DECEMBER 26, 2019 TO APRIL 26, 2021 FORMER TRICO PLANT (BCP SITE No. C915281)

BUFFALO, NEW YORK

May 2021 0092-016-001

Prepared for:

845 Main Street, LLC and 791 Washington Street, LLC

Prepared By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0599

In association with:

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0635

May 26, 2020 to May 26, 2021 Former Trico Plant (C915281) Table of Contents

1.0	INT	RODUCTION	
	1.1	Site Background	
	1.2	Remedial History	
	1.3	Compliance	
	1.4	Recommendations	
2.0	SITE	E OVERVIEW	6
3.0	REM	MEDY PERFORMANCE	
4.0		E MANAGEMENT PLAN	
	4.1	Institutional and Engineering Control (IC/EC) Plan	
		4.1.1 Institutional Controls (ICs)	
		4.1.2 Engineering Controls (ECs)	
	4.2	Excavation Work Plan	
		4.2.1 Site Redevelopment Activities	
		4.2.2 Exported Materials	
		4.2.3 Imported Materials	
	4.3	Post-Remediation Media Monitoring and Sampling	11
	4.4	Annual Inspection and Certification Program	12
	4.5	Operation, Monitoring and Maintenance Plan	
		4.5.1 Active Sub-slab Depressurization System	
		4.5.2 Ventilation System	
5.0	Con	NCLUSIONS AND RECOMMENDATIONS	15
6.0	DEC	CLARATION/LIMITATION	16
7.0	Pro	REDENICES	15

May 26, 2020 to May 26, 2021 Former Trico Plant (C915281) Table of Contents

TABLES

Table 1 Groundwater Sample Results Summary

FIGURES

Figure 1	Site Location and Vicinity Map
Figure 2	Site Plan
Figure 3	Site Cover System Map
Figure 4	Future Interior Parking Area Cover System Map
Figure 5	Post Remedial Sampling Locations and cVOC Groundwater Quality Exceedances

APPENDICIES

Appendix A	Institutional & Engineering Controls Certification Form
Appendix B	Photographic Log
Appendix C	Demolition Debris Sampling and Correspondence Information
Appendix D	Groundwater Sampling Information

1.0 Introduction

Benchmark Environmental Engineering and Science, PLLC, in association with TurnKey Environmental Restoration, LLC (Benchmark-TurnKey) has prepared this Periodic Review Report (PRR) to summarize the post-remedial status of the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Former Trico Plant Site (BCP Site No. C915281), located in the City of Buffalo, Erie County, New York (see Figures 1 and 2).

This PRR has been prepared in accordance with the NYSDEC DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010; Ref. 1) and the NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form has been prepared for the Site. This PRR and the associated IC/EC Form (see Appendix A) have been completed for the post-remedial period from May 26, 2020 to May 26, 2021.

1.1 Site Background

847 Main Street, LLC entered into a Brownfield Cleanup Agreement (BCA) with the NYSDEC in October 2013, to investigate and remediate the approximate ±2.11-acre Site located at 791 Washington Street, in the City of Buffalo, Erie County, New York. The BCA was amended in January 2017 to add the entity 791 Washington Street, LLC and amended again in July 2019 to identify 791 Washington Street, LLC as the property owner. BCP activities were performed in accordance with BCA Index #C915281-10-13.

The Site is identified as Section 111.31, Block 1, Lot 1.11 on the Erie County Tax Map. The Site is an approximately ±2.11-acres and is bounded by a parking lot and building associated with the Innovation Center of the Buffalo Niagara Medical Campus to the north, Goodell Street to the south, Ellicott Street to the east, and Washington Street to the west (see Figure 2).

The property consists of a complex of five (5) adjoining buildings totaling 617,627 square feet. The oldest of the five buildings was constructed circa 1890 as a portion of the Christian Weyand Brewery that operated at the Site until the enactment of prohibition. The building was purchased in 1920 by the Trico Products Corporation for the manufacturing of windshield wiper blades for the automobile industry. The remaining buildings were constructed from 1920 to 1954. The Trico Products Corporation operated at the Site until

approximately 1993. Historic operations included electroplating, smelting, die-casting, rubber extrusion, and metal fabrication. The building complex was idle since at least 2000. The Site was purchased by 791 Washington Street, LLC in May 2017 from the Buffalo Brownfield Restoration Corporation who acquired the property in 2007.

1.2 Remedial History

A Remedial Investigation (RI) was completed by Benchmark-TurnKey in accordance with a NYSDEC-approved Remedial Investigation & Alternative Analysis Work Plan (RI/AA WP, Ref. 2). RI activities were completed between May and June 2016 with supplemental investigation activities being completed in November and December 2016. The RI included the completion of soil borings and installation of monitoring wells/piezometers to assess soil and groundwater conditions, soil vapor intrusion (SVI) sampling (indoor, outdoor, and sub-slab air), interior utility observations, and basement surface water sampling at the Site. Results of the RI were summarized in the NYSDEC-approved Remedial Investigation/Alternatives Analysis (RI/AA, Ref. 3)

Select chlorinated volatile organic compounds (cVOCs) were detected exceeding 6NYCRR Part 375 Protection of Groundwater Soil Cleanup Objectives (PGWSCOs, Ref. 4), and select semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and metals (arsenic, mercury, and barium) were detected exceeding Restricted-Residential SCOs (RRSCOs) in subsurface soil samples.

cVOCs were detected exceeding TOGS 1.1.1 Groundwater Quality Standards/Guidance Values (GWQS, Ref. 5) at multiple groundwater sampling locations in the central portion of the Site. Two (2) individual SVOCs and certain naturally occurring metals were identified exceeding GWQS. VOCs were not detected above their respective GWQS in the two (2) off-site wells.

Results of the SVI sampling identified that the building requires soil vapor mitigation due to the elevated concentrations of trichloroethene (TCE) and cis-1,2-dichlorethene (cis-DCE) that were detected based on the New York State Department of Health (NYSDOH) SVI Guidance decision matrices (Ref. 6).

The results of the basement surface water sampling indicate that low levels of metals and pesticides are present in the water. No VOCs, PCBs, or herbicides were detected above method detection limits (MDLs).

Based on the findings of the RI, an Alternatives Analysis (AA) was completed. The AA outlined the Remedial Action Objectives (RAOs) and required remedial activities to be completed to achieve a Track 4 Restricted-Residential Use cleanup. The remedial actions described in the AAR, Decision Document (Ref. 7) and Remedial Action Work Plan (RAWP, Ref. 8) were as follows:

- Removal of hydraulic lifts, associated infrastructure and associated impacted soil/fill.
- In-Situ direct injection of biological amendments to address areas of the Site impacted with chlorinated VOCs in groundwater.
- Installation of an active sub-slab depressurization (ASD) system within the existing building.
- Cleaning accessible utility and/or sewer structures with evidence of potential impacts.
- Sub-basement water removal, treatment, and discharge.
- Removing and properly disposing off-site miscellaneous abandoned regulated waste materials; and abating building components for lead, asbestos, oil staining, and PCBs as required during redevelopment.
- Maintenance and replacement of site cover system within areas of the building footprint that will undergo demolition/redevelopment.
- Development of a Site Management Plan (SMP) for post-certificate of completion (COC) operation, maintenance, and monitoring.
- Filing an Environmental Easement (EE) with Erie County, which was done on October 31, 2019.

Benchmark-TurnKey prepared an ASD System Design Work Plan to present the results of the sub-slab communication testing that was completed in the basement of the building and to provide the ASD system design requirements (Ref. 9). The ASD system will be installed prior to building occupancy.

Benchmark-TurnKey prepared an RAWP Addendum Work Plan (RAWP Addendum) on behalf of 847 Main Street, LLC and 791 Washington Street, LLC (Ref. 10).

The RAWP Addendum provided the scope of work to address PCB contamination that was identified in the former interior loading area and certain limited areas of the building basement that formerly contained oil-filled electrical equipment (referred to as electrical equipment areas, or EEAs). The sampling of the loading dock area and EEAs were completed in accordance with NYSDEC-approved work plans: Loading Dock Concrete & Soil Sampling Work Plan (Ref. 11) and Concrete-Slab Sampling Work Plan for Areas Formerly Containing Oil-Filled Electrical Equipment (Ref. 12), respectively. PCBs were identified above 1 mg/kg in a limited area of the existing concrete Site cover system (approximately 8,000 square feet, less than 10% of the total cover system, which covers approximately 84,000 square feet). The PCB impacts greater than 1 mg/kg were addressed by removal, off-site disposal, and cover system replacement.

The Site was remediated to a 6NYCRR Part 375 Track 4 Restricted-Residential use cleanup. Materials removed from the Site included: friable and non-friable ACM; paint debris; hydraulic lifts/oil; water, sediment, and sludge present within the building; miscellaneous drums and oils from former equipment/machinery left within the building; RI derived soil and water drums; oil-filled electrical equipment (TSCA and non-TSCA); PCB-impacted concrete (TSCA and non-TSCA regulated); and decontamination water/supplies. A summary of contaminated materials removed from the Site is included in the NYSDEC-approved Final Engineering Report (FER, Ref. 13).

In May and June 2019, groundwater amendment injections were completed to address the cVOCs detected in the groundwater within the central portion of the Site. The groundwater injections consisted of 89 injection locations within the central portion of the building and in the sidewalk along Ellicott street east of the building. The injections consisted of three (3) amendments manufactured by Regenesis: 3-D Microemulsion (3DME, also known as HRC Advanced®); Chemical Reducing Solution (CRS®); and Bio-Dechlor Inoculum Plus (BDI), which were mixed together with water in the field prior to injection. In total, 16,000 pounds (lbs) of 3DME, 6,400 lbs of CRS, and 96 lbs of BDI were injected into the subsurface groundwater. The depth of the injections ranged from 3.5 to 13.5 feet below the lower basement area and 11 to 21 fbgs in the upper basement. Groundwater sampling completed in July, August, and September 2019, to monitor the effects of the groundwater injections indicated that the groundwater amendment injections were effective

in reducing the concentrations of cVOCs in the monitoring wells, as further discussed in Section 4.3.

The Site is primarily covered by a hardscape cover system in the form of the concrete building footprint and asphalt roadway of former Burton Street in the northwest corner of the Site. A 2-foot-thick crushed stone cover (2-inch crusher run) was placed in select areas of the Site (e.g., the former subbasement area and former EEAs where the concrete floors were removed due to PCB contamination). Exposure to remaining contamination in the soil/fill at the Site is prevented by the hardscape cover system and/or 2-foot-thick stone cover system in place over the Site. Figure 3 identities the current cover system for the Site. In accordance with the NYSDEC-approved Site Management Plan (SMP; Ref. 14) the following remedial actions need to be completed prior to building occupancy.

- Removal of PCB contamination greater than 50 mg/kg in the suspended concrete slab on the 1st of the building (future parking area) and installation of a 6-inch concrete cap over areas with less 50 mg/kg PCBs;
- Installation of the ASD system within the building in accordance with the ASD System Work Plan; and
- Remediation of PCBs detected above 50 mg/kg on a small area of the wall in the western portion of the former loading dock area, in consultation with NYSDEC/NYSDOH.

The remedial action and cover system installation work was documented in the NYSDEC-approved FER.

1.3 Compliance

The Site is in compliance as the cover system is in place.

1.4 Recommendations

Any future redevelopment activities to be conducted will be completed in accordance with the NYSDEC-approved SMP and documented in the associated PRR reporting period. The SMP will be updated to include the redevelopment/cover system changes once they are completed.

2.0 SITE OVERVIEW

The Site was remediated under the BCP to a Track 4 Restricted Residential cleanup. The remediated property is subject to a comprehensive, site-wide SMP which identifies requirements for monitoring and maintenance of engineering and institutional controls, post-remedial media (groundwater and building material) monitoring and sampling, operation and maintenance of the ASD system, which will be installed prior to occupancy, and procedures for post-remedial excavation, demolition, and related activities.

No significant redevelopment activities have occurred at the Site within the December 26, 2019 to April 26, 2021 reporting period. The Site is currently vacant and secured from public access by a 6-foot chain link fence. Some building demolition debris was generated (concrete, brick, and limestone foundation walls) was generated as part of redevelopment activities after the COC was issued and prior to the COVID-19 pandemic which halted the project. The Site was secured with perimeter fencing and is visited weekly to inspect the premises for vandals, trespassers, and maintain the perimeter fencing. The project team is currently assessing the project financing to restart the redevelopment in late 2021.

The areas surrounding the Site have not changed.

3.0 REMEDY PERFORMANCE

A post-remedial site inspection and two (2) groundwater monitoring events (July 2020 and November 2020) were completed at the Site as required by the SMP during this reporting period. The site inspection involving a walk-over of the Site covered by this PRR was performed to visually observe and document the use of the Site for restricted residential, commercial, and/or industrial use, confirm absence of site groundwater use, inspect the cover system integrity, and verify conformance with other requirements under the SMP. The groundwater monitoring events involved sample collection for VOC analysis, as further discussed in Sections 4.2.4 and 4.3.

The Site is current vacant and secured from public access by a chain link fence. The Site is in compliance and functioning as intended in accordance with the SMP.

The results of the groundwater sampling, as further discussed in Section 4.3, generally indicate a decrease in cVOC concentrations compared to concentrations observed prior to remedial activities. Further monitoring will be completed as required by the SMP.

The completed IC/EC Certification forms and site photographs are included in Appendices A and B, respectively.

4.0 SITE MANAGEMENT PLAN

A site-wide SMP was prepared for the Site and approved by the Department in December 2019. Key components of the SMP are described below.

4.1 Institutional and Engineering Control (IC/EC) Plan

Since contaminated soil, groundwater, and soil vapor remains beneath the site, Institutional Controls and Engineering Controls (IC/ECs) are required to protect human health and the environment. The Engineering and Institutional Control Plan describes the procedures for the implementation and management of all IC/ECs at the Site. At the time of the site inspection, the Site is compliant with all institutional and engineering control requirements.

4.1.1 Institutional Controls (ICs)

The Site has a series of Institutional Controls in the form of site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may be used for: restricted residential; commercial, industrial use;
- The future parking area on the 1st floor will be restricted to use as a low occupancy area as defined in 40 CFR 761.3 prior to occupancy;
- All ECs must be operated and maintained as specified in this SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;

- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 3, and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the Site are prohibited.

4.1.2 Engineering Controls (ECs)

Engineering controls at the Site include:

- Cover System Exposure to remaining contamination in soil/fill at the Site is prevented by a final cover system placed over the site. This cover system is comprised of a minimum of 6-inches of existing asphalt pavement and subbase (northeastern exterior portion of the Site along former Burton Street), concrete-covered sidewalks, concrete building slabs, and 2-feet of crushed stone underlain by a demarcation layer (former sub-basement area and three (3) former oil-filled electrical equipment areas). The cover system must be maintained in compliance with the SMP.
- Suspended Concrete Slab Cap A concrete cap consisting of a minimum of 6-inches of concrete will be installed over the PCB-impacted suspended concrete slab in the future parking area prior to occupancy to prevent exposure to residual PCB-impacts in the suspended slab on the 1st floor. The cap must be maintained in compliance with the SMP.
- Active Sub-Slab Depressurization System An ASD system will be installed at
 the Site prior to building occupancy. The ASD system will be installed as
 outlined in the NYSDEC-approved ASD System Design Work Plan included
 as Appendix L of the SMP. NYSDEC will be notified prior to the start of

- work activities related to the ASD system installation. Once installed, the ASD system must be operated and maintained in compliance with the Operation and Maintenance Plan, included in the SMP.
- The interior parking areas of the building, basement, and southwestern portion of the 1st floor will be outfitted with a dedicated ventilation system. The system will remove vapors/fumes associated with vehicle traffic generated inside the building and bring in outdoor ambient air. The ventilation system will be operated and maintained in accordance with the manufacturer's specifications while the interior areas are utilized for parking. Although considered an EC, this is not a remedial element under the BCP.

4.2 Excavation Work Plan

An Excavation Work Plan (EWP) was included in the NYSDEC-approved SMP for the Site. The EWP provides guidelines for the management of soil/fill material during intrusive actives. Future intrusive work that will penetrate the cover and/or cap, or encounter or disturb the remaining contamination, including any modifications or repairs to the existing cover system, will be performed in compliance with the EWP.

4.2.1 Site Redevelopment Activities

No significant redevelopment activities occurred during the past reporting period and the Site is currently vacant and secured by a chain-link fence.

Building debris was generated during the reporting period prior to the COVID-19 pandemic. The building debris remains on-site and was sampled by Benchmark-TurnKey, in accordance with the SMP, for off-site recycling. The data was sent to NYSDEC on March 17, 2020 and approved by NYSDEC for off-site recycling on March 20, 2020. The analytical data and correspondence are included in Appendix C. The material will be addressed once Site redevelopment activities resume.

4.2.2 Exported Materials

No materials were exported from the Site during the past reporting period.

4.2.3 Imported Materials

No materials were imported to the Site during the past reporting period.

4.3 Post-Remediation Media Monitoring and Sampling

Five (5) accessible on-site monitoring wells (RIMW-2, RIMW-4, RIMW-6, RIMW-9, and RIMW-10) and two (2) off-site monitoring wells (RIMW-11 and RIMW-12) were sampled in July 2020. In November 2020, only the five (5) accessible on-site monitoring wells were samples as RIMW-11 and RIMW-12 were removed from the SMP sampling program with NYSDEC permission (see correspondence in Appendix D) RIMW-7 was not sampled during either 2020 events due to the presence of building debris over the well location. RIMW-7 will be sampled during future events once this debris has been moved. The groundwater was sampled for Target Compound List (TCL) VOCs during both sampling events. The results of the groundwater sampling are summarized on Table 1 and Figure 5, and the laboratory reports are included in Appendix D. Table 1 includes the historic sample results from 2016 for MW-1 through MW-12, which represent pre-remedial conditions, and from 2019 for MWRI-2, RIMW-4, RIMW-6, RIMW-7, RIMW-9, RIMW-10, RIMW-11, and RIMW-12, which represent conditions immediately following groundwater injections, for comparative purposes. The results of the sampling are discussed below by location.

- RIMW-2: TCE was the only compound detected above its respective above its GWQS prior to remedial actions (11 ug/L) and has shown an approximate 44% decrease based on the average concentrations (6.1 ug/L) of the five (5) sample rounds completed since the remedial injections which have fluctuated from 4.8 to 7.8 ug/l.
- RIMW-4: cVOCs (cis-DCE, TCE, trans-DCE and VC) were detected above their respective GWQS. The total concentration of cVOCS prior to the remedial injections was 425 ug/L. The post-injection monitoring have generally shown a downward trend in total cVOC concentrations. The November 2020 results were 105 ug/L which is a 75% decrease in the total cVOC concentrations. Benzene was detected above its GWQS immediately after

groundwater injections at concentrations up to 32 ug/L but has been non-detect in the subsequent four (4) sampling events.

RIMW-6: No VOCs were detected above GWQS before or after remedial actions.

RIMW-7: This well was not sampled in 2020 due to demolition debris present over the well location. Four (4) cVOCs were detected above their respective GWQS in the last sample event in September 2019 (cis-DCE, trans-DCE, TCE, and VC). The total cVOC concentrations at this monitoring well, has not yet shown a decrease in concentration since the injections were completed. The total cVOCs concentrations pre-injection were 225.5 ug/l and the total cVOC concentrations from September 2019 were 253 ug/l.

RIMW-9: There were no exceedances of the GWQS for the 3rd straight sampling event (September 2019, July 2020 and November 202) at this location.

RIMW-10: No VOCs were detected above GWQS before or after remedial actions.

RIMW-11: No parameters were detected above GWQS before or after remedial actions. RIMW-11 was not sampled during the November 2020 sampling event and will not be sampled during future monitoring events, per NYSDEC approval. See NYSDEC correspondence in Appendix D.

RIMW-12: No parameters were detected above GWQS before or after remedial actions. RIMW-12 was not sampled during the November 2020 sampling event and will not be sampled during future monitoring events, per NYSDEC approval. See NYSDEC correspondence in Appendix D.

The results of the 2020 post-remediation groundwater sampling indicate there has been improvement in the groundwater quality at the Site since the remedial action have been completed. Groundwater monitoring will continue to be completed as required by the SMP.

4.4 Annual Inspection and Certification Program

The Annual Inspection and Certification Program outlines requirements for certifying and attesting that the institutional controls and engineering controls employed on the Site are unchanged from the original design and/or previous certification. The Annual

Certification includes a Site Inspection and completion of the NYSDEC's IC/EC Certification Form. The Site inspection is intended to verify that:

- the IC/ECs are in place, effective, performing as designed,
- nothing has occurred that would impair the ability of the controls to protect the public health and environment,
- nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls, and
- access is available to the Site to evaluate continued maintenance of such controls.

Inspection of the Site was conducted by Mr. Christopher Boron. P.G. of TurnKey Environmental Restoration, LLC, a Qualified Environmental Professional (QEP) per 6NYCRR Part 375.12, on May 7, 2021. At the time of the inspection, no redevelopment activities were occurring, and the Site was vacant. The cover system was in place and functioning as designed. Any future redevelopment activities that disturb the existing cover system are subject to the NYSDEC-approved SMP.

As discussed in Section 4.2.1, building demolition debris is present on top of the cover system. This material, generated prior to the COVID-19 pandemic, has been approved by NYSDEC for off-site recycling and will be addressed when redevelopment activities restart at the Site (see Appendix D).

The completed Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certification Form is included in Appendix A.

4.5 Operation, Monitoring and Maintenance Plan

4.5.1 Active Sub-slab Depressurization System

An ASD system will be installed within the building prior to occupancy. The ASD System will be installed in accordance with the NYSDEC-approved ASD System Design Work Plan on a design-build approach that will allow the ASD system to be built using performance-based testing during the installation. The NYSDEC-approved SMP will be revised after the ASD system is installed to add required information and the Operation and Maintenance Manual will be provided in Appendix J of the SMP. As required by the

Department-approved SMP, once installed and in operation, the ASD system must: (1) be operated continuously to maintain a negative pressure (below ambient atmospheric) under the floor slab; (2) be visually inspected periodically to verify proper operation; and (3) annually inspected and certified that the system is performing properly and remains an effective engineering control (EC).

4.5.2 Ventilation System

Although not a remedial element under the BCP, a dedicated ventilation system will be installed within the interior parking areas of the building, basement, and southwestern portion of the first floor. The ventilation system will be installed, operated, and maintained to meet design air change criteria.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions for this reporting period and recommendations for the next reporting period are as follows:

- No significant redevelopment activities occurred during the past reporting period and the Site is currently vacant. The existing cover systems are intact and are performing as intended.
- Future redevelopment activities involving cover system modification or import/export of soil or stone materials will be subject to the SMP. In areas subject to redevelopment, Site access will be restricted via construction fencing and will be limited to authorized construction personnel.
- Groundwater sampling performed during the reporting period, as required by the SMP, indicates that there has been some improvement in the groundwater quality at the Site since remedial actions have been completed. Off-Site monitoring wells, MW-11 and MW-12 were approved by NYSDEC to be removed from the sampling program. Groundwater sampling will be continued as outlined in the SMP, except for off-site well modification.

6.0 DECLARATION/LIMITATION

Personnel under direct supervision of Benchmark-TurnKey conducted the annual site inspection for BCP Site No. C915281, located in Buffalo, New York, according to generally accepted practices. This report complied with the scope of work provided to 847 Main Street, LLC and 791 Washington Street, LLC by Benchmark-TurnKey.

This report has been prepared for the exclusive use of the 847 Main Street, LLC and 791 Washington Street, LLC. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of 847 Main Street, LLC and 791 Washington Street, LLC. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Benchmark-TurnKey.

7.0 REFERENCES

- 1. New York State Department of Environmental Conservation. DER-10; Technical Guidance for Site Investigation and Remediation. May 2010.
- 2. TurnKey Environmental Restoration, LLC. Remedial Investigation & Alternatives Analysis Work Plan, Former Trico Plant, 791 Washington Street, Buffalo, New York. August 2013, Revised October 2013.
- 3. Benchmark Environmental Engineering & Science, PLLC in association with TurnKey Environmental Restoration, LLC. Remedial Investigation/Alternatives Analysis (RI/AA) Report. Former Trico Plant, BCP Site No. C915281, Buffalo, New York. January 2017.
- 4. New York State Department of Environmental Conservation Division of Environmental Remediation. 6 NYCRR Part 375 Environmental Remediation Programs. December 2006.
- 5. New York State Department of Environmental Conservation Division of Water Technical and Operation Guidance. *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.* June 1998.
- 6. New York State Department of Health. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006 (and subsequent updates).
- 7. New York State Department of Environmental Conservation Division of Environmental Remediation. *Decision Document, Former Trico Plant, Brownfield Cleanup Program, Buffalo, Erie County, Site No. C915281*. July 2017.
- 8. Benchmark Environmental Engineering & Science, PLLC in association with TurnKey Environmental Restoration, LLC. Remedial Action Work Plan, Former Trico Plant, BCP Site No. 915281, Buffalo, New York. July 2017.
- 9. Benchmark Environmental Engineering & Science, PLLC. ASD System Design Work Plan, Former Trico Plant, 791 Washington Street, Buffalo, New York. November 2017.
- 10. Benchmark Environmental Engineering & Science, PLLC. Remedial Action Work Plan Addendum, Former Trico Plant, BCP Site C915281. December 2019.
- 11. Benchmark Environmental Engineering & Science, PLLC. Loading Dock Concrete & Soil Sampling Work Plan, Former Trico Plant (BCP Site No. C9152811). November 18, 2019.
- 12. Benchmark Environmental Engineering & Science, PLLC. Concrete-Slab Sampling Work Plan for Areas Formerly Containing Oil-filled Electrical Equipment, Former Trico Plant (BCP Site No. C915281). November 2019.
- 13. Benchmark Environmental Engineering & Science, PLLC in association with TurnKey Environmental Restoration, LLC. Final Engineering Report, Former Trico Plant, BCP Site No. C915281, Buffalo, New York. December 2019.

14. Benchmark Environmental Engineering & Science, PLLC in association with TurnKey Environmental Restoration, LLC. *Site Management Plan, Former Trico Plant, NYSDEC Site Number: C915281, Buffalo, New York.* December 2019.

TABLES

TABLE 1 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

GROUNDWATER MONITORING FORMER TRICO PLANT **BUFFALO, NEW YORK**

PARAMETER ¹	GWQS ²	RI MW-1			RI MW-	-2			RI MW-3		RI MW-4			RI MW-5			RI M	IW-6					RI M	IW-7			RI MW-8		
		06/14/16	06/14/16	07/01/19	08/09/19	09/13/19	07/21/20	11/20/20	06/14/16	06/14/16	07/01/19	08/09/19	09/14/19	07/21/20	11/20/20	06/14/16	06/14/16	07/01/19	08/09/19	09/13/19	07/21/20	11/20/20	06/14/16	07/01/19	08/09/19	09/13/19	07/21/20	11/20/20	06/14/16
Volatile Organic Compounds (V	OCs) - ug	L																											
1,1-Dichloroethene	5	ND	0.6 J	ND	0.57 J	ND	ND			ND																			
2-Butanone (MEK)	50	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	14	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	12 J	ND			ND
Acetone	50	ND	44	ND	5.8 J	ND	ND	ND	3 J	3.2 J	ND	12	12	8.8 J	13 J	ND	3.8 J	ND	4.4 J	ND	ND	ND	14	ND	6.8 J	ND			4.3 J
Benzene	1	ND	ND	1.0	ND	ND	ND	ND	0.73 J	ND	32	ND			ND														
Carbon disulfide	120	ND	0.96 J	ND	0.56 J	0.98 J	3	ND	ND	0.38 J	ND	ND	ND	ND	ND	0.42 J	0.33	ND	ND			ND							
Chlorobenzene	5	ND	0.93 J	ND			ND																						
Chloroethane	5	ND	Was Not	Was Not	ND																								
Chloroform	7	ND	Sampled	Sampled	ND																								
cis-1,2-Dichloroethene	5	ND	140	110	ND	120	180	34	ND	1.9	2.2	3.1	2.8	3.6	3.5	36 F1	45	40	39	Due to	Due to	ND							
Cyclohexane	-	ND	Bldg	Bldg	ND																								
Methylcyclohexane		0.64 J	ND	Dobrie	Debris	ND																							
Methyl tert butyl ether (MTBE)	10	ND	2 J	ND	ND	ND	ND	2.1 J	ND	Over Well		ND																	
Methylene chloride	5	ND	2.7 J	ND	OVCI VVCII	OVCI VVCII	ND																						
Styrene	5	ND			ND																								
Tetrachloroethene	5	ND	0.54 J	ND	ND	ND			ND																				
Toluene	5	ND	0.53 J	ND	ND			ND																					
trans-1,2-Dichloroethene	5	ND	200	160	ND	89	230 D	54	ND	1.3	1.5	2.2	ND	1.8 J	ND	100 J	110 D	110	100			ND							
Trichloroethene	5	ND	11	4.4	6.1	5.3	6.8	7.8	ND	82	78	1.3	32	1.1 J	ND	89 J	110 D	100	100			ND							
Vinyl chloride	2	ND	2.1	8.7	ND	9.3	73	17	ND	15	12	14			ND														
Total cVOCs	-	0	11	4.4	6.1	5.3	6.8	7.8	0	424.7 J	356.7	1.3	250.3	484.1	105	0	3.2	3.7	5.3	2.8	5.4 J	3.5	225.54	280.57	262	253			0
Total VOCs	-	0.64	55.96	5.4	22.9	5.3	6.8	7.8	4.66	429.9 J	391.4	27.86	263.28	495.9	120.1	0	7.38	3.7	19.7	2.8	5.4 J	3.5	239.96	281.43	280.8 J	253			4.3
Field Measurements (Units as I	ndicated)																												
pH (units)	6.5 - 8.5	7.6	7.2	NA	7.39	7.33	7.3	7.04	7.5	7.5	NA	7.08	6.9	7.07	7.17	7.8	7.4	NA	7.74	7.53	7.55	7.49	7.2	NA	6.72	6.63	NS	NS	7.5
Temperature (oC)	-	11.3	8.9	NA	12.5	12.4	13.1	11.8	9.5	9.5	NA	12.9	13.7	15.5	11.7	10.2	9.4	NA	14.7	13.2	12.2	11.6	9.5	NA	12.3	12.2	NS	NS	9.8
Specific Conductance (uS)	-	1340	5180	NA	5199	5093	6784	5412	4762	3870	NA	3776	3889	3741	5831	3282	2350	NA	1643	2038	1914	2048	1793	NA	1797	1960	NS	NS	2184
Turbidity	-	>1000	131	NA	85.2	111	60.5	34.4	>1000	>1000	NA	>1000	>1000	>1000	>1000	>1000	47.9	NA	352	92.8	143	109	113	NA	57.3	15.4	NS	NS	172
DO (ppm)		2.61	5.24	NA	1.3	4.05	1.48	1.91	4.34	2.75	NA	2.01	1.11	1.48	3.15	3.44	4.98	NA	2.82	2.35	1.71	1.95	5.34	NA	0.46	1.33	NS	NS	3.66
ORP (mV)	-	-25	-248	NA	-63	-163	196	190	41	-58	NA	-200	-280	-125	-76	-34	-209	NA	-152	-106	-111	-57	-70	NA	-251	-245	NS	NS	-204
•																			•			•	•						

PARAMETER ¹	GWQS ²				RI	MW-9								RI MW-1	0					RI M	W-11 ³					RI I	/IW-12 ³		
		06/14/16	11/28/16	11/28/2016 - DUP	12/09/16	07/01/19	08/09/19	09/13/19	07/21/20	11/20/20	06/14/16	/14/2016 DU	7/1/19	8/9/19	9/919	7/21/20	11/20/20	11/28/16	7/1/19	8/9/19	9/13/19	7/21/20	11/20/20	11/28/16	7/1/19	8/9/19	9/13/19	7/21/20	11/20/20
Volatile Organic Compounds (VOCs) - ug/	L																											
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NLS	ND	ND	ND	ND	ND	NLS
2-Butanone (MEK)	50	ND	ND	ND	ND	ND	11	23	4.1 J	ND	ND	2.4 J	ND	9.6 J	ND	ND	ND	ND	ND	8.6 J	ND	ND	NLS	ND	ND	8.1 J	ND	ND	NLS
Acetone	50	16 J	6.7	5.8	ND	ND	5.5 J	20	26	28 J	20	19	ND	4.6 J	ND	ND	ND	3 J	ND	5.2 J	ND	ND	NLS	8.5	ND	6.6 J	ND	ND	NLS
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.54	ND	ND	0.7	ND	NLS	0.34 J	ND	0.42 J	ND	ND	NLS
Carbon disulfide	120	1.4 J	ND	ND	ND	0.23 J	0.22 J	ND	1.5	ND	1.9	1.9	ND	ND	ND	ND	ND	ND	0.27 J	0.65 J	ND	ND	NLS	ND	ND	ND	ND	ND	NLS
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NLS	ND	ND	ND	ND	ND	NLS
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.43 J	ND	ND	ND	ND	ND	ND	NLS	ND	ND	ND	ND	ND	NLS
Chloroform	7	ND	ND	ND	ND	0.99 J	ND	ND	ND	ND	ND	ND	0.45 J	0.65 J	0.4 J	ND	ND	ND	ND	ND	ND	ND	NLS	ND	ND	ND	ND	ND	NLS
cis-1,2-Dichloroethene	5	1.8 J	3.1	2.2 J	ND	ND	ND	ND	2.8	4.1	ND	ND	ND	ND	ND	ND	ND	2.8	1.1	1.4	2.7	2.2	NLS	ND	ND	2.5	1.6 F2	ND	NLS
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NLS	0.28 J	ND	ND	ND	ND	NLS
Methylcyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NLS	ND	ND	ND	ND	ND	NLS
Methyl tert butyl ether (MTBE)	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NLS	ND	ND	ND	ND	ND	NLS
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.93 J	NLS	ND	ND	ND	ND	ND	NLS
Styrene	5	3.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NLS	ND	ND	ND	ND	ND	NLS
Tetrachloroethene	5	4,200	8.5	7.2	4.9	ND	0.38 J	1	0.68 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NLS	ND	ND	ND	ND	ND	NLS
Toluene	5	ND	ND	ND	ND	0.71 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NLS	ND	ND	ND	ND	ND	NLS
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NLS	ND	ND	ND	ND	ND	NLS
Trichloroethene	5	7	1	0.74	0.45 J	11	7.8	4.2	3.7	ND	2.5	2.8	1.9	2.4	3.4	2	3.2	ND	ND	ND	ND	ND	NLS	0.33 J	ND	1.1	ND	ND	NLS
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NLS	ND	ND	ND	ND	ND	NLS
Total cVOCs		4208.8	12.6	10.14	5.35	11.71	8.18	5.2	7.18 J	4.1 J	2.5	2.8	1.9	2.4	3.4	2	3.2	2.8	1.1	1.4	2.7	2.2	NLS	0.61	0	3.6	1.6	ND	NLS
Total VOCs		4229.5	19.3	15.94	5.35	12.93	24.9	48.2	38.78 J	32.1 J	24.4	26.1	2.35	17.25	3.8	2.43 J	3.2 J	6.34	1.37	15.85	3.4	3.13 J	NLS	9.45	0	18.72	1.6	ND	NLS
Field Measurements (Units as	Indicated)		•	<u> </u>						•	=	•	-	•		•					•		-						
pH (units)	6.5 - 8.5	7.2	7.36	7.36	7.27	NA	6.49	6.99	7.24	7.44	7.1	7.1	NA	7.47	7.47	7.44	7.38	7.46	NA	7.4	7.5	7.44	NLS	7.53	NA	7.43	7.44	7.41	NLS
Temperature (oC)		10.5	10.1	10.1	10.8	NA	12.8	13	16	13.4	10.4	10.4	NA	13.6	13.6	13	12.6	8.4	NA	14.3	15.1	18.1	NLS	7.6	NA	14	16.5	15.4	NLS
Specific Conductance (uS)		1293	2503	2503	2407	NA	1568	2280	1840	1472	1016	1016	NA	1038	1043	1262	1193	2507	NA	2029	1976	2002	NLS	3502	NA	6191	6145	6106	NLS
Turbidity		122	10	10	25.8	NA	57	422	401	92	41	41	NA	6.22	25.7	34.5	32.9	21.7	NA	43.1	73.1	69.6	NLS	14.1	NA	56.4	152	43	NLS
DO (ppm)		8.48	1.99	1.99	3.26	NA	0.96	0.67	0.91	1.39	7.39	7.39	NA	1.19	4.89	1.1	2.07	2.29	NA	1.54	1.63	0.49	NLS	4.62	NA	1.46	2.03	1.69	NLS
ORP (mV)		47	-88	-88	-12	NA	-135	-208	-174	-92	167	167	NA	-89	127	176	181	-92	NA	-230	-126	-143	NLS	-96	NA	-122	-85	-85	NLS

- Definitions:

 GWQS Groundwater Quality Standard

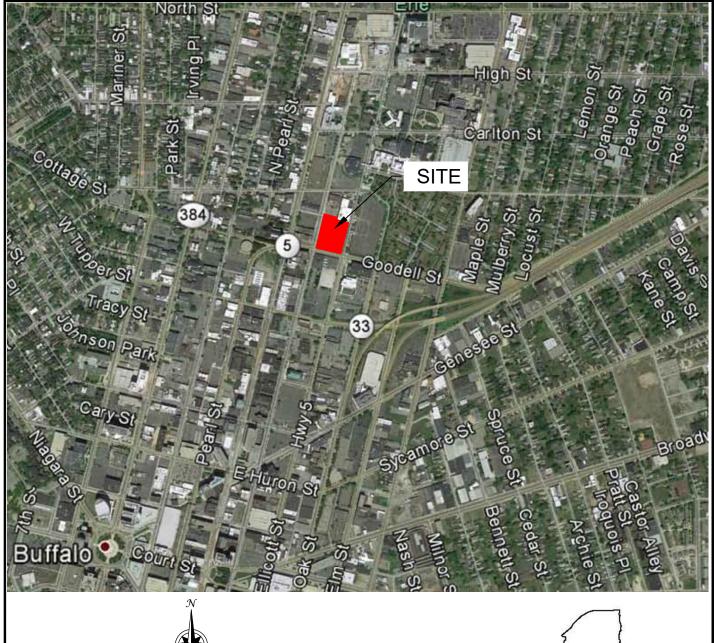
 ND = Parameter not detected above laboratory detection limit.
 "--" = No value available for the parameter; Parameter not analysed for.

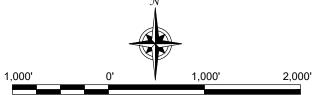
 NLS = No Longer Sampled per NYSDEC approval. .

 B = Compound was found in the blank and the sample.

 F1 = MS and/or MSD Recovery is outside acceptance limits.

 F2 = MS/MSD RPD exceeds control limits.


J = Estimated value; result is less than the reporting limit but greater than zero.


BOLD = Result exceeds GWQS.

= Monitoring well location not included in the Site Management Plan monitoring program.

FIGURES

FIGURE 1

SCALE: 1 INCH = 1,000 FEET SCALE IN FEET (approximate)

2558 HAMBURG TURNPIKE, SUITE 300, BUFFALO, NY 14218, (716) 856-0599

PROJECT NO.: 0092-016-001

DATE: MAY 2021

DRAFTED BY: RFL

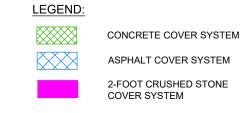
SITE LOCATION AND VICINITY MAP

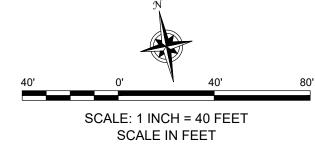
PERIODIC REVIEW REPORT

FORMER TRICO PLANT (BCP SITE NO. C915281) 791 WASHINGTON STREET BUFFALO, NEW YORK

PREPARED FOR

847 MAIN STREET, LLC & 791 WASHINGTON STREET, LLC


DISCLAIMER: PROPERTY OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC. & TURNKEY ENVIRONMENTAL RESTORATION, LLC IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC & TURNKEY ENVIRONMENTAL RESTORATION, LLC.



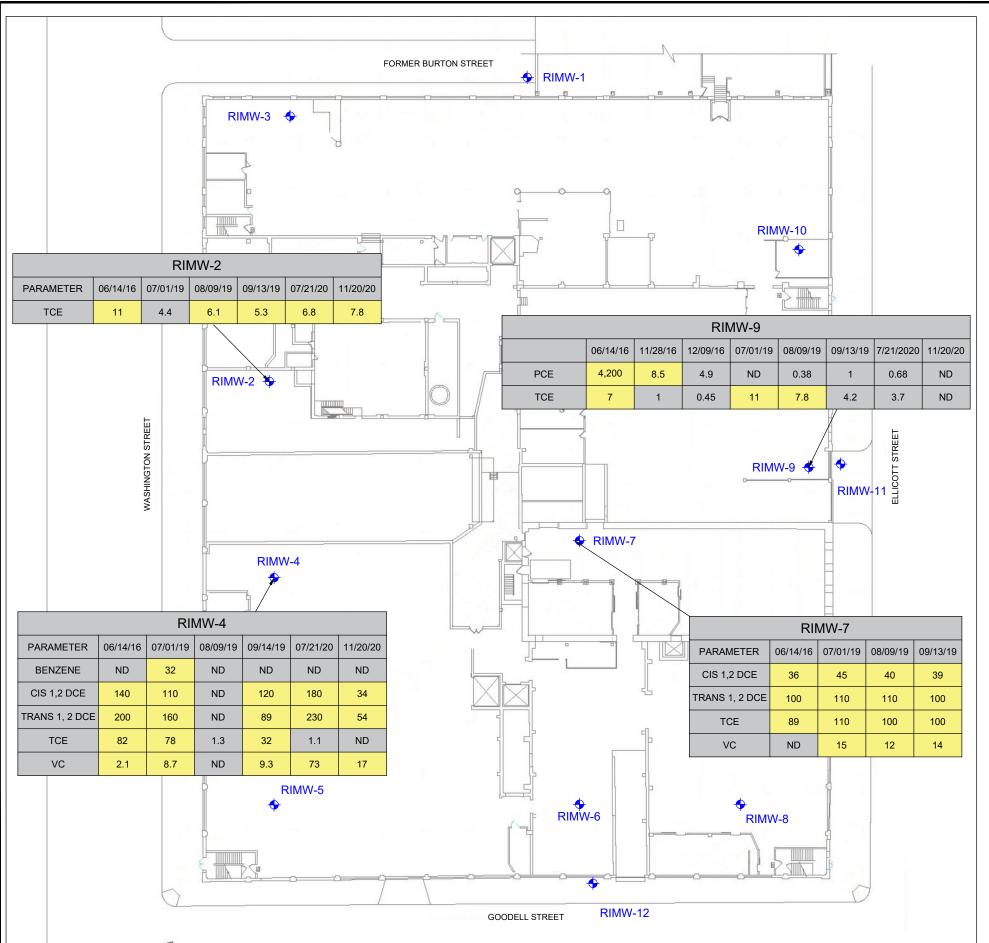
0092-016-001

BENCHMARK

FIGURE 2

(approximate)

SYSTEM MAP COVER


SITE MANAGEMENT PLAN

FORMER TRICO PLANT (BCP SITE NO. C915281) 791 WASHINGTON STREET

BENCHMARK

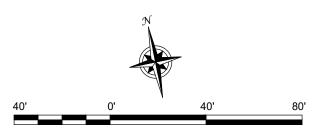
JOB NO.: 0092-016-001

FIGURE 3

LEGEND:

RIMW-2 💠

MONITORING WELL LOCATION


WELL NUMBER PARAMETER 06/14/16-SAMPLE DATE TCE CONCENTRATION (ug/l)

NOTES:

RESULTS COMPARED TO TOGS 1.1.1 GROUNDWATER QUALITY STANDARDS/GUIDANCE VALUES (GWQS/GV).

= EXCEEDS GWQS/GV

- CIS 1, 2 DCE = CIS-1,2-DICHLOROETHENE TRANS 1, 2 DCE = TRANS-1,2-DICHLOROETHENE PCE = TETRACHLOROETHENE TCE = TRICHLOROETHENE VC = VINYL CHLORIDE
- ug/I = MICROGRAMS PER LITER
- COMPLETE GROUNDWATER SUMMARY RESULTS PROVIDED ON TABLE 1 OF THE PRR.
- CVOC MEANS CHLORINATED VOLATILE ORGANIC COMPOUNDS LISTED ABOVE IN NOTE 3

SCALE: 1 INCH = 40 FEET SCALE IN FEET (approximate)

BENCHMARK CVOC

0092-016-001

JOB NO.: (

POST REMEDIAL SAMPLING LOCATIONS AND GROUNDWATER QUALITY EXCEEDANCE

SITE NO.

791 WASHINGTON STREET, LLC STREET, 847 MAIN

FIGURE 4

RESTORATION, LLC IMPORTANT: THIS I ANY FORM FOR THE BENEFIT OF PAR 9

APPENDIX A

INSTITUTIONAL & ENGINEERING CONTROLS CERTIFICATION FORMS

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C915281	Site Details		Box 1	
Sit	e Name For	mer Trico Plant				
City Co	e Address: 7 y/Town: Buff unty:Erie e Acreage: 2		Zip Code: 14203			
Re	porting Period	d: December 26, 2019 to A	pril 26, 2021			
					YES	NO
1.	Is the inform	nation above correct?			Χ	
	If NO, includ	de handwritten above or on	a separate sheet.			
2.		r all of the site property bee endment during this Report	en sold, subdivided, merged, or u ing Period?	indergone a		X
3.		een any change of use at th RR 375-1.11(d))?	ne site during this Reporting Perio	od		Χ
4.	•	deral, state, and/or local pe property during this Reporti	rmits (e.g., building, discharge) ting Period?	peen issued		X
	-		thru 4, include documentation usly submitted with this certifi			
5.	Is the site cu	urrently undergoing develop	ment?		X	
					Box 2	
					YES	NO
6.		nt site use consistent with th Residential, Commercial, an	` '		X	
7.	Are all ICs in	n place and functioning as c	designed?	X		
			ESTION 6 OR 7 IS NO, sign and REST OF THIS FORM. Otherwise		ınd	
AC	Corrective Me	easures Work Plan must be	submitted along with this form	to address ti	nese issi	ues.
 Sig	nature of Owr	ner, Remedial Party or Desigi	nated Representative	Date		

		Box 2	Α
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		Χ
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITE	NO C915281	Box	v 3

SITE NO. C915281 Box 3

Description of Institutional Controls

Parcel <u>Owner</u> **Institutional Control**

111.31-1-1.11 791 Washington Street, LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction Site Management Plan

O&M Plan IC/EC Plan

Monitoring Plan

- . Prohibition of use of groundwater.
- . Restricted Residential Use.
- . Soil Vapor Intrusion Evaluation for any future structures.
- . Soil Management or Excavation Work Plan for any future intrusive work.

Box 4

Description of Engineering Controls

Engineering Control <u>Parcel</u>

111.31-1-1.11

Vapor Mitigation Cover System

. Operation and Maintenance Plan for the Sub-slab Depressurization System.

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements							
1. I	certify by checking "YES" below that:							
	 a) the Periodic Review report and all attachments were prepared under the direction reviewed by, the party making the Engineering Control certification; 	ection of,	and					
 b) to the best of my knowledge and belief, the work and conclusions described in this cert are in accordance with the requirements of the site remedial program, and generally accept engineering practices; and the information presented is accurate and compete. 								
	engineering practices, and the information presented is accurate and compete.	YES	NO					
		X						
	For each Engineering control listed in Box 4, I certify by checking "YES" below that all following statements are true:	of the						
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the De	partmen	t;					
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	t public h	ealth and					
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control							
	(d) nothing has occurred that would constitute a violation or failure to comply w Site Management Plan for this Control; and	ith the						
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the sufficient for its intended purpose established in the sufficient for its intended purpose.							
		YES	NO					
		X						
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.							
A	A Corrective Measures Work Plan must be submitted along with this form to address these issues.							
Sig	gnature of Owner, Remedial Party or Designated Representative Date							

IC CERTIFICATIONS SITE NO. C915281

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I <u>PETER</u> print na		at 4 CENTRE 3	DRIVE, ORCHARD PARK, NY address
am certifying as	OWNER		(Owner or Remedial Party)
To a		tion of this form. Designated Representative	5/25/2) Date

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

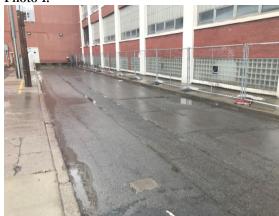
Thomas H. Forbes, P.E. at at	2558 Hamburg Turnpike, Suite 300, Buffalo NY 14218
print name	print business address
am certifying as a Professional Engineer for the	Owner
	(Owner or Remedial Party)
Signature of Professional Engineer, for the Owner Remedial Party, Rendering Certification	er or Stamp Date (Required for PE)

APPENDIX B

PHOTOGRAPHIC LOG

SITE PHOTOGRAPHS

Photo 1:



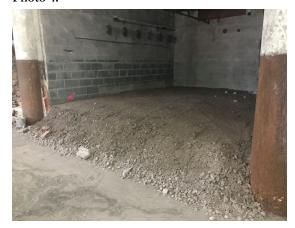

Photo 2:

Photo 3:

Photo 4:

- Photo 1: Asphalt cover system (Former Burton Street) on north side of building looking east.
- Photo 2: 2-foot crushed stone cover system over former subbasement in central portion of the building looking north.
- Photo 3: Concrete cover system (covered with plywood) in former loading dock area.
- Photo 4: 2-foot crushed stone cover system in former transformer room in central portion of the building, looking southwest.

SITE PHOTOGRAPHS

Photo 5:

Photo 6:

Photo 7:

Photo 8:

- Photo 5: Concrete cover system in norther portion of the building, looking west.
- Photo 6: Concrete cover system in southwestern portion of the building, looking northwest.
- Photo 7: Concrete cover system in the southeastern portion of the building, looking southeast.
- Photo 8: Concrete cover system in the southern central portion of the building, looking south. Location of MW-6 under 1 to 2inches of water due to rain.

APPENDIX C

DEMOLITION DEBRIS SAMPLING AND CORRESPONDENCE INFORMATION

From: Walia, Jaspal (DEC)
To: Chris Z. Boron

Cc: Tom H. Forbes, Michael McGuigan, Tom A. Behrendt

Subject: RE: Former Trico Plant Demolition Debris

Date: Friday, March 20, 2020 10:36:36 AM

Attachments: <u>image001.png</u>

Chris,

I have reviewed the materials data. Based upon our conversation today and review of the data, the materials can be removed from the site to an acceptable facility.

Thanks,

Jaspal

From: Chris Z. Boron <cboron@bm-tk.com> Sent: Tuesday, March 17, 2020 10:18 AM

To: Walia, Jaspal (DEC) < jaspal.walia@dec.ny.gov>

Cc: Tom H. Forbes <TForbes@bm-tk.com>; Michael McGuigan <mmcguigan@kroggrp.com>; Tom A.

Behrendt <TBehrendt@bm-tk.com>

Subject: Former Trico Plant Demolition Debris

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Hello Jaspal,

Hope all is well.

Some demolition debris has been generated at Trico from the on-going redevelopment activities. The concrete, brick, and block are from areas outside the former mass demolition area. As required by the Site Management Plan, representative composite samples were collected from the material and analyzed for PCBs. Benchmark collected the samples on February 21st. Wargo provided an excavator to dig into the piles and generate the 5-point composite samples. The attached photos show the three (3) areas of debris that were sampled. No material has been added to these piles since the sampling was completed.

We estimated that approximately 715 cubic yards of demo debris are present in the three (3) areas sampled. The analytical results are in the report titled L2007958. Demo Debris (DD) Comp #1 was collected from an estimated volume of 220 cyd, DD Comp #2 from an estimated volume of 215 cyds and DD Comp #3 from an estimated volume of 280 cyds. The PCB sample results were 0.319 mg/kg, 0.382 mg/kg, and 0.162 mg/kg, respectively, and the material is acceptable to be taken off-site for recycling. Similar to the mass demolition debris that had PCB concentration less than 1 mg/kg, the material will be taken to Iron City for recycling.

In addition to the demo debris, we also collected two (2) composite samples from the limestone blocks that was used to construct the wall in the old icehouse that will be removed. The analytical results are in the report titled L2009474. Sample LS-North had a PCB result of 0.32 mg/kg and LS-

South had a PCB result of 0.0165 mg/kg. The PCB concentrations are less than 1 mg/kg and the material is acceptable to be taken off-site for recycling (Iron City).

We would like to Department's approval to remove these materials from the Site. Please let us know if you have any questions or would like to discuss.

Regards,

Christopher Boron, P.G.

Sr. Project Manager

Strong Advocates | Effective Solutions | Integrated Implementation 2558 Hamburg Turnpike, Suite 300, Buffalo, NY 14218 Phone: (716) 856-0599, Cell Phone: (716) 864-2726

www.benchmarkturnkey.com

DISCLAIMERS:

<u>Confidentiality Notice:</u> The information contained in this message is intended only for the use of the addressee, and may be confidential and/or privileged. If the reader of this message is not the intended recipient, or the employee or agent responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately.

<u>Virus Warning:</u> While reasonable precautions have been taken to protect against viruses in this message, we accept no responsibility for any damages arising from the potential presence of such viruses.

<u>Contracts:</u> Nothing in this message shall be construed as legally binding upon Benchmark or TurnKey.

<u>Professional Opinions:</u> Views expressed in this message may only be relied upon as professional opinion if and when provided by principals of the Companies to authorized representatives of the organization with which we have an active client-engineer relationship and when directly pertaining to a binding contract scope of work.

DISCLAIMERS:

<u>Confidentiality Notice:</u> The information contained in this message is intended only for the use of the addressee, and may be confidential and/or privileged. If the reader of this message is not the intended recipient, or the employee or agent responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately.

<u>Virus Warning:</u> While reasonable precautions have been taken to protect against viruses in

ANALYTICAL REPORT

Lab Number: L2007958

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Chris Boron
Phone: (716) 856-0599

Project Name: FORMER TRICO PLANT

Project Number: 0092-016-001-006-06B

Report Date: 02/28/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FORMER TRICO PLANT **Project Number:** 0092-016-001-006-06B

6-001-006-06B

 Lab Number:
 L2007958

 Report Date:
 02/28/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2007958-01	DD COMP #1 2/21/20	BRICK	BUFFALO	02/21/20 12:10	02/21/20
L2007958-02	DD COMP #2 2/21/20	BRICK	BUFFALO	02/21/20 12:15	02/21/20
L2007958-03	DD COMP #3 2/21/20	BRICK	BUFFALO	02/21/20 12:20	02/21/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:FORMER TRICO PLANTLab Number:L2007958Project Number:0092-016-001-006-06BReport Date:02/28/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/28/20

Custen Walker Cristin Walker

ORGANICS

PCBS

Project Name:FORMER TRICO PLANTLab Number:L2007958

Project Number: 0092-016-001-006-06B **Report Date:** 02/28/20

SAMPLE RESULTS

Lab ID: L2007958-01 Date Collected: 02/21/20 12:10

Client ID: DD COMP #1 2/21/20 Date Received: 02/21/20 Sample Location: BUFFALO Field Prep: Not Specified

Sample Depth:

Matrix: Brick Extraction Method: EPA 3540C
Analytical Method: 1,8082A Extraction Date: 02/24/20 08:35
Analytical Date: 02/25/20 13:32 Cleanup Method: EPA 3665A

Analytical Date: 02/25/20 13:32 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 02/25/20
Percent Solids: 96% Cleanup Method: EPA 3660B
Cleanup Date: 02/25/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by G	C - Westborough Lab						
Aroclor 1016	ND		ug/kg	91.0	8.08	1	Α
Aroclor 1221	ND		ug/kg	91.0	9.12	1	Α
Aroclor 1232	ND		ug/kg	91.0	19.3	1	Α
Aroclor 1242	ND		ug/kg	91.0	12.3	1	Α
Aroclor 1248	286		ug/kg	91.0	13.6	1	Α
Aroclor 1254	ND		ug/kg	91.0	9.96	1	Α
Aroclor 1260	32.6	J	ug/kg	91.0	16.8	1	В
Aroclor 1262	ND		ug/kg	91.0	11.6	1	Α
Aroclor 1268	ND		ug/kg	91.0	9.43	1	Α
PCBs, Total	319	J	ug/kg	91.0	8.08	1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		30-150	Α
Decachlorobiphenyl	47		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	55		30-150	В
Decachlorobiphenyl	48		30-150	В

Project Name: FORMER TRICO PLANT Lab Number: L2007958

Project Number: 0092-016-001-006-06B **Report Date:** 02/28/20

SAMPLE RESULTS

Lab ID: L2007958-02 Date Collected: 02/21/20 12:15

Client ID: DD COMP #2 2/21/20 Date Received: 02/21/20 Sample Location: BUFFALO Field Prep: Not Specified

Sample Depth:

Matrix: Brick Extraction Method: EPA 3540C
Analytical Method: 1,8082A Extraction Date: 02/24/20 08:35

Analytical Date: 02/25/20 13:44

Analyst: AWS

Percent Solids: 95%

Cleanup Method: EPA 3665A

Cleanup Date: 02/25/20

Cleanup Method: EPA 3660B

Cleanup Date: 02/25/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Westb	orough Lab						
Aroclor 1016	ND		ug/kg	88.9	7.90	1	Α
Aroclor 1221	ND		ug/kg	88.9	8.91	1	Α
Aroclor 1232	ND		ug/kg	88.9	18.8	1	Α
Aroclor 1242	ND		ug/kg	88.9	12.0	1	Α
Aroclor 1248	183		ug/kg	88.9	13.3	1	Α
Aroclor 1254	154		ug/kg	88.9	9.73	1	В
Aroclor 1260	44.6	J	ug/kg	88.9	16.4	1	Α
Aroclor 1262	ND		ug/kg	88.9	11.3	1	Α
Aroclor 1268	ND		ug/kg	88.9	9.21	1	Α
PCBs, Total	382	J	ug/kg	88.9	7.90	1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		30-150	Α
Decachlorobiphenyl	61		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	70		30-150	В
Decachlorobiphenyl	59		30-150	В

Project Name: FORMER TRICO PLANT **Lab Number:** L2007958

Project Number: 0092-016-001-006-06B **Report Date:** 02/28/20

SAMPLE RESULTS

Lab ID: L2007958-03 Date Collected: 02/21/20 12:20

Client ID: DD COMP #3 2/21/20 Date Received: 02/21/20 Sample Location: BUFFALO Field Prep: Not Specified

Sample Depth:

Matrix: Brick Extraction Method: EPA 3540C Analytical Method: 1,8082A Extraction Date: 02/24/20 08:35

Analytical Date: 02/25/20 13:56 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 02/25/20
Percent Solids: 95% Cleanup Method: EPA 3660B

Percent Solids: 95% Cleanup Method: EPA 3660 Cleanup Date: 02/25/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - West	borough Lab						
Aroclor 1016	ND		ug/kg	90.8	8.06	1	Α
Aroclor 1221	ND		ug/kg	90.8	9.10	1	Α
Aroclor 1232	ND		ug/kg	90.8	19.2	1	Α
Aroclor 1242	ND		ug/kg	90.8	12.2	1	Α
Aroclor 1248	162		ug/kg	90.8	13.6	1	Α
Aroclor 1254	ND		ug/kg	90.8	9.93	1	А
Aroclor 1260	ND		ug/kg	90.8	16.8	1	Α
Aroclor 1262	ND		ug/kg	90.8	11.5	1	Α
Aroclor 1268	ND		ug/kg	90.8	9.41	1	А
PCBs, Total	162		ug/kg	90.8	8.06	1	А

Surrogate	% Recovery	Qualifier	Acceptance			
	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	55		30-150	Α		
Decachlorobiphenyl	49		30-150	Α		
2,4,5,6-Tetrachloro-m-xylene	55		30-150	В		
Decachlorobiphenyl	49		30-150	В		

Project Name:FORMER TRICO PLANTLab Number:L2007958

Project Number: 0092-016-001-006-06B **Report Date:** 02/28/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 02/25/20 12:57

Analyst: AWS

Extraction Method: EPA 3540C
Extraction Date: 02/24/20 08:35
Cleanup Method: EPA 3665A
Cleanup Date: 02/25/20
Cleanup Method: EPA 3660B
Cleanup Date: 02/25/20

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westboroug	h Lab for s	ample(s):	01-03	Batch:	WG13	43716-1
Aroclor 1016	ND		ug/kg	96.3		8.55	А
Aroclor 1221	ND		ug/kg	96.3		9.65	Α
Aroclor 1232	ND		ug/kg	96.3		20.4	Α
Aroclor 1242	ND		ug/kg	96.3		13.0	Α
Aroclor 1248	ND		ug/kg	96.3		14.4	Α
Aroclor 1254	ND		ug/kg	96.3		10.5	А
Aroclor 1260	ND		ug/kg	96.3		17.8	А
Aroclor 1262	ND		ug/kg	96.3		12.2	Α
Aroclor 1268	ND		ug/kg	96.3		9.98	Α
PCBs, Total	ND		ug/kg	96.3		8.55	Α

		Acceptance	ce	
Surrogate	%Recovery Qualifie	r Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	61	30-150	Α	
Decachlorobiphenyl	51	30-150	Α	
2,4,5,6-Tetrachloro-m-xylene	61	30-150	В	
Decachlorobiphenyl	51	30-150	В	

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER TRICO PLANT

Project Number:

0092-016-001-006-06B

Lab Number:

L2007958

Report Date:

02/28/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Westb	orough Lab Associa	ted sample(s)	: 01-03 Batch	: WG1343	3716-2 WG13437	16-3			
Aroclor 1016	68		64		40-140	6		50	Α
Aroclor 1260	59		54		40-140	9		50	Α

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	67	58	30-150 A
Decachlorobiphenyl	57	51	30-150 A
2,4,5,6-Tetrachloro-m-xylene	65	57	30-150 B
Decachlorobiphenyl	57	50	30-150 B

INORGANICS & MISCELLANEOUS

02/21/20 12:10

Project Name: FORMER TRICO PLANT
Project Number: 0092-016-001-006-06B

Lab Number: L2007958 **Report Date:** 02/28/20

Date Collected:

SAMPLE RESULTS

Lab ID: L2007958-01

Client ID: DD COMP #1 2/21/20 Date Received: 02/21/20 Sample Location: BUFFALO Field Prep: Not Specified

Campio Ecoadori. Borrita

Sample Depth:

Matrix: Brick

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	95.7		%	0.100	NA	1	-	02/22/20 12:45	121,2540G	RI

02/21/20 12:15

Project Name:FORMER TRICO PLANTLab Number:Project Number:0092-016-001-006-06BReport Date:

Lab Number: L2007958 **Report Date:** 02/28/20

Date Collected:

SAMPLE RESULTS

Lab ID: L2007958-02

Client ID: DD COMP #2 2/21/20 Date Received: 02/21/20 Sample Location: BUFFALO Field Prep: Not Specified

Sample Depth:

Matrix: Brick

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	94.8		%	0.100	NA	1	-	02/22/20 12:45	121,2540G	RI

L2007958

02/21/20 12:20

Project Name: Lab Number: FORMER TRICO PLANT **Project Number:** 0092-016-001-006-06B

Report Date: 02/28/20

Date Collected:

SAMPLE RESULTS

Lab ID: L2007958-03

Client ID: Date Received: DD COMP #3 2/21/20 02/21/20 Not Specified Sample Location: BUFFALO Field Prep:

Sample Depth:

Matrix: Brick

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	95.1		%	0.100	NA	1	-	02/22/20 12:45	121,2540G	RI

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** FORMER TRICO PLANT L2007958 **Project Number:** Report Date: 02/28/20 0092-016-001-006-06B

Parameter	Native Sam	ple D	Ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01-03	QC Batch ID:	WG1343446-1	QC Sample:	L2007965-01	Client ID:	DUP Sample
Solids, Total	96.7		96.9	%	0		20

Lab Number: L2007958

Report Date: 02/28/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

FORMER TRICO PLANT

Cooler Information

Project Name:

Cooler Custody Seal

Project Number: 0092-016-001-006-06B

A Absent

Container Information		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	pН	deg C		Seal	Date/Time	Analysis(*)
L2007958-01A	Glass 120ml/4oz unpreserved	Α	NA		5.3	Υ	Absent		TS(7),NYTCL-8082-CNCRT(14)
L2007958-02A	Glass 120ml/4oz unpreserved	Α	NA		5.3	Υ	Absent		TS(7),NYTCL-8082-CNCRT(14)
L2007958-03A	Glass 120ml/4oz unpreserved	Α	NA		5.3	Υ	Absent		TS(7),NYTCL-8082-CNCRT(14)

GLOSSARY

Acronyms

EDL

LOQ

MS

NP

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER TRICO PLANTLab Number:L2007958Project Number:0092-016-001-006-06BReport Date:02/28/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 16

Page 1 of 1

Published Date: 2/17/2020 10:46:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Azobenzene, Azobenzene, Azobenzene, Azoben

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01561 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 White Albany, NY 12205: 14 Walke Tonawanda, NY 14150: 275 of Project Information Project Name: Project Location:	r Way Cooper Ave, Suite			ge of /	Deli	Date in t iverables	ab O	2/=	ASP-B	20	ALPHA Job # 1958 Billing Information Same as Client Info
lakon N	14218 18-8358 6-0583	Project # 00 9 2 (Use Project name as Project Manager: ALPHAQuote #: Turn-Around Time Standar Rush (only if pre approve	Aris T	Due Dat # of Day	e:			Other ulatory I	Requirements SS tandards tricted Use estricted Use wer Discha	ent	EQuIS (4 NY Part 3) NY CP-51 Other	75	Po# Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other:
Other project specific	requirements/comme	ents:			- 4		ANA	LYSIS				_	Sample Filtration
Please specify Metals ALPHA Lab ID (Lab Use Only)		CAT B	Coll	ection	Sample	Sampler's	PCBs						☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)
07958-01	DD comp	tweeten.	Date 2 2 1 2 5	Time	Matrix	Initials	1						Sample Specific Comments
-02 -03	DD Compt	12 2/21/20	1	1215	+Bish Concert + Brish	TAS	XXX						1
eservative Code: C	ontainer Code							-		-			
= None				Container Type Preservative			A				and co		Please print clearly, legibly and completely. Samples can not be logged in and
= MeOH C = NaHSO ₄ O = Na ₂ S ₂ O ₃ E	= Cube = Other = Encore = BOD Bottle	Relinquished B				R	eceive	ed By:	J 3/	1/20	ate/Time	45	turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)

ANALYTICAL REPORT

Lab Number: L2009474

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Chris Boron
Phone: (716) 856-0599

Project Name: FORMER TRICO PLANT

Project Number: B0092-016-001-006-06

Report Date: 03/10/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FORMER TRICO PLANT **Project Number:**

B0092-016-001-006-06

Lab Number: L2009474 Report Date: 03/10/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2009474-01	LS-NORTH 3/3/20	SOLID	BUFFALO	03/03/20 10:50	03/03/20
L2009474-02	LS-SOUTH 3/3/20	SOLID	BUFFALO	03/03/20 11:00	03/03/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.								

Serial_No:03102010:28

Project Name:FORMER TRICO PLANTLab Number:L2009474Project Number:B0092-016-001-006-06Report Date:03/10/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/10/20

Melissa Sturgis Melissa Sturgis

ORGANICS

PCBS

Serial_No:03102010:28

Project Name: FORMER TRICO PLANT Lab Number: L2009474

SAMPLE RESULTS

Lab ID: L2009474-01 Date Collected: 03/03/20 10:50

Client ID: LS-NORTH 3/3/20 Date Received: 03/03/20 Sample Location: BUFFALO Field Prep: Not Specified

Sample Depth:

Matrix: Solid Extraction Method: EPA 3540C
Analytical Method: 1,8082A Extraction Date: 03/07/20 11:40

Analytical Date: 03/08/20 23:46 Cleanup Method: EPA 3665A
Analyst: CW Cleanup Date: 03/08/20
Percent Solids: 98% Cleanup Method: EPA 3660B

Percent Solids: 98% Cleanup Method: EPA 366 Cleanup Date: 03/08/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/kg	93.2	8.28	1	Α			
Aroclor 1221	ND		ug/kg	93.2	9.34	1	Α			
Aroclor 1232	ND		ug/kg	93.2	19.8	1	Α			
Aroclor 1242	ND		ug/kg	93.2	12.6	1	Α			
Aroclor 1248	280		ug/kg	93.2	14.0	1	В			
Aroclor 1254	ND		ug/kg	93.2	10.2	1	Α			
Aroclor 1260	39.9	J	ug/kg	93.2	17.2	1	В			
Aroclor 1262	ND		ug/kg	93.2	11.8	1	Α			
Aroclor 1268	ND		ug/kg	93.2	9.66	1	А			
PCBs, Total	320	J	ug/kg	93.2	8.28	1	В			

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		30-150	Α
Decachlorobiphenyl	67		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	63		30-150	В
Decachlorobiphenyl	72		30-150	В

Serial_No:03102010:28

Project Name: FORMER TRICO PLANT Lab Number: L2009474

SAMPLE RESULTS

Lab ID: Date Collected: 03/03/20 11:00

Client ID: LS-SOUTH 3/3/20 Date Received: 03/03/20 Sample Location: BUFFALO Field Prep: Not Specified

Sample Depth:

Matrix: Solid Extraction Method: EPA 3540C
Analytical Method: 1,8082A Extraction Date: 03/07/20 11:40

Analystical Date: 03/08/20 23:58

Analyst: CW

Cleanup Method: EPA 3665A

Cleanup Date: 03/08/20

Percent Solids: 98% Cleanup Method: EPA 3660B
Cleanup Date: 03/08/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Polychlorinated Biphenyls by GC - Westborough Lab											
Aroclor 1016	ND		ug/kg	99.8	8.87	1	А				
Aroclor 1221	ND		ug/kg	99.8	10.0	1	Α				
Aroclor 1232	ND		ug/kg	99.8	21.2	1	Α				
Aroclor 1242	ND		ug/kg	99.8	13.5	1	Α				
Aroclor 1248	16.5	J	ug/kg	99.8	15.0	1	В				
Aroclor 1254	ND		ug/kg	99.8	10.9	1	Α				
Aroclor 1260	ND		ug/kg	99.8	18.4	1	Α				
Aroclor 1262	ND		ug/kg	99.8	12.7	1	Α				
Aroclor 1268	ND		ug/kg	99.8	10.3	1	Α				
PCBs, Total	16.5	J	ug/kg	99.8	8.87	1	В				

Surrogate	% Recovery	Qualifier	Acceptance Qualifier Criteria		
2,4,5,6-Tetrachloro-m-xylene	57		30-150	Α	
Decachlorobiphenyl	57		30-150	Α	
2,4,5,6-Tetrachloro-m-xylene	62		30-150	В	
Decachlorobiphenyl	63		30-150	В	

Project Name:FORMER TRICO PLANTLab Number:L2009474

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 03/09/20 00:10

Analyst: CW

Extraction Method: EPA 3540C
Extraction Date: 03/07/20 11:40
Cleanup Method: EPA 3665A
Cleanup Date: 03/08/20
Cleanup Date: 03/08/20
Cleanup Date: 03/08/20

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC -	- Westborough	n Lab for s	ample(s):	01-02	Batch: WG1348	3389-1
Aroclor 1016	ND		ug/kg	96.7	8.59	А
Aroclor 1221	ND		ug/kg	96.7	9.69	Α
Aroclor 1232	ND		ug/kg	96.7	20.5	Α
Aroclor 1242	ND		ug/kg	96.7	13.0	Α
Aroclor 1248	ND		ug/kg	96.7	14.5	Α
Aroclor 1254	ND		ug/kg	96.7	10.6	Α
Aroclor 1260	ND		ug/kg	96.7	17.9	Α
Aroclor 1262	ND		ug/kg	96.7	12.3	Α
Aroclor 1268	ND		ug/kg	96.7	10.0	Α
PCBs, Total	ND		ug/kg	96.7	8.59	А

		Acceptan	ce
Surrogate	%Recovery Qual	ifier Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62	30-150	Α
Decachlorobiphenyl	60	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	63	30-150	В
Decachlorobiphenyl	63	30-150	В

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER TRICO PLANT

Lab Number:

L2009474

Project Number: B0092-016-001-006-06 Report Date:

03/10/20

	LCS		LCSD		%Recovery				
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 0				n: WG1348	389-2 WG134838	39-3			
Aroclor 1016	71		73		40-140	3		50	Α
Aroclor 1260	64		69		40-140	8		50	А

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	65	68	30-150 A
Decachlorobiphenyl	65	69	30-150 A
2,4,5,6-Tetrachloro-m-xylene	67	67	30-150 B
Decachlorobiphenyl	69	70	30-150 B

INORGANICS & MISCELLANEOUS

Serial_No:03102010:28

Project Name: FORMER TRICO PLANT Lab Number:

L2009474

Project Number: B0092-016-001-006-06 Report Date:

03/10/20

SAMPLE RESULTS

Lab ID: L2009474-01 Client ID: LS-NORTH 3/3/20 Date Collected: Date Received: 03/03/20 10:50

Sample Location: BUFFALO

03/03/20

Field Prep:

Not Specified

Sample Depth:

Matrix:

Solid

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	97.5		%	0.100	NA	1	-	03/05/20 04:51	121,2540G	PR

Serial_No:03102010:28

Project Name:FORMER TRICO PLANTLab Number:L2009474Project Number:B0092-016-001-006-06Report Date:03/10/20

SAMPLE RESULTS

Lab ID:L2009474-02Date Collected:03/03/20 11:00Client ID:LS-SOUTH 3/3/20Date Received:03/03/20Sample Location:BUFFALOField Prep:Not Specified

Sample Depth:

Matrix: Solid

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	97.8		%	0.100	NA	1	-	03/05/20 04:51	121,2540G	PR

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** FORMER TRICO PLANT L2009474 **Project Number:** Report Date: 03/10/20 B0092-016-001-006-06

Parameter	Native Sam	iple l	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated samp	ole(s): 01-02	QC Batch ID	: WG1347385-1	QC Sample:	L2009796-03	Client ID:	DUP Sample
Solids, Total	82.0		81.7	%	0		20

Serial_No:03102010:28

FORMER TRICO PLANT Lab Number: L2009474 **Project Number:** B0092-016-001-006-06

Report Date: 03/10/20

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Project Name:

Custody Seal Cooler

Absent Α

Container Information		rmation		Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	рН	pН	deg C	eg C Pres Seal Date/Time	Date/Time	Analysis(*)	
	L2009474-01A	Glass 120ml/4oz unpreserved	Α	NA		5.3	Υ	Absent		TS(7),NYTCL-8082-3540C(14)
	L2009474-02A	Glass 120ml/4oz unpreserved	Α	NA		5.3	Υ	Absent		TS(7) NYTCL-8082-3540C(14)

Project Name: Lab Number: FORMER TRICO PLANT L2009474 **Project Number:** B0092-016-001-006-06 **Report Date:** 03/10/20

GLOSSARY

Acronyms

LOD

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.) - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The

LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER TRICO PLANTLab Number:L2009474Project Number:B0092-016-001-006-06Report Date:03/10/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER TRICO PLANTLab Number:L2009474Project Number:B0092-016-001-006-06Report Date:03/10/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:03102010:28

Project Name:FORMER TRICO PLANTLab Number:L2009474Project Number:B0092-016-001-006-06Report Date:03/10/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:03102010:28

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 16

Page 1 of 1

Published Date: 2/17/2020 10:46:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ДСРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co	05	Page L of		D	ate Rec'		ho	ALPHA Job # L2009474				
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliver	ables					Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	Forme	Trice.	Plank			ASP-A			ASP-E	3	Same as Client	Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	Bulh	4			□ 6	QuIS (1 F	File)		EQuI5	(4 File)	PO#	
Client Information		Project # '300	Ball 92-01	6-001-	000-06	A		Other						
Client: Beachma	-KEn-	(Use Project name as F	Project #)	001	000 00		Regula	itory Requ	ireme	nt		157007	Disposal Site Inform	ation
Address: Z558 H		Project Manager: (. 1	R.v.			100	Y TOGS			NY Par	t 375	Please identify below to	cation of
Leden Ni	14218	ALPHAQuote #:	mis	Birton			1 7	WQ Standa	ards	П	NY CP	-51	applicable disposal facil	
	18-8358	Turn-Around Time	O NE	STATE OF STREET	TO VEST	316	=	VY Restricte			Other		Disposal Facility:	
Fax: (716) 85	6-0583	Standar		Due Date	\·			VY Unrestric		_	5000			NY
	Letinhylle.cm	Rush (only if pre approve		# of Days				YC Sewer					Other:	1000
			٠,٢	# Of Days).		ANAL		Discha	ge			Sample Filtration	Т.
These samples have t Other project specifi	The state of the s						ANAL	1313	_				Sample Filtration	
Please specify Metal	•		78				PCBs						Done Lab to do Preservation Lab to do (Please Specify bei	t a l B
ALPHA Lab ID			Col	lection	Sample	Sampler's	6						***************************************	t
(Lab Use Only)	S	ample ID	Date	Time	Matrix	Initials	1	- 1					Sample Specific Com	ments
09474-d	1c - 11	W. 3/3/20	3/3/20		Linestone	2	×	_	-				Cumpic Opecine Conn	1
-02	10 5	Mh 3/3/20 th 3/3/20	1010	1003	1	T43	8	-	+-	-	\vdash			- 1
	L3 - 300	TVI 313120	4	11004	+	+	0	_	-	-	-			
		121	-		-	_	\vdash	_	-	-	\vdash	-		
				-	-		-	_	-	-	_			
			-				\vdash	_	-					_
HE (CONTRACTOR									1	_				
										-				
Preservative Code: A = None B = HCI C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification Mansfield: Certification			Con	tainer Type	A						Please print clear and completely. S not be logged in a	amples can
D = H ₂ SO ₄	G = Glass				F	reservative	1	- 1					turnaround time c	
E = NaOH F = MeOH	B = Bacteria Cup C = Cube	Dellacuished	4 D	T p-1	(T)		<u> </u>	10	_	\vdash	Data	TT	start until any amb resolved, BY EXE	
G = NaHSO ₄	O = Other	Relinquished	д Бу.		Time		Receive	AAC		2/		Time	THIS COO THE	
H = Na ₂ S ₂ O ₃	E = Encore D = BOD Bottle	The state of the s		1-121-	1010	Com	m	7-1-1		200		15:48	HAS READ AND	AGREES
K/E = Zn Ac/NaOH O = Other		Jun HL A	AL	3/3/20	1719	11	111	M		5/4	190	0145	TERMS & COND	ITIONS.
Form No: 01-25 HC (rev.	30-Sept-2013))				(See reverse side	.)

APPENDIX D

GROUNDWATER SAMPLING INFORMATION

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-172679-1

Client Project/Site: Benchmark-791 Washington St.(Trico site)

For:

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, New York 14218

Attn: Mr. Christopher Z Boron

J

Authorized for release by: 7/28/2020 11:38:36 AM

Rebecca Jones, Project Management Assistant I Rebecca. Jones @ Eurofinset.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835

Brian.Fischer@Eurofinset.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

ŏ

10

12

13

14

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	23
QC Sample Results	24
QC Association Summary	33
Lab Chronicle	34
Certification Summary	36
Method Summary	37
Sample Summary	38
Chain of Custody	39
Receipt Checklists	40

Definitions/Glossary

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-172679-1

Qualifiers

\sim	MS'	10

Qualifier	Qualifier Description
E	Result exceeded calibration range.
F1	MS and/or MSD recovery exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

7/28/2020

Case Narrative

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-172679-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-172679-1

Comments

No additional comments.

Receipt

The samples were received on 7/22/2020 11:40 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.2° C.

GC/MS VOA

Method 8260C: The following sample was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: RI-MW-4 (480-172679-2). pH is 6.

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: RI-MW-4 (480-172679-2). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatile samples were diluted due to foaming at the time of purging during the original sample analysis: RI-MW-2 (480-172679-1), RI-MW-6 (480-172679-3), RI-MW-11 (480-172679-6), RI-MW-12 (480-172679-7), (480-172679-A-1 MS) and (480-172679-A-1 MSD). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: RI-MW-4 (480-172679-2). pH is 4.

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: RI-MW-4 (480-172679-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

Job ID: 480-172679-1

3

4

9

6

a

10

12

13

14

Client: Turnkey Environmental Restoration, LLC
Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-172679-1

Lab Sample ID: 480-172679-3

Lab Sample ID: 480-172679-4

Lab Sample ID: 480-172679-5

Lab Sample ID: 480-172679-6

Lab Sample ID: 480-172679-7

Lab Sample ID: 480-172679-8

Client Sample ID: RI-MW-2 Lab Sample ID: 480-172679-1

<u> </u>					
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Trichloroethene	6.8	4.0	1.8 ug/L	4 8260C	Total/NA

Client Sample ID: RI-MW-4 Lab Sample ID: 480-172679-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	8.8	J	20	6.0	ug/L	2	_	8260C	Total/NA
Carbon disulfide	3.0		2.0	0.38	ug/L	2		8260C	Total/NA
cis-1,2-Dichloroethene	180		2.0	1.6	ug/L	2		8260C	Total/NA
trans-1,2-Dichloroethene	210	E	2.0	1.8	ug/L	2		8260C	Total/NA
Trichloroethene	1.1	J	2.0	0.92	ug/L	2		8260C	Total/NA
Vinyl chloride	73		2.0	1.8	ug/L	2		8260C	Total/NA
Carbon disulfide - DL	1.9	J	4.0	0.76	ug/L	4		8260C	Total/NA
cis-1,2-Dichloroethene - DL	190		4.0	3.2	ug/L	4		8260C	Total/NA
Methyl tert-butyl ether - DL	2.2	J	4.0	0.64	ug/L	4		8260C	Total/NA
trans-1,2-Dichloroethene - DL	230		4.0	3.6	ug/L	4		8260C	Total/NA
Vinyl chloride - DL	84		4.0	3.6	ug/L	4		8260C	Total/NA

Client Sample ID: RI-MW-6

Analyte	Result Qual	lifier RL	MDL	Unit	Dil Fac	D	Method	Prep Typ	e
cis-1,2-Dichloroethene	3.6	2.0	1.6	ug/L	2	_	8260C	Total/NA	
trans-1,2-Dichloroethene	1.8 J	2.0	1.8	ug/L	2		8260C	Total/NA	

Client Sample ID: RI-MW-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Butanone (MEK)	4.1	J	10	1.3	ug/L	1	_	8260C	Total/NA
Acetone	26		10	3.0	ug/L	1		8260C	Total/NA
Carbon disulfide	1.5		1.0	0.19	ug/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	2.8		1.0	0.81	ug/L	1		8260C	Total/NA
Tetrachloroethene	0.68	J	1.0	0.36	ug/L	1		8260C	Total/NA
Trichloroethene	3.7		1.0	0.46	ug/L	1		8260C	Total/NA

Client Sample ID: RI-MW-10

_										
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Chloromethane	0.43	J	1.0	0.35	ug/L	1	_	8260C	Total/NA	
Trichloroethene	2.0		1.0	0.46	ug/L	1		8260C	Total/NA	

Client Sample ID: RI-MW-11

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
cis-1,2-Dichloroethene	2.2	2.0	1.6 ug/L	28260C	Total/NA
Methylene Chloride	0.93 J	2.0	0.88 ug/L	2 8260C	Total/NA

Client Sample ID: RI-MW-12

No Detections.

Client Sample ID: TRIP BLANK

<u> </u>				•	
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Toluene	1.2	1.0	0.51 ug/L	1 8260C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

-

6

8

10

12

14

13

, , , , , ,

7/28/2020

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-2

Date Received: 07/22/20 11:40

Lab Sample ID: 480-172679-1 Date Collected: 07/21/20 09:05

Matrix: Water

Job ID: 480-172679-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	4.0	3.3	ug/L			07/24/20 02:59	-
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	ug/L			07/24/20 02:59	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L			07/24/20 02:59	
1,1,2-Trichloroethane	ND	4.0	0.92	ug/L			07/24/20 02:59	
1,1-Dichloroethane	ND	4.0	1.5	ug/L			07/24/20 02:59	
1,1-Dichloroethene	ND	4.0	1.2	ug/L			07/24/20 02:59	
1,2,4-Trichlorobenzene	ND	4.0	1.6	ug/L			07/24/20 02:59	
1,2,4-Trimethylbenzene	ND	4.0	3.0	ug/L			07/24/20 02:59	
1,2-Dibromo-3-Chloropropane	ND	4.0	1.6	ug/L			07/24/20 02:59	
1,2-Dibromoethane	ND	4.0	2.9	ug/L			07/24/20 02:59	
1,2-Dichlorobenzene	ND	4.0	3.2	ug/L			07/24/20 02:59	
1,2-Dichloroethane	ND	4.0	0.84	ug/L			07/24/20 02:59	
1,2-Dichloropropane	ND	4.0	2.9	ug/L			07/24/20 02:59	
1,3,5-Trimethylbenzene	ND	4.0	3.1	ug/L			07/24/20 02:59	
1,3-Dichlorobenzene	ND	4.0	3.1	ug/L			07/24/20 02:59	
1,4-Dichlorobenzene	ND	4.0	3.4	ug/L			07/24/20 02:59	
2-Butanone (MEK)	ND	40	5.3	ug/L			07/24/20 02:59	
2-Hexanone	ND	20	5.0	ug/L			07/24/20 02:59	
4-Isopropyltoluene	ND	4.0	1.2	ug/L			07/24/20 02:59	
4-Methyl-2-pentanone (MIBK)	ND	20	8.4	ug/L			07/24/20 02:59	
Acetone	ND	40	12	ug/L			07/24/20 02:59	
Benzene	ND	4.0	1.6	ug/L			07/24/20 02:59	
Bromodichloromethane	ND	4.0		ug/L			07/24/20 02:59	
Bromoform	ND	4.0		ug/L			07/24/20 02:59	
Bromomethane	ND	4.0		ug/L			07/24/20 02:59	
Carbon disulfide	ND	4.0		ug/L			07/24/20 02:59	
Carbon tetrachloride	ND	4.0		ug/L			07/24/20 02:59	
Chlorobenzene	ND	4.0		ug/L			07/24/20 02:59	
Chloroethane	ND	4.0		ug/L			07/24/20 02:59	
Chloroform	ND	4.0		ug/L			07/24/20 02:59	
Chloromethane	ND	4.0		ug/L			07/24/20 02:59	
cis-1,2-Dichloroethene	ND	4.0		ug/L			07/24/20 02:59	
cis-1,3-Dichloropropene	ND	4.0		ug/L			07/24/20 02:59	
Cyclohexane	ND	4.0		ug/L			07/24/20 02:59	
Dibromochloromethane	ND	4.0		ug/L			07/24/20 02:59	
Dichlorodifluoromethane	ND	4.0		ug/L			07/24/20 02:59	
Ethylbenzene	ND	4.0		ug/L			07/24/20 02:59	
Isopropylbenzene	ND	4.0		ug/L			07/24/20 02:59	
m,p-Xylene	ND	8.0		ug/L			07/24/20 02:59	
Methyl acetate	ND	10		ug/L			07/24/20 02:59	
Methyl tert-butyl ether	ND	4.0		ug/L			07/24/20 02:59	
Methylcyclohexane	ND	4.0		ug/L			07/24/20 02:59	
Methylene Chloride	ND	4.0		ug/L			07/24/20 02:59	
n-Butylbenzene	ND	4.0		ug/L			07/24/20 02:59	
N-Propylbenzene	ND ND	4.0		ug/L ug/L			07/24/20 02:59	
o-Xylene	ND ND	4.0						
-	ND ND	4.0		ug/L			07/24/20 02:59	
sec-Butylbenzene				ug/L			07/24/20 02:59	
Styrene tert-Butylbenzene	ND ND	4.0		ug/L ug/L			07/24/20 02:59 07/24/20 02:59	

Eurofins TestAmerica, Buffalo

Page 6 of 40 7/28/2020

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-2

Lab Sample ID: 480-172679-1 Date Collected: 07/21/20 09:05

Matrix: Water

Job ID: 480-172679-1

Date Received: 07/22/20 11:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		4.0	1.4	ug/L			07/24/20 02:59	4
Toluene	ND		4.0	2.0	ug/L			07/24/20 02:59	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			07/24/20 02:59	4
trans-1,3-Dichloropropene	ND	F1	4.0	1.5	ug/L			07/24/20 02:59	4
Trichloroethene	6.8		4.0	1.8	ug/L			07/24/20 02:59	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			07/24/20 02:59	4
Vinyl chloride	ND		4.0	3.6	ug/L			07/24/20 02:59	4
Xylenes, Total	ND		8.0	2.6	ug/L			07/24/20 02:59	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120			_		07/24/20 02:59	4
4-Bromofluorobenzene (Surr)	98		73 - 120					07/24/20 02:59	4
Toluene-d8 (Surr)	101		80 - 120					07/24/20 02:59	4

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Lab Sample ID: 480-172679-2

Matrix: Water

Job ID: 480-172679-1

Client Sample ID: RI-MW-4

Date Collected: 07/21/20 13:14 Date Received: 07/22/20 11:40

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	2.0	1.6	ug/L			07/24/20 03:22	2
1,1,2,2-Tetrachloroethane	ND	2.0	0.42	ug/L			07/24/20 03:22	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0		ug/L			07/24/20 03:22	2
1,1,2-Trichloroethane	ND	2.0		ug/L			07/24/20 03:22	2
1,1-Dichloroethane	ND	2.0		ug/L			07/24/20 03:22	2
1,1-Dichloroethene	ND	2.0		ug/L			07/24/20 03:22	2
1,2,4-Trichlorobenzene	ND	2.0		ug/L			07/24/20 03:22	2
1,2,4-Trimethylbenzene	ND	2.0		ug/L			07/24/20 03:22	2
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L			07/24/20 03:22	2
1,2-Dibromoethane	ND	2.0		ug/L			07/24/20 03:22	2
1,2-Dichlorobenzene	ND	2.0		ug/L			07/24/20 03:22	2
1,2-Dichloroethane	ND	2.0		ug/L			07/24/20 03:22	2
1,2-Dichloropropane	ND	2.0		ug/L			07/24/20 03:22	2
1,3,5-Trimethylbenzene	ND	2.0		ug/L			07/24/20 03:22	2
1,3-Dichlorobenzene	ND ND	2.0		ug/L ug/L			07/24/20 03:22	2
1,4-Dichlorobenzene	ND	2.0		ug/L			07/24/20 03:22	2
	ND ND	2.0		_			07/24/20 03:22	2
2-Butanone (MEK)				ug/L				
2-Hexanone	ND ND	10		ug/L			07/24/20 03:22	
4-Isopropyltoluene	ND	2.0		ug/L			07/24/20 03:22	2
4-Methyl-2-pentanone (MIBK)	ND	10		ug/L			07/24/20 03:22	2
Acetone 	8.8 J	20		ug/L			07/24/20 03:22	2
Benzene	ND	2.0		ug/L			07/24/20 03:22	2
Bromodichloromethane	ND	2.0	0.78	•			07/24/20 03:22	2
3romoform	ND	2.0		ug/L			07/24/20 03:22	2
Bromomethane	ND	2.0		ug/L			07/24/20 03:22	2
Carbon disulfide	3.0	2.0		ug/L			07/24/20 03:22	2
Carbon tetrachloride	ND	2.0		ug/L			07/24/20 03:22	2
Chlorobenzene	ND	2.0	1.5	ug/L			07/24/20 03:22	2
Chloroethane	ND	2.0	0.64	ug/L			07/24/20 03:22	2
Chloroform	ND	2.0	0.68	ug/L			07/24/20 03:22	2
Chloromethane	ND	2.0	0.70	ug/L			07/24/20 03:22	2
cis-1,2-Dichloroethene	180	2.0	1.6	ug/L			07/24/20 03:22	2
cis-1,3-Dichloropropene	ND	2.0	0.72	ug/L			07/24/20 03:22	2
Cyclohexane	ND	2.0	0.36	ug/L			07/24/20 03:22	2
Dibromochloromethane	ND	2.0	0.64	ug/L			07/24/20 03:22	2
Dichlorodifluoromethane	ND	2.0	1.4	ug/L			07/24/20 03:22	2
Ethylbenzene	ND	2.0	1.5	ug/L			07/24/20 03:22	2
Isopropylbenzene	ND	2.0	1.6	ug/L			07/24/20 03:22	2
m,p-Xylene	ND	4.0	1.3	ug/L			07/24/20 03:22	2
Methyl acetate	ND	5.0	2.6	ug/L			07/24/20 03:22	2
Methyl tert-butyl ether	ND	2.0		ug/L			07/24/20 03:22	2
Methylcyclohexane	ND	2.0	0.32	ug/L			07/24/20 03:22	2
Methylene Chloride	ND	2.0		ug/L			07/24/20 03:22	2
n-Butylbenzene	ND	2.0		ug/L			07/24/20 03:22	2
N-Propylbenzene	ND	2.0		ug/L			07/24/20 03:22	2
o-Xylene	ND	2.0		ug/L			07/24/20 03:22	2
sec-Butylbenzene	ND	2.0		ug/L			07/24/20 03:22	2
Styrene	ND	2.0		ug/L			07/24/20 03:22	2
tert-Butylbenzene	ND	2.0		ug/L			07/24/20 03:22	2

Eurofins TestAmerica, Buffalo

Page 8 of 40 7/28/2020

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-4

Date Collected: 07/21/20 13:14 Date Received: 07/22/20 11:40

Toluene-d8 (Surr)

Lab Sample ID: 480-172679-2

07/24/20 03:22

Matrix: Water

Job ID: 480-172679-1

Method: 8260C - Volatile Orga	nic Compounds	by GC/MS (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		2.0	0.72	ug/L			07/24/20 03:22	2
Toluene	ND		2.0	1.0	ug/L			07/24/20 03:22	2
trans-1,2-Dichloroethene	210	E	2.0	1.8	ug/L			07/24/20 03:22	2
trans-1,3-Dichloropropene	ND		2.0	0.74	ug/L			07/24/20 03:22	2
Trichloroethene	1.1	J	2.0	0.92	ug/L			07/24/20 03:22	2
Trichlorofluoromethane	ND		2.0	1.8	ug/L			07/24/20 03:22	2
Vinyl chloride	73		2.0	1.8	ug/L			07/24/20 03:22	2
Xylenes, Total	ND		4.0	1.3	ug/L			07/24/20 03:22	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	-	77 - 120			-		07/24/20 03:22	2
4-Bromofluorobenzene (Surr)	101		73 - 120					07/24/20 03:22	2

80 - 120

100

-								_
Method: 8260C - Volatile Organic Analyte	Compounds by GC/MS - DI Result Qualifier	L RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND THE TREE TO THE TREE TREE TO THE TREE TREE TO THE TREE TREE TREE TREE TREE TREE TREE	4.0		ug/L	<u>-</u> -		07/24/20 13:19	4
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	ug/L			07/24/20 13:19	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0		ug/L			07/24/20 13:19	4
1,1,2-Trichloroethane	ND	4.0	0.92	ug/L			07/24/20 13:19	4
1,1-Dichloroethane	ND	4.0	1.5	ug/L			07/24/20 13:19	4
1,1-Dichloroethene	ND	4.0		ug/L			07/24/20 13:19	4
1,2,4-Trichlorobenzene	ND	4.0	1.6	ug/L			07/24/20 13:19	4
1,2,4-Trimethylbenzene	ND	4.0	3.0	ug/L			07/24/20 13:19	4
1,2-Dibromo-3-Chloropropane	ND	4.0	1.6	ug/L			07/24/20 13:19	4
1,2-Dibromoethane	ND	4.0	2.9	ug/L			07/24/20 13:19	4
1,2-Dichlorobenzene	ND	4.0	3.2	ug/L			07/24/20 13:19	4
1,2-Dichloroethane	ND	4.0	0.84	ug/L			07/24/20 13:19	4
1,2-Dichloropropane	ND	4.0	2.9	ug/L			07/24/20 13:19	4
1,3,5-Trimethylbenzene	ND	4.0	3.1	ug/L			07/24/20 13:19	4
1,3-Dichlorobenzene	ND	4.0	3.1	ug/L			07/24/20 13:19	4
1,4-Dichlorobenzene	ND	4.0	3.4	ug/L			07/24/20 13:19	4
2-Butanone (MEK)	ND	40	5.3	ug/L			07/24/20 13:19	4
2-Hexanone	ND	20	5.0	ug/L			07/24/20 13:19	4
4-Isopropyltoluene	ND	4.0	1.2	ug/L			07/24/20 13:19	4
4-Methyl-2-pentanone (MIBK)	ND	20	8.4	ug/L			07/24/20 13:19	4
Acetone	ND	40	12	ug/L			07/24/20 13:19	4
Benzene	ND	4.0	1.6	ug/L			07/24/20 13:19	4
Bromodichloromethane	ND	4.0	1.6	ug/L			07/24/20 13:19	4
Bromoform	ND	4.0	1.0	ug/L			07/24/20 13:19	4
Bromomethane	ND	4.0	2.8	ug/L			07/24/20 13:19	4
Carbon disulfide	1.9 J	4.0	0.76	ug/L			07/24/20 13:19	4
Carbon tetrachloride	ND	4.0	1.1	ug/L			07/24/20 13:19	4
Chlorobenzene	ND	4.0	3.0	ug/L			07/24/20 13:19	4
Chloroethane	ND	4.0	1.3	ug/L			07/24/20 13:19	4
Chloroform	ND	4.0	1.4	ug/L			07/24/20 13:19	4
Chloromethane	ND	4.0	1.4	ug/L			07/24/20 13:19	4
cis-1,2-Dichloroethene	190	4.0	3.2	ug/L			07/24/20 13:19	4
cis-1,3-Dichloropropene	ND	4.0	1.4	ug/L			07/24/20 13:19	4
Cyclohexane	ND	4.0	0.72	ug/L			07/24/20 13:19	4

Eurofins TestAmerica, Buffalo

Page 9 of 40 7/28/2020

1

5

7

10

12

2

3

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-4

Toluene-d8 (Surr)

Lab Sample ID: 480-172679-2 Date Collected: 07/21/20 13:14

103

Matrix: Water Date Received: 07/22/20 11:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromochloromethane	ND		4.0	1.3	ug/L			07/24/20 13:19	4
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			07/24/20 13:19	4
Ethylbenzene	ND		4.0	3.0	ug/L			07/24/20 13:19	4
Isopropylbenzene	ND		4.0	3.2	ug/L			07/24/20 13:19	4
m,p-Xylene	ND		8.0	2.6	ug/L			07/24/20 13:19	4
Methyl acetate	ND		10	5.2	ug/L			07/24/20 13:19	4
Methyl tert-butyl ether	2.2	J	4.0	0.64	ug/L			07/24/20 13:19	4
Methylcyclohexane	ND		4.0	0.64	ug/L			07/24/20 13:19	4
Methylene Chloride	ND		4.0	1.8	ug/L			07/24/20 13:19	4
n-Butylbenzene	ND		4.0	2.6	ug/L			07/24/20 13:19	4
N-Propylbenzene	ND		4.0	2.8	ug/L			07/24/20 13:19	4
o-Xylene	ND		4.0	3.0	ug/L			07/24/20 13:19	4
sec-Butylbenzene	ND		4.0	3.0	ug/L			07/24/20 13:19	4
Styrene	ND		4.0	2.9	ug/L			07/24/20 13:19	4
tert-Butylbenzene	ND		4.0	3.2	ug/L			07/24/20 13:19	4
Tetrachloroethene	ND		4.0	1.4	ug/L			07/24/20 13:19	4
Toluene	ND		4.0	2.0	ug/L			07/24/20 13:19	4
trans-1,2-Dichloroethene	230		4.0	3.6	ug/L			07/24/20 13:19	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			07/24/20 13:19	4
Trichloroethene	ND		4.0	1.8	ug/L			07/24/20 13:19	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			07/24/20 13:19	4
Vinyl chloride	84		4.0	3.6	ug/L			07/24/20 13:19	4
Xylenes, Total	ND		8.0	2.6	ug/L			07/24/20 13:19	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120			-		07/24/20 13:19	4
4-Bromofluorobenzene (Surr)	103		73 - 120					07/24/20 13:19	4

80 - 120

07/24/20 13:19

Job ID: 480-172679-1

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-6

Date Collected: 07/21/20 14:09 Date Received: 07/22/20 11:40 Lab Sample ID: 480-172679-3

Matrix: Water

Job ID: 480-172679-1

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	2.0	1.6	ug/L			07/24/20 03:45	
1,1,2,2-Tetrachloroethane	ND	2.0	0.42	ug/L			07/24/20 03:45	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62	ug/L			07/24/20 03:45	
1,1,2-Trichloroethane	ND	2.0	0.46	ug/L			07/24/20 03:45	
1,1-Dichloroethane	ND	2.0	0.76	ug/L			07/24/20 03:45	
1,1-Dichloroethene	ND	2.0	0.58	ug/L			07/24/20 03:45	
1,2,4-Trichlorobenzene	ND	2.0	0.82	ug/L			07/24/20 03:45	
1,2,4-Trimethylbenzene	ND	2.0	1.5	ug/L			07/24/20 03:45	
1,2-Dibromo-3-Chloropropane	ND	2.0	0.78	ug/L			07/24/20 03:45	
1,2-Dibromoethane	ND	2.0	1.5	ug/L			07/24/20 03:45	
1,2-Dichlorobenzene	ND	2.0	1.6	ug/L			07/24/20 03:45	
1,2-Dichloroethane	ND	2.0	0.42	ug/L			07/24/20 03:45	
1,2-Dichloropropane	ND	2.0	1.4	ug/L			07/24/20 03:45	
1,3,5-Trimethylbenzene	ND	2.0	1.5	ug/L			07/24/20 03:45	
1,3-Dichlorobenzene	ND	2.0		ug/L			07/24/20 03:45	
1,4-Dichlorobenzene	ND	2.0		ug/L			07/24/20 03:45	
2-Butanone (MEK)	ND	20		ug/L			07/24/20 03:45	
2-Hexanone	ND	10	2.5	ug/L			07/24/20 03:45	
4-Isopropyltoluene	ND	2.0		ug/L			07/24/20 03:45	
4-Methyl-2-pentanone (MIBK)	ND	10		ug/L			07/24/20 03:45	
Acetone	ND	20		ug/L			07/24/20 03:45	
Benzene	ND	2.0		ug/L			07/24/20 03:45	
Bromodichloromethane	ND	2.0		ug/L			07/24/20 03:45	
Bromoform	ND	2.0		ug/L			07/24/20 03:45	
Bromomethane	ND	2.0		ug/L			07/24/20 03:45	
Carbon disulfide	ND	2.0		ug/L			07/24/20 03:45	
Carbon tetrachloride	ND	2.0		ug/L			07/24/20 03:45	
Chlorobenzene	ND	2.0		ug/L			07/24/20 03:45	
Chloroethane	ND	2.0		ug/L			07/24/20 03:45	
Chloroform	ND	2.0		ug/L			07/24/20 03:45	
Chloromethane	ND	2.0		ug/L			07/24/20 03:45	
cis-1,2-Dichloroethene	3.6	2.0		ug/L			07/24/20 03:45	
cis-1,3-Dichloropropene	ND	2.0		ug/L			07/24/20 03:45	
Cyclohexane	ND	2.0		ug/L			07/24/20 03:45	
Dibromochloromethane	ND	2.0		ug/L			07/24/20 03:45	
Dichlorodifluoromethane	ND	2.0		ug/L			07/24/20 03:45	
Ethylbenzene	ND	2.0		ug/L			07/24/20 03:45	
Isopropylbenzene	ND	2.0		ug/L			07/24/20 03:45	
m,p-Xylene	ND	4.0		ug/L			07/24/20 03:45	
Methyl acetate	ND	5.0		ug/L			07/24/20 03:45	
Methyl tert-butyl ether	ND	2.0		ug/L			07/24/20 03:45	
Methylcyclohexane	ND ND	2.0		ug/L ug/L			07/24/20 03:45	
Methylene Chloride	ND ND	2.0		ug/L ug/L			07/24/20 03:45	
	ND ND	2.0		ug/L ug/L			07/24/20 03:45	
n-Butylbenzene				-				
N-Propylbenzene	ND ND	2.0		ug/L			07/24/20 03:45	
o-Xylene	ND ND	2.0		ug/L			07/24/20 03:45	
sec-Butylbenzene	ND	2.0		ug/L			07/24/20 03:45	
Styrene tert-Butylbenzene	ND ND	2.0		ug/L ug/L			07/24/20 03:45 07/24/20 03:45	

Eurofins TestAmerica, Buffalo

Page 11 of 40

2

3

5

3

11

13

14

II to

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-6

Lab Sample ID: 480-172679-3

Matrix: Water

Job ID: 480-172679-1

Date Collected: 07/21/20 14:09 Date Received: 07/22/20 11:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		2.0	0.72	ug/L			07/24/20 03:45	2
Toluene	ND		2.0	1.0	ug/L			07/24/20 03:45	2
trans-1,2-Dichloroethene	1.8	J	2.0	1.8	ug/L			07/24/20 03:45	2
trans-1,3-Dichloropropene	ND		2.0	0.74	ug/L			07/24/20 03:45	2
Trichloroethene	ND		2.0	0.92	ug/L			07/24/20 03:45	2
Trichlorofluoromethane	ND		2.0	1.8	ug/L			07/24/20 03:45	2
Vinyl chloride	ND		2.0	1.8	ug/L			07/24/20 03:45	2
Xylenes, Total	ND		4.0	1.3	ug/L			07/24/20 03:45	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120			-		07/24/20 03:45	2
4-Bromofluorobenzene (Surr)	99		73 - 120					07/24/20 03:45	2
Toluene-d8 (Surr)	101		80 - 120					07/24/20 03:45	2

4

6

8

9

10

12

13

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-9

Lab Sample ID: 480-172679-4 Date Collected: 07/21/20 11:33

Matrix: Water

Job ID: 480-172679-1

Date Received: 07/22/20 11:40

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND -	1.0	0.82	ug/L			07/24/20 04:08	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/24/20 04:08	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			07/24/20 04:08	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/24/20 04:08	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			07/24/20 04:08	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/24/20 04:08	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/24/20 04:08	
1,2,4-Trimethylbenzene	ND	1.0	0.75	ug/L			07/24/20 04:08	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/24/20 04:08	
,2-Dibromoethane	ND	1.0	0.73	ug/L			07/24/20 04:08	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			07/24/20 04:08	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			07/24/20 04:08	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			07/24/20 04:08	
1,3,5-Trimethylbenzene	ND	1.0	0.77	ug/L			07/24/20 04:08	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			07/24/20 04:08	
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			07/24/20 04:08	
2-Butanone (MEK)	4.1 J	10	1.3	ug/L			07/24/20 04:08	
2-Hexanone	ND	5.0	1.2	ug/L			07/24/20 04:08	
1-Isopropyltoluene	ND	1.0	0.31	ug/L			07/24/20 04:08	
1-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			07/24/20 04:08	
Acetone	26	10		ug/L			07/24/20 04:08	
Benzene	ND	1.0	0.41	ug/L			07/24/20 04:08	
Bromodichloromethane	ND	1.0		ug/L			07/24/20 04:08	
Bromoform	ND	1.0		ug/L			07/24/20 04:08	
Bromomethane	ND	1.0		ug/L			07/24/20 04:08	
Carbon disulfide	1.5	1.0		ug/L			07/24/20 04:08	
Carbon tetrachloride	ND	1.0		ug/L			07/24/20 04:08	
Chlorobenzene	ND	1.0		ug/L			07/24/20 04:08	
Chloroethane	ND	1.0		ug/L			07/24/20 04:08	
Chloroform	ND	1.0		ug/L			07/24/20 04:08	
Chloromethane	ND	1.0		ug/L			07/24/20 04:08	
cis-1,2-Dichloroethene	2.8	1.0		ug/L			07/24/20 04:08	
cis-1,3-Dichloropropene	ND	1.0		ug/L			07/24/20 04:08	
Cyclohexane	ND	1.0		ug/L			07/24/20 04:08	
Dibromochloromethane	ND	1.0		ug/L			07/24/20 04:08	
Dichlorodifluoromethane	ND	1.0		ug/L			07/24/20 04:08	
Ethylbenzene	ND	1.0		ug/L			07/24/20 04:08	
sopropylbenzene	ND	1.0		ug/L			07/24/20 04:08	
n,p-Xylene	ND	2.0		ug/L			07/24/20 04:08	
Methyl acetate	ND	2.5		ug/L			07/24/20 04:08	
Methyl tert-butyl ether	ND	1.0		ug/L			07/24/20 04:08	
Methylcyclohexane	ND	1.0		ug/L			07/24/20 04:08	
Methylene Chloride	ND	1.0		ug/L			07/24/20 04:08	
n-Butylbenzene	ND	1.0		ug/L			07/24/20 04:08	
N-Propylbenzene	ND	1.0		ug/L			07/24/20 04:08	
	ND	1.0		ug/L ug/L			07/24/20 04:08	
sec-Butylbenzene	ND ND	1.0		ug/L ug/L			07/24/20 04:08	
•				•				
Styrene ert-Butylbenzene	ND ND	1.0 1.0		ug/L ug/L			07/24/20 04:08 07/24/20 04:08	

Eurofins TestAmerica, Buffalo

Page 13 of 40

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-9

Lab Sample ID: 480-172679-4

07/24/20 04:08

Matrix: Water

Job ID: 480-172679-1

Date Collected: 07/21/20 11:33 Date Received: 07/22/20 11:40

Toluene-d8 (Surr)

Method: 8260C - Volatile Organ	ic Compounds b	y GC/MS (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.68	J	1.0	0.36	ug/L			07/24/20 04:08	1
Toluene	ND		1.0	0.51	ug/L			07/24/20 04:08	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/24/20 04:08	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/24/20 04:08	1
Trichloroethene	3.7		1.0	0.46	ug/L			07/24/20 04:08	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/24/20 04:08	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/24/20 04:08	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/24/20 04:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		77 - 120			-		07/24/20 04:08	1
4-Bromofluorobenzene (Surr)	100		73 - 120					07/24/20 04:08	1

80 - 120

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-10

Lab Sample ID: 480-172679-5

Matrix: Water

Job ID: 480-172679-1

Date Collected: 07/21/20 10:02 Date Received: 07/22/20 11:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/24/20 04:31	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/24/20 04:31	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			07/24/20 04:31	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/24/20 04:31	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			07/24/20 04:31	1
1,1-Dichloroethene	ND		1.0		ug/L			07/24/20 04:31	1
1,2,4-Trichlorobenzene	ND		1.0	0.41				07/24/20 04:31	1
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L			07/24/20 04:31	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	_			07/24/20 04:31	1
1,2-Dibromoethane	ND		1.0	0.73				07/24/20 04:31	1
1,2-Dichlorobenzene	ND		1.0	0.79	_			07/24/20 04:31	1
1,2-Dichloroethane	ND		1.0	0.21	•			07/24/20 04:31	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/24/20 04:31	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			07/24/20 04:31	1
1,3-Dichlorobenzene	ND		1.0		ug/L			07/24/20 04:31	1
1,4-Dichlorobenzene	ND		1.0		ug/L			07/24/20 04:31	1
2-Butanone (MEK)	ND		10		ug/L			07/24/20 04:31	1
2-Hexanone	ND		5.0		ug/L			07/24/20 04:31	1
4-Isopropyltoluene	ND		1.0		ug/L			07/24/20 04:31	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			07/24/20 04:31	1
Acetone	ND		10		ug/L			07/24/20 04:31	1
Benzene	ND		1.0	0.41				07/24/20 04:31	1
Bromodichloromethane	ND		1.0	0.39	•			07/24/20 04:31	1
Bromoform	ND		1.0		ug/L			07/24/20 04:31	1
Bromomethane	ND		1.0	0.69				07/24/20 04:31	· · · · · · · · · · · 1
Carbon disulfide	ND		1.0		ug/L			07/24/20 04:31	1
Carbon tetrachloride	ND		1.0		ug/L			07/24/20 04:31	1
Chlorobenzene	ND		1.0		ug/L			07/24/20 04:31	1
Chloroethane	ND		1.0		ug/L			07/24/20 04:31	
Chloroform	ND		1.0		ug/L			07/24/20 04:31	1
Chloromethane	0.43		1.0		ug/L			07/24/20 04:31	1
cis-1,2-Dichloroethene	ND	3	1.0		ug/L			07/24/20 04:31	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			07/24/20 04:31	1
Cyclohexane	ND		1.0		ug/L			07/24/20 04:31	
Dibromochloromethane	ND		1.0		ug/L			07/24/20 04:31	1
Dichlorodifluoromethane	ND		1.0		ug/L			07/24/20 04:31	1
Ethylbenzene	ND		1.0		ug/L			07/24/20 04:31	
Isopropylbenzene	ND		1.0	0.74				07/24/20 04:31	1
m,p-Xylene	ND ND		2.0		ug/L ug/L			07/24/20 04:31	1
	ND		2.5		ug/L ug/L			07/24/20 04:31	
Methyl acetate					ug/L				1
Methyl tert-butyl ether	ND ND		1.0		•			07/24/20 04:31	
Methylcyclohexane			1.0		ug/L			07/24/20 04:31	1
Methylene Chloride	ND		1.0		ug/L			07/24/20 04:31	1
n-Butylbenzene	ND		1.0		ug/L			07/24/20 04:31	1
N-Propylbenzene	ND		1.0		ug/L			07/24/20 04:31	1
o-Xylene	ND		1.0		ug/L			07/24/20 04:31	1
sec-Butylbenzene	ND		1.0		ug/L			07/24/20 04:31	1
Styrene	ND		1.0	0.73	ug/L			07/24/20 04:31	1

Eurofins TestAmerica, Buffalo

7/28/2020

3

5

0

9

11

13

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-10

Date Collected: 07/21/20 10:02 Date Received: 07/22/20 11:40 Lab Sample ID: 480-172679-5

Matrix: Water

Job ID: 480-172679-1

Method: 8260C - Volatile Orga	nic Compounds I	by GC/MS (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		1.0	0.36	ug/L			07/24/20 04:31	1
Toluene	ND		1.0	0.51	ug/L			07/24/20 04:31	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/24/20 04:31	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/24/20 04:31	1
Trichloroethene	2.0		1.0	0.46	ug/L			07/24/20 04:31	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/24/20 04:31	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/24/20 04:31	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/24/20 04:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120			-		07/24/20 04:31	1
4-Bromofluorobenzene (Surr)	101		73 - 120					07/24/20 04:31	1
Toluene-d8 (Surr)	102		80 ₋ 120					07/24/20 04:31	1

3

5

9

10

12

13

14

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-11

Lab Sample ID: 480-172679-6

Matrix: Water

Job ID: 480-172679-1

Date Collected: 07/21/20 11:52 Date Received: 07/22/20 11:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		2.0	1.6	ug/L			07/24/20 04:54	
1,1,2,2-Tetrachloroethane	ND		2.0	0.42	ug/L			07/24/20 04:54	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0	0.62	ug/L			07/24/20 04:54	
1,1,2-Trichloroethane	ND		2.0	0.46	ug/L			07/24/20 04:54	
1,1-Dichloroethane	ND		2.0	0.76	ug/L			07/24/20 04:54	
1,1-Dichloroethene	ND		2.0	0.58	ug/L			07/24/20 04:54	
1,2,4-Trichlorobenzene	ND		2.0	0.82				07/24/20 04:54	
1,2,4-Trimethylbenzene	ND		2.0		ug/L			07/24/20 04:54	
1,2-Dibromo-3-Chloropropane	ND		2.0	0.78				07/24/20 04:54	
1,2-Dibromoethane	ND		2.0		ug/L			07/24/20 04:54	
1,2-Dichlorobenzene	ND		2.0		ug/L			07/24/20 04:54	
1,2-Dichloroethane	ND		2.0		ug/L			07/24/20 04:54	
1,2-Dichloropropane	ND		2.0		ug/L			07/24/20 04:54	
1,3,5-Trimethylbenzene	ND		2.0		ug/L			07/24/20 04:54	
1,3-Dichlorobenzene	ND		2.0		ug/L ug/L			07/24/20 04:54	
1,4-Dichlorobenzene	ND		2.0		ug/L ug/L			07/24/20 04:54	
1,4-Dichiorobenzene 2-Butanone (MEK)	ND ND		2.0		ug/L ug/L			07/24/20 04:54	
2-Butanone (NEK)					ug/L ug/L				
	ND		10					07/24/20 04:54	
4-Isopropyltoluene	ND		2.0		ug/L			07/24/20 04:54	
I-Methyl-2-pentanone (MIBK)	ND		10		ug/L			07/24/20 04:54	
Acetone	ND		20		ug/L			07/24/20 04:54	
Benzene	ND		2.0	0.82				07/24/20 04:54	
Bromodichloromethane	ND		2.0	0.78				07/24/20 04:54	
Bromoform	ND		2.0		ug/L			07/24/20 04:54	
Bromomethane	ND		2.0		ug/L			07/24/20 04:54	
Carbon disulfide	ND		2.0	0.38	ug/L			07/24/20 04:54	
Carbon tetrachloride	ND		2.0		ug/L			07/24/20 04:54	
Chlorobenzene	ND		2.0		ug/L			07/24/20 04:54	
Chloroethane	ND		2.0	0.64				07/24/20 04:54	
Chloroform	ND		2.0	0.68	ug/L			07/24/20 04:54	
Chloromethane	ND		2.0	0.70	ug/L			07/24/20 04:54	
cis-1,2-Dichloroethene	2.2		2.0	1.6	ug/L			07/24/20 04:54	
cis-1,3-Dichloropropene	ND		2.0	0.72	ug/L			07/24/20 04:54	
Cyclohexane	ND		2.0	0.36	ug/L			07/24/20 04:54	
Dibromochloromethane	ND		2.0	0.64	ug/L			07/24/20 04:54	
Dichlorodifluoromethane	ND		2.0	1.4	ug/L			07/24/20 04:54	
Ethylbenzene	ND		2.0	1.5	ug/L			07/24/20 04:54	
sopropylbenzene	ND		2.0	1.6	ug/L			07/24/20 04:54	
n,p-Xylene	ND		4.0		ug/L			07/24/20 04:54	
Methyl acetate	ND		5.0		ug/L			07/24/20 04:54	
Methyl tert-butyl ether	ND		2.0		ug/L			07/24/20 04:54	
Methylcyclohexane	ND		2.0		ug/L			07/24/20 04:54	
Methylene Chloride	0.93		2.0		ug/L			07/24/20 04:54	
n-Butylbenzene	ND	•	2.0		ug/L			07/24/20 04:54	
N-Propylbenzene	ND		2.0		ug/L			07/24/20 04:54	
o-Xylene	ND		2.0		ug/L ug/L			07/24/20 04:54	
sec-Butylbenzene	ND ND		2.0		ug/L ug/L			07/24/20 04:54	
•	ND ND		2.0		ug/L ug/L			07/24/20 04:54	
Styrene tert-Butylbenzene	ND		2.0		ug/L ug/L			07/24/20 04:54	

Eurofins TestAmerica, Buffalo

7/28/2020

3

6

8

10

12

A A

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-11

Date Collected: 07/21/20 11:52 Date Received: 07/22/20 11:40 Lab Sample ID: 480-172679-6

Matrix: Water

Job ID: 480-172679-1

Method: 8260C - Volatile Orga	inic Compounds	by GC/MS (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		2.0	0.72	ug/L			07/24/20 04:54	2
Toluene	ND		2.0	1.0	ug/L			07/24/20 04:54	2
trans-1,2-Dichloroethene	ND		2.0	1.8	ug/L			07/24/20 04:54	2
trans-1,3-Dichloropropene	ND		2.0	0.74	ug/L			07/24/20 04:54	2
Trichloroethene	ND		2.0	0.92	ug/L			07/24/20 04:54	2
Trichlorofluoromethane	ND		2.0	1.8	ug/L			07/24/20 04:54	2
Vinyl chloride	ND		2.0	1.8	ug/L			07/24/20 04:54	2
Xylenes, Total	ND		4.0	1.3	ug/L			07/24/20 04:54	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		77 - 120			-		07/24/20 04:54	2
4-Bromofluorobenzene (Surr)	99		73 - 120					07/24/20 04:54	2
Toluene-d8 (Surr)	100		80 - 120					07/24/20 04:54	2

4

6

8

9

10

12

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-12

Date Received: 07/22/20 11:40

Isopropylbenzene

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

n-Butylbenzene

o-Xylene

Styrene

N-Propylbenzene

sec-Butylbenzene

tert-Butylbenzene

m,p-Xylene

Methyl acetate

Lab Sample ID: 480-172679-7 Date Collected: 07/21/20 15:25

Matrix: Water

Job ID: 480-172679-1

Method: 8260C - Volatile Organic Compounds by GC/MS Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed ND 2.0 07/24/20 05:17 1,1,1-Trichloroethane 1.6 ug/L 2 ND 20 07/24/20 05:17 1.1.2.2-Tetrachloroethane 0.42 ug/L 1,1,2-Trichloro-1,2,2-trifluoroethane ND 2.0 0.62 ug/L 07/24/20 05:17 2 ND 2.0 0.46 ug/L 07/24/20 05:17 2 1,1,2-Trichloroethane 1,1-Dichloroethane ND 2.0 0.76 ug/L 07/24/20 05:17 2 2 1 1-Dichloroethene ND 20 0.58 ug/L 07/24/20 05:17 1,2,4-Trichlorobenzene ND 2.0 0.82 ug/L 07/24/20 05:17 2 ND 2.0 2 1.2.4-Trimethylbenzene 1.5 ug/L 07/24/20 05:17 2 1,2-Dibromo-3-Chloropropane ND 2.0 0.78 ug/L 07/24/20 05:17 2 1,2-Dibromoethane ND 2.0 1.5 ug/L 07/24/20 05:17 2 1,2-Dichlorobenzene ND 2.0 1.6 ug/L 07/24/20 05:17 2 1,2-Dichloroethane ND 2.0 0.42 ug/L 07/24/20 05:17 2 1,2-Dichloropropane ND 20 1.4 ug/L 07/24/20 05:17 1,3,5-Trimethylbenzene ND 2.0 1.5 ug/L 07/24/20 05:17 2 2 1.3-Dichlorobenzene ND 07/24/20 05:17 20 1.6 ug/L 1,4-Dichlorobenzene ND 2.0 07/24/20 05:17 2 1.7 ug/L ND 20 2 2-Butanone (MEK) 2.6 ug/L 07/24/20 05:17 2-Hexanone ND 10 2.5 07/24/20 05:17 2 ug/L ND 2.0 2 4-Isopropyltoluene 0.62 ug/L 07/24/20 05:17 2 4-Methyl-2-pentanone (MIBK) ND 10 4.2 ug/L 07/24/20 05:17 07/24/20 05:17 Acetone ND 20 6.0 ug/L 2 2 ND 2.0 Benzene 0.82 ug/L 07/24/20 05:17 Bromodichloromethane ND 2.0 0.78 ug/L 07/24/20 05:17 2 Bromoform ND 2.0 0.52 ug/L 07/24/20 05:17 2 Bromomethane ND 2.0 1.4 ug/L 07/24/20 05:17 2 ND 2 Carbon disulfide 2.0 07/24/20 05:17 0.38 ug/L Carbon tetrachloride ND 2.0 07/24/20 05:17 2 0.54 ug/L Chlorobenzene NΠ 2.0 07/24/20 05:17 2 1.5 ug/L Chloroethane ND 2.0 ug/L 07/24/20 05:17 2 Chloroform ND 2 2.0 0.68 ug/L 07/24/20 05:17 Chloromethane ND 2.0 0.70 ug/L 07/24/20 05:17 2 cis-1,2-Dichloroethene ND 2.0 1.6 ug/L 07/24/20 05:17 2 cis-1,3-Dichloropropene ND 2.0 0.72 ug/L 07/24/20 05:17 2 ug/L Cyclohexane ND 2.0 0.36 07/24/20 05:17 2 Dibromochloromethane ND 20 0.64 ug/L 07/24/20 05:17 2 Dichlorodifluoromethane ND 2.0 ug/L 07/24/20 05:17 2 1.4 2 Ethylbenzene ND

Eurofins TestAmerica, Buffalo

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

Page 19 of 40

2.0

2.0

4.0

5.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

ND

1.5 ug/L

1.6 ug/L

2.6

0.32

0.32 ug/L

0.88 ug/L

> 1.4 ug/L

> 1.5 ug/L

1.5

1.6 ug/L

1.3 ug/L

ug/L

ug/L

ug/L

ug/L

1.5 ug/L

6

2

2

2

2

2

2

2

2

2

2

2

7/28/2020

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-12

Lab Sample ID: 480-172679-7 Date Collected: 07/21/20 15:25

Matrix: Water

Job ID: 480-172679-1

Date Received: 07/22/20 11:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		2.0	0.72	ug/L			07/24/20 05:17	2
Toluene	ND		2.0	1.0	ug/L			07/24/20 05:17	2
trans-1,2-Dichloroethene	ND		2.0	1.8	ug/L			07/24/20 05:17	2
trans-1,3-Dichloropropene	ND		2.0	0.74	ug/L			07/24/20 05:17	2
Trichloroethene	ND		2.0	0.92	ug/L			07/24/20 05:17	2
Trichlorofluoromethane	ND		2.0	1.8	ug/L			07/24/20 05:17	2
Vinyl chloride	ND		2.0	1.8	ug/L			07/24/20 05:17	2
Xylenes, Total	ND		4.0	1.3	ug/L			07/24/20 05:17	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120			-		07/24/20 05:17	2
4-Bromofluorobenzene (Surr)	98		73 - 120					07/24/20 05:17	2
Toluene-d8 (Surr)	100		80 - 120					07/24/20 05:17	2

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: TRIP BLANK

Date Received: 07/22/20 11:40

Date Collected: 07/21/20 00:00

Lab Sample ID: 480-172679-8 **Matrix: Water**

Job ID: 480-172679-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/24/20 05:40	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/24/20 05:40	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			07/24/20 05:40	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/24/20 05:40	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			07/24/20 05:40	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			07/24/20 05:40	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			07/24/20 05:40	
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L			07/24/20 05:40	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/24/20 05:40	
1,2-Dibromoethane	ND		1.0	0.73	ug/L			07/24/20 05:40	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/24/20 05:40	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			07/24/20 05:40	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/24/20 05:40	
1,3,5-Trimethylbenzene	ND		1.0	0.77	ug/L			07/24/20 05:40	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			07/24/20 05:40	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			07/24/20 05:40	
2-Butanone (MEK)	ND		10	1.3	ug/L			07/24/20 05:40	
2-Hexanone	ND		5.0	1.2	ug/L			07/24/20 05:40	
4-Isopropyltoluene	ND		1.0	0.31	ug/L			07/24/20 05:40	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			07/24/20 05:40	
Acetone	ND		10	3.0	ug/L			07/24/20 05:40	
Benzene	ND		1.0	0.41	ug/L			07/24/20 05:40	
Bromodichloromethane	ND		1.0	0.39	ug/L			07/24/20 05:40	
Bromoform	ND		1.0	0.26	ug/L			07/24/20 05:40	
Bromomethane	ND		1.0	0.69	ug/L			07/24/20 05:40	
Carbon disulfide	ND		1.0	0.19	ug/L			07/24/20 05:40	
Carbon tetrachloride	ND		1.0		ug/L			07/24/20 05:40	
Chlorobenzene	ND		1.0	0.75	ug/L			07/24/20 05:40	
Chloroethane	ND		1.0	0.32	ug/L			07/24/20 05:40	
Chloroform	ND		1.0	0.34	ug/L			07/24/20 05:40	
Chloromethane	ND		1.0	0.35	ug/L			07/24/20 05:40	
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			07/24/20 05:40	
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			07/24/20 05:40	
Cyclohexane	ND		1.0	0.18	ug/L			07/24/20 05:40	
Dibromochloromethane	ND		1.0	0.32	ug/L			07/24/20 05:40	
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			07/24/20 05:40	
Ethylbenzene	ND		1.0	0.74				07/24/20 05:40	
Isopropylbenzene	ND		1.0		ug/L			07/24/20 05:40	
m,p-Xylene	ND		2.0	0.66	ug/L			07/24/20 05:40	
Methyl acetate	ND		2.5	1.3	ug/L			07/24/20 05:40	
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			07/24/20 05:40	
Methylcyclohexane	ND		1.0	0.16	ug/L			07/24/20 05:40	
Methylene Chloride	ND		1.0	0.44	ug/L			07/24/20 05:40	
n-Butylbenzene	ND		1.0		ug/L			07/24/20 05:40	
N-Propylbenzene	ND		1.0		ug/L			07/24/20 05:40	
p-Xylene	ND		1.0		ug/L			07/24/20 05:40	
sec-Butylbenzene	ND		1.0		ug/L			07/24/20 05:40	
Styrene	ND		1.0		ug/L			07/24/20 05:40	
tert-Butylbenzene	ND		1.0		ug/L			07/24/20 05:40	

Eurofins TestAmerica, Buffalo

7/28/2020

Page 21 of 40

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-172679-8 Date Collected: 07/21/20 00:00

Matrix: Water

Job ID: 480-172679-1

Date Received: 07/22/20 11:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		1.0	0.36	ug/L			07/24/20 05:40	1
Toluene	1.2		1.0	0.51	ug/L			07/24/20 05:40	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/24/20 05:40	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/24/20 05:40	1
Trichloroethene	ND		1.0	0.46	ug/L			07/24/20 05:40	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/24/20 05:40	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/24/20 05:40	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/24/20 05:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120			_		07/24/20 05:40	1
4-Bromofluorobenzene (Surr)	101		73 - 120					07/24/20 05:40	1
Toluene-d8 (Surr)	100		80 ₋ 120					07/24/20 05:40	1

Surrogate Summary

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sur
		DCA	BFB	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)
480-172679-1	RI-MW-2	99	98	101
480-172679-1 MS	RI-MW-2	100	99	101
480-172679-1 MSD	RI-MW-2	102	99	100
480-172679-2	RI-MW-4	97	101	100
480-172679-2 - DL	RI-MW-4	97	103	103
480-172679-3	RI-MW-6	99	99	101
480-172679-4	RI-MW-9	104	100	101
480-172679-5	RI-MW-10	100	101	102
480-172679-6	RI-MW-11	104	99	100
480-172679-7	RI-MW-12	100	98	100
480-172679-8	TRIP BLANK	100	101	100
LCS 480-541833/6	Lab Control Sample	98	99	101
LCS 480-541939/5	Lab Control Sample	99	100	98
MB 480-541833/9	Method Blank	99	101	101
MB 480-541939/7	Method Blank	101	99	102

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Job ID: 480-172679-1

QC Sample Results

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-172679-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-541833/9

Matrix: Water

N-Propylbenzene

sec-Butylbenzene

o-Xylene

Styrene

Analysis Batch: 541833

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	МВ							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/24/20 02:13	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/24/20 02:13	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			07/24/20 02:13	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/24/20 02:13	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			07/24/20 02:13	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			07/24/20 02:13	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			07/24/20 02:13	
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L			07/24/20 02:13	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/24/20 02:13	
1,2-Dibromoethane	ND		1.0	0.73	ug/L			07/24/20 02:13	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/24/20 02:13	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			07/24/20 02:13	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/24/20 02:13	
1,3,5-Trimethylbenzene	ND		1.0		ug/L			07/24/20 02:13	
1,3-Dichlorobenzene	ND		1.0		ug/L			07/24/20 02:13	
1,4-Dichlorobenzene	ND		1.0		ug/L			07/24/20 02:13	
2-Butanone (MEK)	ND		10		ug/L			07/24/20 02:13	
2-Hexanone	ND		5.0		ug/L			07/24/20 02:13	
4-Isopropyltoluene	ND		1.0		ug/L			07/24/20 02:13	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			07/24/20 02:13	
Acetone	ND		10		ug/L			07/24/20 02:13	
Benzene	ND		1.0		ug/L			07/24/20 02:13	
Bromodichloromethane	ND		1.0		ug/L			07/24/20 02:13	
Bromoform	ND		1.0		ug/L			07/24/20 02:13	
Bromomethane	ND		1.0		ug/L			07/24/20 02:13	
Carbon disulfide	ND		1.0		ug/L			07/24/20 02:13	
Carbon distillide Carbon tetrachloride	ND ND		1.0		ug/L			07/24/20 02:13	
Chlorobenzene	ND		1.0		ug/L			07/24/20 02:13	
Chloroethane	ND ND		1.0		ug/L			07/24/20 02:13	
Chloroform	ND ND		1.0					07/24/20 02:13	
Chloromethane					ug/L				
	ND		1.0	0.35				07/24/20 02:13	
cis-1,2-Dichloroethene	ND		1.0		ug/L			07/24/20 02:13	
cis-1,3-Dichloropropene	ND		1.0	0.36				07/24/20 02:13	
Cyclohexane	ND		1.0		ug/L			07/24/20 02:13	
Dibromochloromethane	ND		1.0		ug/L			07/24/20 02:13	
Dichlorodifluoromethane	ND		1.0		ug/L			07/24/20 02:13	
Ethylbenzene	ND		1.0		ug/L			07/24/20 02:13	
Isopropylbenzene	ND		1.0		ug/L			07/24/20 02:13	
m,p-Xylene	ND		2.0		ug/L			07/24/20 02:13	
Methyl acetate	ND		2.5		ug/L			07/24/20 02:13	
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			07/24/20 02:13	
Methylcyclohexane	ND		1.0	0.16	ug/L			07/24/20 02:13	
Methylene Chloride	ND		1.0	0.44	ug/L			07/24/20 02:13	
n-Butylbenzene	ND		1.0	0.64	ug/L			07/24/20 02:13	

Eurofins TestAmerica, Buffalo

7/28/2020

07/24/20 02:13

07/24/20 02:13

07/24/20 02:13

07/24/20 02:13

Page 24 of 40

1.0

1.0

1.0

1.0

0.69 ug/L

0.76 ug/L

0.75 ug/L

0.73 ug/L

ND

ND

ND

ND

6

3

F

6

8

10

11

13

QC Sample Results

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-541833/9

Matrix: Water

Analysis Batch: 541833

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 480-172679-1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
tert-Butylbenzene	ND		1.0	0.81	ug/L			07/24/20 02:13	1
Tetrachloroethene	ND		1.0	0.36	ug/L			07/24/20 02:13	1
Toluene	ND		1.0	0.51	ug/L			07/24/20 02:13	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/24/20 02:13	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/24/20 02:13	1
Trichloroethene	ND		1.0	0.46	ug/L			07/24/20 02:13	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/24/20 02:13	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/24/20 02:13	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/24/20 02:13	1

MB MB %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 1,2-Dichloroethane-d4 (Surr) 99 77 - 120 07/24/20 02:13 4-Bromofluorobenzene (Surr) 101 73 - 120 07/24/20 02:13 80 - 120 07/24/20 02:13 Toluene-d8 (Surr) 101

Lab Sample ID: LCS 480-541833/6

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 541833

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	24.6	-	ug/L		98	73 - 126
1,1,2,2-Tetrachloroethane	25.0	23.1		ug/L		92	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.3		ug/L		93	61 - 148
ne							
1,1,2-Trichloroethane	25.0	22.2		ug/L		89	76 ₋ 122
1,1-Dichloroethane	25.0	24.7		ug/L		99	77 - 120
1,1-Dichloroethene	25.0	24.1		ug/L		96	66 - 127
1,2,4-Trichlorobenzene	25.0	23.2		ug/L		93	79 - 122
1,2,4-Trimethylbenzene	25.0	24.3		ug/L		97	76 ₋ 121
1,2-Dibromo-3-Chloropropane	25.0	23.2		ug/L		93	56 ₋ 134
1,2-Dibromoethane	25.0	23.8		ug/L		95	77 - 120
1,2-Dichlorobenzene	25.0	24.0		ug/L		96	80 - 124
1,2-Dichloroethane	25.0	22.8		ug/L		91	75 ₋ 120
1,2-Dichloropropane	25.0	24.7		ug/L		99	76 - 120
1,3,5-Trimethylbenzene	25.0	25.1		ug/L		100	77 - 121
1,3-Dichlorobenzene	25.0	23.7		ug/L		95	77 - 120
1,4-Dichlorobenzene	25.0	23.4		ug/L		94	80 - 120
2-Butanone (MEK)	125	112		ug/L		89	57 ₋ 140
2-Hexanone	125	116		ug/L		93	65 - 127
4-Isopropyltoluene	25.0	24.3		ug/L		97	73 - 120
4-Methyl-2-pentanone (MIBK)	125	118		ug/L		94	71 - 125
Acetone	125	116		ug/L		93	56 ₋ 142
Benzene	25.0	24.2		ug/L		97	71 - 124
Bromodichloromethane	25.0	24.0		ug/L		96	80 - 122
Bromoform	25.0	22.8		ug/L		91	61 - 132
Bromomethane	25.0	22.0		ug/L		88	55 - 144
Carbon disulfide	25.0	23.7		ug/L		95	59 ₋ 134
Carbon tetrachloride	25.0	23.9		ug/L		96	72 ₋ 134
Chlorobenzene	25.0	23.5		ug/L		94	80 ₋ 120

Eurofins TestAmerica, Buffalo

Page 25 of 40

9

3

6

8

11

12

14

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-172679-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-541833/6

Matrix: Water

Analysis Batch: 541833

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS L	LCS		%Rec.	
Analyte	Added	Result (Qualifier Unit	D %Rec	Limits	
Chloroethane	25.0	24.4	ug/L	97	69 - 136	
Chloroform	25.0	22.6	ug/L	90	73 - 127	
Chloromethane	25.0	21.4	ug/L	86	68 - 124	
cis-1,2-Dichloroethene	25.0	23.8	ug/L	95	74 - 124	
cis-1,3-Dichloropropene	25.0	22.9	ug/L	92	74 - 124	
Cyclohexane	25.0	23.9	ug/L	96	59 ₋ 135	
Dibromochloromethane	25.0	24.0	ug/L	96	75 - 125	
Dichlorodifluoromethane	25.0	23.8	ug/L	95	59 ₋ 135	
Ethylbenzene	25.0	24.0	ug/L	96	77 - 123	
Isopropylbenzene	25.0	24.5	ug/L	98	77 - 122	
m,p-Xylene	25.0	24.2	ug/L	97	76 - 122	
Methyl acetate	50.0	45.9	ug/L	92	74 - 133	
Methyl tert-butyl ether	25.0	24.2	ug/L	97	77 - 120	
Methylcyclohexane	25.0	24.0	ug/L	96	68 - 134	
Methylene Chloride	25.0	22.9	ug/L	92	75 ₋ 124	
n-Butylbenzene	25.0	23.5	ug/L	94	71 - 128	
N-Propylbenzene	25.0	24.0	ug/L	96	75 - 127	
o-Xylene	25.0	24.0	ug/L	96	76 - 122	
sec-Butylbenzene	25.0	24.4	ug/L	97	74 - 127	
Styrene	25.0	23.7	ug/L	95	80 - 120	
tert-Butylbenzene	25.0	25.0	ug/L	100	75 ₋ 123	
Tetrachloroethene	25.0	23.9	ug/L	96	74 - 122	
Toluene	25.0	23.8	ug/L	95	80 - 122	
trans-1,2-Dichloroethene	25.0	23.7	ug/L	95	73 - 127	
trans-1,3-Dichloropropene	25.0	23.6	ug/L	94	80 - 120	
Trichloroethene	25.0	24.3	ug/L	97	74 - 123	
Trichlorofluoromethane	25.0	24.5	ug/L	98	62 - 150	

25.0

24.3

ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		77 - 120
4-Bromofluorobenzene (Surr)	99		73 - 120
Toluene-d8 (Surr)	101		80 - 120

Lab Sample ID: 480-172679-1 MS

Matrix: Water

Vinyl chloride

Analysis Batch: 541833

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		100	92.5		ug/L		93	73 - 126	
1,1,2,2-Tetrachloroethane	ND		100	84.6		ug/L		85	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		100	84.1		ug/L		84	61 - 148	
ne										
1,1,2-Trichloroethane	ND		100	88.2		ug/L		88	76 - 122	
1,1-Dichloroethane	ND		100	89.7		ug/L		90	77 - 120	
1,1-Dichloroethene	ND		100	87.9		ug/L		88	66 - 127	
1,2,4-Trichlorobenzene	ND		100	85.9		ug/L		86	79 _ 122	
1,2,4-Trimethylbenzene	ND		100	88.7		ug/L		89	76 - 121	
1,2-Dibromo-3-Chloropropane	ND		100	82.6		ug/L		83	56 - 134	

Eurofins TestAmerica, Buffalo

Client Sample ID: RI-MW-2

Prep Type: Total/NA

65 - 133

Page 26 of 40

QC Sample Results

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-172679-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-172679-1 MS

Matrix: Water

Client	Samp	le ID:	RI-MW-2	
	Prep 1	Type:	Total/NA	

Analysis Batch: 541833									a. =	
Analuta	Sample	•	Spike Added	MS	MS Qualifier	Unit	_	9/ Boo	%Rec.	
Analyte 1,2-Dibromoethane	ND	Qualifier	100 Added	92.2	Qualifier	Unit ug/L	D	%Rec 92	Limits	
	ND		100	87.6						
1,2-Dichlorobenzene						ug/L		88	80 - 124	
1,2-Dichloroethane	ND		100	84.5		ug/L		84	75 _ 120	
1,2-Dichloropropane	ND		100	94.0		ug/L		94	76 - 120	
1,3,5-Trimethylbenzene	ND		100	89.7		ug/L		90	77 ₋ 121	
1,3-Dichlorobenzene	ND		100	86.1		ug/L		86	77 _ 120	
1,4-Dichlorobenzene	ND		100	87.0		ug/L		87	78 - 124	
2-Butanone (MEK)	ND		500	420		ug/L		84	57 - 140	
2-Hexanone	ND		500	428		ug/L		86	65 - 127	
4-Isopropyltoluene	ND		100	87.5		ug/L		88	73 - 120	
4-Methyl-2-pentanone (MIBK)	ND		500	440		ug/L		88	71 ₋ 125	
Acetone	ND		500	426		ug/L		85	56 - 142	
Benzene	ND		100	91.0		ug/L		91	71 ₋ 124	
Bromodichloromethane	ND		100	88.4		ug/L		88	80 _ 122	
Bromoform	ND		100	77.1		ug/L		77	61 - 132	
Bromomethane	ND		100	82.7		ug/L		83	55 ₋ 144	
Carbon disulfide	ND		100	78.1		ug/L		78	59 - 134	
Carbon tetrachloride	ND		100	88.3		ug/L		88	72 _ 134	
Chlorobenzene	ND		100	90.7		ug/L		91	80 - 120	
Chloroethane	ND		100	93.9		ug/L		94	69 - 136	
Chloroform	ND		100	84.5		ug/L		85	73 - 127	
Chloromethane	ND		100	85.5		ug/L		85	68 - 124	
cis-1,2-Dichloroethene	ND		100	88.3		ug/L		88	74 ₋ 124	
cis-1,3-Dichloropropene	ND		100	81.3		ug/L		81	74 ₋ 124	
Cyclohexane	ND		100	86.7		ug/L		87	59 ₋ 135	
Dibromochloromethane	ND		100	85.6		ug/L		86	75 ₋ 125	
Dichlorodifluoromethane	ND		100	98.4		ug/L		98	59 - 135	
Ethylbenzene	ND		100	90.5		ug/L		91	77 - 123	
Isopropylbenzene	ND		100	89.1		ug/L		89	77 - 122	
m,p-Xylene	ND		100	91.0		ug/L		91	76 - 122	
Methyl acetate	ND		200	165		ug/L		82	74 - 133	
Methyl tert-butyl ether	ND		100	90.6		ug/L		91	77 - 120	
Methylcyclohexane	ND		100	87.5		ug/L		87	68 - 134	
Methylene Chloride	ND		100	84.4		ug/L		84	75 - 124	
n-Butylbenzene	ND		100	85.6		ug/L		86	71 - 128	
N-Propylbenzene	ND		100	86.6		ug/L		87	75 ₋ 127	
o-Xylene	ND		100	89.6		ug/L		90	76 - 122	
sec-Butylbenzene	ND		100	88.2		ug/L		88	74 - 127	
Styrene Styrene	ND		100	88.9				89	80 - 120	
						ug/L				
tert-Butylbenzene	ND ND		100 100	90.8 91.5		ug/L ug/L		91 92	75 ₋ 123 74 ₋ 122	
Tetrachloroethene						-				
Toluene	ND		100	90.7		ug/L		91	80 - 122	
trans-1,2-Dichloroethene	ND	F4	100	88.5		ug/L		88	73 - 127	
trans-1,3-Dichloropropene	ND	F1	100	80.5		ug/L		80	80 - 120	
Trichloroethene	6.8		100	97.5		ug/L		91	74 - 123	
Trichlorofluoromethane	ND		100	93.4		ug/L		93	62 - 150	
Vinyl chloride	ND		100	95.3		ug/L		95	65 - 133	

Eurofins TestAmerica, Buffalo

Page 27 of 40

QC Sample Results

 ${\bf Client: Turnkey\ Environmental\ Restoration,\ LLC}$

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-172679-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-172679-1 MS

Matrix: Water

Analysis Batch: 541833

Client Sample ID: RI-MW-2 Prep Type: Total/NA

 Surrogate
 %Recovery
 Qualifier
 Limits

 1,2-Dichloroethane-d4 (Surr)
 100
 77 - 120

 4-Bromofluorobenzene (Surr)
 99
 73 - 120

 Toluene-d8 (Surr)
 101
 80 - 120

Lab Sample ID: 480-172679-1 MSD Client Sample ID: RI-MW-2

Matrix: Water

Analysis Batch: 541833

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		100	94.7		ug/L		95	73 - 126	2	15
1,1,2,2-Tetrachloroethane	ND		100	88.0		ug/L		88	76 - 120	4	15
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		100	83.1		ug/L		83	61 - 148	1	20
ne 1,1,2-Trichloroethane	ND		100	85.1		ug/L		85	76 ₋ 122	4	15
1,1-Dichloroethane	ND		100	92.9		ug/L		93	77 - 120	3	20
1.1-Dichloroethane	ND ND		100	87.4		ug/L		93 87	66 - 127	1	16
1,2,4-Trichlorobenzene	ND		100	85.7		ug/L		86	79 - 122		20
1,2,4-Trimethylbenzene	ND		100	89.2		ug/L		89	76 - 121	1	20
1,2-Dibromo-3-Chloropropane	ND		100	84.9		ug/L		85	56 - 134	3	15
1,2-Dibromoethane	ND		100	87.9		ug/L		88	77 - 120	5	15
1,2-Dichlorobenzene	ND		100	88.4		ug/L		88	80 - 124	1	20
1,2-Dichloroethane	ND		100	84.8		ug/L		85	75 ₋ 120	0	20
1,2-Dichloropropane	ND		100	93.9		ug/L		94	76 - 120	0	20
1,3,5-Trimethylbenzene	ND		100	91.7		ug/L		92	77 ₋ 121	2	20
1,3-Dichlorobenzene	ND		100	89.1		ug/L		89	77 ₋ 120	3	20
1,4-Dichlorobenzene	ND		100	87.0		ug/L		87	78 - 124	0	20
2-Butanone (MEK)	ND		500	419		ug/L		84	57 ₋ 140	0	20
2-Hexanone	ND		500	431		ug/L		86	65 - 127	1	15
4-Isopropyltoluene	ND		100	88.1		ug/L		88	73 - 120	1	20
4-Methyl-2-pentanone (MIBK)	ND		500	435		ug/L		87	71 - 125	1	35
Acetone	ND		500	426		ug/L		85	56 - 142	0	15
Benzene	ND		100	93.8		ug/L		94	71 - 124	3	13
Bromodichloromethane	ND		100	89.3		ug/L		89	80 - 122	1	15
Bromoform	ND		100	78.5		ug/L		78	61 - 132	2	15
Bromomethane	ND		100	86.4		ug/L		86	55 - 144	4	15
Carbon disulfide	ND		100	79.1		ug/L		79	59 - 134	1	15
Carbon tetrachloride	ND		100	91.6		ug/L		92	72 - 134	4	15
Chlorobenzene	ND		100	90.2		ug/L		90	80 - 120	0	25
Chloroethane	ND		100	98.3		ug/L		98	69 - 136	5	15
Chloroform	ND		100	84.8		ug/L		85	73 - 127	0	20
Chloromethane	ND		100	84.9		ug/L		85	68 - 124	1	15
cis-1,2-Dichloroethene	ND		100	93.1		ug/L		93	74 - 124	5	15
cis-1,3-Dichloropropene	ND		100	81.1		ug/L		81	74 - 124	0	15
Cyclohexane	ND		100	87.6		ug/L		88	59 - 135	1	20
Dibromochloromethane	ND		100	86.4		ug/L		86	75 - 125	1	15
Dichlorodifluoromethane	ND		100	96.1		ug/L		96	59 - 135	2	20
Ethylbenzene	ND		100	89.6		ug/L		90	77 - 123	1	15
Isopropylbenzene	ND		100	91.3		ug/L		91	77 - 122	2	20
m,p-Xylene	ND		100	90.4		ug/L		90	76 - 122	1	16

Eurofins TestAmerica, Buffalo

Page 28 of 40

2

3

4

6

8

10

11

3

119

7/28/2020

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-172679-1 MSD

Matrix: Water

Analysis Batch: 541833

Client Sample ID: RI-MW-2

Prep Type: Total/NA

Job ID: 480-172679-1

Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl acetate ND		200	168	-	ug/L		84	74 - 133	2	20
Methyl tert-butyl ether ND		100	92.9		ug/L		93	77 - 120	3	37
Methylcyclohexane ND		100	86.2		ug/L		86	68 - 134	1	20
Methylene Chloride ND		100	86.5		ug/L		86	75 - 124	2	15
n-Butylbenzene ND		100	84.6		ug/L		85	71 - 128	1	15
N-Propylbenzene ND		100	89.1		ug/L		89	75 - 127	3	15
o-Xylene ND		100	91.0		ug/L		91	76 - 122	2	16
sec-Butylbenzene ND		100	89.1		ug/L		89	74 - 127	1	15
Styrene ND		100	87.9		ug/L		88	80 - 120	1	20
tert-Butylbenzene ND		100	91.8		ug/L		92	75 - 123	1	15
Tetrachloroethene ND		100	87.3		ug/L		87	74 - 122	5	20
Toluene ND		100	90.8		ug/L		91	80 - 122	0	15
trans-1,2-Dichloroethene ND		100	88.9		ug/L		89	73 - 127	0	20
trans-1,3-Dichloropropene ND	F1	100	78.3	F1	ug/L		78	80 - 120	3	15
Trichloroethene 6.8		100	94.4		ug/L		88	74 - 123	3	16
Trichlorofluoromethane ND		100	96.0		ug/L		96	62 - 150	3	20
Vinyl chloride ND		100	99.0		ug/L		99	65 - 133	4	15

MSD MSD

Surrogate	%Recovery Qualifie	r Limits
1,2-Dichloroethane-d4 (Surr)	102	77 - 120
4-Bromofluorobenzene (Surr)	99	73 - 120
Toluene-d8 (Surr)	100	80 ₋ 120

Lab Sample ID: MB 480-541939/7

Matrix: Water

Analysis Batch: 541939

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Baton: 041000	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/24/20 12:07	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/24/20 12:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			07/24/20 12:07	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/24/20 12:07	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			07/24/20 12:07	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			07/24/20 12:07	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			07/24/20 12:07	1
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L			07/24/20 12:07	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/24/20 12:07	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			07/24/20 12:07	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/24/20 12:07	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			07/24/20 12:07	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/24/20 12:07	1
1,3,5-Trimethylbenzene	ND		1.0	0.77	ug/L			07/24/20 12:07	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			07/24/20 12:07	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			07/24/20 12:07	1
2-Butanone (MEK)	ND		10	1.3	ug/L			07/24/20 12:07	1
2-Hexanone	ND		5.0	1.2	ug/L			07/24/20 12:07	1
4-Isopropyltoluene	ND		1.0	0.31	ug/L			07/24/20 12:07	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			07/24/20 12:07	1

Eurofins TestAmerica, Buffalo

Page 29 of 40

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-172679-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-541939/7

Matrix: Water

Analysis Batch: 541939

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB MB							
Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	10	3.0	ug/L			07/24/20 12:07	1
Benzene	ND	1.0	0.41	ug/L			07/24/20 12:07	1
Bromodichloromethane	ND	1.0	0.39	ug/L			07/24/20 12:07	1
Bromoform	ND	1.0		ug/L			07/24/20 12:07	1
Bromomethane	ND	1.0	0.69	ug/L			07/24/20 12:07	1
Carbon disulfide	ND	1.0	0.19	ug/L			07/24/20 12:07	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			07/24/20 12:07	1
Chlorobenzene	ND	1.0	0.75	ug/L			07/24/20 12:07	1
Chloroethane	ND	1.0	0.32	ug/L			07/24/20 12:07	1
Chloroform	ND	1.0	0.34	ug/L			07/24/20 12:07	1
Chloromethane	ND	1.0	0.35	ug/L			07/24/20 12:07	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			07/24/20 12:07	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			07/24/20 12:07	1
Cyclohexane	ND	1.0	0.18	ug/L			07/24/20 12:07	1
Dibromochloromethane	ND	1.0	0.32	ug/L			07/24/20 12:07	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			07/24/20 12:07	1
Ethylbenzene	ND	1.0	0.74	ug/L			07/24/20 12:07	1
Isopropylbenzene	ND	1.0	0.79	ug/L			07/24/20 12:07	1
m,p-Xylene	ND	2.0	0.66	ug/L			07/24/20 12:07	1
Methyl acetate	ND	2.5		ug/L			07/24/20 12:07	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			07/24/20 12:07	1
Methylcyclohexane	ND	1.0	0.16	ug/L			07/24/20 12:07	1
Methylene Chloride	ND	1.0	0.44	ug/L			07/24/20 12:07	1
n-Butylbenzene	ND	1.0		ug/L			07/24/20 12:07	1
N-Propylbenzene	ND	1.0	0.69	ug/L			07/24/20 12:07	1
o-Xylene	ND	1.0		ug/L			07/24/20 12:07	
sec-Butylbenzene	ND	1.0		ug/L			07/24/20 12:07	1
Styrene	ND	1.0		ug/L			07/24/20 12:07	1
tert-Butylbenzene	ND	1.0		ug/L			07/24/20 12:07	1
Tetrachloroethene	ND	1.0		ug/L			07/24/20 12:07	1
Toluene	ND	1.0		ug/L			07/24/20 12:07	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			07/24/20 12:07	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			07/24/20 12:07	1
Trichloroethene	ND	1.0		ug/L			07/24/20 12:07	1
Trichlorofluoromethane	ND	1.0		ug/L			07/24/20 12:07	· · · · · · · · · · · · · · · · · · ·
Vinyl chloride	ND	1.0		ug/L			07/24/20 12:07	1
Xylenes, Total	ND	2.0		ug/L			07/24/20 12:07	. 1
Agronos, rotar	140	2.0	0.00	ug/L			0112-120 12.01	'

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120		07/24/20 12:07	1
4-Bromofluorobenzene (Surr)	99		73 - 120		07/24/20 12:07	1
Toluene-d8 (Surr)	102		80 ₋ 120		07/24/20 12:07	1

QC Sample Results

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-172679-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-541939/5

Matrix: Water

Analysis Batch: 541939

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qualifie	r Unit	D %Rec	Limits	
1,1,1-Trichloroethane	25.0	26.0	ug/L	104	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	24.2	ug/L	97	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.7	ug/L	95	61 - 148	
ne 1,1,2-Trichloroethane	25.0	23.4	ug/L	94	76 - 122	
1,1-Dichloroethane	25.0	25.0	ug/L	100	70 - 122 77 - 120	
1,1-Dichloroethene	25.0	23.6	ug/L ug/L	95	66 - 127	
1,2,4-Trichlorobenzene	25.0	25.4	ug/L	102	79 - 122	
	25.0	25.2	ug/L ug/L	102	79 - 122 76 - 121	
1,2,4-Trimethylbenzene	25.0	23.6	_	94	76 - 121 56 - 134	
1,2-Dibromo-3-Chloropropane			ug/L		77 - 120	
1,2-Dibromoethane	25.0 25.0	25.5	ug/L	102		
1,2-Dichlorobenzene		24.8	ug/L	99	80 - 124	
1,2-Dichloroethane	25.0	24.3	ug/L	97	75 - 120	
1,2-Dichloropropane	25.0	26.2	ug/L	105	76 - 120	
1,3,5-Trimethylbenzene	25.0	25.8	ug/L	103	77 - 121	
1,3-Dichlorobenzene	25.0	25.3	ug/L	101	77 - 120	
1,4-Dichlorobenzene	25.0	24.6	ug/L	98	80 - 120	
2-Butanone (MEK)	125	114	ug/L	91	57 - 140	
2-Hexanone	125	119	ug/L	95	65 - 127	
4-Isopropyltoluene	25.0	25.4	ug/L	102	73 - 120	
4-Methyl-2-pentanone (MIBK)	125	119	ug/L	95	71 _ 125	
Acetone	125	114	ug/L	91	56 - 142	
Benzene	25.0	25.4	ug/L	102	71 - 124	
Bromodichloromethane	25.0	25.6	ug/L	103	80 - 122	
Bromoform	25.0	23.7	ug/L	95	61 - 132	
Bromomethane	25.0	22.0	ug/L	88	55 - 144	
Carbon disulfide	25.0	23.1	ug/L	92	59 _ 134	
Carbon tetrachloride	25.0	25.4	ug/L	102	72 - 134	
Chlorobenzene	25.0	24.4	ug/L	97	80 - 120	
Chloroethane	25.0	23.7	ug/L	95	69 - 136	
Chloroform	25.0	23.5	ug/L	94	73 - 127	
Chloromethane	25.0	22.3	ug/L	89	68 _ 124	
cis-1,2-Dichloroethene	25.0	24.0	ug/L	96	74 - 124	
cis-1,3-Dichloropropene	25.0	25.6	ug/L	102	74 - 124	
Cyclohexane	25.0	24.3	ug/L	97	59 - 135	
Dibromochloromethane	25.0	25.3	ug/L	101	75 ₋ 125	
Dichlorodifluoromethane	25.0	23.5	ug/L	94	59 ₋ 135	
Ethylbenzene	25.0	24.6	ug/L	98	77 - 123	
Isopropylbenzene	25.0	25.4	ug/L	102	77 - 122	
m,p-Xylene	25.0	24.7	ug/L	99	76 - 122	
Methyl acetate	50.0	47.8	ug/L	96	74 - 133	
Methyl tert-butyl ether	25.0	25.7	ug/L	103	77 - 120	
Methylcyclohexane	25.0	25.5	ug/L	102	68 - 134	
Methylene Chloride	25.0	22.7	ug/L ug/L	91	75 - 124	
n-Butylbenzene	25.0	25.1		100	75 - 12 4 71 - 128	
•			ug/L			
N-Propylbenzene	25.0	25.1	ug/L	100	75 - 127	
o-Xylene	25.0	24.8	ug/L	99	76 ₋ 122	
sec-Butylbenzene	25.0	25.2	ug/L	101	74 - 127	
Styrene	25.0	24.5	ug/L	98	80 - 120	

Eurofins TestAmerica, Buffalo

Page 31 of 40

5

3

6

8

10

11

QC Sample Results

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-172679-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-541939/5

Matrix: Water

Analysis Batch: 541939

Client Sample ID: Lab Control Sample

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
tert-Butylbenzene	25.0	26.4		ug/L		105	75 - 123	
Tetrachloroethene	25.0	25.2		ug/L		101	74 - 122	
Toluene	25.0	24.4		ug/L		97	80 - 122	
trans-1,2-Dichloroethene	25.0	24.0		ug/L		96	73 - 127	
trans-1,3-Dichloropropene	25.0	24.9		ug/L		100	80 - 120	
Trichloroethene	25.0	25.0		ug/L		100	74 - 123	
Trichlorofluoromethane	25.0	24.7		ug/L		99	62 - 150	
Vinyl chloride	25.0	23.8		ug/L		95	65 - 133	

LCS	LCS
LUG	LUO

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		77 - 120
4-Bromofluorobenzene (Surr)	100		73 - 120
Toluene-d8 (Surr)	98		80 - 120

Prep Type: Total/NA

QC Association Summary

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-172679-1

GC/MS VOA

Analysis Batch: 541833

Prep Bate	Method	Matrix	Prep Type	Client Sample ID	Lab Sample ID
	8260C	Water	Total/NA	RI-MW-2	480-172679-1
	8260C	Water	Total/NA	RI-MW-4	480-172679-2
	8260C	Water	Total/NA	RI-MW-6	480-172679-3
	8260C	Water	Total/NA	RI-MW-9	480-172679-4
	8260C	Water	Total/NA	RI-MW-10	480-172679-5
	8260C	Water	Total/NA	RI-MW-11	480-172679-6
	8260C	Water	Total/NA	RI-MW-12	480-172679-7
	8260C	Water	Total/NA	TRIP BLANK	480-172679-8
	8260C	Water	Total/NA	Method Blank	MB 480-541833/9
	8260C	Water	Total/NA	Lab Control Sample	LCS 480-541833/6
	8260C	Water	Total/NA	RI-MW-2	480-172679-1 MS
	8260C	Water	Total/NA	RI-MW-2	480-172679-1 MSD

Analysis Batch: 541939

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-172679-2 - DL	RI-MW-4	Total/NA	Water	8260C	
MB 480-541939/7	Method Blank	Total/NA	Water	8260C	
LCS 480-541939/5	Lab Control Sample	Total/NA	Water	8260C	

Client: Turnkey Environmental Restoration, LLC

Analysis

8260C

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-2

Lab Sample ID: 480-172679-1

TAL BUF

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	

Client Sample ID: RI-MW-4 Lab Sample ID: 480-172679-2

Date Collected: 07/21/20 13:14 **Matrix: Water**

541833 07/24/20 02:59 CRL

Date Received: 07/22/20 11:40

Date Collected: 07/21/20 09:05

Date Received: 07/22/20 11:40

Total/NA

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			541833	07/24/20 03:22	CRL	TAL BUF
Total/NA	Analysis	8260C	DL	4	541939	07/24/20 13:19	CRL	TAL BUF

Lab Sample ID: 480-172679-3 Client Sample ID: RI-MW-6

Date Collected: 07/21/20 14:09 **Matrix: Water**

Date Received: 07/22/20 11:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			541833	07/24/20 03:45	CRL	TAL BUF

Client Sample ID: RI-MW-9 Lab Sample ID: 480-172679-4

Date Collected: 07/21/20 11:33 **Matrix: Water**

Date Received: 07/22/20 11:40

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			541833	07/24/20 04:08	CRL	TAL BUF	-

Client Sample ID: RI-MW-10 Lab Sample ID: 480-172679-5

Date Collected: 07/21/20 10:02 **Matrix: Water**

Date Received: 07/22/20 11:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			541833	07/24/20 04:31	CRL	TAL BUF

Client Sample ID: RI-MW-11 Lab Sample ID: 480-172679-6

Date Collected: 07/21/20 11:52 **Matrix: Water** Date Received: 07/22/20 11:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			541833	07/24/20 04:54	CRL	TAL BUF

Lab Sample ID: 480-172679-7 Client Sample ID: RI-MW-12

Date Collected: 07/21/20 15:25 **Matrix: Water**

Date Received: 07/22/20 11:40

	Bat	ch Batch		Dilution	Batch	Prepared		
Prep Ty	ре Тур	e Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/N/	A Ana	alysis 8260C		2	541833	07/24/20 05:17	CRL	TAL BUF

Lab Chronicle

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Lab Sample ID: 480-172679-8

Matrix: Water

Job ID: 480-172679-1

Date Collected: 07/21/20 00:00 Date Received: 07/22/20 11:40

Client Sample ID: TRIP BLANK

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	541833	07/24/20 05:40	CRL	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-172679-1

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-02-21

Method Summary

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
5030C	Purge and Tran	SW846	TAI BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-172679-1

3

Δ

6

9

10

40

13

Sample Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-172679-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset II
480-172679-1	RI-MW-2	Water	07/21/20 09:05	07/22/20 11:40	
480-172679-2	RI-MW-4	Water	07/21/20 13:14	07/22/20 11:40	
480-172679-3	RI-MW-6	Water	07/21/20 14:09	07/22/20 11:40	
480-172679-4	RI-MW-9	Water	07/21/20 11:33	07/22/20 11:40	
480-172679-5	RI-MW-10	Water	07/21/20 10:02	07/22/20 11:40	
480-172679-6	RI-MW-11	Water	07/21/20 11:52	07/22/20 11:40	
480-172679-7	RI-MW-12	Water	07/21/20 15:25	07/22/20 11:40	
480-172679-8	TRIP BLANK	Water	07/21/20 00:00	07/22/20 11:40	

3

4

5

8

9

4 4

12

13

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

Environment Testing

: eurofins

Ver: 01/16/2019 Special Instructions/Note: Months M - Hexane
N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2SO3 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon 480-172679 Chain of Custody COC No: 480-148237-32966.1 Preservation Codes 0 A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchler Page: Page 1 of 1 Job #: a UN IstoT www Method of Shipmen Carrier Tracking No(s) Disposal By Lab Analysis Requested Sooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements: Lab PM: Fischer, Brian J E-Mail: Brian. Fischer@Eurofinset.com ceived by: 8260C - (MOD) TCL list OLM04.2 + Stars Time: Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) BT=Tissue, A=Air Water Water Water Preservation Code: Water Water Water Water Water Water Water Matrix Radiological (C=comp, G=grab) Sample 11:40 Type いいい 850 Belveres 1133 14109 1157 13:14 7000 1529 Sample 905 Time Date: M Unknown (days): Due Date Requested Stubed PO #. B0092-016-002 2 Sample Date 7/2/20 7/2 Project #: 48013685 Phone: WO# Poison B Skin Irritant Deliverable Requested: I, III, III, IV, Other (specify) Sustody/Seal No. Benchmark-791 Washington St. (Trico site) Turnkey Environmental Restoration, LLC 716-856-0635(Tel) 716-856-0583(Fax) Flammable Possible Hazard Identification cboron@benchmarkturnkey.com RE-MW-12 Empty Kit Relinquished by: (I-MM-10 11-MM-11 J-WW-I RE-MW-9 Custody Seals Intact: ケースとしな 2558 Hamburg Turnpike Relinquished by: Sample Identification Client Information Mr. Christopher Boron 1-MW-Non-Hazard linquished by: Lackawanna State, Zip: NY, 14218

3

Client: Turnkey Environmental Restoration, LLC

Job Number: 480-172679-1

Login Number: 172679

List Number: 1 Creator: Wallace, Cameron List Source: Eurofins TestAmerica, Buffalo

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and he COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TURNKEY
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Eurofins TestAmerica, Buffalo

EQUIPMENT CALIBRATION LOG

Project Name: Fusiwar Project No.: 80092-	12:0		Plant		Date:	7/21/2	0	
Client: Bull W	010				Instrumer	nt Source:	вм 🗌	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
			Myron I Company	6213516 6243084		4.00	4-01	9
pH meter	units	430	Myron L Company Ultra Meter 6P	6243084 6212375	NH3	7.00	702	7
		800		6243003	300	10.01	10.01	10
						10 NTU verification	10.3	10.0
	NTU	839	Hach 2100P or 2100Q Turbidimeter	06120C020523 (P)	_	< 0.4		
Turbidity meter				13120C030432 (Q) 17110C062619 (Q)	TAB	100		
			, arbiamotor	17 110C002019 (Q)		800		
Sp. Cond. meter	uS mS		Myron L Company Ultra Meter 6P	6213516	123	7,00 ms@25 ℃	7,006	7,000
☐ PID	ppm		MinRAE 2000			open air zero ppm Iso. Gas		MIBK response factor = 1.0
Dissolved Oxygen	ppm	830	HACH Model HQ30d	080700023281	TAR	100% Satuartion		102,4% slop
Particulate meter	mg/m³				1	zero air		
Radiation Meter	uR/H					background area		
ADDITIONAL REMARKS	1			DATE: 7/2				

Project Name:	Plant	Date: 7 21	20
Location: Bullion My	Project No.:: 30092 - 016-602	Field Team:	43Sh

Well N	o. KI-M	W-4	Diameter (in		l''	Sample Date	e / Time:	21/20	1314	
Product De	epth (fbTOR):	_	Water Column (ff): 7.55			DTW when sampled: 8,50				
		.28	One Well Vo	lume (gal):	0.3	Purpose:	Developmen		Purge & Sample	
Total Depti		-83	Total Volume Purged (gal): 0.50			Purge Metho	od:	Bailer		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
	o Initial			-		4				
1246	14.10	0.30	704	1605	3626	-1600	1,09	-129	No och	
1258	2 DRY	0.50	7,12	15.0	3745	11	1.66	-125	11	
1234	3						4			
	4									
	5									
	6									
	7									
	8		The Action					-		
	9		7 14	Der.						
	10		1	1				li li		
Sample	Information:									
1314	s12.50		7.07	15.5	3741	14	1.48	-1007	n	
1-1-	S2				10 1 - 1					

Well No	RI-M	N- 6:	Diameter (in	ches): 7 '	٠	Sample Date	e / Time: 🧻	121/20	1409
	oth (fbTOR):		Water Column (ft): 14.5			DTW when sampled: 11.21			
	N (static) (fbTOR): 1973 One Well Volume (gal): 276 Purpose: Development Sample				Purge & Sample				
Total Depth (fbTOR): 15.93			Total Volume Purged (gal): 7.6			Purge Metho	od:	Low ?	Flou
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1333	₀ Initial	≥0. 28	17.20	14.0	1538	654	146	-11 Y	Bru rec
1344	17,52	2.25	7.53	14.5	1891	264	1.12	10%	41
354	29.45	450	7.51	12.8	1738	63	1.61	F106	81
1405	311.51	10	7,52	12.4	2037	65.3	1.47	117	
	4		3		70.			w .	
	5		200				-		
	6								
	7								
	В			4.					12
	9								
	10					-			
Sample	Information	:						4	100
1409	s1 JL 2 1		7.55	12,2	1414	143	1,71	-14	01
100	82								hilization Criteria

REMARKS:	Volume Calculation			
REMARKS:	Diam.	Vol. (g/ft)		
	1.5	0.041		
	2"	0.163		
	4"	0.653		
Note: All water level measurements are in feet, distance from top of riser.	6"	1.469		

Parameter	Criteria
pН	± 0.1 unit
sc	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

PREPARED BY:

Project Name: Farmer Trans		Date:	7/21/20
Location: Bullet MY	Project No.: 1800 92 - 016 - 60 Z	Field Team:	743

Well No	AT-M	W-9	Diameter (in	iches):	u	Sample Dat	e/Time: 7	121/20	1133
Product De	pth (fbTOR):	_	Water Column (ft): /Z-67			DTW when sampled:			
DTW (statio) (fbTOR):	fbTOR): 3.50 One Well Volume (gal): 20 Purpose: Development Sample Purge					Purpose: Development Sample Purge & Sar		
Total Depth	(fbTOR): LC	.17	Total Volume Purged (gal): 5.0			Purge Meth	od:	Low Fl	و ليدا
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1629	o Initial	20.16	7.25	15.2	1724	182	0.18	-245	9 5/ fer oler
1032	19,60	200	7.17	18,1	1609	129	0.14	-287	11
1042	2 1295	4.0	7.26	172	1718	55.2	0,18	-276	N
11.00	B DKY	50	220	19.[1934	64.8	0.52	-232	II CAN
	4 ′							24	
	5								
	6								
	7								
	В								
	9								
	10								
Sample	Information:							×	
1133	51 1421		7.24	16.0	1840	401	0.91	-174	11
	S2								

Well No	. RI-1	1W-11	Diameter (in	ches): Z	11	Sample Dat	e / Time: 🙏	21/20	1152
Product Dep	oth (fbTOR):	_	Water Colur	nn (ft): 2	3.02	DTW when sampled:			
DTW (statio		12,68	One Well Vo	olume (gal):	375	Purpose:	Development		Purge & Sample
Total Depth	(fbTOR): 3	5.70	Total Volum	e Purged (gal):	41.0	Purge Meth	od:	Low for	سيا ي
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1/12	o Initial	26.75	7.53	17.0	2021	22.5	0.09	-717	JL Tadsolfon
1174	128,0	3.75	7.16	18.7	1996	83.4	0.37	-188	£1
1129	2 Day	4.0	7.58	17.2	1991	25.8	0.52	-183	p ji
	4								
	5								
	b .								
	В								
-	10								, , , , , ,
Sample	nformation	// 							July 1839
1152	51 26.81		7.44	18.1	2002	69.6	0.49	-143	"
	\$2								A

REMARKS:	Volume (Calculation
	Diam.	Vol. (g/ft)
	1"	0.041
	2"	0.163
	4"	0.653
Note: All water level measurements are in feet, distance from top of riser.	6"	1.469

Parameter	Criteria
pН	± 0.1 unit
sc	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

PREPARED BY: 743

Project Name: Turme Trico Plut		Date: 7/2	20
Location: Bulker NY	Project No.: B0092-016-602	Field Team:	+ATB

Well No	s. RF-M	1W-Z	Diameter (ir	nches):	1/	Sample Dat	e / Time: ች	21/20	905
Product De	oth (fbTOR):	•	Water Column (ft): 5,15			DTW when sampled:			
DTW (statio	DTW (static) (fbTOR): 11,13			olume (gal):	0.8-3	Purpose:	Development	Sample	Purge & Sample
Total Depth	(fbTOR):	178	Total Volume Purged (gal): 2,50			Purge Metho	od: L	W. Flor	~
Time	Water Level (fbTOR)	Acc Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
848	o Initial	00.25	6.73	13-5	6617	SEV	2.07	245	36 100 -
850	113.78	6.75	7,32	12.5	5817	48,6	2,44	214	11
856	2 14.09	1.25	7.37	129	6009	928	2,21	708	" "
900	3 14.29	2,50	7.31	11-5	6803	37.8	1.25	204	" " "
	4								
	5								
	6								
	7								
	8				10				
	9								
	10								
Sample I	nformation:								
905	51/4/10	-	7.30	13,1	6789	60.5	1.48	146	11
	S2 S2								

Well No	RI-MI	v-10	Diameter (in	ches):	Zet	Sample Dat	e / Time: 👍	21/20	100 200
Product Dep	oth (fbTOR):	3-00	Water Column (ft): 12,87			DTW when sampled: 11,60			
DTW (static) (fbTOR):	3.30	One Well Vo	olume (gal):	1,75	Purpose:	Development	: Sample	Purge & Sample
Total Depth	(fbTOR):	6.17	Total Volum	e Purged (gal):	5.25	Purge Metho	od: La	a Fou	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
942	o Initial	70.25	7.53	14.2	1259	51.0	1,72	185	3c Million
944	6.60	1,0	7,56	114.3	10961	47.0	1,48	175	11
949	27,32	1.75	7,50	14.2	1142	23.3	1,28	168	11
953	38,80	3,5	7.46 13-8 1200			31.3 1.07 182			17
1000	4 1020	5.25	7.49	13,0	1775	87.7	102	191	
	5					,	X	,	·
	6								
	7								
	8								
	9								
	10								
Sample I	nformation:								
	51/160		7.44	13.6	1263	34,5	1.10	176	
	S2								G

		Stabilizatio	n Criteria	
Volume	Calculation	Parameter	Criteria	Ī
Diam.	Vol. (g/ft)	рН	± 0.1 unit	Ī
1"	0.041	sc	± 3%	
2"	0.163	Turbidity	± 10%	Ī
4"	0.653	DO	± 0.3 mg/L	
6**	1.469	ORP	± 10 mV	
	Diam. 1" 2"	1" 0.041 2" 0.163 4" 0.653	Volume Calculation Parameter Diam. Vol. (g/ft) 1" 0.041 2" 0.163 4" 0.653 DO	Diam. Vol. (g/ft) pH ± 0.1 unit 1" 0.041 SC ± 3% 2" 0.163 Turbidity ± 10% 4" 0.653 DO ± 0.3 mg/L

PREPARED BY:

Groundwaler Field Form xls GWFF - BM

TAB

Project Name:	Fagner	Triz. Plan		Date:	21/20
Location:	Scilfalo	M	Project No. 30042-016-002	Field Team;	TAIS

Well No	MAI-	12	Diameter (inches):			Sample Date / Time:				
Product De	pth (fbTOR):	_	Water Colu	mn (ft):	8.92	DTW when	sampled:			
DTW (static) (fbTOR):			One Well Ve	olume (gal):	3.08	Purpose:	Development	: Sample	Purge & Sample	
Total Depth	(fbTOR): 3	7.63	Total Volum	e Purged (gal):		Purge Method:			7	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp, (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1431	□ Initial	40.25	7.40	14.8	5776	978	1.39	-92	Set No oda	
1436	1240	1,25	741	14.7	5791	108	1,24	-96	11	
1444	231,82	3.25	744	14,9	5291	79.1	1.02	-101	u	
1453	3 DRT	4,50	7.41	15.9	5942	71.2	1.45	-2.5	10	
7	4			300		7				
	5									
	15									
	7									
	В									
	19									
	10									
Sample	nformation:					·				
1329	53D.91		7.41	15,4	6106	93.0	1.69	-85	11	
	S2									

Well N	Well No.			Diameter (inches):			Sample Date / Time:					
Product D	epth (fbTOR):		Water Colu	mn (ft):		DTW when sampled:						
DTW (static) (fbTOR):			One Well Volume (gal):			Purpose: Development Sample Purge & San						
Total Dep	th (fbTOR):		Total Volum	ne Purged (gal):	Purge Method:							
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH Temp. SC (units) (deg. C) (uS)		Turbidity (NTU)	ORP (mV)	Appearance & Odor					
	o Initial											
	2											
	3											
	4											
	5											
	lB											
	7											
	В											
	9											
	10											
Sample	Information:			· · · · · · · · · · · · · · · · · · ·		**						
	S1											
	52											

REMARKS:	
Note: All water level measurements are in feet, distance from top of rise	er.

Volume (Volume Calculation							
Diam,	Vol. (g/ft)							
1%	0.041							
2"	0.163							
4"	0.653							
6"	1.469							

Stabilizatio	
Parameter	Criteria
pН	± 0.1 unit
sc	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

PREPARED BY:

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-178540-1

Client Project/Site: Benchmark-791 Washington St. (Trico site)

For:

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, New York 14218

Attn: Mr. Christopher Z Boron

J.

Authorized for release by: 11/27/2020 12:20:44 PM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835

Brian.Fischer@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

10

4.6

13

14

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	18
QC Sample Results	19
QC Association Summary	22
Lab Chronicle	23
Certification Summary	24
Method Summary	25
Sample Summary	26
Chain of Custody	27
Receipt Checklists	28

3

4

6

8

3

11

13

14

Definitions/Glossary

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-178540-1

Qualifiers

GC/MS VOA

Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCI	EDA recommended "Maximum Contar

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-178540-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-178540-1

Comments

No additional comments.

Receipt

The samples were received on 11/20/2020 3:26 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.0° C.

GC/MS VOA

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: RI-MW-2 (480-178540-1), RI-MW-4 (480-178540-2), RI-MW-6 (480-178540-3) and RI-MW-9 (480-178540-4). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: RI-MW-4 (480-178540-2). Sample pH is 7.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-178540-1

2

4

6

6

_

10

12

13

14

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-178540-1

Client Sample ID: RI-MW-2						La	b S	Sample ID:	480-178540-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	7.8		4.0	1.8	ug/L	4	_	8260C	Total/NA
Client Sample ID: RI-MW-4						La	b S	ample ID:	480-178540-
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	13	J	40	12	ug/L	4	_	8260C	Total/NA
cis-1,2-Dichloroethene	34		4.0	3.2	ug/L	4		8260C	Total/NA
Methyl tert-butyl ether	2.1	J	4.0	0.64	ug/L	4		8260C	Total/NA
trans-1,2-Dichloroethene	54		4.0	3.6	ug/L	4		8260C	Total/NA
Vinyl chloride	17		4.0	3.6	ug/L	4		8260C	Total/NA
Client Sample ID: RI-MW-6						La	b S	ample ID:	480-178540-
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	3.5		2.0	1.6	ug/L	2	_	8260C	Total/NA
Client Sample ID: RI-MW-9						La	b S	Sample ID:	480-178540-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	28	J	40	12	ug/L	4	_	8260C	Total/NA
cis-1,2-Dichloroethene	4.1		4.0	3.2	ug/L	4		8260C	Total/NA
Client Sample ID: RI-MW-10						La	b S	Sample ID:	480-178540-
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	3.2		1.0	0.46	ug/L	1	_	8260C	Total/NA
Client Sample ID: Trip Blank						La	b S	Sample ID:	480-178540-

RL

1.0

Result Qualifier

1.5

MDL Unit

0.34 ug/L

Dil Fac D Method

8260C

Prep Type

Total/NA

This Detection Summary does not include radiochemical test results.

Analyte

Chloroform

Eurofins TestAmerica, Buffalo

11/27/2020

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-2

Lab Sample ID: 480-178540-1

Matrix: Water

Job ID: 480-178540-1

Date Collected: 11/20/20 08:52 Date Received: 11/20/20 15:26

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	ND		4.0	3.3	ug/L			11/24/20 14:02	
,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			11/24/20 14:02	4
,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			11/24/20 14:02	4
,1,2-Trichloroethane	ND		4.0	0.92	ug/L			11/24/20 14:02	
,1-Dichloroethane	ND		4.0	1.5	ug/L			11/24/20 14:02	4
,1-Dichloroethene	ND		4.0	1.2	ug/L			11/24/20 14:02	
,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			11/24/20 14:02	
,2,4-Trimethylbenzene	ND		4.0	3.0	ug/L			11/24/20 14:02	
,2-Dibromo-3-Chloropropane	ND		4.0	1.6	ug/L			11/24/20 14:02	
,2-Dibromoethane	ND		4.0	2.9	ug/L			11/24/20 14:02	
,2-Dichlorobenzene	ND		4.0		ug/L			11/24/20 14:02	
,2-Dichloroethane	ND		4.0	0.84				11/24/20 14:02	
,2-Dichloropropane	ND		4.0		ug/L			11/24/20 14:02	
,3,5-Trimethylbenzene	ND		4.0		ug/L			11/24/20 14:02	
,3-Dichlorobenzene	ND		4.0		ug/L			11/24/20 14:02	
,4-Dichlorobenzene	ND		4.0		ug/L			11/24/20 14:02	
-Butanone (MEK)	ND		40		ug/L			11/24/20 14:02	
-Hexanone	ND		20		ug/L			11/24/20 14:02	
-Isopropyltoluene	ND		4.0		ug/L ug/L			11/24/20 14:02	
-Methyl-2-pentanone (MIBK)	ND		20		ug/L			11/24/20 14:02	
cetone	ND		40		ug/L			11/24/20 14:02	
enzene	ND		4.0		ug/L ug/L			11/24/20 14:02	
romodichloromethane	ND		4.0		ug/L ug/L			11/24/20 14:02	
romodicilloromethane	ND ND		4.0					11/24/20 14:02	
romomethane	ND				ug/L			11/24/20 14:02	
			4.0		ug/L				
Carbon disulfide	ND		4.0	0.76	-			11/24/20 14:02	
Carbon tetrachloride	ND		4.0		ug/L			11/24/20 14:02	
Chlorobenzene	ND		4.0		ug/L			11/24/20 14:02	
Chloroethane	ND		4.0		ug/L			11/24/20 14:02	
Chloroform	ND		4.0		ug/L			11/24/20 14:02	
Chloromethane	ND		4.0		ug/L			11/24/20 14:02	
is-1,2-Dichloroethene	ND		4.0		ug/L			11/24/20 14:02	
is-1,3-Dichloropropene	ND		4.0		ug/L			11/24/20 14:02	
cyclohexane	ND		4.0	0.72	-			11/24/20 14:02	
bibromochloromethane	ND		4.0		ug/L			11/24/20 14:02	
ichlorodifluoromethane	ND		4.0		ug/L			11/24/20 14:02	
thylbenzene	ND		4.0		ug/L			11/24/20 14:02	
sopropylbenzene	ND		4.0		ug/L			11/24/20 14:02	
n,p-Xylene	ND		8.0		ug/L			11/24/20 14:02	
lethyl acetate	ND		10		ug/L			11/24/20 14:02	
lethyl tert-butyl ether	ND		4.0	0.64	ug/L			11/24/20 14:02	
lethylcyclohexane	ND		4.0	0.64	ug/L			11/24/20 14:02	
Methylene Chloride	ND		4.0		ug/L			11/24/20 14:02	
-Butylbenzene	ND		4.0	2.6	ug/L			11/24/20 14:02	
I-Propylbenzene	ND		4.0	2.8	ug/L			11/24/20 14:02	
-Xylene	ND		4.0	3.0	ug/L			11/24/20 14:02	
ec-Butylbenzene	ND		4.0	3.0	ug/L			11/24/20 14:02	
	ND		4.0		ug/L			11/24/20 14:02	

Eurofins TestAmerica, Buffalo

11/27/2020

Page 6 of 28

2

3

3

8

10

12

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-2

Lab Sample ID: 480-178540-1

Matrix: Water

Job ID: 480-178540-1

Date Collected: 11/20/20 08:52 Date Received: 11/20/20 15:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	MD		4.0	1.4	ug/L			11/24/20 14:02	4
Toluene	ND		4.0	2.0	ug/L			11/24/20 14:02	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			11/24/20 14:02	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			11/24/20 14:02	4
Trichloroethene	7.8		4.0	1.8	ug/L			11/24/20 14:02	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			11/24/20 14:02	4
Vinyl chloride	ND		4.0	3.6	ug/L			11/24/20 14:02	4
Xylenes, Total	ND		8.0	2.6	ug/L			11/24/20 14:02	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120			_		11/24/20 14:02	4
4-Bromofluorobenzene (Surr)	102		73 - 120					11/24/20 14:02	4
Toluene-d8 (Surr)	101		80 ₋ 120					11/24/20 14:02	4

7

8

10

11

12

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-4

Lab Sample ID: 480-178540-2

Matrix: Water

Job ID: 480-178540-1

Date Collected: 11/20/20 12:12 Date Received: 11/20/20 15:26

Method: 8260C - Volatile Organi								
Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.0		ug/L			11/24/20 14:25	4
1,1,2,2-Tetrachloroethane	ND	4.0		ug/L			11/24/20 14:25	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0		ug/L			11/24/20 14:25	4
1,1,2-Trichloroethane	ND	4.0		ug/L			11/24/20 14:25	4
1,1-Dichloroethane	ND	4.0	1.5	ug/L			11/24/20 14:25	4
1,1-Dichloroethene	ND	4.0	1.2	ug/L			11/24/20 14:25	4
1,2,4-Trichlorobenzene	ND	4.0	1.6	ug/L			11/24/20 14:25	4
1,2,4-Trimethylbenzene	ND	4.0	3.0	ug/L			11/24/20 14:25	4
1,2-Dibromo-3-Chloropropane	ND	4.0	1.6	ug/L			11/24/20 14:25	4
1,2-Dibromoethane	ND	4.0	2.9	ug/L			11/24/20 14:25	4
1,2-Dichlorobenzene	ND	4.0	3.2	ug/L			11/24/20 14:25	4
1,2-Dichloroethane	ND	4.0	0.84	ug/L			11/24/20 14:25	4
1,2-Dichloropropane	ND	4.0	2.9	ug/L			11/24/20 14:25	4
1,3,5-Trimethylbenzene	ND	4.0	3.1	ug/L			11/24/20 14:25	4
1,3-Dichlorobenzene	ND	4.0	3.1	ug/L			11/24/20 14:25	4
1,4-Dichlorobenzene	ND	4.0	3.4	ug/L			11/24/20 14:25	4
2-Butanone (MEK)	ND	40	5.3	ug/L			11/24/20 14:25	4
2-Hexanone	ND	20	5.0	ug/L			11/24/20 14:25	4
4-Isopropyltoluene	ND	4.0	1.2	ug/L			11/24/20 14:25	4
4-Methyl-2-pentanone (MIBK)	ND	20	8.4	ug/L			11/24/20 14:25	4
Acetone	13 J	40	12	ug/L			11/24/20 14:25	4
Benzene	ND	4.0	1.6	ug/L			11/24/20 14:25	4
Bromodichloromethane	ND	4.0		ug/L			11/24/20 14:25	4
Bromoform	ND	4.0		ug/L			11/24/20 14:25	4
Bromomethane	ND	4.0		ug/L			11/24/20 14:25	4
Carbon disulfide	ND	4.0		ug/L			11/24/20 14:25	4
Carbon tetrachloride	ND	4.0		ug/L			11/24/20 14:25	4
Chlorobenzene	ND	4.0		ug/L			11/24/20 14:25	4
Chloroethane	ND	4.0		ug/L			11/24/20 14:25	4
Chloroform	ND	4.0		ug/L			11/24/20 14:25	4
Chloromethane	ND	4.0		ug/L			11/24/20 14:25	4
cis-1,2-Dichloroethene	34	4.0		ug/L			11/24/20 14:25	4
cis-1,3-Dichloropropene	ND	4.0		ug/L			11/24/20 14:25	4
Cyclohexane	ND	4.0		ug/L			11/24/20 14:25	
Dibromochloromethane	ND	4.0		ug/L			11/24/20 14:25	4
Dichlorodifluoromethane	ND	4.0		ug/L			11/24/20 14:25	4
Ethylbenzene	ND	4.0		ug/L			11/24/20 14:25	4
•								
Isopropylbenzene	ND ND	4.0		ug/L			11/24/20 14:25	4
m,p-Xylene	ND ND	8.0		ug/L			11/24/20 14:25	
Methyl acetate	ND	10		ug/L			11/24/20 14:25	4
Methyl tert-butyl ether	2.1 J	4.0		ug/L			11/24/20 14:25	4
Methylcyclohexane	ND	4.0		ug/L			11/24/20 14:25	
Methylene Chloride	ND	4.0		ug/L			11/24/20 14:25	4
n-Butylbenzene	ND	4.0		ug/L			11/24/20 14:25	4
N-Propylbenzene	ND	4.0		ug/L			11/24/20 14:25	4
o-Xylene	ND	4.0		ug/L			11/24/20 14:25	4
sec-Butylbenzene	ND	4.0		ug/L			11/24/20 14:25	4
Styrene	ND	4.0		ug/L			11/24/20 14:25	4
tert-Butylbenzene	ND	4.0	3.2	ug/L			11/24/20 14:25	4

Eurofins TestAmerica, Buffalo

11/27/2020

Page 8 of 28

2

3

6

8

10

12

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-4

Lab Sample ID: 480-178540-2

Matrix: Water

Job ID: 480-178540-1

Date Collected: 11/20/20 12:12 Date Received: 11/20/20 15:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		4.0	1.4	ug/L			11/24/20 14:25	4
Toluene	ND		4.0	2.0	ug/L			11/24/20 14:25	4
trans-1,2-Dichloroethene	54		4.0	3.6	ug/L			11/24/20 14:25	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			11/24/20 14:25	4
Trichloroethene	ND		4.0	1.8	ug/L			11/24/20 14:25	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			11/24/20 14:25	4
Vinyl chloride	17		4.0	3.6	ug/L			11/24/20 14:25	4
Xylenes, Total	ND		8.0	2.6	ug/L			11/24/20 14:25	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		77 - 120			_		11/24/20 14:25	4
4-Bromofluorobenzene (Surr)	92		73 - 120					11/24/20 14:25	4
Toluene-d8 (Surr)	97		80 - 120					11/24/20 14:25	4

_

4

6

8

4.0

- -

12

. .

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-6

Lab Sample ID: 480-178540-3

Matrix: Water

Job ID: 480-178540-1

Date Collected: 11/20/20 13:36 Date Received: 11/20/20 15:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		2.0	1.6	ug/L			11/24/20 14:48	
1,1,2,2-Tetrachloroethane	ND		2.0	0.42	ug/L			11/24/20 14:48	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0	0.62	ug/L			11/24/20 14:48	2
1,1,2-Trichloroethane	ND		2.0	0.46	ug/L			11/24/20 14:48	2
1,1-Dichloroethane	ND		2.0		ug/L			11/24/20 14:48	2
1,1-Dichloroethene	ND		2.0		ug/L			11/24/20 14:48	2
1,2,4-Trichlorobenzene	ND		2.0		ug/L			11/24/20 14:48	2
1,2,4-Trimethylbenzene	ND		2.0		ug/L			11/24/20 14:48	2
1,2-Dibromo-3-Chloropropane	ND		2.0		ug/L			11/24/20 14:48	2
1,2-Dibromoethane	ND		2.0		ug/L			11/24/20 14:48	
1,2-Dichlorobenzene	ND		2.0		ug/L			11/24/20 14:48	2
1,2-Dichloroethane	ND		2.0		ug/L			11/24/20 14:48	2
1,2-Dichloropropane	ND		2.0		ug/L			11/24/20 14:48	
1,3,5-Trimethylbenzene	ND		2.0		ug/L			11/24/20 14:48	2
1,3-Dichlorobenzene	ND		2.0		ug/L			11/24/20 14:48	2
	ND ND		2.0					11/24/20 14:48	
1,4-Dichlorobenzene	ND ND				ug/L				2
2-Butanone (MEK)	ND ND		20		ug/L			11/24/20 14:48	2
2-Hexanone			10		ug/L			11/24/20 14:48	
4-Isopropyltoluene	ND		2.0		ug/L			11/24/20 14:48	2
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L 			11/24/20 14:48	2
Acetone	ND		20		ug/L			11/24/20 14:48	
Benzene	ND		2.0		ug/L			11/24/20 14:48	2
Bromodichloromethane	ND		2.0		ug/L			11/24/20 14:48	2
Bromoform	ND		2.0		ug/L			11/24/20 14:48	
Bromomethane	ND		2.0		ug/L			11/24/20 14:48	2
Carbon disulfide	ND		2.0	0.38	ug/L			11/24/20 14:48	2
Carbon tetrachloride	ND		2.0	0.54	ug/L			11/24/20 14:48	
Chlorobenzene	ND		2.0	1.5	ug/L			11/24/20 14:48	2
Chloroethane	ND		2.0	0.64	ug/L			11/24/20 14:48	2
Chloroform	ND		2.0	0.68	ug/L			11/24/20 14:48	
Chloromethane	ND		2.0	0.70	ug/L			11/24/20 14:48	2
cis-1,2-Dichloroethene	3.5		2.0	1.6	ug/L			11/24/20 14:48	2
cis-1,3-Dichloropropene	ND		2.0	0.72	ug/L			11/24/20 14:48	2
Cyclohexane	ND		2.0	0.36	ug/L			11/24/20 14:48	2
Dibromochloromethane	ND		2.0	0.64	ug/L			11/24/20 14:48	2
Dichlorodifluoromethane	ND		2.0	1.4	ug/L			11/24/20 14:48	2
Ethylbenzene	ND		2.0	1.5	ug/L			11/24/20 14:48	2
Isopropylbenzene	ND		2.0	1.6	ug/L			11/24/20 14:48	2
m,p-Xylene	ND		4.0	1.3	ug/L			11/24/20 14:48	2
Methyl acetate	ND		5.0	2.6	ug/L			11/24/20 14:48	2
Methyl tert-butyl ether	ND		2.0	0.32	ug/L			11/24/20 14:48	2
Methylcyclohexane	ND		2.0		ug/L			11/24/20 14:48	2
Methylene Chloride	ND		2.0		ug/L			11/24/20 14:48	
n-Butylbenzene	ND		2.0		ug/L			11/24/20 14:48	2
N-Propylbenzene	ND		2.0		ug/L			11/24/20 14:48	2
o-Xylene	ND		2.0		ug/L			11/24/20 14:48	
sec-Butylbenzene	ND		2.0		ug/L			11/24/20 14:48	2
Styrene	ND		2.0		ug/L			11/24/20 14:48	2
tert-Butylbenzene	ND ND		2.0		ug/L ug/L			11/24/20 14:48	

Eurofins TestAmerica, Buffalo

Page 10 of 28

6

3

5

7

q

10

12

14

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-6

Lab Sample ID: 480-178540-3

Matrix: Water

Job ID: 480-178540-1

Date Collected: 11/20/20 13:36 Date Received: 11/20/20 15:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	MD		2.0	0.72	ug/L			11/24/20 14:48	2
Toluene	ND		2.0	1.0	ug/L			11/24/20 14:48	2
trans-1,2-Dichloroethene	ND		2.0	1.8	ug/L			11/24/20 14:48	2
trans-1,3-Dichloropropene	ND		2.0	0.74	ug/L			11/24/20 14:48	2
Trichloroethene	ND		2.0	0.92	ug/L			11/24/20 14:48	2
Trichlorofluoromethane	ND		2.0	1.8	ug/L			11/24/20 14:48	2
Vinyl chloride	ND		2.0	1.8	ug/L			11/24/20 14:48	2
Xylenes, Total	ND		4.0	1.3	ug/L			11/24/20 14:48	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		77 - 120			-		11/24/20 14:48	2
4-Bromofluorobenzene (Surr)	95		73 - 120					11/24/20 14:48	2
Toluene-d8 (Surr)	98		80 - 120					11/24/20 14:48	2

3

5

7

0

4.6

11

12

13

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-9

Lab Sample ID: 480-178540-4

Matrix: Water

Job ID: 480-178540-1

Date Collected: 11/20/20 13:15 Date Received: 11/20/20 15:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			11/24/20 15:11	
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			11/24/20 15:11	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			11/24/20 15:11	
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			11/24/20 15:11	
1,1-Dichloroethane	ND		4.0	1.5	ug/L			11/24/20 15:11	
1,1-Dichloroethene	ND		4.0	1.2	ug/L			11/24/20 15:11	
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			11/24/20 15:11	
1,2,4-Trimethylbenzene	ND		4.0		ug/L			11/24/20 15:11	
1,2-Dibromo-3-Chloropropane	ND		4.0		ug/L			11/24/20 15:11	
1,2-Dibromoethane	ND		4.0		ug/L			11/24/20 15:11	
1,2-Dichlorobenzene	ND		4.0		ug/L			11/24/20 15:11	
1,2-Dichloroethane	ND		4.0		ug/L			11/24/20 15:11	
1,2-Dichloropropane	ND		4.0		ug/L			11/24/20 15:11	
1,3,5-Trimethylbenzene	ND		4.0	3.1	ug/L			11/24/20 15:11	
1,3-Dichlorobenzene	ND		4.0		ug/L			11/24/20 15:11	
1.4-Dichlorobenzene	ND		4.0		ug/L			11/24/20 15:11	
2-Butanone (MEK)	ND		40		ug/L			11/24/20 15:11	
2-Hexanone	ND		20		ug/L ug/L			11/24/20 15:11	
4-Isopropyltoluene	ND		4.0		ug/L ug/L			11/24/20 15:11	
, ,,	ND ND		20		ug/L ug/L			11/24/20 15:11	
4-Methyl-2-pentanone (MIBK)					_			11/24/20 15:11	
Acetone	28	J	40		ug/L				
Benzene	ND		4.0		ug/L			11/24/20 15:11	
Bromodichloromethane	ND		4.0		ug/L			11/24/20 15:11	
Bromoform	ND		4.0	1.0	ug/L			11/24/20 15:11	
Bromomethane	ND		4.0		ug/L			11/24/20 15:11	
Carbon disulfide	ND		4.0		ug/L			11/24/20 15:11	
Carbon tetrachloride	ND		4.0		ug/L			11/24/20 15:11	
Chlorobenzene	ND		4.0		ug/L			11/24/20 15:11	
Chloroethane	ND		4.0		ug/L			11/24/20 15:11	
Chloroform	ND		4.0		ug/L			11/24/20 15:11	
Chloromethane	ND		4.0	1.4	ug/L			11/24/20 15:11	
cis-1,2-Dichloroethene	4.1		4.0	3.2	ug/L			11/24/20 15:11	
cis-1,3-Dichloropropene	ND		4.0		ug/L			11/24/20 15:11	
Cyclohexane	ND		4.0	0.72	ug/L			11/24/20 15:11	
Dibromochloromethane	ND		4.0	1.3	ug/L			11/24/20 15:11	
Dichlorodifluoromethane	ND		4.0		ug/L			11/24/20 15:11	
Ethylbenzene	ND		4.0	3.0	ug/L			11/24/20 15:11	
sopropylbenzene	ND		4.0	3.2	ug/L			11/24/20 15:11	
m,p-Xylene	ND		8.0	2.6	ug/L			11/24/20 15:11	
Methyl acetate	ND		10	5.2	ug/L			11/24/20 15:11	
Methyl tert-butyl ether	ND		4.0	0.64	ug/L			11/24/20 15:11	
Methylcyclohexane	ND		4.0	0.64	ug/L			11/24/20 15:11	
Methylene Chloride	ND		4.0	1.8	ug/L			11/24/20 15:11	
n-Butylbenzene	ND		4.0	2.6	ug/L			11/24/20 15:11	
N-Propylbenzene	ND		4.0		ug/L			11/24/20 15:11	
o-Xylene	ND		4.0		ug/L			11/24/20 15:11	
sec-Butylbenzene	ND		4.0		ug/L			11/24/20 15:11	
Styrene	ND		4.0		ug/L			11/24/20 15:11	
tert-Butylbenzene	ND		4.0		ug/L			11/24/20 15:11	

Eurofins TestAmerica, Buffalo

Page 12 of 28

2

3

5

8

10

12

14

A E

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Lab Sample ID: 480-178540-4

11/24/20 15:11

11/24/20 15:11

Matrix: Water

Job ID: 480-178540-1

Client Sample ID: RI-MW-9

Date Collected: 11/20/20 13:15 Date Received: 11/20/20 15:26

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

97

99

Method: 8260C - Volatile Organi	c Compounds by GC/I	MS (Continued)						
Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND ND	4.0	1.4	ug/L			11/24/20 15:11	4
Toluene	ND	4.0	2.0	ug/L			11/24/20 15:11	4
trans-1,2-Dichloroethene	ND	4.0	3.6	ug/L			11/24/20 15:11	4
trans-1,3-Dichloropropene	ND	4.0	1.5	ug/L			11/24/20 15:11	4
Trichloroethene	ND	4.0	1.8	ug/L			11/24/20 15:11	4
Trichlorofluoromethane	ND	4.0	3.5	ug/L			11/24/20 15:11	4
Vinyl chloride	ND	4.0	3.6	ug/L			11/24/20 15:11	4
Xylenes, Total	ND	8.0	2.6	ug/L			11/24/20 15:11	4
Surrogate	%Recovery Qualifie	er Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	77 - 120			-		11/24/20 15:11	4

73 - 120

80 - 120

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-10

Date Collected: 11/20/20 10:06 Date Received: 11/20/20 15:26 Lab Sample ID: 480-178540-5

Matrix: Water

Job ID: 480-178540-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane		1.0	0.82	ug/L			11/24/20 15:34	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			11/24/20 15:34	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			11/24/20 15:34	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			11/24/20 15:34	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			11/24/20 15:34	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			11/24/20 15:34	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			11/24/20 15:34	1
1,2,4-Trimethylbenzene	ND	1.0		ug/L			11/24/20 15:34	1
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			11/24/20 15:34	1
1,2-Dibromoethane	ND	1.0		ug/L			11/24/20 15:34	1
1,2-Dichlorobenzene	ND	1.0		ug/L			11/24/20 15:34	1
1,2-Dichloroethane	ND	1.0		ug/L			11/24/20 15:34	1
1,2-Dichloropropane	ND	1.0		ug/L			11/24/20 15:34	1
1,3,5-Trimethylbenzene	ND	1.0		ug/L			11/24/20 15:34	1
1,3-Dichlorobenzene	ND	1.0		ug/L			11/24/20 15:34	1
1,4-Dichlorobenzene	ND	1.0		ug/L			11/24/20 15:34	1
2-Butanone (MEK)	ND	10		ug/L			11/24/20 15:34	1
2-Hexanone	ND	5.0		ug/L			11/24/20 15:34	1
4-Isopropyltoluene	ND	1.0		ug/L			11/24/20 15:34	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	-			11/24/20 15:34	1
Acetone (Wilst)	ND	10		ug/L			11/24/20 15:34	1
Benzene	ND	1.0		ug/L			11/24/20 15:34	
Bromodichloromethane	ND	1.0		ug/L			11/24/20 15:34	1
Bromoform	ND	1.0		ug/L ug/L			11/24/20 15:34	1
Bromomethane	ND	1.0		ug/L			11/24/20 15:34	' 1
Carbon disulfide	ND	1.0		_			11/24/20 15:34	1
Carbon distillide Carbon tetrachloride	ND ND	1.0		ug/L ug/L			11/24/20 15:34	1
	ND							
Chlorosthana	ND ND	1.0		ug/L			11/24/20 15:34	1
Chloroethane Chloroform	ND ND	1.0 1.0		ug/L			11/24/20 15:34	1
Chloromethane				ug/L			11/24/20 15:34	
	ND	1.0		ug/L			11/24/20 15:34	1
cis-1,2-Dichloroethene	ND	1.0		ug/L			11/24/20 15:34	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			11/24/20 15:34	1
Cyclohexane	ND	1.0		ug/L			11/24/20 15:34	1
Dibromochloromethane	ND	1.0		ug/L			11/24/20 15:34	1
Dichlorodifluoromethane	ND	1.0		ug/L			11/24/20 15:34	1
Ethylbenzene	ND	1.0		ug/L			11/24/20 15:34	1
Isopropylbenzene	ND	1.0		ug/L			11/24/20 15:34	1
m,p-Xylene	ND	2.0		ug/L			11/24/20 15:34	1
Methyl acetate	ND	2.5		ug/L			11/24/20 15:34	1
Methyl tert-butyl ether	ND	1.0		ug/L			11/24/20 15:34	1
Methylcyclohexane	ND	1.0		ug/L			11/24/20 15:34	1
Methylene Chloride	ND	1.0		ug/L			11/24/20 15:34	1
n-Butylbenzene	ND	1.0		ug/L			11/24/20 15:34	1
N-Propylbenzene	ND	1.0		ug/L			11/24/20 15:34	1
o-Xylene	ND	1.0		ug/L			11/24/20 15:34	1
sec-Butylbenzene	ND	1.0		ug/L			11/24/20 15:34	1
Styrene	ND	1.0	0.73	ug/L			11/24/20 15:34	1
tert-Butylbenzene	ND	1.0	0.81	ug/L			11/24/20 15:34	1

Eurofins TestAmerica, Buffalo

11/27/2020

Page 14 of 28

-

3

5

7

9

11 12

13

4.

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-10

Lab Sample ID: 480-178540-5

Matrix: Water

Job ID: 480-178540-1

Date Collected: 11/20/20 10:06 Date Received: 11/20/20 15:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		1.0	0.36	ug/L			11/24/20 15:34	1
Toluene	ND		1.0	0.51	ug/L			11/24/20 15:34	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			11/24/20 15:34	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			11/24/20 15:34	1
Trichloroethene	3.2		1.0	0.46	ug/L			11/24/20 15:34	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			11/24/20 15:34	1
Vinyl chloride	ND		1.0	0.90	ug/L			11/24/20 15:34	1
Xylenes, Total	ND		2.0	0.66	ug/L			11/24/20 15:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		77 - 120			_		11/24/20 15:34	1
4-Bromofluorobenzene (Surr)	101		73 - 120					11/24/20 15:34	1
Toluene-d8 (Surr)	103		80 ₋ 120					11/24/20 15:34	1

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: Trip Blank

Lab Sample ID: 480-178540-6 Date Collected: 11/20/20 00:00

Matrix: Water

Job ID: 480-178540-1

Date Received: 11/20/20 15:26

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			11/24/20 15:58	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			11/24/20 15:58	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			11/24/20 15:58	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			11/24/20 15:58	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			11/24/20 15:58	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			11/24/20 15:58	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			11/24/20 15:58	
1,2,4-Trimethylbenzene	ND	1.0	0.75	ug/L			11/24/20 15:58	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			11/24/20 15:58	
1,2-Dibromoethane	ND	1.0	0.73	ug/L			11/24/20 15:58	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			11/24/20 15:58	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			11/24/20 15:58	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			11/24/20 15:58	
1,3,5-Trimethylbenzene	ND	1.0	0.77	ug/L			11/24/20 15:58	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			11/24/20 15:58	
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			11/24/20 15:58	
2-Butanone (MEK)	ND	10		ug/L			11/24/20 15:58	
2-Hexanone	ND	5.0		ug/L			11/24/20 15:58	
4-Isopropyltoluene	ND	1.0		ug/L			11/24/20 15:58	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			11/24/20 15:58	
Acetone	ND	10		ug/L			11/24/20 15:58	
Benzene	ND	1.0		ug/L			11/24/20 15:58	
Bromodichloromethane	ND	1.0	0.39	-			11/24/20 15:58	
Bromoform	ND	1.0		ug/L			11/24/20 15:58	
Bromomethane	ND	1.0		ug/L			11/24/20 15:58	
Carbon disulfide	ND	1.0		ug/L			11/24/20 15:58	
Carbon tetrachloride	ND	1.0	0.27	_			11/24/20 15:58	
Chlorobenzene	ND	1.0		ug/L			11/24/20 15:58	
Chloroethane	ND	1.0		ug/L			11/24/20 15:58	
Chloroform	1.5	1.0		ug/L			11/24/20 15:58	
Chloromethane	ND	1.0		ug/L			11/24/20 15:58	
cis-1,2-Dichloroethene	ND	1.0	0.81	-			11/24/20 15:58	
cis-1,3-Dichloropropene	ND	1.0		ug/L			11/24/20 15:58	
Cyclohexane	ND ND	1.0		ug/L			11/24/20 15:58	
Dibromochloromethane	ND	1.0		ug/L			11/24/20 15:58	
Dichlorodifluoromethane	ND	1.0		ug/L			11/24/20 15:58	
Ethylbenzene	ND	1.0		ug/L			11/24/20 15:58	
•	ND	1.0		ug/L				
Isopropylbenzene	ND ND	2.0		ug/L ug/L			11/24/20 15:58 11/24/20 15:58	
m,p-Xylene Methyl acetate	ND	2.5		ug/L ug/L				
•							11/24/20 15:58	
Methyl tert-butyl ether	ND ND	1.0		ug/L			11/24/20 15:58	
Methylcyclohexane	ND	1.0		ug/L			11/24/20 15:58	
Methylene Chloride	ND	1.0		ug/L			11/24/20 15:58	
n-Butylbenzene	ND	1.0		ug/L			11/24/20 15:58	
N-Propylbenzene	ND	1.0		ug/L			11/24/20 15:58	
o-Xylene	ND	1.0		ug/L			11/24/20 15:58	
sec-Butylbenzene	ND	1.0		ug/L			11/24/20 15:58	
Styrene tert-Butylbenzene	ND ND	1.0		ug/L ug/L			11/24/20 15:58 11/24/20 15:58	

Eurofins TestAmerica, Buffalo

Page 16 of 28

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: Trip Blank

Date Collected: 11/20/20 00:00

Matrix: Water

Date Received: 11/20/20 15:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		1.0	0.36	ug/L			11/24/20 15:58	1
Toluene	ND		1.0	0.51	ug/L			11/24/20 15:58	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			11/24/20 15:58	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			11/24/20 15:58	1
Trichloroethene	ND		1.0	0.46	ug/L			11/24/20 15:58	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			11/24/20 15:58	1
Vinyl chloride	ND		1.0	0.90	ug/L			11/24/20 15:58	1
Xylenes, Total	ND		2.0	0.66	ug/L			11/24/20 15:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		77 - 120			_		11/24/20 15:58	1
4-Bromofluorobenzene (Surr)	94		73 - 120					11/24/20 15:58	1
Toluene-d8 (Surr)	96		80 - 120					11/24/20 15:58	1

2

Job ID: 480-178540-1

4

6

8

10

11

13

14

Surrogate Summary

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-178540-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Surrog	ate Recovery (Acceptance Limits)
		DCA	BFB	TOL	
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	
180-178540-1	RI-MW-2	100	102	101	
480-178540-2	RI-MW-4	107	92	97	
480-178540-3	RI-MW-6	115	95	98	
480-178540-4	RI-MW-9	106	97	99	
180-178540-5	RI-MW-10	111	101	103	
180-178540-6	Trip Blank	115	94	96	
_CS 480-560615/5	Lab Control Sample	100	100	100	
MB 480-560615/7	Method Blank	107	96	98	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Eurofins TestAmerica, Buffalo

QC Sample Results

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-178540-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-560615/7

Matrix: Water

Analysis Batch: 560615

Client	Sample ID: Method Blank	
	Prep Type: Total/NA	

	MB I					_			B.: -
Analyte	Result	Qualifier	RL	MDL		<u>D</u> -	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0		ug/L			11/24/20 09:00	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			11/24/20 09:00	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			11/24/20 09:00	1
1,1,2-Trichloroethane	ND		1.0		ug/L			11/24/20 09:00	1
1,1-Dichloroethane	ND		1.0		ug/L			11/24/20 09:00	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			11/24/20 09:00	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/24/20 09:00	1
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L			11/24/20 09:00	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			11/24/20 09:00	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			11/24/20 09:00	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			11/24/20 09:00	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			11/24/20 09:00	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			11/24/20 09:00	1
1,3,5-Trimethylbenzene	ND		1.0	0.77	ug/L			11/24/20 09:00	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			11/24/20 09:00	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			11/24/20 09:00	1
2-Butanone (MEK)	ND		10	1.3	ug/L			11/24/20 09:00	1
2-Hexanone	ND		5.0	1.2	ug/L			11/24/20 09:00	1
4-Isopropyltoluene	ND		1.0	0.31	ug/L			11/24/20 09:00	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			11/24/20 09:00	1
Acetone	ND		10		ug/L			11/24/20 09:00	1
Benzene	ND		1.0		ug/L			11/24/20 09:00	
Bromodichloromethane	ND		1.0		ug/L			11/24/20 09:00	1
Bromoform	ND		1.0		ug/L			11/24/20 09:00	1
Bromomethane	ND		1.0		ug/L			11/24/20 09:00	
Carbon disulfide	ND		1.0		ug/L			11/24/20 09:00	1
Carbon tetrachloride	ND		1.0		ug/L			11/24/20 09:00	
Chlorobenzene	ND		1.0		ug/L			11/24/20 09:00	
Chloroethane	ND		1.0		ug/L			11/24/20 09:00	1
Chloroform	ND		1.0		ug/L			11/24/20 09:00	1
Chloromethane	ND		1.0		ug/L			11/24/20 09:00	
cis-1,2-Dichloroethene	ND ND		1.0		-			11/24/20 09:00	1
,					ug/L				
cis-1,3-Dichloropropene	ND		1.0		ug/L			11/24/20 09:00	1
Cyclohexane	ND		1.0		ug/L			11/24/20 09:00	1
Dibromochloromethane	ND		1.0		ug/L			11/24/20 09:00	1
Dichlorodifluoromethane	ND		1.0		ug/L			11/24/20 09:00	
Ethylbenzene	ND		1.0	0.74				11/24/20 09:00	1
Isopropylbenzene	ND		1.0		ug/L			11/24/20 09:00	1
m,p-Xylene	ND		2.0		ug/L			11/24/20 09:00	1
Methyl acetate	ND		2.5	1.3	ug/L			11/24/20 09:00	1
Methyl tert-butyl ether	ND		1.0		ug/L			11/24/20 09:00	1
Methylcyclohexane	ND		1.0	0.16	ug/L			11/24/20 09:00	1
Methylene Chloride	ND		1.0	0.44	ug/L			11/24/20 09:00	1
n-Butylbenzene	ND		1.0	0.64	ug/L			11/24/20 09:00	1
N-Propylbenzene	ND		1.0	0.69	ug/L			11/24/20 09:00	1
o-Xylene	ND		1.0	0.76	ug/L			11/24/20 09:00	1
sec-Butylbenzene	ND		1.0	0.75	ug/L			11/24/20 09:00	1
Styrene	ND		1.0	0.73	ug/L			11/24/20 09:00	1

Eurofins TestAmerica, Buffalo

Page 19 of 28

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-178540-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

ND

98

Lab Sample ID: MB 480-560615/7

Matrix: Water

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Analyte

Toluene

Analysis Batch: 560615

Client Sample ID: Method Blank

11/24/20 09:00

Prep Type: Total/NA

мв мв Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed ND 1.0 0.81 ug/L 11/24/20 09:00 ND 1.0 0.36 ug/L 11/24/20 09:00 ND 1.0 0.51 ug/L 11/24/20 09:00 ND 1.0 0.90 ug/L 11/24/20 09:00 ND 1.0 0.37 ug/L 11/24/20 09:00 ND 1.0 0.46 ug/L 11/24/20 09:00 ND 1.0 0.88 ug/L 11/24/20 09:00 ND

1.0 0.90 ug/L 11/24/20 09:00 0.66 ug/L 2.0 11/24/20 09:00

мв мв %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 1,2-Dichloroethane-d4 (Surr) 107 77 - 120 11/24/20 09:00 73 - 120 4-Bromofluorobenzene (Surr) 96 11/24/20 09:00

Lab Sample ID: LCS 480-560615/5 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

80 - 120

Analysis Batch: 560615

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	24.9		ug/L		100	73 - 126
1,1,2,2-Tetrachloroethane	25.0	24.2		ug/L		97	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.9		ug/L		96	61 ₋ 148
ne							
1,1,2-Trichloroethane	25.0	24.8		ug/L		99	76 - 122
1,1-Dichloroethane	25.0	24.0		ug/L		96	77 - 120
1,1-Dichloroethene	25.0	23.9		ug/L		96	66 - 127
1,2,4-Trichlorobenzene	25.0	23.7		ug/L		95	79 - 122
1,2,4-Trimethylbenzene	25.0	25.2		ug/L		101	76 - 121
1,2-Dibromo-3-Chloropropane	25.0	22.7		ug/L		91	56 - 134
1,2-Dibromoethane	25.0	23.7		ug/L		95	77 - 120
1,2-Dichlorobenzene	25.0	24.7		ug/L		99	80 - 124
1,2-Dichloroethane	25.0	25.7		ug/L		103	75 - 120
1,2-Dichloropropane	25.0	25.4		ug/L		101	76 - 120
1,3,5-Trimethylbenzene	25.0	24.8		ug/L		99	77 _ 121
1,3-Dichlorobenzene	25.0	24.2		ug/L		97	77 - 120
1,4-Dichlorobenzene	25.0	24.6		ug/L		98	80 - 120
2-Butanone (MEK)	125	148		ug/L		119	57 ₋ 140
2-Hexanone	125	134		ug/L		107	65 - 127
4-Isopropyltoluene	25.0	24.4		ug/L		98	73 - 120
4-Methyl-2-pentanone (MIBK)	125	132		ug/L		105	71 - 125
Acetone	125	137		ug/L		110	56 - 142
Benzene	25.0	25.2		ug/L		101	71 - 124
Bromodichloromethane	25.0	25.7		ug/L		103	80 - 122
Bromoform	25.0	24.0		ug/L		96	61 - 132
Bromomethane	25.0	24.8		ug/L		99	55 - 144
Carbon disulfide	25.0	25.3		ug/L		101	59 ₋ 134
Carbon tetrachloride	25.0	24.9		ug/L		99	72 ₋ 134
Chlorobenzene	25.0	25.1		ug/L		100	80 - 120

Eurofins TestAmerica, Buffalo

Page 20 of 28

QC Sample Results

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-178540-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-560615/5

Matrix: Water

Analysis Batch: 560615

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloroethane	25.0	24.2		ug/L		97	69 - 136	
Chloroform	25.0	24.2		ug/L		97	73 - 127	
Chloromethane	25.0	27.0		ug/L		108	68 - 124	
cis-1,2-Dichloroethene	25.0	23.1		ug/L		92	74 - 124	
cis-1,3-Dichloropropene	25.0	25.9		ug/L		104	74 - 124	
Cyclohexane	25.0	23.8		ug/L		95	59 - 135	
Dibromochloromethane	25.0	25.5		ug/L		102	75 - 125	
Dichlorodifluoromethane	25.0	32.4		ug/L		130	59 - 135	
Ethylbenzene	25.0	24.8		ug/L		99	77 - 123	
Isopropylbenzene	25.0	25.3		ug/L		101	77 - 122	
m,p-Xylene	25.0	25.4		ug/L		102	76 - 122	
Methyl acetate	50.0	54.0		ug/L		108	74 - 133	
Methyl tert-butyl ether	25.0	25.1		ug/L		100	77 - 120	
Methylcyclohexane	25.0	24.1		ug/L		97	68 - 134	
Methylene Chloride	25.0	24.3		ug/L		97	75 - 124	
n-Butylbenzene	25.0	24.4		ug/L		98	71 - 128	
N-Propylbenzene	25.0	24.9		ug/L		100	75 - 127	
o-Xylene	25.0	24.9		ug/L		100	76 - 122	
sec-Butylbenzene	25.0	24.1		ug/L		96	74 - 127	
Styrene	25.0	25.3		ug/L		101	80 - 120	
tert-Butylbenzene	25.0	24.4		ug/L		97	75 - 123	
Tetrachloroethene	25.0	25.3		ug/L		101	74 - 122	
Toluene	25.0	24.2		ug/L		97	80 - 122	
trans-1,2-Dichloroethene	25.0	23.0		ug/L		92	73 - 127	
trans-1,3-Dichloropropene	25.0	24.7		ug/L		99	80 - 120	
Trichloroethene	25.0	25.3		ug/L		101	74 - 123	
Trichlorofluoromethane	25.0	28.7		ug/L		115	62 - 150	
Vinyl chloride	25.0	26.2		ug/L		105	65 - 133	

LCS LCS

Surrogate	%Recovery Qualific	er Limits
1,2-Dichloroethane-d4 (Surr)	100	77 - 120
4-Bromofluorobenzene (Surr)	100	73 - 120
Toluene-d8 (Surr)	100	80 120

Eurofins TestAmerica, Buffalo

QC Association Summary

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-178540-1

GC/MS VOA

Analysis Batch: 560615

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178540-1	RI-MW-2	Total/NA	Water	8260C	
480-178540-2	RI-MW-4	Total/NA	Water	8260C	
480-178540-3	RI-MW-6	Total/NA	Water	8260C	
480-178540-4	RI-MW-9	Total/NA	Water	8260C	
480-178540-5	RI-MW-10	Total/NA	Water	8260C	
480-178540-6	Trip Blank	Total/NA	Water	8260C	
MB 480-560615/7	Method Blank	Total/NA	Water	8260C	
LCS 480-560615/5	Lab Control Sample	Total/NA	Water	8260C	

3

4

5

6

8

9

10

12

13

М

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Client Sample ID: RI-MW-2 Lab Sample ID: 480-178540-1 Date Collected: 11/20/20 08:52

Matrix: Water

Job ID: 480-178540-1

Date Received: 11/20/20 15:26

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		4	560615	11/24/20 14:02	AMM	TAL BUF

Lab Sample ID: 480-178540-2 Client Sample ID: RI-MW-4

Matrix: Water

Date Collected: 11/20/20 12:12 Date Received: 11/20/20 15:26

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		4	560615	11/24/20 14:25	AMM	TAL BUF

Client Sample ID: RI-MW-6 Lab Sample ID: 480-178540-3

Date Collected: 11/20/20 13:36 **Matrix: Water**

Date Received: 11/20/20 15:26

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			560615	11/24/20 14:48	AMM	TAL BUF

Client Sample ID: RI-MW-9 Lab Sample ID: 480-178540-4

Date Collected: 11/20/20 13:15 **Matrix: Water**

Date Received: 11/20/20 15:26

Dilution Batch Batch Batch Prepared Method or Analyzed Prep Type Type Run Factor Number Analyst Lab 8260C 11/24/20 15:11 TAL BUF 560615 AMM Total/NA Analysis

Lab Sample ID: 480-178540-5 Client Sample ID: RI-MW-10

Date Collected: 11/20/20 10:06 **Matrix: Water**

Date Received: 11/20/20 15:26

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	560615	11/24/20 15:34	AMM	TAL BUF

Client Sample ID: Trip Blank Lab Sample ID: 480-178540-6

Date Collected: 11/20/20 00:00 **Matrix: Water**

Date Received: 11/20/20 15:26

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			560615	11/24/20 15:58	AMM	TAL BUF	-

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-01-21

Job ID: 480-178540-1

Method Summary

Client: Turnkey Environmental Restoration, LLC

Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-178540-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

6

4

5

6

Ω

9

11

12

14

Sample Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark-791 Washington St.(Trico site)

Job ID: 480-178540-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-178540-1	RI-MW-2	Water	11/20/20 08:52	11/20/20 15:26
480-178540-2	RI-MW-4	Water	11/20/20 12:12	11/20/20 15:26
480-178540-3	RI-MW-6	Water	11/20/20 13:36	11/20/20 15:26
480-178540-4	RI-MW-9	Water	11/20/20 13:15	11/20/20 15:26
480-178540-5	RI-MW-10	Water	11/20/20 10:06	11/20/20 15:26
480-178540-6	Trip Blank	Water	11/20/20 00:00	11/20/20 15:26

3

4

E

6

8

9

11

14

Client: Turnkey Environmental Restoration, LLC

Job Number: 480-178540-1

Login Number: 178540 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

orontori outaudi promudi p		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.0 #1 ICe
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Eurofins TestAmerica, Buffalo

EQUIPMENT CALIBRATION LOG

Project Name: Former 1000 Plant								
	17000	110			Date:	11/20/20		
Project No.:								1 _
Client: Krog			a	,	Instrumer	nt Source:	BM L	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
			Myron L Company	6213516		4.00	4.02	4
pH meter	units	Œ€00	Ultra Meter 6P	6212375	77 A 3	7.00	7.03	7
				6243003 Q G223973 D	MAB	10.01	9.57	10
						10 NTU verification	10.4	10.0
_	NIT!	nua?	Hach 2100P or	06120C020523 (P)	4 0	< 0.4		
Turbidity meter	NTU	ora	2100Q Turbidimeter	13120C030432 (Q) 17110C062619 (Q)	TA3	20 100		
				17110C002019 (Q)		800		
Sp. Cond. meter	uS mS	orou	Myron L Company Ultra Meter 6P	6213516	7M-3	4,000 mS @ 25 °C	6,976	7,00
☐ PID	ppm		MinRAE 2000			open air zero		MIBK response
	PP		11 0 1 2000			ppm Iso. Gas		factor = 1.0
Dissolved Oxygen	ppm	ora	HACH Model HQ30d	100500041867	TAB	100% Satuartion	100% 56.pc	10 E.L %,
Particulate meter	mg/m ³					zero air		
Radiation Meter	uR/H					background area		
ADDITIONAL DEMARKS				1 1				
PREPARED BY:	£		762	DATE: 1 20 7	_0			
			25	The second secon				

Ca	BENCHMARK
G	ENVIRONMENTAL ENGINEERING & SCIENCE PLLC

GROUNDWATER FIELD FORM

Date: 1/20/20

Project Name:	Starres -	Trico	Plant
Location: 3	Oldo NY		

Project No.:

Field Team:

Well No. RI-MW-Z		Diameter (inches):		Sample Date / Time: 11/20/20 852						
	Product Depth (fbTOR):			Water Column (ft): 5.25			DTW when sampled: 15,03			
DTW (statio	c) (fbTOR):	03	One Well Vo	olume (gal): 👸	. KT	Purpose:	Development		Purge & Sample	
Total Depth	(fbTOR):	2.28	Total Volum	e Purged (gal):	3.0	Purge Metho	od: Su	mersible	pup	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
8,32	o Initial	Ö	5.92	12.3	5825	[19	2.10	215	SLT-LL No	
835	1 2.30	0.25	6.56	12,6	4826	55,6	237	206	W	
839	213.45	1,25	6.80	11.9	4532	41.1	2,13	200	11	
844	3/4,5	2,0	6.92	12.0	4925	36,5	1.812	196	11	
846	114,93	2.5	6,96	12.0	5404	32,2	1.54	194	16	
- Highten	5						•			
	6									
	7								175	
	В									
	9									
	10					15				
Sample	Sample Information:				· · · · · · · · · · · · · · · · · · ·					
852	51/5,63	3,0	7.04	11/8	5412	24, 4.	191	190		
	52									

Well No. VI - MW-10			Diameter (inches): 2''			Sample Date / Time: WZ@ZO 1006			
Product Depth (fbTOR): 3,30			Water Column (ft):\\\S\\ 3,50			DTW when sampled:			
DTW (stati	c) (fbTOR):	5.18		olume (gal): 7		Purpose:	Development	Sample	Purge & Sample
Total Depth	n (fbTOR):	ACTION IN	Total Volum	e Purged (gal):	650	Purge Meth	od:		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
927	o Initial	0	7.46	121	1182	40,1	2,97	1.86	SCTAIL NO
930	15.83	0.50	7.47	12.6	1056	35.0	3.79	150	(/
933	26,43	10	7.43	12.6	1149	49.4	2.78	186	"
940	37,93	3.0	7.40	126	1145	24.1	182	185	11
454	19.03	4.0	7.40	122	1158	60.9	1.85	143	:(
1000	512,10	6,0	7.37	123	1189	523	,006	182	Ir .
	6		117				, T. T.		
	7							1	
	8								
	9							-	- 18
	10								
Sample	Information								
10.06	511246	6,50	7.38	12,6	1193	32.9	2.07	181	li li
1	S2		Mi Common of the						

REMARKS:		

Note: All water level measurements are in feet, distance from top of riser.

Volume Calculation Para

Diam.	Vol. (g/ft)
1"	0.041
2"	0.163
4"	0.653
6"	1.469

Stabilizati	on Cinteria
Parameter	Criteria
pН	± 0.1 unit
SC	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

PREPARED BY:

MB

Groundwater Field Form.xls GWFF - BM

6	BENCHMARK
C	ENVIRONMENTAL ENGINEERING &

1033

GROUNDWATER FIELD FORM

Project Name: Tyrner Traco	Plant	Date: 11/25/20	
Location: Bulleta W	Project No.:	Field Team: 743	

Well No. Amy 9		Diameter (inches):			Sample Date / Time: 11/20/20					
Product Depth (fbTOR):			Water Column (ft): 12.13				DTW when sampled: 13-67			
DTW (statio		1.0	One Well V	olume (gal):	1,97	Purpose:	Developmen		Purge & Sample	
Total Depth	(fbTOR):	.13	Total Volum	ne Purged (gal):		Purge Meth		regarble ,		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1025	o Initial	. 0	7.06	13.0	1481	247	1.11	-16	Sukagos	
1027	18.01	1.0	7.00	13.8	920.6	401	132	-66	10	
LORY .	2994	2.0	6.89	13.9	894.6	142	6.76	-85	ir .	
1043	3 14.93	4.0	6.84	13.9	1609	41.0	0.78	-86	4	
1057	1 DRY	5,0	7.13	14.0	16 W	69.0	349	-82	e.c.	
	6									
	7									
	В									
	9									
	10									
Sample I	nformation:									
1215	\$1\3.67 \$2	2	7.44	13.4	1472	920	1.39	-92	ii .	

Well No	o. KI	-MW-4	Diameter (ir	nches):	G	Sample Dat	e / Time:	1/20/2	0 1212
Product De	pth (fbTOR):	100	Water Colu	mn (ft):	1.03	DTW when		1. 4.6.7	
DTW (statio	c) (fbTOR):	0.35	One Well V	olume (gal):	0.2X	Purpose:	Development		
Total Depth	(fbTOR):	7.30		ne Purged (gal):	10	Purge Meth	od:		aler
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1120	□ Initial	~	7.20	121	3828	206	230	143	Tuh. 1 N. 6 h
1120	1 5.0	0.25	2.14	12.0	3835	71000	1-94	-68	or sulla
1138	2 5.30	0.50	7.65	12.0		71000	1.97	-71	" sulfa
1200	3 6.50	10	7.13	121	3862	71000	1.67	-77	1 grey sol
	4		1				110	100	and Art
	5					3		#X = #	
	6						47		* A
	7								
	8								
	9		,			*			
	10								
Sample I	nformation:		-						
	514.67	~	7.17	11.7	5831	7,000	3.15	- 76	11
	52	l.		1	70) (J. L. N	76	

REMARKS:				
4				
Nata Alltanlard				
Note: All water level n	neasurements ar	e in feet,	distance fro	om top of riser.

 Diam.
 Vol. (g/ft)

 1"
 0.041

 2"
 0.163

 4"
 0.653

 6"
 1.469

 Stabilization Criteria

 Parameter
 Criteria

 pH
 ± 0.1 unit

 SC
 ± 3%

 Turbidity
 ± 10%

 DO
 ± 0.3 mg/L

 ORP
 ± 10 mV

Groundwater Field Form.xls GWFF - BM PREPARED BY:

MB

Ca	BENCHMARK
	ENVIRONMENTAL ENGINEERING &

GROUNDWATER FIELD FORM

Project Na	me: Tosw	er Tru	is Plu				Date:	11/2	0/70
Location:	Bellet	NI		Projec	t No.:		Field Te	eam:	THES
Well N	O.RI-N	lw-(0	Diameter (ii	nches):	7"	Sample D	ate / Time:	20/20	1336
	epth (fbTOR):	_	Water Colu		14.80		n sampled:	00/20	1326
	c) (fbTOR):	1,14	925-7	olume (gal):	2,41	Purpose:	Development	Sampl	e Purge & Sample
		,94		ne Purged (gal)		Purge Met			e rurge & Sample
	Water	Acc.		Turgou (gur)		ruige Mei	illou.		
Time	Level (fbTOR)	Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1257	o Initial		7.78	11.6	1653	222	159	-78	Tirb & No O
1300	14.56	0.75	7.62	11.3	1557	101	1.69	-37	11
1308	29 37	7.5	7.52	11.4	1516	167	1,38	-48	ir
1318	30.42	5.0	7.46	11.6	1844	179	139	-548	10
1331	12.01	7.0	7.47	11.6	1593	89.4	1 39	-5+	q
	5		10-1		1377	011-1	1.31	7	
	6								E .
	7							41	
	В						_/_	7 1 -	
	9						1		Winds.
	10							15	
Complete	n f a aus a 41								
Charles and the same	nformation:		10 110	11,					
1336	51 12.43	7.24	7.49	11.6	2048	109	1.95	57	ie .
-	S2						1	= 10 10	
				r.					*
Well No).		Diameter (in	ches):		Sample Da	te / Time:		
Product Dep	oth (fbTOR):		Water Colun			DTW when			
DTW (static) (fbTOR):		One Well Vo			Purpose:	Development	Sample	Purge & Sample
Total Depth	(fbTOR):			e Purged (gal):		Purge Meth		sample	, urge a sample
	Water	Acc.							
Time	Level (fbTOR)	Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial								
	1								
	2						GA.		
	3								9
	4								B. 4 W
	5					•		111	710
	6						 		7.5
	7								1
	8						 		
	9						 		
	10							¥ .	
	nformation:		т т						
	S1 .		1						
	S2								
THE PLAN								Stabi	lization Criteria
REMARKS	5 :						ime Calculation	Paramet	ter Criteria
							am. Vol. (g/ft)	pН	± 0.1 unit
							0.041	SC	± 3%
							0.163	Turbidit	
lote: All wat	er level mea	suremente e	re in feet, dis	tance from	ton of rises		0.653	DO	± 0.3 mg/L
Sto. / III Wat	o. lovoi iliga	ouronnonto a	ro in root, uis	tarice irom	top of riser.		5" 1,469	ORP	± 10 mV

PREPARED BY:

TAB