Tetramethylbenzene	116		99		70-130	16		20	
Ethyl ether	117		102		59-134	14		20	
trans-1,4-Dichloro-2-butene	80		68	Q	70-130	16		20	
lodomethane	70		66	Q	70-130	6		20	
Methyl cyclohexane	123		106		70-130	15		20	

Lab Control Sample Analysis

Project Name: 3021-3041 ORCHARD PARK RD SITE

Batch Quality Control

Lab Number: L14

L1411100

Project Number: 0304-014-001

Papart Data

Report Date: 05/23/14

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-05 Batch: WG692042-1 WG692042-2

	LCS		LCSD		Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria		
1,2-Dichloroethane-d4	98		96		70-130		
Toluene-d8	99		99		70-130		
4-Bromofluorobenzene	83		82		70-130		
Dibromofluoromethane	104		104		70-130		

Lab Number: L1411100

Project Name: 3021-3041 ORCHARD PARK RD SITE

Project Number: 0304-014-001 Report Date: 05/23/14

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent

Container Information					Temp						
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)				
L1411100-01A	Vial HCl preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-01B	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-01C	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-02A	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-02B	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-02C	Vial HCl preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-03A	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-03B	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-03C	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-04A	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-04B	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-04C	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-05A	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-05B	Vial HCI preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				
L1411100-05C	Vial HCl preserved	Α	N/A	2.8	Υ	Absent	NYTCL-8260(14)				

 Project Name:
 3021-3041 ORCHARD PARK RD SITE
 Lab Number:
 L1411100

 Project Number:
 0304-014-001
 Report Date:
 05/23/14

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

SRM

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

1

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 3021-3041 ORCHARD PARK RD SITE
 Lab Number:
 L1411100

 Project Number:
 0304-014-001
 Report Date:
 05/23/14

Data Qualifiers

- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 3021-3041 ORCHARD PARK RD SITE
 Lab Number:
 L1411100

 Project Number:
 0304-014-001
 Report Date:
 05/23/14

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised April 15, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene.

EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mq,Mn,Mo,Ni,K,Se,Aq,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

			:.	1.00				45%, 55°°			Serial-No:05231414:44				
A PHA	CHAIN OF	CUST	rody ,	PAGE(OF	Date Re	c'd in Lai	:5,	/27	14		AL	11 31 32 3	(Job#: [] U] [] 60	
WESTBORO, MA	MANSFIELD, MA	Project Info	ormation			Repor	t Informa	ation -	Data D	elivera	bles	Bi	Iling	Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 5021-3041 Orchard Park 12 542					Q □ FAX → EMANL					☐ Same as Client info PO#:			
Client Information		Project Location: 3021-3041 Orchard Park Rd					x	Add	l'I Delive	rables				:	
Client: Turnke	.,	Project #: 0304-0/4-001					Regulatory Requirements/Report Limits								
Address:	11 1 1 1 1 1	Project Manag	per: M.L.		Li	State /Fed Program Criteria					a	Zuran.			
7.41	Hamburg Tumpike NY 14218	Project Manager: Mike Lesakowski ALPHA Quote #:				-:				·					
Phone: 7/6-8		Turn-Around Time													
Fax: 7/6-8		_							<u>-</u>						
Email:	<u> </u>	☐ Standard	RUSH (onl)	confirmed if pre-app	provedi)	7,400-5,40	<i>y</i> 7	/ /	7	/ /	7	7	7	7	Т
		Date Due: 📆	5/23/14	Time:		AVALYSIS	/ /	/ /	/ /	/ /		/ /	/ /	SAMPLE HANDLING	O T
	ve been previously analyzed by Alpha pecific Requirements/Comr				•	3	G /	′ /	//	/		/ /		/ Filtration	A L
Other Project o	pecine Medanements/Com	nents/Detect	non Limits.	-		\$ \ {	S / /	/ /	/ /	/ ,	/ /			/	#
						^ / \	/ /	//		/ /		/ /	/ /	∕ Lab to do	В О
	•					/, v/	//	/ /	///	/ /		/ /		/ Preservation ☐ Lab to do	T T
ALPHA Lab ID (Lab Use Only)	Sample ID		Collection	Sample Matrix	Sampler's Initials				/ /		/ /			(Please specify below) Sample Specific Comments	L E S
535 189425			Pate Time			7 V	1 1	1 1	-	1-1		+	<i>/</i>	Jample Opeonic Comments	3
1,00/1/	TPMW-7	5~	22-14 12:29	6W	Phw	X		+						·. ·	1
1	TPMW-8		13:25	·]	<u> </u>	Υ	ļ							·	3
3	TPMW-9		13:40			X								·	3
<i>p</i> ;	TPMW-8 TPMW-9 TPMW-10 TPMW-11	:	13:47	{		v								· . 	3
1	TPM41-11		13:59			Y									3
	(1) 10 - (1		().0			 			-						
					E										+-
10 mg/s 10 mg/				-											-
(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)															<u> </u>
					:										
Belinquished By:				Conta	iner Type									Please print clearly, legibly and	com-
		•		Pre	eservative			-					-	pletely. Samples can not be log in and turnaround time clock wil	ged Il not
		Date	e/Time		Rece	ived By:				te/Tim		start until any ambiguities are re	esolved		
Fel Val				5-22-1		Uxanoba Filly A			AF	3-22-14-13:0			Alpha's Terms and Conditions.	201 IO	
FORM NO: 01-01 (rev. 14-0	CT-07)	1191 /2 114: -	<u> </u>	5.72	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Stews	Zer		,	ار اديري	<i>LX/</i> 4 2-14	<u> </u>	<u>115</u>	See reverse side	
Page 29 of 29	The state of the s	LTUN Or		1-20-14	7)3) la	100 h	D	لمسركها	A TO	5/2	17	72	2330	<u> </u>