The Webster Block, 75 Main Street

ERIE COUNTY, NEW YORK

Final Engineering Report

NYSDEC Site Number: C915270

Prepared for:

HARBORCENTER DEVELOPMENT, LLC

1 SEYMOUR H. KNOX III PLAZA FIRST NIAGARA CENTER

BUFFALO, NEW YORK 14203

Prepared by:

C&S ENGINEERS, INC.

141 ELM STREET

BUFFALO, NEW YORK 14203

CERTIFICATIONS

I, Lowell Dewey, am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Interim Remedial Measure Work Plan/Alternative Analysis Report was implemented and that all construction activities were completed in substantial conformance with the Department-approved Interim Remedial Measure Work Plan.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Interim Remedial Measure Work Plan and in all applicable statutes and regulations have been or will be achieved in accordance with the time frames, if any, established in for the remedy.

I certify that all documents generated in support of this report have been submitted in accordance with the DER's electronic submission protocols and have been accepted by the Department.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Lowell Dewey, of 141 Elm Street, am certifying as Owner's Designated Site Representative for the site.

NYS Professional Engineer #

Date

Signature

TABLE OF CONTENTS

CE	RTIFICATIONSII
TA	BLE OF CONTENTSIII
LIS	T OF ACRONYMSV
FIN	AL ENGINEERING REPORT1
1.0	BACKGROUND AND SITE DESCRIPTION1
2.0	SUMMARY OF SITE REMEDY2
2.1	REMEDIAL ACTION OBJECTIVES2
	2.1.1 Groundwater RAOs2
	2.1.2 Soil RAOs2
2.2	DESCRIPTION OF SELECTED REMEDY 3
3.0	INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL
CO	NTRACTS4
3.1	INTERIM REMEDIAL MEASURES 4
4.0	DESCRIPTION OF REMEDIAL ACTIONS PERFORMED 5
4.1	GOVERNING DOCUMENTS 5
	4.1.1 Site Specific Health & Safety Plan (HASP)5
	4.1.2 Quality Assurance Project Plan (QAPP)5
	4.1.3 Storm-Water Pollution Prevention Plan (SWPPP)5
	4.1.4 Community Air Monitoring Plan (CAMP)6
	4.1.5 Community Participation Plan6

4.2	REMEDIAL PROGRAM ELEMENTS	7
	4.2.1 Contractors and Consultants	7
	4.2.2 Site Preparation	8
	4.2.3 General Site Controls	10
	4.2.4 Nuisance controls	. 11
	4.2.5 CAMP results	
	4.2.6 Reporting	. 12
4.3	CONTAMINATED MATERIALS REMOVAL	12
	4.3.1 Soil/Fill	. 13
4.4	REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING	15
4.5	IMPORTED BACKFILL	16
4.6	CONTAMINATION REMAINING AT THE SITE	16
4.7	DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN	17
LI	ST OF TABLES	18
LI	ST OF FIGURES	19
IJ	ST OF APPENDICES	20

LIST OF ACRONYMS

Acronym	Definition
AAR	Alternative Analysis Report
BCA	Brownfield Cleanup Agreement
ВСР	Brownfield Cleanup Program
DUSR	Data Usability Summary Report
FER	Final Engineering Report
HASP	Health and Safety Plan
IRM	Interim Remedial Measure
NYSDEC	New York State Department of Environmental Conservation
QAPP	Quality Assurance Project Plan
RAO	Remedial Action Objectives
RI	Remedial Investigation
SEQRA	State Environmental Quality Review Act
SVOC	Semi-Volatile Organic Chemicals
SWPPP	Stormwater Pollution Prevention Plan
VOC	Volatile Organic Chemical

FINAL ENGINEERING REPORT

1.0 BACKGROUND AND SITE DESCRIPTION

HARBORCenter Development, LLC entered into a Brownfield Cleanup Agreement (BCA), with the New York State Department of Environmental Conservation (NYSDEC) in March 2013, to investigate and remediate a 2.00 acre property located in Buffalo, New York. The property was remediated to restricted residential use, and will be used for HARBORCenter, a mixed use facility featuring several hundred parking spaces, two ice rinks, restaurant and retail space, and a hotel.

The site is located in the County of Erie, New York and is identified as Block 13and Lot 2 on the Buffalo Tax Map # 111.17. The site is situated on an approximately 2.00 acre area bounded by Scott Street to the north, Perry Street to the south, Washington Street to the east, and Main Street to the west (see Figure 1 and Figure 2). The boundaries of the site are fully described in Appendix A: Survey Map, Metes and Bounds.

The BCP boundary and BCA were modified twice after the original BCA was signed. The BCA was amended on April 24, 2013 as the BCP boundary was amended on the northeast side of the site due to the presence of a large buried fiber optic telecommunication duct and relay equipment. A second amendment to the BCA and boundary was completed on September 9, 2014 to reflect the excavation offset required due to the presence of a City of Buffalo water main.

The parcel and final BCP boundary varies in two locations due to utility constraints. Along the northeast corner of the site the BCP line does not match the parcel boundaries because of a fiber optic vault and cables and along the western edge of the site the boundary was offset to avoid a City of Buffalo water main.

An electronic copy of this FER with all supporting documentation is included as Appendix B.

2.0 SUMMARY OF SITE REMEDY

2.1 REMEDIAL ACTION OBJECTIVES

Based on the results of the Remedial Investigation, the following Remedial Action Objectives (RAOs) were identified for this site.

2.1.1 Groundwater RAOs

RAOs for Public Health Protection

• Prevent contact with, or inhalation of, volatiles emanating from contaminated groundwater.

RAOs for Environmental Protection

- Prevent the discharge of contaminants to surface water.
- Remove the source of ground water contamination.

2.1.2 Soil RAOs

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil.

RAOs for Environmental Protection

- Prevent migration of contaminants that would result in groundwater or surface water contamination.
- Prevent impacts to biota due to ingestion/direct contact with contaminated soil that would cause toxicity or bioaccumulation through the terrestrial food chain.

2.2 DESCRIPTION OF SELECTED REMEDY

The site was remediated in accordance with the remedy selected by the NYSDEC in the Decision Document dated October 28, 2014.

The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8. The following are the components of the selected remedy:

- 1. Construction of a shoring system to 24 feet below grade; and
- 2. Excavation of soil/fill exceeding residential SCOs listed in Table 1, to native material, which varied in depth from 10 to 11 feet, with 14 as the maximum depth in discrete areas.

3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS

The information and certifications made in the June 2014 Remedial Investigation, Interim Remedial Measure, Alternatives Analysis Report and the March 2013 Remedial Investigation / Interim Remedial Measure Work Plan were relied upon to prepare this report and certify that the remediation requirements for the site have been met.

3.1 INTERIM REMEDIAL MEASURES

As described in the NYSDEC approved Remedial Investigation (RI) / Interim Remedial Measure (IRM) Work Plan, the Site remedy was completed as an IRM and consisted of:

- Installation of a shoring system to 24 feet below grade, to allow for the excavation to approximately 12 feet across the Site;
- excavation of impacted soil/fill to an approximate depth of 10 to 12 feet across the Site;
- disposal of impacted soils at licensed disposal facilities;
- confirmatory sampling;
- backfilling and grading the Site to provide a base for the construction of HARBORCenter; and
- removal of the shoring system.

Additional details are provided in Section 4.0 of this report.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved RI/IRM Work Plan for the Webster Block site (March 2013). Following completion of the IRM an Alternatives Analysis Report (AAR) was prepared to establish the final site remedy. The mass excavation was successful in remediating the site, therefore, no additional remedial work was required, and no engineering or institution controls were required.

The RI/IRM Work Plan was the controlling document and was in essence a Remedial Action Work Plan. All deviations from the IRM Work Plan are noted below.

4.1 GOVERNING DOCUMENTS

4.1.1 Site Specific Health & Safety Plan (HASP)

All remedial work performed under this Remedial Action was in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA.

The Health and Safety Plan (HASP) was complied with for all remedial and invasive work performed at the Site. The HASP was included as Appendix F of the NYSDEC approved Remedial Investigation/Interim Remedial Measures Work Plan.

4.1.2 Quality Assurance Project Plan (QAPP)

The QAPP was included as Appendix G of the RI/IRM Work Plan approved by the NYSDEC. The QAPP describes the specific policies, objectives, organization, functional activities and quality assurance/ quality control activities designed to achieve the project data quality objectives.

4.1.3 Storm-Water Pollution Prevention Plan (SWPPP)

The site drains to a Buffalo Sewer Authority combined sewer and, as such, a site specific Stormwater Pollution Prevention Plan was not required, however, erosion and sediment control measures were implemented.

The erosion and sediment controls for all remedial construction were performed in conformance with requirements presented in the New York State Guidelines for Urban Erosion and Sediment Control.

4.1.4 Community Air Monitoring Plan (CAMP)

Air monitoring was performed at all times when mass excavation was being conducted. Previous sampling results indicated that VOCs were not an air quality contaminant of concern for the Site. Dust containing metals and SVOCs from urban fill was a concern during mass excavation.

A Community Air Monitoring Plan (provided as Appendix E to the RI/IRM Work Plan) was developed and implemented for this Site. Two particulate monitors were used at an upwind and downwind location. Measurements of particulate (dust) concentrations were continuously monitored and logged every 15 minutes. Air monitors were moved throughout the day, (as needed) as winds shifted direction. Due to the wind conditions on site the monitors were moved multiple times, including more than once on some days; there were no permanent locations of the monitors.

During excavation, the greatest concern for the production of fugitive dust was from trucks driving across the Site and onto Scott Street. If downwind concentrations exceeded 0.15 mg/m³ over 15 minutes, or if excessive visible dust on the roads and air were visually observed, dust suppression measures were to be implemented. These measures included using a water truck to wet the surface of any area that was producing dust and wetting/sweeping sediment from public roadways around the Site.

The action level for VOC concentrations was set at 5 parts per million above background for the 15-minute average. If this was exceeded work would be temporarily halted and monitoring continue, however, this was not required during the remediation.

4.1.5 Community Participation Plan

A Citizen Participation Plan (CPP) was included as Appendix D of the approved RI/IRM Work Plan. The plan met the technical guidance promulgated by the NYSDEC for Brownfield Cleanup Program (BCP) sites.

After the NYSDEC received a complete application a public notice was placed in the Buffalo News, which was followed by a 30-day public comment period. A fact sheet was also prepared for the publication of the IRM Work Plan, which also included a 30-day comment period.

Copies of BCP application and RI/IRM Work Plan for the Site were made available at the NYSDEC Region 9 office and the Buffalo and Erie County Public Central Library at 1 Lafayette Square, Buffalo, NY.

4.2 REMEDIAL PROGRAM ELEMENTS

4.2.1 Contractors and Consultants

C&S Engineers served as the Engineer of Record. The following contractors also completed various tasks as noted:

- TestAmerica Laboratories, Inc. performed analytical analysis related to the RI and IRM activities;
- Data Validation Services reviewed and validated analytical data packages from Test America Laboratories;
- Paradigm Environmental Services performed analytical analysis related to waste characterization;
- Mortenson Construction preformed excavation and loading of soil/fill;
- Mark Cerrone Inc performed excavation
- Darling Construction installed the shoring for the excavation
- Pinto Construction Services assisted with excavation and backfilling
- Ferguson Electric relocated the catenary poles for the MetroRail System
- Pariso Logistics Inc coordinated the trucking of soil/fill from the Site for disposal at either Waste Management – Chafee Landfill in Chaffee, NY or Modern Landfill in Model City NY. Contracted trucking companies were
 - o Anastasi Trucking;
 - o BTS:
 - o B Pariso Transport Inc;
 - o C Bell Trucking;
 - o Carmen M Pariso, Inc;
 - o Dig It of New York;
 - o Doran Trucking Co;

- o GAM Trucking Corp;
- o Geiter Done of WNY Inc;
- o Gernatt Asphalt;
- o GJ Lloyd Enterprises Inc;
- o Hojnowski Transport;
- o Ingalls Site Development;
- o J&J Trucking;
- o KWH Trucking;
- o Lewiston;
- o Marran Co Inc:
- o Pariso Logistics, Inc including the following doing business as (dba):
 - Antonicelli Construction;
 - John A Buscaglia;
 - Design Excavation;
 - Earth Co
 - Visone Construction Inc;
 - LJ Quigliano II Inc;
- o Paul T. Founier Enterprises, Inc;
- o RED Inc;
- o Russo Development;
- Michael J Serafini Inc;
- Walck Trucking;
- o Zoladz Construction Co.

4.2.2 Site Preparation

In March 2013, prior to any on Site activities, Iroquois Fence, Inc installed chainlink fencing and jersey barriers around the entire perimeter of the Site; access was permitted on Scott and Perry Streets. The previous use was as a parking lot, therefore, no grubbing was required Site.

Erosion and sediment controls consisted of stabilized construction entrance on Scott Street and drainage structure inlet protection using either a 12" high wall of gravel bags or placing filter socks at inlets.

A licensed surveyor from Foit-Albert Associates completed all utility layouts.

Major utilities that ran through the Site, Main Street, Perry Street and Washington Street were relocated by Pinto Construction and Ferguson Electric prior to mass excavation. All utilities within the area of mass excavation were dead and removed from the Site.

RI work began in April 2013. Prior to mass excavation for the IRM, an earth retention system was installed using sheet piles placed around the entire perimeter of excavation. Sheet piles were installed using a vibrating hammer mounted on a crane. Sheet piles were installed to 24 feet below ground surface.

On the northwest corner of the Site excavations extended past the designed earth holding capacity of the sheet pile, additional bracing on the northwest corner of the earth retention system was utilized.

A meeting was held on-site with NYSDEC, Mortenson and C&S personnel prior to the commencement of the IRM. NYSDEC personnel periodically inspected the Site during IRM and remained in contact with C&S throughout all remedial activities. Mass excavation activities concluded in May 2013.

NYSDEC personnel were called to the Site to inspect the only deviation from the IRM work plan, the change in the BCP boundary. During the field work it was discovered that a City of Buffalo water main was located significantly closer to the shoring wall than indicated on City Engineering drawings. In order to maintain service to a large portion of downtown, the shoring and associated excavation area was offset a minimum of 1 to a maximum of 5 feet the east. Prior to construction this main was thought to be located outside of the BCP boundary. The NYSDEC was on-site to confirm the location of the pipe and document leaving the soils in place at this location.

The BCP boundary and BCA were modified twice after the original BCA was signed. The BCA was amended on April 24, 2013 as the BCP boundary was amended on the northeast side of the site due to the presence of a large buried fiber optic telecommunication duct and relay equipment. A second amendment to the BCA and boundary was completed on September 9, 2014 to reflect the excavation offset required due to the presence of a City of Buffalo water main.

Non-agency permits relating to the remediation project are provided in Appendix C.

All SEQRA requirements and all substantive compliance requirements for attainment of applicable natural resource or other permits were achieved during this Remedial Action.

A NYSDEC-approved project sign was erected at the project entrance and remained in place during all phases of the Remedial Action.

4.2.3 General Site Controls

The entire Site was secured using chain-link fencing and pad-locked gates. All visitors were required to sign in at Mortenson's field office prior to access and sign out when leaving.

C&S completed daily work reports to track daily activities, deviations from the work plan, progress of remedial activities, and meetings with NYSDEC personnel. These daily work reports are included in Appendix D.

Although a SWPPP was not required, erosions and sediment controls were utilized on-site. Erosion and sediment controls consisted of a stabilized construction entrance on Scott Street and drainage structure inlet protection using either a 12" high wall of gravel bags or placing filter socks at inlets. Trucks exited the Site onto Scott Street. Scott Street was swept using a water truck and a brush mounted onto a skid steer. Scott Street was cleaned of all sediment as needed throughout the day and at the end of the work day.

Mass excavation began on the south end of the BCP Area and proceeded north. Soils/fill were direct loaded onto trucks and transported directly to the landfill for disposal.

Prior to the beginning of the mass excavation, soil/fill removed for utility relocation was stockpiled on the center of the Site (See Figure 3). Soil/fill was placed on one layer of overlapping 6 millimeter poly sheets. The stockpile was bounded using

overlapping filter socks. This stockpile was disposed of at an off-site landfill like all soil/fill removed from the site. No material was reused on-site.

Equipment decontamination occurred at the completion of IRM activities.

Decontamination procedures consisted of brushing clean loose debris and soil from equipment. All removed soil was disposed in the same manner as all impacted soil/fill.

4.2.4 Nuisance controls

Trucks exited the Site onto Scott Street. Scott Street was swept using a water truck and a brush mounted onto a skid steer. Scott Street was cleaned of all sediment as needed throughout the day and at the end of the work day. No truck wash was located on-site.

C&S conducted air monitoring during all mass excavation activities. Dust was generated from temporary truck access roads and from sediment on the construction entrance. If the particulate monitors recorded elevated dust levels or if visible offsite migration of dust was observed, water was sprayed on the surface and sediment cleaned with a brush mounted on a skid steer.

No odor control was required during the implementation of the IRM Work Plan.

4.2.5 CAMP results

Two particulate monitors were used, an upwind and downwind location. Measurements of particulate (dust) concentrations were continuously monitored and logged every 15 minutes. Air monitors were moved throughout the day, (as needed) as winds shifted direction. Due to the wind conditions on site the monitors were moved multiple times, including more than once on some days; there were no permanent locations of the monitors.

During excavation, the greatest concern for the production of fugitive dust was from trucks driving across the Site and onto Scott Street. When downwind concentrations exceeded 0.15 mg/m³ over 15 minutes, or if excessive visible dust on the roads and air were visually observed, dust suppression measures were to be implemented.

Exceedances for dust occurred on the following dates:

- April 18
- April 30
- May 3
- May 6
- May 7
- May 14
- May 15
- May 16

- May 29
- May 30
- May 31
- June 1
- June 3
- June 4
- June 5

Dust suppression methods were undertaken included using a water truck to wet the surface of any area that was producing dust and wetting/sweeping sediment from public roadways around the Site.

No exceedances of VOC concentrations occurred during the mass excavation.

Copies of all field data sheets relating to the CAMP are provided in electronic format in Appendix E

4.2.6 Reporting

During all remedial activities, C&S personnel was on-site and recorded notable activities; these notes were then formalized in a daily report. The daily reports were then summarized into a monthly report that was submitted to the NYSDEC.

All daily and monthly reports are included in electronic format in Appendix D.

The digital photo log required by the RI/IRM Work Plan is included in electronic format in Appendix F.

4.3 CONTAMINATED MATERIALS REMOVAL

Cleanup Objectives for the Site included the implementation of remedial measures to protect human health and the environment to below Part 375 Restricted Residential SCOs. On-site contamination was related to the historic unconfined deposition of fill, the remedy was mass excavation of the fill and any impacted soil.

A list of the soil cleanup objectives (SCOs) for the contaminants of concern for this project is provided in Table 1.

A figure of the location of original sources and areas where excavations were performed is shown in Figure 4.

4.3.1 Soil/Fill

On-site contamination was related to the historic unconfined deposition of fill. The IRM was mass excavation of the fill and any impacted soil. The excavation occurred over the entire horizontal extent of the Site and the depth was generally to a depth of 10 feet. Impacted soil/fill was excavated and loaded into dump trucks for off-site disposal.

Contour maps of estimated cut and fill thicknesses for remedial activities at the site are included in Figures 5 and 6.

4.3.1 Disposal Details

Excavation of impacted soil/fill started on April 17, 2013 and continued until June 11, 2013. In total 58,704.56 tons of contaminated material was removed from the site and disposed of offsite; 23,688.62 tons were sent to Waste Management Landfill in Chafee, NY Permit ID 9-1462-00001/00006 and 35,015.95 tons were sent to Modern Landfill in Lewiston, NY Permit ID 9-2924-00016/00043.

Waste Characterization sampling was completed by Mark Cerrone and analyzed by Paradigm Environmental Services, Inc.

Transport to the landfills was completed by a number of companies, due to the construction timeline and the volume of material. Those firms and their transport numbers are:

- o Anastasi Trucking (Permit #9A-836);
- o B.T. S Services, Inc (Permit # 9A-763);
- o B Pariso Transport Inc (Permit # 9A-591);
- o C Bell Trucking (Permit # 9A-857);
- o Carmen M Pariso, Inc (Permit # 9A-035);
- o Dig It of New York (Permit # 9A-786);
- o Doran Trucking Co;
- o GAM Trucking Corp (Permit # 9A-745);
- o Geiter Done of WNY Inc (Permit # 9A-750);
- o Gernatt Asphalt (Permit # 9A-537);
- o GJ Lloyd Enterprises Inc (Permit # 9A-717);

- o Hojnowski Transport (Permit # 9A-790);
- o Ingalls Site Development Inc (Permit # 9A-825);
- o J&J Trucking (Permit # 9A-864);
- o KWH Trucking (Permit #9A-852);
- o Lewiston;
- o Marran Co Inc (Permit # 9A-683);
- Pariso Logistics, Inc (Permit # 9A-826) including the following doing business as (dba):
 - Antonicelli Construction;
 - John A Buscaglia;
 - Design Excavation;
 - Earth Co
 - Visone Construction Inc;
 - LJ Quigliano II Inc;
- o Paul T. Founier Enterprises, Inc (Permit # 9A-749);
- o Regional Environmental Demolition Inc (Permit # 9A-856);
- o Russo Development (Permit #9A-776);
- o Michael J Serafini Inc (Permit # 9A-737);
- Walck Trucking;
- o Zoladz Construction Company, Inc (Permit # 9A-499).

Table 2 shows the total quantities of fill/soil removed from the site and the disposal locations. A summary of the samples collected to characterize the waste, and associated analytical results are summarized on Table 3. Five samples were collected for waste characterization, four were grab samples and one was a composite sample. Samples were taken from the four quadrants of the site and the composite was from across the site. All were analyzed for TCLP Metals and the composite was for TCLP VOCs, SVOCs, Metals, PCB, ph and flash.

Table 2 - Quantities of Material Removed and Disposal Site

Material	Disposal Site	Volume in tons
Hardscape/Concrete Ruble	Bataglia	2160*
Ruble	Swift River	100*
	Peabody	180*
	Modern Landfill	35,015.95

Contaminated	Waste Management	23,688.62
Soil/Fill		

^{*}Volume for Hardscape and soil disposal is estimated at 20 tons per truckload.

Letters from Applicants to disposal facility owners and acceptance letters from disposal facility owners are attached in Appendix G.

Manifests and bills of lading are included in electronic format in Appendix G.

4.4 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING

In total 43 end-point samples were collected. All were taken from the bottom depth of excavation, organized along an interior grid measuring 50 ft by 50 ft.

Approximate locations of these samples are shown on Figure 7. Samples of the BCP Boundary were collected during excavation for the shoring. These samples were collected from approximately 3 to 10 feet BGS every 50 feet along the BCP Boundary.

The excavation of source materials and impacted soils remediated the area to Restricted Residential SCO or better, excluding one (1) anomalous detection of Mercury (See Table 4).

A table and figure summarizing all end-point sampling is included in Table 4 and Figure 7, respectively, and all exceedances of SCOs are highlighted.

Appendix H contains copies of all the laboratory analytical data.

Quality control samples were collected from the samples to characterize the contamination and document the IRM activities. The IRM Work Plan stated that 20% of the samples would be collected in accordance with the QAPP.

100 soil samples were collected during the IRM activities; 20 QAPP samples were taken, ten blind duplicates and ten Matrix Spike/Matrix Spike Duplicates; eight groundwater samples were collected as well as one blind duplicate and one Matrix Spike. This meets the 20% criteria.

Data Usability Summary Reports (DUSRs) were prepared for all data generated in this remedial performance evaluation program. These DUSRs are included in Appendix I, and associated raw is provided electronically in Appendix H.

4.5 IMPORTED BACKFILL

Once finished depth was reached, and conditions were documented and surveyed, clean fill (crushed stone) was brought on-site and placed in two to three foot lifts.

Backfilling occurred concurrent with excavation activities; as excavation of the Site moved north, backfilling was conducted south to north.

The crushed rock backfill was obtained from Buffalo Crushed Stone's Como Park facility in Cheektowaga, New York, and was approved for use by the NYSDEC on May 8, 2013 (see Appendix J).

A table of all sources of imported backfill with quantities for each source is shown in Table 5. Tables summarizing chemical analytical results for backfill, in comparison to allowable levels, are provided in Appendix J. A figure showing the site locations where backfill was used at the site is shown in Figure 6.

Buffalo Crushed Stone 13,028 cubic yards

Table 5 - Backfill Source and Volume

4.6 CONTAMINATION REMAINING AT THE SITE

Table 4 and Figure 7 summarize the results of all soil samples remaining at the site after completion of Remedial Action that exceed the Track 1 (unrestricted) SCOs.

Figure 7 summarizes the results of all soil samples remaining at the site after completion of the remedial action that meet the SCOs for unrestricted use of the site.

The soil remaining on-site is below Restricted Residential, excluding one anomalous mercury detection and is covered by a minimum of 8 feet of clean crushed stone fill. The entire BCP Site was then capped with a concrete floor and a buildings ranging from 7 to 14 stories in height, and therefore, does not require Institutional or Engineering Controls.

The RI sampling identified groundwater with exceedances of metals and one well with exceedances of SVOCs, however groundwater is deeper than 12 feet and the source of the contamination, urban fill, was removed. Additionally, in the City of Buffalo groundwater is prohibited from being used as drinking water.

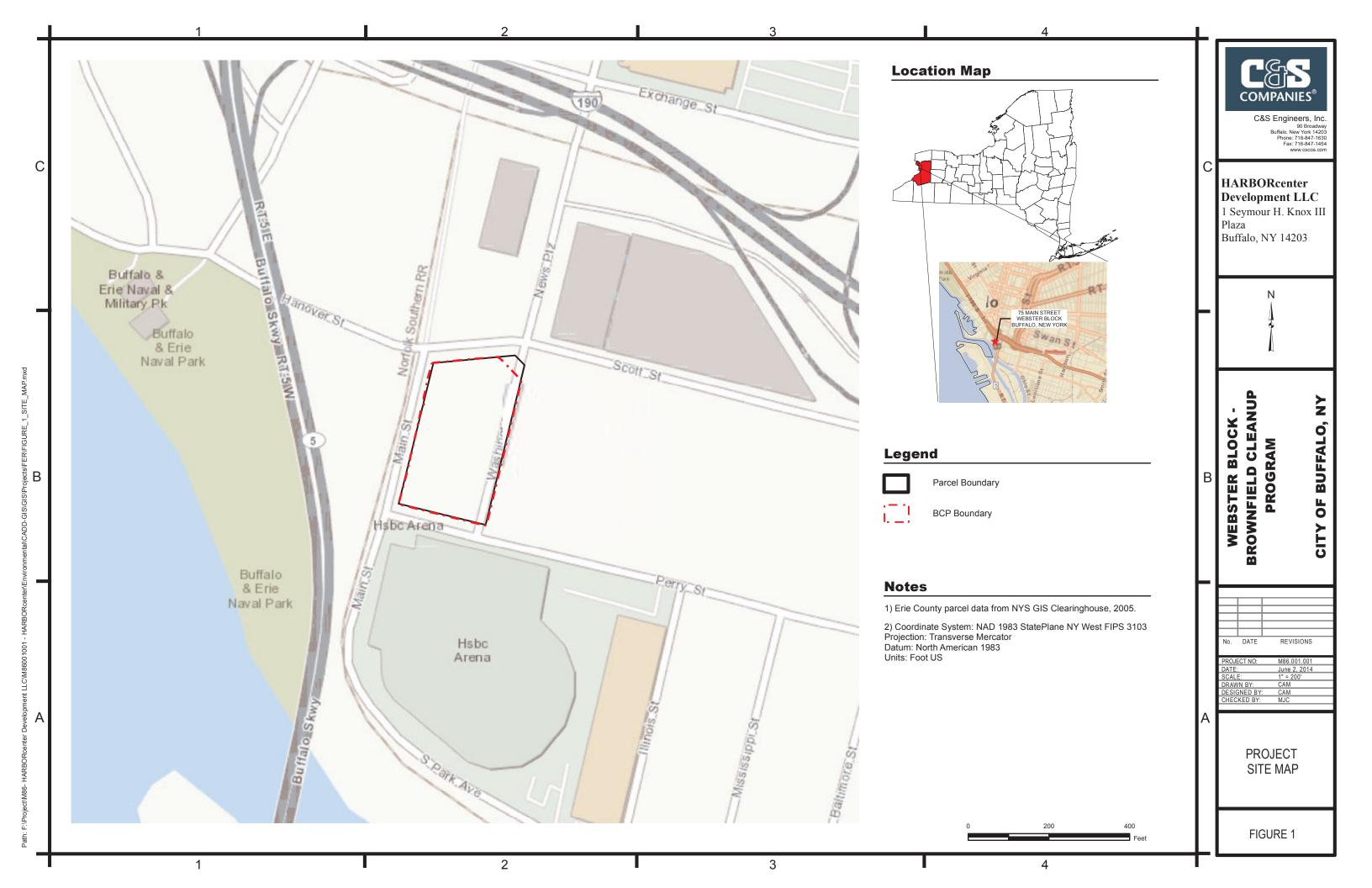
4.7 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN

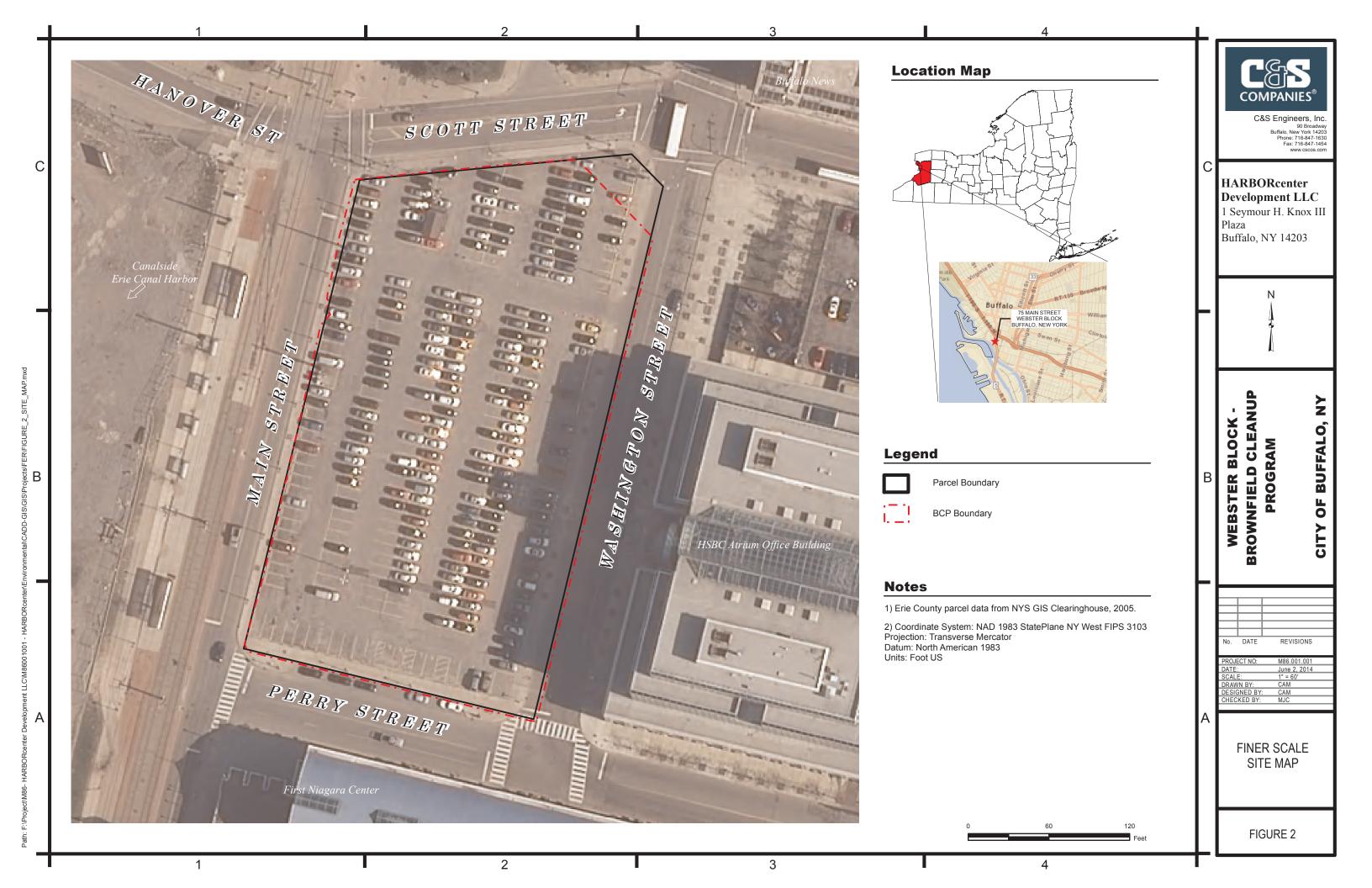
NYSDEC personnel was called to the Site to inspect the one deviation to the IRM work plan, the change in the BCP boundary. During the fields work it was discovered that a large water main was located immediately adjacent to the shoring. Prior to construction this main was thought to be located outside of the BCP boundary. The NYSDEC was on-site to confirm the location of the pipe and approve leaving the soils in place at this location. This resulted in a slight change in the BCP boundary but had no other substantive affect on the project.

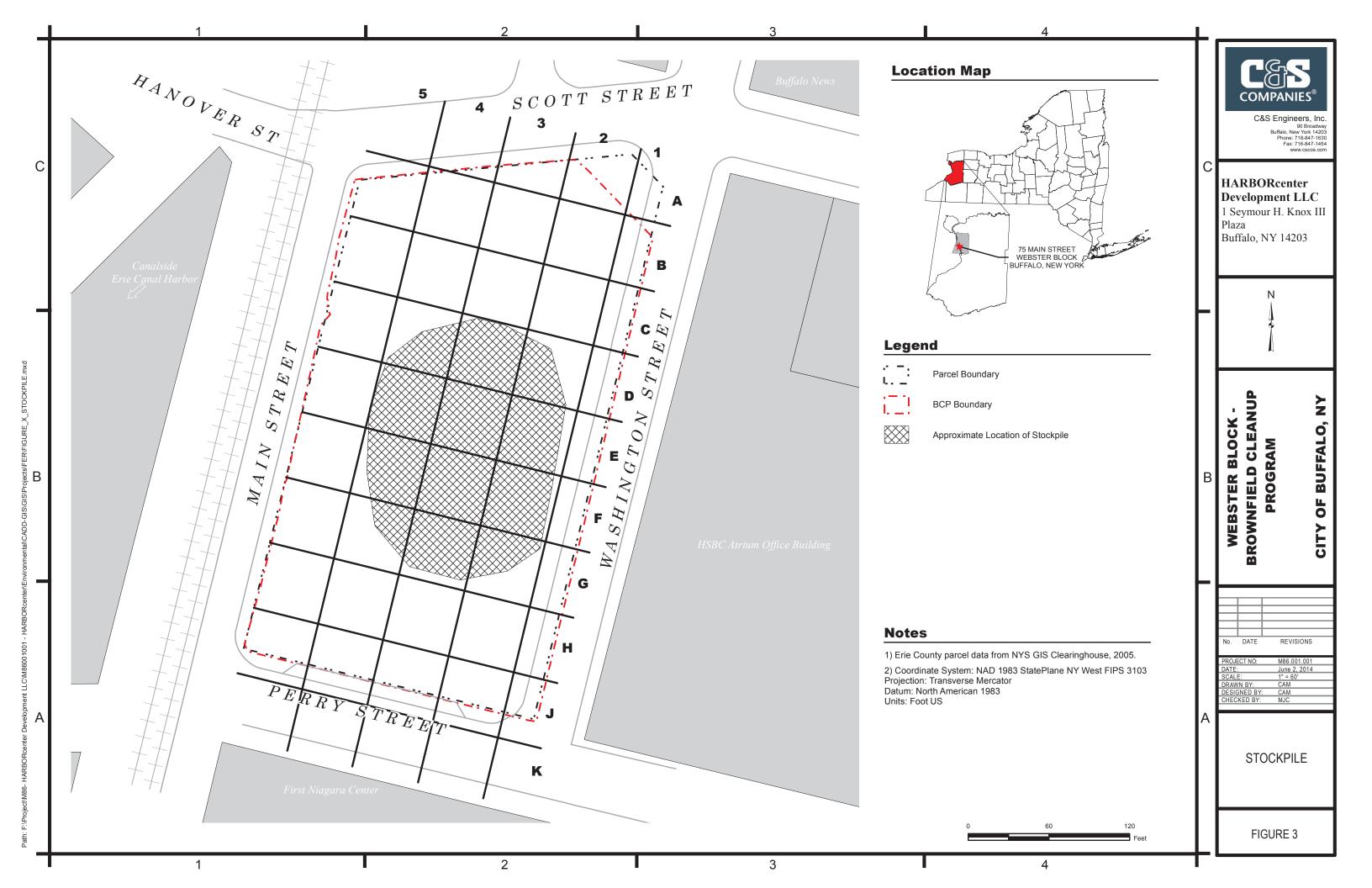
LIST OF TABLES

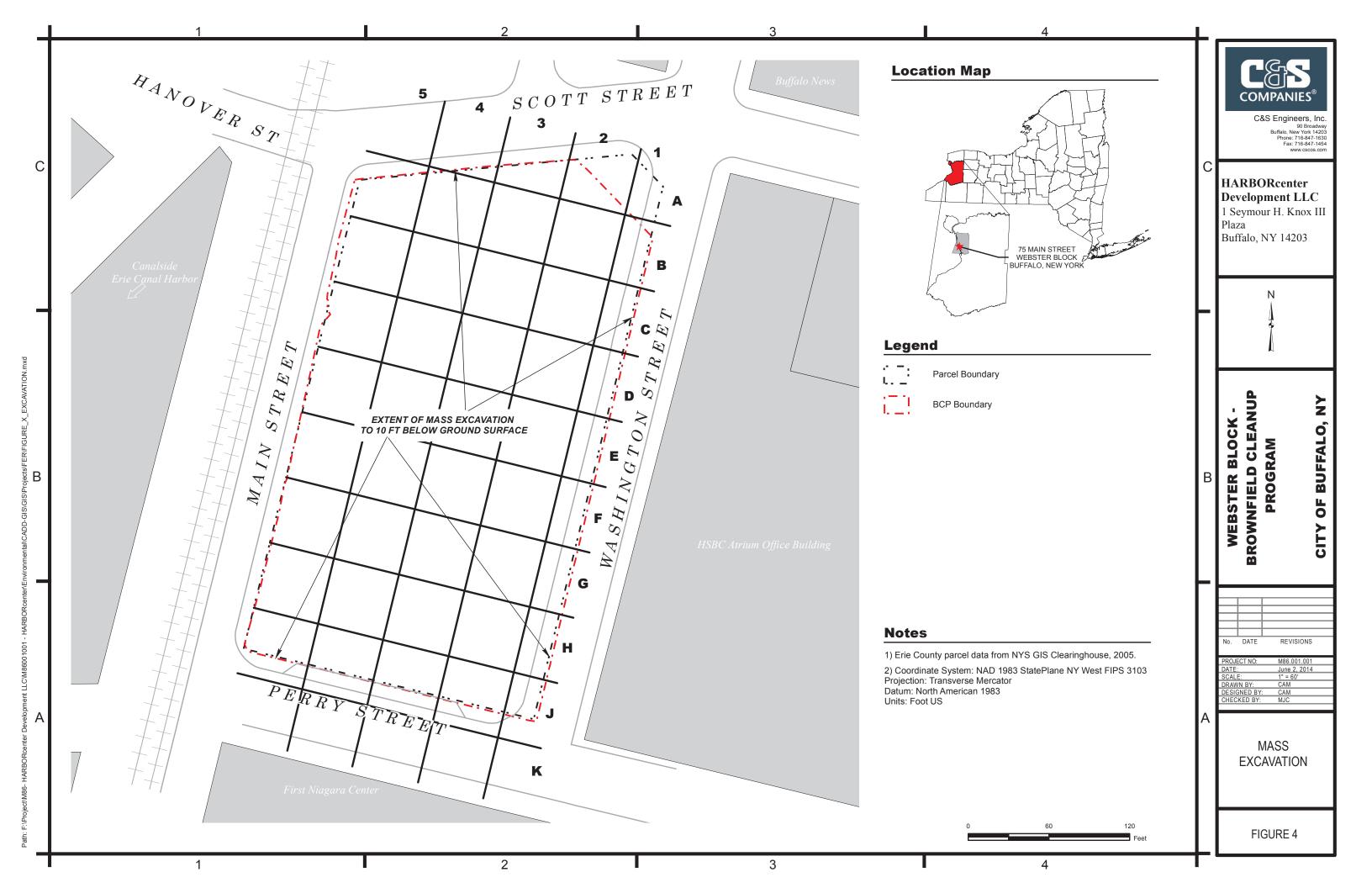
- Table 1 Soil Cleanup Objectives (SCOs) for the Project
- Table 3 Waste Characterization Samples by Area and/or Material Type
- Table 2 Offsite Soil/ Waste Disposal Volumes and Facilities
- Table 4 Remedial Performance/Documentation Sampling Results (by Area) and Soils Exceeding Unrestricted SCOs After the Remedial Action
- Table 5 Backfill Quantities and Sources

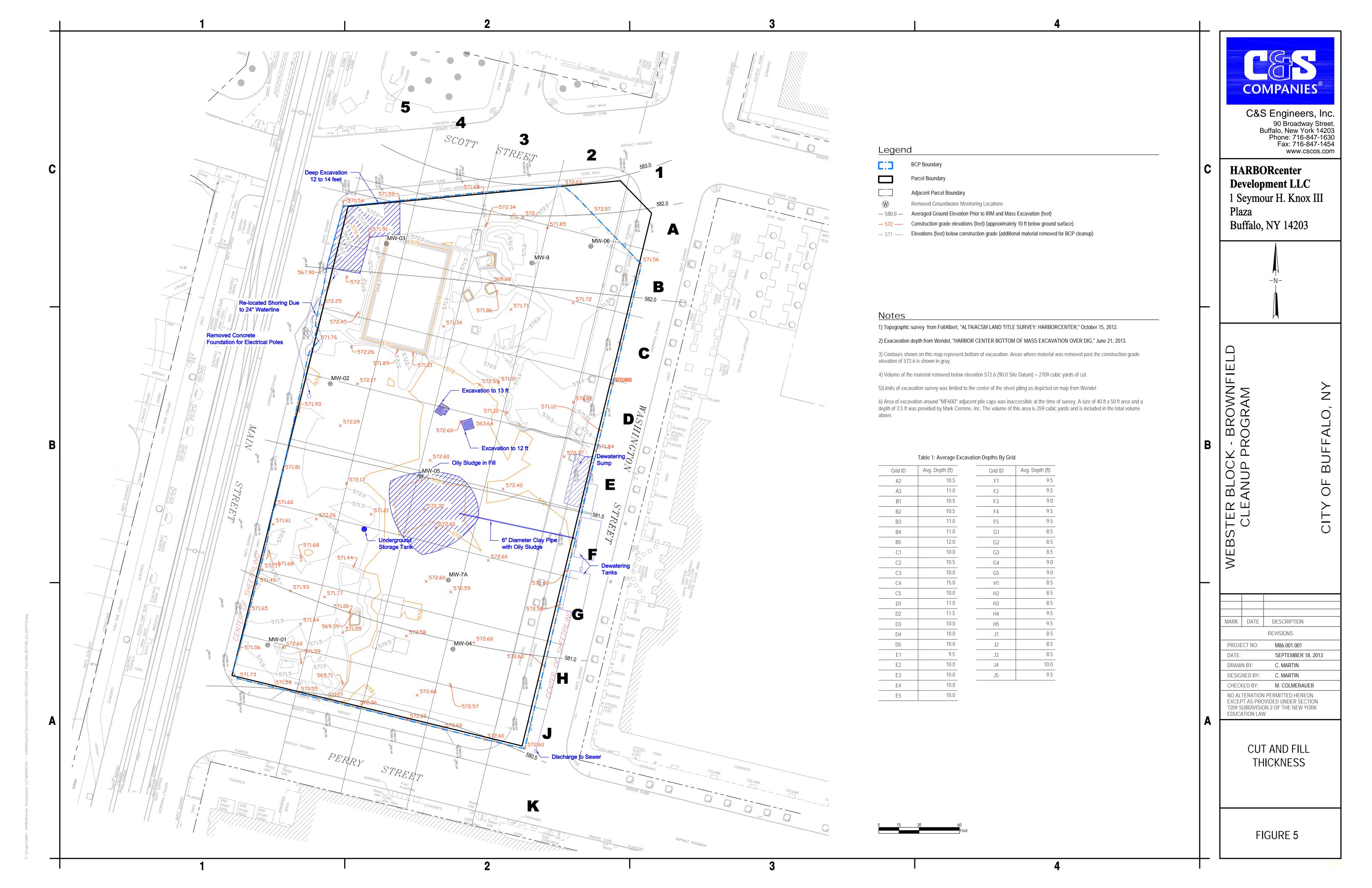
LIST OF FIGURES

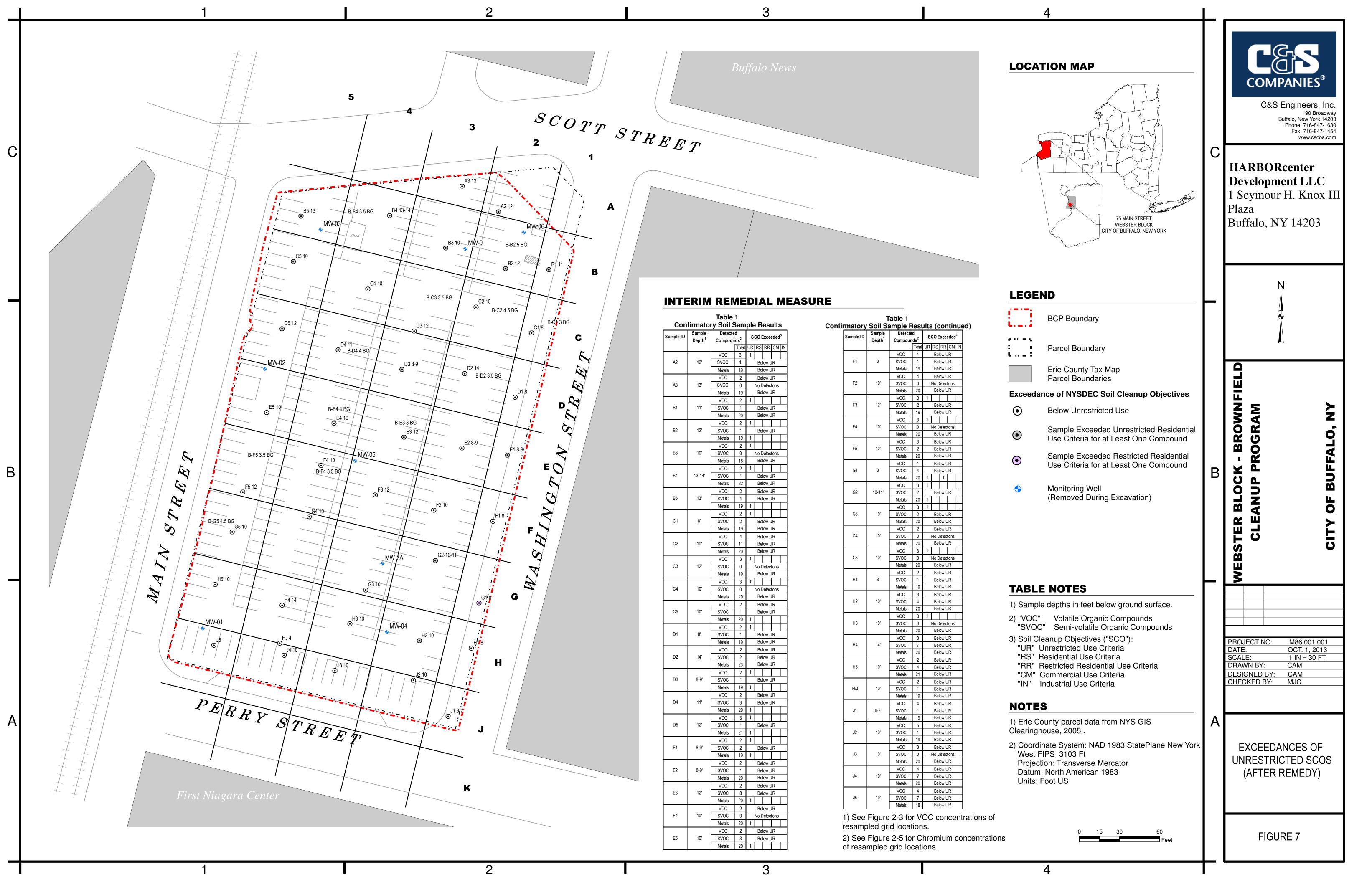

- Figure 1 Project Site Map
- Figure 2 Finer Scale Site Map
- Figure 3 Soil Stockpile Areas,
- Figure 4 Areas Where Excavations Were Performed
- Figure 5 Contour Maps of Cut and Fill Thicknesses
- Figure 6 Figure of Backfill Placement Locations
- Figure 7 Exceedances of Unrestricted SCOs (After Remedy)


Remaining Contamination Figure (See Figure 7)


LIST OF APPENDICES


- Appendix A Survey Map, Metes and Bounds
- Appendix B Digital Copy of the FER (CD)
- Appendix C Remediation- Related Permits
- Appendix D Daily and Monthly Reports (CD)
- Appendix E -CAMP Field Data Sheets and Air Monitoring Data (Incl. CD)
- Appendix F Project Photo Log (CD)
- Appendix G Soil /Waste Characterization Documentation
- (G.1) Waste Hauler Permit Certificates
- (G.2) Disposal Facility Approval and Approval Letters
- (G.3) Facility Permit Certificates
- (G.4) Tabulated Load Summaries
- (G.5) Waste Manifests or Bills of Lading (CD)
- Appendix H Raw Analytical Laboratory Data (Incl. CD)
- Appendix I DUSRs For All Endpoint Samples (Incl CD)
- Appendix J Imported Materials Documentation


FIGURES



Tables

NYSDEC Soil Cleanup Objectives	• *											
Contaminate	Restricted											
Volatile Organic Compounds	Residential											
1,1,1-TRICHLOROETHANE	100											
1,1-DICHLOROETHANE	26											
1,1-DICHLOROETHENE	100											
1,2-DICHLOROBENZENE	100											
1,2-DICHLOROETHANE	3.1											
1,3-DICHLOROBENZENE	49											
1,4-DICHLOROBENZENE	13											
ACETONE	100											
BENZENE	4.8											
CARBON TETRACHLORIDE	2.4											
CHLOROBENZENE	100											
CHLOROFORM	49											
CIS-1,2-DICHLOROETHYLENE	100											
ETHYLBENZENE	41											
METHYL ETHYL KETONE (2-BUTANONE)	100											
METHYLENE CHLORIDE	100											
TERT-BUTYL METHYL ETHER	100											
TETRACHLOROETHYLENE(PCE)	19											
TOLUENE	100											
TRANS-1,2-DICHLOROETHENE	100											
TRICHLOROETHYLENE (TCE)	21											
VINYL CHLORIDE	0.9											
XYLENES, TOTAL	100											
Semi-Volatile Organic Compounds												
2-METHYLPHENOL (O-CRESOL)	100											
4-METHYLPHENOL (P-CRESOL)	100											
ACENAPHTHENE	100											
ACENAPHTHYLENE	100											
ANTHRACENE	100											
BENZO(A)ANTHRACENE	1											
BENZO(A)PYRENE	1											
BENZO(B)FLUORANTHENE	1											
BENZO(G,H,I)PERYLENE	100											
BENZO(K)FLUORANTHENE	3.9											
CHRYSENE	3.9											
DIBENZ(A,H)ANTHRACENE	0.33											
DIBENZOFURAN	59											
FLUORANTHENE	100											
FLUORENE	100											
HEXACHLOROBENZENE	1.2											
INDENO(1,2,3-C,D)PYRENE	0.5											
NAPHTHALENE	100											
PENTACHLOROPHENOL	6.7											

Site C915270

Contaminate	Restricted Residential
PHENANTHRENE	100
PHENOL	100
PYRENE	100
Metals	
ARSENIC	16
BARIUM	400
BERYLLIUM	72
CADMIUM	4.3
CHROMIUM, HEXAVALENT	110
CHROMIUM, TRIVALENT	180
COPPER	270
TOTAL CYANIDE	27
LEAD	400
MANGANESE	2000
MERCURY	0.81
NICKEL	310
SELENIUM	180
SILVER	180
ZINC	10000
PCBs/Pesticides	
2,4,5-TP Acid (Silvex)	100 ^a
4,4'-DDE	8.9
4,4'-DDT	7.9
4,4'-DDD	13
Aldrin	0.097
alpha-BHC	0.48
beta-BHC	0.36
Chlordane (alpha)	4.2
delta-BHC	100 ^a
Dibenzofuran	59
Dieldrin	0.2
Endosulfan I	24
Endosulfan II	24 ⁱ
Endosulfan sulfate	24 ⁱ
Endrin	11
Heptachlor	2.1
Lindane Polychlorinated biphenyls	1.3
1 oryentormated orphenyis	1

Sample Location		South	East	North	West	Composite
Sample Date	Regulatory Limit	3-Apr-13	3-Apr-13	3-Apr-13	3-Apr-13	3-Apr-13
Matrix		Soil	Soil	Soil	Soil	
Units	mg/l					
Contaminate	Commercial					
TCLP Metals						
ARSENIC	5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BARIUM	100	1.2	0.806	0.794	0.919	0.87
CADMIUM	1	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
CHROMIUM, TOTAL	4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
LEAD	5	<1.0	< 0.1	< 0.1	< 0.1	< 0.1
MERCURY	0.2	< 0.002	<.002	<.002	<.002	<.002
SELENIUM	1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SILVER	5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
TCLP Volatile Organic Compour	nds					
1,1-DICHLOROETHENE	700					<20
1,2-DICHLOROETHANE	500					<20
METHYL ETHYL KETONE (2-BUTANONE)	200000					<100
BENZENE	500					<20
CARBON TETRACHLORIDE	500					<20
CHLOROBENZENE	100000					<20
CHLOROFORM	6000					<20
TETRACHLOROETHENE	700					<20
TRICHLOROETHENE	500					<20
VINYL CHLORIDE	200					<20
TCLP Semi-Volatile Organic Compo				ı	ı	1
1,4-DICHLOROBENZENE	7500					<40
2,4,5 TRICHLOROPHENOL	400000					<80
2,4,6 TRICHLOROPHENOL	200					<40
2,4 DINITROTOLUENE	130					<40
CRESOLS (as M,P,O-CRESOL)	200000					<40
HEXACHLOROBENZENE	130					<40
HEXACHLOROBUTADIENE	500					<40
HEXACHLOROETHANE	3000					<40
NITROBENZENE	2000					<40
PENTACHLOROPHENOL	100000					<80
PYRIDINE	5000					<40
PCBs					l	10.426
PCB-1221						<0.436
PCB-1221 PCB-1232						<0.436 <0.436
PCB-1232 PCB-1242						<0.436
PCB-1242 PCB-1248						<0.436
PCB-1254						<0.436
PCB-1260						<0.436
PCB-1262						<0.436
PCB-1268						<0.436
OTHER						\U.43U
рН						8.49 @20 C
Flash Point						>70
			1	I .	1	_ ,,,

Sample Location	NYSDEC Soi	l Cleanup Ob	jectives			A2	A3	B1	B2	В3	B4	В5	C1	C2	C3	C4	C5	D1	D2	D3
Sample Depth						12'	13'	11'	12'	10'	13'-14''	13'	8'	10'	12'	10'	10'	8'	14'	8'-9'
Sample Date						3-May-13	16-May-13	30-Apr-13	3-May-13	23-Apr-13	3-May-13	3-May-13	30-Apr-13	19-Apr-13	24-Apr-13	22-Apr-13	3-May-13	30-Apr-13	23-Apr-13	21-May-13
Matrix						Soil														
Units						mg/kg														
Contaminate	Unrestricted	Residential	Restricted Residential	Commercial In	dustrial															
Volatile Organic Compounds			·																	
ACETONE	0.05	100	100	500	1000	0.28	0.03	0.098	0.071	0.054J	0.075	0.04	0.073	0.02J	0.12	0.12	0.05	0.3	0.042J	0.056
ETHYLBENZENE	1	30	41	390	780	ND<0.0005 5U	ND<0.0003 U	ND<0.0004 8U	ND<0.000 32U	ND<0.0004 1U	ND<0.000 37U	ND<0.000 35U	ND<0.0004 2U	0.00036J	ND<0.0003 7U	ND<0.0004 5U	ND<0.000 35U	ND<0.0004 1U	ND<0.0003 6U	ND<0.0003 7U
METHYL ETHYL KETONE (2- BUTANONE)	0.12	100	100	500	1000	0.089	0.0046J	0.023J	0.012J	0.011J	0.014J	0.0063J	0.019J	ND<0.0018 UJ	0.027	0.021J	0.0078J	0.082	0.0073J	0.011J
METHYLENE CHLORIDE	0.05	51	100	500	1000	ND<0.0037 U	ND<0.002U	ND<0.0032 U	ND<0.002 1U	ND<0.0027 U	ND<0.002 5U	ND<0.002 4U	ND<0.0028 U	ND<0.0022 U	ND<0.0025 U	ND<0.003U	ND<0.002 3U	ND<0.0028 U	ND<0.0024 U	ND<0.0025 U
TOLUENE	0.7	100	100	500	1000	ND<0.0006 U	ND<0.00033 U	ND<0.0005 2U	ND<0.000 35U	ND<0.0004 5U	ND<0.000 4U	ND<0.000 39U	ND<0.0004 6U	ND<0.0003 7U	0.00047J	0.0012J	ND<0.000 38U	ND<0.0004 5U	ND<0.0003 9U	ND<0.0004 U
TRICHLOROETHYLENE (TCE)	0.47	10	21	200	400	ND<0.0018 U	ND<0.00097 U	ND<0.0015 U	ND<0.001 U	ND<0.0013 U	ND<0.001 2U	ND<0.001 1U	ND<0.0013 U	ND<0.0011 U	ND<0.0012 U	ND<0.0014 U	ND<0.001 1U	ND<0.0013 U	ND<0.0011 U	ND<0.0012 U
No Standard																				
4-BROMOFLUOROBENZENE	0	0	0	0	0	0.083	0.049	0.071	0.048	0.06	0.057	0.053	0.061	0.051	0.057	0.066	0.052	0.059	0.051	0.054
CARBON DISULFIDE	0	0	0	0	0	0.01	ND<0.0022 U	ND<0.0035 UJ	ND<0.002 3U	ND<0.003U	ND<0.002 7U	ND<0.002 6U	ND<0.003U J	ND<0.0024 U	ND<0.0027 U	ND<0.0033 U	ND<0.002 5UJ	ND<0.003U J	ND<0.0026 U	ND<0.0027 U
CYCLOHEXANE	0	0	0	0	0	ND<0.0011 U	ND<0.00062 U	ND<0.0009 7U	ND<0.000 65U	ND<0.0008 4U	ND<0.000 75U	ND<0.000 72U	ND<0.0008 4U	ND<0.0006 8U	ND<0.0007 5U	ND<0.0009 1U	ND<0.000 71U	ND<0.0008 4U	ND<0.0007 3U	ND<0.0007 5U
METHYL ACETATE	0	0	0	0	0	ND<0.0015	ND<0.00082	ND<0.0013	ND<0.000 86U	ND<0.0011	ND<0.000	ND<0.000 96U	ND<0.0011	ND<0.0009	ND<0.001U	ND<0.0012	ND<0.000 94U	ND<0.0011	ND<0.0009	ND<0.0009 9U
METHYLCYCLOHEXANE	0	0	0	0	0	ND<0.0012	ND<0.00067	ND<0.0011	ND<0.000 71U	ND<0.0009	ND<0.000 81U	ND<0.000 78U	ND<0.0009	ND<0.0007 4U	ND<0.0008	ND<0.0009	ND<0.000 77U	ND<0.0009	ND<0.0007	ND<0.0008 1U
	Semi-Volatile	Organic Con	pounds																	
4-METHYLPHENOL (P- CRESOL)	0.33	34	100	500	1000	ND<0.011U	ND<0.011U	ND<0.013U	ND<0.011 U	ND<0.013U	ND<0.011 U	ND<0.011 U	ND<0.012U	0.014J	ND<0.012U	ND<0.062U	ND<0.011 U	ND<0.013U	ND<0.012U	ND<0.012U
ACENAPHTHENE	20	100	100	500	1000	ND<0.0024 U	ND<0.0024 U	ND<0.0028 U	ND<0.002 3U	ND<0.0027 U	ND<0.002 4U	ND<0.002 4U	ND<0.0026 U	ND<0.0024 U	ND<0.0026 U	ND<0.013U	ND<0.002 4U	ND<0.0027 U	ND<0.0025 U	ND<0.0025 U
ANTHRACENE	100	100	100	500	1000	ND<0.0052 U	ND<0.0052 U	ND<0.0061 U	ND<0.005 U	ND<0.006U	ND<0.005 2U	ND<0.005 3U	ND<0.0056 U	0.0063NJ	ND<0.0057 U	ND<0.029U	ND<0.005 1U	ND<0.0059 U	ND<0.0056 U	ND<0.0053 U
BENZO(A)PYRENE	1	1	1	1	1.1	ND<0.0049 U	ND<0.0049 U	ND<0.0057 U	ND<0.004 7U	ND<0.0056 U	ND<0.004 9U	ND<0.005 U	0.4	0.014J	ND<0.0054 U	ND<0.027U	ND<0.004 8U	ND<0.0056 U	ND<0.0052 U	ND<0.005U
BENZO(B)FLUORANTHENE	1	1	1	5.6	11	ND<0.0039 U	ND<0.0039 U	ND<0.0046 U	ND<0.003 8U	ND<0.0045 U	ND<0.004 U	ND<0.004 U	ND<0.0042 U	0.018J	ND<0.0043 U	ND<0.022U	ND<0.003 9U	ND<0.0045 U	ND<0.0042 U	ND<0.004U
BENZO(G,H,I)PERYLENE	100	100	100	500	1000	ND<0.0024 U	ND<0.0024 U	ND<0.0029 U	ND<0.002 4U	ND<0.0028 U	ND<0.002 4U	ND<0.002 5U	ND<0.0026 U	0.0089NJ	ND<0.0027 U	ND<0.013U	ND<0.002 4U	ND<0.0028 U	ND<0.0026 U	ND<0.0025 U
BENZO(K)FLUORANTHENE	0.8	1	3.9	56	110	ND<0.0022 U	ND<0.0022 U	ND<0.0026 U	ND<0.002 2U	ND<0.0026 U	ND<0.002 2U	ND<0.002 3U	ND<0.0024 U	0.0072J	ND<0.0025 U	ND<0.012U	ND<0.002 2U	ND<0.0025 U	ND<0.0024 U	ND<0.0023 U
CHRYSENE	1	1	3.9	56	110	ND<0.002U	ND<0.002U	ND<0.0024 U	ND<0.002 U	ND<0.0023 U	ND<0.002 U	ND<0.002 1U	ND<0.0022 U	0.017NJ	ND<0.0022 U	ND<0.011U	ND<0.002 U	ND<0.0023 U	ND<0.0022 U	ND<0.0021 U
FLUORANTHENE	100	100	100	500	1000	ND<0.0029 U	ND<0.0029 U	ND<0.0034 U	ND<0.002 8U	ND<0.0034 U	ND<0.003 U	0.018J	ND<0.0031 U	0.026J	ND<0.0032 U	ND<0.016U	ND<0.002 9U	ND<0.0033 U	0.011J	ND<0.003U
FLUORENE	30	100	100	500	1000	ND<0.0047	ND<0.0047	ND<0.0055		ND<0.0054	ND<0.004 7U	ND<0.004 7U	ND<0.005U	ND<0.0046	ND<0.0051	ND<0.026U	ND<0.004 6U	ND<0.0053	ND<0.005U	ND<0.0048

Sample Location	n NYSDEC Soi	l Cleanup Ob	iectives			A2	A3	B1	B2	В3	B4	В5	C1	C2	С3	C4	C5	D1	D2	D3
Sample Dept		<u>-</u>	,			12'	13'	11'	12'	10'	13'-14"	13'	8'	10'	12'	10'	10'	8'	14'	8'-9'
Sample Dat						3-May-13	16-May-13	30-Apr-13		23-Apr-13	3-May-13	3-May-13	30-Apr-13	19-Apr-13	24-Apr-13	22-Apr-13	3-May-13	30-Apr-13	23-Apr-13	1
Matri						Soil	Soil	Soil	Soil	Soil	Soil									
Unit	_					mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg									
Contaminate	Unrestricted	Residential	Restricted Residential	Commercial	Industrial		<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>						
Volatile Organic Compound	ls																			
INDENO(1,2,3-C,D)PYRENE	0.5	0.5	0.5	5.6	11	ND<0.0056 U	ND<0.0056 U	ND<0.0066 U	ND<0.005 4U	ND<0.0065 U	ND<0.005 6U	7U	ND<0.006U	0.0074NJ	ND<0.0062 U	ND<0.031U	ND<0.005 5U	U	ND<0.006U	ND<0.0058 U
NAPHTHALENE	12	100	100	500	1000	ND<0.0034 U	ND<0.0034 U	ND<0.004U	ND<0.003 3U	ND<0.0039 U	ND<0.003 4U	ND<0.003 4U	ND<0.0036 U	ND<0.0033 U	ND<0.0037 U	ND<0.019U	ND<0.003 3U	ND<0.0038 U	ND<0.0036 U	ND<0.0035 U
PHENANTHRENE	100	100	100	500	1000	ND<0.0043	ND<0.0043	ND<0.005U	ND<0.004	ND<0.0049	ND<0.004	ND<0.004 3U	ND<0.0046	0.028J	ND<0.0047	ND<0.023U	ND<0.004 2U	ND<0.0048	ND<0.0046	0.0098BJ
PYRENE	100	100	100	500	1000	ND<0.0013	ND<0.0013	ND<0.0015	ND<0.001	ND<0.0015	ND<0.001	0.015J	ND<0.0014	0.028J	ND<0.0014	ND<0.0072	ND<0.001	ND<0.0015	0.0094J	ND<0.0014
No Standard						U	0	U	30	U	30		U		0	U	30	0		U
2,4,6-TRIBROMOPHENOL	0	0	0	0	0	1.2	1.7	1.8	1.4	1.8	1.4	1.4	1.6	2.1	1.7	1.4	1.4	1.7	1.7	2
2-FLUOROBIPHENYL	0	0	0	0	0	1.2	1.6	1.7	1.3	1.8	1.4	1.3	1.5	1.8	1.6	1.7	1.2	1.7	1.7	1.6
2-FLUOROPHENOL	0	0	0	0	0	1.2	1.6	1.6	1.4	1.3	1.4	1.3	1.4	1.7	1.6	1.3	1.2	1.5	1.4	1.7
2-METHYLNAPHTHALENE	0	0	0	0	0	ND<0.0025	ND<0.0025	ND<0.0029	ND<0.002 4U	ND<0.0028	ND<0.002	ND<0.002	ND<0.0026	ND<0.0024	ND<0.0027	ND<0.014U	ND<0.002 4U	ND<0.0028	ND<0.0026	ND<0.0025
BIS(2-ETHYLHEXYL) PHTHALATE	0	0	0	0	0	ND<0.065U	ND<0.065U	ND<0.077U	ND<0.063	ND<0.075U	ND<0.066	ND<0.066	ND<0.07U	ND<0.065U	ND<0.072U	ND<0.36U	ND<0.065	ND<0.074U	ND<0.07U	ND<0.067U
		Metals	Ü	Ü	Ů				U		U	U					U			
ARSENIC	13	16	16	16	16	4.2	3.2	8.4	3.7	4.8	6.1	3.3	5.0	4.4	2.9	2.9	6.7	4.3	3.2	5.2
BARIUM	350	350	400	400	10000	90.9	102	101	76.7	93.8	94.6	87.7	81.7	47.9	85.2	102	84.3	91.1	92.3	105
BERYLLIUM	7.2	14	72	590	2700	0.66	0.65	0.69	0.72	0.73	0.79	0.82	0.62	0.36	0.63	0.69	0.74	0.59	0.67	0.88
CADMIUM	2.5	2.5	4.3	9.3	60	0.33	0.21J	0.49	0.25	0.32	0.20J	0.40	0.35	0.14J	0.43	0.36	0.28	0.44	0.58	0.60
CHROMIUM, TOTAL	1	22	110	400	800	15.3	17.9	16.2J	17.7	17.2	17.7	19.7	14.8J	9.2	14.9	15.2	16.1	12.6J	15.4	18.6
COPPER	50	270	270	270	10000	22.1	14.4	27.0	19.2	23.6	18.3	31.2	19.9	11.2	20.0	21.8B	24.8	13.9	21.9	26.6
LEAD	63	400	400	1000	3900	22.2	11.1	23.4	15.2	16.8	17.2	17.9	15.8	59.9	13.2	25.4	16.4	10.7	20.4	17.3
MANGANESE	1600	2000	2000	10000	10000	274B	273B	802J	309B	334J	516B	171B	354J	604B	316B	182J	679B	371J	145J	460B
MERCURY	0.18	0.81	0.81	2.8	5.7	0.16	0.028	0.058	0.034	0.033	0.034	0.035	0.041	0.076	0.039J	0.12	0.040	0.067	0.042	0.063
NICKEL	30	140	310	310	10000	23.4	29.9	28.2	31.4	27.9	28.3	39.8	26.4	10.2	26.0	28.0	30.2	17.8	25.7	35.2
SELENIUM	3.9	36	180	1500	6800	ND<0.51U	ND<0.52U	1.0J	ND<0.43U	ND<0.60U	ND<0.46U	ND<0.53U	ND<0.48U	0.53J	ND<0.59U	1.2J	ND<0.45U	ND<0.56U	0.58J	ND<0.55U
ZINC	109	2200	10000	10000	10000	75.0B	76.9B	103J	75.3B	79.3B	74.2B	89.4B	71.6J	47.8B	75.5B	67.8	70.4B	60.5J	68.5B	83.3B
No Standard	·							•	•								•		•	
ALUMINUM	0	0	0		0	11300	13600	11200J	12400	12200	12600	13500	10800J	8960	11600	11700	11900	9920J	10700	14300
CALCIUM	0	0	0	0	0	5490B	2980B	9690J	2260B	3010B	2590B	1500B	2680J	4750B	3220B	3720J	1990B	3490J	3510B	2440B
COBALT	0	0	0	0	0	7.5	9.7	17.9	13.0	9.4	11.8	15.1	10.7	6.4	10.1	9.8	11.3	7.7	8.7	14.4
IRON	0	0	0	0	0	18800B	23900B	27600J	23700B	22400B	27300B	25600B	19700J	13500B	21200B	18200B	25800B	17000J	16900B	24000B
MAGNESIUM	0	0	0	0	0	3530B	4040	5930	3850B	3820	3670B	4470B	3280	2290	3630J	3790B	3590B	2570	3380	4200
POTASSIUM	0	0	0	0	0	1690J	1310	1080	1420J	1810	1060J	1200J	962	1010	1450	1420J	794J	981	973	1570
SODIUM	0	0	0	0	0	474	188	819	1340	447	1390	620	1810	1060B	235	401B	421	983	710	480
THALLIUM	0	0	0	0	0	ND<0.39U	ND<0.39U	ND<0.43U	ND<0.32U	ND<0.45U	ND<0.34U	ND<0.40U	ND<0.36U	ND<0.37U	ND<0.44U	ND<0.38U	0.38J	ND<0.42U	ND<0.41U	ND<0.41U
VANADIUM	0	0	0	0	0	18.8	19.0	22.9	20.7	22.5	22.1	23.5	18.9	17.1	19.0	19.3	20.1	17.0	20.3	23.1

Sample Location	NYSDEC Soi	l Cleanup Ob	piectives			D4	D5	E 1	E2	E3	E4	E5	F1	F2	F3	F4	F5	G1	G2
Sample Depth	111002000	ir cicunup or	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			11'	12'	8'-9'	8'-9'	12'	10'	10'	8'	10'	12'	10'	12'	8'	10-11'
Sample Date						22-Apr-13				22-Apr-13	_ ~		2-May-13				24-Apr-13	-	1
Matrix						Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Units						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg						
Contaminate	Unrestricted	Residential	Restricted Residential	Commercial	Industria		3 3			, ,	3 3	<u> </u>	, J	3 3	, , ,	<u> </u>	<u> </u>	3 3	
Volatile Organic Compounds		1]													
ACETONE	0.05	100	100	500	1000	0.042	0.065	0.063	0.036	0.063	0.029	0.035	ND<0.33U	0.049	0.075	0.091	0.036	0.012J	0.15
ETHYLBENZENE	1	30	41	390	780	ND<0.0003 2U	ND<0.0003 8U	ND<0.000 43U	ND<0.0003 9U	ND<0.0004 U	ND<0.0003 5U	ND<0.0003 4U	ND<0.024 U	ND<0.0004 U	ND<0.0003 6U	ND<0.0003 6U	ND<0.0003 3U	ND<0.000 33U	ND<0.000 48U
METHYL ETHYL KETONE (2- BUTANONE)	0.12	100	100	500	1000	0.0054J	0.011J	0.014J	0.0062J	0.0093J	0.0041J	0.0048J	ND<0.24U	0.0074J	0.013J	0.024J	0.0071J	ND<0.001 7U	0.04
METHYLENE CHLORIDE	0.05	51	100	500	1000	ND<0.0021 U	ND<0.0025 U	ND<0.002 9U	ND<0.0026 U	ND<0.0027 U	ND<0.0024 U	ND<0.0023 U	ND<0.016 U	ND<0.0027 U	ND<0.0024 U	ND<0.0024 U	ND<0.0022 U	ND<0.002 2U	ND<0.003 2U
TOLUENE	0.7	100	100	500	1000	ND<0.0003 5U	0.0005J	ND<0.000 48U	ND<0.0004 3U	ND<0.0004 4U	ND<0.0003 9U	ND<0.0003 7U	ND<0.022 U	ND<0.0004 4U	0.00078J	0.00081J	0.00079J	ND<0.000 36U	ND<0.000 53U
TRICHLOROETHYLENE (TCE)	0.47	10	21	200	400	ND<0.001U	ND<0.0012 U	ND<0.001 4U	ND<0.0013 U	ND<0.0013 U	ND<0.0011 U	ND<0.0011 U	ND<0.023 U	ND<0.0013 U	ND<0.0011 U	ND<0.0011 U	ND<0.0011 U	ND<0.001 1U	ND<0.001 5U
No Standard	T		T	I	ı			T		1			1	ı	T	T	T	T	
4-BROMOFLUOROBENZENE	0	0	0	0	0	0.047	0.056	0.065	0.055	0.058	0.052	0.049	1.8	0.059	0.054	0.053	0.05	0.048	0.07
CARBON DISULFIDE	0	0	0	0	0	ND<0.0023 U	ND<0.0027	ND<0.003	ND<0.0029 U	ND<0.0029 U	ND<0.0026	ND<0.0025	ND<0.037 U	ND<0.0029 U	ND<0.0026	ND<0.0026	ND<0.0024 U	ND<0.002 4U	ND<0.003 5U
CYCLOHEXANE	0	0	0	0	0	ND<0.0006 4U	ND<0.0007 7U	ND<0.000 88U	ND<0.0008 U	ND<0.0008 1U	ND<0.0007 2U	ND<0.0006 9U	ND<0.018 U	0.0025J	ND<0.0007 3U	ND<0.0007 3U	ND<0.0006 7U	ND<0.000 67U	ND<0.000 98U
METHYL ACETATE	0	0	0	0	0	ND<0.0008 5U	ND<0.001U	ND<0.001 2U	ND<0.0011 U	ND<0.0011 U	ND<0.0009 5U	ND<0.0009	0.2	ND<0.0011 U	ND<0.0009 7U	ND<0.0009 7U	ND<0.0008 9U	ND<0.000 89U	ND<0.001 3U
METHYLCYCLOHEXANE	0	0	0	0	0	ND<0.0007 U	ND<0.0008 3U	ND<0.000 96U	ND<0.0008 7U	ND<0.0008 8U	ND<0.0007 8U	ND<0.0007 4U	ND<0.038 U	ND<0.0008 8U	ND<0.0007 9U	ND<0.0007 9U	ND<0.0007 3U	ND<0.000 73U	0.0021J
4-METHYLPHENOL (P-	Semi-Volatile	Organic Cor	npounds	l	l			ND -0.012					NID -0.014	<u> </u>		<u> </u>	<u> </u>	NID +0.050	NID +0.014
CRESOL)	0.33	34	100	500	1000	ND<0.012U		ND<0.013				ND<0.012U	ND<0.014 U		ND<0.012U	ND<0.011U	ND<0.011U	ND<0.056	ND<0.014 U
ACENAPHTHENE	20	100	100	500	1000	ND<0.0025 U	U	ND<0.002 8U	ND<0.0026	ND<0.0025 U	ND<0.0025 U	ND<0.0026	ND<0.002 9U	ND<0.0026 U	ND<0.0026	ND<0.0024 U	ND<0.0022 U	ND<0.012 U	ND<0.003 U
ANTHRACENE	100	100	100	500	1000	ND<0.0054 U	ND<0.0055 U	ND<0.006	ND<0.0056 U	0.036J	ND<0.0055	ND<0.0056	ND<0.006	ND<0.0057 U	ND<0.0057 U	ND<0.0052 U	ND<0.0049 U	0.046NJ	ND<0.006 5U
BENZO(A)PYRENE	1	1	1	1	1.1	0.078J	0.3	ND<0.005	ND<0.0052 U	0.12J	ND<0.0052 U	ND<0.0053	ND<0.005 9U	ND<0.0053 U	ND<0.0054 U	ND<0.0049 U	ND<0.0046	ND<0.024	0.17J
BENZO(B)FLUORANTHENE	1	1	1	5.6	11	U	ND<0.0042	ND<0.004 5U	U	ND<0.0041 U	ND<0.0042 U	ND<0.0042	7U	ND<0.0043	ND<0.0043	ND<0.004U	ND<0.0037	ND<0.019	ND<0.005 U
BENZO(G,H,I)PERYLENE	100	100	100	500	1000	ND<0.0025 U	U	ND<0.002 8U	ND<0.0026	U	ND<0.0026	ND<0.0026	9U	ND<0.0027 U	ND<0.0027 U	ND<0.0024 U	ND<0.0023	ND<0.012	ND<0.003
BENZO(K)FLUORANTHENE	0.8	1	3.9	56	110	ND<0.0023 U	U	ND<0.002 6U	ND<0.0024 U	U	ND<0.0024 U	ND<0.0024 U	7U	ND<0.0024 U	ND<0.0025 U	ND<0.0022 U	ND<0.0021 U	ND<0.011 U	ND<0.002 8U
CHRYSENE	1	1	3.9	56	110	ND<0.0021 U	U	ND<0.002 3U	U	ND<0.0021 U	ND<0.0022 U	ND<0.0022 U	ND<0.002 4U	U	ND<0.0022 U	ND<0.002U	ND<0.0019 U	ND<0.01U	ND<0.002 6U
FLUORANTHENE	100	100	100	500	1000	ND<0.003U	ND<0.0031 U	0.017J	ND<0.0031 U	ND<0.0031 U	ND<0.0031 U	0.022J	ND<0.003 5U	ND<0.0032 U	ND<0.0032 U	ND<0.003U	ND<0.0028 U	0.11J	ND<0.003 7U
FLUORENE	30	100	100	500	1000	ND<0.0048 U	ND<0.005U	ND<0.005 4U	ND<0.005U	0.019J	ND<0.005U	ND<0.005U	ND<0.005 6U	ND<0.0051 U	ND<0.0051 U	ND<0.0047 U	ND<0.0044 U	ND<0.023 U	ND<0.005 9U

Sample Location	NYSDEC Soi	l Cleanup Ob	iectives			D4	D5	E 1	E2	E3	E4	E5	F1	F2	F3	F4	F5	G1	G2
Sample Depth	-	- 01 011111p 02	jecures			11'	12'	8'-9'	8'-9'	12'	10'	10'	8'	10'	12'	10'	12'	8'	10-11'
Sample Date	_					22-Apr-13	22-Apr-13		20-May-13			· ·		-			24-Apr-13	2-May-13	
Matrix	-					Soil													
Units	_					mg/kg													
Gt.	TI	D	Restricted	G	T., J.,		0 0			8 8	0 0				0 0		0 0	0 0	
Contaminate	Unrestricted	Residential	Residential	Commercial	Industria														
Volatile Organic Compounds	5	ı	1				T		T	1		T	<u> </u>						
INDENO(1,2,3-C,D)PYRENE	0.5	0.5	0.5	5.6	11	ND<0.0058	ND<0.006U	ND<0.006	ND<0.006U	ND<0.0059 U	ND<0.0059	ND<0.006U	ND<0.006	ND<0.0061 U	ND<0.0062 U	ND<0.0056	U	ND<0.028	ND<0.007
NAPHTHALENE	12	100	100	500	1000	ND<0.0035 U	ND<0.0036 U	ND<0.003 9U	ND<0.0036 U	ND<0.0035 U	ND<0.0036 U	ND<0.0036 U	ND<0.004 1U	ND<0.0037 U	0.0047J	ND<0.0034 U	ND<0.0032 U	ND<0.017 U	ND<0.004 3U
PHENANTHRENE	100	100	100	500	1000	0.0095J	ND<0.0045 U	ND<0.004 9U	0.009J	0.086J	ND<0.0045 U	0.019J	ND<0.005	ND<0.0047 U	0.01J	ND<0.0043 U	0.0068J	0.14J	0.019J
PYRENE	100	100	100	500	1000	0.0093J	ND<0.0014 U	ND<0.001 5U	ND<0.0014 U	0.043J	ND<0.0014 U	0.018J	ND<0.001 6U	ND<0.0014 U	ND<0.0014 U	ND<0.0013 U	ND<0.0012 U	ND<0.006 5U	ND<0.001 7U
No Standard		<u>'</u>	•			•				<u>'</u>									
2,4,6-TRIBROMOPHENOL	0	0	0	0	0	1.5	1.5	1.9	1.5	1.6	1.6	1.5	1.8	1.6	1.6	1.5	1.3	0.71	1.7
2-FLUOROBIPHENYL	0	0	0	0	0	1.5	1.5	1.6	1.4	1.6	1.5	1.5	1.5	1.6	1.6	1.3	1.2	1.4	1.8
2-FLUOROPHENOL	0	0	0	0	0	1.1	1.1	1.4	1.5	1.2	1.1	1.2	1.4	1.2	1.1	1.4	1.3	1.2	1.7
2-METHYLNAPHTHALENE	0	0	0	0	0	ND<0.0025 U	ND<0.0026 U	ND<0.002 8U	ND<0.0026 U	0.014J	ND<0.0026 U	ND<0.0026 U	ND<0.003 U	ND<0.0027 U	ND<0.0027 U	ND<0.0025 U	ND<0.0023 U	ND<0.012 U	ND<0.003 1U
BIS(2-ETHYLHEXYL) PHTHALATE	0	0	0	0	0	ND<0.068U	ND<0.07U	ND<0.075	ND<0.07U	ND<0.069U	ND<0.069U	ND<0.07U	ND<0.079	ND<0.071U	ND<0.072U	ND<0.066U	0.22	ND<0.32U	ND<0.082
		Metals																	
ARSENIC	13	16	16	16	16	7.2	2.1J	4.9	4.9	8.2	4.7	7.8	6.6	3.1	4.6	2.7	4.7	2.5J	4.8
BARIUM	350	350	400	400	10000	94.3	86.7	103	85.9	91.6	94.9	110	105	92.9	101	61.1	86.1	38.8	87.4
BERYLLIUM	7.2	14	72	590	2700	0.62	0.62	0.85	0.81	0.71	0.66	0.78	0.66	0.71	0.67	0.43	0.56	0.29	0.64
CADMIUM	2.5	2.5	4.3	9.3	60	0.63	0.35	0.30	1.1	0.36	0.34	0.38	0.56	0.26J	0.28	0.32	0.29	0.21J	0.52
CHROMIUM, TOTAL	1	22	110	400	800	16.9	17.2	19.2	17.6	16.6	18.0	18.7	15.3	19.0	18.8	10.5	14.0	8.3	15.1
COPPER	50	270	270	270	10000	27.9B	21.2B	27.5	27.8	42.2B	24.9B	24.8B	26.6	13.3B	16.8B	13.0	16.3	80.7	34.1
LEAD	63	400	400	1000	3900	18.4	12.5	16.7J	16	46.3	14.7	22.6	34.6J	18.3	20.8	14.6	24.1	35.0	40.1
MANGANESE	1600	2000	2000	10000	10000	673J	233J	246J	537B	827J	185J	445J	181J	201J	230J	195B	275B	86.3B	184B
MERCURY	0.18	0.81	0.81	2.8	5.7	0.033	0.030	0.073J	0.044	0.039	0.025	0.025	0.20J	0.031	0.051	0.082J	0.056J	0.93	0.27
NICKEL	30	140	310	310	10000	33.0	31.8	32.1	36.4	32.2	32.7	33.0	25.9	27.9	28.6	15.2	22.1	13.9	22.6
SELENIUM	3.9	36	180	1500	6800	ND<0.48U	0.91J	0.66J	0.68J	0.67J	ND<0.54U	ND<0.54U	ND<0.55U	0.79J	ND<0.52U	1.1J	1.0J	ND<0.51U	1.0J
ZINC	109	2200	10000	10000	10000	72.3	75.9	79.1	88.0B	83.8	78.9	88.4	78.6	85.3	89.0	50.2B	71.0B	51.4	72.9
No Standard																			
ALUMINUM	0	0	0		0	12400	12900	14200	12600	11500	13000	13400	11300	13900	13400	8650	10900	5440J	11300J
CALCIUM	0	0	0	0	0	2340J	1870J	2540J	3230B	4670J	1660J	3760J	6170J	1910J	2310J	32900B	10700B	2590B	9370B
COBALT	0	0	0	0	0	13.1	8.9	12.6	12.9	19.1	10.2	15.0	6.6	9.0	12.7	4.9	11.4	4.4	6.5
IRON	0	0	0	0	0	27200B	20200B	25200J	26400B	34400B	23100B	30800B	16400J	22600B	25400B	12900B	22000B	9830B	15600B
MAGNESIUM	0	0	0	0	0	3880B	4160B	4050J	3930B	3800B	4100B	4280B	3720J	3900B	3830B	20400J	5620J	1840	4410
POTASSIUM	0	0	0	0	0	966J	1200J	1280	1360	1480J	968J	1080J	1170	1410J	1350J	1000	923	540	1310
SODIUM	0	0	0	0	0	592B	545B	2140	1150	202B	164BJ	549B	2560	355B	1010B	538	673	541	1890
THALLIUM	0	0	0	0	0	0.38J	0.76J	ND<0.40U	ND<0.35	ND<0.38U	0.43J	0.61J	ND<0.41U	0.43J	ND<0.39U	ND<0.38U	ND<0.34U	ND<0.39U	ND<0.47U
VANADIUM	0	0	0	0	0	19.9	18.6	24.3	19.9	20.7	21.1	23.7	18.0	22.3	23.1	13.6	18.3	13.2	18.4

Sample Location NYSDEC Soil Cleanup Objectives Sample Depth							G4	G5	H1	H2	Н3	H4	Н5	HJ	J1	J2	J3	J4	J5
							10'	10'	8'	10'	10'	14'	10'	10'	6'-7'	10'	10'	10'	10'
Sample Dat	_					10' 24-Apr-13	17-Apr-13	24-Apr-13	2-May-13	24-Apr-13	24-Apr-13	24-Apr-13	24-Apr-13	14-May-13	1-May-13	1-May-13	24-Apr-13	24-Apr-13	19-Apr-13
Matri	-					Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Unit						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Contaminate	Unrestricted	Residential	Restricted Residential	Commercial	Industrial		0 0	0 0	3 3	3 3	3 3	3 3			0 0			3 3	
Volatile Organic Compound	S]													
INDENO(1,2,3-C,D)PYRENE	0.5	0.5	0.5	5.6	11	ND<0.0056 U	ND<0.0055 U	ND<0.0052 U	ND<0.0058 U	ND<0.006U	ND<0.0058U	ND<0.0052U	ND<0.0052U	ND<0.0058U	ND<0.0053 U	ND<0.0054U	ND<0.0056U	ND<0.0062U	ND<0.006UJ
NAPHTHALENE	12	100	100	500	1000	ND<0.0034 U	ND<0.0033 U	ND<0.0031 U	ND<0.0035 U	ND<0.0036U	ND<0.0035U	ND<0.0031U	ND<0.0031U	ND<0.0035U	ND<0.0032 U	ND<0.0032U	ND<0.0034U	ND<0.0037U	ND<0.0036U J
PHENANTHRENE	100	100	100	500	1000	ND<0.0043	ND<0.0042	ND<0.004U	ND<0.0044	0.027J	ND<0.0044U	0.017J	0.017J	ND<0.0044U	ND<0.004U	ND<0.0041U	ND<0.0043U	0.47	0.021J
PYRENE	100	100	100	500	1000	ND<0.0013	ND<0.0013	ND<0.0012	ND<0.0014	0.021J	ND<0.0014U	0.021J	0.016J	ND<0.0014U	ND<0.0012	ND<0.0013U	ND<0.0013U	0.047J	0.026J
No Standard						0	U	U	U						U				
2,4,6-TRIBROMOPHENOL	0	0	0	0	0	1.5	2	1.4	1.3	1.5	1.6	1.4	1.4	1.9	1.4	1.2	1.7	1.9	2.2
2-FLUOROBIPHENYL	0	0	0	0	0	1.3	1.7	1.2	1.3	1.4	1.4	1.2	1.2	1.7	1.4	1.3	1.5	1.6	1.8
2-FLUOROPHENOL	0	0	0	0	0	1.4	1.6	1.2	1.3	1.4	1.4	1.2	1.3	1.7	1.3	1.3	1.4	1.6	1.7
2-METHYLNAPHTHALENE	0	0	0	0	0	ND<0.0025	ND<0.0024	ND<0.0023	ND<0.0026	ND<0.0026U	ND<0.0025U	ND<0.0023U	ND<0.0023U	ND<0.0025U	ND<0.0023	ND<0.0024U	ND<0.0025U	0.14NJ	ND<0.0026U
BIS(2-ETHYLHEXYL) PHTHALATE	0	0	0	0	0	ND<0.065U	ND<0.064U	ND<0.061U	ND<0.068U	ND<0.07U	ND<0.067U	ND<0.061U	ND<0.06U	ND<0.067U	ND<0.062U	0.16J	ND<0.065U	ND<0.072U	ND<0.07UJ
		Metals																	
ARSENIC	13	16	16	16	16	2.0J	1.6J	4.2	7.3	4.4	2.8	2.6	7.0	4.0	4.2	1.9J	5.6	5.8	6.4
BARIUM	350	350	400	400	10000	89.7	7.4	83.9	98.2	106	72.6	66.0	53.5	22.5	48.3	14.2	94.8	115	24.4
BERYLLIUM	7.2	14	72	590	2700	0.75	0.11J	0.61	0.99	0.92	0.65	0.35	0.50	0.34	0.47	0.16J	0.77	0.72	0.41
CADMIUM	2.5	2.5	4.3	9.3	60	0.23J	0.14J	0.30	0.27	0.18J	0.29	0.22	0.17J	0.13J	0.16J	0.064J	0.30	0.46	0.16J
CHROMIUM, TOTAL	1	22	110	400	800	17.6	3.0	14.1	20.0	17.9	15.7	8.0	13.3	6.6	11.8	4.7	17.1	16.3	6.6
COPPER	50	270	270	270	10000	10.4	5.0	15.0	23.6	21.9	20.4	14.5	20.2	15.0	12.3	5.1	18.6	25.3	12.2
LEAD	63	400	400	1000	3900	12.2	4.7	15.3	15.5	19.8	15.6	15.2	13.9	7.4	8.9	3.3	16.3	26.1	9.4
MANGANESE	1600	2000	2000	10000	10000	111B	249J	281B	469B	593B	270B	249B	209B	107J	256B	44.7B	497B	349B	132J
MERCURY	0.18	0.81	0.81	2.8	5.7	0.020J	0.0091J	0.040	0.030	0.040J	0.042J	0.097J	0.030J	0.091J	0.015J	ND<0.0092U	0.026J	0.093J	ND<0.011U
NICKEL	30	140	310	310	10000	24.3	8.5	22.8	30.4	24.6	26.3	14.3	22.5	14.2	15.2	7.0	29.4	28.6	11.1
SELENIUM	3.9	36	180	1500	6800	0.58J	ND<0.47U	1.3J	ND<0.50U	0.96J	1.1J	0.93J	0.51J	ND<0.51U	ND<0.47U	ND<0.46U	1.7J	1.3J	ND<0.53U
ZINC	109	2200	10000	10000	10000	65.1B	31.1	64.9B	71.9	71.6B	76.5B	40.7B	57.7B	33.7	37.5B	17.0B	85.6B	78.9B	25.4B
No Standard									T		·		1						
ALUMINUM	0	0	0		0	15000	2180	11100	15800J	14400	12500	6360	9750	5540J	9250J	3830J	13500	12800	5790
CALCIUM	0	0	0	0	0	1730B	36000J	7580B	2280B	3340B	4550B	19200B	2790B	3100J	1060B	816B	2620B	5700B	7730B
COBALT	0	0	0	0	0	7.5	2.9	11.0	17.1	14.2	9.4	5.0	8.2	6.3	7.9	2.2	13.2	10.6	5.4
IRON	0	0	0	0	0	18900B	5900B	22800B	28600B	32700B	20200B	11200B	24500B	12500B	17400B	6020B	29600B	23000B	13900B
MAGNESIUM	0	0	0	0	0	3450J	3450	4070	3580	3480	3900J	4760J	3790J	1450J	2070B	888B	3590J	4470J	2110
POTASSIUM	0	0	0	0	0	1750	419J	978	1200	1020	1670	778	919	816J	670B	457B	1300	1470	582J
SODIUM	0	0	0	0	0	523	497	1080	1730	1170	1160	721	704	1020	1280B	484B	979	1350	720B
THALLIUM	0	0	0	0	0	ND<0.36U	ND<0.35U	ND<0.32U	ND<0.38U	ND<0.35U	ND<0.38U	ND<0.33U	ND<0.37U	ND<0.38U	ND<0.35U	ND<0.34U	ND<0.39U	ND<0.40U	ND<0.40U
VANADIUM	0	0	0	0	0	20.8	4.6	19.1	27.1	25.4	19.0	12.2	17.8	9.8	16.9	8.4	22.4	22.0	15.5