

Limited and Focused Subsurface Soil and Groundwater Investigation Report for the Property Identified as:

Commercial Plaza 3021-3041 Orchard Park Road Orchard Park, New York

LCS PROJECT # 13B4431.22

May 14, 2014

Lender Consulting Services, Inc. Corporate Headquarters Waterfront Village 40 La Riviere Drive Suite 120 Buffalo, New York 14202

> Tel: 800.474.6802 716.845.6145 Fax: 716.845.6164 www.lenderconsulting.com

May 14, 2014

Mr. Michael Thomas Northwest Savings Bank 3150 Sheridan Drive Amherst, New York 14226

Re: Limited and Focused Subsurface Soil and Groundwater Investigation

Commercial Plaza 3021-3041 Orchard Park Road Orchard Park, New York LCS Project No. 13B4431.22

Dear Mr. Thomas:

Background

At your request, Lender Consulting Services, Inc. (LCS) performed a limited and focused subsurface soil and groundwater investigation at the property identified as multi-unit retail store, located at 3021-3041 Orchard Park Road, Orchard Park, New York (See Figure 1). The subject property measures approximately 5.44 acres and is occupied by several commercial tenants. The subject property is located in a moderately developed commercial and residential area. The topography of the site is generally level at grade.

This investigation was recommended based on the information gathered by LCS during an All Appropriate Inquiries Phase I Environmental Site Assessment Report for the above-referenced property, dated October 10, 2013. Through that report, the following recognized environmental condition was identified warranting intrusive study at that time.

 According to historic city directories and regulatory listings, the subject property was utilized for dry cleaning from at least 1979 through 2008. The historic dry cleaning tenants were addressed at 3035 and 3039 Orchard Park Road.

Introduction

The purpose of this study was to better assess the environmental quality of on-site soils and groundwater in accessible locations of the subject property due to the environmental concern identified above. Soil samples were collected for stratigraphic characterization and field monitoring. Temporary groundwater monitoring wells (TPMWs) were installed within select test borings where groundwater was encountered. Select soil and groundwater samples were submitted for laboratory analysis to supplement field observations. The temporary wells were removed following sampling.

The following is a summary of the methods and results of the investigation.

Methods of Investigation

Soil

Soil samples were collected on May 7, 2014, with a truck-mounted percussion and hydraulically driven drive system equipped with an approximate 2-inch diameter, approximate 60-inch long macro-core sampler. Soil samples were collected within each borehole continuously from the ground surface to a depth of between approximately 16 and 18.5 feet below the ground surface (ft. bgs). Any downhole equipment was decontaminated with an Alconox and tap water wash and tap water rinse between boreholes. The cutting shoes were decontaminated in a similar manner between collection of each sample.

The physical characteristics of all soil samples were classified using the Unified Soil Classification System (USCS) (Visual-Manual Method). Upon collection, the liner containing the sample was opened slightly at several locations and total volatile organic compound (VOC) concentrations in air within the sample were recorded using a photoionization detector (PID) calibrated in accordance with manufacturer's specifications. (The PID is designed to detect VOCs, such as those associated with petroleum and some solvents.) The results of this screening are included in the attached boring logs. Based on the field observations and/or PID measurements, soils were selected for analysis (see below).

Groundwater

Temporary groundwater monitoring wells TPMW1 through TPMW6 were installed within boreholes BH1, BH3, BH4, BH6 through BH8. Generally, the bottoms of the wells were set to approximately 16 to 18 ft. bgs. Each of the wells was constructed with one-inch diameter PVC screen and riser with a silica filter pack placed around the well screen. A bentonite seal was placed above the sand and the wells were covered with plastic caps, to prevent surface water from entering the wells. Refer to the attached subsurface logs/well construction details for well specific well construction details.

The groundwater samples from the temporary groundwater monitoring wells were collected on May 7, 2014 and May 8, 2014. Prior to sample collection, each well was developed by removing three to five well volumes from the well. New disposable dedicated PVC bailers were used for well development and sample collection activities.

Sample Analysis

Following labeling of the laboratory-supplied sample containers, selected samples were placed on ice. The samples were then submitted, under standard chain-of-custody, to a National Environmental Laboratory Accreditation Council (NELAC) approved laboratory for analysis in accordance with the United States Environmental Protection Agency (USEPA) SW-846 Methods as summarized below. The analytical methods were chosen based on LCS' experience with sites of similar use.

The following table summarizes the specific analytical testing performed and their respective sample locations.

Sample Location	Analytical Testing Performed	Recognized Environmental Condition				
Soil						
BH1 (~0.8-4 ft. bgs)						
BH3 (~6-8 ft. bgs)						
BH4 (~12-14 ft. bgs)	TCL VOCs	Historia on site dry alcaning aparations				
BH6 (~2-4 ft. bgs)	TCL VOCS	Historic on-site dry cleaning operations				
BH7 (~0.5-2 ft. bgs)						
BH8 (0.5-2 ft. bgs)						
Groundwater						
TPMW1						
TPMW2						
TPMW3	TCL VOCs	Historia on site dry alcaning aparations				
TPMW4	TOL VOCS	Historic on-site dry cleaning operations				
TPMW5						
TPMW6						

BH = Borehole

TPMW = Temporary groundwater monitoring well ft. bgs = feet below ground surface

TCL VOCs = Target Compound List volatile organic compounds via USEPA Test Method 8260

Results of Field Investigation

Subsurface Investigation

Nine boreholes (BH1 through BH9) were completed in accessible areas of the subject property proximate to the environmental concerns. (See Figure 2.) A total of 63 soil samples were collected for geologic description. Fill material consisting of asphalt was encountered within all test borings to a depth of approximately 0.5 ft. bgs. Generally, the fill materials were underlain by native soils consisting of varying mixtures of silt, clay, sand, and gravel to the bottom of the test borings. Apparent groundwater was encountered within BH1, and BH3 through BH8 between approximately 5 and 13 ft. bgs. No apparent groundwater was encountered in BH2 and BH9.

PID measurements were above total ambient air background VOC measurements (i.e., 0.0 parts per million, ppm) in 53 of the 63 soil samples collected. These elevated concentrations ranged from 0.1 parts per million (ppm) to 70 ppm (BH8, ~0-2 ft. bgs). Suspect solvent-type odors were detected in the soil samples collected from BH1 (~0-4 ft bgs), BH6 (~0-4 ft bgs), and BH7 (~0-2 ft bgs). No solvent-type staining was observed in the soil samples collected.

Refer to the attached subsurface logs for soil classification for each sample interval, field observations and PID measurements.

Investigation Analytical Results

The soil and groundwater samples collected and analyzed detected the following analytes. The respective concentrations as well as commonly applied regulatory guidance values are also listed for comparison. Analytes not detected are not shown.

SOIL TESTING RESULTS VOCs by USEPA SW-846 Method 8260

Sample ID	BH1	BH3	BH4	BH6	BH7	BH8	Part 375	Part 375
Date Sampled	5/07/14	5/07/14	5/07/14	5/07/14	5/07/2014	5/07/14	(Unrestricted) Soil	(Commercial) Soil
Sample Depth	0.8-4 ft. bgs	6-8 ft. bgs	12-14 ft. bgs	2-4 ft. bgs	0.5-2 ft. bgs	0.5-2 ft. bgs	Cleanup Objectives	Cleanup Objectives
Units	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg
Acetone	<290	<240	<2.7	53.5	<300	<2.0	50	500,000
Carbon Disulfide	<13	<11	<0.13	0.59 J	<14	0.98 J	NL	NL
Cis-1,2- Dichloroethene	215	183	<0.44	<0.44	<49	<0.32	250	500,000
Benzene	<35	<29	1.8	< 0.33	<37	1.0	60	44,000
Trichloroethene	<25	169 J	<0.24	<0.24	<27	<0.17	470	200,000
Toluene	<21	<18	4.5 J	<0.20	<22	2.4 J	700	500,000
Tetrachloroethene	589	450	<0.30	< 0.30	<34	<0.22	1,300	150,000
Xylene (total)	<23	<19	4.5	<0.21	<24	3.0	260*	500,000*

μg/kg = micrograms per kilogram
ft. bgs = feet below ground surface
ft. bgs = feet below ground surface
NL = Not Listed
J = Indicates an estimated value
Part 375 Soil Cleanup Objectives = New York State Department of Environmental Conservation 6 NYCRR Part 375 Environmental Remediation Programs, December 14, 2006 (375-6.8, Soil Cleanup Objective Tables)
*= Based on the sum of the Total Xylenes.

GROUNDWATER TESTING RESULTS

VOCs by USEPA SW-846 Method 8260

Sample ID	TPMW1	TPMW2	TPMW3	TPMW4	TPMW5	TPMW6	NYSDEC Groundwater
Date Sampled	5/07/14	5/07/14	5/08/14	5/08/14	5/08/14	5/08/14	Criteria (Class GA)
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Vinyl chloride	<0.58	2.4 ^a	<0.58	<0.58	<0.58	<0.58	2
Trans-1,2- Dichloroethene	0.77 J	4.3 ^a	<0.51	<0.51	<0.51	<0.51	5
1,1- Dichloroethene	<0.61	0.66 ^a J	<0.61	<0.61	<0.61	<0.61	5
Cis-1,2- Dichloroethene	67.3	165 ^a	<0.84	<0.84	<0.84	<0.84	5
Chloroform	1.7	<0.41	<0.41	<0.41	<0.41	<0.41	7
Trichloroethene	26.9	22.4 ^a	<.0.47	<.0.47	<.0.47	<.0.47	5
Tetrachloroethene	71.6	15.0 ^a	<0.59	<0.59	<0.59	<0.59	5
Xylene (total)	0.54 J	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	5

μg/L = micrograms per liter NL = Not Listed

a = The pH of the sample aliquot for the VOA analysis was >2 at the time of analysis.

J = Indicates an estimated value.

NYSDEC Groundwater Criteria (Class GA) = 6 NYCRR Part 703 (June 1998 and April 2000 Addendum)

= Analyte detected above the NYSDEC Groundwater Criteria (Class GA)

Conclusions

The purpose of this study was to assess the recognized environmental condition identified in the October 10, 2013 All Appropriate Inquiries Phase I Environmental Site Assessment Report (specifically, historic on-site dry cleaning operations). Select soil and groundwater samples were collected from the areas of the recognized environmental conditions.

Subsurface Investigation

Field Observations

Based on the field observations, PID measurements were above total ambient air background VOC measurements (i.e., 0.0 parts per million, ppm) in 53 of the 63 soil samples collected. These elevated concentrations ranged from 0.1 parts per million (ppm) to 70 ppm (BH8, ~0-2 ft. bgs). Suspect solvent-type odors were detected in the soil samples collected from BH1 (~0-4 ft bgs), BH6 (~0-4 ft bgs), and BH7 (~0-2 ft bgs). No solvent-type staining was observed in the soil samples collected. In LCS' experience, the PID measurements and field observations suggest the presence of some VOC impact proximate the areas investigated.

Laboratory Test Results

Based on the laboratory results, no analytes were detected at concentrations exceeding commonly applied regulatory criteria in the soil samples collected and submitted for laboratory analysis. However, VOC analytes [trichloroethene (TCE), tetrachloroethene (PCE), and cis-1,2-dichloroethene (1,2-DCE) in TPMW1; and TCE, PCE, 1,2-DCE, and vinyl chloride in TPMW2] were detected at concentrations above the NYSDEC Groundwater Criteria in the groundwater samples collected and submitted for laboratory analysis. No analytes were detected above the appropriate regulatory criteria in TPMW3 through TPMW4.

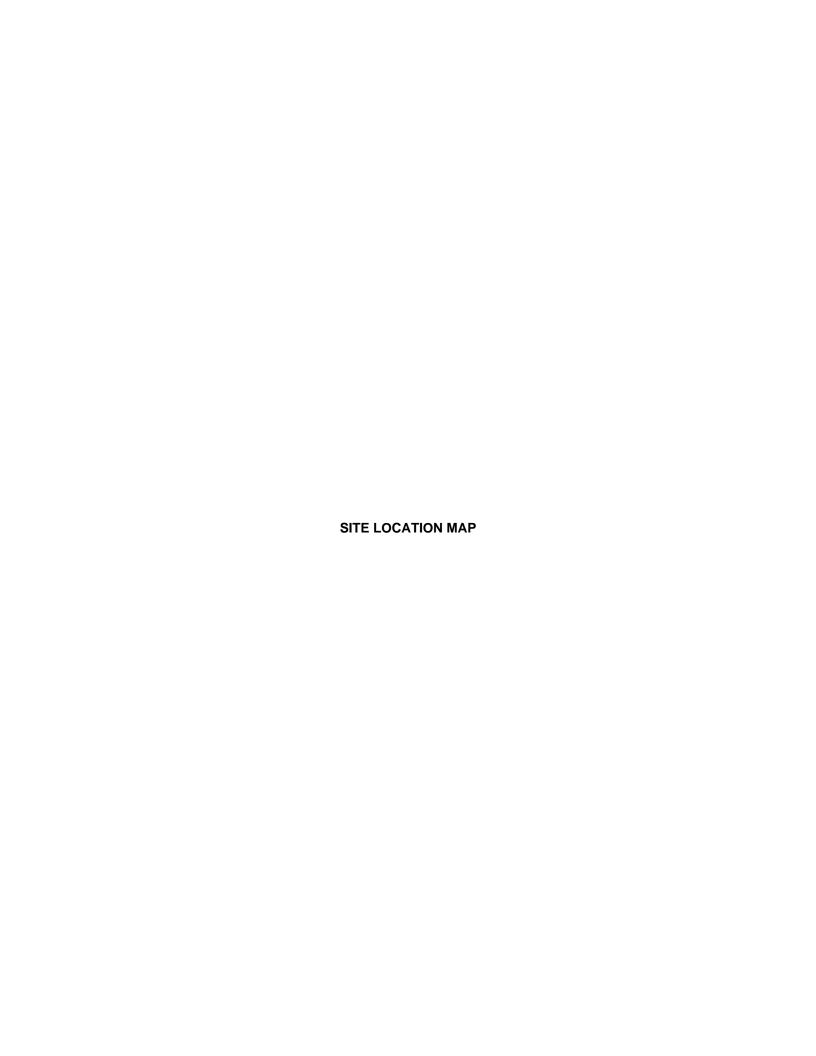
Recommendations

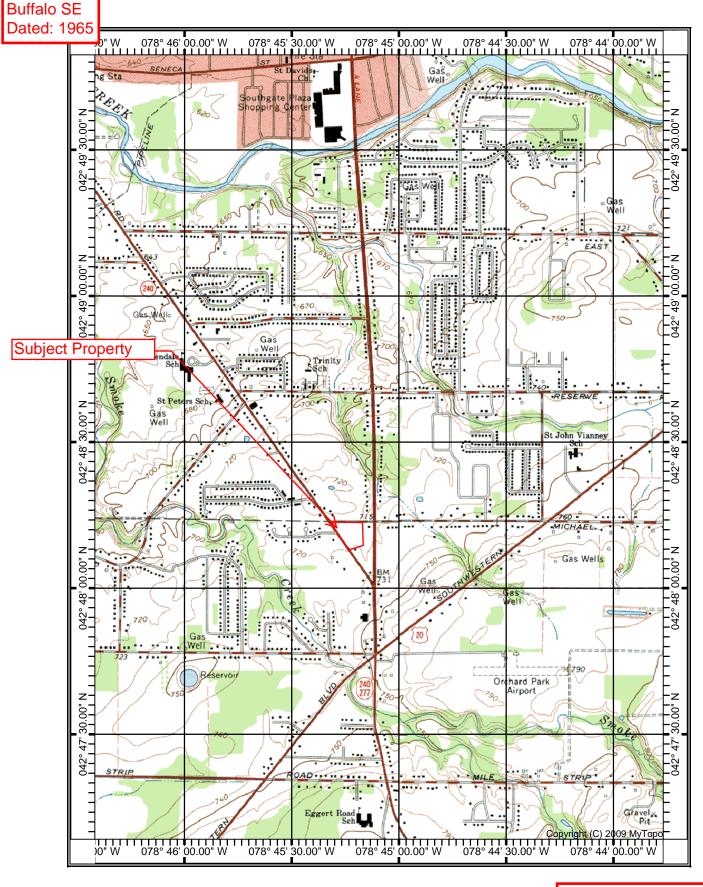
Further investigation is recommended to delineate the vertical and horizontal extent of the chemical impact, including the area beneath the subject structure. In addition, a vapor intrusion study is recommended to better determine the potential for impacts to indoor air quality. Depending upon the results of the further investigation, remediation and/or installation of a subslab depressurization system may be warranted.

The property owner should consult environmental legal counsel relative to reporting obligations to the New York State Department of Environmental Conservation.

Thank you for allowing LCS to service your environmental needs. If you have any questions or require additional information, please do not hesitate to call our office.

Sincerely,


,


Jeffrey M. Rowley Senior Project Manager

Douglas B. Reid

Reviewed by:

Sr. VP, Environmental Services General Manager - WNY

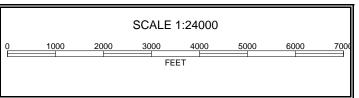
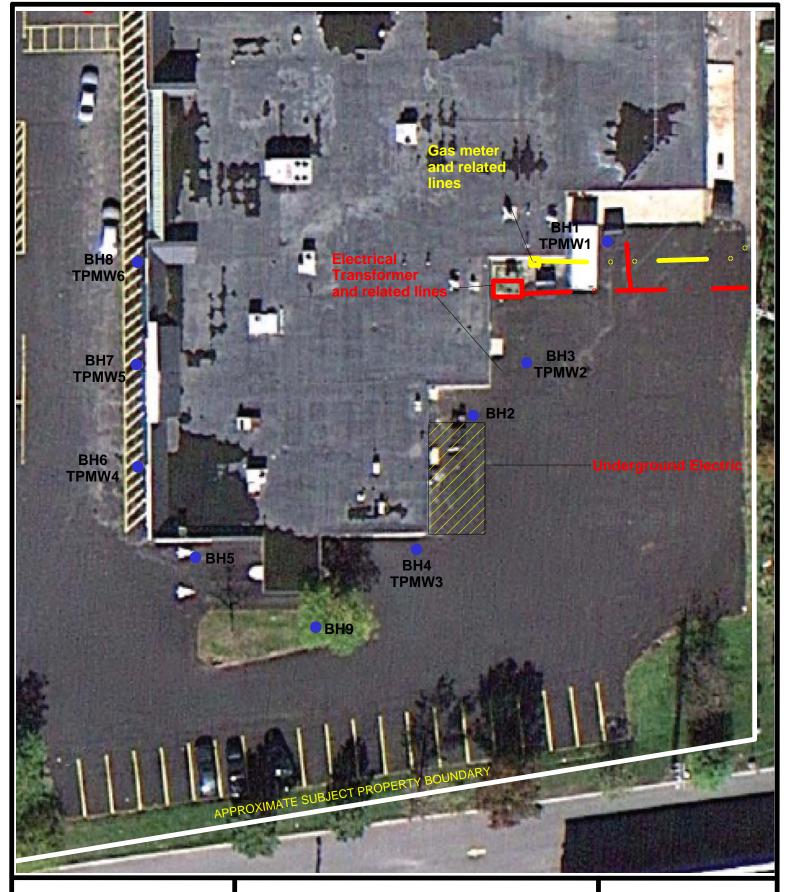



Figure 1: Site Location Map

FIGURE 2 - SITE INVESTIGATION PLAN

3021-3041 ORCHARD PARK ROAD, ORCHARD PARK, NEW YORK Drawn by: DEC

Checked by: JMR

LCS Project # 13B4431.22

_	_	
	111	

PROJECT/ LOCATION: 3021-3041 Orchard Park Road, Orchard Park, N CLIENT: Northwest Savings Bank									
DATE ST	TARTED:	5/7/	2014	DATE COM	1PLETE	D: 5/7/201	14	RECORDED BY:	DEC
GROUNE	DWATER D	EPTH WH	IILE DR	ILLING:	~5	ft. bgs.	AFTER COM	PLETION:	~2.8 ft bgs
WEATHE	ER:	Cloudy 57	7°	DRILL RIG:	G	eoprobe	DRILLER:	Trec Envir	onmental Inc.
DRILL SI	ZE/TYPE:		Macro	o-core	SAME	PLE HAMMEI	R: WEIGHT	NAFALL	NA
			1						
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified S	Material Classification an Soil Classification System-	
1	51.7	0-4	U	-	-	5	0-0.5 ft: Aspha	lt	
2	5.3	4-6	U	-	-	24	0.5-0.8 ft: Grey	∕ sandy gravel (coarse, loo	se, dense)
3	2.9	6-8	U	-	-	24	0.8-4 ft: Grey s	sandy clay (stiff, Low plast	icity, moist)
4	3.1	8-10	U	-	-	10	4-12 ft: Brown	gravelly clay (very stiff, lo	w plasticity, moist to wet)
5	4.2	10-12	U	-	-	10	12 -16 ft: Brov	vn clay with shale fragmen	ts (very stiff, low plasticity,
6	1.2	12-16	U	-	-	8			
NOTES	NA = Not A	pplicable					 Fill to ~0.8 ft. bgs	S	
	ft. bgs = feet below ground surface Suspect solvent odors detected at ~ 0-4 ft. bgs								
	*SS - SPLIT-SPOON SAMPLE U - UNDISTURBED TUBE P - PISTON TUBE C - CORE								

_	 \sim	_		
	1		-	_
				••
	 - 1 T			

PROJEC	T/ LOCATIO	ON:	3021-3041 Orchard Park Road, Orchard Park, NY			Park, NY	PROJECT N	No	13B4431.22	
CLIENT:			North	west Savings	Bank			BORING/W	ELL No.	BH2
DATE ST	ARTED:	5/7/2	2014	DATE CON	IPLETE	D: <u>5/7/201</u>	4	RECORDE	D BY:	DEC
GROUNE	WATER D	EPTH WH	IILE DR	ILLING:		NA	AFTER COM	PLETION:		NA
WEATHE	:R:	Cloudy 57	70	DRILL RIG:	G	eoprobe	DRILLER:		Trec Environ	mental Inc.
DRILL SI	ZE/TYPE:		Macro	o-core	_ SAMF	PLE HAMMER	R: WEIGHT	NA	FALL _	NA
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)		Material Class		escription ual Manual Method)
1	3.7	0-4	U	-	-	12	0-0.5 ft: Asphal	lt		
2	0.6	4-6	U	-	-	24	0.5-1 ft: Brown	sand (medium	, fine, dense, r	noist)
3	0.4	6-8	U	-	-	24	1-1.25 ft: Shale	e fragments		
4	0.5	8-8.4	U	-	-	10	1.25-8 ft: Brown	n silty clay (lov	v plasticity, sof	t, moist)
							8-8.4 ft: Brown	n silty clay with	shale fragmen	its (low plasticity, soft,
							moist)			
							Equipment refu	usal at 8.4 ft. bo	gs	
NOTES	NA = Not A	nnlicable					Fill to ~1 ft. bgs			
NOTES			ound surfa	ace				s detected		
	ft. bgs = feet below ground surface *SS - SPLIT-SPOON SAMPLE U - UNDISTURBED TUBE P - PISTON TUBE C - CORE									

_	\sim	_	
4	1 1 6 1		
		n	4.
	しっして		

CLIENT: N							Park, NY	·		
							14	·		
							AFTER COM		~5.02 ft bgs	
				DRILL RIG:			-	Trec Envir		
	ZE/TYPE:				SAMPLE HAMMER: WEIGHT					
	-	,	T				1			
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified S	Material Classification and Soil Classification System-\	•	
1	0.7	0-4	U	-	-	5	0-0.5 ft: Aspha	lt		
2	0.9	4-6	U	-	-	20	0.5-1 ft: Brown	sand (medium, fine, dense	e, moist)	
3	3.0	6-8	U	-	-	20	1-2 ft: Shale fra	agments		
4	0.5	8-10	U	-	-	20	2-12 ft: Brown	silty clay (low plasticity, so	ft, moist)	
5	0.2	10-12	U	-	-	20		own silty clay with shale fra	gments (low plasticity, soft,	
							moist to wet)			
6	0.2	12-14	U	-	-	16	Equipment refu	real at 18 5		
7	0.4	14-16	U	-	_	16	Equipment for	3001 dt 10.0		
	-									
8	0.0	16-18.5	U	-		10				
							-			
							_			
							-			
							-			
NOTES	NA = Not A						Fill to ~0.5 ft. bg			
	ft. bgs = fee	et below gro	ound surfa	ace			No suspect odors	s detected		
	*SS - SPLIT-SPOON SAMPLE U - UNDISTURBED TUBE P - PISTON TUBE C - CORE									

_	\sim	_		
				_
			n	\sim
- /				•
	\sim	_		•

PROJEC	ROJECT/ LOCATION: 3021-3041 Orchard Park Road, Orchard Park, NY						Park, NY	PROJECT No.	13B4431.22	
CLIENT:			North	west Savings	Bank			BORING/WELL No.	BH4/TPMW3	
DATE ST	TARTED:	5/7/2	2014	_ DATE COM	//PLETE	D: <u>5/7/20</u>	14	RECORDED BY:	DEC	
GROUNI	DWATER D	EPTH WH	IILE DR	ILLING:	~13	3 ft bgs	AFTER COM	PLETION:	~4.5 ft bgs	
WEATHE	ER:	Cloudy 57	70	DRILL RIG:	G	eoprobe	DRILLER:	Trec Envir	onmental Inc.	
DRILL SI	ZE/TYPE:		Macro	o-core	_ SAMF	_ SAMPLE HAMMER: W		R: WEIGHT NA FALL NA		
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified \$	Material Classification and Soil Classification System-\		
1	-	0-4	U	-	-	0	0-4 Asphalt (no	o soil recovered)		
2	0.0	4-6 6-8	U	-	-	0 12		ilty clay (low plasticity, soft	,	
							moist to wet)			
4	0.0	8-10	U	-	-	12		Secretary 40 4 % have		
5	0.1	10-12	U	-	-	12	Equipment Rei	fusal at ~18.4 ft. bgs		
6	0.8	12-14	U	-	-	12				
7	0.3	14-16	U	-	-	10				
8	0.0	16-18.4	U	-	-	10				
NOTES	NA = Not A ft. bgs = fee		ound surfa	ace			Fill to ~0.5 ft. bgs			
		*SS - S	SPLIT-SF	POON SAMPLE	U - U	NDISTURBED	TUBE P - PIS	STON TUBE C - CORE		

T	α	_	
	1	1	
		-11	IL.

	PROJECT/ LOCATION: 3021-3041 Orchard CLIENT: Northwest Savings						<u></u>		
				DATE COM				•	•
				ILLING:		-		·	NA
				DRILL RIG:					vironmental Inc.
							_	NA FAL	NA
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified S	Material Classification a	and Description n-Visual Manual Method)
1	0.3	0-2	U	-	-	9	0-0.5 ft: Aspha	ılt	
2	0.4	2-4	U	-	-	8	0.5-1 ft: Brown	sand (medium, fine, der	nse, moist)
3	0.4	4-6	U	-	-	12	1-1.25 ft: Shale	e fragments	
4	0.7	6-8	U	-	-	12	1.25-6 ft: Brow	n silty clay (low plasticit	v. soft. moist)
								,, (p	,,,,
5	0.0	8-10	U	-	-	12	6-16 ft: Brown	Silty clay with shale frag	gments (low plasticity, soft,
							moist to wet)		
6	0.0	10-12	U	-	-	12			
7	0.6	12-14	U	-	-	10			
8	1.8	14-16	U	-	_	10			
NOTES	NA = Not A	pplicable					Fill to ~ 0.5 ft. bo	gs	
	ft. bgs = fee	t below gro	ound surfa	ace			No suspect odor	s detected	
		*SS - 9	SPLIT-SE	POON SAMPLE	U - U	NDISTURBED	TUBE P - PI	STON TUBE C - CO	RE

T	α	_	
	1	1	
		-11	IL.

PROJEC					Park Road, Orchard Park, NY Bank			· · · · · · · · · · · · · · · · · · ·	
	·			DATE COM					
				 ILLING:					~3.0 ft bgs
				_			-	Trec Envir	<u>-</u>
							-	NA FALL	
1		-	1		_		1		
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified S	Material Classification an Soil Classification System-	
1	59	0-2	U	-	-	9	0-0.5 ft: Aspha	lt	
							-		
2	40	2-4	U	-	-	9	0.5-1 ft: Brown	sand (medium, fine, dens	e, moist)
_									
3	3.0	4-6	U	-	-	12	1-1.25 ft: Shale	e fragments	
4	1.4	6-8	U	-	-	12	1.25-6 ft: Brow	n silty clay (low plasticity,	soft, moist)
								- ,	,,
5	0.4	8-10	U	-	-	11	6-18.5 ft: Brow	vn Silty clay with shale fraç	gments (low plasticity, soft,
							wet)		
6	0.1	10-12	U	-	-	11	<u> </u> -		
_						_	<u> </u>		
7	1.0	12-16	U	-	-	9	_		
							-		
							-		
							-		
							-		
							<u> </u>		
							-		
							-		
							1		
NOTES	NA = Not A	pplicable					Fill to ~0.5 ft. bgs	5	
	ft. bgs = fee	et below gro	ound surfa	ace			Suspect solvent	type odors detected at ~0-	4 ft bgs
		*SS - S	SPLIT-SF	POON SAMPLE	U - U	NDISTURBED	TUBE P - PIS	STON TUBE C - CORI	

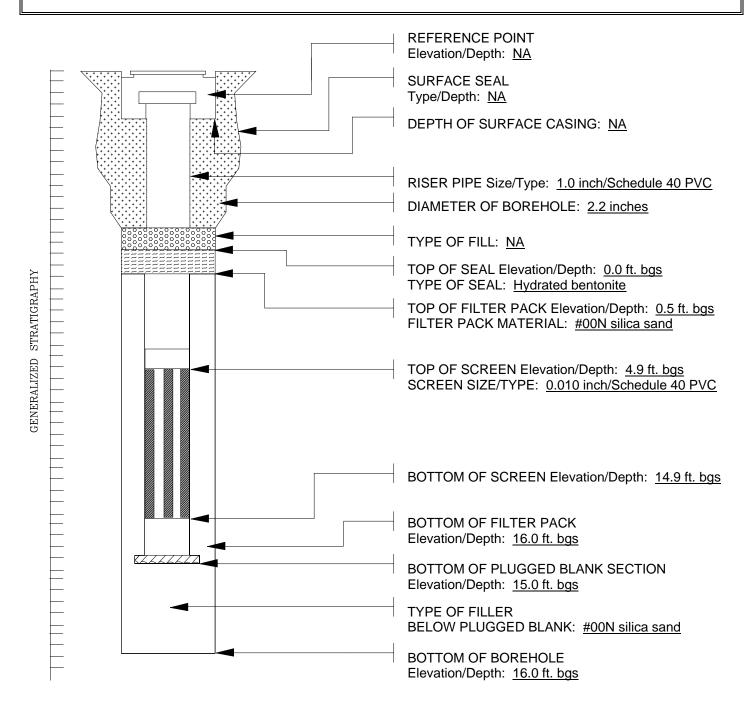
_ ~~	_
	T
	100

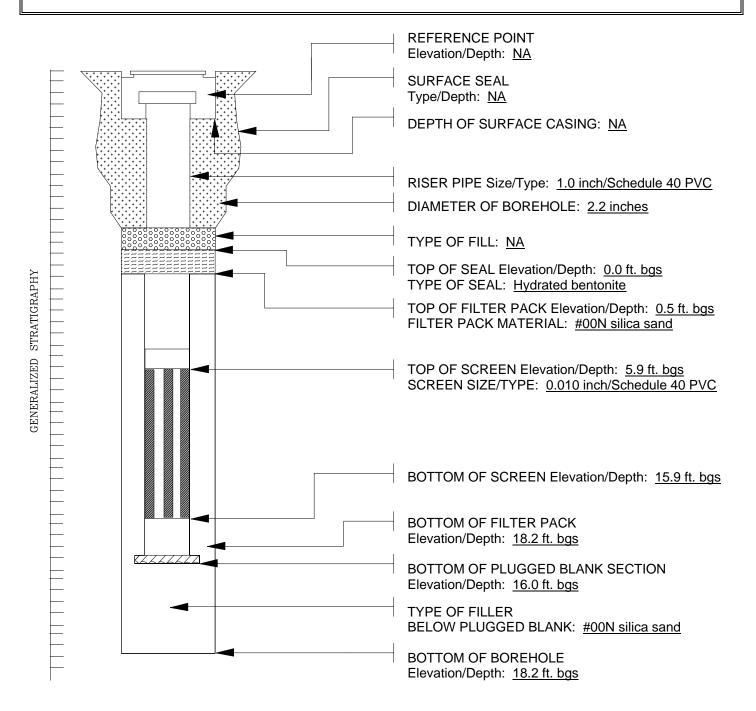
PROJEC	T/ LOCATION	ON:	3021-	3041 Orchard	Park Road, Orchard Park, NY			PROJECT No.	13B4431.22
CLIENT:			North	nwest Savings	Bank			BORING/WELL No.	BH7/TPMW5
DATE ST	ARTED:	5/7/	2014	DATE COM	IPLETE	D:5	/7/2014	RECORDED BY:	DEC
GROUNE	DWATER D	EPTH WH	HILE DR	ILLING:	~5	ft. bgs.	AFTER COM	PLETION:	~3.0 ft bgs
WEATHE	R:	Cloudy 57	7°	DRILL RIG:	G	eoprobe	DRILLER:	Trec Enviro	onmental Inc.
DRILL SI	ZE/TYPE:		Macro	o-core	SAMI	PLE HAMME	R: WEIGHT	NAFALL	NA
			1						
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified S	Material Classification and Soil Classification System-V	·
1	1.6	0-2	U	-	-	6	0-0.6 ft. Aspha	ılt	
2	11	2-4	U	-	-	6	0.6-4 ft. Grey	clay with shale fragments (s	stiff, low plasticity, moist)
3	4.1	4-6	U	_	-	10	4-6 ft Grey bro	own sandy clay (stiff, low pla	asticity wet)
<u> </u>	7.1	+0				10	1 4 0 It. Oldy bid	own sandy day (still, low pie	aditotty, wet)
4	0.7	6-8	U	-	-	10	6-16 ft. Brown	clayey silt (low plasticity, w	et)
5	0.0	8-10	U	-	-	12			
							-		
6	1.2	10-12	U	-	-	12	-		
							-		
7	2.5	12-16	U	-	-	12	 -		
							-		
							-		
							_		
							-		
							-		
							-		
							-		
							_		
NOTES	NA = Not A		aund aur	200			Fill to ~0.6 ft. bg		ft has
	ft. bgs = fee							type odor detected at ~0-2	
		*SS - \$	SPLIT-SF	POON SAMPLE	U - UI	NDISTURBED	TUBE P - PIS	STON TUBE C - CORE	

 		• •	-	
	'		1	
		•		٠. ـ

PROJEC	T/ LOCATIO	ON:	3021-	·3041 Orchard	Park Ro	ad, Orchard I	Park, NY	PROJECT No.	13B4431.22
CLIENT:			North	nwest Savings	Bank			BORING/WELL No.	BH8/TPMW6
DATE ST	ARTED:	5/7/2	2014	DATE COM	/IPLETE	D: <u>5/7/20</u>	14	RECORDED BY:	DEC
GROUNE	OWATER D	EPTH WH	ILE DR	ILLING:	~5	ft. bgs.	AFTER COM	IPLETION:	~3.0 ft bgs
WEATHE	R:	Cloudy 57	7°	DRILL RIG:	G	eoprobe	DRILLER:	Trec Enviro	nmental Inc.
DRILL SI	ZE/TYPE:		Macro	o-core	_ SAMF	PLE HAMMEI	R: WEIGHT	NAFALL	NA
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified	Material Classification and Soil Classification System-Vi	·
1	70	0-2	U	-	-	12	0-0.6 ft. Aspha	alt	
							_		
2	60	2-4	U	-	-	12	0.6-4 ft. Grey	clay with shale fragments (st	tiff, low plasticity, moist)
3	6.0	4-6	U	-	-	12	4-6 ft. Grey bro	own sandy clay (stiff, low pla	sticity, wet)
4	3.8	6-8	U	_	_	12	6-16 ft Brown	clayey silt (low plasticity, we	t)
	0.0	- 0 0					o rom. Brown	ciayoy oiit (ion piacitoty, no	•,
5	4.2	8-10	U	-	-	10			
6	4.0	10-12	U	-	-	10			
7	2.0	12-16	U	-	-	8			
NOTES	NA = Not A	pplicable					Fill to ~0.6 ft. bg	s	
	ft. bgs = fee	t below gro	ound surfa	ace			No suspect odor	rs detected	
		*SS - S	SPLIT-SF	POON SAMPLE	U - U	NDISTURBED	TUBE P - PI	STON TUBE C - CORE	

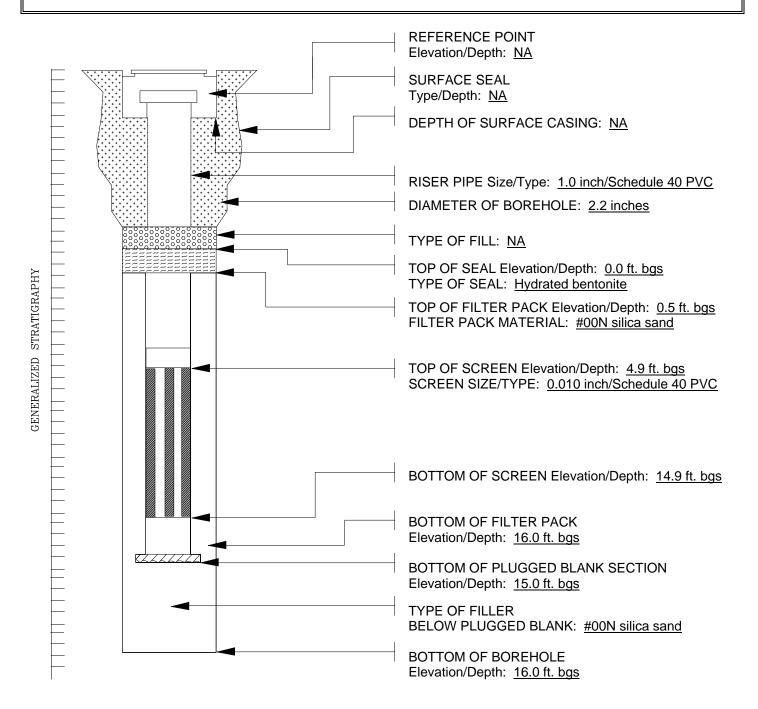
 •		-		
	''	1	ne	


PROJEC CLIENT:					Park Road, Orchard Park, NY Bank				
DATE ST	TARTED:	5/7/2	2014	DATE COM	1PLETE	D: <u>5/7/20</u>	4	RECORDED BY:	DEC
GROUNE	DWATER D	EPTH WH	IILE DR	ILLING:		NA	AFTER COM	PLETION:	NA
WEATHE	R:	Cloudy 57	7°	DRILL RIG:	G	eoprobe	DRILLER:	Trec Env	ironmental Inc.
DRILL SI	ZE/TYPE:		Macro	o-core	SAME	PLE HAMMEI	R: WEIGHT	NAFALL	NA
			<u> </u>						
Sample No.	PID/HNu Reading (ppm)	Depth (Feet)	Type *	Blows/6"	N	Recovery (Inches)	(Unified S	Material Classification a	
1	2.0	0-2	U	-	-	24	0-4 ft. Brown g	ravelly silty clay (still, lov	v plasticity, dry)
2	5.8	2-4	U	-	-	24	4-6 ft. Brown s	ilty clay (very stiff, low pla	sticity, moist
3	2.3	4-6	U	-	-	24	6-14 ft. Grey si	ilty clay (stiff, moderate p	lasticity, moist)
4	0.7	6-8	U	-	-	24	14-16 ft. Grey	gravelly silty clay (stiff, m	oderate plasticity, moist)
5	0.0	8-10	U	-	-	10			
	0.0	40.40	U	_	_	40			
6	0.9	10-12	U	-	-	12			
7	1.4	12-14	U	-	-	12			
•	1.4	12 14				12			
8	1.0	14-16	U	-	_	12			
NOTES	NA = Not A		und seed				Fill to ~0 ft. bgs	a datactad	
	ft. bgs = fee	t below gro	ound surfa	ace			No suspect odor	s detected	
		*SS - 9	SPLIT-SF	POON SAMPLE	1U - U	NDISTURBED	TUBE P - PIS	STON TUBE C - COF	RE


PROJECT/LOCATION: 3021-3041 Orchard Park Rd, Orchard Park, NY PROJECT No. 14B4431.22

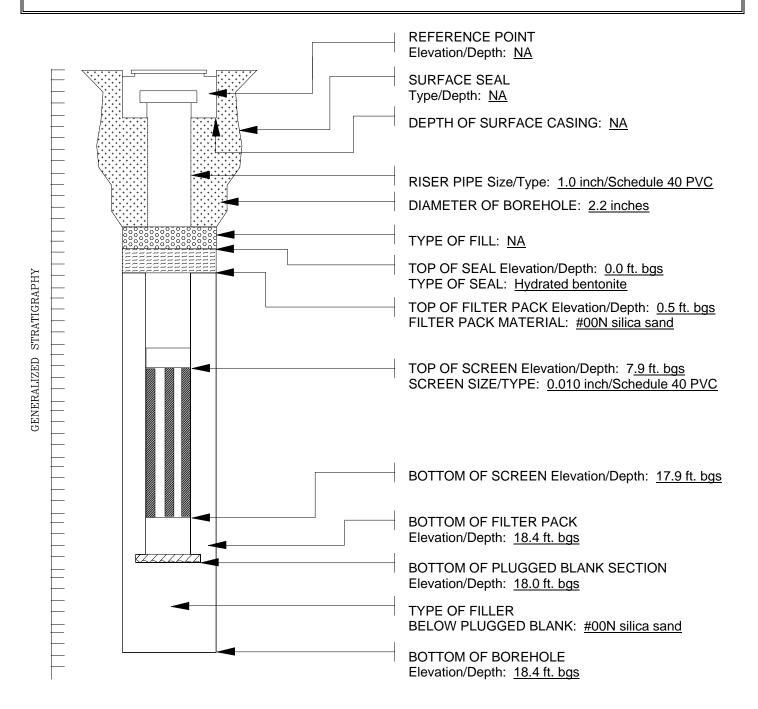
CLIENT: Northwest Savings Bank WELL No. TPMW1

DATE COMPLETED: 5/7/14 SUPERVISED BY: DEC


PROJECT/LOCATION:	3021-3041 Orchard Park Rd,	Orchard Park, NY	PRO	DJECT No.	14B4431.22
CLIENT:	Northwest Savings Bank	(WELL No.	TPMW1
DATE COMPLETED:	5/7/14	SUPERVIS	ED BY:	: DEC	

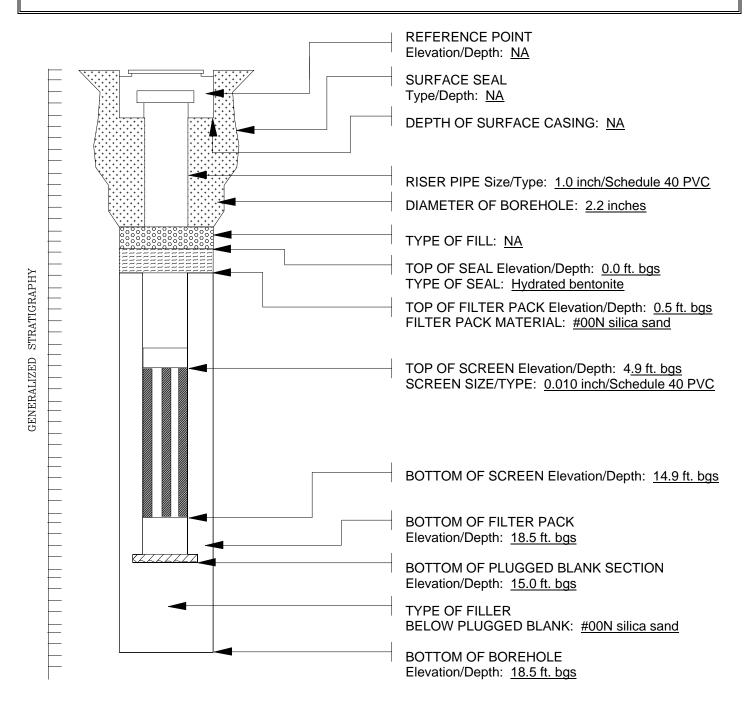
PROJECT/LOCATION: 3021-3041 Orchard Park Rd, Orchard Park, NY PROJECT No. 14B4431.22

CLIENT: Northwest Savings Bank WELL No. TPMW2


DATE COMPLETED: 5/7/14 SUPERVISED BY: DEC

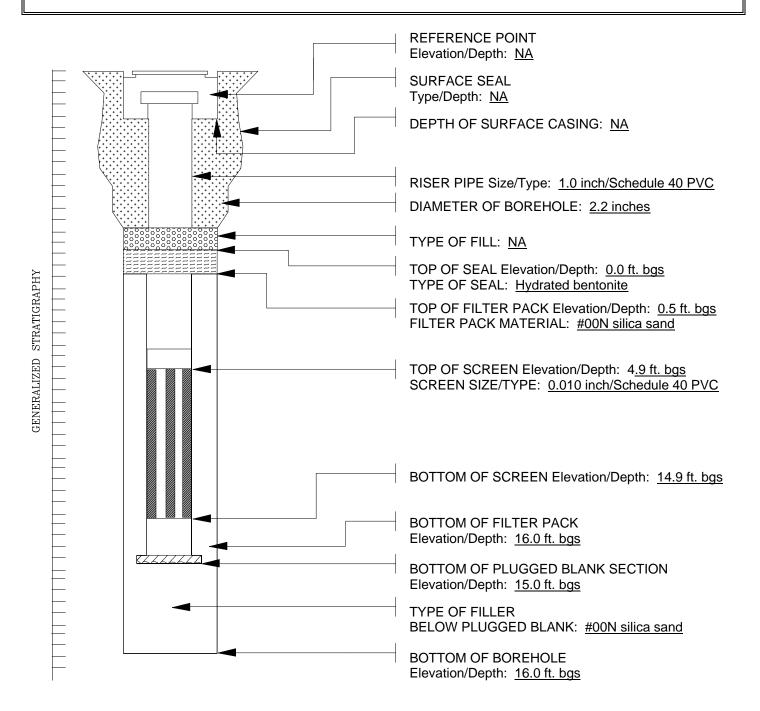
PROJECT/LOCATION: 3021-3041 Orchard Park Rd, Orchard Park, NY PROJECT No. 14B4431.22

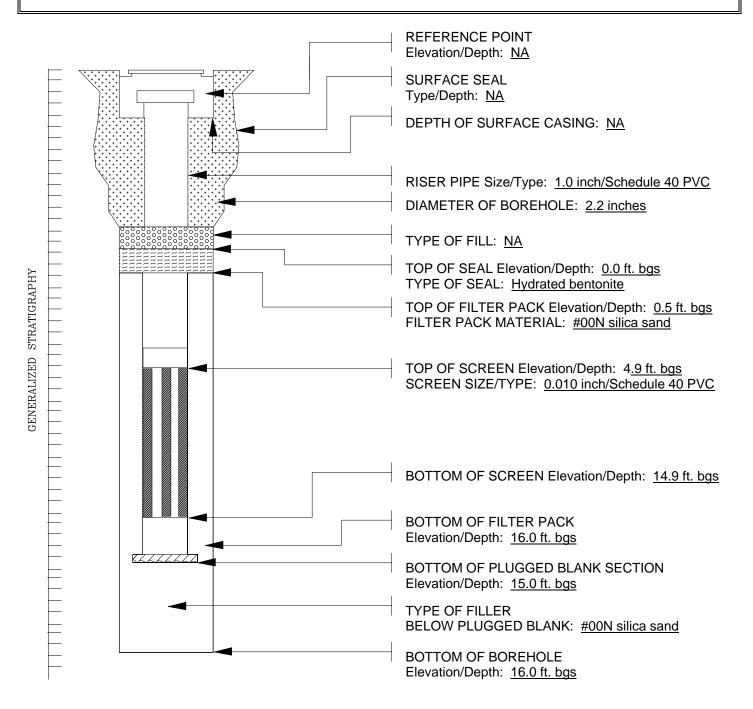
CLIENT: Northwest Savings Bank WELL No. TPMW3

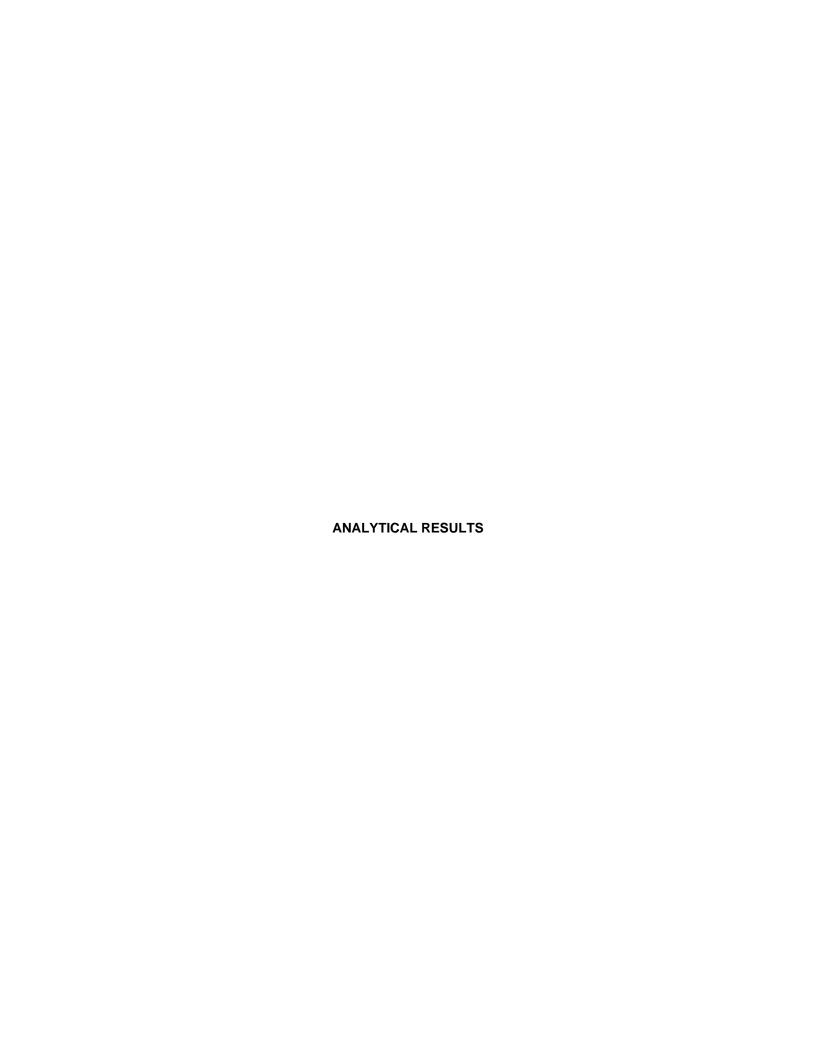

DATE COMPLETED: 5/7/14 SUPERVISED BY: DEC

PROJECT/LOCATION: 3021-3041 Orchard Park Rd, Orchard Park, NY PROJECT No. 14B4431.22

CLIENT: Northwest Savings Bank WELL No. TPMW4


DATE COMPLETED: 5/7/14 SUPERVISED BY: DEC


PROJECT/LOCATION: 3021-3041 Orchard Park Rd, Orchard Park, NY PROJECT No. 14B4431.22


CLIENT: Northwest Savings Bank WELL No. TPMW5

DATE COMPLETED: 5/7/14 SUPERVISED BY: DEC

PROJECT/LOCATION:	3021-3041 Orchard Park Rd, C	PROJECT No.	14B4431.22	
CLIENT:	Northwest Savings Bank		WELL No.	TPMW6
DATE COMPLETED:	5/7/14	SUPERVISED E	3Y:	DEC

05/13/14

Technical Report for

Lender Consulting Services, Inc.

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

13B4431.22

Accutest Job Number: MC30395

Sampling Date: 05/07/14

Report to:

Lender Consulting Services, Inc.

mpopek@lenderconsulting.com

ATTN: Maggie Popek

Total number of pages in report: 26

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Frank DAgostino 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) WI (399080220) DoD ELAP (L-A-B L2235)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

_

4.5

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	6
3.1: MC30395-1: BH01 0.8-4	7
3.2: MC30395-2: BH03 6-8	9
3.3: MC30395-3: BH04 12-14	11
3.4: MC30395-4: BH06 2-4	13
3.5: MC30395-5: BH07 0.5-2	15
3.6: MC30395-6: BH08 0.5-2	17
3.7: MC30395-7: TPMW01	19
3.8: MC30395-8: TPMW02	21
Section 4: Misc. Forms	23
4.1: Chain of Custody	24

Sample Summary

Lender Consulting Services, Inc.

Job No: MC30395

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY Project No: 13B4431.22

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
MC30395-1	05/07/14	09:30 JMR	05/08/14	SO	Soil	BH01 0.8-4
MC30395-2	05/07/14	12:00 JMR	05/08/14	SO	Soil	BH03 6-8
MC30395-3	05/07/14	13:00 JMR	05/08/14	SO	Soil	BH04 12-14
MC30395-4	05/07/14	14:00 JMR	05/08/14	SO	Soil	BH06 2-4
MC30395-5	05/07/14	14:30 JMR	05/08/14	SO	Soil	ВН07 0.5-2
MC30395-6	05/07/14	15:00 JMR	05/08/14	SO	Soil	BH08 0.5-2
MC30395-7	05/07/14	10:55 JMR	05/08/14	AQ	Ground Water	TPMW01
MC30395-8	05/07/14	12:40 JMR	05/08/14	AQ	Ground Water	TPMW02

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Summary of Hits Job Number: MC30395

Account: Lender Consulting Services, Inc.

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

05/07/14 Collected:

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
MC30395-1	BH01 0.8-4					
cis-1,2-Dichloroe Tetrachloroethen		215 589	210 210	47 32	ug/kg ug/kg	SW846 8260C SW846 8260C
MC30395-2	ВН03 6-8					
cis-1,2-Dichloroe Tetrachloroethen Trichloroethene		183 450 169 J	170 170 170	39 27 21	ug/kg ug/kg ug/kg	SW846 8260C SW846 8260C SW846 8260C
MC30395-3	BH04 12-14					
Benzene Toluene Xylene (total)		1.8 4.5 J 4.5	0.48 4.8 1.9	0.33 0.20 0.21	ug/kg ug/kg ug/kg	SW846 8260C SW846 8260C SW846 8260C
MC30395-4	ВН06 2-4					
Acetone Carbon disulfide		53.5 0.59 J	9.7 4.9	2.7 0.13	ug/kg ug/kg	SW846 8260C SW846 8260C
MC30395-5	ВН07 0.5-2					
No hits reported	in this sample.					
MC30395-6	ВН08 0.5-2					
Benzene Carbon disulfide Toluene Xylene (total)		1.0 0.98 J 2.4 J 3.0	0.35 3.5 3.5 1.4	0.24 0.092 0.14 0.15	ug/kg ug/kg ug/kg ug/kg	SW846 8260C SW846 8260C SW846 8260C SW846 8260C
MC30395-7	TPMW01					
Chloroform cis-1,2-Dichloroe trans-1,2-Dichlor Tetrachloroethen Trichloroethene Xylene (total)	roethene	1.7 67.3 0.77 J 71.6 26.9 0.54 J	1.0 1.0 1.0 1.0 1.0 1.0	0.41 0.84 0.51 0.59 0.47 0.36	ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C
MC30395-8	TPMW02					
1,1-Dichloroethe	ne ^a	0.66 J	1.0	0.61	ug/l	SW846 8260C

Summary of Hits Job Number: MC30395

Account: Lender Consulting Services, Inc.

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

Collected: 05/07/14

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
cis-1,2-Dichloroethene ^a	165	1.0	0.84	ug/l	SW846 8260C
trans-1,2-Dichloroethene ^a	4.3	1.0	0.51	ug/l	SW846 8260C
Tetrachloroethene ^a	15.0	1.0	0.59	ug/l	SW846 8260C
Trichloroethene ^a	22.4	1.0	0.47	ug/l	SW846 8260C
Vinyl chloride ^a	2.4	1.0	0.58	ug/l	SW846 8260C

⁽a) The pH of the sample aliquot for VOA analysis was > 2 at time of analysis.

Sample Results	
Report of Analysis	

Report of Analysis

Client Sample ID: BH01 0.8-4

7.95 g

Lab Sample ID: MC30395-1 **Date Sampled:** 05/07/14 Matrix: SO - Soil **Date Received:** 05/08/14 Method: Percent Solids: 73.8 SW846 8260C

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 G137448.D 1 05/09/14 GKMSG5257 n/an/a

Run #2

Final Volume Methanol Aliquot Initial Weight Run #1 10.0 ml 100 ul

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units (9
67-64-1	Acetone	ND	1000	290	ug/kg	
71-43-2	Benzene	ND	51	35	ug/kg	
75-27-4	Bromodichloromethane	ND	210	22	ug/kg	
75-25-2	Bromoform	ND	210	37	ug/kg	
74-83-9	Bromomethane	ND	210	62	ug/kg	
78-93-3	2-Butanone (MEK)	ND	1000	320	ug/kg	
75-15-0	Carbon disulfide	ND	510	13	ug/kg	
56-23-5	Carbon tetrachloride	ND	210	23	ug/kg	
108-90-7	Chlorobenzene	ND	210	16	ug/kg	
75-00-3	Chloroethane	ND	510	78	ug/kg	
67-66-3	Chloroform	ND	210	17	ug/kg	
74-87-3	Chloromethane	ND	510	58	ug/kg	
124-48-1	Dibromochloromethane	ND	210	33	ug/kg	
75-34-3	1,1-Dichloroethane	ND	210	27	ug/kg	
107-06-2	1,2-Dichloroethane	ND	210	33	ug/kg	
75-35-4	1,1-Dichloroethene	ND	210	43	ug/kg	
156-59-2	cis-1,2-Dichloroethene	215	210	47	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	210	43	ug/kg	
78-87-5	1,2-Dichloropropane	ND	210	43	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	210	23	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	210	27	ug/kg	
100-41-4	Ethylbenzene	ND	210	71	ug/kg	
591-78-6	2-Hexanone	ND	1000	78	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)		510	56	ug/kg	
75-09-2	Methylene chloride	ND	210	55	ug/kg	
100-42-5	Styrene	ND	510	18	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	210	40	ug/kg	
127-18-4	Tetrachloroethene	589	210	32	ug/kg	
108-88-3	Toluene	ND	510	21	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	210	22	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	210	59	ug/kg	
79-01-6	Trichloroethene	ND	210	25	ug/kg	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Report of Analysis

 Client Sample ID:
 BH01 0.8-4

 Lab Sample ID:
 MC30395-1
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 73.8

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	210 210	94 23	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5	Dibromofluoromethane Toluene-D8	116% 121%		70-13 70-13		

ND = Not detected MDL = Method Detection Limit J = I

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

3.2

Report of Analysis

Client Sample ID: BH03 6-8

MC30395-2 Lab Sample ID: **Date Sampled:** 05/07/14 **Matrix:** SO - Soil **Date Received:** 05/08/14 Method: **Percent Solids:** SW846 8260C 81.7

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 G137439.D 1 05/09/14 GKMSG5257 n/an/a

Run #2

Final Volume Methanol Aliquot Initial Weight Run #1 10.0 ml 100 ul 8.25 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	850	240	ug/kg	
71-43-2	Benzene	ND	43	29	ug/kg	
75-27-4	Bromodichloromethane	ND	170	18	ug/kg	
75-25-2	Bromoform	ND	170	30	ug/kg	
74-83-9	Bromomethane	ND	170	51	ug/kg	
78-93-3	2-Butanone (MEK)	ND	850	260	ug/kg	
75-15-0	Carbon disulfide	ND	430	11	ug/kg	
56-23-5	Carbon tetrachloride	ND	170	19	ug/kg	
108-90-7	Chlorobenzene	ND	170	13	ug/kg	
75-00-3	Chloroethane	ND	430	65	ug/kg	
67-66-3	Chloroform	ND	170	14	ug/kg	
74-87-3	Chloromethane	ND	430	48	ug/kg	
124-48-1	Dibromochloromethane	ND	170	28	ug/kg	
75-34-3	1,1-Dichloroethane	ND	170	23	ug/kg	
107-06-2	1,2-Dichloroethane	ND	170	27	ug/kg	
75-35-4	1,1-Dichloroethene	ND	170	35	ug/kg	
156-59-2	cis-1,2-Dichloroethene	183	170	39	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	170	36	ug/kg	
78-87-5	1,2-Dichloropropane	ND	170	36	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	170	19	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	170	22	ug/kg	
100-41-4	Ethylbenzene	ND	170	59	ug/kg	
591-78-6	2-Hexanone	ND	850	65	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	430	46	ug/kg	
75-09-2	Methylene chloride	ND	170	45	ug/kg	
100-42-5	Styrene	ND	430	15	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	170	34	ug/kg	
127-18-4	Tetrachloroethene	450	170	27	ug/kg	
108-88-3	Toluene	ND	430	18	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	170	19	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	170	49	ug/kg	
79-01-6	Trichloroethene	169	170	21	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 2 of 2

Report of Analysis

Client Sample ID: BH03 6-8 Lab Sample ID: MC30395-2 **Date Sampled:** 05/07/14 Matrix: **Date Received:** 05/08/14 SO - Soil Method: SW846 8260C **Percent Solids:** 81.7

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	170 170	78 19	ug/kg ug/kg	
CAS No.	Cuma acta Dacamanica	D #1	D // 0			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	115%	Run# 2	Lim i 70-13		
	8		Run# 2		30%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: BH04 12-14

Lab Sample ID: MC30395-3 Date Sampled: 05/07/14 Matrix: SO - Soil **Date Received:** 05/08/14 Method: **Percent Solids:** SW846 8260C 90.8

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 M65203.D 1 05/09/14 KD MSM2295 n/an/a

Run #2

Final Volume Initial Weight

Run #1 5.0 ml 5.69 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	9.7	2.7	ug/kg	
71-43-2	Benzene	1.8	0.48	0.33	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.20	ug/kg	
75-25-2	Bromoform	ND	1.9	0.34	ug/kg	
74-83-9	Bromomethane	ND	1.9	0.58	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.7	3.0	ug/kg	
75-15-0	Carbon disulfide	ND	4.8	0.13	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.21	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.15	ug/kg	
75-00-3	Chloroethane	ND	4.8	0.73	ug/kg	
67-66-3	Chloroform	ND	1.9	0.16	ug/kg	
74-87-3	Chloromethane	ND	4.8	0.55	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.31	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.9	0.26	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.9	0.31	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.9	0.40	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.9	0.44	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.9	0.40	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.41	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.22	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.25	ug/kg	
100-41-4	Ethylbenzene	ND	1.9	0.67	ug/kg	
591-78-6	2-Hexanone	ND	9.7	0.73	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	4.8	0.52	ug/kg	
75-09-2	Methylene chloride	ND	1.9	0.51	ug/kg	
100-42-5	Styrene	ND	4.8	0.16	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.38	ug/kg	
127-18-4	Tetrachloroethene	ND	1.9	0.30	ug/kg	
108-88-3	Toluene	4.5	4.8	0.20	ug/kg	J
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.21	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.55	ug/kg	
79-01-6	Trichloroethene	ND	1.9	0.24	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Report of Analysis

Client Sample ID: BH04 12-14 Lab Sample ID: MC30395-3

 Lab Sample ID:
 MC30395-3
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 90.8

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND 4.5	1.9 1.9	0.88 0.21	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	nn# 2 Limits		
1868-53-7	Dibromofluoromethane	103%		70-1	30%	
2037-26-5	Toluene-D8	90%		70-1	30%	
460-00-4	4-Bromofluorobenzene	88%		70-1	30%	

ND = Not detected MDL = Method Detection Limit J = Indic

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: BH06 2-4

 Lab Sample ID:
 MC30395-4
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 85.4

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 M65204.D 1 05/09/14 KD MSM2295 n/an/a Run #2

Run #1 6.02 g 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	53.5	9.7	2.7	ug/kg	
71-43-2	Benzene	ND	0.49	0.33	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.20	ug/kg	
75-25-2	Bromoform	ND	1.9	0.35	ug/kg	
74-83-9	Bromomethane	ND	1.9	0.59	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.7	3.0	ug/kg	
75-15-0	Carbon disulfide	0.59	4.9	0.13	ug/kg	J
56-23-5	Carbon tetrachloride	ND	1.9	0.21	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.15	ug/kg	
75-00-3	Chloroethane	ND	4.9	0.74	ug/kg	
67-66-3	Chloroform	ND	1.9	0.16	ug/kg	
74-87-3	Chloromethane	ND	4.9	0.55	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.31	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.9	0.26	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.9	0.31	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.9	0.40	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.9	0.44	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.9	0.41	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.41	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.22	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.26	ug/kg	
100-41-4	Ethylbenzene	ND	1.9	0.67	ug/kg	
591-78-6	2-Hexanone	ND	9.7	0.74	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	4.9	0.52	ug/kg	
75-09-2	Methylene chloride	ND	1.9	0.52	ug/kg	
100-42-5	Styrene	ND	4.9	0.17	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.38	ug/kg	
127-18-4	Tetrachloroethene	ND	1.9	0.30	ug/kg	
108-88-3	Toluene	ND	4.9	0.20	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.21	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.56	ug/kg	
79-01-6	Trichloroethene	ND	1.9	0.24	ug/kg	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2

Report of Analysis

Client Sample ID: BH06 2-4 Lab Sample ID: MC30395-4 **Date Sampled:** 05/07/14 Matrix: Date Received: SO - Soil 05/08/14 Method: SW846 8260C **Percent Solids:** 85.4

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.9 1.9	0.89 0.21	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
CAS No. 1868-53-7	Surrogate Recoveries Dibromofluoromethane	Run# 1 97%	Run# 2	Lim 70-1		
	8	214411111	Run# 2		30%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: BH07 0.5-2

 Lab Sample ID:
 MC30395-5
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 93.3

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 a G137440.D 1 05/09/14 GK n/a n/a MSG5257

Run #2

Initial Weight Final Volume Methanol Aliquot

Run #1 5.11 g 10.0 ml 100 ul

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	1100	300	ug/kg
71-43-2	Benzene	ND	54	37	ug/kg
75-27-4	Bromodichloromethane	ND	220	23	ug/kg
75-25-2	Bromoform	ND	220	38	ug/kg
74-83-9	Bromomethane	ND	220	65	ug/kg
78-93-3	2-Butanone (MEK)	ND	1100	330	ug/kg
75-15-0	Carbon disulfide	ND	540	14	ug/kg
56-23-5	Carbon tetrachloride	ND	220	24	ug/kg
108-90-7	Chlorobenzene	ND	220	17	ug/kg
75-00-3	Chloroethane	ND	540	82	ug/kg
67-66-3	Chloroform	ND	220	18	ug/kg
74-87-3	Chloromethane	ND	540	61	ug/kg
124-48-1	Dibromochloromethane	ND	220	35	ug/kg
75-34-3	1,1-Dichloroethane	ND	220	29	ug/kg
107-06-2	1,2-Dichloroethane	ND	220	35	ug/kg
75-35-4	1,1-Dichloroethene	ND	220	45	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	220	49	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	220	45	ug/kg
78-87-5	1,2-Dichloropropane	ND	220	46	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	220	25	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	220	29	ug/kg
100-41-4	Ethylbenzene	ND	220	75	ug/kg
591-78-6	2-Hexanone	ND	1100	82	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	540	59	ug/kg
75-09-2	Methylene chloride	ND	220	58	ug/kg
100-42-5	Styrene	ND	540	18	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	220	43	ug/kg
127-18-4	Tetrachloroethene	ND	220	34	ug/kg
108-88-3	Toluene	ND	540	22	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	220	24	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	220	62	ug/kg
79-01-6	Trichloroethene	ND	220	27	ug/kg

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: BH07 0.5-2

 Lab Sample ID:
 MC30395-5
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 93.3

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	220 220	99 24	ug/kg ug/kg	
CAS No.	Cumagata Dagawanias	D // 1	5 "4			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	114%	Run# 2	Limi 70-13		
	8		Run# 2		30%	

⁽a) Dilution required due to high concentration of non-target compound.

ND = Not detected MDL = Method Detection Limit J = Indicates and MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: BH08 0.5-2

Lab Sample ID: MC30395-6 **Date Sampled:** 05/07/14 Matrix: SO - Soil **Date Received:** 05/08/14 Method: **Percent Solids:** SW846 8260C 95.0

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 M65217.D 1 05/10/14 KD MSM2295 n/an/a Run #2

Final Volume Initial Weight Run #1 5.0 ml

7.51 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	7.0	2.0	ug/kg	
71-43-2	Benzene	1.0	0.35	0.24	ug/kg	
75-27-4	Bromodichloromethane	ND	1.4	0.15	ug/kg	
75-25-2	Bromoform	ND	1.4	0.25	ug/kg	
74-83-9	Bromomethane	ND	1.4	0.42	ug/kg	
78-93-3	2-Butanone (MEK)	ND	7.0	2.2	ug/kg	
75-15-0	Carbon disulfide	0.98	3.5	0.092	ug/kg	J
56-23-5	Carbon tetrachloride	ND	1.4	0.15	ug/kg	
108-90-7	Chlorobenzene	ND	1.4	0.11	ug/kg	
75-00-3	Chloroethane	ND	3.5	0.53	ug/kg	
67-66-3	Chloroform	ND	1.4	0.12	ug/kg	
74-87-3	Chloromethane	ND	3.5	0.40	ug/kg	
124-48-1	Dibromochloromethane	ND	1.4	0.23	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.4	0.19	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.4	0.23	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.4	0.29	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.4	0.32	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.4	0.29	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.4	0.29	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.4	0.16	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.4	0.18	ug/kg	
100-41-4	Ethylbenzene	ND	1.4	0.48	ug/kg	
591-78-6	2-Hexanone	ND	7.0	0.53	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)		3.5	0.38	ug/kg	
75-09-2	Methylene chloride	ND	1.4	0.37	ug/kg	
100-42-5	Styrene	ND	3.5	0.12	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.4	0.28	ug/kg	
127-18-4	Tetrachloroethene	ND	1.4	0.22	ug/kg	
108-88-3	Toluene	2.4	3.5	0.14	ug/kg	J
71-55-6	1,1,1-Trichloroethane	ND	1.4	0.15	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	1.4	0.40	ug/kg	
79-01-6	Trichloroethene	ND	1.4	0.17	ug/kg	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: BH08 0.5-2 Lab Sample ID: MC30395-6

 Lab Sample ID:
 MC30395-6
 Date Sampled:
 05/07/14

 Matrix:
 SO - Soil
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 95.0

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND 3.0	1.4 1.4	0.64 0.15	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
CAS No. 1868-53-7	Surrogate Recoveries Dibromofluoromethane	Run# 1 100%	Run# 2		its 30%	
	<u> </u>	21442777	Run# 2	70-1		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: TPMW01

 Lab Sample ID:
 MC30395-7
 Date Sampled:
 05/07/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 N86958.D 1 05/09/14 KD n/aMSN3237 n/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	2.5	ug/l	
71-43-2	Benzene	ND	0.50	0.32	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.34	ug/l	
75-25-2	Bromoform	ND	1.0	0.61	ug/l	
74-83-9	Bromomethane	ND	2.0	1.8	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.3	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.43	ug/l	
75-00-3	Chloroethane	ND	2.0	0.53	ug/l	
67-66-3	Chloroform	1.7	1.0	0.41	ug/l	
74-87-3	Chloromethane	ND	2.0	1.1	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.38	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.36	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.61	ug/l	
156-59-2	cis-1,2-Dichloroethene	67.3	1.0	0.84	ug/l	
156-60-5	trans-1,2-Dichloroethene	0.77	1.0	0.51	ug/l	J
78-87-5	1,2-Dichloropropane	ND	2.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.42	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.38	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.6	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	0.99	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.28	ug/l	
100-42-5	Styrene	ND	5.0	0.85	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.40	ug/l	
127-18-4	Tetrachloroethene	71.6	1.0	0.59	ug/l	
108-88-3	Toluene	ND	1.0	0.33	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.45	ug/l	
79-01-6	Trichloroethene	26.9	1.0	0.47	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis Page 2 of 2

Client Sample ID: TPMW01

Lab Sample ID: **Date Sampled:** 05/07/14 MC30395-7 Matrix: **Date Received:** 05/08/14 AQ - Ground Water Method: SW846 8260C **Percent Solids:** n/a

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND 0.54	1.0 1.0	0.58 0.36	ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
CAS No. 1868-53-7	Surrogate Recoveries Dibromofluoromethane	Run# 1 101%	Run# 2		its 30%	
	8		Run# 2		30%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: TPMW02

 Lab Sample ID:
 MC30395-8
 Date Sampled:
 05/07/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 a N86959.D 1 05/09/14 KD MSN3237 n/an/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	2.5	ug/l	
71-43-2	Benzene	ND	0.50	0.32	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.34	ug/l	
75-25-2	Bromoform	ND	1.0	0.61	ug/l	
74-83-9	Bromomethane	ND	2.0	1.8	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.3	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.43	ug/l	
75-00-3	Chloroethane	ND	2.0	0.53	ug/l	
67-66-3	Chloroform	ND	1.0	0.41	ug/l	
74-87-3	Chloromethane	ND	2.0	1.1	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.38	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.36	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethene	0.66	1.0	0.61	ug/l	J
156-59-2	cis-1,2-Dichloroethene	165	1.0	0.84	ug/l	
156-60-5	trans-1,2-Dichloroethene	4.3	1.0	0.51	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.42	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.38	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.6	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	0.99	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.28	ug/l	
100-42-5	Styrene	ND	5.0	0.85	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.40	ug/l	
127-18-4	Tetrachloroethene	15.0	1.0	0.59	ug/l	
108-88-3	Toluene	ND	1.0	0.33	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.45	ug/l	
79-01-6	Trichloroethene	22.4	1.0	0.47	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Client Sample ID: TPMW02

 Lab Sample ID:
 MC30395-8
 Date Sampled:
 05/07/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/08/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	2.4 ND	1.0 1.0	0.58 0.36	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
CAS No. 1868-53-7 2037-26-5	Surrogate Recoveries Dibromofluoromethane Toluene-D8	Run# 1 100% 106%	Run# 2	Limi 70-13 70-13	30%	

(a) The pH of the sample aliquot for VOA analysis was > 2 at time of analysis.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

N 17'	
Misc.	Forms
TATIOC.	1 011113

Custody Documents and Other Forms

Includes the following where applicable:

· Chain of Custody

CHAIN OF CUSTODY

Accutest Laboratories of New England 495 Technology Center West, Building One TEL. 508-481-6200 FAX: 508-481-7753

PAGE		OF	1
------	--	----	---

			18	L. 508-48ء س	1-6200 vww.ac			81-7	753				ı	Accutest	Quote #			Accun	test Job #	m.	3039	25
	Client / Reporting Information			and the same of the same of the same	oject Inf		and the Paragraphy		48000			(KEST)	-								<u>כעב</u>	
Con	npany Name	Project Name		Tay	dent to	formati	Oli			200	Milit	<u> </u>	24	ہستم	Reques	ted Ana	lysis (se	e TEST	CODE	sheet)		Matrix Codes
1	L(S	1 '	marsol	Proper	4.								- 1	,]								DW - Drinking Wat
Stree	el Address	Street:	macisl	1000	')						aer	ALCOHOL:	2500									GW - Ground Wate
4	O Lakieure Dr	3021-	3041000	hard Pr	1	Billing t	Informatio	on (If	differ	ent fr	rom R	Report t	to)		-		1 1			1		WW - Water SW - Surface Water
City	State . Zip	City:	10			npany Nam		***				<u></u>	-	.								SO - Soil
٧.	2077 14 01-14) Orcho	and In	-k, N9									1	.	l			1				SL- Sludge SED-Sediment
Proj	ect Contact E-mail				Stree	el Address	5						\neg	ı							ŀ	OI - Oil LIQ - Other Liquid
_ <	JOSE KOWIEL	13844	31,22											~								AIR - Air
Phor	ne# Fax#	Client PO#			City			_ ;	State			Zip		\mathcal{C}	1			-				SOL - Other Solid WP - Wipe
Sam	110 -8 43 - (2145 pler(s) Name(s) Phone #	Chesical Manage			-					20#			_	17	ĺ				'			FB-Field Blank
7	Seff Roules	Project Manager	D. An		Atten	ntion:				PO#			- 1	0			.					EB- Equipment Blan RB- Rinse Blank
-	Jerr Koule	- John	Kesiej											9								TB-Trip Blank
				Collection		4		-	Numbe	ar of pre	resersed	J Bottles		75	- 1							
Accul	lee.				Sampled		Ì	11	3 8	ğ	Vater	H S	Bisulfate	6								
Sampl	Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	by	Matrix	# of bottles	* \frac{1}{2}	NaOH HNO3	H2SO	NON IN	MEOH	88		1							LAB USE ONLY
-1	BHO1 018-4		5/7/14	9:30	Sme	150	4	П		Ti	П		3	X				\top	1			
-2			-1-11/	12:40	- WC		4	+	+	1	+	1	1. 1	×	-	+		+	+-+	-+	-	
			5/7/19			-		+	+	++	#	 	101			+			+			
-3	BH04 12-14		15/7/14	13,00	P-11		4	11		Ш	Ш	1	3	×								
-4	BHOG 2-4		15/7/14	14:00	300	50	4				(\cdot)	1 '	3 >	×		1			Ţ	-		
-5	BHOT US-2		5/1/4	1413	SMR	So	Ч	\prod	\top	\Box	П		3 >	~	\neg	11	1	\top	\vdash			<u> </u>
-6	BHU8 11.5-2		27716	17-17	1	Co	4	++	+	H_i	+		++-	$\frac{1}{x}$	+	++	-	_	+	+		
7	- Committee & A	+	13/1/	15:00	SY'A	120		 	+	++	+	بب	++			+		+	\vdash			
	PMUOI		12/1/4	10:55	SMR	150		3	\bot	+	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	\sqcup		×		1			11			Í
-25	TPMVOZ		15/7/14	12:40	SAR	50	3	3					>	\times								
		T '	, , , , , , , , , , , , , , , , , , ,					П		Π	\top	\Box	П	\top		1		1	\Box	\neg		12m4,
		+			†	\vdash	_	+	++	一十	++	\sqcap	++	+	-	+		+-	+-+	-+	-+-+	
					 	+	 	+	+	+	++	\vdash	+	+		++		-	\vdash			12C,
			<u></u> '	<u> </u>	↓ '	ــــــ		11			4	Ш										
			, 1	ĺ	'						11											
									verable	e Info	ırmati	ion					Comr	ments i	Specia	Instruc	tions	
	Turnaround Time (Business days)	Approved By (Accu	test PM): / Date:		, —		cial "A" (L			_		YASP Cal			1							
	Std. 10 Business Days Std. 5 Business Days (By Contract only)			. 600)			cial "B" (L		.)			ASP Cat		/B	<u> </u>							
	5 Day RUSH				1 —	FULLT1 ((Level 3+4	1)		늗		ate Form										
	3 Day EMERGENCY		$\geq 1 \cap 1$			MA MCP				늗	The same of	D Form.	iat									
	2 Day EMERGENCY			<i>3</i>	"		Commerci	ial "A"	'≃ Resi	ىك alts On		101										
	1 Day EMERGENCY			1			Commerci				-	mmary									***************************************	
En	mergency & Rush T/A data available VIA Lablink																					
-1	inquished by Sampler: Date Time:		nple Custody mus	st be docum	ented be	∌low eac					osses	ssion, l	includ	Jing co	ourier deli							
, "\	W Samples	4 15:53	Data	M_				Relingi 2	quished l	ду;	f	FED	X			Date Time	: 930 -10) Receive	1 an	m	~<	
Reli	inquisited by Sampler: Date Time:		Received By:	+=-					quished E			-4/				Date Time						
3	7	ľ	3				- 1	∆ A	msneu c	3 y ;						Date inne		Received	d By:			
	inquished by: Date Time:		Received By:						dy Seal A	#			☐ In(a	act	Preser	ved where a	pplicable			On Ice	Cooler 7	Temp.
5		- 1	5				J	ı				E	□ Not	al intact							2 750	

SYRACUSE SC

MC30395: Chain of Custody
Page 1 of 3

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: MC30	0395	Clien	t: LCS			Immediate Client Serv	vices Action	Required	i: Yes
Date / Time Received: 5/8/20	014		Delive	ry Meth	od:				
Project: COMMERCIAL PRO	Р		No. Co	oolers:		Airbill #'s:			
1. Custody Seals Present:	or N		Present:	Y or ✓	N	Sample Integrity - Documentation 1. Sample labels present on bottles:	V	or N	
2. Custody Seals Intact: ✓ Cooler Temperature	Y or		aco, rine or	Ш	V	Container labeling complete: Sample container label / COC agree:		∠	
Temp criteria achieved: Cooler temp verification: Cooler media:	Infare	•	<u> </u>			Sample Integrity - Condition 1. Sample rec'd within HT: 2. All containers accounted for:	<u>Y</u> <u>V</u>	or N	
Quality Control Preservation	<u>Y</u>	<u>N</u>	N/A			3. Condition of sample:	_	ntact	
Trip Blank present / cooler: Trip Blank listed on COC: Samples preserved properly: VOCs headspace free:		y				Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume rec'd for analysis:	<u>Y</u>	N 	N/A
Comments						4. Compositing instructions clear:5. Filtering instructions clear:			V
-6 all sample bottles have time of 15:0	00, but the co	15:30 says 15:30							
Accutest Laboratories V:508.481.6200					logy Cente F: 508.481	r West, Bldg One 7753			orough, MA accutest.com

MC30395: Chain of Custody Page 2 of 3

Sample Receipt Summary - Problem Resolution

Accutest Job Number: MC30395

CSR: Frank D'Agostino Response Date: 4/9/2014

Response: The correct sample time is 15:00

__

 Accutest Laboratories
 495 Technology Center West, Bldg One
 Mariborough, MA

 V:508.481.6200
 F: 508.481.7753
 www/accutest.com

MC30395: Chain of Custody Page 3 of 3

05/13/14

Technical Report for

Lender Consulting Services, Inc.

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

13B4431.22

Accutest Job Number: MC30471

Sampling Date: 05/08/14

Report to:

Lender Consulting Services, Inc.

mpopek@lenderconsulting.com

ATTN: Maggie Popek

Total number of pages in report: 16

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Frank DAgostino 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) WI (399080220) DoD ELAP (L-A-B L2235)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: MC30471-1: TPMW-06	6
3.2: MC30471-2: TPMW-05	8
3.3: MC30471-3: TPMW-04	10
3.4: MC30471-4: TPMW-03	12
Section 4: Misc. Forms	14
4.1: Chain of Custody	15

Sample Summary

Lender Consulting Services, Inc.

Job No: MC30471

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY Project No: 13B4431.22

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
MC30471-1	05/08/14	11:40 DC	05/09/14	AQ	Ground Water	TPMW-06
MC30471-2	05/08/14	13:45 DC	05/09/14	AQ	Ground Water	TPMW-05
MC30471-3	05/08/14	14:45 DC	05/09/14	AQ	Ground Water	TPMW-04
MC30471-4	05/08/14	17:50 DC	05/09/14	AQ	Ground Water	TPMW-03

Summary of Hits

Page 1 of 1

Job Number: MC30471

Account: Lender Consulting Services, Inc.

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

Collected: 05/08/14

Lab Sample ID Client Sample ID Result/ Analyte Qual RL MDL Units Method

MC30471-1 TPMW-06

No hits reported in this sample.

MC30471-2 TPMW-05

No hits reported in this sample.

MC30471-3 TPMW-04

No hits reported in this sample.

MC30471-4 TPMW-03

No hits reported in this sample.

Sample Results	
Report of Analysis	

Client Sample ID: TPMW-06 Lab Sample ID: MC30471-1

 Lab Sample ID:
 MC30471-1
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** MSU898 Run #1 U19757.D 1 05/12/14 GKn/an/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

Compound	Result	RL	MDL	Units	Q
Acetone	ND	10	2.5	ug/l	
Benzene	ND	0.50	0.32	ug/l	
Bromodichloromethane	ND	1.0	0.34	ug/l	
Bromoform	ND	1.0	0.61	ug/l	
Bromomethane	ND	2.0	1.8	ug/l	
2-Butanone (MEK)	ND	5.0	2.3	ug/l	
Carbon disulfide	ND	5.0	0.46	ug/l	
Carbon tetrachloride	ND	1.0	0.53	ug/l	
Chlorobenzene	ND	1.0	0.43	ug/l	
Chloroethane	ND	2.0	0.53	ug/l	
Chloroform	ND	1.0	0.41	ug/l	
Chloromethane	ND	2.0	1.1	ug/l	
Dibromochloromethane	ND	1.0	0.38	ug/l	
1,1-Dichloroethane	ND	1.0	0.36	ug/l	
1,2-Dichloroethane	ND	1.0	0.50	ug/l	
1,1-Dichloroethene	ND	1.0	0.61	ug/l	
cis-1,2-Dichloroethene	ND	1.0	0.84	ug/l	
trans-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
1,2-Dichloropropane	ND	2.0	0.50	ug/l	
cis-1,3-Dichloropropene	ND	0.50	0.42	ug/l	
trans-1,3-Dichloropropene	ND	0.50	0.50	ug/l	
Ethylbenzene	ND	1.0	0.38	ug/l	
2-Hexanone	ND	5.0	1.6	ug/l	
4-Methyl-2-pentanone (MIBK)	ND	5.0	0.99	ug/l	
Methylene chloride	ND	2.0	0.28	ug/l	
Styrene	ND	5.0	0.85	ug/l	
1,1,2,2-Tetrachloroethane	ND	0.50	0.40	ug/l	
Tetrachloroethene	ND	1.0	0.59	ug/l	
Toluene	ND	1.0	0.33	ug/l	
1,1,1-Trichloroethane	ND	1.0	0.46	ug/l	
1,1,2-Trichloroethane	ND	1.0	0.45	ug/l	
Trichloroethene	ND	1.0	0.47	ug/l	
	Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone 4-Methyl-2-pentanone (MIBK) Methylene chloride Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane	Acetone Benzene Bromodichloromethane Bromoform ND Bromomethane ND Bromomethane ND Bromomethane ND 2-Butanone (MEK) Carbon disulfide ND Carbon tetrachloride ND Chlorobenzene ND Chloroethane ND Chloromethane ND Chloromethane ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND trans-1,2-Dichloroethene ND 1,2-Dichloropropene ND trans-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND Ethylbenzene ND 2-Hexanone ND 4-Methyl-2-pentanone (MIBK) ND Methylene chloride ND Styrene ND 1,1,2,2-Tetrachloroethane ND 1,1,1-Trichloroethane ND 1,1,1-Trichloroethane ND 1,1,1-Trichloroethane ND 1,1,2-Trichloroethane ND 1,1,2-Trichloroethane ND	Acetone Benzene Bromodichloromethane ND Bromoform ND Bromomethane ND 1.0 Bromomethane ND 2.0 2-Butanone (MEK) ND Carbon disulfide ND Carbon tetrachloride ND Chlorobenzene ND Chloroethane ND 1.0 Chloromethane ND 1.0 Chloromethane ND 1.0 Chloromethane ND 1.0	Acetone ND 10 2.5 Benzene ND 0.50 0.32 Bromodichloromethane ND 1.0 0.34 Bromoform ND 1.0 0.61 Bromomethane ND 1.0 0.61 Bromomethane ND 2.0 1.8 2-Butanone (MEK) ND 5.0 2.3 Carbon disulfide ND 5.0 0.46 Carbon disulfide ND 5.0 0.46 Carbon tetrachloride ND 1.0 0.53 Chlorobenzene ND 1.0 0.43 Chlorobenzene ND 1.0 0.43 Chlorotehane ND 1.0 0.41 Chlorotehane ND 1.0 0.41 Chloromethane ND 1.0 0.38 1,1-Dichloroethane ND 1.0 0.36 1,2-Dichloroethane ND 1.0 0.61 cis-1,2-Dichloroethene ND 1.0 0.50	Acetone ND 10 2.5 ug/l Benzene ND 0.50 0.32 ug/l Bromodichloromethane ND 1.0 0.34 ug/l Bromoform ND 1.0 0.61 ug/l Bromomethane ND 2.0 1.8 ug/l 2-Butanone (MEK) ND 5.0 2.3 ug/l Carbon disulfide ND 5.0 0.46 ug/l Carbon tetrachloride ND 1.0 0.53 ug/l Chloroethane ND 2.0 0.53 ug/l Chloroethane ND 2.0 0.53 ug/l Chloroethane ND 1.0 0.53 ug/l Chloroethane ND 2.0 0.53 ug/l Chloroethane ND 2.0 1.1 ug/l Dibromochloromethane ND 1.0 0.41 ug/l Chloroethane ND 2.0 1.1 ug/l Dibromochloromethane ND 1.0 0.38 ug/l 1,1-Dichloroethane ND 1.0 0.36 ug/l 1,2-Dichloroethane ND 1.0 0.50 ug/l 1,2-Dichloroethane ND 1.0 0.50 ug/l 1,1-Dichloroethene ND 1.0 0.61 ug/l cis-1,2-Dichloroethene ND 1.0 0.51 ug/l trans-1,2-Dichloroethene ND 1.0 0.51 ug/l 1,2-Dichloropropane ND 1.0 0.50 ug/l trans-1,3-Dichloropropene ND 1.0 0.50 ug/l trans-1,3-Dichloropropene ND 1.0 0.50 ug/l trans-1,3-Dichloropropene ND 0.50 0.42 ug/l trans-1,3-Dichloropropene ND 0.50 0.50 ug/l trans-1

ND = Not detected MDL = Method

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 Client Sample ID:
 TPMW-06

 Lab Sample ID:
 MC30471-1
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 1.0	0.58 0.36	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

ND = Not detected MDL = Method Detection Limit J = Indicates the substitution of the substitution of

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: TPMW-05

 Lab Sample ID:
 MC30471-2
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** MSU898 Run #1 U19758.D 1 05/12/14 GKn/an/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	2.5	ug/l	
71-43-2	Benzene	ND	0.50	0.32	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.34	ug/l	
75-25-2	Bromoform	ND	1.0	0.61	ug/l	
74-83-9	Bromomethane	ND	2.0	1.8	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.3	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.43	ug/l	
75-00-3	Chloroethane	ND	2.0	0.53	ug/l	
67-66-3	Chloroform	ND	1.0	0.41	ug/l	
74-87-3	Chloromethane	ND	2.0	1.1	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.38	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.36	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.61	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.84	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.42	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.38	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.6	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	0.99	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.28	ug/l	
100-42-5	Styrene	ND	5.0	0.85	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.40	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.59	ug/l	
108-88-3	Toluene	ND	1.0	0.33	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.45	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.47	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Page 2 of 2

Report of Analysis

 Client Sample ID:
 TPMW-05

 Lab Sample ID:
 MC30471-2
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 1.0	0.58 0.36	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
CAS No. 1868-53-7	Surrogate Recoveries Dibromofluoromethane	Run# 1 111%	Run# 2		its 30%	
	C		Run# 2	70-1		

ND = Not detected MDL = Method Detection Limit J = Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: TPMW-04

 Lab Sample ID:
 MC30471-3
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** MSU898 Run #1 a U19759.D 1 05/12/14 GKn/an/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	2.5	ug/l	
71-43-2	Benzene	ND	0.50	0.32	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.34	ug/l	
75-25-2	Bromoform	ND	1.0	0.61	ug/l	
74-83-9	Bromomethane	ND	2.0	1.8	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.3	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.43	ug/l	
75-00-3	Chloroethane	ND	2.0	0.53	ug/l	
67-66-3	Chloroform	ND	1.0	0.41	ug/l	
74-87-3	Chloromethane	ND	2.0	1.1	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.38	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.36	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.61	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.84	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.42	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.38	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.6	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	0.99	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.28	ug/l	
100-42-5	Styrene	ND	5.0	0.85	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.40	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.59	ug/l	
108-88-3	Toluene	ND	1.0	0.33	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.45	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.47	ug/l	

 $ND = Not detected \qquad MDL =$

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2

Client Sample ID: TPMW-04 Lab Sample ID: MC30471-3 **Date Sampled:** 05/08/14 Matrix: AQ - Ground Water Date Received: 05/09/14 Method: **Percent Solids:** SW846 8260C n/a

Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 1.0	0.58 0.36	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
CAS No. 1868-53-7	Surrogate Recoveries Dibromofluoromethane	Run# 1 114%	Run# 2	Lim i 70-1		
	8		Run# 2		30%	

⁽a) The pH of the sample aliquot for VOA analysis was > 2 at time of analysis.

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: TPMW-03

 Lab Sample ID:
 MC30471-4
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** MSU898 Run #1 a U19760.D 1 05/12/14 GKn/an/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	2.5	ug/l	
71-43-2	Benzene	ND	0.50	0.32	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.34	ug/l	
75-25-2	Bromoform	ND	1.0	0.61	ug/l	
74-83-9	Bromomethane	ND	2.0	1.8	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.3	ug/l	
75-15-0	Carbon disulfide	ND	5.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.53	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.43	ug/l	
75-00-3	Chloroethane	ND	2.0	0.53	ug/l	
67-66-3	Chloroform	ND	1.0	0.41	ug/l	
74-87-3	Chloromethane	ND	2.0	1.1	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.38	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.36	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.61	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.84	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.42	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.38	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.6	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	0.99	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.28	ug/l	
100-42-5	Styrene	ND	5.0	0.85	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.40	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.59	ug/l	
108-88-3	Toluene	ND	1.0	0.33	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.45	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.47	ug/l	

ND = Not detected MDL =

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

C

Report of Analysis

 Client Sample ID:
 TPMW-03

 Lab Sample ID:
 MC30471-4
 Date Sampled:
 05/08/14

 Matrix:
 AQ - Ground Water
 Date Received:
 05/09/14

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Commercial Property, 3021-3041 Orchard Park, Orchard Park, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 1.0	0.58 0.36	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
CAS No. 1868-53-7	Surrogate Recoveries Dibromofluoromethane	Run# 1 112%	Run# 2	Lim i 70-1:		
	8		Run# 2		30%	

(a) The pH of the sample aliquot for VOA analysis was > 2 at time of analysis.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

•	<i>-</i> •	
N.	1100	Forms
IV	Iisc.	TOURS

Custody Documents and Other Forms

Includes the following where applicable:

· Chain of Custody

CC	CU.	TE	ST
	LAB	DOAT	

Client / Reporting Information

"Lakividedir

Field ID / Point of Collection

Turnaround Time (Business days)

Std. 5 Business Days (By Contract only)

ergency & Rush T/A data available VIA Lablin

Std. 10 Business Days

2 Day EMERGENCY

1 Day EMERGENCY

5 Day RUSH
3 Day EMERGENCY

TPMW-06

2 TPMW-05 3 TPMW-04 4 TPMW-03 14303

CHAIN OF CUSTODY

Attention

Signet 304 - 3044 of Walki Full Billing Information (If different fr

NY

9-9-14 1140 DC G-W 6-8-14 1345 DC G-W 5-8-14 1945 DC G-W 5-5-14 1750 DC G-W

Olchardralk

MEOH/DI Vial #

roper | 13BU431-22 TeffRow jey Toget Manager Row ley

Accutest Laboratories of New England
495 Technology Center West, Building One
TEL. 508-481-6200 FAX: 508-481-7753
www.accutest.com
Project Information

Project Name
Project N

333

Commercial "A" (Level 1)

Commercial "B" (Level 2)

Commercial "A" = Results Only

Commercial "B" = Results + QC Summary

Custody Seal #

none

☐ Intact

Not intac

Sample Custody must be documented below each time samples change possession, including courier delivery

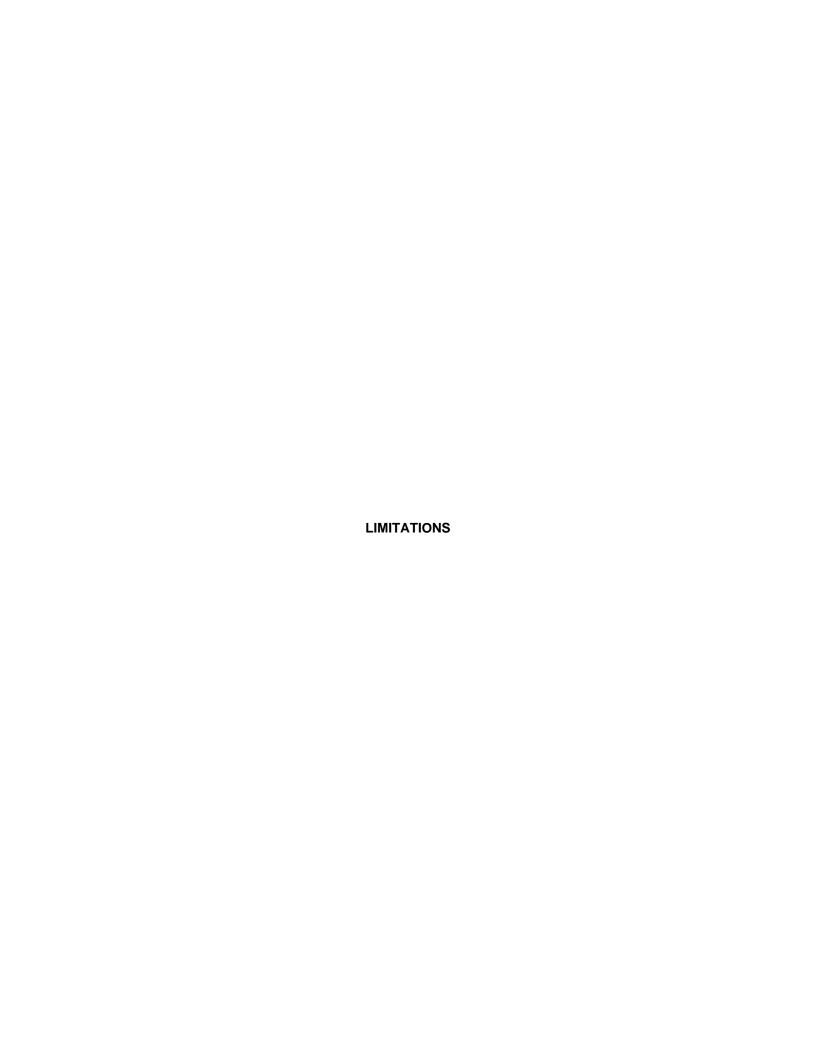
FULLT1 (Level 3+4)

₩А МСР

			PAGE	o	F
	FED-EX Tracking #		Bottle Order Control #		
	Assulest Quote #		Accule of Jieb # m C	3047	ī
	Requester	d Analysis (see 1	EST CODE sheet		Matrix Codes
at from Report to)				7,000	DW - Drinking Water GW - Ground Water WW - Water SW - Surface Water SO - Soit SL - Sludge SED-Sediment OI - Oil LIQ - Other Liquid
Zip O# of preserved Bottles	13601				AIR - Air AIR - Air SOL - Olher Solid WP - Wipe FB-Field Blank EB-Equipment Blank RB- Rinse Blank TB-Trip Blank
NONE DI Water MEOH ENCORE Bisulfate					LAB USE ONLY
	<i>i</i>				
					3D4
					וענ
Information		Comme	nts / Special Instr	uctions	
NYASP Categ NYASP Categ State Forms EDD Format	ory B	11-11-11-11-11-11-11-11-11-11-11-11-11-	AND THE RESERVE OF THE PERSON		
Other					1

MC30471: Chain	of	Cu	stody
	Pa	ige :	1 of 2

SVRACUSE SC



Accutest Laboratories Sample Receipt Summary

Delivery Method: Comments Client Service Action Required at Login: No Project: Commentation Required at Login: No Project: Commentation Required at Login: No Represent Commentation Required at Login: No Represent Commentation Required at Login: No Required At Lo	Accutest Job Number: MC304	71 Client: LC	S	Immediate Client Serv	vices Action Required:	No
Cooler Security Y or N 1. Custody Seals Present: 2. Custody Seals Intact: Y or N 1. Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 2. Container labeling complete: 3. Sample Cooler Temperature Y or N 1. Temp criteria achieved: 2. Cooler temp verification: Infared gun 3. Cooler media: Ice (bag) Sample Integrity - Condition Y or N Sample Integrity - Instructions Y or N N/A Sample Integrity - Instructions Sample Integrity	Date / Time Received: 5/9/201	4	Delivery Method:	Client Service Act	ion Required at Login:	No
1. Custody Seals Present:	Project: COMMERCIAL PROPI	ERTY	No. Coolers:	1 Airbill #'s:		
2. Cooler temp verification: Infared gun 3. Cooler media: Ice (bag) Quality Control Preservation Y or N N/A 1. Trip Blank present / cooler: Sample Integrity - Instructions Y or N N/A 2. Trip Blank listed on COC: Samples preserved properly: Sample spreserved properly: Sample spre	1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature	3. COC Prese 4. Smpl Dates/Til	ent: 🔽 🗆	Sample labels present on bottles: Container labeling complete:		
2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: 4. Compositing instructions clear: 5. Filtering instructions clear: 7. Or No.	Cooler temp verification: Cooler media:	Infared gun Ice (bag)		Sample recvd within HT: All containers accounted for:		
	2. Trip Blank listed on COC:3. Samples preserved properly:			Analysis requested is clear: Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear:		V
	Comments					
	Accutest Laboratories V:508.481.6200		495 Technology Cen F: 508.48			orough, N

MC30471: Chain of Custody Page 2 of 2

This environmental study is limited by the scope of services contained within this report and time frames specified within the contracts for services dated May 1, 2014.

This environmental study makes no warranties nor implies any liability regarding:

- 1. Any impacted media located beneath the on-site structure(s).
- 2. Any chemical analytes not included within the analytical test methods employed during this study.
- 3. Any impacted media present from off-site sources not assessed.
- 4. Any impact at locations and depths not assessed in this study.
- 5. Any impact at locations where access was limited (i.e., beneath structures, etc.).
- 6. Vapor Intrusion.

Conclusions and/or recommendations made within the study are based on the interpretation of data collected at individual sample locations and may change if additional data is collected during future study. Conditions between sampling locations are estimated based on available data. Intrusive studies serve to reduce, but not eliminate, the potential environmental risk associated with a property. No study is considered all-inclusive or representative of the entire subject property. Such would be cost prohibitive.