PERIODIC REVIEW REPORT

APRIL 30, 2021 TO APRIL 30, 2022 FORMER BUFFALO FORGE PROPERTY

SITE # 915280 490 BROADWAY STREET BUFFALO, NEW YORK 14204

Prepared for:

Howden North America, Inc. and SAAKC Buffalo Forge, LLC 150 SE 2nd Avenue Miami, Florida 33131

Prepared by:

960 Busti Avenue Suite B-150 Buffalo, New York 14213

TABLE OF CONTENTS

Section	Page
CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS	4
1.0 EXECUTIVE SUMMARY	5
1.1 Site Background	5
1.2 Compliance/Recommendations	6
2.0 SITE OVERVIEW AND REMEDIATION	6
2.1 Description of Selected Final Remedy	6
2.2 Nature and Extent of Contamination Remaining at Site	7
3.0 ENGINEERING AND INSTITUTIONAL CONTROLS	7
3.1 General	7
3.2 Institutional Controls	7
3.3 Engineering Controls	8
3.3.1 Cover System	8
4.0 SITE EVALUATION	
4.1 Site Wide Inspection	8
5.0 CONCLUSIONS	9

LIST OF FIGURES

SMP/FER Figures

Figure 1 - Project Location Map

Figure 16 – Samples Locations Exceeding Restricted Residential SCOs (0-2')

Figure 17 – Samples Locations Exceeding Restricted Residential SCOs (>2')

Figure 18 – Samples Locations Exceeding Commercial SCOs (0-2')

Figure 26A – As-built Designations Alternative 3 - Remove GCM, Remediate Site to SSALs, and Place Cover

Construction/As-Built Figures

Figure C-101 – 490 Broadway Site Plan Figure – As-Built Topography Survey

LIST OF TABLES

Table 5 – Summary of Soil Analytical Results (From FER/RI/AAR)

LIST OF APPENDICES

Appendix A NYSDEC Site Management Periodic Review Report Notice Institutional And Engineering Controls Certification Forms

Appendix B EE & Survey Boundary Map

Appendix C Site Wide Inspection Form and Site Photos

CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS

Below is the signed certification as required by section 7.2 of the SMP.

For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification
 are in accordance with the requirements of the site remedial program and generally accepted
 engineering practices; and
- The information presented in this report is accurate and complete.
- I certify that all information and statements in this certification form are true. I understand that a
 false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section
 210.45 of the Penal Law. I, Jason M. Brydges, PE of BE3 Corp 960 Busti Avenue, Buffalo New
 York 14213, is certifying as Owner's Designated Site Representative for the site.

1.0 EXECUTIVE SUMMARY

BE3 Corp (BE3) has prepared this Periodic Review Report (PRR), on behalf of Howden North America, Inc. and SAAKC Buffalo Forge, LLC. to summarize the post- remedial status of the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) at the Former Buffalo Forge Property (Site). The BCP site number is C915280.

This PRR has been prepared in accordance with NYSDEC DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010) and the NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form has been completed for the Site and provided in **Appendix A**.

This PRR has also been completed per the requirements stipulated in the approved Site Management Plan (SMP) dated November 2019 and describes any post-remedial activities on site during the April 30, 2021 through April 30, 2022 reporting period.

1.1 SITE BACKGROUND

The Former Buffalo Forge site is a 12.426-acre site located at 490 Broadway Avenue in the City of Buffalo. The Site is comprised of seven parcels, each having a separate address, though the Site is often identified as being located at 490 Broadway Street. The seven parcels are as follows:

```
498 Broadway Street – S.B.L. 111.41-5-31.1
233 Mortimer Street – S.B.L. 111.41-8-26
213 Mortimer Street – S.B.L. 111.41-4-1.1
187 Mortimer Street – S.B.L. 111.41-5-1.1
516 Spring Street – S.B.L. 111.41-7-12.1
498 Spring Street – S.B.L. 111.41-7-17.1
490 Broadway Street – S.B.L. 111.41-6-1.1
```

The owner of the above parcels as noted in Box 3 of the Enclosure 2 of the certification form provided in **Appendix A** is stated as Lower West Side Housing Development Fund Corporation which is the nominal owner of the real property (essentially holding it for the benefit of SAA KC Buffalo Forge, LLC) to enable the project to obtain real property and sales tax incentives under Private Housing Finance Law Article XI. This is similar to how Industrial Development Agencies assist development projects.

The parcels and boundaries are shown on the Alta survey map provided in **Appendix B** – **Environmental Easement**. The **Figure - As-Built Topographic Survey** is provided under the Construction/As-Built Figures. The City of Buffalo Green Code, adopted by the City of Buffalo and made effective April 3, 2017, restricts uses to residential and mixed residential-commercial use on the various parcels of the Site. The surrounding parcels are currently used for a combination of residential, commercial, light industrial, and utility Right-of-Ways. The Site is immediately surrounded by residential development.

Until the early 1990s the Site was used for manufacturing including foundry operations. Prior uses that appear to have led to site contamination include a machine shop, blacksmith/foundry, and numerous USTs. Former investigations noted black foundry sand intermixed with fill from approximately 0.5 - 3.0 feet below grade surface (bgs). Prior to decommissioning and demolition of site buildings in 2006/2007, all USTs identified were removed, in addition to limited contaminated soil excavation and removal.

It should be noted that excavation for new development (building, roadways, etc.) took place concurrently with remediation activities.

1.2 COMPLIANCE/RECOMMENDATIONS

All elements of the IC/EC Plan of the SMP were in compliance for the reporting period and no changes to the SMP are recommended at this time.

2.0 SITE OVERVIEW AND REMEDIATION

2.1 DESCRIPTION OF SELECTED FINAL REMEDY

Contaminated Materials Removal

A Track 4 cleanup was implemented based on the parcel-specific intended land use. Specific areas of impacted materials as denoted on **Figure 26A - As-built Remediation Site Plan** and discussed below were removed and disposed of at the approved landfill (Tonawanda Landfill). It should be noted that excavation for new development (building, roadways, etc.) took place concurrently with remediation activities. In many cases the removal of impacted material areas coincided with removal requirements for new development and in many cases additional non impacted material (unsuitable for foundations) was removed from areas to accommodate the new development foundations. All material excavated was stockpiled together and sent to the approved landfill.

Grossly Contaminated Media (GCM) – Areas designated A through K on Figure 26A. Impacted soil was removed from each of these areas until clean soil was retained based on visual observation and PID readings as appropriate. Confirmation samples were then collected from excavation sidewalls and bottom to confirm all impacted material was removed. Upon excavation of areas E, F and H no impacted material was observed visually or by PID readings and with the consent of the DEC project manager no material was removed and the excavations backfilled with the material that had been excavated.

<u>Site Specific Action Level (SSAL) Areas</u> – Areas designated 1 through 8 on **Figure 26A**. A 20-foot by 20-foot area was excavated for each SSAL area to a depth of one foot below the sample depth indicated on **Figure 26A**. Soil in these areas and below the cover system exceeding the SSAL soil cleanup objectives (SCOs) as noted below was removed for landfill disposal.

arsenic - 30 ppm, cadmium - 60 ppm, lead - 2200 ppm, and manganese - 10,000 ppm.

Additionally, a SSAL of 500 ppm total PAHs for subsurface soil was employed in lieu of achieving all of the individual PAH-specific SCOs in 6 NYCRR Part 375-6. This cleanup level has been previously determined by NYSDEC to be feasible and protective in its various remedial programs and was stipulated in the RAWP. Confirmation samples were collected as noted under the above GCM areas.

<u>Black Sand Material</u> - Black sand material that was co- mixed with GCM or soil above SSALs was removed during the remedial excavations and excavations for Site redevelopment (i.e., construction of buildings, sidewalks, paved areas, etc.) and transported off-site for disposal.

<u>Slag Material Mortimer Property</u> – A layer of slag material was removed from the 233 Mortimer property during the remedial excavations and transported off-site for disposal at the Triad Recycling and Energy facility a NYSDEC permitted facility for recycling of concrete, soil, stone, etc.

<u>Contaminated water Removed - A Baker tank was brought on site to store impacted groundwater/rainwater from excavation areas.</u> Approximately 11,000 gallons of petroleum non-hazardous

water from Area A GCM excavation and a new development parking structure pier excavation was pumped to the Baker tank and from there to a recycling facility

Cover [or Cap] System

Exposure to remaining contamination in soil/fill at the site is prevented by a cover system placed over the site. This cover system is comprised of a minimum of 12 inches (commercial Area) or 24 inches (Restricted Residential Area) of clean soil, asphalt pavement, concrete-covered sidewalks, and concrete building slabs. **Figure C-101** shows the new development site plan for the 490 Broadway property. The 498 Broadway (one (1) foot cover commercial), Mortimer Street and Spring Street properties of the BCP site are covered as shown on **Figure 26A**. **Figure 26A** also shows each remedial cover type used on the site. The final as-built topographic survey of the site depicting final grades is provided in **Appendix C (EE)**.

2.2 NATURE AND EXTENT OF CONTAMINATION REMAINING AT SITE

Figure 26A shows the cover system (hardscape or clean fill) placed across the entire site and the following figures from the RI provide sample locations exceeding Restricted Residential or Commercial SCOs at selected depths.

- Figure 16 Sample Locations Exceeding Restricted Residential SCOs (0-2 Feet)
- Figure 17 Sample Locations Exceeding Restricted Residential SCOs (>2 Feet)
- Figure 18 Sample Locations Commercial SCOs (0-2 Feet)

These figures illustrate what contaminants remain at the site below the cover system.

Table 5 and the above Figures summarize the analytical results of all soil samples representing soils remaining at the site after completion of Remedial Action that show all exceedances of Unrestricted to Commercial SCOs.

Since contaminated soil remains beneath the Site after completion of the Remedial Action, Institutional and Engineering Controls are required to protect human health and the environment. These Engineering and Institutional Controls (ECs/ICs) are described in the following section.

3.0 ENGINEERING AND INSTITUTIONAL CONTROLS

3.1 GENERAL

Since remaining contamination exists at the site, Institutional Controls (ICs) and Engineering Controls (ECs) are required to protect human health and the environment. The IC/EC Plan is one component of the SMP/EE and is subject to revision by the NYSDEC.

3.2 INSTITUTIONAL CONTROLS

A series of ICs is required by the Decision Document to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination; and, (3) limit the use and development of the site to restricted residential, commercial and industrial uses only. Adherence to these ICs on the site is required by the Environmental Easement and implemented under the SMP. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The ICs identified are provided in the

Appendix B - Environmental Easement which includes the Boundary Survey Map (Alta) dated September 19, 2018 and the As-Built Topographic Survey dated October 10, 2019.

3.3 ENGINEERING CONTROLS

3.3.1 Cover System

The cover system is the only Engineering Control required under the remedy. Exposure to remaining contamination at the site is prevented by a cover system placed over the Site which consisted of a minimum of 24 inches of clean soil in Restricted Residential areas and a minimum of 12 inches of clean soil in commercial areas. The cover system also includes hardscape composed of asphalt pavement, concrete-covered sidewalks and concrete building slabs. Additional details of the cover system are provided in Section 2.1 above.

4.0 SITE EVALUATION

4.1 SITE WIDE INSPECTION

A Site Wide Inspection was completed by BE3, outside of the certifying period with approval from the NYSDEC, on May 5, 2022. The results of the inspection are provided in BE3's Site Wide Inspection Form and site photographs are provided in **Appendix C**. The inspection concluded that the Site was in compliance with all IC/EC.

As noted on the Site Wide Inspection Form the current use of each parcel is as follows:

213 Mortimer - 111.41-4-1.1:

Parcel is a vacant grass property. Soil and grass cover system on site are intact. No overt ruts or marks were noted. No excavation has occurred into the cover system. Refer to photographs of the property.

187 Mortimer - 111.41-5-1.1:

Parcel is a vacant soil/grass covered property. The cover system on site is intact. No overt ruts or marks were noted. No excavation has occurred into the cover system. Refer to photographs of the property.

233 Mortimer - 111.41-8-26:

Parcel is a vacant grass property. Soil and grass cover system on site are intact. No overt ruts or marks were noted. No excavation has occurred into the cover system. Refer to photographs of the property.

498 Broadway - 111.41-5-31.1:

Parcel is a vacant grass property. Soil and grass cover system on site are intact. No overt ruts or marks were noted. No excavation has occurred into the cover system. Refer to photographs of the property.

490 Broadway - 111.41-6-1.1:

Parcel is covered with buildings, asphalt roadways, concrete areas (sidewalks, etc.) and greenspace No excavation/disturbance has occurred into the cover system. Refer to photographs of the property.

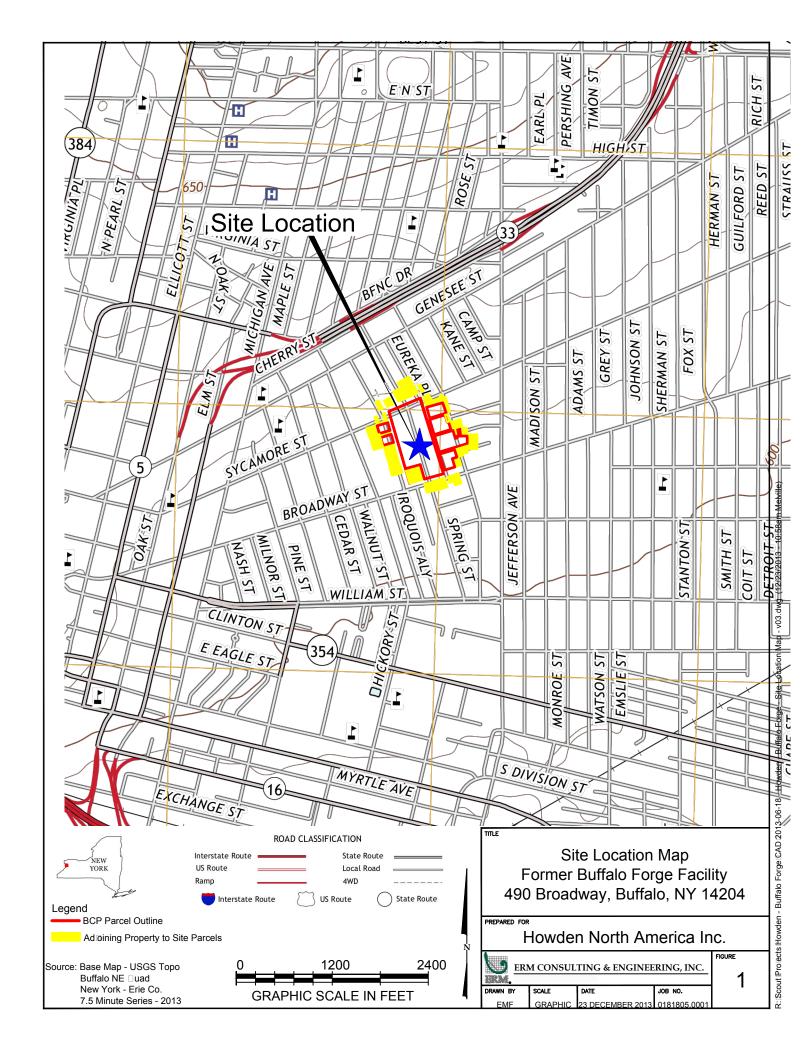
516 Spring - 111.47-7-12.1:

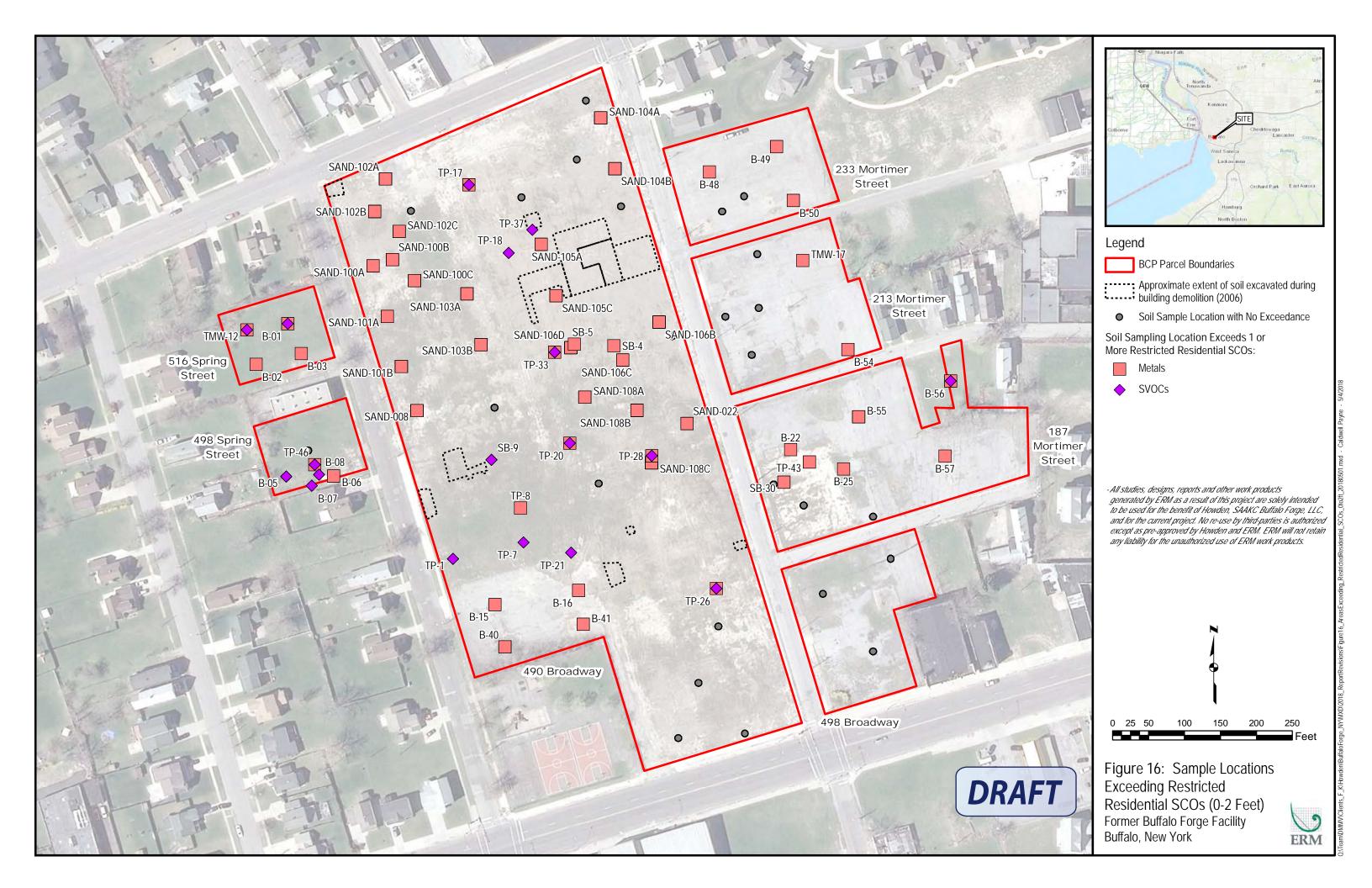
Parcel is a vacant grass property. Soil and grass cover system on site are intact. No overt ruts or marks were noted. No excavation has occurred into the cover system. Refer to photographs of the property.

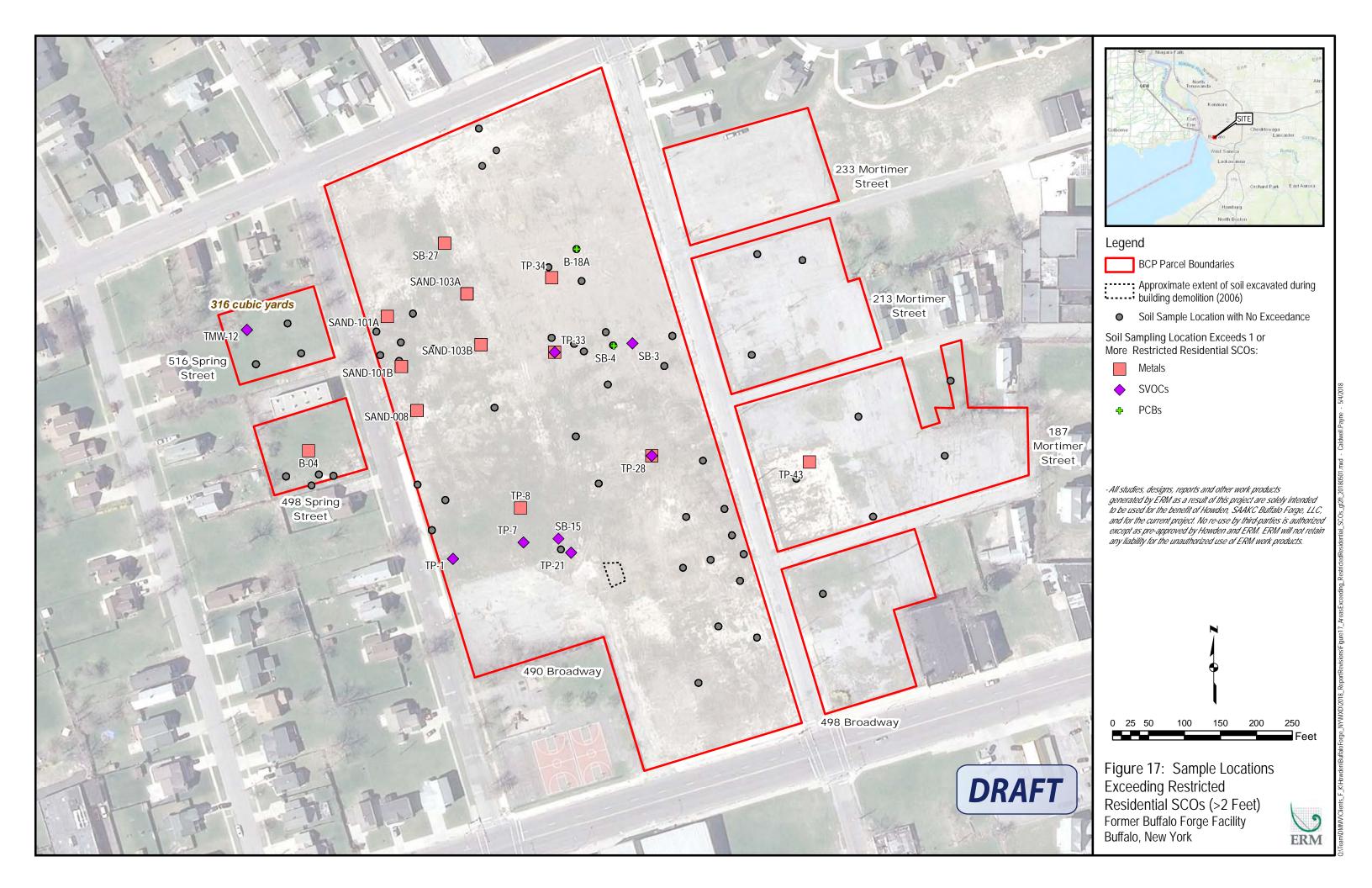
498 Spring - 111.41-7-17.1:

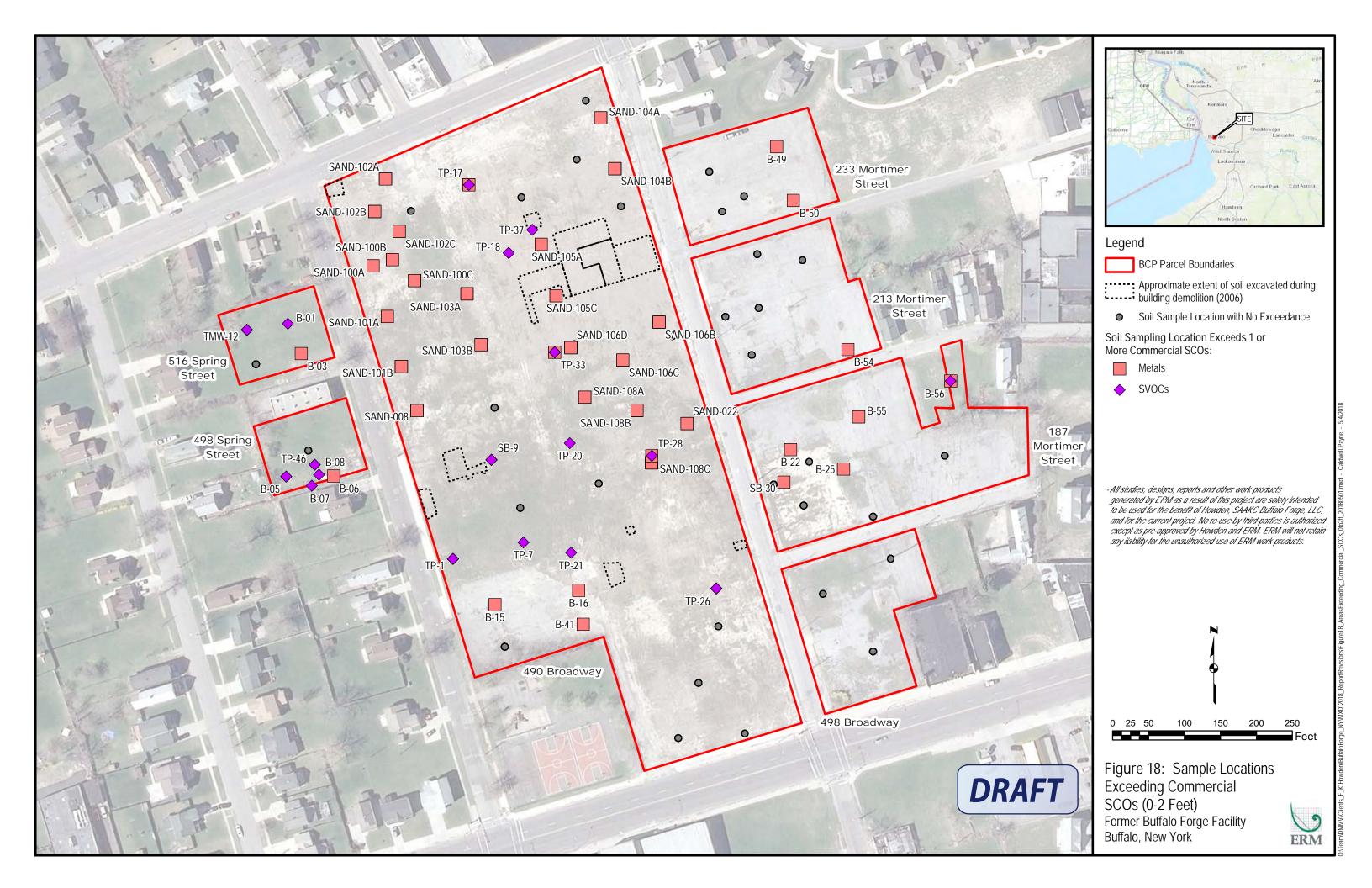
Parcel is a vacant grass property. Soil and grass cover system on site are intact. No overt ruts or marks were noted. No excavation has occurred into the cover system. Refer to photographs of the property.

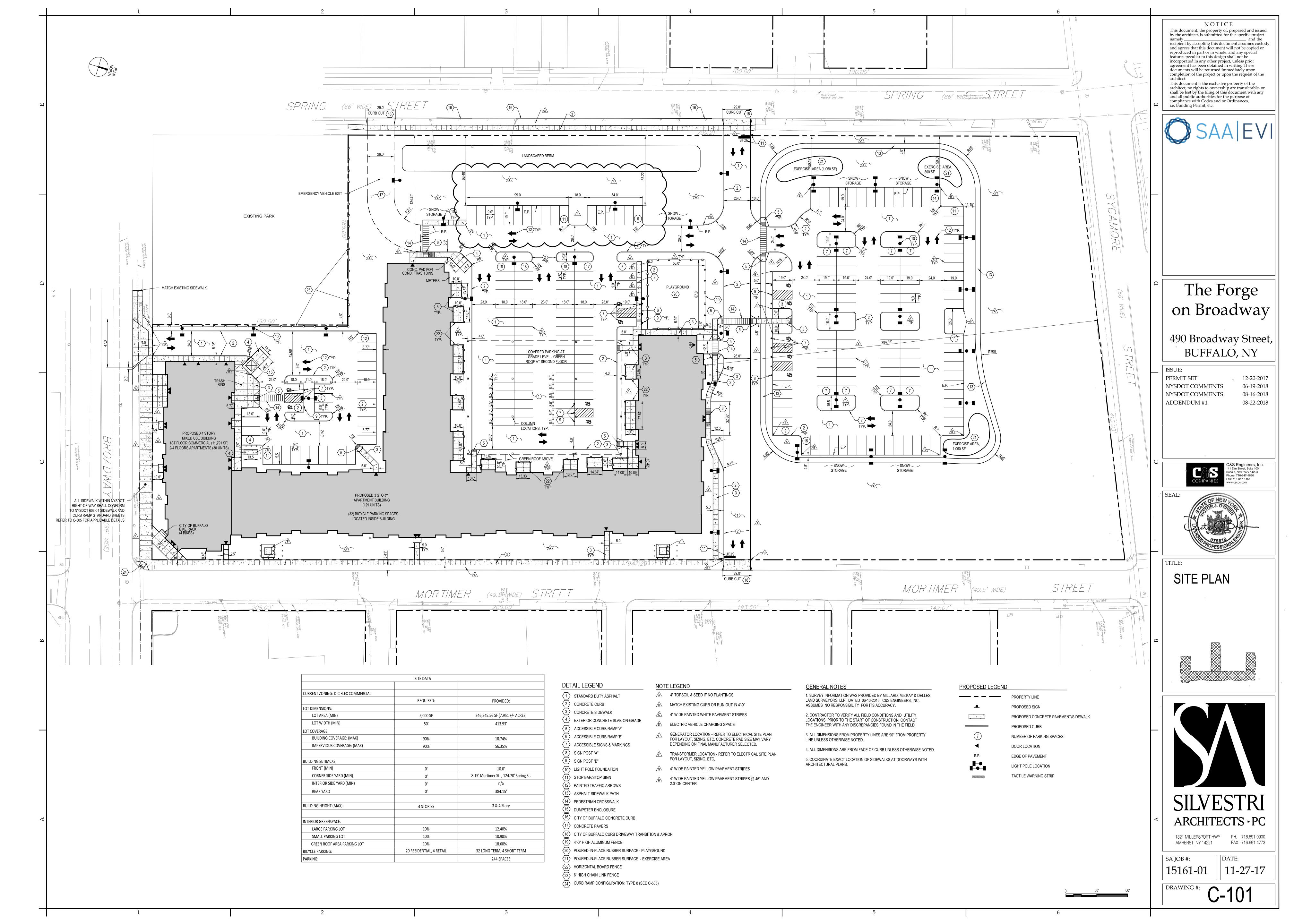
5.0 CONCLUSIONS

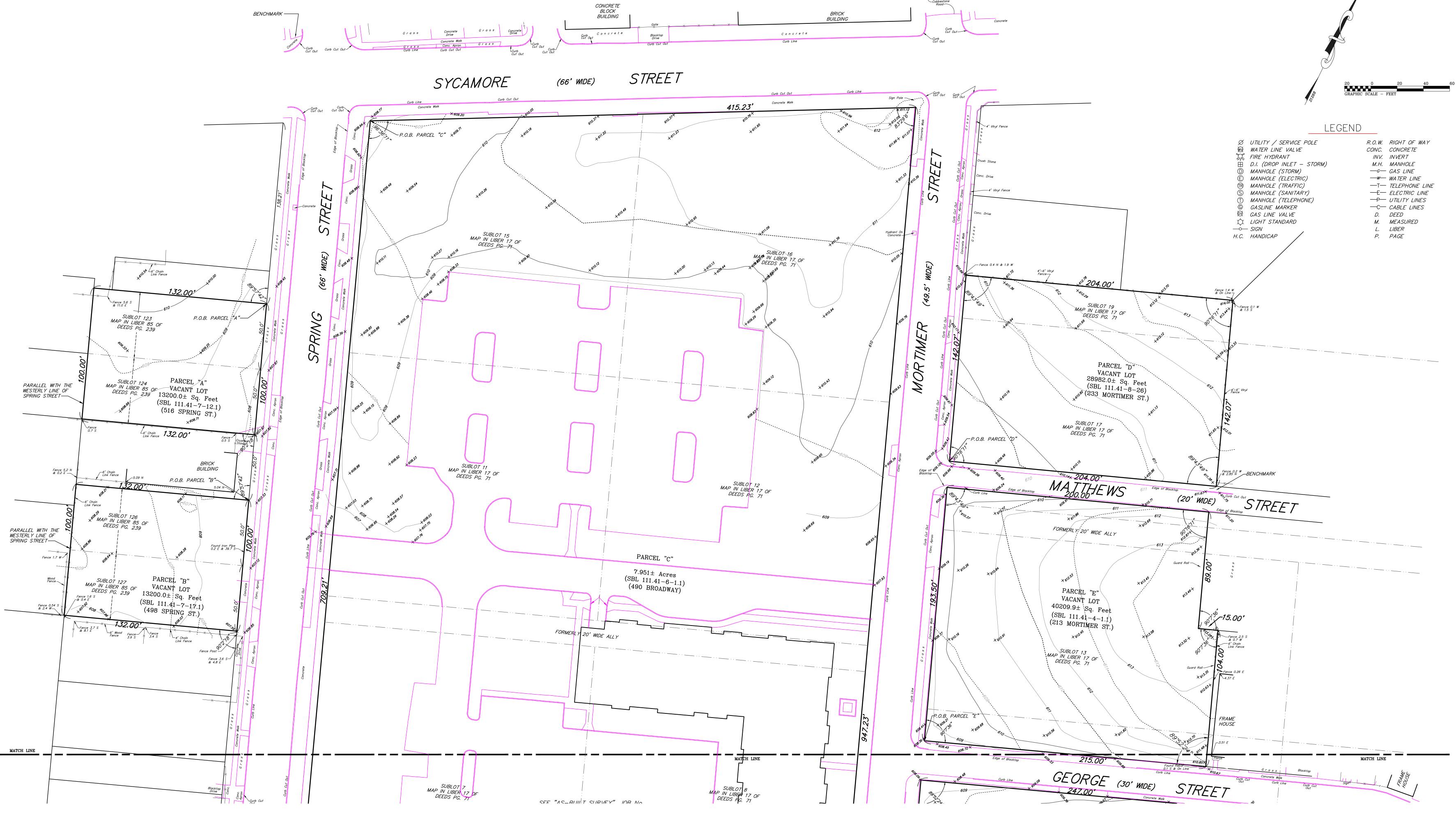

All components of the SMP (IC/EC) were in compliance with SMP requirements during the reporting period as follows:


Cover System – The cover system has not been disturbed since initially placement. Concrete and asphalt areas are well maintained and undisturbed. The soil cover and grass areas are well maintained.




FIGURES





SURVEYOR'S LEGAL DESCRIPTION

SBL NO. 111.41-7-12.1 516 SPRING ST.

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 120 in said City, bounded and described as follows:

BEGINNING at a point in the westerly line of Spring Street 138.21' feet southerly of the southerly line of Sycamore Street; thence westerly at an exterior angle of 89°57'42", 132.0 feet to a point; thence southerly parallel with the westerly line of Spring Street 100.0' feet to a point; thence easterly at an exterior angle of 90°02'18", 132 feet to Spring Street; thence northerly along the westerly line of Spring Street 100.0' feet to the place of beginning, including all of Lot No. 123 and 124 as shown on a map recorded in Liber 85 of Deeds at page 329 in the Erie County Clerk's Office. This parcel containing 13,200.0 Sq. Ft. more or less.

> ENVIRONMENTAL EASEMENT AREA DESCRIPTION SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

SURVEYOR'S LEGAL DESCRIPTION

SBL NO. 111.41-7-17.1 498 SPRING ST.

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 120 in said City, bounded and described as follows:

BEGINNING at a point in the westerly line of Spring Street 288.21' feet southerly of the southerly line of Sycamore Street; thence westerly at an exterior angle of 89°57'42", 132.0 feet to a point; thence southerly parallel with the westerly line of Spring Street 100.0' feet to a point; thence easterly at an exterior angle of 90°02'18", 132 feet to Spring Street; thence northerly along the westerly line of Spring Street 100.0' feet to the place of beginning, including all of Lot No. 126 and 127 as shown on a map recorded in Liber 85 of Deeds at page 329 in the Erie County Clerk's Office. This parcel containing 13,200.0 Sq. Ft. more or less.

> ENVIRONMENTAL EASEMENT AREA DESCRIPTION SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

SURVEYOR'S LEGAL DESCRIPTION

SBL NO. 111.41-7-1.1 *490 BROADWAY*

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the southerly line of Sycamore Street with the easterly line of Spring Street; thence easterly along the southerly line of Sycamore Street, a distance of 415.23 feet to point in the westerly line of Mortimer Street; thence southerly along the westerly line of Mortimer Street, a distance of 947.23 feet to point in the northerly line of Broadway; thence westerly along the northerly line of Broadway, a distance of 228.93 feet to point; thence northerly at an interior angle of 90°02′18", a distance of 190.0 feet to a point; thence westerly at an exterior angle of 90°02′18", a distance of 185.0 feet to point in the easterly line of Spring Street; thence northerly along the easterly line of Spring Street, a distance of 709.21 feet to the True Point and Place of Beginning. This parcel containing 7.951 Acres more or less.

> ENVIRONMENTAL EASEMENT AREA DESCRIPTION SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

SURVEYOR'S LEGAL DESCRIPTION

SBL NO. 111.41-8-26 233 MORTIMER ST.

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows: BEGINNING at the intersection of the northerly line of Matthews Street with the easterly line of Mortimer Street; thence easterly

along the northerly line of Matthews Street, a distance of 204.00 feet to a point; thence northerly at interior angle of 89°43'49", a distance of 142.07 feet to a point; thence westerly at interior angle of 90°16'11", a distance of 204.00 feet to a point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 142.07 feet to the True Point and Place of Beginning. This parcel containing 28,982.0 Sq. Ft. more or less.

> ENVIRONMENTAL EASEMENT AREA DESCRIPTION SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

SURVEYOR'S LEGAL DESCRIPTION SBL NO. 111.41-4-1.1

213 MORTIMER ST.

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of George Street with the easterly line of Mortimer Street; thence easterly along the northerly line of George Street, a distance of 215.00 feet to a point; thence northerly at interior angle of 89°52'24", a distance of 104.00 feet to a point; thence westerly at interior angle of 90°07'36", a distance of 15.00 feet to a point; thence northerly at exterior angle of 90°07'36", a distance of 89.00 feet to a point in the southerly line of Matthews Street; thence westerly along the southerly line of Matthews Street, a distance of 200.00 feet to point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 193.50 feet to the True Point and Place of Beginning. This parcel containing 40,209.9 Sq. Ft. more or less.

> ENVIRONMENTAL EASEMENT AREA DESCRIPTION SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

SURVEYOR'S LEGAL DESCRIPTION

SBI NO. 111.41-5-1.1 187 MORTIMER ST.

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer

Lot No. 119 in said City, bounded and described as follows: BEGINNING at the intersection of the northerly line of Ray Street with the easterly line of Mortimer Street; thence easterly along the northerly line of Ray Street, a distance of 370.26 feet to a point; thence northerly at interior angle of 106°30'58", a distance of 85.35 feet to a point; thence westerly at interior angle of 90°05′50″, a distance of 81.63 feet to a point; thence northerly at exterior angle of 9518'00", a distance of 96.72 feet to a point in the southerly line George Street; thence westerly along the southerly line George Street, a distance of 31.00 feet to a point; thence southerly at interior angle of 95°34'27", a distance of 89.09 feet to a point; thence westerly at interior angle of 78°57'39", a distance of 21.79 feet to a point; thence southerly at interior angle of 73°15'37", a distance of 17.56 feet to a point; thence westerly at exterior angle of 89°52'24", a distance of 28.00 feet to a point; thence northerly at exterior angle of 90°07′36", a distance of 100.00 feet to a point feet to a point in the southerly line of George Street; thence westerly along the southerly line of George Street, a distance of 247.00 feet to point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 200.00 feet to the True Point and Place of Beginning. This parcel containing 1.505 Acres more or less.

> ENVIRONMENTAL EASEMENT AREA DESCRIPTION SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

ENVIRONMENTAL EASEMENT AREA ACCESS THE DEC OR THEIR AGENT MAY ACCESS THE ENVIRONMENTAL EASEMENT AREA AS SHOWN HEREON THROUGH ANY EXISTING STREET ACCESS OR BUILDING INGRESS/EGRESS

derweb@gw.dec.state.ny.us

ENGINEERING / INSTITUTIONAL CONTROLS

ACCESS POINT

Groundwater Use — the use or withdrawal of Site groundwater for drinking,

irrigation or other consumptive purposes will be prohibited.

Vapor Intrusion — The vapor intrusion for future buildings will be evaluated in accordance with New York laws, regulations and guidance. Sub-Slab Depressurization System (SSDS) - Maintenance of the active SSD System.
Soil Cover System — Maintenance of site wide soil cover system consisting of a combination of 12" soil fill, pavement and existing/new buildings.

Site Management Plan (SMP)—— Adherence to SMP.

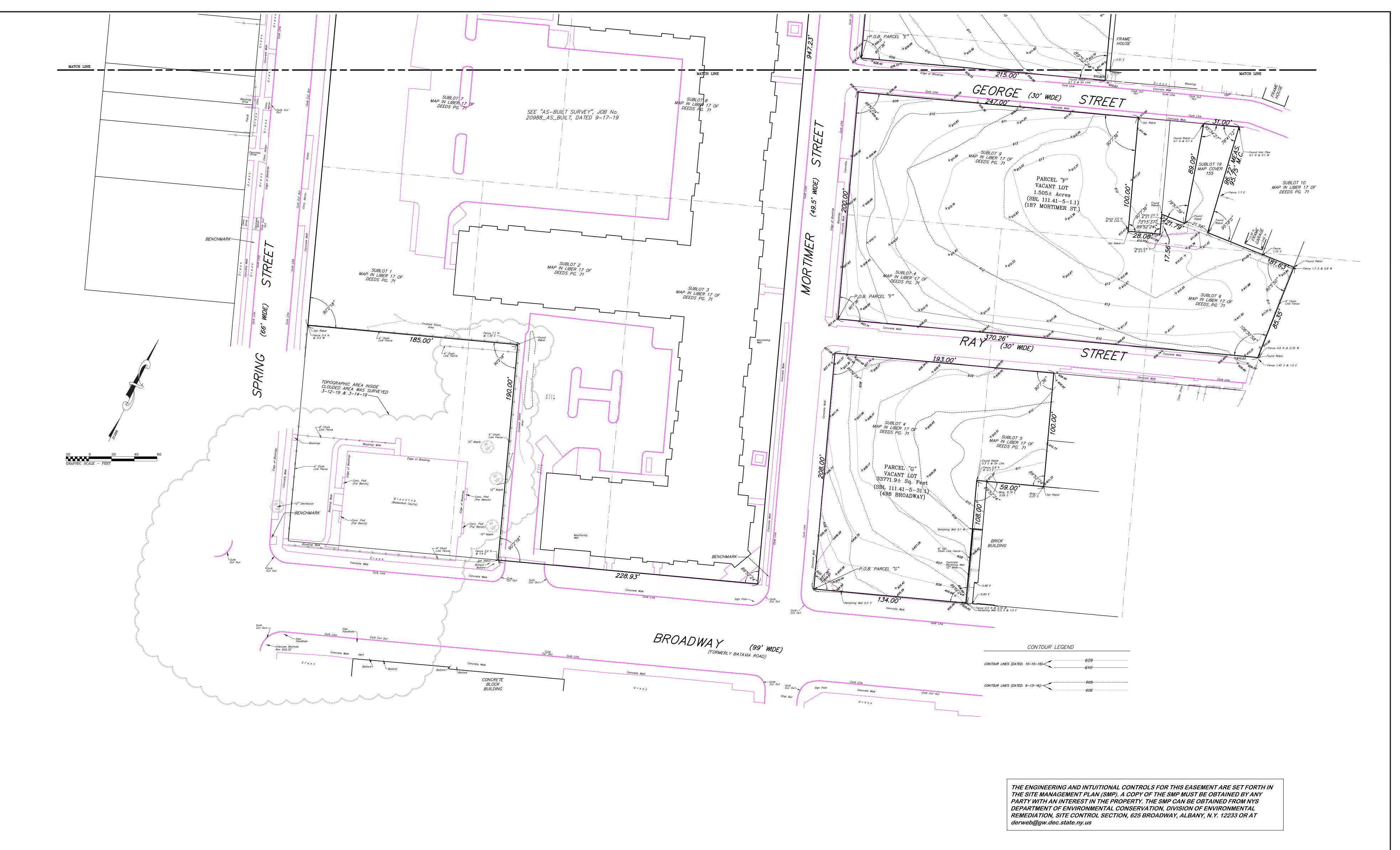
This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the New York Environmental Conservation Law.

Land Use – future land use will be restricted to Commercial or Industrial

THE ENGINEERING AND INTUITIONAL CONTROLS FOR THIS EASEMENT ARE SET FORTH IN

THE SITE MANAGEMENT PLAN (SMP). A COPY OF THE SMP MUST BE OBTAINED BY ANY

PARTY WITH AN INTEREST IN THE PROPERTY. THE SMP CAN BE OBTAINED FROM NYS


DEPARTMENT OF ENVIRONMENTAL CONSERVATION, DIVISION OF ENVIRONMENTAL

REMEDIATION, SITE CONTROL SECTION, 625 BROADWAY, ALBANY, N.Y. 12233 OR AT

NOTE: Total Acreage of all 7 BCP Parcels is 12.426 acres

INSTRUMENT(S) UTILIZED IN DETERMINING LOCATION OF BOUNDARY LINES: MAP IN LIBER 17 OF DEEDS PG. 71, MAP IN LIBER 85 OF DEEDS PG. 239, MAP COVER 155 THIS SURVEY WAS PREPARED WITHOUT THE BENEFIT OF A CURRENT ABSTRACT OF TITLE AND IS SUBJECT TO ANY STATE OF FACTS THAT MAY BE REVEALED IN SAID ABSTRAC

THIS SURVEY MAP WAS PREPARED IN ACCORDANCE WITH THE CURRENT STANDARDS FOR LAND SURVEYS ADOPTED BY THE BAR ASSOCIATION OF ERIE COUNTY AT THE REQUEST OF KUlback's Inc. FRANCIS C. DELLES NYSPLS No. 050477	©COPYRIGHT <u>2019</u> BY: Millard, MacKay & Delles LAND SURVEYORS, LLP 150 AERO DRIVE BUFFALO, NEW YORK 14225 PHONE (716) 631-5140 ~ FAX 631-3811	AMEND: SURVEY DATE: $10-10-19$ © DRAWING DATE: $10-11-19$ SCALE: $1" = 20'$ "ALL RIGHTS RESERVED"
	OF 2 WNSHIP RANGE OF THE: Y Erie COUNTY, N.Y.	TOOK DART O OF THE HEW MORK
SURVEY OF: 490, 498 Broadway, Spring	St. & Mortimer St. City Buffalo	SBL No. 111.41-

Ø UTILITY / SERVICE POLE ₩ WATER LINE VALVE C FIRE HYDRANT □ D.I. (DROP INLET - STORM) MANHOLE (STORM) MANHOLE (ELECTRIC) MANHOLE (TRAFFIC) MANHOLE (SANITARY)

LEGEND R.O.W. RIGHT OF WAY CONC. CONCRETE INV. INVERT M.H. MANHOLE —G— GAS LINE *─w─ WATER LINE* —T— *TELEPHONE LINE* —E— ELECTRIC LINE —P— UTILITY LINES MANHOLE (TELEPHONE) GASLINE MARKER —C— CABLE LINES M GAS LINE VALVE D. DEED \times LIGHT STANDARD M. MEASURED —ċ— *SIGN* L. LIBER P. PAGE H.C. HANDICAP

UTILITY NOTE:

The underground utilities shown have been located from field survey information & existing drawings. The surveyor makes no guarantee that the underground utilities shown comprise all such utilities in the area, either in service or abandoned. The surveyor further does not warrant that the underground utilities shown are in the exact location indicated although he does certify that they are located as accurately as possible from the information available. This surveyor has not physically located the underground utilities.

Note: Underground Utility information has been ordered from the respective utility companies. As the information is received, this map will be amended to reflect said information.

(716) 857-7000 City of Buffalo Water Div. Attn: James Campolong (716) 851–4782

(716) 558–8615 [°] Buffalo Sewer Authority Niagara Mohawk Attn: Lawrence Bernas (716) 857–4220

Verizon Attn: Robert McCarthy (716) 840–8748

SURVEYOR'S LEGAL DESCRIPTION

SBL NO. 111.41-5-31.1 *498 BROADWAY*

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of Broadway with the easterly line of Mortimer Street; thence easterly along the northerly line of Broadway, a distance of 134.00 feet to a point; thence northerly at interior angle of 89°52'24", a distance of 108.00 feet to a point; thence easterly at exterior angle of 89°52'24", a distance of 59.00 feet to a point; thence northerly at interior angle of 89°52'24", a distance of 100.00 feet to a point in the southerly line of Ray Street; thence westerly along the southerly line of Ray Street, a distance of 193.00 feet to point in the easterly line of Mortimer Street; thence southerly along

the easterly line of Mortimer Street, a distance of 208.00 feet to the True Point and Place of Beginning. This parcel containing 33,771.9 Sq. Ft. more or less.

> ENVIRONMENTAL EASEMENT AREA DESCRIPTION SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

ENVIRONMENTAL EASEMENT AREA ACCESS THE DEC OR THEIR AGENT MAY ACCESS THE ENVIRONMENTAL EASEMENT AREA AS SHOWN HEREON THROUGH ANY EXISTING STREET ACCESS OR BUILDING INGRESS/EGRESS

ACCESS POINT

ENGINEERING / INSTITUTIONAL CONTROLS Groundwater Use – the use or withdrawal of Site groundwater for drinking, irrigation or other consumptive purposes will be prohibited.
 Vapor Intrusion – The vapor intrusion for future buildings will be evaluated in accordance with New York laws, regulations and guidance.
 Sub-Slab Depressurization System (SSDS) – Maintenance of the active SSD System System.

Soil Cover System — Maintenance of site wide soil cover system consisting of a combination of 12" soil fill, pavement and existing/new buildings.

Site Management Plan (SMP)—— Adherence to SMP.

Land Use — future land use will be restricted to Commercial or Industrial

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the New York Environmental Conservation Law.

NOTE: Total Acreage of all 7 BCP Parcels is 12.426 acres

INSTRUMENT(S) UTILIZED IN DETERMINING LOCATION OF BOUNDARY LINES: MAP IN LIBER 17 OF DEEDS PG. 71, MAP IN LIBER 85 OF DEEDS PG. 239, MAP COVER 155 THIS SURVEY WAS PREPARED WITHOUT THE BENEFIT OF A CURRENT ABSTRACT OF TITLE AND IS SUBJECT TO ANY STATE OF FACTS THAT MAY BE REVEALED IN SAID ABSTRACT.

THIS SURVEY MAP WAS PREPARED IN ACCORDANCE WITH THE	©COPYRIGHT <u>2019</u> BY:	AMEND:
CURRENT STANDARDS FOR LAND SURVEYS ADOPTED BY THE BAR ASSOCIATION OF ERIE COUNTY AT THE REQUEST OF KUBACK'S Inc.	Millard, MacKay & Delles	SURVEY DATE: 10-10-19
Δ \	LAND SURVEYORS, LLP	©DRAWING DATE: 10-11-19
te_CN ller	150 AERO DRIVE	SCALE: 1" = 20'
FRANCIS C. DELLES NYSPLS No. 050477	BUFFALO, NEW YORK 14225 PHONE (716) 631—5140 ~ FAX 631—3811	"ALL RIGHTS RESERVED"
AS-BUILT TOPOGR SHEET 2	OF 2	THIS MAP VOID UNLESS EMBOSSED WITH NEW YORK STATE LICENSED LAND SURVEYOR'S SEAL. ALTERING ANY ITEM ON THIS MAP IS A VIOLATION OF THE
	WNSHIP RANGE OF THE: Y = Erie COUNTY, N.Y.	LAW EXCEPT AS PROVIDED IN SECTION 7209, PART 2, OF THE NEW YORK STATE EDUCATION LAW.
SURVEY OF: 490, 498 Broadway, Spring	St. & Mortimer St. City Buffalo	SBL No. 111.41-

TABLES

etals, mg/kg Iduminum NS Intimony NS Interest 35 Iderium 355 Ideryllium 7.2 Identition 2.5	NS NS 13 350 7.2 2.5	NS NS 16 820	NY375 RRES NS NS 16 350	NS NS 16	NY375 RCOMM NS NS	NY375 RINDU	10,500	8,150																		
NS NS NS NS NS NS NS NS	NS 13 350 7.2 2.5	NS 16 820 47	NS 16 350	NS 16	NS	NS	10,500	9.150									T	1	T				1	1	1	
NS NS NS NS NS NS NS NS	NS 13 350 7.2 2.5	NS 16 820 47	NS 16 350	NS 16	NS	NS	10,500	0.150												+						
Antimony NS Arsenic 13 Barium 35 Beryllium 7.2 Cadmium 2.5	NS 13 350 7.2 2.5	NS 16 820 47	NS 16 350	NS 16	NS	NS	,	10. 100	13,300	15,400	11,300	12,200	16,900 J	13,000 J	4,320	12,200	5,990 J	6,230 J	12,400 J	8,280 J	16,700 J	5,770 J	8,220 J	5,340 J	7,370 J	6,500 J
arsenic 13 darium 356 deryllium 7.2 Cadmium 2.5	13 350 7.2 2.5	16 820 47	16 350	16			4.80 J	< 7.04 J	< 7.77 J	< 7.47 J	< 6.74 J	< 6.75 J	< 8.24 J	< 7.80 J	< 8.18 J	,	< 8.15 J	,	< 6.90 J		< 7.75 J	,	< 7.27 J	< 7.14	< 6.28	< 6.10
Sarium 35/ Seryllium 7.2 Cadmium 2.5	350 7.2 2.5	820 47				16	14.5 J	2.54 J	7.82 J	3.84 J	5.36 J	7.27 J	7.46	6.17	5.01 J			52.7	3.99	14.0	3.26	9.33	3.58	< 1.19 J	6.09 J	3.22 J
Seryllium 7.2 Cadmium 2.5	7.2 2.5	47		400	400	10,000	300	50.0	333	97.1	138	122	140 J	118 J	79.6				78.1 J		110 J		49.4 J	27.4 J	52.8 J	48.1 J
			14	72	590	2,700	0.512 J	0.332 J	0.562 J	0.554 J	0.501 J	0.574	0.786	0.646 J	0.489 J	0.505 J	0.839	0.862	0.527 J	0.703	0.710		0.363 J	< 0.595	0.314 J	0.291 J
	NS	7.5	2.5	4.3	9.3	60	1.44	< 0.587	0.521 J	0.441 J	0.311 J	0.302 J	0.604 J	0.523 J	0.716	< 0.579	0.922	1.12	< 0.575	1.73	< 0.646	0.480 J	< 0.606	< 0.595	< 0.523	< 0.508
Calcium NS		NS	NS	NS	NS	NS	43,500	43,800	37,400	10,400	33,700	54,800	29,700 J	28,900 J	7,610	53,200	10,100 J	11,200 J	31,600 J	9,480 J	15,100 J	4,250 J	55,800 J	69,700	71,700	63,900
Chromium 30	30	NS	36	180	1,500	6,800	21.6	13.1	26.1	18.5	16.8	18.6	26.1	19.8	9.80	15.8	15.0	14.2	16.2	17.7	21.2	9.86	11.7	8.06 J	11.2 J	11.4 J
Cobalt	NS	NS	NS	NS	NS	NS	7.94	4.73 J	7.91	6.27	6.23	7.45	9.45	9.01	6.25 J	7.44	15.7	12.4	6.66	9.32	6.75	9.69	5.94 J	3.92 J	5.23 J	4.76 J
Copper 50	50	1,720	270	270	270	10,000	54.8	11.3	44.3	10.6	23.5	25.9	45.5	34.2	72.3	14.2	84.4	64.8	13.3	63.2	15.8	51.0	14.0	9.98 J	11.5 J	14.3 J
on NS	NS	NS	NS	NS	NS	NS	34,500	11,800	18,000	19,200	15,000	20,300	24,500	20,000	9,270	16,800	27,100	22,500	16,300	22,400	18,400	17,300	13,500	9,940 J	12,700 J	12,700 J
ead 63	63	450	400	400	1,000	3,900	974 J	16.7 J	593 J	16.0 J	294 J	81.8 J	285	228	343 J	15.4 J	107	132	15.4	358	16.0	172	18.3	9.72 J	9.01 J	28.3 J
Magnesium NS	NS	NS	NS	NS	NS	NS	18,000	24,200	9,800	8,270	13,500	19,700	12,800 J	15,700 J	1,750	26,800	3,990 J	2,760 J	17,700 J	3,430 J	11,400 J	1,220 J	27,400 J	27,500 J	24,900 J	22,300 J
Manganese 1,6	1,600	2,000	2,000	2,000	10,000	10,000	535 J	471 J	703 J	309 J	400 J	716 J	393	704	177 J	520 J	265 J	156 J	523	398	235	171	529	266 J	311 J	289 J
lickel 30	30	130	140	310	310	10,000	18.7	9.81	15.8	15.6	12.4	16.7	21.5 J	18.6 J	14.4	14.6	22.5 J	19.8 J	15.0 J	23.2 J	16.9 J	19.0 J	11.4 J	7.29 J	10.4 J	9.34 J
otassium NS	NS	NS	NS	NS	NS	NS	1,960	1,880	2,330	2,620	1,950	2,770	3,350	2,300	630	2,590	1,090	1,020	2,470	1,120	3,420	618	2,160	1,470 J	2,050 J	1,820 J
Selenium 3.9	3.9	4	36	180	1,500	6,800	1.03 J	< 1.17	< 1.30	< 1.25	< 1.12	0.979 J	< 1.37	< 1.30	< 1.36	< 1.16	< 1.36	1.25 J	< 1.15	< 1.24	< 1.29	< 1.49	< 1.21	< 1.19	< 1.05	< 1.02
ilver 2	2	8.3	36	180	1,500	6,800	< 1.26	< 1.17	< 1.30	< 1.25	< 1.12	< 1.13	< 1.37	< 1.30	< 1.36	< 1.16	< 1.36	< 1.41	< 1.15	< 1.24	< 1.29	< 1.49	< 1.21	< 1.19	< 1.05	< 1.02
odium NS	NS	NS	NS	NS	NS	NS	192 J	166 J	< 324	< 311	172 J	183 J	< 343	< 325	< 341	157 J	< 340	< 351	< 287	< 311	< 323	< 372	< 303	168 J	197 J	183 J
hallium NS	NS	NS	NS	NS	NS	NS	< 3.15	< 2.94	< 3.24	< 3.11	< 2.81	< 2.81	< 3.43	< 3.25	< 3.41	< 2.90	< 3.40	< 3.51	< 2.87	< 3.11	< 3.23	< 3.72	< 3.03	< 2.98	< 2.62	< 2.54
anadium NS	NS	NS	NS	NS	NS	NS	27.8	18.2	30.4	25.4	23.4	28.3	35.0	28.8	15.1	25.4	26.5	25.5	24.4	21.7	29.2	17.7	20.9	15.3 J	19.0 J	18.6 J
inc 10	109	2,480	2,200	10,000	10,000	10,000	382	76.3	209	98.8	158	120	219 J	179 J	118	72.7	672 J	612 J	78.6 J	274 J	83.3 J	110 J	66.1 J	77.9	54.5	68.2
Mercury 0.1	0.18	0.73	0.81	0.81	2.8	5.7	0.828 J	0.0732 J	0.524 J	0.0325 J	5.38 J	0.631 J	0.229	1.01	0.615 J	0.0173 J	0.948	0.826	0.0240	0.288	0.0213	0.681	< 0.0201	0.0150 J	< 0.0192	0.0506
Syanide 27	27	40	27	27	27	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Bs, mg/kg																				+	+					
roclor 1242 0.1	0.1	3.2	1	1	1	25	< 0.0346	< 0.0342	< 0.0356	< 0.0343	< 0.0330	< 0.0344	< 0.0351 J	< 0.0347 J	< 0.0379	< 0.0343 J	< 0.0363 J	< 0.0366	< 0.0334 J	< 0.0364	< 0.0341 J	< 0.0370	< 0.0332 J	< 0.0302	< 0.0322 J	< 0.0314 J
roclor 1248 0.1		3.2	1	1	1	25	< 0.0346	< 0.0342	< 0.0356	< 0.0343	< 0.0330	< 0.0344	< 0.0351 J		< 0.0379	< 0.0343 J		< 0.0366	< 0.0334 J	< 0.0364	< 0.0341 J	< 0.0370	< 0.0332 J		< 0.0322 J	< 0.0314 J
roclor 1254 0.1	0.1	3.2	1	1	1	25	0.101 J	< 0.0342	< 0.0356	< 0.0343	< 0.0330	< 0.0344	< 0.0351 J	< 0.0347 J	< 0.0379	< 0.0343 J		< 0.0366	< 0.0334 J	< 0.0364	< 0.0341 J	< 0.0370	< 0.0332 J	< 0.0302	< 0.0322 J	0.349 J
roclor 1260 0.1		3.2	1	1	1	25	< 0.0346	< 0.0342	< 0.0356	< 0.0343	< 0.0330	< 0.0344	< 0.0351 J	< 0.0347 J	< 0.0379	< 0.0343 J		< 0.0366	< 0.0334 J	< 0.0364	< 0.0341 J	< 0.0370	< 0.0332 J	< 0.0302	< 0.0322 J	< 0.0314 J

							Sample Date Sample Type	01-Dec-14 Grab	B-01 01-Dec-14 Grab 2 - 3 ft	B-02 01-Dec-14 Grab 0.5 - 1.5 ft	B-02 01-Dec-14 Grab 2 - 3 ft	B-03 01-Dec-14 Grab 0.5 - 1.5 ft	B-03 01-Dec-14 Grab 2 - 3 ft	B-04 02-Dec-14 Grab 0.5 - 1.5 ft	B-04 02-Dec-14 Grab 3 - 4 ft	B-05 01-Dec-14 Grab 0.5 - 1.5 ft	B-05 01-Dec-14 Grab 2 - 3 ft	B-06 02-Dec-14 Grab 0.5 - 1.5 ft	B-06 02-Dec-14 QA/QC 0.5 - 1.5 ft	B-06 02-Dec-14 Grab 2 - 3 ft	B-07 02-Dec-14 Grab 0.5 - 1.5 ft	B-07 02-Dec-14 Grab 2 - 3 ft	B-08 02-Dec-14 Grab 0.5 - 1.5 ft	B-08 02-Dec-14 Grab 2 - 3 ft	B-09 19-Nov-14 Grab 0.5 - 1.5 ft	B-10 19-Nov-14 Grab 0.5 - 1.5 ft	B-11 19-Nov-14 Grab 0.5 - 1.5 ft
Analyte	NY375 UNRES	NY375 RPGW	NY375 RRES	NY375 RRRES	NY375 RCOMM	NY375 RINDU																					
Camain alatilaa manilan																											
Semivolatiles, mg/kg 2-Methylnaphthalene	NS	NS	NS	NS	NS	NS		0.362 J	< 0.342	< 0.365	< 0.339	< 0.335	< 0.346	< 0.343	< 0.341	< 0.765	< 0.344	< 0.373	< 0.359	< 0.335	< 0.383	< 0.345	< 0.383	< 0.335	< 0.315	< 0.324	< 0.314
Acenaphthene	20	98	100	100	500	1,000		< 0.697	< 0.342	< 0.365	< 0.339	< 0.335	< 0.346	< 0.343	< 0.341	0.837	< 0.344	< 0.373	< 0.359	< 0.335	0.301 J	< 0.345	0.426	< 0.335	< 0.315	< 0.324	< 0.314
Acenaphthylene	100	107	100	100	500	1.000		0.898	< 0.342	< 0.365	< 0.339	< 0.335	< 0.346	< 0.343	< 0.341	< 0.765	< 0.344	< 0.373	< 0.359	< 0.335	< 0.383	< 0.345	< 0.383	< 0.335	< 0.315	< 0.324	< 0.314
Anthracene	100	1,000	100	100	500	1,000			< 0.342	< 0.365	< 0.339	< 0.335	< 0.346	< 0.343	< 0.341	2.01	< 0.344	< 0.373	< 0.359	< 0.335	0.88	< 0.345	1.16	< 0.335	< 0.315	< 0.324	< 0.314
Benz(a)anthracene	1	1	1	1	5.6	11			< 0.342	0.254 J	< 0.339	< 0.335	< 0.346	0.29 J	< 0.341	4.06	< 0.344	< 0.373	0.268 J	< 0.335	2.09	< 0.345	2.76	< 0.335	< 0.315	< 0.324	< 0.314
Benzo(a)pyrene	1	22	1	1	1	1.1	2	2.22	< 0.342	0.228 J	< 0.339	< 0.335	< 0.346	0.283 J	< 0.341	3.5	< 0.344	< 0.373	0.241 J	< 0.335	2.03	< 0.345	2.74	< 0.335	< 0.315	< 0.324	< 0.314
Naphthalene	12	12	100	100	500	1,000	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	1	1.7	1	1	5.6	11		3.42	< 0.342	0.202 J	< 0.339	< 0.335	< 0.346	0.302 J	< 0.341	3.35	< 0.344	0.195 J	0.22 J	< 0.335	2.72	< 0.345	3.15	< 0.335	< 0.315	< 0.324	< 0.314
Benzo(g,h,i)perylene	100	1,000	100	100	500	1,000			< 0.342	< 0.365	< 0.339	< 0.335	< 0.346	0.187 J	< 0.341	1.98	< 0.344	< 0.373	< 0.359	< 0.335	1.24	< 0.345	1.57	< 0.335	< 0.315	< 0.324	< 0.314
Benzo(k)fluoranthene		1.7	1	3.9	56	110			< 0.342	0.195 J	< 0.339	< 0.335	< 0.346	0.248 J	< 0.341	2.85	< 0.344	< 0.373	0.248 J	< 0.335	1.01	< 0.345	1.45	< 0.335	< 0.315	< 0.324	< 0.314
Benzyl Butyl Phthalate		NS	NS	NS	NS	NS			< 0.342	< 0.365	< 0.339	< 0.335	< 0.346	< 0.343	< 0.341	< 0.765	< 0.344	< 0.373	< 0.359	< 0.335	< 0.383	< 0.345	< 0.383	< 0.335	< 0.315	< 0.324	< 0.314
Bis(2-ethylhexyl)phtha		NS	NS	NS	NS	NS			0.232 J	< 0.365	0.467	0.364	< 0.346	< 0.343	< 0.341	< 0.765	< 0.344	< 0.373	< 0.359	< 0.335	< 0.383	< 0.345	0.397	< 0.335	< 0.315	< 0.324	0.212 J
Carbazole	NS 4	NS	NS	NS 3.9	NS 56	NS 440			< 0.342	< 0.365	< 0.339	< 0.335	< 0.346	< 0.343 0.345	< 0.341 < 0.341	0.837 4.14	< 0.344	< 0.373 < 0.373	< 0.359	< 0.335	0.417	< 0.345 < 0.345	0.576 2.91	< 0.335 < 0.335	< 0.315 < 0.315	< 0.324	< 0.314
Chrysene Dibenz(a,h)anthracen	0 0 22	1,000	0.33	0.33	0.56	110			< 0.342 < 0.342	0.265 J < 0.365	< 0.339 < 0.339	< 0.335 < 0.335	< 0.346 < 0.346	< 0.345	< 0.341	4.14 0.722 J	< 0.344	< 0.373	0.298 J < 0.359	< 0.335 < 0.335	2.35 0.402	< 0.345	0.442	< 0.335	< 0.315	< 0.324 < 0.324	< 0.314 < 0.314
Dibenzofuran	e 0.33	210	14	59	350	1.000		0.42 J	< 0.342	< 0.365	< 0.339	< 0.335	< 0.346	< 0.343	< 0.341	0.722 J 0.623 J	< 0.344	< 0.373	< 0.359	< 0.335	0.402 0.23 J	< 0.345	0.442 0.264 J	< 0.335	< 0.315	< 0.324	< 0.314
1,2,4-Trimethylbenzer	7 ne 3.6	3.6	47	52	190	380			< 0.00477 J	< 0.00498 J	< 0.00329 J	< 0.00371 J	< 0.00359 J	J < 0.00363 J	< 0.00386	J < 0.00481 J	< 0.344	J < 0.00472 J	< 0.00402 J	< 0.00395 J	< 0.00383	J < 0.00373 J	< 0.00408 J	< 0.00410 J	NA	NA	NA
Fluoranthene	100	1,000	100	100	500	1.000		7.86	< 0.342	0.493	< 0.339	< 0.335	< 0.346	0.588	< 0.341	8.81	< 0.344	0.25 J	0.494 J	< 0.335	4.56	< 0.345	6.41	< 0.335	< 0.315	< 0.324	< 0.314
Fluorene	30	386	100	100	500	1.000			< 0.342	< 0.365	< 0.339	< 0.335	< 0.346	< 0.343	< 0.341	0.771	< 0.344	< 0.373	< 0.359 J	< 0.335	0.329 J	< 0.345	0.404	< 0.335	< 0.315	< 0.324	< 0.314
Indeno(1,2,3-cd)pyrer		8.2	0.5	0.5	5.6	11			< 0.342	< 0.365	< 0.339	< 0.335	< 0.346	0.25 J	< 0.341	2.61	< 0.344	< 0.373	< 0.359	< 0.335	1.39	< 0.345	2.07	< 0.335	< 0.315	< 0.324	< 0.314
Naphthalene	12	12	100	100	500	1.000		0.915	< 0.342	< 0.365	< 0.339	< 0.335	< 0.346	< 0.343	< 0.341	0.417 J	< 0.344	< 0.373	< 0.359	< 0.335	< 0.383	< 0.345	< 0.383	< 0.335	< 0.315	< 0.324	< 0.314
Phenanthrene	100	1.000	100	100	500	1.000		8.61	< 0.342	0.34 J	< 0.339	< 0.335	< 0.346	0.312 J	< 0.341	8.14	< 0.344	< 0.373	0.367	< 0.335	3.7	< 0.345	5.05	< 0.335	< 0.315	< 0.324	< 0.314
Pyrene	100	1,000	100	100	500	1,000		5.48	< 0.342	0.393	< 0.339	< 0.335	< 0.346	0.502	< 0.341	6.88	< 0.344	0.227 J	0.408 J	< 0.335	3.65	< 0.345	5.46	< 0.335	< 0.315	< 0.324	< 0.314
•																											
Volatiles, mg/kg																											
1,2,4-Trimethylbenzer	ne 3.6	3.6	47	52	190	380								J < 0.00363 J										< 0.00410 J		NA	NA
1,3,5-Trimethylbenzer		8.4	47	52	190	380								J < 0.00363 J												NA	NA
2-Butanone	0.12	0.12	100	100	500	1,000			< 0.0239 J	< 0.0249 J		< 0.0185 J										< 0.0186 J		< 0.0205 J		NA	NA
4-Isopropyltoluene	NS	NS	NS	NS	NS	NS								J < 0.00363 J										< 0.00410 J		NA	NA
Acetone	0.05	0.05	100	100	500	1,000								< 0.0182 J										< 0.0205 J		NA	NA
Benzene	0.06	0.06	2.9	4.8	44	89								J < 0.00363 J						< 0.00395 J		J < 0.00373 J		< 0.00410 J		NA	NA
Carbon Disulfide	NS 1.1	NS 1.1	NS 100	NS 100	NS FOO	NS 1.000								J < 0.00363 J												NA	NA
Chlorobenzene	1.1	1.1	100 30	100 41	500	1,000								J < 0.00363 J												NA NA	NA NA
Ethylbenzene (Cu	I NS	NS	NS	NS	390 NS	780 NS								J < 0.00363 J J < 0.00363 J										< 0.00410 J		NA NA	NA NA
Isopropylbenzene (Cu m,p-Xylenes	0.26	1.6	100	100	500	1,000			< 0.00477 J < 0.00477 J					J < 0.00363 J J < 0.00363 J										< 0.00410 J		NA NA	NA NA
Methylcyclohexane	NS	NS	NS	NS	NS	NS								J < 0.00363 J												NA	NA NA
Methylene chloride	0.05	0.05	51	100	500	1.000								J < 0.00303 J										< 0.00410 J		NA	NA NA
Naphthalene	12	12	100	100	500	1.000			< 0.0119 J	< 0.0125 J				J < 0.00908 J								J < 0.00932 J		< 0.0103 J		NA	NA NA
n-Butylbenzene	12	12	100	100	500	1,000								J < 0.00363 J												NA	NA NA
n-Propylbenzene	3.9	3.9	100	100	500	1.000								J < 0.00363 J										< 0.00410 J		NA	NA
o-Xylene	0.26	1.6	100	100	500	1,000			< 0.00477 J					J < 0.00363 J								J < 0.00373 J		< 0.00410 J		NA	NA
sec-Butylbenzene	11	11	100	100	500	1,000								J < 0.00363 J												NA	NA
Styrene	NS	NS	NS	NS	NS	NS			< 0.0119 J	< 0.0125 J				J < 0.00908 J								J < 0.00932 J		< 0.0103 J		NA	NA
Tetrachloroethene	1.3	1.3	5.5	19	150	300								J < 0.00363 J												NA	NA
Toluene	0.7	0.7	100	100	500	1,000								J < 0.00363 J								J < 0.00373 J				NA	NA
Xvlenes (total)	0.26	1.6	100	100	500	1.000			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA								

Nata -

< = Compound not detected at concentrations above the laboratory reporting detection limit. The laboratory reporting detection limit is shown.

NA = Not analyzed

NS = No Soil Cleanup Objective

Units are in mg/kg = milligrams per kilogram

ft = feet

NY375 1UNRES = 6NYCRR P375 Unrestricted SCO.

NY375 2RPGW = 6NYCRR P375 Restricted SCO-Protection of GW.

NY375 3RRES = 6NYCRR P375 Restricted SCO-Residential.

NY375 4RRES = 6NYCRR P375 Restricted SCO-Restricted Residential.

NY375 5RCOMM = 6NYCRR P375 Restricted SCO-Commercial.

							Location ID Sample Date Sample Type Depth	B-12 02-Dec-14 Grab 4 - 5 ft	B-13 02-Dec-14 Grab 4 - 5 ft	B-14 02-Dec-14 Grab 4 - 5 ft	B-15 25-Nov-14 Grab 0.5 - 1 ft	B-16 25-Nov-14 Grab 0.5 - 1.5 ft	B-17 25-Nov-14 Grab 1 - 2 ft	B-17 25-Nov-14 Grab 2 - 3 ft	B-18 19-Nov-14 Grab 3 - 4.5 ft	B-18A 02-Dec-14 Grab 3 - 4 ft	B-19 02-Dec-14 Grab 3 - 4.5 ft	B-20 02-Dec-14 Grab 3 - 5 ft	B-21 02-Dec-14 Grab 3.5 - 5 ft	B-22 24-Nov-14 Grab 0.5 - 1.5 ft	B-23 24-Nov-14 Grab 0.5 - 1.5 ft	B-24 24-Nov-14 Grab 0.5 - 1.5 ft	B-25 24-Nov-14 Grab 0.5 - 1.5 ft	B-26 24-Nov-14 Grab 2 - 3 ft	B-27 26-Nov-14 Grab 1 - 2 ft	B-28 26-Nov-14 Grab 1.5 - 2.5 ft	B-29 26-Nov-14 Grab 2 - 3.5 ft
Analyte	NY375 UNRES	NY375 RPGW		NY375 RRRES	NY375 RCOMM	NY375 RINDU																			1		
Wetals, mg/kg																											
Aluminum	NS	NS	NS	NS	NS	NS		NA	NA	NA	5.230	11,400	25.000	16,700	7.970 J	6,070 J	6,650 J	17.400 J	5,680 J	4,970	13,400	19,700	2,270	27,000	NA	NA	NA
Antimony	NS	NS	NS	NS	NS	NS		NA	NA	NA	4.07 J	< 7.21 J	< 7.73 J	8.25 J	< 7.49	< 6.82 J	< 6.76 J	< 8.23 J	< 6.18 J	14.5 J	< 7.16 J	< 7.18 J	< 6.07 J	< 7.69 J	NA	NA	NA
Arsenic	13	16	16	16	16	16		NA	NA	NA	10.3 J	13.6 J	6.78 J	8.95 J	4.70 J	2.88	3.27	5.24	2.46	25.2 J	9.84 J	3.49 J	391 J	6.28 J	NA	NA	NA
Barium	350	820	350	400	400	10,000		NA	NA	NA	56.3	92.9	147	104	51.4 J	44.2 J	41.5 J	153 J	37.5 J	135	126	84.2	34.9	140	NA	NA	NA
Beryllium	7.2	47	14	72	590	2,700		NA	NA	NA	0.565	1.76	1.16	0.659	0.343 J	< 0.569	0.301 J	0.724	< 0.515	0.627 J	0.658 J	0.595 J	< 0.506 J	1.15 J	NA	NA	NA
Cadmium	2.5	7.5	2.5	4.3	9.3	60		NA	NA	NA	< 0.500	< 0.601	0.408 J	0.575 J	< 0.624	< 0.569	< 0.564	0.501 J	< 0.515	1.16 J	0.628 J	0.469 J		0.876 J	NA	NA	NA
Calcium	NS	NS	NS	NS	NS	NS		NA	NA	NA	249,000	320,000	4,960	35,700	104,000	84,200 J	53,900 J	14,100 J	64,900 J	18,600 J	44,000 J	9,490 J		3,570 J	NA	NA	NA
Chromium	30	NS	36	180	1,500	6,800		NA	NA	NA	571	1,410	30.4	22.7	11.9 J	9.78	10.7	21.9	8.81	15.7 J	20.3 J	22.7 J	8.35 J	33.3 J	NA	NA	NA
Cobalt	NS	NS	NS	NS	NS	NS		NA	NA	NA	5.78	7.94	12.0	9.86	5.58 J	4.46 J	4.77 J	12.7	3.94 J	7.46 J	8.45 J	7.77 J	< 5.06 J	12.5 J	NA	NA	NA
Copper	50	1,720	270	270	270	10,000		NA	NA	NA	34.5	46.3	22.8	77.7	14.7 J	10.8	10.6	23.6	9.24	132 J	36.4 J	10.6 J	25.9 J	25.8 J	NA	NA	NA
Iron	NS	NS	NS	NS	NS	NS		NA	NA	NA	73,000	114,000	30,600	43,600	13,000 J	10,900	12,000	22,200	10,000	50,300	23,900	21,500	8,140	31,500	NA	NA	NA
Lead	63	450	400	400	1,000	3,900		NA	NA	NA	247	130	16.0	118	20.3 J	7.26	7.88	39.9	6.89	360 J	235 J	60.9 J	176 J	13.5 J	NA	NA	NA
Magnesium	NS	NS	NS	NS	NS	NS		NA	NA	NA	19,500	15,100	7,740	11,300	25,000 J	25,600 J	23,300 J	5,430 J	24,800 J	1,040 J	13,200 J	7,060 J	7,660 J	8,520 J	NA	NA	NA
Manganese	1,600	2,000	2,000	2,000	10,000	10,000		NA	NA	NA	20,700 J	31,800 J	318 J	407 J	446 J	267	276	701	246	170	504	337	204	391	NA	NA	NA
Nickel	30	130	140	310	310	10,000		NA	NA	NA	18.2	21.4	32.1	19.0	11.5 J	8.82 J	9.34 J	19.7 J	7.86 J	18.6 J	19.5 J	17.1 J	9.98 J	36.5 J	NA	NA	NA
Potassium	NS	NS	NS	NS	NS	NS		NA	NA	NA	308	282 J	4,560	2,630	2,300 J	1,840	1,850	2,910	1,750	439	2,720	3,060	641	4,600	NA	NA	NA
Selenium	3.9	4	36	180	1,500	6,800		NA	NA	NA	14.8 J	16.0 J	< 1.29 J	< 1.20 J	< 1.25	1.96	< 1.13	< 1.37	0.552 J	0.981 J	< 1.19 J	< 1.20 J	7.05 J	< 1.28 J	NA	NA	NA
Silver	2	8.3	36	180	1,500	6,800		NA	NA	NA	< 1.00	< 1.20	< 1.29	< 1.20	< 1.25	< 1.14	< 1.13	< 1.37	< 1.03	2.17 J	0.621 J	< 1.20 J	< 1.01 J	0.805 J	NA	NA	NA
Sodium	NS	NS	NS	NS	NS	NS		NA	NA	NA	173 J	212 J	< 322	180 J	199 J	184 J	176 J	< 343	178 J	< 292 J	323 J	231 J	< 253 J	471 J	NA	NA	NA
Thallium	NS	NS	NS	NS	NS	NS		NA	NA	NA	4.33	< 3.01	< 3.22	< 3.01	< 3.12	< 2.84	< 2.82	< 3.43	< 2.57	< 2.92 J	< 2.98 J	< 2.99 J	4.67 J	< 3.20 J	NA	NA	NA
Vanadium	NS	NS	NS	NS	NS	NS		NA	NA	NA	226	460	42.5	43.1	20.4 J	16.8	18.8	34.0	15.9	18.7 J	28.4 J	33.7 J	8.16 J	42.5 J	NA	NA	NA
Zinc	109	2,480	2,200	10,000	10,000	10,000		NA	NA	NA	14.9	32.3	88.4	105	49.0	56.7 J	59.4 J	83.5 J	65.3 J	169 J	159 J	111 J	95.8 J	84.6 J	NA	NA	NA
Mercury	0.18	0.73	0.81	0.81	2.8	5.7		NA	NA	NA	< 0.0195	0.0171 J	0.0422	0.109	0.0314	0.0396	< 0.0186	0.485	< 0.0213	0.142	0.130	0.0541	0.197	0.0259	NA	NA	NA
Cyanide	27	40	27	27	27	10,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs, mg/kg																											
Aroclor 1242	_	3.2	1	1	1	25		< 0.0315 J	< 0.0335 J		< 0.0294	0.132 J			< 0.0323 J	< 0.306	< 0.0318 J			< 0.0341	< 0.0334	< 0.0344 J	< 0.0295	< 0.0358	NA	NA	NA
Aroclor 1248	0.1	3.2	1	1	1	25		< 0.0315 J	< 0.0335 J		< 0.0294	< 0.0326	< 0.0359 J	< 0.0362	< 0.0323 J	< 0.306	< 0.0318 J		< 0.0317 J	< 0.0341	< 0.0334	< 0.0344 J	< 0.0295	< 0.0358	NA	NA	NA
Aroclor 1254	0.1	3.2	1	1	1	25		< 0.0315 J	< 0.0335 J		< 0.0294	< 0.0326	< 0.0359 J	< 0.0362	0.581 J	4.03 J	< 0.0318 J	0.0182 J	< 0.0317 J	< 0.0341	< 0.0334	< 0.0344 J	0.235 J	< 0.0358	NA	NA	NA
Aroclor 1260	0.1	3.2	1	1	1	25		< 0.0315 J	< 0.0335 J	< 0.0345	< 0.0294	< 0.0326	< 0.0359 J	< 0.0362	< 0.0323 J	< 0.306	< 0.0318 J	< 0.0357	< 0.0317 J	< 0.0341	< 0.0334	< 0.0344 J	< 0.0295	< 0.0358	NA	NA	NA
								_																			
					1																						

						Location ID Sample Date Sample Type Depth	B-12 02-Dec-14 Grab 4 - 5 ft	B-13 02-Dec-14 Grab 4 - 5 ft	B-14 02-Dec-14 Grab 4 - 5 ft	B-15 25-Nov-14 Grab 0.5 - 1 ft	B-16 25-Nov-14 Grab 0.5 - 1.5 ft	B-17 25-Nov-14 Grab 1 - 2 ft	B-17 25-Nov-14 Grab 2 - 3 ft	B-18 19-Nov-14 Grab 3 - 4.5 ft	B-18A 02-Dec-14 Grab 3 - 4 ft	B-19 02-Dec-14 Grab 3 - 4.5 ft	B-20 02-Dec-14 Grab 3 - 5 ft	B-21 02-Dec-14 Grab 3.5 - 5 ft	B-22 24-Nov-14 Grab 0.5 - 1.5 ft	B-23 24-Nov-14 Grab 0.5 - 1.5 ft	B-24 24-Nov-14 Grab 0.5 - 1.5 ft	B-25 24-Nov-14 Grab 0.5 - 1.5 ft	B-26 24-Nov-14 Grab 2 - 3 ft	B-27 26-Nov-14 Grab 1 - 2 ft	B-28 26-Nov-14 Grab 1.5 - 2.5 ft	B-29 26-Nov-14 Grab 2 - 3.5 ft
Analyte	NY375 UNRES	NY375 RPGW	NY375 RRES	NY375 RRRES	NY375 RCOMM	NY375 RINDU																				
Semivolatiles, mg/kg	NC	NC	NC	NS	NS	NS	< 0.322	< 0.326	< 0.334	< 0.307	- 0 224	. 0.262	+ O 2EE	- 0 244	- 0 200	NA	NA	NA	< 0.336	- 0 221	- 0 222	- 0 200	- 0.262	NA	NA	NA
2-Methylnaphthalene Acenaphthene	NS 20	NS 98	NS 100	100	500	1,000	0.322	< 0.326	< 0.334	< 0.307	< 0.324 < 0.324	< 0.362 < 0.362	< 0.355 < 0.355	< 0.311 < 0.311	< 0.308 < 0.308	NA NA	NA NA	NA NA	< 0.336	< 0.331	< 0.333 < 0.333	< 0.289 < 0.289	< 0.362 < 0.362	NA NA	NA NA	NA NA
Acenaphthylene	100	107	100	100	500	1,000	< 0.322	< 0.326	< 0.334	< 0.307	< 0.324	< 0.362	< 0.355	< 0.311	< 0.308	NA	NA	NA	< 0.336	< 0.331	< 0.333	< 0.289	< 0.362	NA	NA	NA
Anthracene	100	1.000	100	100	500	1.000	1.28	< 0.326	< 0.334	< 0.307	< 0.324	< 0.362	< 0.355	0.155 J	< 0.308	NA	NA	NA	< 0.336	< 0.331	< 0.333	< 0.289	< 0.362	NA	NA	NA
Benz(a)anthracene	1	1	1	1	5.6	11	0.305 J	< 0.326	< 0.334	0.17 J	0.435	< 0.362	< 0.355	< 0.311	< 0.308	NA	NA	NA	0.255 J	0.249 J	0.216 J	0.227 J	< 0.362	NA	NA	NA
Benzo(a)pyrene	1	22	1	1	1	1.1	0.298 J	< 0.326	< 0.334	0.166 J	0.174 J	< 0.362	< 0.355	< 0.311	< 0.308	NA	NA	NA	0.224 J	0.225 J	0.186 J	0.224 J	< 0.362	NA	NA	NA
Naphthalene	12	12	100	100	500	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	1	1.7	1	1	5.6	11	0.2 J	< 0.326	< 0.334	0.205 J	0.237 J	< 0.362	< 0.355	< 0.311	< 0.308	NA	NA	NA	0.27 J	0.262 J	< 0.333	0.277 J	< 0.362	NA	NA	NA
Benzo(g,h,i)perylene	100	1,000	100	100	500	1,000	< 0.322	< 0.326	< 0.334	< 0.307	< 0.324	< 0.362	< 0.355	< 0.311	< 0.308	NA	NA	NA	< 0.336	< 0.331	< 0.333	0.229 J	< 0.362	NA	NA	NA
Benzo(k)fluoranthene		1.7	1	3.9	56	110	0.346	< 0.326	< 0.334	< 0.307	< 0.324	< 0.362	< 0.355	< 0.311	< 0.308	NA	NA	NA	0.225 J	0.197 J	0.19 J	0.163 J	< 0.362	NA	NA	NA
Benzyl Butyl Phthalate		NS NS	NS NS	NS NS	NS NS	NS NS	< 0.322	< 0.326 < 0.326	< 0.334 < 0.334	< 0.307 0.234 J	< 0.324 0.254 J	< 0.362	< 0.355 < 0.355	< 0.311 < 0.311	< 0.308	NA NA	NA NA	NA NA	< 0.336	< 0.331	< 0.333 0.268 J	< 0.289 0.161 J	< 0.362 0.244 J	NA NA	NA NA	NA NA
Bis(2-ethylhexyl)phtha Carbazole	NS NS	NS	NS	NS	NS	NS	< 0.322 < 0.322	< 0.326	< 0.334	< 0.307	< 0.324	< 0.362	< 0.355	< 0.311	< 0.308 < 0.308	NA NA	NA NA	NA	< 0.336 < 0.336	< 0.331	< 0.333	< 0.289	< 0.362	NA NA	NA NA	NA NA
Chrysene	1	1	1	3.9	56	110	0.896	< 0.326	< 0.334	0.216 J	0.883	< 0.362	< 0.355	0.177 J	< 0.308	NA	NA	NA	0.378	0.305 J	0.233 J	0.275 J	< 0.362	NA	NA	NA
Dibenz(a,h)anthracen	e 0.33	1,000	0.33	0.33	0.56	1.1	< 0.322	< 0.326	< 0.334	< 0.307	< 0.324	< 0.362	< 0.355	< 0.311	< 0.308	NA	NA	NA	< 0.336	< 0.331	< 0.333	< 0.289	< 0.362	NA	NA	NA
Dibenzofuran	7	210	14	59	350	1,000	0.929	< 0.326	< 0.334	< 0.307	< 0.324	< 0.362	< 0.355	< 0.311	< 0.308	NA	NA	NA	< 0.336	< 0.331	< 0.333	< 0.289	< 0.362	NA	NA	NA
1,2,4-Trimethylbenzer	ne 3.6	3.6	47	52	190	380	NA	NA	NA	NA	NA	NA	NA	0.00973 J	< 0.00288 J	NA	NA	NA	< 0.00464 J	< 0.00393 J	< 0.00401	J 0.00163 J	< 0.00498	J < 0.00441 、	J < 0.00426 J	< 0.00483 J
Fluoranthene	100	1,000	100	100	500	1,000	2.43	< 0.326	< 0.334	0.295 J	4.08	< 0.362	0.394	0.45	< 0.308	NA	NA	NA	0.507	0.499	0.422	0.423	< 0.362	NA	NA	NA
Fluorene	30	386	100	100	500	1,000	1.17	< 0.326	< 0.334	< 0.307	< 0.324	< 0.362	< 0.355	0.186 J	< 0.308	NA	NA	NA	< 0.336	< 0.331	< 0.333	< 0.289	< 0.362	NA	NA	NA
Indeno(1,2,3-cd)pyrer		8.2	0.5	0.5	5.6	11	< 0.322	< 0.326	< 0.334	< 0.307	< 0.324	< 0.362	< 0.355	< 0.311	< 0.308	NA	NA	NA	< 0.336	< 0.331	< 0.333	0.165 J	< 0.362	NA	NA	NA
Naphthalene	12	12	100	100	500	1,000	< 0.322	< 0.326	< 0.334	< 0.307	< 0.324	< 0.362	< 0.355	< 0.311	< 0.308	NA	NA	NA	< 0.336	< 0.331	< 0.333	< 0.289	< 0.362	NA	NA	NA
Phenanthrene	100	1,000	100	100	500	1,000	4.68	< 0.326	< 0.334	0.196 J	4.72	< 0.362	0.404	0.651	< 0.308	NA	NA	NA	0.38	0.344	0.187 J	0.209 J	< 0.362	NA	NA	NA
Pyrene	100	1,000	100	100	500	1,000	1.6	< 0.326	< 0.334	0.241 J	3.19	< 0.362	0.319 J	0.378	< 0.308	NA	NA	NA	0.418	0.425	0.346	0.361	< 0.362	NA	NA	NA
Volatiles, mg/kg																										+
1,2,4-Trimethylbenzer	ne 3.6	3.6	47	52	190	380	NA	NA	NA	NA	NA	NA	NA	0.00973 J	< 0.00288 J	NA	NA	NA	< 0.00464 J	< 0.00393 J	< 0.00401	J 0.00163 J	< 0.00498	J < 0.00441 、	J < 0.00426 J	< 0.00483 J
1,3,5-Trimethylbenzer	ne 8.4	8.4	47	52	190	380	NA	NA	NA	NA	NA	NA	NA	0.00273 J	< 0.00288 J	NA	NA	NA	< 0.00464 J	< 0.00393 J	< 0.00401	J < 0.00319 J	< 0.00498	J < 0.00441 v	J < 0.00426 J	< 0.00483 J
2-Butanone	0.12	0.12	100	100	500	1,000	NA	NA	NA	NA	NA	NA	NA	< 0.0212 J	< 0.0144 J	NA	NA	NA	< 0.0232 J	< 0.0197 J	< 0.0200 J	< 0.0160 J	< 0.0249 J	< 0.0220 J	< 0.0213 J	
4-Isopropyltoluene	NS	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NA	< 0.00423 J			NA	NA				J < 0.00319 J		_		
Acetone	0.05	0.05	100	100	500	1,000	NA	NA	NA	NA	NA	NA	NA	0.0219 J	< 0.0144 J		NA	NA				< 0.0160 J		_		
Benzene Carban Diaulfida	0.06	0.06	2.9	4.8	44 NC	89	NA	NA	NA	NA	NA	NA	NA	< 0.00423 J	< 0.00288 J		NA	NA				J < 0.00319 J				
Carbon Disulfide Chlorobenzene	NS 1.1	NS 1.1	NS 100	NS 100	NS 500	NS 1.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		< 0.00288 J		NA NA	NA NA				J < 0.00319 J				
Ethylbenzene	1.1	1	30	41	390	780	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		< 0.00288 J		NA NA	NA NA				J < 0.00319 J J < 0.00319 J		_		
Isopropylbenzene (Cu	ımıNS	NS	NS	NS	NS	NS	NA NA	NA	NA	NA	NA	NA	NA		< 0.00288 J		NA	NA				J < 0.00319 J				
m,p-Xylenes	0.26	1.6	100	100	500	1,000	NA	NA	NA	NA	NA	NA	NA	0.00318 J	< 0.00288 J		NA	NA				J < 0.00319 J		_		< 0.00483 J
Methylcyclohexane	NS	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NA	< 0.00423 J	< 0.00288 J		NA	NA				J < 0.00319 J		J < 0.00441		< 0.00483 J
Methylene chloride	0.05	0.05	51	100	500	1,000	NA	NA	NA	NA	NA	NA	NA	< 0.0106 J	< 0.00720 J		NA	NA	< 0.0116 J	< 0.00984 J				0.00582 J	0.00746 J	< 0.0121 J
Naphthalene	12	12	100	100	500	1,000	NA	NA	NA	NA	NA	NA	NA	0.0101 J	< 0.00720 J	NA	NA	NA	< 0.0116 J	< 0.00984 J	< 0.0100 J	< 0.00798 J	< 0.0125 J	< 0.0110 J	< 0.0107 J	< 0.0121 J
n-Butylbenzene	12	12	100	100	500	1,000	NA	NA	NA	NA	NA	NA	NA	< 0.00423 J	< 0.00288 J	NA	NA	NA	< 0.00464 J	< 0.00393 J	< 0.00401	J < 0.00319 J	< 0.00498	J < 0.00441 、	< 0.00426 J	< 0.00483 J
n-Propylbenzene	3.9	3.9	100	100	500	1,000	NA	NA	NA	NA	NA	NA	NA		< 0.00288 J		NA	NA				J < 0.00319 J				
o-Xylene	0.26	1.6	100	100	500	1,000	NA	NA	NA	NA	NA	NA	NA		< 0.00288 J		NA	NA				J < 0.00319 J			J < 0.00426 J	
sec-Butylbenzene	11	11	100	100	500	1,000	NA	NA	NA	NA	NA	NA	NA		< 0.00288 J		NA	NA				J < 0.00319 J		_		
Styrene	NS 4.3	NS 4.2	NS 5.5	NS 40	NS 450	NS	NA	NA	NA	NA	NA	NA	NA	< 0.0106 J	< 0.00720 J		NA	NA	< 0.0116 J	< 0.00984 J				_	< 0.0107 J	
Tetrachloroethene Toluene	1.3 0.7	0.7	5.5 100	19	150 500	1.000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.00245 J < 0.00423 J	< 0.00288 J		NA NA	NA NA				J < 0.00319 J J < 0.00319 J			J < 0.00426 J J < 0.00426 J	
	0.7	1.6	100	100	500	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 0.00423 J	< 0.00288 J	NA NA	NA NA	NA NA	< 0.00464 J	NA NA	< 0.00401 S	NA NA	< 0.00498 NA	NA NA	NA < 0.00426 J	< 0.00483 J
Xylenes (total)	0.20	1.0	100	100	300	1,000	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA

Nata .

< = Compound not detected at concentrations above the laboratory reporting detection limit. The laboratory reporting detection limit is shown.

NA = Not analyzed

NS = No Soil Cleanup Objective

Units are in mg/kg = milligrams per kilogram

ft = feet

NY375 1UNRES = 6NYCRR P375 Unrestricted SCO.

NY375 2RPGW = 6NYCRR P375 Restricted SCO-Protection of GW.

NY375 3RRES = 6NYCRR P375 Restricted SCO-Residential.

NY375 4RRRES = 6NYCRR P375 Restricted SCO-Restricted Residential.

NY375 5RCOMM = 6NYCRR P375 Restricted SCO-Commercial.

							Location ID Sample Date Sample Type Depth	B-29A 04-May-15 Grab 2 - 3 ft	B-30 26-Nov-14 Grab 2 - 2.8 ft	B-30A 04-May-15 Grab 1 - 2 ft	B-31 26-Nov-14 Grab 3 - 4 ft	B-31A 04-May-15 Grab 2 - 3 ft	B-32 26-Nov-14 Grab 3 - 5 ft	B-33 26-Nov-14 Grab 3 - 4 ft	B-33A 04-May-15 Grab 3 - 4 ft	B-33A 04-May-15 QA/QC 3 - 4 ft	B-34 26-Nov-14 Grab 3 - 5 ft	B-35 02-Dec-14 Grab 0.5 - 1.5 ft	B-35 02-Dec-14 Grab 2 - 3 ft	B-36 01-Dec-14 Grab 2 - 4 ft	B-37 01-Dec-14 Grab 2 - 4 ft	B-38 01-Dec-14 Grab 2 - 4 ft	B-39 02-Dec-14 Grab 1.5 - 2.5 ft	B-39 02-Dec-14 Grab 4 - 5 ft	B-40 01-Dec-14 Grab 0.5 - 1 ft	B-41 01-Dec-14 Grab 0.5 - 1 ft	B-42 25-Nov-14 Grab 4 - 5 ft
Analyte	NY375 UNRES	NY375 RPGW	NY375 RRES	NY375 RRRES	NY375 RCOMM	NY375 RINDU												1									
/letals, mg/kg																											
Aluminum	NS	NS	NS	NS	NS	NS		NA	NA	NA	13,600	8.940	12,000	5,070	15.400	13,300	14,200	10.100 J	16,200 J	8,490	8.680	8.630	13.000 J	18,500 J	11,600	19,400	13.000
Antimony	NS	NS	NS	NS	NS	NS		NA	NA	NA	< 7.51 J	< 3.46	< 7.27 J	< 7.46 J	< 3.31	< 3.58	< 6.90 J	< 7.17 J	< 7.00 J	< 7.39 J	< 6.80 J	< 6.33 J	< 7.60 J	< 7.22 J	6.25 J	6.14 J	< 7.10 J
Arsenic	13	16	16	16	16	16		NA	NA	NA	5.07	6.39	5.83	7.20	5.51 J	9.41 J	6.72	7.60	5.04	3.74 J	3.65 J	4.74 J	2.76	5.04	12.8 J	12.2 J	5.07 J
Barium	350	820	350	400	400	10,000		NA	NA	NA	95.5	105	78.1	35.2	97.9 J	386 J	100	135 J	102 J	49.6	57.7	58.7	97.0 J	129 J	97.0	162	96.6
Beryllium	7.2	47	14	72	590	2,700		NA	NA	NA	0.535 J	0.396	0.525 J	< 0.621	0.592	0.575	0.602	0.531 J	0.683	0.359 J	0.372 J	0.367 J	0.479 J	0.737	1.61	3.81	0.520 J
Cadmium	2.5	7.5	2.5	4.3	9.3	60		NA	NA	NA	0.646	0.764	< 0.605	0.481 J	0.829	0.971	< 0.575	0.597 J	< 0.583	< 0.616	< 0.566	< 0.528	< 0.634	< 0.601	1.62	1.19	< 0.591
Calcium	NS	NS	NS	NS	NS	NS		NA	NA	NA	56,900 J	56,000	82,800 J	120,000 J	19,600 J	28,700 J	70,800 J	52,100 J	49,400 J	56,800	69,000	70,100	29,200 J	44,200 J	210,000	231,000	85,200
Chromium	30	NS	36	180	1,500	6,800		NA	NA	NA	23.3	12.5	17.0	7.99	28.1 J	18.8 J	19.4	18.6	25.6	12.1	13.2	12.4	16.6	22.5	318	425	16.9
Cobalt	NS	NS	NS	NS	NS	NS		NA	NA	NA	6.74	5.65	7.75	3.20 J	8.18	8.28	8.49	6.67	9.50	5.61 J	5.92	6.27	6.37	9.47	8.13	7.78	8.68
Copper	50	1,720	270	270	270	10,000		NA	NA	NA	23.1	26.0	15.0	13.1	27.8 J	57.1 J	19.3	72.0	20.3	14.7	13.0	13.8	10.6	18.4	73.5	49.7	10.3
Iron	NS	NS	NS	NS	NS	NS		NA	NA	NA	17,100	13,200	18,300	13,100	25,900	23,500	21,300	20,200	22,700	13,900	13,700	14,300	15,400	22,100	115,000	90,600	15,800
Lead	63	450	400	400	1,000	3,900		NA	NA	NA	60.6 J	278	11.8 J	73.6 J	86.2 J	228 J	25.3 J	170	16.9	10.9 J	8.33 J	8.38 J	24.4	21.4	611 J	170 J	11.3
Magnesium	NS	NS	NS	NS	NS	NS		NA	NA	NA	19,900	15,800	25,500	4,150	7,680	6,840	21,800	18,600 J	24,100 J	25,100	24,500	22,900	15,700 J	16,200 J	18,000	30,500	28,600
Manganese	1,600	2,000	2,000	2,000	10,000	10,000		NA	NA	NA	383	380	459	226	1,430 J	566 J	436	418	683	331 J	300 J	356 J	296	503	8,820 J	13,300 J	530 J
Nickel	30	130	140	310	310	10,000		NA	NA	NA	19.5 J	12.1	16.4 J	6.53 J	19.1	21.5	18.6 J	18.7 J	23.5 J	11.5	11.9	13.5	12.1 J	21.1 J	37.5	28.9	15.6
Potassium	NS	NS	NS	NS	NS	NS		NA	NA	NA	2,840	1,960	3,290	954	2,660	2,290	3,320	1,630	3,220	2,150	2,490	2,320	2,300	3,300	961	1,840	3,500
Selenium	3.9	4	36	180	1,500	6,800		NA	NA	NA	< 1.25	2.97	1.42	4.67	3.27	3.54	2.54	< 1.19	< 1.17	< 1.23	< 1.13	< 1.06	< 1.27	< 1.20	13.3	14.8	< 1.18 J
Silver	2	8.3	36	180	1,500	6,800		NA	NA	NA	< 1.25	< 0.577	< 1.21	< 1.24	1.18	0.913	< 1.15	< 1.19	< 1.17	< 1.23	< 1.13	< 1.06	< 1.27	< 1.20	< 1.10	2.48	< 1.18
Sodium	NS	NS	NS	NS	NS	NS		NA	NA	NA	299 J	222	298 J	220 J	128 J	135 J	308	444	151 J	186 J	169 J	181 J	< 317	265 J	280	737	238 J
Thallium	NS	NS	NS	NS	NS	NS		NA	NA	NA	< 3.13	2.31	< 3.03	2.01 J	< 1.38	1.28 J	< 2.88	< 2.99	< 2.92	< 3.08	< 2.83	< 2.64	< 3.17	< 3.01	< 2.76	< 3.14	< 2.96
Vanadium	NS	NS	NS	NS	NS	NS		NA	NA	NA	24.5 J	17.7	26.5 J	14.3 J	42.9 J	25.0 J	28.6 J	22.1	31.9	20.0	20.8	20.3	23.0	32.6	80.1	124	23.2
Zinc	109	2,480	2,200	10,000	10,000	10,000		NA	NA	NA	103 J	131	61.7 J	447 J	121 J	218 J	74.7 J	135 J	79.0 J	81.7	62.6	64.9	78.2 J	83.1 J	72.2	52.2	56.8
Mercury	0.18	0.73	0.81	0.81	2.8	5.7		NA	NA	NA	0.0913	0.0446	0.0136 J	0.107	0.246 J	0.437 J	0.0217	0.271	< 0.0200	0.0133 J	0.0113 J	< 0.0209 J	0.0875	0.0476	0.0268 J	0.0962 J	0.0146 J
Cyanide	27	40	27	27	27	10,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBs, mg/kg																											
Aroclor 1242	0.1	3.2	1	1	1	25		NA	NA	NA	< 0.0363	< 0.0330	< 0.0336 J	< 0.0364 J		< 0.0361	< 0.0352 J	< 0.0319	< 0.0337 J	< 0.0326	< 0.0320	< 0.0319	< 0.0326	< 0.0344 J	< 0.0317	< 0.0339	< 0.0323 J
Aroclor 1248	0.1	3.2	1	1	1	25		NA	NA	NA	0.0216 J	< 0.0330	< 0.0336 J	0.335 J	< 0.0356	< 0.0361	< 0.0352 J	< 0.0319	< 0.0337 J	< 0.0326	< 0.0320	< 0.0319	< 0.0326	< 0.0344 J	< 0.0317	< 0.0339	< 0.0323 J
Aroclor 1254	0.1	3.2	1	1	1	25		NA	NA	NA	< 0.0363	0.0311 J	< 0.0336 J	0.196 J	< 0.0356	< 0.0361	< 0.0352 J	0.0242 J	< 0.0337 J	< 0.0326	< 0.0320	< 0.0319	< 0.0326	< 0.0344 J	< 0.0317	< 0.0339	< 0.0323 J
Aroclor 1260	0.1	3.2	1	1	1	25		NA	NA	NA	< 0.0363 J	< 0.0330	< 0.0336 J	< 0.0364 J	< 0.0356	< 0.0361	< 0.0352 J	< 0.0319	< 0.0337 J	< 0.0326	< 0.0320	< 0.0319	< 0.0326	< 0.0344 J	< 0.0317	< 0.0339	< 0.0323 J

							Location ID Sample Date	B-29A 04-May-15	B-30 26-Nov-14	B-30A 04-May-15	B-31 26-Nov-14	B-31A 04-May-15	B-32 26-Nov-14	B-33 26-Nov-14	B-33A 04-May-15	B-33A 04-May-15	B-34 26-Nov-14	B-35 02-Dec-14	B-35 02-Dec-14	B-36 01-Dec-14	B-37 01-Dec-14	B-38 01-Dec-14	B-39 02-Dec-14	B-39 02-Dec-14	B-40 01-Dec-14	B-41 01-Dec-14	B-42 25-Nov-14
							Sample Type Depth	Grab 2 - 3 ft	Grab 2 - 2.8 ft	Grab 1 - 2 ft	Grab 3 - 4 ft	Grab 2 - 3 ft	Grab 3 - 5 ft	Grab 3 - 4 ft	Grab 3 - 4 ft	QA/QC 3 - 4 ft	Grab 3 - 5 ft	Grab 0.5 - 1.5 ft	Grab 2 - 3 ft	Grab 2 - 4 ft	Grab 2 - 4 ft	Grab 2 - 4 ft	Grab 1.5 - 2.5 ft	Grab 4 - 5 ft	Grab 0.5 - 1 ft	Grab 0.5 - 1 ft	Grab 4 - 5 ft
							•			!	*					*	•	*	*	•	!	*		*	*		-
Analyte	NY375 UNRES		NY375 RRES	NY375 RRRES	NY375 RCOMM	NY375 RINDU				1									<u> </u>	T			T	<u> </u>		1	
Semivolatiles, mg/kg																											+
	NS	NS	NS	NS	NS	NS		NA	NA	NA	< 0.362	< 0.332	< 0.339	< 3.54	< 0.358 J	< 0.362	< 0.354	< 0.322	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
Acenaphthene	20	98	100	100	500	1,000		NA	NA	NA	< 0.362	< 0.332	< 0.339	< 3.54	< 0.358 J	< 0.362	< 0.354	0.187 J	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
. ,	100	107	100	100	500	1,000		NA	NA	NA	< 0.362	< 0.332	< 0.339	< 3.54	< 0.358 J	< 0.362	< 0.354	< 0.322	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
Anthracene	100	1,000	100	100	500	1,000		NA	NA	NA	< 0.362	< 0.332	< 0.339	< 3.54	< 0.358 J	< 0.362	< 0.354	0.395	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
Benz(a)anthracene	1	1	1	1	5.6	1.1		NA	NA NA	NA	< 0.362	0.287 J	< 0.339	< 3.54	0.474 J	0.258 J	< 0.354	0.648	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
Benzo(a)pyrene Naphthalene	12	12	100	100	500	1.000		NA NA	NA NA	NA NA	< 0.362 NA	0.254 J NA	< 0.339 NA	< 3.54 NA	0.444 J NA	0.246 J NA	< 0.354 NA	0.59 NA	< 0.342 NA	< 0.329 NA	< 0.318 NA	< 0.326 NA	< 0.324 NA	< 0.358 NA	< 1.6 NA	< 3.38 NA	< 0.336 NA
Benzo(b)fluoranthene	1	1.7	1	100	5.6	11		NA	NA	NA	< 0.362	0.392	< 0.339	< 3.54	0.601 J	0.329 J	< 0.354	0.488	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
Benzo(g,h,i)perylene	100	1.000	100	100	500	1,000		NA	NA	NA	< 0.362	0.173 J	< 0.339	< 3.54	0.291 J	< 0.362	< 0.354	0.375	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
Benzo(k)fluoranthene	0.8	1.7	1	3.9	56	110		NA	NA	NA	< 0.362	< 0.332	< 0.339	< 3.54	0.253 J	0.199 J	< 0.354	0.506	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
. ,	NS		NS	NS	NS	NS		NA	NA	NA	< 0.362	< 0.332	< 0.339	< 3.54	< 0.358 J	< 0.362	< 0.354	< 0.322	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
Bis(2-ethylhexyl)phthala	NS	NS	NS	NS	NS	NS		NA	NA	NA	0.191 J	< 0.332	< 0.339	< 3.54	< 0.358 J	< 0.362	< 0.354	< 0.322	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
Carbazole	NS	NS	NS	NS	NS	NS		NA	NA	NA	< 0.362	< 0.332	< 0.339	< 3.54	< 0.358 J	< 0.362	< 0.354	0.169 J	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
Chrysene	1	1	1	3.9	56	110		NA	NA	NA	< 0.362	0.3 J	< 0.339	< 3.54	0.479 J	0.284 J	< 0.354	0.667	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
Dibenz(a,h)anthracene	0.33	1,000	0.33	0.33	0.56	1.1		NA	NA	NA	< 0.362	< 0.332	< 0.339	< 3.54	< 0.358 J	< 0.362	< 0.354	< 0.322	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
Dibenzofuran	7	210	14	59	350	1,000		NA	NA	NA	< 0.362	< 0.332	< 0.339	< 3.54	< 0.358 J	< 0.362	< 0.354	< 0.322	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
1,2,4-Trimethylbenzene			47	52	190	380			0.0133 J		0.00307 J	< 0.00402	J < 0.00466 J	J < 0.00636 J	< 0.00401	J < 0.00461	J < 0.00358 J	NA 4.5	NA 0.040		< 0.00352 J	< 0.00395 J	NA 0.004	NA 0.050	NA .	NA	NA
Fluoranthene	100 30	1,000	100	100	500	1,000		NA NA	NA NA	NA NA	0.243 J	0.568	< 0.339	< 3.54	0.902 J	0.432 J	< 0.354	1.5	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
Fluorene Indeno(1,2,3-cd)pyrene		386 8.2	100 0.5	0.5	5.6	1,000		NA NA	NA NA	NA	< 0.362 < 0.362	< 0.332 0.228 J	< 0.339 < 0.339	< 3.54 < 3.54	< 0.358 J 0.424 J	< 0.362 0.288 J	< 0.354 < 0.354	0.174 J 0.48	< 0.342 < 0.342	< 0.329 < 0.329	< 0.318 < 0.318	< 0.326 < 0.326	< 0.324 < 0.324	< 0.358 < 0.358	< 1.6 < 1.6	< 3.38 < 3.38	< 0.336 < 0.336
Naphthalene	12	12	100	100	500	1.000		NA	NA NA	NA	< 0.362	< 0.332	< 0.339	< 3.54	< 0.358 J	< 0.362	< 0.354	< 0.322	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
	100	1.000	100	100	500	1.000		NA	NA	NA	0.365	0.352	< 0.339	< 3.54	0.484 J	0.187 J	< 0.354	1.46	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
Pyrene	100	1.000	100	100	500	1.000		NA	NA	NA	0.212 J	0.448	< 0.339	< 3.54	0.682 J	0.357 J	< 0.354	1.24	< 0.342	< 0.329	< 0.318	< 0.326	< 0.324	< 0.358	< 1.6	< 3.38	< 0.336
. ,		.,				1,000										0.001											1
Volatiles, mg/kg																											
1,2,4-Trimethylbenzene	3.6	3.6	47	52	190	380		< 0.00379 J	0.0133 J	< 0.00438 J	0.00307 J	< 0.00402	J < 0.00466 J	< 0.00636 J	< 0.00401	J < 0.00461 .	J < 0.00358 J	NA	NA	< 0.00325 J	< 0.00352 J	< 0.00395 J	NA	NA	NA	NA	NA
1,3,5-Trimethylbenzene	8.4	8.4	47	52	190	380		< 0.00379 J	0.00413 J	< 0.00438 J	< 0.00484 J	< 0.00402	J < 0.00466 J	J < 0.00636 J	< 0.00401	J < 0.00461 .	J < 0.00358 J	NA	NA	< 0.00325 J	< 0.00352 J	< 0.00395 J	NA	NA	NA	NA	NA
	0.12	0.12	100	100	500	1,000		< 0.0189 J	< 0.0193 J		< 0.0242 J		< 0.0233 J				< 0.0179 J		NA			< 0.0198 J		NA	NA	NA	NA
1 17	NS	NS	NS	NS	NS	NS		< 0.00379 J			< 0.00484 J						J < 0.00358 J		NA			< 0.00395 J		NA	NA	NA	NA
	0.05	0.05	100	100	500	1,000		< 0.0189 J			< 0.0444 J						< 0.0179 J		NA			< 0.0198 J		NA	NA	NA	NA
	0.06 NS	0.06 NS	2.9 NS	4.8 NS	NS	89 NS		< 0.00379 J < 0.00379 J			< 0.00484 J						J < 0.00358 J J < 0.00358 J		NA NA			< 0.00395 J		NA NA	NA NA	NA NA	NA NA
Carbon Disulide Chlorobenzene	1 1	1.1	100	100	500	1.000		< 0.00379 J			< 0.00484 J						J < 0.00358 J		NA NA			< 0.00395 J		NA NA	NA NA	NA NA	NA NA
Ethylbenzene	1		30	41	390	780		< 0.00379 J	0.00367 J	< 0.00438 J		< 0.00402 3					J < 0.00358 J		NA NA			< 0.00395 J		NA NA	NA NA	NA	NA NA
Isopropylbenzene (Cum	NS		NS	NS	NS	NS		< 0.00379 J			< 0.00484 J						J < 0.00358 J		NA NA			< 0.00395 J		NA	NA	NA	NA NA
	0.26	1.6	100	100	500	1,000		< 0.00379 J	0.0101 J		0.00444 J	< 0.00402					J < 0.00358 J		NA			< 0.00395 J		NA	NA	NA	NA
" '	NS		NS	NS	NS	NS		< 0.00379 J	0.00317 J	< 0.00438 J		< 0.00402	J < 0.00466 J				J < 0.00358 J		NA			< 0.00395 J		NA	NA	NA	NA
Methylene chloride	0.05	0.05	51	100	500	1,000		< 0.00947 J	< 0.00967 J	0.0283 J	< 0.0121 J	0.00855 J	< 0.0117 J	< 0.0159 J	< 0.0100 J	< 0.0115 J	< 0.00895 J	NA	NA	< 0.00813 J	< 0.00879 J	< 0.00988 J	NA	NA	NA	NA	NA
Naphthalene	12	12	100	100	500	1,000		< 0.00947 J		< 0.0109 J		< 0.0100 J	< 0.0117 J			< 0.0115 J			NA			< 0.00988 J		NA	NA	NA	NA
Baty.bonzono	12	12	100	100	500	1,000		< 0.00379 J			< 0.00484 J						J < 0.00358 J		NA			< 0.00395 J		NA	NA	NA	NA
-17	3.9	3.9	100	100	500	1,000		< 0.00379 J			< 0.00484 J						J < 0.00358 J		NA			< 0.00395 J		NA	NA	NA	NA
,	0.26	1.6	100	100	500	1,000		< 0.00379 J			< 0.00484 J						J < 0.00358 J		NA			< 0.00395 J		NA	NA	NA	NA
	11 NC	11 NC	100	100	500	1,000		< 0.00379 J			< 0.00484 J						J < 0.00358 J		NA			< 0.00395 J		NA	NA	NA	NA
,	NS 1.3		NS 5.5	NS 19	NS 150	NS 300		< 0.00947 J < 0.00379 J	< 0.00967 J < 0.00387 J	< 0.0109 J	0.0168 J < 0.00484 J	< 0.0100 J	< 0.0117 J J < 0.00466 J			< 0.0115 J	< 0.00895 J J < 0.00358 J		NA NA			< 0.00988 J < 0.00395 J		NA NA	NA NA	NA NA	NA NA
	0.7	0.7	100	19	500	1.000		< 0.00379 J			< 0.00484 J			J < 0.0241 J J < 0.00636 J			J < 0.00358 J J < 0.00358 J		NA NA			< 0.00395 J		NA NA	NA NA	NA NA	NA NA
	0.7	1.6	100	100	500	1.000		< 0.00379 J	< 0.00367 J	< 0.00436 J	NA	< 0.00402 S	NA	NA	< 0.00401 S	NA	NA	NA	NA NA	< 0.00325 J	< 0.00352 J	< 0.00395 J	NA	NA	NA NA	NA	NA NA
Aylones (total)	0.20	1.0	100	100	500	1,000	1	14/7	14/1	14/1	INA	14/7	147	14/1	14/7	14/7	INA	INA	1147	list.	117	INT	14/1	147	14/1	I V	11/7

< = Compound not detected at concentrations above the laboratory reporting detection limit. The laboratory reporting detection limit is shown.

NA = Not analyzed

NS = No Soil Cleanup Objective

Units are in mg/kg = milligrams per kilogram

ft = feet

NY375 1UNRES = 6NYCRR P375 Unrestricted SCO.

NY375 2RPGW = 6NYCRR P375 Restricted SCO-Protection of GW.

NY375 3RRES = 6NYCRR P375 Restricted SCO-Residential. NY375 4RRRES = 6NYCRR P375 Restricted SCO-Restricted Residential.

NY375 5RCOMM = 6NYCRR P375 Restricted SCO-Commercial. NY375 6RINDU = 6NYCRR P375 Restricted SCO-Industrial.

> ENVIRONMENTAL RESOURCES MANAGEMENT Page 6 of 16 Table 5-Summary of Soil Analyical Results.xls

							Location ID Sample Date Sample Type Depth	B-42 07-May-15 Grab 6 - 7 ft	B-42A 06-May-15 Grab 4 - 5 ft	B-42B 06-May-15 Grab 4 - 5 ft	B-42C 06-May-15 Grab 4 - 5 ft	B-43 25-Nov-14 Grab 3 - 4 ft	B-44 25-Nov-14 Grab 4 - 5 ft	B-44 07-May-15 Grab 7 - 8 ft	B-44A 06-May-15 Grab 6 - 7 ft	B-46 25-Nov-14 Grab 1 - 2 ft	B-46 25-Nov-14 Grab 4 - 5 ft	B-47 25-Nov-14 Grab 1 - 2 ft	B-48 17-Nov-14 Grab 0.5 - 1 ft	B-48 17-Nov-14 Grab 1 - 1.5 ft	B-49 17-Nov-14 Grab 0.5 - 1.5 ft	B-50 17-Nov-14 Grab 0.5 - 1.5 ft	B-50 17-Nov-14 Grab 1.5 - 2 ft	B-51 17-Nov-14 Grab 0.5 - 1.5 ft	B-51 17-Nov-14 Grab 1.5 - 2.5 ft	B-52 17-Nov-14 Grab 0.5 - 1.5 ft	Grab
Analyte	NY375 UNRES	NY375 RPGW	NY375 RRES	NY375 RRRES	NY375 RCOMM	NY375 RINDU																					
/letals, mg/kg																											+
Aluminum	NS	NS	NS	NS	NS	NS		7,600 J	11,400 J	14,600 J	13,000 J	14,400	15,400	7,270 J	7,870 J	16,800	16,400	5,440	32,500 J	16,900 J	4,850 J	10,600 J	13,200 J	1,430 J	10,900 J	17,400 J	23,700
Antimony	NS	NS	NS	NS	NS	NS		< 3.09 J	< 3.60 J	< 3.50 J	< 3.72 J	< 7.79 J	< 6.70 J	< 3.48 J	< 3.60 J	< 7.54 J	,	< 6.99 J	< 6.81 J	< 7.95 J	< 6.94 J	< 7.72 J	< 7.28 J	< 6.74 J	< 6.69 J	< 7.06 J	< 7.57 J
Arsenic	13	16	16	16	16	16		4.32	7.51	7.82	6.47	7.74 J	7.29 J	3.90	5.09	6.60 J	8.60 J	3.03 J	4.87 J	3.75 J	10.3 J	8.98 J	5.05 J	8.64 J	4.99 J	5.48 J	7.13 J
Barium	350	820	350	400	400	10,000		55.0 J	79.0 J	104 J	84.0 J	348	100	49.7 J	48.5 J	91.2	113	31.6	229 J	94.6 J	64.8 J	65.1 J	70.5 J	14.2 J	66.2 J	126 J	173
Beryllium	7.2	47	14	72	590	2,700		0.322	0.509	0.643	0.563	0.619 J	0.665	0.310	0.317	0.764	0.701	< 0.582	6.27	0.937	0.393 J	0.644	0.586 J	< 0.562	0.482 J	0.800	1.13 J
Cadmium	2.5	7.5	2.5	4.3	9.3	60		0.443 J	0.623 J	0.714 J	0.698 J	1.29	< 0.559	0.398 J	0.380 J	0.324 J	< 0.601	< 0.582	< 0.568	< 0.663	< 0.578	< 0.643	0.352 J	< 0.562	< 0.558	< 0.588	0.936 J
Calcium	NS	NS	NS	NS	NS	NS		91,500	85,600	90,200	98,400	82,400	76,700	102,000	106,000	21,900	73,300	75,100	227,000 J	15,900 J	323,000 J	289,000 J	13,000 J	268,000 J	72,900 J	14,000 J	3,860 J
Chromium	30	NS	36	180	1,500	6,800		12.0	14.7	17.4	16.6	25.8	20.6	11.5	12.4	25.5	22.0	7.91	19.9 J	20.9 J	837 J	762 J	17.2	5.30 J	14.7 J	21.7 J	28.4 J
Cobalt	NS	NS	NS	NS	NS	NS		5.33 J	8.69 J	9.75 J	7.85 J	10.2	8.00	4.83 J	4.43 J	8.14	9.38	3.82 J	< 5.68	6.65	5.71 J	6.48	5.61 J	< 5.62	7.60	11.3	13.6 J
Copper	50	1,720	270	270	270	10,000		11.3	22.0	19.6	21.1	52.0	18.7	11.2	9.09	18.5	19.8	9.43	3.81	10.2	19.4	14.3	9.17	12.0	14.9	13.3	21.0 J
Iron	NS	NS	NS	NS	NS	NS		11,800 J	16,300 J	19,400 J	17,200 J	25,900	20,800	10,900 J	11,200 J	23,400	23,500	9,840	9,560	17,300	105,000	91,500	15,700	3,880	16,500	24,000	30,000
Lead	63	450	400	400	1,000	3,900		1.61 J	8.03 J	6.43 J	6.89 J	108	11.3	1.57 J	1.51 J	12.0	13.0	6.40	4.53	27.1	66.7	66.8	32.6	43.8	9.18	29.6	19.5 J
Magnesium	NS	NS	NS	NS	NS	NS		19,600	21,400	20,600	19,000	16,900	20,500	20,500	25,000	13,200	23,700	31,500	35,200 J	5,320 J	10,400 J	12,500 J	2,370 J	8,050 J	21,700 J	9,310 J	6,570 J
Manganese	1,600	2,000	2,000	2,000	10,000	10,000		329	371	442	460	548 J	332 J	294	183	244 J	418 J	244 J	3,280 J	1,220 J	21,800 J	22,700 J	476 J	142 J	393 J	631 J	462
Nickel	30	130	140	310	310	10,000		10.3 J	18.5 J	19.3 J	18.9 J	20.2	18.8	9.54 J	9.32 J	22.8	21.3	7.08	< 4.54	11.2	6.25	5.59	13.4	7.18	14.4	17.7	32.3 J
Potassium	NS	NS	NS	NS	NS	NS		1,980	2,340	2,860	2,390	3,370	3,440	1,950	2,080	3,110	3,970	1,740	1,280	1,470	341	1,060	1,400	601	2,310	2,360	4,130
Selenium	3.9	4	36	180	1,500	6,800		2.71	2.46	2.97	2.19	1.12 J	0.963 J	2.24	3.02	< 1.26 J	< 1.20 J	< 1.16 J	9.98	< 1.33	16.1	12.3	< 1.21	9.84	< 1.12	< 1.18	< 1.26 J
Silver	2	8.3	36	180	1,500	6,800		< 0.515	< 0.600	< 0.584	< 0.620	< 1.30	< 1.12	< 0.579	< 0.600	< 1.26	< 1.20	< 1.16	< 2.27	< 1.33	< 2.31	< 1.29	< 1.21	< 1.12	< 1.12	< 1.18	0.767 J
Sodium	NS	NS	NS	NS	NS	NS		241	425	204	166	218 J	211 J	246	223	201 J	300 J	235 J	749	232 J	177 J	327	179 J	146 J	292	214 J	378 J
Thallium	NS	NS	NS	NS	NS	NS		3.89 J	4.22 J	3.81 J	3.98 J	< 3.25	< 2.79	4.58 J	4.95 J	< 3.14	< 3.01	< 2.91	5.53	< 3.31	9.37	12.0	< 3.03	6.55	< 2.79	< 2.94	< 3.16 J
Vanadium	NS	NS	NS	NS	NS	NS		19.3	23.5	29.1	25.1	33.4	29.8	19.6	18.2	32.8	32.0	15.5	11.1	30.4	331	299	24.9	9.30	24.8	34.4	42.0 J
Zinc	109	2,480	2,200	10,000	10,000	10,000		43.2	58.6	64.9	68.3	201	61.8	44.9	45.6	69.0	68.6	111	< 6.81 J	64.7 J	28.7 J	4.30 J	141 J	28.9 J	50.8 J	69.4 J	72.1 J
Mercury	0.18	0.73	0.81	0.81	2.8	5.7		0.00838	0.0143	0.0143	0.0140	0.328	0.0173 J	0.0173	0.0146	0.0178 J	0.0214 J	0.0224	0.0714	0.0946	0.0151 J	0.0210 J	0.124	0.0271	0.0433	0.0337	0.0307
Cyanide	27	40	27	27	27	10,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBs, mg/kg																											
Aroclor 1242	0.1	3.2	1	1	1	25		< 0.0324	< 0.0370	< 0.0347	< 0.0350	< 0.0367	< 0.0346	< 0.0351	< 0.0344	< 0.0354	< 0.0348	< 0.0325	< 0.0334	< 0.0358 J	< 0.0343	< 0.0349 J	< 0.0338	< 0.0308	< 0.0339	< 0.0342	< 0.0358
Aroclor 1248	0.1	3.2	1	1	1	25		< 0.0324	< 0.0370	< 0.0347	< 0.0350	< 0.0367	< 0.0346	< 0.0351	< 0.0344	< 0.0354	< 0.0348	< 0.0325	< 0.0334	< 0.0358 J	< 0.0343	< 0.0349 J	< 0.0338	< 0.0308	< 0.0339	< 0.0342	< 0.0358
Aroclor 1254	0.1	3.2	1	1	1	25		< 0.0324	< 0.0370	< 0.0347	< 0.0350	0.0256 J	< 0.0346	< 0.0351	< 0.0344	< 0.0354	< 0.0348	< 0.0325	< 0.0334	< 0.0358 J	< 0.0343	< 0.0349 J	< 0.0338	0.0461 J	< 0.0339	< 0.0342	< 0.0358
Aroclor 1260	0.1	3.2	1	1	1	25		< 0.0324	< 0.0370	< 0.0347	< 0.0350	< 0.0367 J	< 0.0346	< 0.0351	< 0.0344 J	< 0.0354	< 0.0348	< 0.0325	0.0216 J	< 0.0358 J	< 0.0343	< 0.0349 J	< 0.0338	< 0.0308	< 0.0339	< 0.0342	< 0.0358
																											+

							Sample Date Sample Type Depth	07-May-15 Grab 6 - 7 ft	06-May-15 Grab 4 - 5 ft	06-May-15 Grab 4 - 5 ft	B-42C 06-May-15 Grab 4 - 5 ft	25-Nov-14 Grab 3 - 4 ft	B-44 25-Nov-14 Grab 4 - 5 ft	B-44 07-May-15 Grab 7 - 8 ft	B-44A 06-May-15 Grab 6 - 7 ft	B-46 25-Nov-14 Grab 1 - 2 ft	25-Nov-14 Grab 4 - 5 ft	25-Nov-14 Grab 1 - 2 ft	B-48 17-Nov-14 Grab 0.5 - 1 ft	17-Nov-14 Grab 1 - 1.5 ft	17-Nov-14 Grab 0.5 - 1.5 ft	17-Nov-14 Grab 0.5 - 1.5 ft	17-Nov-14 Grab 1.5 - 2 ft	17-Nov-14 Grab 0.5 - 1.5 ft	17-Nov-14 Grab 1.5 - 2.5 ft	B-52 17-Nov-14 Grab 0.5 - 1.5 ft	B-53 24-Nov-14 Grab 0.5 - 1.5 ft
			NY375	NY375	NY375	NY375	Deptii	6 - 7 It	4-511	4-511	4-511	3-411	4-511	7-011	10 - 7 It	11-211	4-511	11-211	0.5 - 1 10	11-1.510	0.5 - 1.5 It	0.5 - 1.5 11	1.5 - 210	0.5 - 1.5 it	1.5 - 2.5 It	0.5 - 1.5 11	0.5 - 1.5 It
Analyte UN	IRES	RPGW	RRES	RRRES	RCOMM	RINDU				1	1	1			1			1		I	1		1		1		
Semivolatiles, mg/kg																											_
2-Methylnaphthalene NS	S 1	NS I	NS	NS	NS	NS		< 0.308	4.46	< 0.347 J	< 0.348 J	< 0.353	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Acenaphthene 20	9	98	100	100	500	1,000		< 0.308	0.233 J	< 0.347 J	< 0.348 J	0.178 J	< 0.336	< 0.35 J	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Acenaphthylene 100			100	100	500	1,000		< 0.308	< 0.363	< 0.347 J	< 0.348 J	< 0.353	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Anthracene 100	0	1,000	100	100	500	1,000		< 0.308	< 0.363	< 0.347 J	< 0.348 J	0.6	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Benz(a)anthracene 1		1	1	1	5.6	11		< 0.308	< 0.363	< 0.347 J		0.78	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Benzo(a)pyrene 1 Naphthalene 12		12	1 100	100	500	1.1		< 0.308 NA	< 0.363 NA	< 0.347 J NA	< 0.348 J NA	0.618 NA	< 0.336 NA	< 0.35 NA	< 0.312 NA	< 0.345 NA	< 0.342 NA	< 0.321 NA	< 0.332 NA	< 0.364 NA	< 0.34 NA	< 0.346 NA	< 0.334 NA	< 1.54 NA	< 0.318 NA	< 0.338 NA	< 0.366 NA
Naphthalene 12 Benzo(b)fluoranthene 1		1.7	1	100	5.6	1,000		< 0.308	< 0.363	< 0.347 J		0.695	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Benzo(g,h,i)perylene 100			100	100	500	1,000		< 0.308	< 0.363	< 0.347 J	< 0.348 J	0.362	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Benzo(k)fluoranthene 0.8		1.7	1	3.9	56	110		< 0.308	< 0.363	< 0.347 J	< 0.348 J	0.471	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Benzyl Butyl Phthalate NS			NS	NS	NS	NS		< 0.308	< 0.363	< 0.347 J	< 0.348 J	0.311 J	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Bis(2-ethylhexyl)phthala NS	3 1	NS I	NS	NS	NS	NS		< 0.308	< 0.363	< 0.347 J	< 0.348 J	< 0.353	< 0.336	< 0.35	< 0.312	0.184 J	0.38	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	0.247 J	< 1.54	0.577	< 0.338	< 0.366
Carbazole NS	S 1	NS I	NS	NS	NS	NS		< 0.308	< 0.363	< 0.347 J	< 0.348 J	0.284 J	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Chrysene 1		1	1	3.9	56	110		< 0.308	< 0.363	< 0.347 J	< 0.348 J	0.795	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Dibenz(a,h)anthracene 0.33		,		0.33	0.56	1.1		< 0.308	< 0.363	< 0.347 J	< 0.348 J	< 0.353	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Dibenzofuran 7				59	350	1,000		< 0.308	0.29 J	< 0.347 J	< 0.348 J	0.254 J	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
1,2,4-Trimethylbenzene 3.6		0.0	47	52	190	380		0.0725 J	0.884 J		< 0.00410 J		NA . o aac	0.00914 J	< 0.00363 J	< 0.00476 J	J < 0.00414 J	0.00192 J	< 0.00371 J		< 0.00378 J	J < 0.00414 J	< 0.00453 J	J < 0.00404 J		< 0.00421	J < 0.00392 J
Fluoranthene 100 Fluorene 30		1,000 ·	100 100	100	500 500	1,000		< 0.308	< 0.363 0.462	< 0.347 J	< 0.348 J < 0.348 J	1.87 0.243 J	< 0.336	< 0.35 < 0.35	< 0.312 < 0.312	< 0.345 < 0.345	< 0.342 < 0.342	< 0.321	< 0.332 < 0.332	< 0.364 < 0.364	< 0.34 < 0.34	< 0.346 < 0.346	< 0.334	< 1.54 < 1.54	< 0.318 < 0.318	< 0.338 < 0.338	< 0.366 < 0.366
Indeno(1,2,3-cd)pyrene 0.5				0.5	5.6	11		< 0.308	< 0.363	< 0.347 J	< 0.348 J	0.243 3	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Naphthalene 12			100	100	500	1.000		< 0.308	0.64	< 0.347 J	< 0.348 J	< 0.353	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Phenanthrene 100		1.000	100	100	500	1.000		< 0.308	1.25	< 0.347 J	< 0.348 J	2.29	< 0.336	< 0.35	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Pyrene 100	0	1,000	100	100	500	1,000		< 0.308	0.208 J	< 0.347 J	< 0.348 J	1.4	< 0.336	0.38 J	< 0.312	< 0.345	< 0.342	< 0.321	< 0.332	< 0.364	< 0.34	< 0.346	< 0.334	< 1.54	< 0.318	< 0.338	< 0.366
Volatiles, mg/kg																											
1,2,4-Trimethylbenzene 3.6		0.0		52	190	380		0.0725 J	0.884 J		< 0.00410 J		NA	0.00914 J			J < 0.00414 J					J < 0.00414 J			< 0.00464 J		
1,3,5-Trimethylbenzene 8.4				52	190	380		0.0271 J	0.0879 J		< 0.00410 J		NA	0.00238 J			J < 0.00414 J								< 0.00464 J		
2-Butanone 0.12			100	100	500	1,000		< 0.0203 J	< 0.127 J		< 0.0205 J		NA	< 0.0212 J				< 0.0164 J		< 0.0241 J				< 0.0202 J	< 0.0232 J		
4-Isopropyltoluene NS		_	NS 400	NS 400	NS	NS 4.000		< 0.00406 J	0.0527 J		< 0.00410 J		NA				J < 0.00414 J			< 0.00483 J					< 0.00464 J		
Acetone 0.08 Benzene 0.08			100 2.9	100 4.8	500 44	1,000		0.0186 J < 0.00406 J	0.123 J < 0.0254 J		< 0.0205 J < 0.00410 J		NA NA				< 0.0267 J J < 0.00414 J			< 0.0241 J < 0.00483 J				< 0.0202 J J 0.00375 J	< 0.00464 J		< 0.0196 J
Carbon Disulfide NS			NS	NS	NS	NS		< 0.00406 J	< 0.0254 J		< 0.00410 J		NA				J < 0.00414 J					J < 0.00414 J			< 0.00464 J		
Chlorobenzene 1.1			100	100	500	1,000		< 0.00406 J	< 0.0254 J		< 0.00410 J		NA				J < 0.00414 J								< 0.00464 J		
Ethylbenzene 1			30	41	390	780		< 0.00406 J	< 0.0254 J		< 0.00410 J		NA				J < 0.00414 J			< 0.00483 J					< 0.00464 J		
Isopropylbenzene (Cum NS	s	NS I	NS	NS	NS	NS		0.00311 J	0.0338 J		< 0.00410 J		NA				J < 0.00414 J								< 0.00464 J		
m,p-Xylenes 0.26		1.6	100	100	500	1,000		< 0.00286 J	0.0351 J	< 0.00382 J	< 0.00410 J	NA	NA	< 0.00424 J	< 0.00363 J	0.00499 J	< 0.00414 J	0.00439 J	< 0.00371 J	< 0.00483 J	0.00510 J	< 0.00414 J	< 0.00453 J	J 0.00324 J	< 0.00464 J	< 0.00421	J < 0.00392 J
Methylcyclohexane NS			NS	NS	NS	NS		0.0215 J	0.135 J		< 0.00410 J		NA	0.00219 J			J < 0.00414 J			< 0.00483 J				J < 0.00404 J			
Methylene chloride 0.08		0.00	51	100	500	1,000		< 0.0101 J	< 0.0636 J		< 0.0103 J		NA	< 0.0106 J			< 0.0103 J			< 0.0121 J					< 0.0116 J		
Naphthalene 12			100	100	500	1,000		0.0181 J	1.06 J		< 0.0103 J		NA	< 0.0106 J		< 0.0119 J		< 0.00819 J		< 0.0121 J			< 0.0113 J			< 0.0105 J	
n-Butylbenzene 12		12	100	100	500	1,000		0.00949 J	0.149 J		< 0.00410 J		NA				J < 0.00414 J								< 0.00464 J		
n-Propylbenzene 3.9			100	100	500	1,000		0.00533 J	0.0664 J		< 0.00410 J		NA				J < 0.00414 J			< 0.00483 J					< 0.00464 J		
o-Xylene 0.26 sec-Butylbenzene 11		1.6	100 100	100	500 500	1,000	1	< 0.00406 J 0.00421 J	< 0.0254 J 0.0555 J		< 0.00410 J		NA NA				J < 0.00414 J J < 0.00414 J			< 0.00483 J		< 0.00414 J			< 0.00464 J		
Styrene NS			NS	NS	NS	1,000 NS	1	< 0.00421 J	< 0.0636 J		< 0.00410 J		NA NA	< 0.00424 J				< 0.00328 J		< 0.00483 J			< 0.00453 J		< 0.00464 J		
Tetrachloroethene 1.3			5.5	19	150	300		< 0.0101 J		0.00531 J	< 0.0103 J		NA				J < 0.00414 J								< 0.00464 J		
Toluene 0.7			100	100	500	1.000	1	< 0.00406 J			< 0.00410 J		NA				J < 0.00414 J					J < 0.00414 J			< 0.00464 J		
Xylenes (total) 0.26			100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

< = Compound not detected at concentrations above the laboratory reporting detection limit. The laboratory reporting detection limit is shown.

NA = Not analyzed

NS = No Soil Cleanup Objective

Units are in mg/kg = milligrams per kilogram

ft = feet

NY375 1UNRES = 6NYCRR P375 Unrestricted SCO.

NY375 2RPGW = 6NYCRR P375 Restricted SCO-Protection of GW.

NY375 3RRES = 6NYCRR P375 Restricted SCO-Residential. NY375 4RRRES = 6NYCRR P375 Restricted SCO-Restricted Residential.

NY375 5RCOMM = 6NYCRR P375 Restricted SCO-Commercial.

		1	1	1	T					1	1	1	1	1	1			1	1	1	1	1		•	1	
						Location ID	B-53	B-54	B-54	B-55	B-55	B-56	B-56	B-57	B-57	B-58	B-58	B-59	B-59	B-60	B-60	B-60	B-61	SAND-022	SAND-008	SAND-100
						Sample Date	24-Nov-14	24-Nov-14	24-Nov-14	24-Nov-14	24-Nov-14	24-Nov-14	24-Nov-14	24-Nov-14	24-Nov-14		24-Nov-14	25-Nov-14	25-Nov-14	25-Nov-14	25-Nov-14	25-Nov-14		01-Jan-07	01-Jan-07	01-Jan-07
						Sample Type	Grab	Grab	QA/QC	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	QA/QC	Grab	Composite	Composite	Composite
						Depth	1.5 - 2.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1.5 ft	3 - 4 ft	0.5 - 1.5 ft	2 - 3 ft	0.5 - 1.5 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	0.5 - 1 ft	1 - 2 ft	0.5 - 1.5 ft	1.5 - 2.5 ft	1.5 - 2.5 ft	1 - 1.5 ft	0 - 2 ft	0 - 3 ft	0 - 2 ft
	NY375	NY375	NY375	NY375	NY375	NY375	_																			
Analyte	UNRES	RPGW	RRES	RRRES	RCOMM	RINDU					<u> </u>						1			<u> </u>				1		
letals, mg/kg																										_
Aluminum	NS	NS	NS	NS	NS	NS	19,900	5,420	5,470	5,710	20,000	14,400	16,900	18,600	21,600	17,500	14,200	15,000	23,900	9,310	16,300 J	1,870 J	7,950 J	3,790	3,920	4,800
Antimony	NS	NS	NS	NS	NS	NS	< 8.52 J	7.20 J	< 7.81 J	26.5 J	< 7.56 J	< 7.06 J	< 7.93 J	< 6.74 J	< 7.58 J	< 8.07 J	< 6.75 J	< 7.54 J	4.04 J	< 7.85 J	3.87 J	< 6.87 J	< 7.62	31.3	25.7	82.3
Arsenic	13	16	16	16	16	16	6.76 J	16.0 J	10.1 J	17.5 J	6.49 J	28.4 J	7.54 J	7.21 J	7.18 J	4.35 J	4.65 J	6.30 J	5.29 J	18.8 J	6.62 J	6.94 J	0.965 J	46.1	8	11.2
Barium	350	820	350	400	400	10,000	134	110	87.0	151	142	184	108	154	155	121	101	89.9	161	148	189 J	28.7 J	88.9 J	1,060	1,210	328
Beryllium	7.2	47	14	72	590	2,700	0.882 J	< 0.532 J	< 0.650 J	0.312 J	0.850 J	0.749 J	0.722 J	2.40 J	1.16 J	0.726 J	0.612 J	0.653	1.13	0.795	0.767	< 0.572	0.381 J	< 5.63	< 0.631	< 5.7
Cadmium	2.5	7.5	2.5	4.3	9.3	60	0.541 J	2.84 J	1.21 J	8.39 J	0.459 J	1.63 J	< 0.661 J	< 0.562 J	0.831 J	0.810 J	0.499 J	0.414 J	0.392 J	0.466 J	0.314 J	< 0.572	< 0.635	48.6	11.2	18.1
Calcium	NS	NS	NS	NS	NS	NS	9,660 J	305,000 J	319,000 J	118,000 J	11,100 J	30,600 J	65,800 J	272,000 J	5,520 J	17,400 J	19,300 J	7,490	3,360	5,490	25,000 J	2,710 J	53,900	14,500	5,840	18,800
Chromium	30	NS	36	180	1,500	6,800	27.1 J	926 J	3,710 J	1,060 J	25.2 J	22.8 J	22.9 J	13.5 J	24.4 J	23.2 J	18.8 J	19.8	29.0	18.6	24.9 J	4.39 J	16.4 J	216	254	552
Cobalt	NS	NS	NS	NS	NS	NS	11.4 J	9.34 J	6.67 J	21.9 J	12.5 J	10.5 J	11.0 J	< 5.62 J	12.9 J	11.9 J	7.17 J	13.9	11.9	7.48	8.78	< 5.72	7.68	23.3	16.8	20.4
Copper	50	1,720	270	270	270	10,000	20.3 J	49.1 J	20.8 J	243 J	17.7 J	70.2 J	20.7 J	9.12 J	14.9 J	19.0 J	17.0 J	10.0	25.6	84.9	32.5 J	17.5 J	88.0 J	1,480	4,860	974
Iron	NS	NS	NS	NS	NS	NS	26,100	188,000	157,000	308,000	26,200	29,600	22,900	4,910	26,200	21,700	19,400	23,300	30,100	27,400	23,100 J	7,990 J	17,700 J	302,000	73,500	216,000
Lead	63	450	400	400	1,000	3,900	18.3 J	80.6 J	87.6 J	239 J	18.0 J	868 J	21.4 J	44.1 J	24.7 J	83.7 J	11.6 J	37.7	22.2	395	385 J	61.5 J	86.9 J	1,560	1,040	5,590
Magnesium	NS	NS	NS	NS	NS	NS	9,800 J	13,300 J	21,500 J	26,300 J	10,700 J	8,110 J	25,300 J	17,200 J	5,570 J	7,180 J	13,700 J	5,510	6,930	2,460	10,700 J	861 J	16,800 J	2,400	1,320	4,470
Manganese	1,600	2,000	2,000	2,000	10,000	10,000	702	15,900	19,700	25,400	583	393	563	4,520	517	967	361	592 J	533 J	231 J	356 J	26.2 J	392 J	3,190	1,170	3,560
Nickel	30	130	140	310	310	10,000	26.9 J	23.0 J	5.15 J	94.3 J	26.2 J	23.7 J	23.2 J	4.07 J	21.3 J	17.7 J	16.9 J	14.0	28.6	19.5	20.2 J	5.95 J	25.4 J	234	245	408
Potassium	NS	NS	NS	NS	NS	NS	3,940	< 266	176 J	303	4,280	1,910	4,810	1,430	2,910	2,890	2,730	2,030	4,450	1,190	2,620 J	335 J	1,840 J	1,020	699	1,370
Selenium	3.9	4	36	180	1,500	6,800	< 1.42 J	35.2 J	25.3 J	22.5 J	< 1.26 J	< 1.18 J	< 1.32 J	9.08 J	< 1.26 J	< 1.35 J	< 1.13 J	< 1.26 J	< 1.18 J	< 1.31 J	< 1.25 J	< 1.14 J	< 1.27	4.6	4.4	7.5
Silver	2	8.3	36	180	1,500	6,800	< 1.42 J	4.02 J	4.98 J	9.00 J	0.828 J	0.823 J	< 1.32 J	< 1.12 J	< 1.26 J	0.686 J	< 1.13 J	< 1.26	< 1.18	< 1.31	< 1.25	< 1.14	< 1.27	2.9	2	< 1.14
Sodium	NS	NS	NS	NS	NS	NS	520 J	135 J	< 325 J	448 J	214 J	793 J	244 J	516 J	251 J	169 J	188 J	181 J	242 J	< 327	158 J	< 286 J	267 J	891	227	491
Thallium	NS	NS	NS	NS	NS	NS	< 3.55 J	< 2.66 J	< 3.25 J	< 2.87 J	< 3.15 J	< 2.94 J	< 3.30 J	< 2.81 J	< 3.16 J	< 3.36 J	< 2.81 J	< 3.14	< 2.94	< 3.27	< 3.13	< 2.86	< 3.17	< 11.3	< 25.3	< 11.4
Vanadium	NS	NS	NS	NS	NS	NS	36.8 J	343 J	452 J	379 J	36.6 J	30.0 J	33.0 J	9.61 J	39.4 J	35.9 J	32.0 J	36.2	43.1	21.2	32.2 J	5.49 J	23.3 J	50.6	32	54.4
Zinc	109	2,480	2,200	10,000	10,000	10,000	75.0 J	64.7 J	29.8 J	469 J	76.6 J	360 J	78.3 J	27.9 J	73.0 J	166 J	72.2 J	75.7	98.3	147	222 J	22.9 J	160	1,810	1,040	2,380
Mercury	0.18	0.73	0.81	0.81	2.8	5.7	0.0239 J	< 0.0223	< 0.0201	0.0225	0.0299	0.634	0.0498	0.0746	0.0654	0.420	0.0299	0.0686	0.0319	0.405	0.352	0.396	0.0527	2.66	< 0.0433	0.259
Cyanide	27	40	27	27	27	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
,						,																				-
CBs, mg/kg																										
Aroclor 1242	0.1	3.2	1	1	1	25	< 0.0372	< 0.0330	< 0.0339	< 0.0302	< 0.0328 J	< 0.0347	< 0.0353	< 0.0321	< 0.0378	< 0.0333	< 0.0335 J	< 0.0341	< 0.0350	< 0.0351	< 0.0363	< 0.0335	< 0.0327	NA	NA	NA
Aroclor 1248	0.1	3.2	1	1	1	25	< 0.0372	< 0.0330	< 0.0339	< 0.0302	< 0.0328 J	< 0.0347	< 0.0353	< 0.0321	< 0.0378	< 0.0333	< 0.0335 J	< 0.0341	< 0.0350	< 0.0351	< 0.0363	< 0.0335	< 0.0327	NA	NA	NA
Aroclor 1254	0.1	3.2	1	1	1	25	< 0.0372	< 0.0330	< 0.0339	< 0.0302	< 0.0328 J	< 0.0347	< 0.0353	< 0.0321	< 0.0378	< 0.0333	< 0.0335 J	< 0.0341	< 0.0350	< 0.0351	< 0.0363	< 0.0335	0.309 J	NA	NA	NA
Aroclor 1260	0.1	3.2	1	1	1	25	< 0.0372	< 0.0330	< 0.0339	< 0.0302	< 0.0328 J	< 0.0347	< 0.0353	< 0.0321	< 0.0378	< 0.0333	< 0.0335 J	< 0.0341	< 0.0350	< 0.0351	< 0.0363	< 0.0335	< 0.0327	NA	NA	NA
			1																							

				I			Location ID B-	-53	B-54	B-54	B-55	B-55	B-56	B-56	B-57	B-57	B-58	B-58	B-59	B-59	B-60	B-60	B-60	B-61	SAND-022	SAND-008	SAND-100
							•		24-Nov-14	24-Nov-14	24-Nov-14	24-Nov-14	24-Nov-14	24-Nov-14	24-Nov-14	24-Nov-14	24-Nov-14		25-Nov-14	25-Nov-14	25-Nov-14	25-Nov-14	25-Nov-14	19-Nov-14	01-Jan-07	01-Jan-07	01-Jan-07
									Grab	QA/QC	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	QA/QC	Grab	Composite	Composite	Composite
							Depth 1.5	5 - 2.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1.5 ft	3 - 4 ft	0.5 - 1.5 ft	2 - 3 ft	0.5 - 1.5 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	0.5 - 1 ft	1 - 2 ft	0.5 - 1.5 ft	1.5 - 2.5 ft	1.5 - 2.5 ft	1 - 1.5 ft	0 - 2 ft	0 - 3 ft	0 - 2 ft
	NY375	NY375	NY375	NY375	NY375	NY375																					
Analyte	UNRES	RPGW	RRES	RRRES	RCOMM	RINDU						T		T	T		T	1			1	T		T		-	
Semivolatiles, mg/kg 2-Methylnaphthalene	NS	NS	NS	NS	NS	NS	-1	0.346	< 0.325	< 0.334	< 0.298	< 0.336	< 0.346	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	0.221 J	< 0.359	< 0.34	< 0.331	NA	NA	NA
Acenaphthene	20	98	100	100	500	1,000			< 0.325	< 0.334	< 0.298	< 0.336	< 0.346	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	0.582	< 0.359	< 0.34	< 0.331	NA	NA NA	NA
Acenaphthylene	100	107	100	100	500	1,000			< 0.325	< 0.334	< 0.298	< 0.336	0.416	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	< 0.348	< 0.359	< 0.34	< 0.331	NA	NA	NA
Anthracene	100	1,000	100	100	500	1,000	< (0.346	< 0.325	< 0.334	< 0.298	< 0.336	0.632	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	1.02	< 0.359	< 0.34	< 0.331	NA	NA	NA
Benz(a)anthracene	1	1	1	1	5.6	11	< (0.346	< 0.325	< 0.334	< 0.298	< 0.336	2.03	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	1.3	0.402	0.263 J	< 0.331	NA	NA	NA
Benzo(a)pyrene	1	22	1	1	1	1.1			< 0.325	< 0.334	< 0.298	< 0.336	1.75	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	0.98	0.365	0.211 J	0.2 J	NA	NA	NA
Naphthalene	12	12	100	100	500	1,000	N/		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA a a a a a a	NA	NA	NA
Benzo(b)fluoranthene Benzo(q,h,i)perylene	100	1.7	100	100	5.6 500	1.000			< 0.325 < 0.325	< 0.334	< 0.298 < 0.298	< 0.336 < 0.336	2.23 1.01	< 0.34	< 0.319	< 0.375 < 0.375	< 0.347	< 0.33	< 0.34 < 0.34	< 0.352 < 0.352	0.914	0.397 0.228 J	0.215 J < 0.34	0.298 J 0.256 J	NA NA	NA NA	NA NA
(0, , ,)	0.8	1.7	1	3.9	56	110			< 0.325	< 0.334	< 0.298	< 0.336	1.01	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	0.497	0.226 J	0.19 J	< 0.331	NA NA	NA NA	NA
Benzyl Butyl Phthalate		NS	NS	NS	NS	NS			< 0.325	< 0.334	< 0.298	< 0.336	< 0.346	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	< 0.348	< 0.359	< 0.34	< 0.331	NA	NA	NA
Bis(2-ethylhexyl)phthala		NS	NS	NS	NS	NS			< 0.325	< 0.334	< 0.298	0.233 J	< 0.346	0.349	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	< 0.348	< 0.359	< 0.34	< 0.331	NA	NA	NA
Carbazole	NS	NS	NS	NS	NS	NS	< (< 0.325	< 0.334	< 0.298	< 0.336	0.588	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	0.451	< 0.359	< 0.34	< 0.331	NA	NA	NA
Chrysene	1	1	1	3.9	56	110			< 0.325	< 0.334	< 0.298	< 0.336	2.46	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	1.31	0.4	0.329 J	0.203 J	NA	NA	NA
Dibenz(a,h)anthracene	0.33	1,000	0.33	0.33	0.56	1.1			< 0.325	< 0.334	< 0.298	< 0.336	0.386	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	< 0.348	< 0.359	< 0.34	< 0.331	NA	NA	NA
Dibenzofuran 1,2,4-Trimethylbenzene	7	210 3.6	14 47	59 52	350 190	1,000 380			< 0.325 < 0.00359 J	< 0.334	< 0.298 I < 0.00396 J	< 0.336 < 0.00346	0.303 J < 0.00432 J	< 0.34 < 0.00451 J	< 0.319 < 0.00364 J	< 0.375 I < 0.00526 J	< 0.347 < 0.00429	< 0.33 J < 0.00455 J	< 0.34 0.00244 J	< 0.352 < 0.00389	0.418 J 0.00275 J	< 0.359 < 0.00476	< 0.34 J 0.00467 J	< 0.331 NA	NA NA	NA NA	NA NA
Fluoranthene	100	1,000	100	100	500	1,000			< 0.00359 J	< 0.334	< 0.298	< 0.00346 3	4.3	< 0.00451 3	< 0.00364 3	< 0.375	< 0.00429 3	< 0.33	< 0.34	< 0.352	3.29	0.885 J	0.544 J	0.191 J	NA NA	NA NA	NA NA
Fluorene	30	386	100	100	500	1,000			< 0.325	< 0.334	< 0.298	< 0.336	0.342 J	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	0.515	< 0.359	< 0.34	< 0.331	NA	NA	NA
Indeno(1,2,3-cd)pyrene	0.5		0.5	0.5	5.6	11			< 0.325	< 0.334	< 0.298	< 0.336	1.24	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	0.564	0.239 J	< 0.34	0.229 J	NA	NA	NA
Naphthalene	12	12	100	100	500	1,000	< (0.346	< 0.325	< 0.334	< 0.298	< 0.336	0.182 J	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	0.245 J	< 0.359	< 0.34	< 0.331	NA	NA	NA
Phenanthrene	100	1,000	100	100	500	1,000			< 0.325	< 0.334	< 0.298	< 0.336	3.35	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	4.2	0.526	0.541	< 0.331	NA	NA	NA
Pyrene	100	1,000	100	100	500	1,000	< (0.346	< 0.325	< 0.334	< 0.298	< 0.336	3.24	< 0.34	< 0.319	< 0.375	< 0.347	< 0.33	< 0.34	< 0.352	2.64	0.742 J	0.439 J	0.221 J	NA	NA	NA
Volatiles, mg/kg																											
1,2,4-Trimethylbenzene	3.6	3.6	47	52	190	380	< (0.00347 J	< 0.00359 J	< 0.00339	J < 0.00396 J	< 0.00346	< 0.00432 J	< 0.00451 J	< 0.00364 J	I < 0.00526 J	< 0.00429	J < 0.00455 J	0.00244 J	< 0.00389	J 0.00275 J	< 0.00476	J 0.00467 J	NA	NA	NA	NA
1,3,5-Trimethylbenzene			47	52	190	380												J < 0.00455 J						NA	NA	NA	NA
2-Butanone	0.12	0.12	100	100	500	1,000	< (0.0173 J	< 0.0179 J	< 0.0169 J	< 0.0198 J	< 0.0173 J	< 0.0216 J	< 0.0225 J	< 0.0182 J	0.0385 J	0.0297 J	< 0.0228 J	0.0642 J	< 0.0195 J	< 0.0246 J	< 0.0238 J	< 0.0237 J	NA	NA	NA	NA
4-Isopropyltoluene	NS	NS	NS	NS	NS	NS	< (0.00347 J	< 0.00359 J	< 0.00339	J < 0.00396 J	< 0.00346 J	< 0.00432 J	< 0.00451 J	< 0.00364 J	< 0.00526 J		J < 0.00455 J	< 0.00463 J	< 0.00389	J < 0.00492 J	< 0.00476	J < 0.00474 J	NA	NA	NA	NA
Acetone	0.05	0.05	100	100	500	1,000		0.0173 J		0.0161 J	< 0.0198 J				< 0.0182 J				0.323 J	< 0.0415 J					NA	NA	NA
Benzene Carbon Digulfida	0.06		2.9	4.8	44 NC	89 NC					J < 0.00396 J							J < 0.00455 J							NA	NA NA	NA
Carbon Disulfide Chlorobenzene	NS 1 1	NS 1.1	NS 100	NS 100	NS 500	NS 1,000					J < 0.00396 J J < 0.00396 J							J < 0.00455 J J < 0.00455 J							NA NA	NA NA	NA NA
Ethylbenzene	1	1	30	41	390	780					J < 0.00396 J							J < 0.00455 J						NA	NA	NA	NA
Isopropylbenzene (Cum	n NS	NS	NS	NS	NS	NS					J < 0.00396 J							J < 0.00455 J							NA	NA	NA
m,p-Xylenes	0.26	1.6	100	100	500	1,000	< (0.00347 J	< 0.00359 J	< 0.00339	J < 0.00396 J	< 0.00346 J	< 0.00432 J	< 0.00451 J	< 0.00364 J	< 0.00526 J	< 0.00429	J < 0.00455 J	0.00671 J	< 0.00389	J 0.00785 J	0.00267 J	0.0166 J	NA	NA	NA	NA
Methylcyclohexane	NS	NS	NS	NS	NS	NS	< (0.00347 J	< 0.00359 J	< 0.00339	J < 0.00396 J	< 0.00346 J	< 0.00432 J	< 0.00451 J	< 0.00364 J	< 0.00526 J	< 0.00429	J < 0.00455 J	< 0.00463 J	< 0.00389	J 0.00269 J	< 0.00476	J 0.00622 J	NA	NA	NA	NA
	0.05		51	100	500	1,000					J < 0.00990 J			< 0.0113 J						< 0.00974		< 0.0119 J		NA	NA	NA	NA
Naphthalene	12	12	100	100	500	1,000					J < 0.00990 J					I < 0.0132 J					J < 0.0123 J	< 0.0119 J			NA	NA	NA
n-Butylbenzene	12 3.9	12 3.9	100	100	500 500	1,000					J < 0.00396 J J < 0.00396 J							J < 0.00455 J J < 0.00455 J							NA NA	NA NA	NA NA
n-Propylbenzene o-Xylene	0.26	1.6	100	100	500	1,000					J < 0.00396 J							J < 0.00455 J J < 0.00455 J						NA NA	NA NA	NA NA	NA NA
sec-Butylbenzene	11	11	100	100	500	1.000					I < 0.00396 J							J < 0.00455 J							NA	NA NA	NA
,	NS	NS	NS	NS	NS	NS					I < 0.00990 J										J < 0.0123 J				NA	NA	NA
Tetrachloroethene	1.3		5.5	19	150	300	< (0.00347 J	< 0.00359 J	< 0.00339	J < 0.00396 J	< 0.00346						J < 0.00455 J	< 0.00463 J	< 0.00389	J < 0.00492 J	< 0.00476	J < 0.00474 J	NA	NA	NA	NA
Toluene	0.7	0.7	100	100	500	1,000	< (0.00347 J	< 0.00359 J	< 0.00339	J < 0.00396 J	< 0.00346 J	< 0.00432 J	< 0.00451 J	< 0.00364 J	< 0.00526 J	< 0.00429	J < 0.00455 J	< 0.00463 J	< 0.00389	J < 0.00492 J	< 0.00476	J 0.00438 J	NA	NA	NA	NA
Xylenes (total)	0.26	1.6	100	100	500	1,000	N/	A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Nata -

< = Compound not detected at concentrations above the laboratory reporting detection limit. The laboratory reporting detection limit is shown.

NA = Not analyzed

NS = No Soil Cleanup Objective

Units are in mg/kg = milligrams per kilogram

ft = feet

NY375 1UNRES = 6NYCRR P375 Unrestricted SCO.

NY375 2RPGW = 6NYCRR P375 Restricted SCO-Protection of GW.

NY375 3RRES = 6NYCRR P375 Restricted SCO-Residential.

NY375 4RRRES = 6NYCRR P375 Restricted SCO-Restricted Residential.

NY375 5RCOMM = 6NYCRR P375 Restricted SCO-Commercial.

							Location ID Sample Date Sample Type Depth	SAND-101 01-Jan-07 Composite 0 - 4 ft	SAND-102 01-Jan-07 Composite 0 - 2 ft	SAND-103 01-Jan-07 Composite 0 - 3 ft	SAND-104 01-Jan-07 Composite 0 - 2 ft	SAND-105 01-Jan-07 Composite 0 - 2 ft	SAND-106 01-Jan-07 Composite 0 - 2 ft	01-Jan-07	SAND-108 01-Jan-07 Composite 0 - 2 ft	SB-1 07-Feb-00 Grab 0.5 - 1 ft	SB-2 07-Feb-00 Grab 4 - 4.5 ft	SB-3 07-Feb-00 Grab 4-5 ft	SB-3 03-Dec-08 Grab 0.5 - 1.5 ft	SB-4 07-Feb-00 Grab 4 - 5 ft	SB-4 03-Dec-08 Grab 0.5 - 1.5 ft	SB-5 07-Feb-00 Grab 4 - 5 ft	SB-5 03-Dec-08 Grab 0.5 - 1.5 ft	SB-6 03-Dec-08 Grab 0.5 - 2 ft	SB-9 07-Feb-00 Grab 0.5 - 1.5 ft	SB-13 08-Feb-00 Grab 3 - 4 ft	SB-14 08-Feb-00 Grab 8 - 9 ft
Analyte	NY375 UNRES	NY375 RPGW	NY375 RRES	NY375 RRRES	NY375 RCOMM	NY375 RINDU																					
letals, mg/kg																											+
Aluminum	NS	NS	NS	NS	NS	NS		8,260	3,050	3,450	6,830	5,060	5,440	4,650	3,890	NA	7,200	10,100	17,400	11,300	21,400	13,300	29,000	20,400	9,770	7,770	4,800
Antimony	NS	NS	NS	NS	NS	NS		28.6	35.8	30.1	68.5	18.6	36.5	35	76.9	NA	2.9 J	2.5 J	< 18.7	0.32 J	< 17.6	0.31 J	< 87.7	< 76.8	0.72 J	< 7.2 J	< 6.9 J
Arsenic	13	16	16	16	16	16		11.9	7	12.3	15.8	8	13	19.3	28.1	NA	8.1	6.6	3	5.3	< 2.3	4.9	3	< 2	5.6	5	0.98
Barium	350	820	350	400	400	10,000		526	240	1,190	541	149	514	337	921	NA	125	78.5	110	87	171	83.7	228	131	27.4	67.7	35.5
Beryllium	7.2	47	14	72	590	2,700		< 5.92	< 5.2	< 0.575	< 0.631	< 0.571	< 0.608	< 0.604	< 59.5	NA	0.47	0.58	0.7	0.57	3.2	0.69	4.9	2.9	0.4	0.42	0.26
Cadmium	2.5	7.5	2.5	4.3	9.3	60		46.8	21.6	92.7	48.4	16.3	55.1	56.3	53.3	NA	0.36	0.8	< 0.25	0.51	< 0.23	0.16	< 0.23	< 0.2	0.14	0.31	0.24
Calcium	NS	NS	NS	NS	NS	NS		20,000	61,800	7,580	15,100	12,700	20,100	11,400	16,600	NA	48,200 J	56,400 J	7,070	89,400 J	159,000	23,300 J	226,000	245,000	13,500 J	78,800 J	113,000 J
Chromium	30	NS	36	180	1,500	6,800		389	556	133	523	290	354	453	225	NA	16.5	23	22.4	16.4	8.6	18.2	42.9	22.1	11.3	13.5	8.3
Cobalt	NS	NS	NS	NS	NS	NS		21.1	24	11.3	36.5	26	21	23.9	23.3	NA	8.2	14.2	6.9	10	4.1	10.9	1.7	1.2	5.6	7.2	4
Copper	50	1,720	270	270	270	10,000		1,290	3,930	1,070	4,170	846	977	1,150	2,490	NA	39.7 J	57 J	17.3	17.5 J	9.8	24 J	5	3.9	15.5 J	15.5 J	9.2 J
ron	NS	NS	NS	NS	NS	NS		261,000	291,000	82,100	246,000	272,000	153,000	222,000	297,000	NA	22,700	30,400	20,600	21,200	8,960	22,600	28,200	13,800	21,200	15,200	9,980
Lead	63	450	400	400	1,000	3,900		1,020	1,150	835	7,100	299	788	522	2,030	NA	284	95.6	20	20.9	6	15.7	6.7	5.7	42.8	10.2	5.8
Magnesium	NS	NS	NS	NS	NS	NS		6,610	3,300	1,360	2,910	2,650	5,480	2,360	2,540	NA	14,600 J	16,600 J	5,840	29,100 J	24,600	15,800 J	39,300	26,500	2,640 J	26,200 J	38,400 J
Manganese	1,600	2,000	2,000	2,000	10,000	10,000		3,530	4,790	875	1,960	2,260	1,510	1,410	2,250	NA	313 J	594 J	194	839 J	3,070	372 J	2,120	1,680	219 J	330 J	239 J
Nickel	30	130	140	310	310	10,000		293	455	221	405	229	600	738	202	NA	13.6	27	21.1	16.4	7.9	19.9	3.8	2.9	11.4	15.1	7.1
Potassium	NS	NS	NS	NS	NS	NS		2,070	781	1,120	446	586	960	762	770	NA	1,130	1,270	2,220	2,420	1,660	2,390	1,400	1,380	831	1,660	1,040
Selenium	3.9	4	36	180	1,500	6,800		7.3	8.8	3.3	6.5	6	4	4.9	10.1	NA	< 0.63	< 1.2	< 5	< 1.2	< 4.7	< 0.67	< 23.4	< 20.5	0.24	< 1.2	< 0.58
Silver	2	8.3	36	180	1,500	6,800		2.1	< 1.04	< 1.15	1.7	< 1.14	< 1.22	< 1.21	< 1.19	NA	< 1.3	< 1.2	< 0.62	< 1.2	< 0.59	< 1.3	< 0.58	< 0.51	< 1.1	< 1.2	< 1.2
Sodium	NS	NS	NS	NS	NS	NS		358	577	465	375	178	359	282	338	NA	< 142	< 172	180	238	544	< 190	913	7.3	< 199	226	< 168
Thallium	NS	NS	NS	NS	NS	NS		< 11.8	< 10.4	< 5.75	< 12.6	< 11.4	< 12.2	< 12.1	< 11.9	NA	0.49	< 1.2	< 7.5	< 1.2	< 7	< 1.3	< 7	< 6.1	0.55	< 1.2	< 1.2
Vanadium	NS	NS	NS	NS	NS	NS		66.3	61.1	29.1	54.9	66	40	48	50.8	NA	21.7	23.8	26.6	24.4	12.2	29.6	17.6	13	17.7	20	13.4
Zinc	109	2,480	2,200	10,000	10,000	10,000		5,630	1,460	758	11,100	543	5,610	2,770	2,760	NA	96.9	85.6	92	69.5	26.3	73.2	4.6	7.9	35.9	55.7	38.8
Mercury	0.18	0.73	0.81	0.81	2.8	5.7		0.201	0.146	0.16	< 0.0424	0.122	0.265	0.232	1.25	NA	0.24 J	0.18 J	0.3	0.025 J	0.032	0.036 J	< 0.024	< 0.023	0.038 J	0.019 J	< 0.12
Cyanide	27	40	27	27	27	10,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.63	< 0.6	NA	< 0.62	NA	< 0.67	NA	NA	< 0.57	< 0.6	< 0.58
CBs, mg/kg																											
Aroclor 1242	0.1	3.2	1	1	1	25		NA	NA	NA	NA	NA	NA	NA	NA	< 0.038	< 0.041	< 0.04	NA	< 0.081	NA	< 0.044	< 0.02	< 0.037	< 0.037	< 0.039	< 0.038
Aroclor 1248	0.1	3.2	1	1	1	25		NA	NA	NA	NA	NA	NA	NA	NA	< 0.038	< 0.041	< 0.04	NA	< 0.081	NA	< 0.044	0.077	0.05	< 0.037	< 0.039	< 0.038
Aroclor 1254	0.1	3.2	1	1	1	25		NA	NA	NA	NA	NA	NA	NA	NA	< 0.038	< 0.041	< 0.04	NA	1.3	NA	0.057	< 0.02	< 0.037	< 0.037	0.4	< 0.038
Aroclor 1260	0.1	3.2	1	1	1	25		NA	NA	NA	NA	NA	NA	NA	NA	< 0.038	< 0.041	< 0.04	NA	< 0.081	NA	< 0.044	0.16	0.072	< 0.037	< 0.039	< 0.038
-																											

								SAND-101	SAND-102	SAND-103	SAND-104	SAND-105	SAND-106	SAND-107	SAND-108	SB-1	SB-2	SB-3	SB-3	SB-4	SB-4	SB-5	SB-5	SB-6	SB-9	SB-13	SB-14
							•	01-Jan-07	01-Jan-07	01-Jan-07	01-Jan-07	01-Jan-07	01-Jan-07	01-Jan-07	01-Jan-07	07-Feb-00	07-Feb-00	07-Feb-00	03-Dec-08	07-Feb-00	03-Dec-08	07-Feb-00	03-Dec-08	03-Dec-08	07-Feb-00	08-Feb-00	08-Feb-00
							Sample Type Depth	Composite 0 - 4 ft	Composite 0 - 2 ft	Composite 0 - 3 ft	Composite 0 - 2 ft	Composite 0 - 2 ft	Composite 0 - 2 ft	Composite	Composite 0 - 2 ft	Grab 0.5 - 1 ft	Grab 4 - 4.5 ft	Grab 4-5 ft	Grab 0.5 - 1.5 ft	Grab 4 - 5 ft	Grab 0.5 - 1.5 ft	Grab 4 - 5 ft	Grab 0.5 - 1.5 ft	Grab 0.5 - 2 ft	Grab 0.5 - 1.5 ft	Grab 3 - 4 ft	Grab 8 - 9 ft
							Бериі	0-411	0-211	0-311	0-211	0-211	0-211	<u>+-</u>	0-211	0.5 - 111	4 - 4.5 11	4-511	0.5 - 1.5 11	4-511	0.5 - 1.5 11	4-311	0.5 - 1.5 11	0.5 - 2 11	0.5 - 1.5 11	3-411	0-311
	NY375	NY375	NY375	NY375	NY375	NY375																					
Analyte	UNRES	RPGW	RRES	RRRES	RCOMM	RINDU																	_				
Semivolatiles, mg/kg	NO	NO	NO	NO	NO	NO			N. A.	210	N10	N. A	N.1.0	N10	N10	N1.0	0.44	0.00 1	N10	0.40.1	NIA.	0.004.1	0.04	0.00	0.7	0.0	0.00
. , , , ,	NS 20	NS 98	NS 100	NS 100	NS 500	NS 1,000		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 0.41	0.29 J 0.61	NA NA	0.13 J 0.22 J	NA NA	0.034 J 0.56	< 0.31	< 0.32 < 0.32	< 3.7	< 3.9 < 3.9	< 0.38 < 0.38
Acenaphthylene	100	107	100	100	500	1,000		NA	NA	NA	NA	NA NA	NA	NA	NA	NA	< 0.41	0.81 0.32 J	NA NA	< 0.41	NA NA	0.038 J	< 0.31	< 0.32	< 3.7	< 3.9	< 0.38
' '	100	_	100	100	500	1,000		NA	NA	NA	NA	NA NA	NA	NA	NA	NA	< 0.41	1.1	NA NA	< 0.41	NA	0.038 J	< 0.31	< 0.32	< 3.7	< 3.9	< 0.38
Benz(a)anthracene	1	1	1	1	5.6	11		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.41	1.9	NA NA	< 4.1	NA	0.2 J	< 0.31	< 0.32	11	< 3.9	< 0.38
Benzo(a)pyrene	1	22	1	1	1	1.1		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.41	1.5	NA	< 0.41	NA	< 0.44	< 0.31	< 0.32	7.5	< 3.9	< 0.38
Naphthalene	12	12	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.41	0.9	NA	0.093 J	NA	< 0.44	< 0.31	< 0.32	< 3.7	< 3.9	< 0.38
Benzo(b)fluoranthene	1	1.7	1	1	5.6	11		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.41	1.3	NA	< 4.1	NA	< 0.44	< 0.31	< 0.32	15	< 3.9	< 0.38
Benzo(g,h,i)perylene	100	1,000	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.41	0.89	NA	< 4.1	NA	< 0.44	< 0.31	< 0.32	9.3	< 3.9	< 0.38
Benzo(k)fluoranthene	0.8	1.7	1		56	110		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.41	1.2	NA	< 4.1	NA	< 0.44	< 0.31	< 0.32	7.7	< 3.9	< 0.38
Benzyl Butyl Phthalate			NS	NS	NS	NS		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.41	< 0.4	NA	< 4.1	NA	< 0.44	NA	NA	< 3.7	< 3.9	< 0.38
Bis(2-ethylhexyl)phthala			NS	NS	NS	NS		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.41	< 0.4	NA	< 4.1	NA	< 0.44	NA	NA	< 3.7	< 3.9	< 0.38
ou.suzo.o	NS	NS	NS	NS	NS	NS		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.41	0.56	NA	< 0.41	NA	< 0.44	NA O O O	NA	< 3.7	< 3.9	< 0.38
Chrysene	1	1 000	0.00	3.9	56	110		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	< 0.41	1.9	NA NA	< 4.1	NA	0.19 J	< 0.31	< 0.32	14	< 3.9	< 0.38
Dibenz(a,h)anthracene Dibenzofuran	0.33		0.33	0.33	0.56 350	1.1		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 0.41	0.28 J 0.5	NA NA	< 4.1 0.18 J	NA NA	< 0.44	< 0.31 NA	< 0.32 NA	2.7 J < 3.7	< 3.9 < 3.9	< 0.38 < 0.38
1.2.4-Trimethylbenzene	3.6		47	52	190	380		NA	NA	NA	NA	NA NA	NA	NA	NA	NA	< 0.41 NA	NA	NA NA	0.16 J	NA NA	NA	NA NA	NA	< 3.7 NA	< 3.9 NA	< 0.36 NA
Fluoranthene	100		100	100	500	1,000		NA	NA	NA NA	NA	NA	NA	NA	NA	NA	< 0.41	3.3	NA NA	< 0.41	NA	0.85	< 0.31	< 0.32	14	2.1 J	< 0.38
	30	386	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.41	0.67	NA NA	0.34 J	NA	0.37 J	< 0.31	< 0.32	< 3.7	< 3.9	< 0.38
Indeno(1,2,3-cd)pyrene			0.5	0.5	5.6	11		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.41	0.87	NA	< 4.1	NA	< 0.44	< 0.31	< 0.32	7.9	< 3.9	< 0.38
,	12	12	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	100	1,000	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.41	3.3	NA	1.1	NA	0.47	< 0.31	< 0.32	1.5 J	3 J	< 0.38
Pyrene	100	1,000	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.41	2.6	NA	< 4.1	NA	0.47	< 0.31	< 0.32	15	1.8 J	< 0.38
Volatiles, mg/kg																											
1,2,4-Trimethylbenzene			47	52	190	380		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3,5-Trimethylbenzene 2-Butanone	0.12		47 100	52 100	190 500	1,000		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA < 0.025	NA < 0.024	NA NA	NA < 0.025	NA NA	NA < 0.023	NA NA	NA NA	NA < 0.023	NA < 0.024	NA < 0.023
	NS		NS	NS	NS	1,000 NS		NA	NA	NA	NA	NA NA	NA	NA	NA	NA	< 0.025 NA	< 0.024 NA	NA NA	< 0.025 NA	NA NA	NA	NA NA	NA	< 0.023 NA	< 0.024 NA	< 0.023 NA
' ''	0.05	0.05	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.025	< 0.024	NA NA	< 0.035	NA	< 0.027	NA NA	NA	< 0.023	< 0.024	< 0.023
	0.06		2.9	4.8	44	89		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.0063	< 0.0060	NA NA	< 0.0062	NA	< 0.0067	NA NA	NA	< 0.025	< 0.0060	< 0.0058
	NS		NS	NS	NS	NS		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.0063	< 0.0060	NA	< 0.0062	NA	< 0.0067	NA	NA	0.0072	< 0.0060	< 0.0058
	1.1	1.1	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.0063	< 0.0060	NA	< 0.0062	NA	< 0.0067	NA	NA	< 0.0057	< 0.0060	< 0.0058
Ethylbenzene	1	1	30	41	390	780		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.0063	< 0.0060	NA	< 0.0062	NA	0.0035 J	NA	NA	< 0.0057	< 0.0060	< 0.0058
Isopropylbenzene (Cum	NS	NS	NS	NS	NS	NS		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
" ,	0.26	1.6	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
, ,	NS	_	NS	NS	NS	NS		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0.05		51	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.0063	< 0.0060	NA	< 0.0062	NA	< 0.0067	NA	NA	< 0.0057	< 0.0060	< 0.0058
-	12	12	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12	12	100	100	500	1,000		NA NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA
''	3.9 0.26	3.9 1.6	100	100	500 500	1,000		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
, , , , ,	11	1.0	100	100	500	1,000		NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NS	NS	NS	NS	NS	NS		NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	< 0.0063	< 0.0060	NA NA	< 0.0062	NA	< 0.0067	NA	NA	< 0.0057	< 0.0060	< 0.0058
,	1.3		5.5	19	150	300		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.0063	< 0.0060	NA NA	< 0.0062	NA	< 0.0067	NA	NA	< 0.0057	< 0.0060	< 0.0058
	0.7	0.7	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.0063	< 0.0060	NA	< 0.0062	NA	0.0025 J	NA	NA	< 0.0057	< 0.0060	< 0.0058
	0.26	1.6	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.0063	< 0.0060	NA	0.005 J	NA	0.018	NA	NA	< 0.0057	0.0094	< 0.0058

< = Compound not detected at concentrations above the laboratory reporting detection limit. The laboratory reporting detection limit is shown.

NA = Not analyzed NS = No Soil Cleanup Objective

Units are in mg/kg = milligrams per kilogram

ft = feet

NY375 1UNRES = 6NYCRR P375 Unrestricted SCO.

NY375 2RPGW = 6NYCRR P375 Restricted SCO-Protection of GW.

NY375 3RRES = 6NYCRR P375 Restricted SCO-Residential.

NY375 4RRRES = 6NYCRR P375 Restricted SCO-Restricted Residential.

NY375 5RCOMM = 6NYCRR P375 Restricted SCO-Commercial.

							Location ID Sample Date Sample Type Depth	SB-15 09-Feb-00 Grab 7 - 8 ft	SB-18 09-Feb-00 Grab 6 - 6.5 ft	SB-22 09-Feb-00 Grab 4.5 - 5 ft	SB-27 09-Feb-00 Grab 4.5 - 5 ft	SB-29 10-Feb-00 Grab 0 - 1 ft	SB-30 10-Feb-00 Grab 0.3 - 1 ft	TMW-12 01-Dec-14 Grab 0.5 - 1.5 ft	TMW-12 01-Dec-14 Grab 3 - 4 ft	TMW-13 26-Nov-14 Grab 1 - 2 ft	TMW-14 01-Dec-14 Grab 2 - 4 ft	TMW-15S 25-Nov-14 Grab 1 - 2 ft	TMW-16 25-Nov-14 Grab 4 - 5 ft	TMW-16A 02-Dec-14 Grab 3.5 - 4.5 ft	TMW-17 01-Dec-14 Grab 1 - 2 ft	TMW-17 01-Dec-14 QA/QC 1 - 2 ft	TMW-17 01-Dec-14 Grab 2 - 3 ft	TP-1 25-Nov-08 Grab 0 - 6 ft	TP-7 25-Nov-08 Grab 1 - 3 ft	TP-8 25-Nov-08 Grab 0.5 - 3 ft	TP-17 26-Nov-08 Grab 0.5 - 2 ft
Analyte	NY375 UNRES	NY375 RPGW	NY375 RRES	NY375 RRRES	NY375 RCOMM	NY375 RINDU																					
Wetals, mg/kg																											_
Aluminum	NS	NS	NS	NS	NS	NS		4,450	2,950	NA	8,820	19,400	3,580	13,400	7,100	13,000	13,100	6,150	13,700	6,090 J	10,400	10,800	8,900	4,670	10,300	6,680	8,480
Antimony	NS	NS	NS	NS	NS	NS		0.34	1.3	NA	0.83	0.41 J	29.5 J	5.30 J	< 7.57 J	< 7.09 J	< 7.41 J	< 6.91 J	< 7.64 J	< 6.44 J	< 7.70 J	< 7.21 J	< 6.73 J	< 15.3	< 20.4	< 14.7	< 18.6
Arsenic	13	16	16	16	16	16		4.4	9.8	NA	9.5	6	18	11.8 J	3.66 J	7.17	9.43 J	4.70 J	5.27 J	3.99	6.02 J	10.6 J	4.63 J	4	5	4.5	17.5
Barium	350	820	350	400	400	10,000		33.3	115	NA	269	199	114	192	45.8	91.9	109	45.9	83.8	44.2 J	259 J	377 J	55.7	20.7	162	94.8	342
Beryllium	7.2	47	14	72	590	2,700		0.42	0.46	NA	0.53	1.3	0.54	0.603 J	0.401 J	0.585 J	0.572 J	< 0.576	0.600 J	< 0.537	0.600 J	0.671	0.342 J	< 0.2	1.2	0.48	1
Cadmium	2.5	7.5	2.5	4.3	9.3	60		0.5	0.37	NA	0.65	0.52	0.54	1.35	< 0.630	< 0.590	< 0.618	< 0.576	< 0.637	< 0.537	< 0.641	0.740	< 0.561	< 0.2	0.63	0.6	6.4
Calcium	NS	NS	NS	NS	NS	NS		60,100	12,000	NA	43,100	21,700 J	11,700 J	29,900	54,900	96,800 J	102,000	115,000	81,300	100,000 J	41,500	32,100	123,000	7,890	61,800	35,400	15,800
Chromium	30	NS	36	180	1,500	6,800		20.6	6.4	NA	16.4	22.2	11.6	23.5	10.9	120	18.0	9.74	18.6	10.0	15.6	17.4	13.2	6.2	17.2	10.8	52.8
Cobalt	NS	NS	NS	NS	NS	NS		4.4	4.7	NA	8.5	49.7	7.9	10.0	4.99 J	8.44	10.2	4.24 J	8.87	4.79 J	6.28 J	6.96	5.44 J	2.2	5	5	10.1
Copper	50	1,720	270		270	10,000		28.8 J	41.7 J	NA	49.4 J	20.3 J	255 J	72.1	13.9	36.2	19.2	11.0	18.8	10.6	30.3 J	43.8 J	9.60	10.8	53.2	113	204
Iron	NS	NS	NS	NS	NS	NS		11,500	11,100	NA	17,700	37,500	25,800	31,200	12,400	29,300	19,000	10,700	20,600	11,000	13,900 J	20,900 J	15,200	9,630	15,400	14,100	51,200
Lead	63	450	400	400	1,000	3,900		19.6	301	NA	419	93.1	764	462 J	32.4 J	94.7 J	18.1 J	4.84	13.2	5.44	230 J	295 J	5.46 J	46.2	189	210	1,560
Magnesium	NS	NS	NS	NS	NS	NS		8,970 J	2,480 J	NA	10,600 J	5,540 J	2,610 J	8,170	27,600	14,300	19,500	28,500	28,000	29,600 J	10,300	9,380	23,900	2,540	9,440	11,300	4,540
Manganese	1,600	2,000	2,000	2,000	10,000	10,000		702 J	112 J	NA	677 J	1,680 J	159 J	578 J	412 J	1,900	491 J	283 J	526 J	271	414 J	422 J	1,720 J	146	1,090	455	516
Nickel	30	130	140	310	310	10,000		14	8.4	NA	16.4	17	16.5	23.0	9.19	23.2 J	20.6	7.68	17.4	8.72 J	15.2	15.1	9.41	7.7	12.2	15.4	50.4
Potassium	NS	NS	NS	NS	NS	NS		649	594	NA	2,830	1,640	466	2,300	1,780	3,110	3,580	1,580	4,420	1,850	1,700	1,740	1,990	645	1,380	1,520	1,370
Selenium	3.9	4	36	180	1,500	6,800		< 0.62	1.5	NA	< 0.65	0.45	1.2	0.822 J	< 1.26	3.46	4.97	2.93 J	< 1.27 J	2.65	< 1.28	0.853 J	4.02	< 4.1	< 5.4	< 5.9	< 5
Silver	2	8.3	36	180	1,500	6,800		< 1.2	< 1.5	NA	0.22	< 1.1	0.1	1.08 J	< 1.26	< 1.18	< 1.24	< 1.15	< 1.27	< 1.07	< 1.28	< 1.20	< 1.12	< 0.51	< 0.68	< 0.73	2.2
Sodium	NS	NS	NS	NS	NS	NS		< 121	296	NA	406	914	< 150	< 326	169 J	321	245 J	226 J	318 J	256 J	< 321	175 J	248 J	< 143	343	276	400
Thallium	NS	NS	NS	NS	NS	NS		0.59	0.82	NA	0.52	0.43	< 1.2	< 3.26	< 3.15	< 2.95	2.58 J	2.14 J	< 3.18	< 2.68	< 3.21	< 3.00	< 2.80	< 6.1	< 8.2	< 8.8	< 7.4
Vanadium	NS	NS	NS	NS	NS	NS		13.1	14	NA	21.1	32.9	12.7	32.9	19.5	50.9 J	26.0	18.2	29.3	17.8	22.4	26.2	23.2	8.8	20.4	14.7	25.4
Zinc	109	2,480	2,200	10,000	10,000	10,000		55.8	199	NA	246	95	194	335	83.6	176 J	65.2	42.9	63.7	47.9 J	122	153	43.2	42.9	204	169	2,120
Mercury	0.18	0.73	0.81	0.81	2.8	5.7		< 0.12	0.35	NA	1.3	0.014 J	0.22 J	0.539 J	0.0940 J	0.0917	0.0650 J	0.0130 J	0.0220	< 0.0190	0.858 J	0.742 J	0.0192 J	0.026	0.45	1.1	6.4
Cyanide	27	40	27	27	27	10,000		< 0.62	< 0.74	NA	2.6 J	< 0.57	< 0.59	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs, mg/kg		1																1							1		
Aroclor 1242	0.1	3.2	1	1	1	25		< 0.041	< 0.049	NA	< 0.043	< 0.038	< 0.039	< 0.0359	< 0.0343	< 0.0343	< 0.0340	< 0.0333	< 0.0346	< 0.0315	< 0.0334	< 0.0331	< 0.0344	< 0.018	< 0.02	< 0.023	< 0.11
Aroclor 1242 Aroclor 1248	0.1	3.2	1	1	1	25		< 0.041	< 0.049	NA	< 0.043	< 0.038	< 0.039	< 0.0359	< 0.0343	< 0.0343	< 0.0340	< 0.0333	< 0.0346	< 0.0315	< 0.0334	< 0.0331	< 0.0344	< 0.018	< 0.02	0.023	< 0.11
Aroclor 1254	0.1	3.2	1	1	1	25		< 0.041	< 0.049	NA	< 0.043	< 0.038	< 0.039	< 0.0359	< 0.0343	< 0.0343	< 0.0340	< 0.0333	< 0.0346	< 0.0315	< 0.0334	< 0.0331	< 0.0344	< 0.018	0.042	0.013 J	0.96
Aroclor 1260	0.1	3.2	1	1	1	25		< 0.041	< 0.049	NA	< 0.043	< 0.038	< 0.039	< 0.0359	< 0.0343	< 0.0343 J	< 0.0340	< 0.0333	< 0.0346	< 0.0315	< 0.0334	< 0.0331	< 0.0344	< 0.018	0.042	0.013	< 0.11
AIGGIOI 1200	0.1	J.2	1	1	'	23		V.041	V.043	147	× 0.043	~ U.UUU	× 0.000	~ 0.0559	\ U.UJ4J	< 0.0343 J	~ U.UJ4U	V.0000	< 0.0540	\ U.UJ1J	× 0.0334	< 0.0331	\ U.UJ 11	V 0.010	0.12	0.0100	- 0.11
			+					+	-	-					+		+		+	+			+		+	+	

						Location ID Sample Date Sample Type Depth	SB-15 09-Feb-00 Grab 7 - 8 ft	SB-18 09-Feb-00 Grab 6 - 6.5 ft	SB-22 09-Feb-00 Grab 4.5 - 5 ft	SB-27 09-Feb-00 Grab 4.5 - 5 ft	SB-29 10-Feb-00 Grab 0 - 1 ft	SB-30 10-Feb-00 Grab 0.3 - 1 ft	TMW-12 01-Dec-14 Grab 0.5 - 1.5 ft	TMW-12 01-Dec-14 Grab 3 - 4 ft	TMW-13 26-Nov-14 Grab 1 - 2 ft	TMW-14 01-Dec-14 Grab 2 - 4 ft	TMW-15S 25-Nov-14 Grab 1 - 2 ft	TMW-16 25-Nov-14 Grab 4 - 5 ft	TMW-16A 02-Dec-14 Grab 3.5 - 4.5 ft	TMW-17 01-Dec-14 Grab 1 - 2 ft	TMW-17 01-Dec-14 QA/QC 1 - 2 ft	TMW-17 01-Dec-14 Grab 2 - 3 ft	TP-1 25-Nov-08 Grab 0 - 6 ft	TP-7 25-Nov-08 Grab 1 - 3 ft	TP-8 25-Nov-08 Grab 0.5 - 3 ft	TP-17 26-Nov-08 Grab 0.5 - 2 ft
Analyte	NY375 UNRES	NY375 RPGW	NY375 RRES	NY375 RRRES	NY375 RCOMM	NY375 RINDU																				
Semivolatiles, mg/kg		NC	NC	NS	NS	NS	0.31 J	< 0.49	NA	< 0.43	< 0.38	0.5 J	< 1.83	< 0.694	.0.26	+ O 3E1	+ 0 22F	. 0.242	.0.214	< 0.335	- 0 222	. O 25	. F. C	0.095 J	NA	< 0.41
2-Methylnaphthalene Acenaphthene	NS 20	NS 98	NS 100	100	500	1,000	0.31 J 0.27 J	< 0.49	NA	< 0.43	< 0.38	< 0.78	3.17	< 0.694	< 0.36 < 0.36	< 0.351 < 0.351	< 0.335 < 0.335	< 0.343 < 0.343	< 0.314 < 0.314	< 0.335	< 0.333 < 0.333	< 0.35 < 0.35	< 5.6 1.3 J	0.095 J 0.12 J	< 0.36	< 0.41
Acenaphthylene	100	107	100	100	500	1,000	< 0.82	0.19 J	NA	< 0.43	< 0.38	< 0.78	< 1.83	< 0.694	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	< 0.335	< 0.333	< 0.35	< 5.6	0.12 J	< 0.36	0.22 J
Anthracene	100	1.000	100	100	500	1.000	0.58 J	0.18 J	NA	< 0.43	< 0.38	0.29 J	6.33	1.78	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	0.303 J	< 0.333	< 0.35	1.5 J	0.35	< 0.36	0.27 J
Benz(a)anthracene	1	1	1	1	5.6	11	1.1 J	0.87 J	NA	0.25 J	< 0.38	1	13.8	4.21	< 0.36	< 0.351	< 0.335	0.266 J	< 0.314	0.736 J	0.454 J	< 0.35	31	1.1	0.21 J	1.4
Benzo(a)pyrene	1	22	1	1	1	1.1	0.76 J	0.99 J	NA	0.23 J	< 0.38	0.87	13	3.07	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	0.67 J	0.408 J	< 0.35	47	1.1	0.21 J	2.1
Naphthalene	12	12	100	100	500	1,000	< 0.82	< 0.49	NA	< 0.43	< 0.38	0.34 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 5.6	0.13 J	< 0.36	0.09 J
Benzo(b)fluoranthen	e 1	1.7	1	1	5.6	11	0.84 J	1 J	NA	0.23 J	< 0.38	0.83	12.2	2.83	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	0.71 J	0.46 J	< 0.35	72	1.5	0.32 J	3
Benzo(g,h,i)perylene		1,000	100	100	500	1,000	< 0.82	0.27 J	NA	< 0.43	< 0.38	0.33 J	7.53	1.48	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	0.388 J	0.223 J	< 0.35	55	0.36	0.19 J	1.3
Benzo(k)fluoranthen		1.7	1 NC	3.9	56 NC	110 NC	0.85 J	0.77 J	NA	0.2 J	< 0.38	0.71 J	9.48	2.57	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	0.434 J	0.223 J	< 0.35	25	0.53	0.1 J	1
Benzyl Butyl Phthala		NS NS	NS NS	NS NS	NS NS	NS NS	< 0.82 < 0.82	< 0.49 < 0.49	NA NA	< 0.43	< 0.38	< 0.78	< 1.83	< 0.694 < 0.694	< 0.36 0.3 J	< 0.351 < 0.351	< 0.335	< 0.343 0.18 J	< 0.314	< 0.335 < 0.335	< 0.333 < 0.333	< 0.35 < 0.35	NA NA	NA NA	NA NA	NA NA
Bis(2-ethylhexyl)phtl Carbazole	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.82 0.29 J	< 0.49	NA NA	< 0.43	< 0.38	< 0.78	< 1.83 3.52	< 0.694	< 0.36	< 0.351	< 0.335 < 0.335	< 0.343	< 0.314	< 0.335	< 0.333	< 0.35	NA NA	NA NA	NA NA	NA NA
Chrysene	1	1	1	3.9	56	110	1.2 J	0.9 J	NA	0.26 J	< 0.38	1.1	14.9	4.12	< 0.36	< 0.351	< 0.335	0.356	< 0.314	0.782 J	0.452 J	< 0.35	44	1.4	0.26 J	1.9
Dibenz(a,h)anthrace	ne 0.33	1,000	0.33	0.33	0.56	1.1	< 0.82	< 0.49	NA	< 0.43	< 0.38	< 0.78	2.62	0.569 J	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	< 0.335	< 0.333	< 0.35	14	0.13 J	< 0.36	0.36 J
Dibenzofuran	7	210	14	59	350	1,000	0.3 J	< 0.49	NA	< 0.43	< 0.38	< 0.78	2.49	< 0.694	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	< 0.335	< 0.333	< 0.35	NA	NA	NA	NA
1,2,4-Trimethylbenz	ene 3.6	3.6	47	52	190	380	NA	NA	NA	NA	NA	NA	< 0.00492 J	< 0.00416 J	NA	< 0.00368 J	< 0.00370 J	< 0.00364 J	< 0.00369 J	< 0.00448 J	< 0.00414	< 0.00350 J	NA	NA	NA	NA
Fluoranthene	100	1,000	100	100	500	1,000	2.5 J	2 J	NA	0.65 J	< 0.38	2	32.6	9.86	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	1.45 J	0.821 J	< 0.35	29	1.8	0.29 J	1.9
Fluorene	30	386	100	100	500	1,000	0.42 J	< 0.49	NA	< 0.43	< 0.38	< 0.78	2.81	0.498 J	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	< 0.335	< 0.333	< 0.35	< 5.6	0.14 J	< 0.36	< 0.41
Indeno(1,2,3-cd)pyre		8.2	0.5	0.5	5.6	11	< 0.82	0.35 J	NA	< 0.43	< 0.38	0.36 J	9.79	2.12	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	0.439 J	0.265 J	< 0.35	58	0.47	0.18 J	1.5
Naphthalene	12	12	100	100	500	1,000	NA	NA	NA	NA	NA	NA	1.29 J	< 0.694	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	< 0.335	< 0.333	< 0.35	NA	NA	NA	NA
Phenanthrene	100	1,000	100	100	500	1,000	2.8 J	0.58 J	NA	0.36 J	< 0.38	1.4	29.1	6.2	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	1.07 J	0.545 J	< 0.35	7.3	1.5	0.27 J	1 -
Pyrene	100	1,000	100	100	500	1,000	1.5 J	1.2 J	NA	0.36 J	< 0.38	1.4	26.8	7.69	< 0.36	< 0.351	< 0.335	< 0.343	< 0.314	1.23 J	0.677 J	< 0.35	29	1.5	0.43	1.5
Volatiles, mg/kg																										
1,2,4-Trimethylbenz	ene 3.6	3.6	47	52	190	380	NA	NA	NA	NA	NA	NA	< 0.00492 J	< 0.00416 J	NA	< 0.00368 J	< 0.00370 J	< 0.00364 J	< 0.00369 J	< 0.00448 J	< 0.00414	< 0.00350 J	NA	NA	NA	NA
1,3,5-Trimethylbenz	ene 8.4	8.4	47	52	190	380	NA	NA	NA	NA	NA	NA	< 0.00492 J	< 0.00416 J	NA	< 0.00368 J	< 0.00370 J	< 0.00364 J	<pre>0.00369 J</pre>	< 0.00448 J	< 0.00414	< 0.00350 J	NA	NA	NA	NA
2-Butanone	0.12	0.12	100	100	500	1,000	< 0.023	< 0.03	< 0.024	< 0.026	< 0.023	< 0.024	< 0.0246 J			< 0.0184 J	< 0.0185 J			< 0.0224 J				NA	NA	NA
4-Isopropyltoluene	NS	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA		< 0.00416 J		< 0.00368 J		< 0.00364 J		< 0.00448 J				NA	NA 0.04 I	NA
Acetone	0.05	0.05	100	100	500	1,000	< 0.023	0.067	< 0.024	< 0.026	< 0.023	< 0.024		< 0.0208 J		< 0.0184 J				< 0.0557 J				NA	0.01 J	NA
Benzene Carbon Digulfida	0.06 NS	0.06 NS	2.9 NS	4.8	44 NC	89 NS	< 0.0058 < 0.0058	< 0.0074 < 0.0074	< 0.0060 < 0.0060	< 0.0064 < 0.0064	< 0.0057 < 0.0057	< 0.0059 < 0.0059		< 0.00416 J		< 0.00368 J		< 0.00364 J		< 0.00448 J				NA NA	NA . 0.006	NA NA
Carbon Disulfide Chlorobenzene	1.1	1.1	100	NS 100	NS 500	NS 1.000	< 0.0058	< 0.0074	< 0.0060	< 0.0064	< 0.0057 0.0039 J	0.0059 0.0028 J		< 0.00416 J						< 0.00448 J				NA NA	< 0.006	NA NA
Ethylbenzene	1	1	30	41	390	780	< 0.0058	< 0.0074	< 0.0060	< 0.0064	< 0.0057	< 0.0059		< 0.00416 J		< 0.00368 J		< 0.00364 J		< 0.00448 J				NA	< 0.006	NA NA
Isopropylbenzene (C	um NS	NS	NS	NS	NS	NS NS	NA	NA	NA	NA	NA	NA	_	< 0.00416 J						< 0.00448 J				NA	NA	NA
m,p-Xylenes	0.26	1.6	100	100	500	1,000	NA	NA	NA	NA	NA	NA		< 0.00416 J		< 0.00368 J	< 0.00370 J			< 0.00448 J				NA	NA	NA
Methylcyclohexane	NS	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA		< 0.00416 J		< 0.00368 J		< 0.00364 J		< 0.00448 J				NA	NA	NA
Methylene chloride	0.05	0.05	51	100	500	1,000	< 0.0058	< 0.0074	< 0.0060	< 0.0064	< 0.0057	< 0.0059	< 0.0123 J	< 0.0104 J	NA	< 0.00920 J	< 0.00925 J	0.00513 J	< 0.00922 J	< 0.0112 J	< 0.0104 J	< 0.00874 J	NA	NA	0.008	NA
Naphthalene	12	12	100	100	500	1,000	NA	NA	NA	NA	NA	NA	0.00636 J	< 0.0104 J		< 0.00920 J				< 0.0112 J		< 0.00874 J		NA	< 0.32	NA
n-Butylbenzene	12	12	100	100	500	1,000	NA	NA	NA	NA	NA	NA		< 0.00416 J						< 0.00448 J				NA	NA	NA
n-Propylbenzene	3.9	3.9	100	100	500	1,000	NA	NA	NA	NA	NA	NA		< 0.00416 J		< 0.00368 J		< 0.00364 J		< 0.00448 J				NA	NA	NA
o-Xylene	0.26	1.6	100	100	500	1,000	NA	NA	NA	NA	NA	NA		< 0.00416 J		< 0.00368 J		< 0.00364 J		< 0.00448 J				NA	NA	NA
sec-Butylbenzene	11 NC	11 NC	100	100	500 NS	1,000 NS	NA . 0.0059	NA . 0.0074	NA	NA 0.0064	NA . 0.0057	NA . 0.0050		< 0.00416 J						< 0.00448 J				NA NA	NA NA	NA NA
Styrene Tetrachloroethene	NS 1.3	NS 1.3	NS 5.5	NS 19	NS 150	300	< 0.0058 < 0.0058	< 0.0074 < 0.0074	< 0.0060 < 0.0060	< 0.0064 < 0.0064	< 0.0057 < 0.0057	< 0.0059 < 0.0059	< 0.0123 J	< 0.0104 J < 0.00416 J		< 0.00920 J		< 0.00909 J		< 0.0112 J < 0.00448 J		< 0.00874 J		NA NA	NA NA	NA NA
Toluene	0.7	0.7	100	100	500	1.000	< 0.0058	< 0.0074	0.0060 0.0019 J	< 0.0064	< 0.0057 0.0036 J	< 0.0059		< 0.00416 J			< 0.00370 J			< 0.00448 J				NA NA	< 0.006	NA NA
TOIGCTIC	0.7	1.6	100	100	500	1.000	< 0.0058	< 0.0074	< 0.0019 3	< 0.0064	< 0.0057	< 0.0059	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.000	NA NA

Natas:

< = Compound not detected at concentrations above the laboratory reporting detection limit. The laboratory reporting detection limit is shown.

NA = Not analyzed

NS = No Soil Cleanup Objective

Units are in mg/kg = milligrams per kilogram

ft = feet

NY375 1UNRES = 6NYCRR P375 Unrestricted SCO.

NY375 2RPGW = 6NYCRR P375 Restricted SCO-Protection of GW.

NY375 3RRES = 6NYCRR P375 Restricted SCO-Residential.

NY375 4RRRES = 6NYCRR P375 Restricted SCO-Restricted Residential.

NY375 5RCOMM = 6NYCRR P375 Restricted SCO-Commercial.

TABLE 5 Summary of Soil Analytical Results Former Buffalo Forge Property NYSDEC BCP Site Number C915280

							Location ID Sample Date Sample Type Depth	TP-18 26-Nov-08 Grab 0.5 - 1.5 ft	TP-20 26-Nov-08 Grab 0.5 - 1.5 ft	TP-21 01-Dec-08 Grab 1 - 3 ft	TP-26 01-Dec-08 Grab 1 - 2 ft	TP-28 01-Dec-08 Grab 0.5 - 4 ft	TP-31 02-Dec-08 Grab 0.5 - 5 ft	TP-33 02-Dec-08 Grab 1 - 3 ft	TP-34 02-Dec-08 Grab 3 ft	TP-37 02-Dec-08 Grab 1 - 1.5 ft	TP-43 03-Dec-08 Grab 1 - 3 ft	TP-46 03-Dec-08 Grab 0.5 - 2 ft
nalyte	NY375 UNRES	NY375 RPGW	NY375 RRES	NY375 RRRES	NY375 RCOMM	NY375 RINDU			T	T	1			T		1	T	
letals, mg/kg																		+
Aluminum	NS	NS	NS	NS	NS	NS		11,100	7,000	3,990	18,100	4,140	8,500	6,950	4,340	NA	6,680	10,400
Antimony	NS	NS	NS	NS	NS	NS		< 18.4	< 16.4	< 18.3	< 21.7	< 18.2	< 16.8	< 20	< 19.4	NA	< 19.2	< 20
Arsenic	13	16	16	16	16	16		4.3	5.2	8.7	15.2	20.9	7.9	8.7	12.5	NA	8.9	7
Barium	350	820	350	400	400	10,000		97.4	91.8	73.4	192	110	148	145	142	NA	225	181
Beryllium	7.2	47	14	72	590	2,700		0.56	0.52	0.53	1.1	0.45	0.65	0.51	0.4	NA	0.46	0.75
Cadmium	2.5	7.5	2.5	4.3	9.3	60		0.62	0.38	< 0.24	0.83	0.82	0.5	3.4	0.76	NA	0.48	0.58
Calcium	NS	NS	NS	NS	NS	NS		70,600	47,800	16,200	16,700	3,520	46,300	16,600	11,400	NA	66,200	36,200
Chromium	30	NS	36	180	1,500	6,800		15.6	10.2	6.9	81.4	12.6	23.6	19.4	46.5	NA	13.1	15.1
Cobalt	NS	NS	NS	NS	NS	NS		6.9	5.1	4.2	12.2	4.8	4.6	5	10.7	NA	5.4	6.2
Copper	50	1,720	270	270	270	10,000		37	65.6	25.4	87.2	118	122	282	420	NA	51.7	45.4
Iron	NS	NS	NS	NS	NS	NS		18,100	10,800	8,560	32,800	44,600	17,000	22,900	111,000	NA	13,000	20,200
Lead	63	450	400	400	1,000	3,900		56.3	216	54.4	432	437	283	1,070	868	NA	587	486
Magnesium	NS	NS	NS	NS	NS	NS		21,000	10,300	3,010	11,900	989	12,600	3,840	3,650	NA	9,560	9,600
Manganese	1,600	2,000	2,000	2,000	10,000	10,000		427	241	142	504	633	184	381	1,090	NA	634	525
Nickel	30	130	140	310	310	10,000		17.8	11.4	11.3	31.8	14.1	13.7	18	37.3	NA	12.5	14.7
Potassium	NS	NS	NS	NS	NS	NS		2,580	1,660	607	2,320	560	1,450	1,060	657	NA	1,500	2,050
Selenium	3.9	4	36	180	1,500	6,800		< 4.9	< 4.4	< 4.9	< 5.8	< 4.8	< 4.5	< 5.3	< 5.2	NA	< 5.1	< 5.3
Silver	2	8.3	36	180	1,500	6,800		< 0.61	< 0.55	< 0.61	< 0.72	< 0.61	< 0.56	< 0.66	< 0.64	NA	< 0.64	< 0.67
Sodium	NS	NS	NS	NS	NS	NS		303	253	171	234	187	302	258	292	NA	349	406
Thallium	NS	NS	NS	NS	NS	NS		< 7.4	< 6.6	< 7.3	< 8.7	< 7.3	< 6.7	< 8	< 7.7	NA	< 7.7	< 8
Vanadium	NS	NS	NS	NS	NS	NS		22	17	15.7	34.8	19.2	17.1	18.8	29.3	NA	14.5	19.4
Zinc	109	2,480	2,200	10,000	10,000	10,000		76.2	106	45.2	366	415	247	283	470	NA	164	168
Mercury	0.18	0.73	0.81	0.81	2.8	5.7		0.052	1.3 J	0.62	0.81	0.18	0.15	0.59	0.18	NA	1.2	0.59
Cyanide	27	40	27	27	27	10,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBs, mg/kg																		+
Aroclor 1242	0.1	3.2	1	1	1	25		< 0.1	< 0.02	< 0.021	< 0.022	< 0.019	< 0.019	< 0.04	NA	< 0.085	NA	< 0.021
Aroclor 1248	0.1	3.2	1	1	1	25		< 0.1	< 0.02	0.042	< 0.022	< 0.019	< 0.019	0.19	NA	< 0.085	NA	< 0.021
Aroclor 1254	0.1	3.2	1	1	1	25		0.85	0.0081 J	0.043	< 0.022	< 0.019	0.023	0.32	NA	0.44	NA	< 0.021
Aroclor 1260	0.1	3.2	1	1	1	25		< 0.1	0.014 J	0.04	< 0.022	< 0.019	< 0.019	0.17	NA	< 0.085	NA	< 0.021

							Location ID Sample Date Sample Type Depth	TP-18 26-Nov-08 Grab 0.5 - 1.5 ft	TP-20 26-Nov-08 Grab 0.5 - 1.5 ft	TP-21 01-Dec-08 Grab 1 - 3 ft	TP-26 01-Dec-08 Grab 1 - 2 ft	TP-28 01-Dec-08 Grab 0.5 - 4 ft	TP-31 02-Dec-08 Grab 0.5 - 5 ft	TP-33 02-Dec-08 Grab 1 - 3 ft	TP-34 02-Dec-08 Grab 3 ft	TP-37 02-Dec-08 Grab 1 - 1.5 ft	TP-43 03-Dec-08 Grab 1 - 3 ft	TP-46 03-Dec-08 Grab 0.5 - 2 ft
Analyte	NY375 UNRES	NY375 RPGW	NY375 RRES	NY375 RRRES	NY375 RCOMM	NY375 RINDU												
Semivolatiles, mg/kg																		
2-Methylnaphthalene	NS	NS	NS	NS	NS	NS		< 0.65	NA	0.14 J	1.3 J	NA	0.14 J	< 1.7	NA	0.094 J	NA	0.24 J
Acenaphthene	20	98	100	100	500	1.000		< 0.65	0.12 J	0.27 J	3.4 J	0.92 J	< 0.34	0.76 J	< 0.31	0.16 J	NA	0.86
Acenaphthylene	100	107	100	100	500	1,000		0.25 J	0.1 J	0.37	0.83 J	< 0.15	0.084 J	0.61 J	< 0.31	0.19 J	NA	0.25 J
Anthracene	100	1,000	100	100	500	1,000		0.34 J	0.39	0.97	9.1	1.5	0.11 J	1.7 J	< 0.31	0.44	NA	1.6
Benz(a)anthracene	1	1	1	1	5.6	11		2.1	1.4	2.2	20	5.4	0.2 J	8.8	< 0.31	1.7	NA	3.6
Benzo(a)pyrene	1	22	1	1	1	1.1		3.9	1.3	1.9	17	3.5	0.21 J	12	< 0.31	1.8	NA	3.3
Naphthalene	12	12	100	100	500	1,000		0.21 J	0.12 J	0.14 J	2.6 J	< 0.15	0.099 J	0.51 J	< 0.31	0.11 J	NA	0.36 J
Benzo(b)fluoranthene	1	1.7	1	1	5.6	11		5.7	1.4	2.4	19	3.6	0.32 J	17	< 0.31	2.6	NA	3.7
Benzo(g,h,i)perylene	100	1,000	100	100	500	1,000		3.5	0.96	0.69	12	1.6	0.13 J	18	< 0.31	0.92	NA	2.1
Benzo(k)fluoranthene	0.8	1.7	1	3.9	56	110		1.7	0.52	0.94	7	1.2 J	0.097 J	5.9	< 0.31	0.85	NA	1.3
Benzyl Butyl Phthalate	NS	NS	NS	NS	NS	NS		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bis(2-ethylhexyl)phthala	NS	NS	NS	NS	NS	NS		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole	NS	NS	NS	NS	NS	NS		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	1	1	1	3.9	56	110		3.1	1.6	2.3	20	7	0.3 J	10	< 0.31	2.2	NA	3.7
Dibenz(a,h)anthracene	0.33	1,000	0.33	0.33	0.56	1.1		0.84	0.28 J	0.51	5.9	1.7	0.31 J	4.9	< 0.31	0.52	NA	1.1
Dibenzofuran	7	210	14	59	350	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	3.6	3.6	47	52	190	380		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	100	1,000	100	100	500	1,000		2.8	2.5	4.4	42	8	0.44	12	0.1 J	2.7	NA	7
Fluorene	30	386	100	100	500	1,000		0.21 J	0.11 J	0.35	3.8	0.73 J	< 0.34	0.44 J	< 0.31	0.11 J	NA	0.72
Indeno(1,2,3-cd)pyrene	0.5	8.2	0.5	0.5	5.6	11		3.9	1.1	0.98	16	2	0.15 J	19	< 0.31	1.1	NA	2.8
Naphthalene	12	12	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	100	1,000	100	100	500	1,000		1.1	1.9	3.2	41	15	0.36	6.1	0.074 J	2.2	NA	6.5
Pyrene	100	1,000	100	100	500	1,000		1.9	3.2	2.4	36	11	0.24 J	11	0.085 J	2.6	NA	6.6
Volatiles, mg/kg																		+
1,2,4-Trimethylbenzene	3.6	3.6	47	52	190	380		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3,5-Trimethylbenzene		8.4	47	52	190	380		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Butanone	0.12	0.12	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Isopropyltoluene	NS	NS	NS	NS	NS	NS		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	0.05	0.05	100	100	500	1,000		NA	< 0.034	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	0.06	0.06	2.9	4.8	44	89		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disulfide	NS	NS	NS	NS	NS	NS		NA	< 0.007	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	1.1	1.1	100	100	500	1,000		NA	< 0.007	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	1	1	30	41	390	780		NA	< 0.007	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene (Cum	NS	NS	NS	NS	NS	NS		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylenes	0.26	1.6	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylcyclohexane	NS	NS	NS	NS	NS	NS		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene chloride	0.05	0.05	51	100	500	1,000		NA	0.005 J	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	12	12	100	100	500	1,000		NA	< 0.31	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	12	12	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Propylbenzene	3.9	3.9	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylene	0.26	1.6	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	11	11	100	100	500	1,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	NS	NS	NS	NS	NS	NS		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	1.3	1.3	5.5	19	150	300		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	0.7	0.7	100	100	500	1,000		NA	< 0.007	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	0.26	1.6	100	100	500	1,000		NA	< 0.02	NA	NA	NA	NA	NA	NA	NA	NA	NA

< = Compound not detected at concentrations above the laboratory reporting detection limit. The laboratory reporting detection limit is shown.

NA = Not analyzed

NS = No Soil Cleanup Objective

Units are in mg/kg = milligrams per kilogram

ft = feet

NY375 1UNRES = 6NYCRR P375 Unrestricted SCO.

NY375 2RPGW = 6NYCRR P375 Restricted SCO-Protection of GW.

NY375 3RRES = 6NYCRR P375 Restricted SCO-Residential.

NY375 4RRRES = 6NYCRR P375 Restricted SCO-Restricted Residential.

NY375 5RCOMM = 6NYCRR P375 Restricted SCO-Commercial.

APPENDIX A

NYSDEC SMP PRR CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

				Site Details		Box 1		
	Site	e No.	C915280					
	Site Name Former Buffalo Forge Property							
	City	e Address: «		Zip Code: 14204				
	Rep	porting Perio	od: April 30, 2021 to Apri	I 30, 2022				
						YES	NO	
	1.	Is the infor	mation above correct?			×		
		If NO, inclu	ude handwritten above or	on a separate sheet.				
	2.		or all of the site property l mendment during this Rep	been sold, subdivided, merged, or undeporting Period?	ergone a		K	
	3.		been any change of use a CRR 375-1.11(d))?	at the site during this Reporting Period			X.	
	4.		federal, state, and/or local e property during this Rep	I permits (e.g., building, discharge) bee porting Period?	n issued		X.	
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.							
	5.	Is the site of	currently undergoing deve	elopment?			₩-	
	,					Box 2		
						YES	NO	
	6.	Is the curre	ent site use consistent wit	h the use(s) listed below?		X		
	7.	Are all ICs	in place and functioning a	as designed?	Ø.			
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.								
	A C	Corrective M	leasures Work Plan must	t be submitted along with this form to	address t	nese issı	ues.	
	Sia	nature of Ov	vner, Remedial Party or De	esignated Representative	Date			

		Box 2	A
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		×
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	K	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITI	E NO. C915280	Во	x 3
	Description of Institutional Controls		

Parcel	Owner	Institutional Control
111.41-4-1.1	Lower West Side Homes II Housing	mstitutional Control
		Site Management Plan
		Ground Water Use Restriction Landuse Restriction Building Use Restriction IC/EC Plan Monitoring Plan
111.41-5-1.1	Lower West Side Homes II Housing	
		Monitoring Plan Ground Water Use Restriction Landuse Restriction Building Use Restriction IC/EC Plan Site Management Plan
111.41-5-31.1	Lower West Side Homes II Housing	Site Management Plan
		Site Management Plan
		Ground Water Use Restriction Landuse Restriction Building Use Restriction IC/EC Plan Monitoring Plan
111.41-6-1.1	Lower West Side Homes II Housing	
		Monitoring Plan Ground Water Use Restriction Landuse Restriction Building Use Restriction IC/EC Plan Site Management Plan
111.41-7-12.1	Lower West Side Homes II Housing	
		Ground Water Use Restriction Landuse Restriction Building Use Restriction IC/EC Plan Site Management Plan
		Monitoring Plan
111.41-7-17.1	Lower West Side Homes II Housing	Monitoring Plan Site Management Plan
		Ground Water Use Restriction Landuse Restriction Building Use Restriction IC/EC Plan
111.41-8-26	Lower West Side Homes II Housing	Ground Water Use Restriction Landuse Restriction Building Use Restriction IC/EC Plan Site Management Plan

	Dou 4
	Box 4
ering Controls	
Engineering Control	
Cover System	
Cover System	
	Cover System Cover System Cover System Cover System Cover System

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements
	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
	· % □
	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
F	Corrective Measures Work Plan must be submitted along with this form to address these issues.
5	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C915280

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

David Alexander print name	_ at150 :	SE 2nd Avenue, Sui print business addr	ite 300, Miami, FL 33131 ress
am certifying as Owner			(Owner or Remedial Party)
for the Site named in the Site Details Se	ection of thi	s form.	
(han)			May 18, 2022

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name at 960 f	Ousti AVE BUPFANO 14213 It business address
am certifying as a Professional Engineer for the	(Owner or Remedial Party)
Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification	Stamp Date (Required for PE)

APPENDIX B

ENVIRONMENTAL EASEMENT AND SURVEY MAPS

November 13, 2019

VIA FEDERAL EXPRESS

Mr. Bradford D. Burns, Senior Attorney NYS DEC Office of General Counsel 14th Floor 625 Broadway Albany, New York 12233

Re:

NYS Brownfield Program

Former Buffalo Forge Property Site

Site No. C915280

Dear Mr. Burns:

Enclosed please find a copy of the recorded Termination and Release of Environmental Easement and the amended Environmental Easement along with a duplicate filing receipt. Also enclosed is a Certificate of Mailing Notice to the local municipalities.

If you have any questions, please call me at 845-6000.

Very/truly yours, Kavinoky Cook LLP

Deborah J. Chadsey

DJC/elf Enclosure

cc: David Locey (w/enclosure – via USPS)

10013/32880/556558

CERTIFICATION OF MAILING

SITE NAME: Former Buffalo Forge Property

SITE NO: C915280

I hereby certify that on November 12, 2019 I notified the following persons of the recorded Amended Environmental Easement by depositing a true copy thereof, securely enclosed in a postpaid wrapper Certified Mail, Return Receipt Requested, in the Post Office box at 726 Exchange Street, Buffalo, New York 14210 in the City of Buffalo, New York, which box is under the exclusive case and custody of the United States Post Office:

Office of the Mayor Mayor Bryon W. Brown 65 Niagara Square Room 201 Buffalo, New York 14202 (716)852-3300

Office of the City Administrator 65 Niagara Square Room 203 Buffalo, New York 14202 (716)851-5922

Office of the City Planning Board 65 Niagara Square Room 901 Buffalo, New York 14202 (716)852-3300

Dated: November 12, 2019

Deborah J. Chadsey

MICHAEL P. KEARNS, ERIE COUNTY CLERK

DATE:11/12/2019 TIME:3:22:35 PM RECEIPT: 19190707

KAVINOKY & COOK LLP-ESCROW ACCOUNT #: 1366

ITEM - 01 CNT RECD: 11/12/2019 3:34:00 PM

FILE: 2019248382 BK/PG D 11352/6127

Deed Sequence: TT2019007943 LOWER WEST SIDE HOMES II HOUSING DEVELOPMENT

FUND CORP

Recording Fees 85.50 TP584 10.00

Subtotal

95.50

ITEM - 02 785
RECD: 11/12/2019 3:34:00 PM
FILE: 2019248383 BK/PG D 11352/6136
Deed Sequence: TT2019007944
LOWER WEST SIDE HOMES II HOUSING DEVELOPMENT

FUND CORP

Recording Fees 110.00 TP584 10.00

Subtotal 120.00

TOTAL DUE \$215.50 PAID TOTAL \$215.50 PAID CHECK \$215,00 Check #13780: 215.00 PAID ESCROW \$0.50

REC BY: Mary Grace COUNTY RECORDER

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 516 Spring Street in the City of Buffalo, County of Erie and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel number: Section 111.41 Block 7 Lot 12.1, being a portion of the property conveyed to Grantor by deed dated October 25, 2018 and recorded in the Erie County Clerk's Office in Liber and Page D11336/4007.

WHEREAS, Grantor, is the owner of real property located at the address of 498 Spring Street in the City of Buffalo, County of Erie and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel number: Section 111.41 Block 7 Lot 17.1, being a portion of the property conveyed to Grantor by deed dated October 25, 2018 and recorded in the Erie County Clerk's Office in Liber and Page D11336/4007.

WHEREAS, Grantor, is the owner of real property located at the address of 490 Broadway in the City of Buffalo, County of Erie and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel number: Section 111.41 Block 6 Lot 1.1, being a portion of the property conveyed to Grantor by deed dated October 25, 2018 and recorded in the Erie County Clerk's Office in Liber and Page D11336/4007.

WHEREAS, Grantor, is the owner of real property located at the address of 233 Mortimer Street in the City of Buffalo, County of Erie and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel number: Section 111.41 Block 8 Lot 26, being a portion of the property conveyed to Grantor by deed dated October 25, 2018 and recorded in the Erie County Clerk's Office in Liber and Page D11336/4007.

WHEREAS, Grantor, is the owner of real property located at the address of 213 Mortimer Street in the City of Buffalo, County of Erie and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel number: Section 111.41 Block 4 Lot 1.1, being a portion of the property conveyed to Grantor by deed dated October 25, 2018 and recorded in the Erie County Clerk's Office in Liber and Page D11336/4007.

WHEREAS, Grantor, is the owner of real property located at the address of 187 Mortimer Street in the City of Buffalo, County of Erie and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel number: Section 111.41 Block 5 Lot 1.1, being a portion of the property conveyed to Grantor by deed dated October 25, 2018 and recorded in the Erie County Clerk's Office in Liber and Page D11336/4007.

WHEREAS, Grantor, is the owner of real property located at the address of 498 Broadway in the City of Buffalo, County of Erie and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel number: Section 111.41 Block 5 Lot 31.1, being a portion of the property conveyed to Grantor by deed dated October 25, 2018 and recorded in the Erie County Clerk's Office in Liber and Page D11336/4007.

WHEREAS, the seven (7) lots which comprise of the property subject to this Environmental Easement (the "Controlled Property") contain a combined area of approximately 12.425 +/- acres, and are hereinafter more fully described in the Land Title Survey dated September 19, 2018 as last revised on July 22, 2019 prepared by Francis C. Delles of Millard, MacKay & Delles Land Surveyors, LLP, which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A;

WHEREAS, Grantor Beneficial Owner, is the owner of the beneficial interest in the Controlled Property being the same as a portion of that beneficial interest conveyed to Grantor Beneficial Owner by means of a Declaration of Interest and Nominee Agreement dated October 25, 2018 and recorded in the Erie County Clerk's Office in Liber and Page D11336/4014; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C915280-09-13, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

- 1. Purposes. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Properties located at 490 Broadway, 187 Mortimer Street,
 213 Mortimer Street, 233 Mortimer Street, 498 Spring Street and 516 Spring Street may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) The Controlled Property located at 498 Broadway may be used for:

Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (3) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (4) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;
- (5) The use of groundwater underlying the property is prohibited without necessary water quality treatment_as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- (6) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

- (7) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;
- (8) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- (9) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- (10) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;
- (11) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Properties located at 490 Broadway, 187 Mortimer Street, 213 Mortimer Street, 233 Mortimer Street, 498 Spring Street and 516 Spring Street shall not be used for Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The Controlled Property located at 498 Broadway shall not be used for Residential or Restricted Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i) and (ii), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement
- D. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section
Division of Environmental Remediation
NYSDEC
625 Broadway
Albany, New York 12233
Phone: (518) 402-9553

- E. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
 - F. Grantor covenants and agrees that until such time as the Environmental Easement

is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

- G. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- H. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- (1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
 - (2) the institutional controls and/or engineering controls employed at such site:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;
- (4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;
- (5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- (6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - (7) the information presented is accurate and complete.
- 3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- 4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property,

including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. Enforcement

- A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.
- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C915280 Office of General Counsel

NYSDEC 625 Broadway

Albany New York 12233-5500

With a copy to:

Site Control Section
Division of Environmental Remediation
NYSDEC
625 Broadway
Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

- 7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- <u>Extinguishment</u>. This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.
- 11. <u>Consistency with the SMP</u>. To the extent there is any conflict or inconsistency between the terms of this Environmental Easement and the SMP, regarding matters specifically addressed by the SMP, the terms of the SMP will control.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor Fee Owner has caused this instrument to be signed in its name.

Notary Public - State of New York

SHARON L. NELSON

Notary Public, State of New York
No: 01NE6289252
Qualified in Erie County
My Commission Expires September 23, 20

IN WITNESS WHEREOF, Grantor Beneficial Owner has caused this instrument to be signed in its name.

		• • • • • • • • • • • • • • • • • • •	ξ.		
	SAAKC Buf	falo Force	LIC		
			, LLC.)	
		<i>/</i>	/		
	By:	<u></u>	~~		
		1.4			
	Print Name: _	DAV	D ALEXA	v DE/2	
	Title: Duth	orized Sig	Date:	0/23/19	·
		•			
	Gr	antor's A	cknowledgme	nt	
FLORID	, 4				
STATE OF NEW YO	RK)	211 1			
Section 100 F COT		A SECULO	ngan malannala ay Gannang Tilong mehina dibenyak ay Pelabang	ing a second control of the control	en de la companya del companya de la companya de la companya de la companya de la companya del companya de la c
COUNTY OF PLANE	DADE)			· ·	
On the 23	day of Uc	toby.	in the vear 20	19 before	me, the undersigned
personally appeared 1	DAVID ALEX	ANDER pe	rsonally known	to me or pro	ved to me on the basis
of satisfactory evidence					
instrument and acknowledge capacity(ies), and that					
person/upon behalf of	which the indiv	<i>r</i> idual(s) a	cted, executed t	the instrumen	t.
1 1 _					
Notary Public - State of	END ILLA	DIARY PURIT	LIDICE VALENZUEL		
Notary Public - State of	I IYWW I UIK	* 226 *	Commission # GG 3058	990	

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Michael J. Ryan, Director

Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)
) ss
COUNTY OF ALBANY)

On the _____ day of _______, in the year 2019 before me, the undersigned, personally appeared Michael J. Ryan, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

Pavid J. Chiuseno

Notary Public, State of New York

No. 01CH5032146

Qualified in Schenectady County

Commission Expires August 22, 20

SCHEDULE "A" PROPERTY DESCRIPTIONS

TRACK 4 RESTRICTED RESIDENTIAL

490 Broadway 111.41-6-1.1

Allowable use under Environmental Easement: Restricted Residential/Track 4

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the southerly line of Sycamore Street with the easterly line of Spring Street; thence easterly along the southerly line of Sycamore Street, a distance of 415.23 feet to a point in the westerly line of Mortimer Street; thence southerly along the westerly line of Mortimer Street, a distance of 947.23 feet to a point in the northerly line of Broadway; thence westerly along the northerly line of Broadway, a distance of 228.93 feet to a point; thence northerly at an interior angle of 90° 02' 18", a distance of 190.0 feet to a point; thence westerly at an exterior angle of 90° 02' 18", a distance of 185.0 feet to a point in the easterly line of Spring Street; thence northerly along the easterly line of Spring Street, a distance of 709.21 feet to a point on the southerly line of Sycamore Street at the True Point or Place of Beginning.

187 Mortimer Street 111.41-5-1.1

Allowable use under Environmental Easement: Restricted Residential/Track 4

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of Ray Street with the easterly line of Mortimer Street; thence easterly along the northerly line of Ray Street, a distance of 370.26 feet to a point; thence northerly at an interior angle of 106° 30′ 58″, a distance of 85.35 feet to a point; thence westerly at an interior angle of 90° 05′ 50″, a distance of 81.63 feet to a point; thence northerly at an exterior angle of 95° 18′ 00″, a distance of 96.72 feet to a point in the southerly line of George Street; thence westerly along the southerly line of George Street, a distance of 31.00 feet to a point; thence southerly at an interior angle of 95° 34′ 27″, a distance of 89.09 feet to a point; thence westerly at an interior angle of 78° 57′ 39″, a distance of 21.79 feet to a point; thence southerly at an interior angle of 73° 15′ 37″, a distance of 17.56 feet to a point; thence westerly at an exterior angle of 89° 52′ 24″, a distance of 28.00 feet to a point; thence northerly at an exterior angle of 90° 07′ 36″, a distance of 100.00 feet to a point in the southerly line of George Street; thence westerly along the southerly line of George Street, a distance of 247.00 feet to point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 200.00 feet to a point in the northerly line of Ray Street being the True Point or Place of Beginning

213 Mortimer Street

111.41-4-1.1

Allowable use under Environmental Easement: Restricted Residential/Track 4

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of George Street with the easterly line of Mortimer Street; thence easterly along the northerly line of George Street, a distance of 215.00 feet to a point; thence northerly at an interior angle of 89° 52' 24", a distance of 104.00 feet to a point; thence westerly at an interior angle of 90° 07' 36", a distance of 15.00 feet to a point; thence northerly at an exterior angle of 90° 07' 36", a distance of 89.00 feet to a point in the southerly line of Matthews Street; thence westerly along the southerly line of Matthews Street, a distance of 200.00 feet to a point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 193.50 feet to a point of the northerly line of George Street being the True Point or Place of Beginning.

233 Mortimer Street

111.41-8-26

Allowable use under Environmental Easement: Restricted Residential/Track 4

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of Matthews Street with the easterly line of Mortimer Street; thence easterly along the northerly line of Matthews Street, a distance of 204.00 feet to a point; thence northerly at an interior angle of 89° 43' 49", a distance of 142.07 feet to a point; thence westerly at an interior angle of 90° 16' 11", a distance of 204.00 feet to a point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 142.07 feet to a point on the northerly line of Matthews Street being the True Point or Place of Beginning.

498 Spring Street

111.41-7-17.1

Allowable use under Environmental Easement: Restricted Residential/Track 4

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 120 in said City, bounded and described as follows:

BEGINNING at a point in the westerly line of Spring Street 288.21 feet southerly of the southerly line of Sycamore Street; thence westerly at an exterior angle of 89° 57' 42", 132.0 feet to a point; thence southerly parallel with the westerly line of Spring Street 100.0' feet to a point; thence easterly at an interior angle of 90° 02' 18", 132 feet to Spring Street; thence northerly along

the westerly line of Spring Street 100.0' feet to the place of beginning, including all of Lot No. 126 and 127 as shown on a map recorded in Liber 85 of Deeds at page 329 in the Erie County Clerk's Office.

516 Spring Street

111.417-7-12.1

Allowable use under Environmental Easement: Restricted Residential/Track 4

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 120 in said City, bounded and described as follows:

BEGINNING at a point in the westerly line of Spring Street 138.21 feet southerly of the southerly line of Sycamore Street; thence westerly at an exterior angle of 89° 57' 42", 132.0 feet to a point; thence southerly parallel with the westerly line of Spring Street 100.0' feet to a point; thence easterly at an interior angle of 90° 02' 18", 132 feet to Spring Street; thence northerly along the westerly line of Spring Street 100.0' feet to the place of beginning, including all of Lot No. 123 and 124 as shown on a map recorded in Liber 85 of Deeds at page 329 in the Erie County Clerk's Office.

TRACK 4 COMMERCIAL

498 Broadway

111.41-5-31.1

Allowable use under Environmental Easement: Commercial/Track 4

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of Broadway with the easterly line of Mortimer Street; thence easterly along the northerly line of Broadway, a distance of 134.00 feet to a point; thence northerly at an interior angle of 89° 52' 24", a distance of 108.00 feet to a point; thence easterly at an exterior angle of 89° 52' 24", a distance of 59.00 feet to a point; thence northerly at an interior angle of 89° 52' 24", a distance of 100.00 feet to a point in the southerly line of Ray Street; thence westerly along the southerly line of Ray Street, a distance of 193.00 feet to a point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 208.00 feet to a point on the northerly line of Broadway being the True Point or Place of Beginning.

TERMINATION AND RELEASE OF ENVIRONMENTAL EASEMENT

RECITALS

- Grantor Fee Owner is the owner of certain land known and designated on the tax map of the Erie County Clerk as tax map parcel numbers: Section 111.41 Block 7 Lot 12.1, Section 111.41 Block 7 Lot 17.1, Section 111.41 Block 6 Lot 1.1, Section 111.41 Block 8 Lot 26, Section 111.41 Block 4 Lot 1.1, Section 111.41 Block 5 Lot 1.1 and Section 111.41 Block 5 Lot 31.1, being the same as that property conveyed to Grantor Fee Owner by deed, dated October 25, 2018 and recorded in the Erie County Clerk's Office in Liber and Page D11336/4007.
- 2. Grantor Beneficial Owner is the owner of the beneficial interest in the above-referenced property by means of a Declaration of Interest and Nominee Agreement dated October 25, 2018 and recorded in the Erie County Clerk's Office in Liber and Page D11336/4014.
- 3. The Department and Grantor entered into that certain Environmental Easement ("Easement Agreement") dated as of September 17, 2019 and recorded in the Erie County Clerk's Office in Liber and Page D11350/8933. Capitalized terms used herein without definition have the meanings ascribed to them in the Environmental Easement Agreement. The property comprises approximately 12.425 +/- acres, and hereinafter more fully described in Schedule A.
- 4. Pursuant to Section 1, 2, 3, 4, and 5 of the Easement Agreement, Grantor granted the Department rights and interests that run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of the Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of maintenance, monitoring or operation requirements; and to ensure the potential restriction of future uses of the land that are inconsistent with the stated purpose.
- 5. Section 2.A. of the Easement Agreement erroneously stated that the entirety of the Controlled Property may be used for Restricted-Residential, Commercial and Industrial uses described in 6 NYCRR §375-1.8(g) and may only be used consistent with controls set out in that Section 2.A. of the Easement Agreement.

NOV 1 2 2019

- 6. Section 2.A. of the Easement Agreement should have stated that a portion of the Controlled Property may be used only for Commercial and Industrial uses described in 6 NYCRR §375-1.8(g) and may only be used consistent with controls set out in that Section 2.A. of the Easement Agreement.
- 7. In order to correct the previous error, the Parties do hereby agree that a new Environmental Easement will be filed contemporaneously with this Termination in order to address the site management needs of the now remediated site.
- 8. Pursuant to Section 9 of the Easement Agreement, the Department agrees to terminate and release the Easement Agreement, dated September 17, 2019.

TERMINATION AND RELEASE OF ENVIRONMENTAL EASEMENT

- A. The above recitals are hereby incorporated into this Termination and Release of Environmental Easement.
- B. The Department confirms that the date hereof is the "Termination Date" and the Department accordingly hereby terminates and releases the property as described in Schedule A.
- C. This Termination and Release of Environmental Easement inures to and binds the parties hereto and their respective successors and assigns.
- D. This Termination and Release of Environmental Easement shall be governed by and interpreted in accordance with the laws of the State of New York.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor Fee Owner has caused this Termination and Release of Environmental Easement to be signed in its name.

Lo	wer West Side Homes II Housin	g Development Fund Corp.:
By	Shan	
Prir	nt Name: Gillian Brown	
Ti+1.	e: Chief Operating Officer Date:	lolazbag
	o. onler operating officer Date:	101521017
	Grantor's Acknowledge	nent
STATE OF NEW YORK COUNTY OF ERIE)) ss:)	
of satisfactory evidence to instrument and acknowled capacity(ies), and that by h	be the individual(s) whose nar ged to me that he/she/they	20 19, before me, the undersigned on to me or proved to me on the basis me is (are) subscribed to the within executed the same in his/her/their instrument, the individual(s), or the
Show to	Jela	u the instrument.
Notary Public - State of New	York	

SHARON L. NELSON
Notary Public, State of New York
No: 01NE6289252
Qualified in Eric County
My Commission Expires September 23, 20

IN WITNESS WHEREOF, Grantor Beneficial Owner has caused this Termination and Release of Environmental Easement to be signed in its name.

SAAKC Buffato Forge, LLC:	
By:	
Print Name: DAVID Alexander	
Title: Av thonored Signatury Date: 10/22/19	
Grantor's Acknowledgment	
STATE OF NEW YORK) SS: COUNTY OF MIAM, DADE)	
On the 22 day of October, in the year 20 19, before me, the personally appeared DAVID ALEXANDER personally known to me or proved to	ne undersigned
of satisfactory evidence to be the individual(s) whose name is (are) subscribe instrument and acknowledged to me that he/she/they executed the same capacity(ies), and that by his/her/their signature(s) on the instrument, the individual	d to the within in his/her/their
person upon behalf of which the individual(s) acted, executed the instrument. Notary Public - State of New York LIDICE VALENZUELA Commission # GG 305890	idual(s), or the
Notary Public - State of New York Commission # GG 305890	

Expires June 24, 2023

FLORIDA

THIS TERMINATION AND RELEASE OF THE ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

Grantee's Acknowledgment

STATE OF NEW YORK	•)
) ss:	
COUNTY OF ALBANY)

On the ______ day of _______, in the year 20_____, before me, the undersigned, personally appeared Michael J. Ryan, personally known to me or proved to me on the basis of satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged to me that he executed the same in his capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

David J. Chiusano
Rotary Public, State of New York
No. 01CH5032146
Qualified in Schenectady County
Commission Expires August 22, 20

SCHEDULE "A" PROPERTY DESCRIPTION

516 Spring Street

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 120 in said City, bounded and described as follows:

BEGINNING at a point in the westerly line of Spring Street 138.21 feet southerly of the southerly line of Sycamore Street; thence westerly at an exterior angle of 89° 57' 42", 132.0 feet to a point; thence southerly parallel with the westerly line of Spring Street 100.0' feet to a point; thence easterly at an interior angle of 90° 02' 18", 132 feet to Spring Street; thence northerly along the westerly line of Spring Street 100.0' feet to the place of beginning, including all of Lot No. 123 and 124 as shown on a map recorded in Liber 85 of Deeds at page 329 in the Erie County Clerk's Office.

498 Spring Street

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 120 in said City, bounded and described as follows:

BEGINNING at a point in the westerly line of Spring Street 288.21 feet southerly of the southerly line of Sycamore Street; thence westerly at an exterior angle of 89° 57' 42", 132.0 feet to a point; thence southerly parallel with the westerly line of Spring Street 100.0' feet to a point; thence easterly at an interior angle of 90° 02' 18", 132 feet to Spring Street; thence northerly along the westerly line of Spring Street 100.0' feet to the place of beginning, including all of Lot No. 126 and 127 as shown on a map recorded in Liber 85 of Deeds at page 329 in the Erie County Clerk's Office.

490 Broadway

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the southerly line of Sycamore Street with the easterly line of Spring Street; thence easterly along the southerly line of Sycamore Street, a distance of 415.23 feet to a point in the westerly line of Mortimer Street; thence southerly along the westerly line of Mortimer Street, a distance of 947.23 feet to a point in the northerly line of Broadway; thence westerly along the northerly line of Broadway, a distance of 228.93 feet to a point; thence northerly at an interior angle of 90° 02' 18", a distance of 190.0 feet to a point; thence westerly at an exterior angle of 90° 02' 18", a distance of 185.0 feet to a point in the easterly line of Spring Street; thence northerly along the easterly line of Spring Street, a distance of 709.21 feet to a point on the southerly line of Sycamore Street at the True Point or Place of Beginning.

233 Mortimer Street

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of Matthews Street with the easterly line of Mortimer Street; thence easterly along the northerly line of Matthews Street, a distance of 204.00 feet to a point; thence northerly at an interior angle of 89° 43' 49", a distance of 142.07 feet to a point; thence westerly at an interior angle of 90° 16' 11", a distance of 204.00 feet to a point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 142.07 feet to a point on the northerly line of Matthews Street being the True Point or Place of Beginning.

213 Mortimer Street

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of George Street with the easterly line of Mortimer Street; thence easterly along the northerly line of George Street, a distance of 215.00 feet to a point; thence northerly at an interior angle of 89° 52' 24", a distance of 104.00 feet to a point; thence westerly at an interior angle of 90° 07' 36", a distance of 15.00 feet to a point; thence northerly at an exterior angle of 90° 07' 36", a distance of 89.00 feet to a point in the southerly line of Matthews Street; thence westerly along the southerly line of Matthews Street, a distance of 200.00 feet to a point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 193.50 feet to a point of the northerly line of George Street being the True Point or Place of Beginning.

187 Mortimer Street

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of Ray Street with the easterly line of Mortimer Street; thence easterly along the northerly line of Ray Street, a distance of 370.26 feet to a point; thence northerly at an interior angle of 106° 30′ 58″, a distance of 85.35 feet to a point; thence westerly at an interior angle of 90° 05′ 50″, a distance of 81.63 feet to a point; thence northerly at an exterior angle of 95° 18′ 00″, a distance of 96.72 feet to a point in the southerly line of George Street; thence westerly along the southerly line of George Street, a distance of 31.00 feet to a point; thence southerly at an interior angle of 95° 34′ 27″, a distance of 89.09 feet to a point; thence westerly at an interior angle of 78° 57′ 39″, a distance of 21.79 feet to a point; thence southerly at an interior angle of 73° 15′ 37″, a distance of 17.56 feet to a point; thence westerly at an exterior angle of 89° 52′ 24″, a distance of 28.00 feet to a point; thence northerly at an exterior

angle of 90° 07' 36", a distance of 100.00 feet to a point in the southerly line of George Street; thence westerly along the southerly line of George Street, a distance of 247.00 feet to point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 200.00 feet to a point in the northerly line of Ray Street being the True Point or Place of Beginning.

498 Broadway

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of Broadway with the easterly line of Mortimer Street; thence easterly along the northerly line of Broadway, a distance of 134.00 feet to a point; thence northerly at an interior angle of 89° 52' 24", a distance of 108.00 feet to a point; thence easterly at an exterior angle of 89° 52' 24", a distance of 59.00 feet to a point; thence northerly at an interior angle of 89° 52' 24", a distance of 100.00 feet to a point in the southerly line of Ray Street; thence westerly along the southerly line of Ray Street, a distance of 193.00 feet to a point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 208.00 feet to a point on the northerly line of Broadway being the True Point or Place of Beginning.

BEGINNING at a point in the westerly line of Spring Street 138.21' feet southerly of the southerly line of Sycamore Street; thence westerly at an exterior angle of 89°57'42", 132.0 feet to a point; thence southerly parallel with the westerly line of Spring Street 100.0' feet to a point; thence easterly at an interior angle of 90°02'18", 132 feet to Spring Street; thence northerly along the westerly line of Spring Street 100.0' feet to the place of beginning, including all of Lot No. 123 and 124 as shown on a map recorded in Liber 85 of Deeds at page 329 in the Erie County Clerk's Office. This parcel containing 13,200.0 Sq. Ft. more or less.

IN THE N.W. CORNER - FENCE ENCROACHES ONTO PREMISES 5.6' SOUTH AND 11.0' EAST

SURVEYOR'S LEGAL DESCRIPTION

SBL NO. 111.41-7-17.1 498 SPRING ST.

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 120 in said City, bounded and described as follows:

BEGINNING at a point in the westerly line of Spring Street 288.21' feet southerly of the southerly line of Sycamore Street; thence westerly at an exterior angle of 89°57'42", 132.0 feet to a point; thence southerly parallel with the westerly line of Spring Street 100.0' feet to a point; thence easterly at an interior angle of 90°02'18", 132 feet to Spring Street; thence northerly along the westerly line of Spring Street 100.0' feet to the place of beginning, including all of Lot No. 126 and 127 as shown on a map recorded in Liber 85 of Deeds at page 329 in the Erie County Clerk's

This parcel containing 13,200.0 Sq. Ft. more or less.

ENCROACHMENTS:

ALONG THE WEST LINE - FENCE ONTO PREMISES 0.2' EAST AT N.W. CORNER AND 0.4' EAST AT S.W. CORNER OF PREMISES

easterly along the southerly line of Sycamore Street, a distance of 415.23 feet to point in the westerly line of Mortimer Street; thence southerly along the westerly line of Mortimer Street, a distance of 947.23 feet to point in the northerly line of Broadway; thence westerly along the northerly line of Broadway, a distance of 228.93 feet to point; thence northerly at an interior angle of 90°02'18", a distance of 190.0 feet to a point; thence westerly at an exterior angle of 90°02'18", a distance of 185.0 feet to point in the easterly line of Spring Street; thence northerly along the easterly line of Spring Street, a distance of 709.21 feet to a point on the southerly line of Sycamore Street at the True Point or Place of Beginning.

This parcel containing 7.951 Acres more or less.

<u>ENCROACHMENTS:</u>

 $\widehat{\mathcal{O}}$ along the south line – fence onto premises 0.4' north at west corner and 1.1' north at east corner of

🗖 ALONG THE WEST LINE - FENCE ONTO PREMISES 1.4' EAST AT NORTH CORNER AND 1.4' EAST AT SOUTH END OF FENCE

SURVEYOR'S LEGAL DESCRIPTION SBL NO. 111.41-8-26

233 MORTIMER ST.

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows: BEGINNING at the intersection of the northerly line of Matthews Street with the easterly line of Mortimer Street; thence

easterly along the northerly line of Matthews Street, a distance of 204.00 feet to a point; thence northerly at interior angle of 89°43'49", a distance of 142.07 feet to a point; thence westerly at interior angle of 90°16'11", a distance of 204.00 feet to a point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 142.07 feet to a point on the northerly line of Matthews Street being the True Point or Place of Beginning. This parcel containing 28,982.0 Sq. Ft. more or less.

easterly along the northerly line of George Street, a distance of 215.00 feet to a point; thence northerly at interior angle of 89°52'24", a distance of 104.00 feet to a point; thence westerly at interior angle of 90°07'36", a distance of 15.00 feet to a point; thence northerly at exterior angle of 90°07'36", a distance of 89.00 feet to a point in the southerly line of Matthews Street; thence westerly along the southerly line of Matthews Street, a distance of 200.00 feet to point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 193.50 feet to

This parcel containing 40,209.9 Sq. Ft. more or less. **ENCROACHMENTS:**

a point on the northerly line of George Street being the True Point or Place of Beginning.

(a) ALONG THE EAST LINE - FENCE ONTO PREMISES 1.4' WEST AT NORTH CORNER AND 0.2' WEST AT SOUTH CORNER OF FENCE

SURVEYOR'S LEGAL DESCRIPTION

SBL NO. 111.41-5-1.1 187 MORTIMER ST.

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of Ray Street with the easterly line of Mortimer Street; thence easterly along the northerly line of Ray Street, a distance of 370.26 feet to a point; thence northerly at interior angle of 106°30'58", a distance of 85.35 feet to a point; thence westerly at interior angle of 90°05'50", a distance of 81.63 feet to a point; thence northerly at exterior angle of 95°18'00", a distance of 96.72 feet to a point in the southerly line George Street; thence westerly along the southerly line George Street, a distance of 31.00 feet to a point; thence southerly at interior angle of 95°34'27", a distance of 89.09 feet to a point; thence westerly at interior angle of 78°57'39", a distance of 21.79 feet to a point; thence southerly at interior angle of 73°15'37", a distance of 17.56 feet to a point; thence westerly at exterior angle of 89°52'24", a distance of 28.00 feet to a point; thence northerly at exterior angle of 90°07'36", a distance of 100.00 feet to a point feet to a point in the southerly line of George Street; thence westerly along the southerly line of George Street, a distance of 247.00 feet to point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 200.00 feet to a point in the northerly line of Ray Street being the True Point or Place of

This parcel containing 1.505 Acres more or less.

ENCROACHMENTS:

AT THE S.E. CORNER - FENCE EXITS PREMISES HEADING SOUTHERLY UP TO 1.5' EAST OF PREMISES AT A N.E. CORNER - FENCE EXITS PREMISES 2.0' NORTH OF PREMISES

NO STRIPED PARKING AREAS DELINEATED ON ANY OF THE PREMISES SURVEYED NO EVIDENCE OF RECENT EARTH MOVING, BUILDING CONSTRUCTION, OR BUILDING ADDITIONS OBSERVED IN FILED ON DATE OF SURVEY.

NO EVIDENCE OF WETLAND DELINEATION OBSERVED IN FILED ON DATE OF SURVEY. NO EVIDENCE OF STREET WIDENING, STREET OR SIDEWALK CONSTRUCTION OR REPAIRS OBSERVED IN FILED ON DATE OF SURVEY.

NO EVIDENCE OF CEMETERY OR BURIAL GROUNDS OBSERVED IN FILED ON DATE

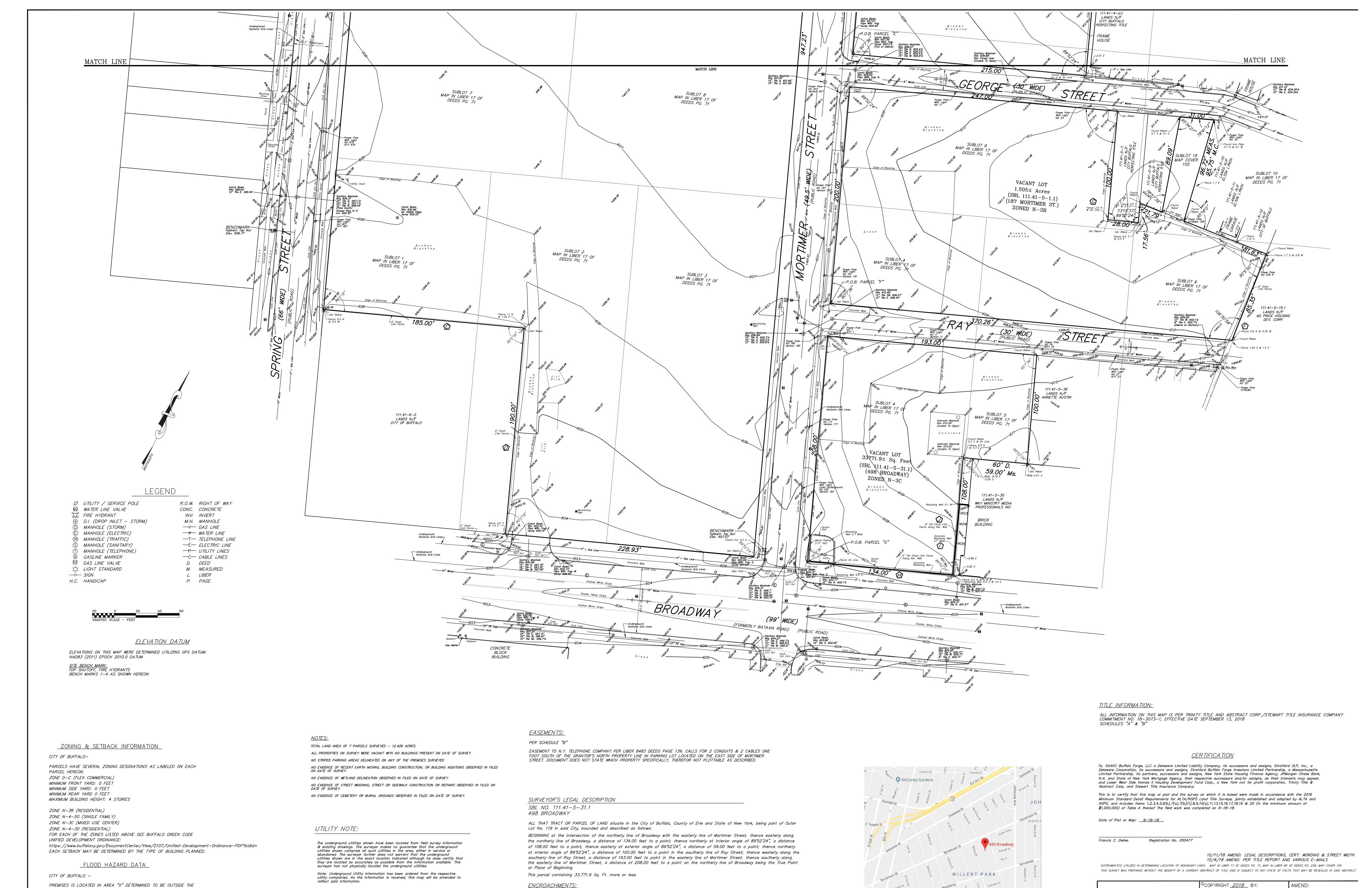
EASEMENTS:

PER SCHEDULE "B"

EASEMENT TO N.Y. TELEPHONE COMPANY PER LIBER 8483 DEEDS PAGE 139. CALLS FOR 2 CONDUITS & 2 CABLES ONE FOOT SOUTH OF THE GRANTOR'S NORTH PROPERTY LINE IN PARKING LOT LOCATED ON THE EAST SIDE OF MORTIMER STREET. DOCUMENT DOES NOT STATE WHICH PROPERTY SPECIFICALLY, THEREFOR NOT PLOTTABLE AS DESCRIBED.

CERTIFICATION

To, SAAKC Buffalo Forge, LLC a Delaware Limited Liability Company, its successors and assigns, Stratford SLP, Inc., a Delaware Corporation, its successors and assigns, Stratford Buffalo Forge Investors Limited Partnership, a Massachusetts Limited Partnership, its partners, successors and assigns, New York State Housing Finance Agency, JPMorgan Chase Bank, N.A. and State of New York Mortgage Agency, their respective successors and/or assigns, as their interests may appear, and Lower West Side Homes II Housing Development Fund Corp., a New York not for profit corporation, Trinity Title & Abstract Corp, and Stewart Title Insurance Company:


This is to certify that this map or plat and the survey on which it is based were made in accordance with the 2016 Minimum Standard Detail Requirements for ALTA/NSPS Land Title Surveys, jointly established and adopted by ALTA and NSPS, and includes items 1,2,3,4,5,6(b),7(a),7(b)(1),8,9,10(a),11,13,15,16,17,18,19 & 20 (in the minimum amount of \$1,000,000) of Table A thereof The field work was completed on 9-18-18.

Date of Plat or Map: <u>9-19-18</u>.

Registration No. 050477 Francis C. Delles

10/11/18 AMEND: LEGAL DESCRIPTIONS, CERT. WORDING & STREET WIDTH 10/4/18 AMEND: PER TITLE REPORT AND VARIOUS E-MAILS INSTRUMENT(S) UTILIZED IN DETERMINING LOCATION OF BOUNDARY LINES: MAP IN LIBER 17 OF DEEDS PG. 71, MAP IN LIBER 85 OF DEEDS PG. 239, MAP COVER 155 THIS SURVEY WAS PREPARED WITHOUT THE BENEFIT OF A CURRENT ABSTRACT OF TITLE AND IS SUBJECT TO ANY STATE OF FACTS THAT MAY BE REVEALED IN SAID ABSTRACT.

	©COPYRIGHT <u>2018</u> BY:	AMEND:
	Millard, MacKay & Delles	SURVEY DATE: 9-19-18
	LAND SURVEYORS, LLP	[©] DRAWING DATE: <i>9-19-18</i>
	150 AERO DRIVE	SCALE: 1" = 20'
	BUFFALO, NEW YORK 14225 PHONE (716) 631-5140 ~ FAX 631-3811	"ALL RIGHTS RESERVED"
SHEET 1 PART OF LOT <u>119&120</u> SECTION TOV	-· —	THIS MAP VOID UNLESS EMBOSSED WITH NEW YORK STATE LICENSED LAND SURVEYOR'S SEAL. ALTERING ANY ITEM ON THIS MAP IS A VIOLATION OF THE LAW EXCEPT AS PROVIDED IN SECTION 7209, PART 2, OF THE NEW YORK STATE EDUCATION LAW.
SURVEY OF 490 498 Broadway Spring	St & Mortimer St City Buffalo	SBL No 111 41-

ALONG THE SOUTH LINE - DEPENDING UPON OWNERSHIP, CONCRETE RETAINING WALL IS 0.4' SOUTH OF PREMISES AT S.W.

ALONG THE EAST LINE — DEPENDING UPON OWNERSHIP, FENCE IS 0.2' WEST OF PREMISES AT SOUTH CORNER AND 0.3' EAST AT NORTH CORNER. FENCE THEN HEADS NORTHERLY ONTO PREMISES 0.9' NORTH BEFORE CORNERING EAST TO BUILDING

extstyle ext

CORNER AND 0.5' SOUTH AT S.E. CORNER

CORNER AND O.1' WEST AT N.E. CORNER

0.1 SOUTH OF PREMISES.

SURVEY DATE: 9-19-18

SCALE: 1" = 20'

LAND SURVEYÖRS, LLP

150 AERO DRIVE

PHONE (716) 631-5140 ~ FAX 631-3811

Outer Lot SURVEY — Erie COUNTY, N.Y. STATE EDUCATION LAW.

BUFFALO, NEW YORK 14225

ALTA/NSPS LAND TITLE SURVEY

PART OF LOT 119&120 SECTION ____ TOWNSHIP ___ RANGE ____ OF THE: LAW EXCEPT AS PROVIDED IN SECTION

SURVEY OF: 490, 498 Broadway, Spring St. & Mortimer St. City Buffalo SBL No. 111.41-

SHEET 2 OF 2

DRAWING DATE: 9-19-18

"ALL RIGHTS RESERVED"

EMBOSSED WITH NEW YORK STATE LICENSED LAND SURVEYOR'S SEAL. ALTERING ANY ITEM

500-YEAR FLOOD HAZARD.

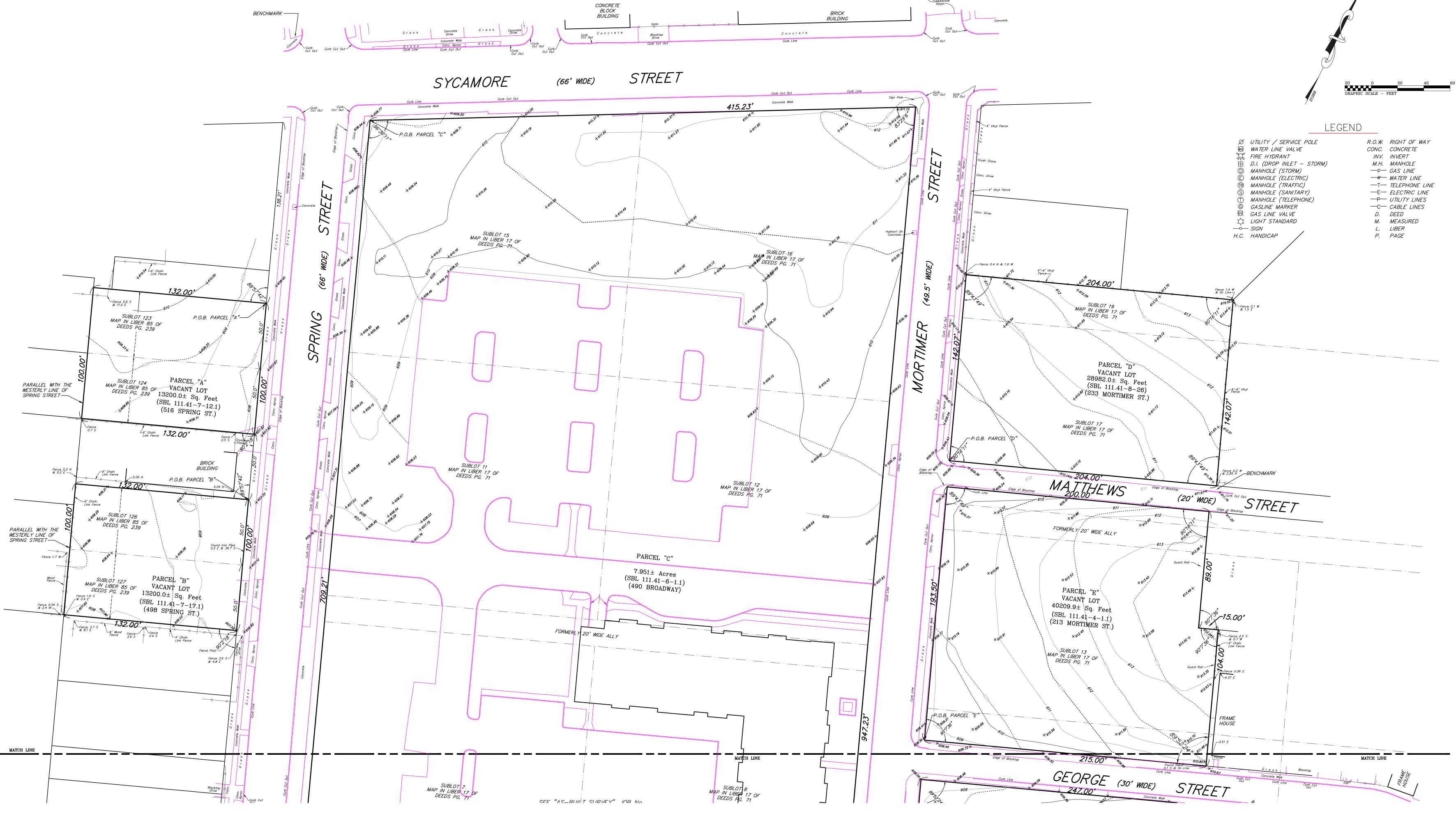
INSURANCE PROGRAM.

INFORMATION PER FLOOD INSURANCE RATE MAP PUT OUT BY THE

FEDERAL EMEGENCY MANAGEMENT AGENCY — NATIONAL FLOOD

COMMUNITY PANEL NUMBER 360230 0020 D

EFFECTIVE DATE: SEPTEMBER 26, 2008


Adelphia Cable Attn: Thomas Trigilio (716) 558–8615

Buffalo Sewer Authority Attn: James Eagan (716) 851–4664

Niagara Mohawk Attn: Lawrence Bernas (716) 857–4220

City of Buffalo Water Div. Attn: James Campolong (716) 851–4782

Verizon Attn: Robert McCarthy

SURVEYOR'S LEGAL DESCRIPTION

SBL NO. 111.41-7-12.1 516 SPRING ST.

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 120 in said City, bounded and described as follows:

BEGINNING at a point in the westerly line of Spring Street 138.21' feet southerly of the southerly line of Sycamore Street; thence westerly at an exterior angle of 89°57'42", 132.0 feet to a point; thence southerly parallel with the westerly line of Spring Street 100.0' feet to a point; thence easterly at an exterior angle of 90°02'18", 132 feet to Spring Street; thence northerly along the westerly line of Spring Street 100.0' feet to the place of beginning, including all of Lot No. 123 and 124 as shown on a map recorded in Liber 85 of Deeds at page 329 in the Erie County Clerk's Office.

This parcel containing 13,200.0 Sq. Ft. more or less.

ENVIRONMENTAL EASEMENT AREA DESCRIPTION
SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

SURVEYOR'S LEGAL DESCRIPTION

This parcel containing 13,200.0 Sq. Ft. more or less.

SBL NO. 111.41-7-17.1 498 SPRING ST.

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 120 in said City, bounded and described as follows:

BEGINNING at a point in the westerly line of Spring Street 288.21' feet southerly of the southerly line of Sycamore Street; thence westerly at an exterior angle of 89°57'42", 132.0 feet to a point; thence southerly parallel with the westerly line of Spring Street 100.0' feet to a point; thence easterly at an exterior angle of 90°02'18", 132 feet to Spring Street; thence northerly along the westerly line of Spring Street 100.0' feet to the place of beginning, including all of Lot No. 126 and 127 as shown on a map recorded in Liber 85 of Deeds at page 329 in the Erie County Clerk's Office.

ENVIRONMENTAL EASEMENT AREA DESCRIPTION
SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

SURVEYOR'S LEGAL DESCRIPTION

SBL NO. 111.41-7-1.1 490 BROADWAY

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the southerly line of Sycamore Street with the easterly line of Spring Street; thence easterly along the southerly line of Sycamore Street, a distance of 415.23 feet to point in the westerly line of Mortimer Street; thence southerly along the westerly line of Mortimer Street, a distance of 947.23 feet to point in the northerly line of Broadway; thence westerly along the northerly line of Broadway, a distance of 228.93 feet to point; thence northerly at an interior angle of 90°02′18″, a distance of 190.0 feet to a point; thence westerly at an exterior angle of 90°02′18″, a distance of 185.0 feet to point in the easterly line of Spring Street; thence northerly along the easterly line of Spring Street, a distance of 709.21 feet to the True Point and Place of Beginning.

This parcel containing 7.951 Acres more or less.

ENVIRONMENTAL EASEMENT AREA DESCRIPTION
SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

SURVEYOR'S LEGAL DESCRIPTION

SBL NO. 111.41-8-26 233 MORTIMER ST.

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of Matthews Street with the easterly line of Mortimer Street; thence easterly along the northerly line of Matthews Street, a distance of 204.00 feet to a point; thence northerly at interior angle of 89°43'49", a distance of 142.07 feet to a point; thence westerly at interior angle of 90°16'11", a distance of 204.00 feet to a point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 142.07 feet to the True Point and Place of Beginning.

This parcel containing 28,982.0 Sq. Ft. more or less.

ENVIRONMENTAL EASEMENT AREA DESCRIPTION
SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

SURVEYOR'S LEGAL DESCRIPTION
SBL NO. 111.41-4-1.1

213 MORTIMER ST.

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of George Street with the easterly line of Mortimer Street; thence easterly along the northerly line of George Street, a distance of 215.00 feet to a point; thence northerly at interior angle of 89°52'24", a distance of 104.00 feet to a point; thence westerly at interior angle of 90°07'36", a distance of 15.00 feet to a point; thence northerly at exterior angle of 90°07'36", a distance of 89.00 feet to a point in the southerly line of Matthews Street; thence westerly along the southerly line of Matthews Street, a distance of 200.00 feet to point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 193.50 feet to the True Point and Place of Beginning. This parcel containing 40,209.9 Sq. Ft. more or less.

ENVIRONMENTAL EASEMENT AREA DESCRIPTION
SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

SURVEYOR'S LEGAL DESCRIPTION

SBL NO. 111.41—5—1.1 187 MORTIMER ST.

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of Ray Street with the easterly line of Mortimer Street; thence easterly along the northerly line of Ray Street, a distance of 370.26 feet to a point; thence northerly at interior angle of 106'30'58", a distance of 85.35 feet to a point; thence westerly at interior angle of 90'05'50", a distance of 81.63 feet to a point; thence northerly at exterior angle of 95'18'00", a distance of 96.72 feet to a point in the southerly line George Street; thence westerly along the southerly line George Street, a distance of 31.00 feet to a point; thence southerly at interior angle of 95'34'27", a distance of 89.09 feet to a point; thence westerly at interior angle of 78'57'39", a distance of 21.79 feet to a point; thence southerly at interior angle of 73'15'37", a distance of 17.56 feet to a point; thence westerly at exterior angle of 89'52'24", a distance of 28.00 feet to a point; thence northerly at exterior angle of 90'07'36", a distance of 100.00 feet to a point feet to a point in the southerly line of George Street; thence westerly along the southerly line of George Street, a distance of 247.00 feet to point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 200.00 feet to the True Point and Place of Beginning.

This parcel containing 1.505 Acres more or less.

ENVIRONMENTAL EASEMENT AREA DESCRIPTION SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

ENVIRONMENTAL EASEMENT AREA ACCESS
THE DEC OR THEIR AGENT MAY ACCESS THE
ENVIRONMENTAL EASEMENT AREA AS SHOWN
HEREON THROUGH ANY EXISTING STREET
ACCESS OR BUILDING INGRESS/EGRESS

derweb@gw.dec.state.ny.us

ACCESS POINT

ENGINEERING / INSTITUTIONAL CONTROLS

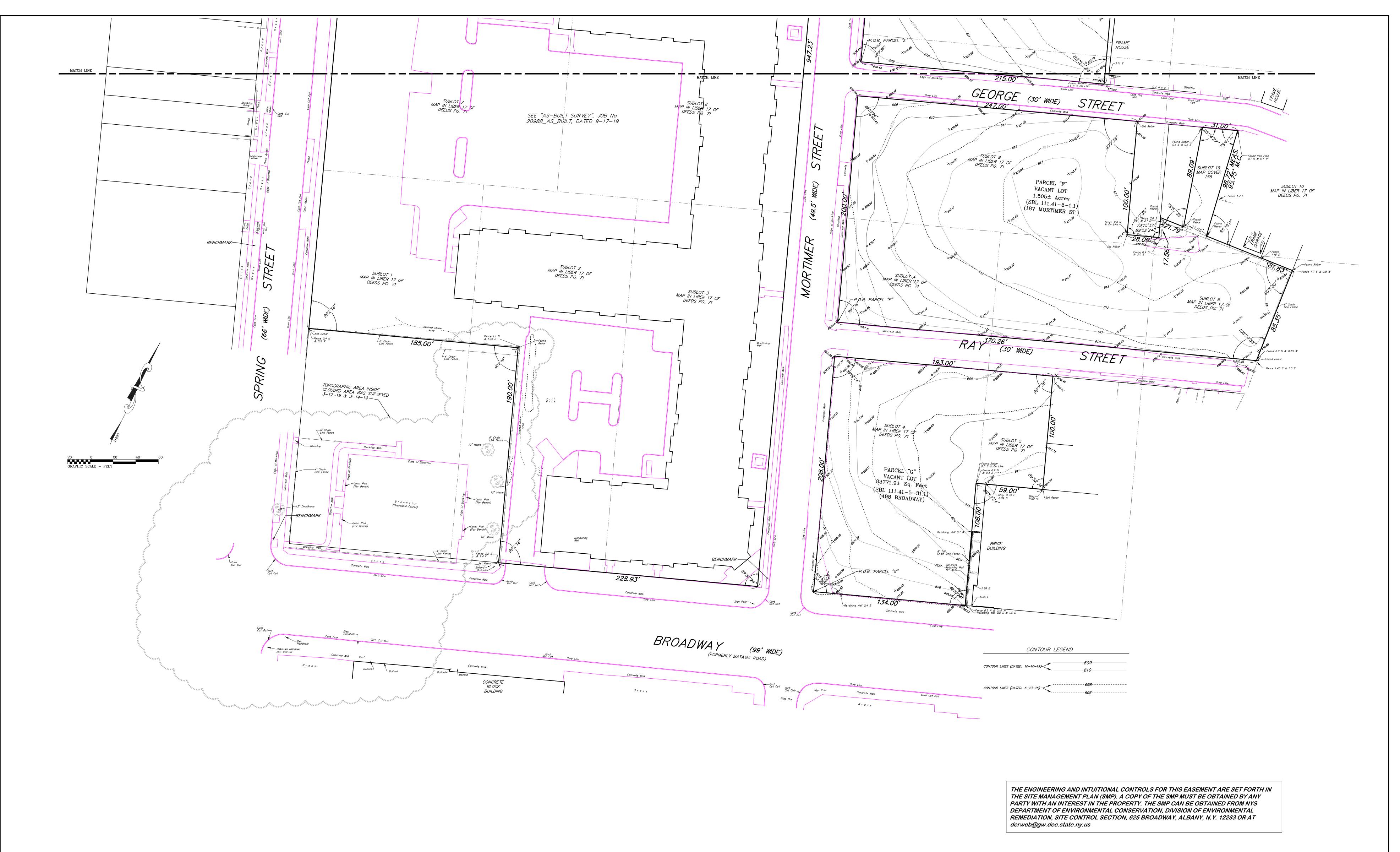
• Groundwater Use — the use or withdrawal of Site groundwater for drinking,

irrigation or other consumptive purposes will be prohibited.
Vapor Intrusion — The vapor intrusion for future buildings will be evaluated in accordance with New York laws, regulations and guidance.
Sub—Slab Depressurization System (SSDS) — Maintenance of the active SSD System.
Soil Cover System — Maintenance of site wide soil cover system consisting of a combination of 12" soil fill, pavement and existing/new buildings.
Site Management Plan (SMP)—— Adherence to SMP.

Land Use – future land use will be restricted to Commercial or Industrial

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the New York Environmental Conservation Law. INSTRUMENT(S) UTILIZED IN DETERMINING LOCATION OF BOUNDARY LINES: MAP IN LIBER 17 OF DEEDS PG. 71, MAP IN LIBER 85 OF DEEDS PG. 239, MAP COVER 155
THIS SURVEY WAS PREPARED WITHOUT THE BENEFIT OF A CURRENT ABSTRACT OF TITLE AND IS SUBJECT TO ANY STATE OF FACTS THAT MAY BE REVEALED IN SAID ABSTRAC

THE ENGINEERING AND INTUITIONAL CONTROLS FOR THIS EASEMENT ARE SET FORTH IN


THE SITE MANAGEMENT PLAN (SMP). A COPY OF THE SMP MUST BE OBTAINED BY ANY

PARTY WITH AN INTEREST IN THE PROPERTY. THE SMP CAN BE OBTAINED FROM NYS

DEPARTMENT OF ENVIRONMENTAL CONSERVATION, DIVISION OF ENVIRONMENTAL

REMEDIATION, SITE CONTROL SECTION, 625 BROADWAY, ALBANY, N.Y. 12233 OR AT

THIS SURVEY MAP WAS PREPARED IN ACCORDANCE WITH THE	©COPYRIGHT_2019_ BY:	AMEND:
CURRENT STANDARDS FOR LAND SURVEYS ADOPTED BY THE BAR ASSOCIATION OF ERIE COUNTY AT THE REQUEST OF KUIDACK'S INC.	Millard, MacKay & Delles	SURVEY DATE: 10-10-19
Kulback's Inc.	LAND SURVEYORS, LLP	©DRAWING DATE: 10-11-19
te Coller	150 AERO DRIVE	SCALE: 1" = 20'
FRANCIS C. DELLES NYSPLS No. 050477	BUFFALO, NEW YORK 14225 PHONE (716) 631-5140 ~ FAX 631-3811	"ALL RIGHTS RESERVED"
AS-BUILT TOPOGE SHEET 1 PART OF LOT SECTION TO Outer Lot SURVEY	THIS MAP VOID UNLESS EMBOSSED WITH NEW YORK STATE LICENSED LAND SURVEYOR'S SEAL. ALTERING ANY ITEM ON THIS MAP IS A VIOLATION OF THE LAW EXCEPT AS PROVIDED IN SECTION 7209, PART 2, OF THE NEW YORK STATE EDUCATION LAW.	
SURVEY OF: 490, 498 Broadway, Spring		SBL No. 111. 41—

Ø UTILITY / SERVICE POLE ₩ WATER LINE VALVE C FIRE HYDRANT □ D.I. (DROP INLET - STORM) MANHOLE (STORM) MANHOLE (ELECTRIC) MANHOLE (TRAFFIC) MANHOLE (SANITARY)

—ċ— *SIGN*

LEGEND R.O.W. RIGHT OF WAY CONC. CONCRETE INV. INVERT M.H. MANHOLE —G— GAS LINE *─w─ WATER LINE* —T— *TELEPHONE LINE* —E— ELECTRIC LINE MANHOLE (TELEPHONE) —P— *UTILITY LINES* GASLINE MARKER —C— CABLE LINES M GAS LINE VALVE D. DEED \(\times\) LIGHT STANDARD M. MEASURED L. LIBER P. PAGE H.C. HANDICAP

UTILITY NOTE:

The underground utilities shown have been located from field survey information & existing drawings. The surveyor makes no guarantee that the underground utilities shown comprise all such utilities in the area, either in service or abandoned. The surveyor further does not warrant that the underground utilities shown are in the exact location indicated although he does certify that they are located as accurately as possible from the information available. This surveyor has not physically located the underground utilities. Note: Underground Utility information has been ordered from the respective utility companies. As the information is received, this map will be amended to reflect said information.

Buffalo Sewer Authority

Adelphia Cable Attn: Thomas Trigilio (716) 857-7000 (716) 558–8615 [°] City of Buffalo Water Div. Attn: James Campolong (716) 851–4782 Attn: James Eagan (716) 851–4664 Verizon Attn: Robert McCarthy (716) 840–8748 Niagara Mohawk Attn: Lawrence Bernas (716) 857–4220

SURVEYOR'S LEGAL DESCRIPTION SBL NO. 111.41-5-31.1 *498 BROADWAY*

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Outer Lot No. 119 in said City, bounded and described as follows:

BEGINNING at the intersection of the northerly line of Broadway with the easterly line of Mortimer Street; thence easterly along the northerly line of Broadway, a distance of 134.00 feet to a point; thence northerly at interior angle of 89°52'24", a distance of 108.00 feet to a point; thence easterly at exterior angle of 89°52'24", a distance of 59.00 feet to a point; thence northerly at interior angle of 89°52'24", a distance of 100.00 feet to a point in the southerly line of Ray Street; thence westerly along the southerly line of Ray Street, a distance of 193.00 feet to point in the easterly line of Mortimer Street; thence southerly along the easterly line of Mortimer Street, a distance of 208.00 feet to the True Point and Place of Beginning.

This parcel containing 33,771.9 Sq. Ft. more or less.

ENVIRONMENTAL EASEMENT AREA DESCRIPTION SAME AS THE SURVEYOR'S LEGAL DESCRIPTION

ENVIRONMENTAL EASEMENT AREA ACCESS THE DEC OR THEIR AGENT MAY ACCESS THE ENVIRONMENTAL EASEMENT AREA AS SHOWN HEREON THROUGH ANY EXISTING STREET ACCESS OR BUILDING INGRESS/EGRESS

ACCESS POINT

ENGINEERING / INSTITUTIONAL CONTROLS Groundwater Use – the use or withdrawal of Site groundwater for drinking, irrigation or other consumptive purposes will be prohibited.
 Vapor Intrusion – The vapor intrusion for future buildings will be evaluated in accordance with New York laws, regulations and guidance. Sub-Slab Depressurization System (SSDS) - Maintenance of the active SSD System.

Soil Cover System — Maintenance of site wide soil cover system consisting of a combination of 12" soil fill, pavement and existing/new buildings.

Site Management Plan (SMP)—— Adherence to SMP.

Land Use — future land use will be restricted to Commercial or Industrial

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the New York Environmental Conservation Law.

INSTRUMENT(S) UTILIZED IN DETERMINING LOCATION OF BOUNDARY LINES: MAP IN LIBER 17 OF DEEDS PG. 71, MAP IN LIBER 85 OF DEEDS PG. 239, MAP COVER 155 THIS SURVEY WAS PREPARED WITHOUT THE BENEFIT OF A CURRENT ABSTRACT OF TITLE AND IS SUBJECT TO ANY STATE OF FACTS THAT MAY BE REVEALED IN SAID ABSTRAC

THE SOLVET WAS THE PARED WITHOUT THE BENEFIT OF A SOURCE	ABOUNTS OF THE TIPD TO CODDED TO THE CONTROL OF THE	S THAT MAY BE REVEALED IN SAID ABSTRACT.
THIS SURVEY MAP WAS PREPARED IN ACCORDANCE WITH THE	©COPYRIGHT_ <i>2019</i> _ BY:	AMEND:
CURRENT STANDARDS FOR LAND SURVEYS ADOPTED BY THE BAR ASSOCIATION OF ERIE COUNTY AT THE REQUEST OF KUIDGOK'S INC.	Millard, MacKay & Delles	SURVEY DATE: 10-10-19
Nullack's Inc.	LAND SURVEYORS, LLP	©DRAWING DATE: 10-11-19
150 AERO DRIVE		SCALE: 1" = 20'
FRANCIS C. DELLES NYSPLS No. 050477	PHONE (716) 631–5140 ~ FAX 631–3811	"ALL RIGHTS RESERVED"
AS-BUILT TOPOGR SHEET 2 PART OF LOT SECTION TO	THIS MAP VOID UNLESS EMBOSSED WITH NEW YORK STATE LICENSED LAND SURVEYOR'S SEAL. ALTERING ANY ITEM ON THIS MAP IS A VIOLATION OF THE LAW EXCEPT AS PROVIDED IN SECTION	
Outer Lot SURVEY		7209, PART 2, OF THE NEW YORK STATE EDUCATION LAW.

SURVEY OF: 490, 498 Broadway, Spring St. & Mortimer St. City Buffalo SBL No. 111.41-

APPENDIX C

SITE WIDE INSPECTION FORM AND SITE PHOTOS

BE3 Corp. 960 Busti Ave. Suite B-150 Buffalo. New York

SITE WIDE INSPECTION FORM

Date: 5/5/2022

Site Name: Former Buffalo Forge Property- C915280 Location: 490 Broadway Street, Buffalo, NY 14204

General Site Conditions: Property contains a newer, maintained building complex, an asphalt parking lot, outdoor work-out areas, and greenspace.

Weather Conditions: 59 degrees and partly cloudy

Compliance/Evaluation ICs and ECs:

Property is in compliance with all SMP ICs and ECs. Exterior soil and grass cover system on site appeared to be intact. No overt disturbances were obvious. Asphalt parking lots and concrete areas are in excellent condition. No excavation has occurred into the cover system. Refer to photographs of the property complex and page 2 for IC/EC compliance by parcel.

Site management Activities (sampling, H & S Inspection, etc.):

All property areas were visually examined, and the engineering control cover system was observed to be in good-excellent condition.

Compliance with Permits and O & M Plan:

Site is in compliance with Engineering controls and Site Management Plan.

Records Compliance:

Records are maintained. No issues have occurred during the year that have warranted any compliance or system reporting.

General Comments:

Property and compliance systems appear to be well maintained and functioning as required.

INSPECTOR'S NAME: Dalton J. Stack - Scientist

BE3 Corp. 960 Busti Ave. Suite B-150 Buffalo. New York

SITE WIDE INSPECTION FORM

Page 2

Description of Work Performed (continued) Former Buffalo Forge Property- C915280

IC/EC BY Parcel

213 Mortimer - 111.41-4-1.1:

Parcel is a vacant grass property. Soil and grass cover system on site are intact. No overt ruts or marks were noted. No excavation has occurred into the cover system. Refer to photographs of the property.

187 Mortimer - 111.41-5-1.1:

Parcel is a vacant primarily grass covered property. Soil and grass cover system on site are intact. No overt ruts or marks were noted. No excavation has occurred into the cover system. Refer to photographs of the property.

233 Mortimer - 111.41-8-26:

Parcel is a vacant grass property. Soil and grass cover system on site are intact. No overt ruts or marks were noted. No excavation has occurred into the cover system. Refer to photographs of the property.

498 Broadway - 111.41-5-31.1:

Parcel is a vacant grass property. Soil and grass cover system on site are intact. No overt ruts or marks were noted. No excavation has occurred into the cover system. Refer to photographs of the property.

490 Broadway - 111.41-6-1.1:

Parcel is covered with buildings, asphalt roadways, concrete areas (sidewalks, etc.) and greenspace No excavation/disturbance has occurred into the cover system. Refer to photographs of the property.

516 Spring - 111.47-7-12.1:

Parcel is a vacant grass property. Soil and grass cover system on site are intact. No overt ruts or marks were noted. No excavation has occurred into the cover system. Refer to photographs of the property.

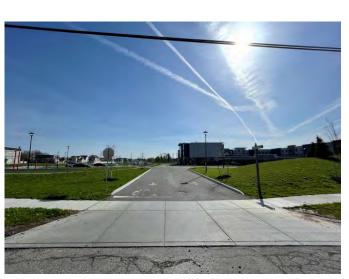
498 Spring - 111.41-7-17.1:

Parcel is a vacant grass property. Soil and grass cover system on site are intact. No overt ruts or marks were noted. No excavation has occurred into the cover system. Refer to photographs of the property.

All sites are in Compliance with Engineering Controls and Site Management Plan.

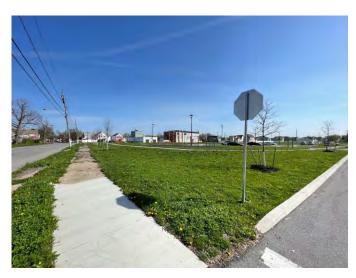
Vacant grass lot at 516 Spring Street parcel facing northwest from Spring Street.

Vacant grass lot at 516 Spring Street parcel facing west from Spring Street.

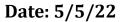

Vacant grass lot at 516 Spring Street parcel facing southwest from Spring Street.

Vacant grass lot at 498 Spring Street parcel facing southwest from Spring Street.

498 Spring Street parcel facing northwest from Spring Street.



Driveway entrance to 490 Broadway facing east from Spring Street.



498 Spring Street parcel facing west from Spring Street.

Grass cover system at 490 Broadway facing northeast from driveway entrance on Spring Street.

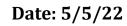
Grass cover system at 490 Broadway facing southeast from corner of Sycamore and Spring Street.

Grass cover system and signage at 490 Broadway facing south from Sycamore Street.

Grass cover system at 490 Broadway facing south from Sycamore Street.

Grass cover system at 490 Broadway facing southwest from corner of Sycamore and Mortimer Street.

Grass cover system at 490 Broadway facing west from Mortimer Street.


Driveway entrance to 490 Broadway facing west from Mortimer Street.

Grass cover system at 490 Broadway facing west from Mortimer Street.

Sidewalks and grass cover at 490 Broadway facing south from driveway entrance on Mortimer Street.

Sidewalks and grass cover at 490 Broadway facing south from driveway entrance on Mortimer Street.

Sidewalks and grass cover at 490 Broadway facing south from driveway entrance on Mortimer Street.

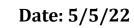


Building complex located at 490 Broadway Street facing west from across Mortimer Street

Building complex located at 490 Broadway Street facing northwest from the corner of Mortimer and Broadway Street.

Sidewalks and grass cover at 490 Broadway facing west along Broadway Street.

Driveway entrance to 490 Broadway facing north from Broadway Street.

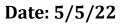


Sidewalks and grass cover at 490 Broadway facing east along Broadway Street.

Parking Lot and asphalt cover system located at 490 Broadway facing northeast from driveway entrance along Broadway Street.

Parking Lot and asphalt cover system located at 490 Broadway facing southeast from driveway entrance along Broadway Street.

Driveway and grass cover system located on southwest area of 490 Broadway parcel. Facing north.



Grass cover system located just west of building complex at 490 Broadway. Facing west from southern parking lot.

Driveway and grass cover system located on southwest area of 490 Broadway parcel. Facing west.

Driveway and grass cover system located on southwest area of 490 Broadway parcel. Facing north along Spring Street.

Northern parking lot/asphalt cover system at 490 Broadway. Facing east from west side of parking lot.

Driveway and grass cover system located on southwest area of 490 Broadway parcel. Facing east from Spring Street.

Northern parking lot/asphalt cover system at 490 Broadway. Facing south from north side of parking lot.

Play area located just south of northern parking lot. Facing south from northern parking lot.

Asphalt cover system in parking lot/driveway of 490 Broadway. Facing east.

Asphalt cover system in parking lot/driveway of 490 Broadway. Facing north.

Asphalt cover system in parking lot/driveway of 490 Broadway. Facing north.

Asphalt and grass cover system in parking lot of 490 Broadway. Facing north.

Asphalt and grass cover system in parking lot of 490 Broadway. Facing north.

Building complex at 490 Broadway facing south from northern driveway area.

Vacant grass lot at 233 Mortimer Street parcel facing southeast from Mortimer Street.

Vacant grass lot at 233 Mortimer Street parcel facing northwest from Matthews Street.

Vacant grass lot at 213 Mortimer Street parcel facing southeast from corner of Mortimer and Matthews Street.

Vacant grass lot at 213 Mortimer Street parcel facing southwest from Matthews Street.

Vacant grass lot at 213 Mortimer Street parcel facing northeast from corner of Mortimer and Matthews Street.

Vacant grass lot at 213 Mortimer Street parcel facing northwest from George Street.


Vacant grass lot at 187 Mortimer Street parcel facing southeast from George Street.

Vacant grass lot at 187 Mortimer Street parcel facing southwest from George Street.

Vacant grass lot at 187 Mortimer Street parcel facing northeast from the corner of Mortimer and Rey Street.

Vacant grass lot at 187 Mortimer Street parcel facing northwest from Rey Street.

Vacant grass lot at 498 Broadway Street parcel facing southeast from the corner of Mortimer and Rey Street.

Vacant grass lot at 498 Broadway Street parcel facing southwest from Rey Street.

Vacant grass lot at 498 Broadway Street parcel facing northeast from the corner of Mortimer and Broadway Street.